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Fig. 1. Limited feedback system model
I. INTRODUCTION

Spatially multiplexed MIMO (SM-MIMOQO) systems can
transmit data at higher speed than MIMO systems usingThis work is based on [4], but instead of comparing the sum
antenna diversity techniques [1]. Zero Forcing (ZF) is orf@roughput between CS and VQC feedbacks, it uses CS to
of the techniques we could use for signal detection in tho&duce the feedback load and to do a comparison between CS
systems. It needs complete Channel State Information (CSI)VQC, both with limited feedback, and ZF technique with
knowledge and a way to acquire it is using a feedback lirfkll CSI. This comparison has been made for two spatially
from the receiver. However, even if the CSI can be perfectipultiplexed MIMO systems and the element of analysis is
estimated at the receiver, the required bandwidth for faekib the Bit Error Rate (BER) over a Signal-to-Noise Ratio (SNR)
is aggravated as the number of transmit and receive anten¥iation.
increases [2]. Limited feedback beamforming is used tocedu The remainder of this paper is organized as follows. Section
the required bandwidth. When implemented, the beamformiHgprovides the system model, as well as a review of CS
vector is restricted to lie in a finite set or codebook that i@peration. Section Il shows how the feedback load reductio
known to both the transmitter and receiver [3]. occurs. The results obtained by the two feedback protocels a
Recently, Compressive Sensing (CS), also known as co@ffown in Section IV. Finally, in Section V, our conclusiome a
pressed sensing or compressive sampling, has been apphéded.
in diverse contexts of signal processing and communicstion
where the information content is sparse [3]. The spatial
correlation between antenna arrays was exploited in [2] in
order to obtain sparse representations of the channel andVe consider MIMO wireless communication system with
use CS to reduce the feedback load. CS is used in [4] 4 transmit antennas and, receive antennas, as shown in
reduce the requirement of memory and complexity as tfggure 1. The received signal vector at thé antennas is
feedback rate increases and achieve greater sum throughpitten as
compared to Vector Quantization Codebook (VQC). In [5] it y = Hx +n, Q)
was proposed the use of CS to reduce the feedback for digital
and analog schemes to achieve the same sum-rate througMiereH = [h,, ha, ... hy,]" is the channel matrix with inde-
as the one achieved by dedicated feedback schemes, Wigdent and identically distributed (i.i.d) complex zenean
limited feedback channels. Users that have a SINR larger tHnit variance Gaussian random valuasis an additive white
a threshold transmit the same feedback information and tHegussian noise (AWGN) and is the precoded vector that
are identified by the Base Station (BS) using CS and alscsalisfies an average transmit power constraifik"x} = 1,
relation between sparsity and the threshold was given in [g]here E = {.} is the expectation operator ar{d” is the
In [9] a distributed self-selection procedure is combindgthw Conjugate transpose..
CS to identify a set of users who are getting simultaneousOne way to calculate the BER for the MIMO system
access to the downlink broadcast channel. considered at the reception by (1) is the usage of a ZF signal
. . - scheme [4], [5]. This is a linear signal detection method and
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detection of desired signals from each antenna, the effiecttbat they have concise representations when expressed in a

the channel is inverted by a weight matiW such that

y = HWx + n, (2)
whereW in ZF technique is defined by
W = (H"H)'HY, (3)

where () denotes the Hermitian transpose operati®vi.

proper basisA [6].

Let x be aNV x 1 vector, with at mosfS non-zero elements,
whereS << N. Consider aM x N measurement matriA,
where M << N and M > S. The measurements can be
obtained by

b = Ax, )

is calculated at the receivers and they feed it back to tMé&iereb is a M x 1 vector. SinceM << N the vectorx
transmit antennas, i.6W represents the CSI. For our purpose&an be repre§ented tywith much less information, i.ex is

it has been considered th& can be perfectly estimated atcompressed intd.

the receivers and the feedback channel is noiseless angl deldience, this system has more unknowns than equations, and
free. However, as shown in Figure 1, the feedback channefiis it has either no solution, B is not in the span of the
limited, so the CSI is not completely obtained by the tramsnfiolumns of the matrixA, or infinitely many solutions. To
antennas. Thus, BER is not the same as the one consideringg¥fid these conditions to happek,has to havé,-normalized
technique with full CSI. In this work, we assume the limitegolumns, and for an integer scalar < n, consider sub-
feedback channel has two protocols being used: quantizatiatricesA, containings columns fromA. 4, is defined as

codebook (QC) and compressive sensing.

