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ABSTRACT

This paper deals with the pilot assisted time-varying channel estima-
tion in orthogonal frequency division multiplexing (OFDM) systems.
Since the pilot sub-carrier correlations are rank deficient, an estima-
tion scheme can be implemented by discarding the noise subspace
components and filtering the subspace components. The subspace
can be estimated by some subspace tracking (ST) algorithm. We
propose to implement the subspace components filtering via a QR
factorization based algorithm, which is suitable for operating in con-
junction with the ST algorithm. The performance of the proposed
schemes is verified by simulation in computer.

Index Terms— Frequency division multiplexing, Time-varying
channels, Matrix decomposition.

1. INTRODUCTION

In pilot assisted estimation of orthogonal frequency division multi-
plexing (OFDM) channels, the simple least-squares (LS) approach
leads to very inaccurate estimates for high signal-to noise ratio (SNR)
[1]. In order to obtain less noisy estimates, the LS processing output
can be additionally filtered [2]. Since the pilot sub-carriers correla-
tions are rank deficient, we benefit from a projection in the signal
subspace [3]. Further, the noise in the projection components can be
attenuated via Wiener filtering. A subspace tracking (ST) algorithm
can perform the signal subspace estimation. In this work, we used
the LORAF3 algorithm [4]. The subspace components are estimated
by an adaptive filtering based on QR factorization. The QR approach
is suitable for a simultaneous operation of both ST algorithm and the
adaptive filter. The performance of the proposed algorithms was ver-
ified by computer simulation. The proposed algorithm is also com-
pared with the low-pass filtering approach [5]. The rest of this is
organized as follows. In section 2, we present the filtering structure
on which the algorithms are based. In section 3, the proposed algo-
rithms are derived. The simulation results are shown in section 4.
Finally, we draw the conclusions in section 5.

2. FILTERING STRUCTURE

In this section we derive the filtering structure based on subspace
decomposition and filtering over the subspace components.

The received signal x[m,k] and transmitted symbol a[m,k] at the
m-th OFDM symbol and k-th subcarrier can be related as

x[m,k] = H[m,k]a[m,k]+u[m,k]+w[m,k],
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where H[m,k] is the subcarrier complex attenuation, and u[m,k] and
w[m,k] are the inter-carrier interference (ICI) and noise compo-
nents, respectively. We consider that the symbols a[m,k] are un-
correlated for different m’s and k’s. The noise w[m,k] is supposed
i.i.d. and independent of the remaining signals. Supposing that a[m,k]
at the pilot positions are selected from a PSK constellation, the LS
estimate of H[m,k] can be found simply back-rotating x[m,k], which
results in

H̃[m,k] = x[m,k]a∗[m,k] = H[m,k]+ z[m,k]

where z[m,k] = (u[m,k] +w[m,k])a∗[m,k]. Due to the uncorrelated
assumption of a[m,k], we can write

�{z∗[m1,k1]z[m2,k2]}= 0, for m1 �= m2 or k1 �= k2,

�{H∗[m1,k1]z[m2,k2]}= 0, for any m1,m2,k1,k2.

This simplifies significantly the design of a second-order estimator
for H[m,k] (see [2]). We consider the pilot subcarriers are arranged
in grid. The pilot subcarriers are allocated at positions m = nMt and
k = lMf , for n ∈N and l = 0, . . . ,Np−1, where Np is the number of
pilot subcarriers per OFDM symbol. Let H̃[n], H[n] and z[n] be col-
umn vectors containing respectively H̃[nMt , lMf ], H[nMt , lMf ] and
z[nMt , lMf ], for l = 0, . . . ,Np−1. Then we can state

RH̃ = �{H̃[n]H̃H [n]}= RH +ρI,

where �{·} is the expectation operator, RH = �{H[n]HH [n]} and ρ
is the variance of z[nMt , lMf ]. Let U be the unitary matrix associated
to the K ≤ Np largest eigenvalues of RH , such that the signal of
interest H[n] lies in the space spanned by the columns of U. The
projection of H̃[n] over this space has a component vector

d̃[n] = UHH̃[n] = d[n]+η [n],

where d[n] = UHH[n] and η [n] = UHz[n]. Let d̃[n, l], d[n, l] and
η[n, l] denote the l-th element of d̃[n], d[n] and η[n], respectively.
The desired term d[n] can be estimated via a MMSE approach. Ob-
viously we could choose any other filtering criterion for estimat-
ing d[n, l] from d̂[n, l]. A straightforward computation leads to the
Wiener filter of coefficients

c[l] = R−1
d̃

[l]rd̃d [l]. (1)

where d̃[n; l] = (d̃[n, l], . . . , d̃[n−M + 1, l])T is the vector contain-
ing the last M realizations of d̃[n, l], Rd̃ [l] = �{d̃[n; l]d̃H [n; l]} and
rd̃d [l] = �{d̃[n; l]d[n; l]}. Then we obtain the Wiener estimate of
d[n; l] as

d̂[n, l] = cH [l]d̃[n; l].
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Fig. 1. Filter design for estimation of pilot subcarriers.

