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2. SYSTEM MODEL

K-l

h[m, l] = L 'Yi[m]gdl],
i=O

where 'Yi[m] is the complex amplitude of the i-th path, and gi[l] =
g(lTs - ri), where Ts is the sample period and g(r) is the shap­
ing filter impulse response that satisfies the Nyquist criterion. The
WSS-US assumption imposes the restriction

In our model, the received signal x[m, k] and transmitted sym­
bol a[m, k] at the m-th OFDM symbol and k-th subcarrier, for
k = 0, ... ,Ns - 1, are related as

x[m, k] = H[m, k]a[m, k] + u[m, k] + w[m, k],

where H[m, k] is the subcarrier complex attenuation, and u[m, k]
and w[m, k] are the inter-carrier interference (leI) and noise com­
ponents, respectively. We consider that the symbols a[m, k] are
uncorrelated for different m's and k's. The noise w[m, k] is sup­
posed i.i.d. and independent of the remaining signals. Supposing
that a[m, k] at the pilot positions are selected from a PSK constella­
tion, the LS estimate of H[m, k] can be found simply back-rotating
x[m, k], which results in

H[m, k] = x[m, k]a*[m, k] = H[m, k] + z[m, k]

where z[m, k] = (u[m, k] + w[m, k])a*[m, k]. Due to the uncorre­
lated assumption of a[m, k], we can write

lE{z*[ml, k1]z[m2, k2]} = 0, for ml =I- m2 or kl =I- k2,
lE{H*[ml, k1]z[m2, k2]} = 0, for any ml, m2, kl, k2,

where lE{.} denotes the expectation operator. This simplifies signif­
icantly the design of a second-order estimator for H[m, k] (see [2]).
We consider the pilot subcarriers are arranged in grid. The pilot
subcarriers are allocated at positions m = nMt and k = lMf' for
n E Nand 1 = 0, ... , N p - 1, where N p is the number of pilot

subcarriers per OFDM symbol. Let H[n], H[n] and z[n] be col­

umn vectors containing respectively H[nMt , lMf], H[nMt , lMf]
and z[nMt , lMf]' for 1= 0, ... , Np - 1. Then we can state

Rj[ = lE{H[n]HH[n]} = RH + pI,

where R H lE{H[n]HH [n]} and p is the variance of
z[nMt, lMf]. We also consider a cyclic prefix with length N cp in
order to avoid inter-symbol interference.

The considered channel model is the WSS-US one with a con­
stant number of paths. In this case, the base-band impulse response
is given by

ifi' = i,

if i' =I- i,
lE{'Yv[m']'Yi[m' +m]} = {Piri[m],

0,

To achieve high data rates in orthogonal frequency division multi­
plexing (OFDM) [1] it is mandatory to employ multilevel modula­
tion with nonconstant amplitude, such as 16-QAM. For efficient co­
herent demodulation, it is necessary an accurate channel estimation
method capable to track the variations of the fading channel. Fur­
thermore, the performance of many diversity decoding techniques
depends heavily on good channel estimates, specially when the chan­
nel is time-varying in nature. In the works [2,3], it is derived a min­
imum mean-square error (MMSE) channel estimator based on pilot
symbols using Wiener-type filters. The disadvantage of the optimum
design of these filters is the required knowledge of the channel statis­
tics, i.e. time and frequency channel correlations, which are usually
unknown at the receiver and their estimation has a high computa­
tional burden.

Based on the use of a comb pilot pattern arrangement, subspace
projection and low-pass filtering, in [4] proposes an algorithm which
does not depends on the channel statistics. In [5] the implementation
of the subspace projection is performed by means of a factorization
based on a QR matrix decomposition leading to a better performance
in terms of mean square error (MSE). Further, the noise in the pro­
jection components can be attenuated via Wiener filtering and a sub­
space tracking (ST) algorithm can perform the signal subspace esti­
mation.

In this paper we propose a robust OFDM channel estimator
which has a twofold objective: its does not requires the knowledge
about the channel statistics (temporal and frequency correlations)
and has a higher performance in terms of MSE than the ones re­
ported in the literature.

The rest of the paper is organized as follows. Section 2 describes
the OFDM system and the channel model we have taken into con­
sideration. The derivation and analysis of both MMSE and robust
estimators are shown in Sections 3 and 4, respectively. Section 5 is
devoted to present the simulation results and, finally, Section 6 states
our conclusions and perspectives.

This work received financial support of "Funda~ao Cearense de Apoio ao
Desenvolvimento Cientffico e Tecnol6gico" (FUNCAP) and CNPq - National
Research Council.