A. Quantization Codebook

the smallest quantity such that

vx € R+ (1—4,)||x[[3 < [[Asx|3 < (1+3,)[x][3, (6)

In a limited feedback channel each receive antenna qué&lds true for any choise afcolumns. Them is said to have
tizes its channel using3 bits and feeds back these bits@ns-restricted isometry propertfRIP) with a constani; [11].
The quantization is performed using a vector quantizatiJmiS constant measures how orthonormally close the column
codebook that is known at the transmit and receive antenn¢@ctors of the measurement matex are to each other.
Typically, each receive antenna uses a differente codetinok On the other side, a recovery algorithm has to be used to
prevent multiple antennas from quantizing their channel @ptainx from b. If the RIP holds, then the following linear
the same quantization vector [4]. A quantization codebod¥0gram gives an accurate reconstruction [10]:

C = {ci,...,con} consists of2” codeword vectors. Each
codeword vectorc; has unit norm and length equal to the

number of transmit antennds;.

)

min ||x||;, subject to Ax = b.
x€ER™

The receive antenna quantizes its channel to the quantizati To solve this optimization task, there are some proposed
vector (codeword) that is closest to its channel vectors Thalgorithms on literaturet; -Magic [12], Orthogonal Matching
closeness is measured in terms of the angle between tRwrsuit(OMP) [13], Basis Pursui{BP) [14], Dantzig-Selector

vectors or, equivalently, the inner product [4]. Thus, aeiee
antenna obtains the quantization inde% according to [3]

F, =arg ma B|thcj|
i=1,...,2

T 4)
= VA hi7 i)) s

arg _min,sin” (/(hi, ¢;))

(DS) [11].

Returning to our purpose, we desire to compress the CSI
to reduce the feedback load. According kb features, it is
not sparse to use CS for compression. Sengl. proposed a
CSl sparse approximation method [4]. Like the guantization
codebook, aV; x 28 matrixQ = [q1 ... Qm - - - q28], called

and feeds this index back to the transmit antenna. The chojfigtionary, is required. After this, the method consistsfoée
of vector quantization codebook significantly affects theq gsteps:

lity of the CSI provided to the transmit antenna, i.e., thgda
is the codebook the better is the quality of the CSI.

B. Compressive Sensing

Before explaining how CS is used on a limited feedback
scheme, a brief overview is shown. This emerging theory
is based on exploiting the sparsity present into the signals
being able to recover these signals from a limited number
of linear measurements, and it is more effective compared
to the classical Nyquist-Shannon sampling [5], [11]. Sipars
expresses the idea that the “information rate” of a contirsuo
time signal may be much smaller than suggested by its
bandwidth, or that a discrete-time signal depends on a numbe
of degrees of freedom which is comparably much smaller than
its (finite) length. More precisely, CS exploits the factttha
many natural signals are sparse or compressible in the sense

1) Column Selection:S columns maximally correlated

with their own CSI h) are selected. Letr(:) be
the ith column index largely correlated with the
channel vector. Each receive antenna selects the co-
lumn maximally correlated from the initial column
index setAy = {1,...m,...,2B} of Q as (1) =
argmaXmea, |{(am, h)|, where(,) stands for the inner
product, and|.| stands for the absolute value. After
selectingi — 1 columns, theith column can be selected
within A;_1 = {m/m € A;_s and m # 7(i — 1)} as
7(i) = argmaxmen, , |{dm,h)|. This continues until
the S columns are selectedI(i) = {n(1),...,7(S5)}

is the index set for the selected columns. Since this
procedure can find thé&-dimensional subspace maxi-
mally correlated tch over the N;-dimensional complex
domain, the approximation error can be minimized.
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2) CSI Approximation: Each receive antenna channel veexample that works for every value &f bits:

tor h is aproximated by the selectefl columns in the T
minimum-mean-square-error sense, as follows: O11
2(I) = arg min |[h — Q(I)a(I1) [ T ] sz { b ] 12
= Q)'h = (QUNQ() ' QN ’”1
where ||.|| is the Frobenius norm, () is the pseu- U122

doinverse,Q(II) is the NV; x S matrix consisting of where (12) is the matrix representation of (10). Sirfte=
column vectors corresponding I z(I1) is the optimal 1, 7 contains only one non-zero element and this sparse
coefficient vector forQ(II), and a(Il) is a candidate representation can be compressed ihfo= 2 measurements,

vector forz(Il). equal to the length db. ConsideringhV; = N, = 4, it means
3) Sparse CSI creation: Th2” x 1 sparse CSI can bethatH = [h;, hs, hs, hy)T and eacth can be compressed into
obtained as follows: b. So the necessary feedback load for this case is represented
by the following matrix representation:
b= Q=D = Q. © B[ b b b b 13
In the first equality, the fact tha®(I1) andz(I1) depend ba1 baz bag oy

onll makes it difficult to design a universal compression Thjs feedback load is smaller than the one used by the quan-
matrix, which does not depend on the channel veciQf ation feedback, since each veciohas to be representated
To design the_given universal compression matrix, W&, one codeworc: and its length isN;. So, the feedback
must redefineh in the second equality of (9) Wit |paq necessary by quantization feedback, in this case, is 32
being independent dil andz only containingS nonzero 544 the one necessary by compressive sensing is 16, which

elements corresponding 16. is represented by each value of (13). It means that, utgjizin
Thus, z is S-sparse and CS can be used to compress tleismpressive sensing, the feedback load can be reducedfto hal
information to be feedback to the transmit antennas of the one used by quantization feedback. It is according to
the compression ratio equation provided by [2]:
b = Az, (10)
n=Tu/(NrNrg), (14)

whereA is a M x 25 measurement matrix, can be recovered
. . . ..___whereT), represents the total number of measurements. The
by one of the algorithms previously mentioned, at the trahsm

antennas, ani can be estimated bl = Qz. same compression ratig)(is obtained whenV;, = N, = 8§,

. a» since, as explained before, each receive antenna separate i
So, the difference between quantization codebook and co, P P

. L . . fio 4 x 1 vectors thes x 1 CSI vector calculated at it.
pressive sensing is that the transmit and receive antemnas |
guantization codebook has to know the codeb@bkised at
each antenna. On the other hand, in compressive sensing they IV. REsULTS

has to know the dictionar@®@ and the measurement matr. The results were obtained considering the ZF technique
model using 4-QAM modulation provided by [1] with some

adaptation to the feedback limitation and it also provided
Il. FEEDBACK LOAD REDUCTION the codebook design parameters which are the same in IEEE
For our studies, it was considered two spatially mumpthQBOZ.l_Ge specification. All results show the _BER variation as
MIMO systems. The first one had; = N, = 4 and the $N_R increases between the two pr(_)to_cols discussed b_eiiore fo
secondN; = N, = 8. The sparsity values = 1 was the limited feedback and the same variation for ZF, but with full

same for both systems. When we simulated dpe= N, =g CSI. ConsideringB = 10 bits, N; = N, = 4 and the other
system, to sparsify thé x 8 channel matrixel we had to parameters already defined at section Il , the first result is

divide it into four 4 x 4 matrices to use the same sparsity'OWn in Figure 2. . .
value and the number of measuremehfsas the first system In order to evaluate if the feedback load reduction was going