And the pilot sub-carriers are finally recovered as

Ĥ[n] = Ud̂[n],

where d̂[n] is the column vector whose l-th element is d̂[n, l].
The resulting filtering structure is illustrated in Fig. 1. The re-

maining sub-carriers can be estimated by some interpolation tech-
nique [6]. An improvement in the accuracy of the LS estimates re-
sults in more accurate sub-carrier estimates in the interpolation out-
puts. In the next section we propose an adaptive scheme for estimat-
ing the pilot sub-carriers.

3. PROPOSED ALGORITHMS

In order to estimate the pilot subcarriers, U and c[l] should be known
first. The matrix U can be estimated by some ST algorithm. For
example, we could employ the LORAF algorithm, which is summa-
rized in Table 1. Obviously, the ST algorithms require a value Kmax
for the subspace dimension, which should satisfies K < Kmax in or-
der to operate with no losses. The choice of Kmax depends on the
channel environment and the supported computational complexity.
The performance can be improved if the remaining Kmax−K com-
ponents are discarded. For this, we should estimate K. If σ2

H is the
subcarrier variance, we can write

PH̃ = �{H̃H [n]H̃[n]} Pd̃ = �{d̃H [n]d̃[n]}
= Npσ2

H +Npρ, = Npσ2
H +Kmaxρ,

which provides

ρ =
PH̃ −Pd̃

Np−Kmax
. (2)

Inserting in Eq. (2) the recursive estimates for PH̃ and Pd̃:

PH̃ [n] = αPH̃ [n−1]+(1−α)H̃H [n]H̃[n],

Pd̃ [n] = αPd̃ [n−1]+(1−α)d̃H [n]d̃[n],

we obtain the following estimate for ρ:

ρ̂[n] = α · ρ̂[n−1]+(1−α) · (H̃H [n]H̃[n]

− d̃H [n]d̃[n])/(Np−Kmax), (3)

where the factor α satisfies 0<α < 1. Since p[l] =�{|d̃[n, l]|2}> ρ
for l < K, and p[l] = ρ for l ≥ K, we can find K by selecting the
largest l such that �{|d̃[n, l]|2}> ρ . For each l, we estimate p[l] as

p[n, l] = α · p[n−1, l]+(1−α) · |d̃ [n, l]|2.

Initialization:

U[0] =
(

I
0

)
; 0< α < 1;

For each n:

h[n] = UH [n−1]H̃[n]

H̃⊥ = H̃[n]−U[n−1]h[n]

Z[n] = H̃H
⊥[n]H̃⊥[n]

¯̃H⊥[n] = Z−1/2[n]H̃⊥[n](
R[n]

0 · · ·0

)
= G[n]

(
αR[n−1]+(1−α)h[n]hH [n]

(1−α)Z1/2[n]hH [n]

)
(
U[n] | �)= (

U[n−1] | ¯̃H⊥[n]
)
GH [n]

Table 1. The LORAF3 algorithm.

Initialization:

Kmax ≥ K; ρ̂[n] = 0; p[n, l] = 0; 0< α < 1; β > 1;

For each n:

ρ̂[n] = α · ρ̂[n−1]

+(1−α) · (H̃H [n]H̃[n]− d̃H [n]d̃[n])/(Np−Kmax)

p[n, l] = α · p[n−1, l]+(1−α) · |d̃ [n, l]|2
K̂[n] = #{p[n, l]; p[n, l]> β · ρ̂ [n]}

Table 2. Estimation of ρ and K.

And finally we have the estimate

K̂[n] = #{p[n, l]; p[n, l]> β · ρ̂[n]},
where the symbol #{·} stands for the cardinality of the set in the
argument. The factor β > 1 was inserted in order to avoid the wrong
selection of l satisfying p[n, l] > ρ̂ [n] for l ≥ K, which can happen
due to estimation errors.

The resulting algorithm is summarized in Table 2. In what fol-
lows, we derive an adaptive estimate of c[l]. The estimate ρ̂[n] ob-
tained above will be employed in the recursive formula of c[l].

