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Geodesic Learning

Rui F. Vigelis and Charles C. Cavalcante

Abstract—In this paper we develop a new algorithm joined. The geodesic is approximated by the shortest path
for estimating the geodesic between points in a point in the graph. This leads to very poor geodesic estimation.
cloud. Geodesics are useful in dimensionality reduction A second alternative for geodesic estimation is pro-
and datg analysis. The a_llgor_it_hm exploits data locally, and posed in [4]. In that paper, a thin tubular neighborhood
results in a distance minimizing curve. The CONVergence o tayen from the point cloud. And the geodesic in the
was experimentally verified in a toy (swiss roll) and ‘semi- . . . >
toy’ (rendered faces) data set. me_mlfold is apprommat_ed by the geodesic in thg tubular

neighborhood. The main advantage of our algorithm over

Keywords.—Geodesic learning, dimensionality reduction, [4] is the computational simplicity.
data analysis. In this paper we propose a simple and efficient algo-

rithm for estimating the geodesic between points from a
I. INTRODUCTION set of sampled points we suppose lying in a manifold.

In information extraction one of the principal drawEstimating geodesic helps elucidating the data structure,
backs concerns the high dimensional and non-Iineaﬁiﬁd in some cases avoid the entire manifold learning.
nature of the underlying data. For example, a commdih€ algorithm is derived in the next section.
nication network provides a rich and large amount of The rest of the paper is organized as follows. In
data. But generally one can only take poor on-line de§ection Il we derive the algorithm. Section Il shows the
sions due to computational constraints. Many algorithn§gnulation results. Finally in Section IV we draw our
for dimensionality reduction have been proposed thg@nclusions and perspectives of this work.
exploit non-linear and geometric aspects of the data.

To cite a few, we have the locally linear embedding Il. GEODESICLEARNING ALGORITHM

(LLE) [1], isometric mapping (ISOMAP) [2], Laplacian We want to find a curvef : [0,1] — M between
eigenmaps (LapEig) [3]. The data is supposed lying pointsa = f(0) andb = f(1) in the manifold M whose

a d-dimensional manifold embedded infadimensional length attains a minimum. For curves between this points
Euclidian spaced <« D). This algorithms non-linearly we apply a cost function that we try to minimize. Since
map the data to @-dimensional Euclidian space, prethe curve lives inR”, a candidate for cost function is
serving local or global distances. In the low-dimensional N 1

space a desired task (clustering, classification, etc.) can j(f) = Zd(/\/l,f(tz‘))g + )\/ Hf,(t)H2dt7

be performed. i1 0

_ If we are_just interested in _the geode_sic b_etwee_n poi%?]ereti € (0,1),

in the manifold, we can avoid the entire dimensionality

reduction. A geodesic is defined as the shortest path dM,z) = inf{|ly —z| : y € M}

joining two points. In some situations (e.g., clustering, 4\ < R is a a penalizing factor. Larger values »f
classification in some cases), estimating the geodesiGi§ tand to result in curves of smaller length.
sufficient for the task in consideration. If we denotexo = a, 1 = f(t1),....,an = f(tn)

Since the ISOMAP preserves global distances, it is . _ the above cost function can be rewritten as
required the estimation of geodesic distances between

. . . N

points. Graph based methods are adopted for estimating B 9 9

the geodesic distances. In the graph points are the J({zi}) = Zl d(M, )" + A Zl i = i1

edges. Near points are joined forming vertices, which T =

are weighted by the distance between the points that ard? Simulations, we have observed that the second term

in the right hand side of the above equation was not a
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TABELA | Swi
wiss roll dataset
GEODESIC LEARNING ALGORITHM. 15
Initialize: 10
a:l'o,l'l,...,l‘N,Z'I\LH:b 5
Repeat: L
Fori=1,...,N: 0 .
1 (
Ti— T Z m]) -5
anr(?
# L( ) xj€any, (i)
Find nng (z;) -10

1 -15

Ti — ?( Z yj) 30
yjEnnk (z;)

Until {z;} converges

with the constraingj wij=1fori=0,...,N+1. A
choice for the weightsy;; is 10

_ 1
N #anL(i) ’

where# stands for the cardinality anthy () is the set
of L adjacent neighbors af; in the sequencéz;): 5

wz’j

ang, (i) = {1, Tie1, Tit1, - - - Titl ) 10

andl € {0,...,L}issuchtha0 <i—1, i+l < N+1 15
andany (i) contains a maximum number of elements. %0

Since we do not know the manifold1, we can not 2
find the shortest distancé(M, z;). We approximate
d(M,x;) by the average of th&'-nearest neighbors of -10 -5 0
x; in the samplegys, ...,y } taken from the manifold

M. i ) o Fig. 1. Samples from the swiss roll, the geodesic and thenattid
With the above changes, the cost function is given agve.