1. INTRODUCTION

ABSTRACT
This paper deals with time-varying channel estimation in orthogo­
nal frequency division multiplexing (OFDM) systems by means of
pilot-aided strategies. A robust estimator which does not depend on
the channel statistics is proposed. The derivation is based on a con­
strained filtering approach and particular cases are analyzed. Simu­
lation results are provided in order to verify the better performance
of the proposal when compared to estimators reported in the litera­
ture.
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where Pi and ri[m] denote the mean power and normalized correla­
tion of the i-th path, respectively. In the frequency domain, we have
[4]

K-1

H[n, k] = L 1i[n] exp(-j21fk~fTi),
i=O

where ~f = I/Ts N c , and we denoted

1 N c -1

1i[n] = - L ,d(n - I)Ns + N cp + l].
N c l=O

From the expansion of 1i[n] in the expression above, a straightfor­
ward computation shows us

Nc -1

[E{1:[n']1i[n' + n]} = :/2 L ri[nNs + i2 - i1]
c i l ,i2 =O

= ~iPirdn],

where rdn] is the normalized correlation of 1i [n], and we have de­
fined the normalization factor

Observe that this factor satisfies 0 :::; ~i :::; 1 and can be interpreted
as the power loss ratio of the i-th path. With the above statements,
we can write

rH[n,k] = [E{H*[n',k']H[n' +n,k' +k]}
K-1

= L ~iPirdn] exp(-j21fk~fTi).
i=O

Just when all paths have the same correlation function rt [n], the sep­
arability property [3] is valid:

rH[n, k] = ~a~rdn]rf[k],

where we define the normalized frequency correlation

K-1 K-1

rf[k] = L p~ exp( -j21fk~fTi), a~ = L pi,
i=O a h i=O

and observe that all paths have the same factor ~. The channel power
a~ is attenuated by the factor ~, such that the sub-carrier power is
given as a't = ~a~. The Fourier transforms of rt[n] and rt[n],
which we denote by pdn] and Pt [n], respectively, are related ac­
cording to [3]

where

()
sinc2(Ncv)

mt v = -----.;,.-....:...
sinc2(v)

The function mt(v) is even and strictly decreasing in [0,1/2] with
maximum mt(O) = 1. Such property justifies the appearance of the
attenuation factor 0 :::; ~ :::; 1, and shows how the power spectral
density of H[n, k] is attenuated. In addition, the factor ~ can be
alternatively expressed as

~ = /1 /2pt(v)mt(v)dv.
-1/2

The remaining power a~ - a'h = (~- l)a~ appears as the leI
power.

In the sequel, we will be interested in the correlation
rdn] = rdnMt], whose Fourier transform is related to Pt(v) ac-
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cording to

3. MMSE OFDM CHANNEL ESTIMATOR

3.1. IIR Estimator

The Wiener filter coefficients c[m, l; n', k] are chosen such that the
estimative

(k-k')/Mf

H[n,k] = L L c[m,l;n',k]·
m=-oo l=(k-k'-Nc)/Mf+1

H[n - n' - mMt, k - k' -lMf] (1)

minimizes the mean square error

[EIH[n, k] - H[n, k]1 2
. (2)

The indices n' = n mod M t and k' = k mod Mf are inserted
in order to simplifies calculations. Minimizing the error in Eq. (2)
leads the orthogonality principle

[E{(H[n, k] -H[n, k])H*[n-n' -mMt,k-k' -lMf]} = O. (3)

Inserting the expression for H[n, k] in Eq. (3), we can write

L ~rd(m - m1)Mt]rf[(l-LI)Mf]c[m1,ll;n',k]
ml,ll

- ~rdn' + mMt]rf[k' + lMf ] + pc[m, l; n', k] = O. (4)

We denote

rf[k] = (rf[k], rf[k - Mf], ... , rf[k - N c + Mf])T

Rf = (rf[O]' rf[Mf]'···, rf[Nc - Mf]),

and

(

c[m, (k - k')/Mf ;n', k] )
c[m, (k - k')/Mf - 1; n', k]

c2[m;n',k] = . .

c[m, (k - k' - Nc)/Mf + 1; n', k]

The subindex '2' in c2[m; n', k] indicates that the elements in the
vector are ordered along l. Hence, Eq. (4) can be vectorized accord­
ing to (where *denotes the convolution operator)

(pI + ~Rfrdm]) * c2[m; n', k] = ~rdn' + mMt]rf[k].