Denoting rd̃d̃ [l] = �{d̃[n; l]d̃[n, l]} and e1 = (1,0, . . . ,0)T , we
can write

rd̃d [l] = rd̃d̃ [l]−ρe1, R−1
d̃

[l]rd̃d̃ [l] = e1,

which, together with Eq. 1, results in

c[l] = e1−ρR−1
d̃

[l]e1.

We can estimate Rd̃ [l] as

Rd̃ [n; l] = αRd̃ [n−1; l]+(1−α)d̃[n; l]d̃H [n; l]. (4)

From the Woodbury identity, the inverse P[n; l] = R−1
d̃

[n; l] can be
recursively computed as

P[n; l] = α−1P[n−1; l]−α−1k[n; l]d̃H [n; l]P[n−1; l], (5)

where

k[n; l] =
P[n−1; l]d̃[n; l]

α(1−α)−1 + d̃H [n; l]P[n−1; l]d̃[n; l]
. (6)

If we define p[n; l] as the first column of P[n; l], we obtain the recur-
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sive estimate
c[n; l] = e1− ρ̂[n]p[n; l],

and, consequently,

d̂[n; l] = d̃[n; l]− ρ̂ [n](pH [n; l]d̃[n; l]),

where ρ̂[n] is the estimate of ρ given in Eq. 3.
The obtained algorithm is given in Table 3.
From Eq. 5, we have the following recursive formula

p[n; l] = α−1p[n−1; l]−α−1k[n; l](d̃H[n; l]p[n−1; l]). (7)

The updating of p[n; l] depends on k[n; l], whose computation re-
quires a complexity of O(M2). Fortunately, there exist fast algo-
rithms that perform a recursive computation of k[n; l]. In this case,
the estimation of d[n] would require a computational complexity of
O(MKmax).

Since U and c[l] are estimated simultaneously, the estimation
errors of U[n] can lead to instabilities in the obtained algorithm. In-
deed, an explosive divergence was observed in our computational
simulations. In order to avoid this, we design an algorithm based
on QR factorization [7], which is numerically stable and can operate
over changes in the correlations of d̃[n, l].

Let R1/2
d̃

[n; l] be the root square of Rd̃ [n; l], such that

Rd̃ [n; l] = R1/2
d̃

[n; l]RH/2
d̃

[n; l],

where RH/2
d̃

[n; l] is upper triangular. If we organize the terms in
Eq. (4) as

G[n; l] =
(

αRd̃ [n; l] (1−α)1/2d̃[n; l]
(1−α)1/2d̃H [n; l] 1

)
.

we can write
G[n; l] = A[n; l]AH [n; l],

where

A[n; l] =

(
α1/2R1/2

d̃
[n−1; l] (1−α)1/2d̃[n; l]

0H 1

)

Applying a sequence of Givens rotations to A[n; l], we can obtain the
factorization

A[n; l]Θ[n; l] = B[n; l] =
(

B11[n; l] 0
bH

21[n; l] b22[n; l]

)
,

where B11[n; l] is upper triangular. Since Θ[n; l] is unitary, we have

A[n; l]AH [n; l] = B[n; l]BH [n; l],

whose expansion provides the relations

B11[n; l] = R1/2
d̃

[n; l]

b21[n; l] = (1−α)1/2R−1/2
d̃

[n; l]d̃[n; l] (8)

From k[n; l] given in Eq. (6), we can show

k[n; l] = (1−α)R−1
d̃

[n; l]d̃[n; l].

The above equation together with Eq. (8) results in

RH/2
d̃

[n; l]k[n; l] = (1−α)1/2b21[n; l].

Initialization:

P[0; l] = I; 0< α < 1;

For each n:

π[n; l] = P[n−1; l]d̃[n; l]

k[n; l] =
π[n; l]

α · (1−α)−1 + d̃H [n; l]π[n; l]
P[n; l] = α−1P[n−1; l]−α−1k[n; l]πH [n; l](
p[n; l] | �)= P[n; l]

d̂[n, l] = d̃[n, l]− ρ̂[n](pH [n; l]d̃[n; l])

Table 3. Algorithm based on the Woodbury identity.