(N, = N, = 4) and obtain the same feedback load reductiofp_harm the BER, Figure 2 shows that, for a dictionary in
S can be recovered with high probability as long & is CS with the same length of the codebook in QC, there is

sufficiently large andA satisfies RIP [10]. Sincd is an ii.d NC degradation in terms of BER, i.e., they show the same
Gaussian matrix, according to [8)/ has to satisfy behavior. Comparing both limited feedback schemes to ZF

with full CSl, their behaviors is very different. At ZF as lgas
M > kSlogy(N:/S), (11) SNRincreases, BER decreases. Otherwise, at the two schemes
the decaiment of BER is worst than the first and it tends to
wherek is a constant. Considering= 1, we obtainM = 2, stabilize even if SNR increases.
which is used at all simulations. In order to achieve a better performance for the two limited
Defined these parameters, the feedback load reductiorfasdback schemes compared to ZF with full CSI and still
calculated for the two systems utilized. We have the foltayvi compare all of them, there was a raise in the dictionary and
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) 4x4 SM-MIMO ) 8x8 SM-MIMO
10 . . : 10 T ;
=% = CS - 10 bits =% = CS - 10 bits
4 —#A— QC - 10 bits —&— QC - 10 bits
—— ZF - Full CSI L —0— ZF - Full CSI

BER

0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR[dB] SNR[dB]

Fig. 2. BER vs SNR for the three schemes utilized with= 10 bits and Fig. 4. BER vs SNR for the three schemes utilized with= 10 bits and
4 x 4 SM-MIMO. 8 x 8 SM-MIMO.

: . - . 8x8 SM-MIMO
codebook lengths. This second result was obtained utjizin 10 ‘ e
. . . . - - - Its
B =13 bits and is shown in Figure 3. —A— QC - 13 bits
4 —— zF - Full CSl
o 4x4 SM-MIMO
10 T T -1
- % - CS - 13 bits 0
p —&— QC - 13 hits
—— ZF - Full CSI

BER
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Y SNR[dB]

Fig. 5. BER vs SNR for the three schemes utilized with= 13 bits and
8 x 8 SM-MIMO.

i i i i i
0 5 10 15 20 25 30
SNR[dB]

Fig. 3. BER vs SNR for the three schemes utilized with= 13 bits and

behavior. Otherwise, the amount of required memory and the
4 x 4 SM-MIMO.

computational complexity, as shown in Table I, is highentha
Figure 3 shows that utilizing3 = 13 bits a better appro- in QC. Note t_hat one complex value is saved by a double-
ximation to ZF with full CSI is achieved, but, even with thigP €CSIon floating point (64bits/value).
performance increase, the limited feedback schemes cmntin
tending to stabilize, at this time with lower BER and higher

SNR, showing the advantage of using more bits. This tendency V. CONCLUSIONS
continues for every raise in the number of hits Comparing
only CS and VQ, they obtain the same BER variation. This paper suggests using CS to reduce the load of CSI

From now on, the results obtained were considetig= feedback in an i.i.d SM-MIMO systems. The feedback com-
N, = 8, and the other parameters were kept the same. So, feession can be carried out by compressive sensing, and
B =10 and B = 13 bits the relation BER vs SNR is shown,highly-accurate channel information recovery can be achie
respectively, in Figures 4 and 5. ved with a significant compression ratio, in our case 50%.

In Figures 4 and 5 BER exhibit the same behavior present@thtained the feedback load reduction, the performance was
on Figures 2 and 3, respectively. Comparing CS and QC, BERt compromised compared to quantization codebook scheme.
variation is the same and increasing the number of bits, & w80, we conclude that CS is a promising approach to reduce
obtained a better approximation to ZF with full CSI for bottCSI feedback for SM-MIMO systems. In order to implement
limited feedback schemes. the utilized mechanisms in real systems, many practicabss

The advantage of using CS is shown over all the resuttzat we did not consider, such as channel estimation errats a
over the obtained feedback load reduction in terms of BERdio impairments in the feedback link, should be adressed i
compared to QC, since they always have the same BHRure studies.
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TABELA |
COMPARISON OF THE AMOUNT OF REQUIRED MEMORY AND THE
COMPUTATIONAL COMPLEXITY.

Conpr essi ve Sensin antization
nmp g
Codebook
64 x N; x 2P
~————
Amount  of dictionary 64 x Ny x 28
requi red F 64xCx2) S~
rrem:)ry measurement matrix coceboo
SxN;x2B+ §xcC
N——— ——
. max. . compression B
Conput at i onal correlation Nt x 2
compl exity + Np + S(N; + Ni) ~——
—,_/ max. X
sparse approximation correlation
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