Applying a Fourier transform to the equation above, we have

(pI + ~RfPt(V))C2(V; n', k) = ~Pt(v)¢(v; n')rf[k],

where we denoted <I>(v; n') = exp(j21f ;:;t v). If we define

lif = (rf[O], . .. , rf[Nc - 1])

C(v;n') = (c2(v;n',0), ... ,c2(v;n',Nc -1)),

we can write

(pI + ~RfPt(V))C(v; n') = ~Pt(v)¢(v; n')Rf. (5)

Let the eigendecomposition of R f be given as

Rf = UDUH
, (6)

where U is a unitary matrix, and D is the diagonal matrix containing
the eigenvalues dl. We denote the elements of the pseudo-inverse Df



(8)

where

N
p j1/2

MSE" = ~ E ridl {Pt(v) - Ptr(v; l)}l~l(V) - 11 2dv
p l=O -1/2

__, 1 N p -1 j1/2_
MSE == N E p <Pl(v)dv.

p l=O -1/2

The term MSE' does not depend on the cannel statistics, and MSE"
is interpreted as a "residual" MSE. The performance of the estimator

does not depend on the channel statistics when MSE" is null.

(10)

(12)

Initially, we assume that C(v) is given in the form

C(v) == U~(V)UH,

where U is the unitary matrix found in Eq. (6). The elements of the
diagonal matrix ~ (v) are choosen according to

~l(V)== "'dlPt~(v;l) . (11)
P + ",dlPtr (v; l)

where the arbitrary terms Ptr (v; l) satisfy the constraints

j
1/2 ptr(V; l)mt(v)dv = ri, j1/2 ptr(V; l)dv = 1.

-1/2 -1/2

From the above statements, Eq. (9) simplifies to
-- --II --,
MSE == MSE + MSE ,

If the correlations of the entries H[n] are

RJ1[n] == !E{H[n + n']HH[n']} == ",pt[n]Rf + pI,

then the MSE corresponding to the filter of coefficients C[m, l; k] is
(see [2])

__ 1 j1/2 - - H-
MSE == Ii" "'Pt(v) tr{(C(v) - I) Rf(C(V) - I)}dv+

p -1/2

1 j1/2 - H -N ptr{C (v)C(v)}dv, (9)
p -1/2

where C(v) is the frequency domain response of the estimator filter.

(
p )-1

C[l; n'] == "'dl I + R t rt[n'],

for dl # 0, and zero for dl == 0, where we denoted

rt[n'] == (rt[n' + M . Mt], ... ,rt[n' - M . Mt])T

R t == (rt[-M· M t ], ... , rt[M· M t ]).

Here a substantial difference is that we cannot separate <1'(v; n'),
while in the IIR case firstly we estimate the pilot subcaniers, and
after realize a sinc interpolation in time. If the correlations rt[mMt]
are nearly null for Iml > M, we can apply an approximation to the
IIR case. Firstly, we estimate the pilot subcarriers using the FIR filter
c[l; 0] of length 2M + 1 as above, and apply a sinc interpolation in
time. This is the approach we employ in the robust estimator.

3.2. FIR Estimator

In Eq. (1), the index m is taken over the integers. This leads to a
impractical implementation of the resulting Wiener filter. An alter­
native is to restrict the index m to the values m == - M, ... , M.
Following analogous steps as above, Eq. (7) ends up been expressed
as

C(v;n') == U<1'*(v;n')UHR}Rf'

where <1'(v; n') is a diagonal matrix whose l-th element is the fre­
quency domain response a filter of length 2M+1 whose coefficients
are

~l(V) == ",dlPt(v)
p + ",dlPt(V)

Then, we finally have

C(v; n') == U<1'(v)¢(v; n')DtuHRf
, H t-== U<1'(v)¢(v; n)U RfRf. (7)

dJ == {l/dl ' ~f dl # 0,
0, If dl == 0,

From Eq. (6), the inverse of the matrix multiplying the term C(v; n')
in Eq. (5) can be easily found. Let <1'(v) be a diagonal matrix whose
entries are

of D according to

4. ROBUST OFDM CHANNEL ESTIMATOR

For an optimum channel estimation, the channel correlations must
be known. In practice, the estimation of such correlations are in­
tractable, since it is computationally demand. Additionally the chan­
nel statistics may change with time. A suboptimum solution is to
make an arbitrary choice for the correlations rt [n] and r f [n], whose
MSE is near to the optimum case. This estimator is robust in the
sense of not depending on the channel statistics.