Initialization:

P[0; l] = I; p[0; l] = e1; 0< α < 1;

For each n:

A[n; l] =
(

α1/2R1/2
d̃

[n−1;l] (1−α)1/2d̃[n;l]
0H 1

)

A[n; l]Θ[n; l] =
(

B11[n;l] 0
bH

21[n;l] b22[n;l]

)
R1/2

d̃
[n; l] = B11[n; l]

k[n; l] = (1−α)1/2{R−H/2
d̃

[n; l]b21[n; l]}
p[n; l] = α−1p[n−1; l]−α−1k[n; l](d̃H[n; l]p[n−1; l])

d̂[n, l] = d̃[n, l]− ρ̂[n](pH [n; l]d̃[n; l])

Table 4. Algorithm based on QR factorization.

Since RH/2
d̃

[n; l] is upper triangular, k[n; l] in the above equation can
be found via the back-substitution algorithm. And finally p[n; l] in
Eq. (7) can be updated.

The algorithm based on QR factorization is summarized in Ta-
ble 4. This algorithm also supports a fast version of computational
complexity of O(M) (see [7]).

4. SIMULATION RESULTS

The OFDM system we simulated in computer employs the parame-
ters given in Table 5. We assumed a number of 4 paths in the tapped
delay line (TDL) channel model. The paths realizations was selected
from a Jakes spectrum [8] with exponential decaying power delay
profile. At each simulation run, the path delays were independently
and uniformly selected in the interval [0,TsNcp−Tg], where is Ts is
the sampling period, and the time guard Tg = 4Ts was empirically
chosen such that the channel length L satisfies L ≤ Ncp + 1. For a
TDL channel model, Simeone [3] showed that the signal subspace
dimension is equal to the number of paths, i.e, K = 4. We have not
implemented the algorithm for estimating K. The values Kmax = 4
and α = 0,99 were used in the simulation.

The performance of the algorithm based on QR factorization is
compared to a low-pass filter of total bandwidth B = 2 fdTsNf Mt ,
where fd is the maximum Doppler frequency and Nf = Ncp +Nc.
This filter can be performed by c[l] = (R+δ I)−1r, where the i j-th
entry of R is sinc(B(i− j)), r is the first column of R, and δ is a
small constant (δ = 10−5). We selected M = 41 for the length of
c[l]. As measure of performance we use MSE =�‖H[n]− Ĥ[n]‖2.

Fig. 2 compares the learning curves of different algorithms for
SNR = 10dB, fd = 500Hz and Mt = 1. The MSE was estimated
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Sampling rate 800kHz

Number of subcarriers Nc = 128

Cyclic prefix length Ncp = 15

Number of pilot subcarriers Np = 16

Pilot symbol constellation type 4-PSK

Data symbol constellation type 16-QAM

Channel power σ2
h = 1

Symbol power σ2
a = 1

Number of paths K = 4

Table 5. Simulation parameters.

as the average of 200 realizations. In fact, if compared to a mere
subspace projection (legend ST), the filters applied to the subspace
components provide more accurate estimates. Although the sub-
space projections with U perfectly known (legend U) or estimated by
the ST algorithm have similar performance, their versions with fil-
tered subspace components (legends U/Adaptive and ST/Adaptive)
attain different MSE values. The observed loss is due to the vari-
ability of U[n]. The low-pass filtering in conjunction with the ST al-
gorithm (legend ST/Low-pass) presented the best performance. As
drawback, the low-pass approach requires we know the maximum
Doppler frequency fd , whose estimation is not possible in many
cases. Now, the proposed adaptive filtering do not demand the es-
timation of any other parameter.

Fig. 3 show the MSE versus SNR curves of different estimators
for fd = 200Hz and Mt = 3. For each SNR, the MSE curves are
firstly obtained as in Fig 2 for 100 realizations. Subsequently, we
found the curves in Fig. 3 as the average of the MSE for iterations
from 500 to 1050, where the learning curves achieve the steady state.
All curves in Fig. 3 decreases linearly. We got rid of a possible
saturation of this curves, differently of which the authors previously
found in [5].

5. CONCLUSIONS

Based on subspace tracking and QR factorization, we designed an ef-
ficient pilot assisted channel estimator for OFDM systems. The QR
approach made suitable the simultaneous estimation of U and c[l].
The adaptive schemes we proposed have good convergence proper-
ties and present a linear decaying of the MSE vs. SNR curves, as seen
in Figs. 2 and 3. The low-pass approach presented best performance.
The way we designed the low-pass filter coefficients avoided the sat-
uration found in [5]. Unfortunately, the low-pass approach requires
we know the parameter fd , whose estimation is not possible in many
scenarios. On the other hand, the proposed scheme do not require
the estimate of any additional parameter. The QR based filtering has
the additional advantage of supporting a fast version.
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