N
1
J({xi}) :Z(? Yo llyy - @il lIl. SIMULATION RESULTS

Yj EHHK(xi)

For illustrating convergence and effectiveness, we
A 1 : Z |@; — xiH2> have run the algorithm on two data sets, the swiss roll
#anp, (i) ! and the face database [2], two sources broadly used in
the data dimensionality literature.
A gradient descendent updating fd¢{x;}) results in From the swiss roll, we uniformly sampled 200 points.

1 1 Two points were selected in the samples for estimating
()

xz;€any (1)

Ti A———o the geodesic between them, as shown in Fig. 1. These
#ran, (i) two points was then joined by 20 initial points chosen

y;€Enng x;€any ()

The above updating leads to difficulties. The penaliziH the samples. We performed iterations with= 3

factor A will provide curves shorter than the geodesi _djacent neighbors in the curve aid = 10 nearest

Thus the asymptotic curve will not lie in the manifold.ne'ghbors in the manifold. The resulting curve afser

We avoid this difficulty updating separately each term ilﬁeratlons is shown in Fig. 1. As measure of convergence

the right-hand side of the above equation. The final forﬂgrformance, we used the curve length and the averaged

of the geodesic learning algorithm is shown in Table pauare distance from the points to the geodesic,

The initial points can not be arbitrary. They can be N+1 N )
chosen from the point cloud, and in most cases we have | = Y llzi =il e= N > (d(xi,9))?,
observed that imposing a small maximum value for the =1 =1

distanced|z; — x;—1|| guarantees convergence. where g is the geodesic joining:y and xx41. Fig. 2
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9

U 1 18.8309——17.4804——10.855——16.2162——15.0659——18.3454
I 7 @

4t 1 6.728 7.0476 2.5775 4.2689 6.1279 8.7648

Fig. 3. Initial faces and faces after 10 iterations. Numbzzow

averaged distance

2t g each face indicate distance between faces.
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Fig. 2. Averaged square distance from the points to the giode T N€ algorithm has an appealing simple implementation,

and curve length for each iteration. differently of others techniques. The main drawback
concerns the initialization points, which can lead to some
divergence. We hope we will find a criterion for the

depicts the values of and e for each iteration. With choice of this points. As a perspective of this work, the

approximately 25 iterations, the algorithm presentegnvergence analysis will be developed.
convergence, with near to the geodesic length aad
near to zero.
The first row in Fig. 3 shows the initial faces and the1 sam T, Roweis and L K Saul. “Nonlinear i oy
. . . am [. Rowels an awrence K. saul, ‘Nonlinear dimena
dI_Stance betw_een adja_cent fac_es. The algorithm was '[ reduction by locally linear embedding,Ecience, vol. 290, no.
with L = 3 adjacent neighbors in the curve afAd= 10 5500, pp. 2323-2326, Dec. 2000.
nearest neighbors in the manifold. The faces after 14) Joshua B. Tenenbaum, Vin de Silva, and John C. Langford,
iteration nd their distan r hown in th nd A global geometric framework for nonlinear dimensiongalit
te a.to S and t € ds.ta ces ?e sho the seco dreduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec.
row in Fig. 3. Finally, Fig. 4 depicts the curve length for 5559

each iteration. [3] Mikhail Belkin and Partha Niyogi, “Laplacian eigenmajer
dimensionality reduction and data representatidwgliral Com-
put., vol. 15, no. 6, pp. 1373-1396, 2003.

IV. CONCLUSIONS ANDPERSPECTIVES [4] Facundo Memoli and Guillermo Sapiro, “Distance funoticand

In this paper we developed a new algorithm capable iggldel\j;i Ocols“é’g“irgm"ldz flsgf_fggng Cz'gggs'"S'AM J
of estimating geodesics from a point cloud. Convergence ' oo e ’ '
was shown in simulations. In the swiss roll case we
observed that the algorithm converges. In the face da-
tabase, we obtained a shorter curve, which could not
be compared to the geodesic, since it was not known.
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