In what follows, the estimation will be just considered over the
pilot subcarriers. Then we are interested in the filtering structure

C(v) == C(v; 0) == U<1'(v)UH
.

In order to simplify notation, we will use c[m, l; k] in the place of
c[m, l; 0, kMt], for k == 0, ... ,Np - 1.

4.1. Derivation of the Robust Estimator

Let MSE be the mean square error averaged over pilot subcarriers,
i.e.,

We will find functions Ptr(v; l) under the constraints in Eq. (12)

that maximizes MSE'. Then, we will show that MSE" is nulled for
these MSE' we found. This problem is formulated as

maximize: j1/2 dly(v)mt(v) d (13)
-1/2 p' + dly(v)mt(v) V,

such that: j1/2 y(v)mt(v)dv == "', (14)
-1/2

j 1/2 y(v)dv = 1, (15)
-1/2

where p' == NsMtp. Using Lagrange multipliers, this optimization
problems leads to

dlmt(v)
[' d () ()]2 + A1 m t(V) + A2 == 0, (16)p + lY V mt V

where Al and A2 are selected in order to y(v) satisfies the above
constraints.

Np -1- 1" " 2MSE == Ii" L...J !EIH[n, kMf] - H[n, kMf ]I .
p k=O Inserting ~(v) given in Eq. (11), the expression for MSE" can
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-- --I
MSE = MSE,

and then the filter performance does not depend on the channel statis­
tics.

We can discard or insert more constraints in the problem. If we

discard one of the constraints given in Eqs. (14)-(15), the term MSE"
continues equal to zero, however the performance worsen, since the

resulting MSE' increases. If the maximum Doppler frequency Vd is
supposed known, depending on the constraint we discard, we have
the following cases:

MSE = MSE" + MSE
/
,

Therefore, we have

or in the vectorized form

Hp[n] = Wp}io[n],

where W p is the Fourier matrix of dimension Np x Np, and
}iO[n] = (h[n,O], ... , h[n, L - 1], 0, ... , O)T, and h[m, l]
L~~l1'i[m]gdl]. Hence, we have

KFHRfF = Np lE{}iO [n](}io [n])H}.

Since lE{(}iO[n])H}iO[n]} = Ka~, it follows that

tr(FHRfF . I') = Np.

j l/2
MSE" = K {Pt(v) - Ptr(v)}I~(v) - 11 2dv

-1/2

--I L jl/2 - 2
MSE = N plq>(V)1 dv.

p -1/2

The analysis for the choice ofPtr(v) is analogous.

where

where L is the channel length. Then, Eq. (9) is reduced to

-- 1 jl/2 - - 2
MSE = N KPt(v)Iq>(v) - 11 .

p -1/2

H I L jl/2 - 2
tr(F RfF· I )dv + N plq>(v)1 dv,

p -1/2

where I' = diag{(lL' ONp-L)}. We know that

L-l

H[n,k] = L h[n,l]w~c'
l=O

where h[m,l] = L~~l1'dm]gi[l] and w';Jc = exp(-j21r~~).
Taking in consideration the pilot positions kMf' we will obtain

L-l
~- klH[n, kMf] = L h[n, l]WNp ,

l=O

(19)

(17)

(18)

N
p jl/2--II 1 12

MSE =]V: LP [Pt(V) -Ptr(v;l)]·
p l=O -1/2

(Almt(V) + A2)dv = O.

Al = 0: In this case, Eq. (16) results in

= . _ [ 1 ( pI) 1/2 ( V ) pI]KlPtr(v,l)- 1; 1+d;I2 mt NsMt -d; ,

where

j
Vd 1 jVd 1

II = ---dv 12 = --dv,
-Vd Jmt(v) -Vd mt(v)

and Kl is inserted for making equal to unit the power of Ptr (v; l) in
the interval2vd. We can also found

__I I K 1 K-l I'fp'2
MSE = 2V dP N - ]V: L I I d'

p P l=O 2P + l

where K is the number of eigenvalues dl different of zero.

We have obtained

N
p jl/2

MSE" = ~ L p'2 [pt(V) - Ptr(V; I)J·
p l=O -1/2

dlmt(V) dv.
[p' + dlPtr(V; l)mt(v)]2

Hence, the result found in Eq. (16) implies

be rewritten as

A2 = 0: In this case, we have

- 1
Ptr(v; l) = 2(NsMtVd) ' (20)

The robust estimator derived above depends on peL, since

~ (v) = ~ l (v) in Eq. (11) is given in terms of these parameters.

The expression for the MSE' found in these cases only differ on
the summations, which result in an MSE' lower than 2VdP' if .

p

The estimators found above are robust in the sense that their per­

formances, expressed as MSE
/
, does not depend on the time channel

correlations rt[n]. It is required we know Rf and p. For eliminating
the dependence on Rf' we rewrite Eq. (10) as

O(v) = F~(v)FH,

where F is the normalized Fourier matrix, and ~ l (v) ~ (v) is
given according to Eq. (11), with Ptr(v; l) = Ptr(v) and

dl={Np/L, forO:S;l:S;L-l,
0, for L :s; 1 :s; N p - 1,

Since in practice the filters have finite impulse response length,
we use Eq. (8), which is rewritten bellow for n' = 0:

ell] = (:CZl 1+ Rt) -1rt, (21)

where the indices of c[l; 0] and rt [0] was omitted. The correlations
found in Eqs.(19) and (20) can be inserted in Eq. (21) given above.
This tum out in a practical implementation of a FIR robust filter.

We eliminate the dependence on p inptr(v; l), given in Eq. (19),
by making p' = 0, such that we obtain

Ptr(v) = ""tlIl1m;/2(v/NsMt). (22)

Observe that Ptr(v) given in Eq. (20) does not depende on p. The
dependence on p given in Eq. (21) can be eliminated if we substitute
p/ ""dl for a small constant ~, such that the inverse there exist in this
equation. We have

(23)
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5. SIMULATION RESULTS SNR = 10 dB, fd = 500 Hz, J\;ft = 1

1000

1000800
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----~ LS
-A-V-P
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400
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m -12

~
-14

I~ -16

-18

-20

-22

-24
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The simulations consider an OFDM system with 800 kHz of total
bandwidth, each OFDM symbol is composed by N c == 128 subcar­
riers and a cyclic prefix of length N cp == 15. The pilot symbols are
arranged in N p == 16 subcarriers equally spaced, with each one cho­
sen from a 4-PSK uniformly distributed constellation. The data sym­
bols are chosen from a 16-QAM constellation. The channel model is
the TDL model with Jakes spectrum. The channel and symbol power
are equal to a~ == 1 and a~ == 1, respectively. And the number of
multipaths is assumed fixed with K == K max == 4.

Fig. 1 shows the filtering strategies we developed and analyzed
in this paper. The algorithms are described in what follows.

Initially, we consider a "semi-robust" case where the matrix U,
the number of multipaths K, and the parameters K" p and dl are
perfectly known. The algorithms taken into account are the follow­
ing. U-P: The LS estimate is projected into the signal subspace [4].
U-Wiener: The coefficients from the temporal section are selected
according to Eq. (8), where we suppose known the channel correla­
tions and parameters K" p and dl. U-ERPCa: The parameters K, and
p are also known, and the coefficients are selected from Eq. (8), with
the channel correlations given according to Eq. (19). U-ERPCb: The
same as U-ERPCa, with the channel correlations given in Eq. (20).
U-FA: The estimate is given by the QR decomposition based algo­
rithm found in [5].

For the totally robust case, we consider the matrix F in the place
of U, and we assume that the channel length L is known. We have
the following filtering cases. F-P: The LS estimate is projected into
the signal subspace [4]. F-ERa: The coefficients from the temporal
section are selected according to Eq. (23), which does not require we
know the parameters K" p and dl. The channel correlations are given
according to Eq. (22). F-ERb: The same as F-ERa, with the channel
correlations given in Eq. (20). F-FA: The estimate is given by the
QR decomposition based algorithm found in [5].

As expected, the robust algorithms outperforms the semi-robust
algorithms. With exception of F-FA, which estimates adaptively the
matrix U, convergence is meaningless since the others estimators are
given in a closed-form solution. In both cases, more the correlations
are estimated or inserted, better results are obtained. A more detailed
comparison, with broader set of parameters, can be found in [6].

6. CONCLUSIONS Fig. 1. Partially and totally robust cases for 200 Monte Carlo simu­
lations.

In this paper a robust channel estimator is derived for OFDM sys­
tems in a time-varying scenario. The aim of the estimator is to be
independent from the channel statistics, i.e. time and frequency cor­
relations, in order to avoid computational effort, which is usually
high, for estimation of such statistics. Despite the derivation of the
criteria take into account particular constraints the simulations show
a superior performance of the proposed estimators when compared
to existing methods reported in the literature confirming a great ca­
pability of tracking for time-varying channels. A straightforward
continuation of this work is the optimization regarding the Al and
A2 for the derivation of a more general estimator.
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