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Feedback Reduction of Spatially Multiplexed
MIMO Systems Using Compressive Sensing
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Abstract— In this paper we analyze spatially multiplexed
MIMO systems with limited Channel State Information (CSI) and
zero forcing (ZF) linear signal detection technique. Two schemes
were considered: Quantization Codebook (QC) and Compressive
Sensing (CS). Compressive Sensing is used to generate a reduced
CSI feedback to the transmitter in order to reduce feedback load
into the system. Performance of the schemes are compared by
computational simulations of bit error rate (BER) curves for the
considered approaches QC and CS.

Keywords— BER, limited feedback, compressive sensing, quan-
tization codebook.

I. I NTRODUCTION

Spatially multiplexed MIMO (SM-MIMO) systems can
transmit data at higher speed than MIMO systems using
antenna diversity techniques [1]. Zero Forcing (ZF) is one
of the techniques we could use for signal detection in those
systems. It needs complete Channel State Information (CSI)
knowledge and a way to acquire it is using a feedback link
from the receiver. However, even if the CSI can be perfectly
estimated at the receiver, the required bandwidth for feedback
is aggravated as the number of transmit and receive antennas
increases [2]. Limited feedback beamforming is used to reduce
the required bandwidth. When implemented, the beamforming
vector is restricted to lie in a finite set or codebook that is
known to both the transmitter and receiver [3].

Recently, Compressive Sensing (CS), also known as com-
pressed sensing or compressive sampling, has been applied
in diverse contexts of signal processing and communications,
where the information content is sparse [3]. The spatial
correlation between antenna arrays was exploited in [2] in
order to obtain sparse representations of the channel and
use CS to reduce the feedback load. CS is used in [4] to
reduce the requirement of memory and complexity as the
feedback rate increases and achieve greater sum throughput
compared to Vector Quantization Codebook (VQC). In [5] it
was proposed the use of CS to reduce the feedback for digital
and analog schemes to achieve the same sum-rate throughput
as the one achieved by dedicated feedback schemes, with
limited feedback channels. Users that have a SINR larger than
a threshold transmit the same feedback information and they
are identified by the Base Station (BS) using CS and also a
relation between sparsity and the threshold was given in [8].
In [9] a distributed self-selection procedure is combined with
CS to identify a set of users who are getting simultaneous
access to the downlink broadcast channel.
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Fig. 1. Limited feedback system model

This work is based on [4], but instead of comparing the sum
throughput between CS and VQC feedbacks, it uses CS to
reduce the feedback load and to do a comparison between CS
or VQC, both with limited feedback, and ZF technique with
full CSI. This comparison has been made for two spatially
multiplexed MIMO systems and the element of analysis is
the Bit Error Rate (BER) over a Signal-to-Noise Ratio (SNR)
variation.

The remainder of this paper is organized as follows. Section
II provides the system model, as well as a review of CS
operation. Section III shows how the feedback load reduction
occurs. The results obtained by the two feedback protocols are
shown in Section IV. Finally, in Section V, our conclusions are
stated.

II. SYSTEM MODEL

We consider MIMO wireless communication system with
Nt transmit antennas andNr receive antennas, as shown in
Figure 1. The received signal vector at theNr antennas is
written as

y = Hx + n, (1)

whereH = [h
1
,h2, ...,hNt

]
T is the channel matrix with inde-

pendent and identically distributed (i.i.d) complex zero-mean
unit variance Gaussian random values,n is an additive white
Gaussian noise (AWGN) andx is the precoded vector that
satisfies an average transmit power constraintE{xHx} = 1,
where E = {.} is the expectation operator and()H is the
conjugate transpose..

One way to calculate the BER for the MIMO system
considered at the reception by (1) is the usage of a ZF signal
scheme [4], [5]. This is a linear signal detection method and
treats all transmitted signals as interferences except forthe
desired stream from the target transmit antennas. To ease the
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detection of desired signals from each antenna, the effect of
the channel is inverted by a weight matrixW such that

y = HWx + n, (2)

whereW in ZF technique is defined by

W = (HHH)−1HH , (3)

where (.)H denotes the Hermitian transpose operation.W

is calculated at the receivers and they feed it back to the
transmit antennas, i.e.,W represents the CSI. For our purposes
it has been considered thatW can be perfectly estimated at
the receivers and the feedback channel is noiseless and delay
free. However, as shown in Figure 1, the feedback channel is
limited, so the CSI is not completely obtained by the transmit
antennas. Thus, BER is not the same as the one considering ZF
technique with full CSI. In this work, we assume the limited
feedback channel has two protocols being used: quantization
codebook (QC) and compressive sensing.

A. Quantization Codebook

In a limited feedback channel each receive antenna quan-
tizes its channel usingB bits and feeds back these bits.
The quantization is performed using a vector quantization
codebook that is known at the transmit and receive antennas.
Typically, each receive antenna uses a differente codebookto
prevent multiple antennas from quantizing their channel to
the same quantization vector [4]. A quantization codebook
C = {c1, ..., c2B} consists of2B codeword vectors. Each
codeword vectorci has unit norm and length equal to the
number of transmit antennasNt.

The receive antenna quantizes its channel to the quantization
vector (codeword) that is closest to its channel vector. This
closeness is measured in terms of the angle between two
vectors or, equivalently, the inner product [4]. Thus, a receive
antennai obtains the quantization indexFi according to [3]

Fi = arg max
j=1,...,2B

|hH
i cj |

= arg min
j=1,...,2B

sin2 (6 (hi, cj)) ,
(4)

and feeds this index back to the transmit antenna. The choice
of vector quantization codebook significantly affects the qua-
lity of the CSI provided to the transmit antenna, i.e., the larger
is the codebook the better is the quality of the CSI.

B. Compressive Sensing

Before explaining how CS is used on a limited feedback
scheme, a brief overview is shown. This emerging theory
is based on exploiting the sparsity present into the signals,
being able to recover these signals from a limited number
of linear measurements, and it is more effective compared
to the classical Nyquist-Shannon sampling [5], [11]. Sparsity
expresses the idea that the “information rate” of a continuous
time signal may be much smaller than suggested by its
bandwidth, or that a discrete-time signal depends on a number
of degrees of freedom which is comparably much smaller than
its (finite) length. More precisely, CS exploits the fact that
many natural signals are sparse or compressible in the sense

that they have concise representations when expressed in a
proper basisA [6].

Let x be aN ×1 vector, with at mostS non-zero elements,
whereS << N . Consider aM × N measurement matrixA,
where M << N and M > S. The measurements can be
obtained by

b = Ax, (5)

whereb is a M × 1 vector. SinceM << N the vectorx
can be represented byb with much less information, i.e.,x is
compressed intob.

Hence, this system has more unknowns than equations, and
thus it has either no solution, ifb is not in the span of the
columns of the matrixA, or infinitely many solutions. To
avoid these conditions to happen,A has to havel2-normalized
columns, and for an integer scalars ≤ n, consider sub-
matricesAs containings columns fromA. δs is defined as
the smallest quantity such that

∀x ∈ Rs : (1 − δs)||x||
2
2 ≤ ||Asx||

2
2 ≤ (1 + δs)||x||

2
2, (6)

holds true for any choise ofs columns. ThenA is said to have
ans-restricted isometry property(RIP) with a constantδs [11].
This constant measures how orthonormally close the column
vectors of the measurement matrixA are to each other.

On the other side, a recovery algorithm has to be used to
obtainx from b. If the RIP holds, then the following linear
program gives an accurate reconstruction [10]:

min
x∈Rn

||x||l1 subject to Ax = b. (7)

To solve this optimization task, there are some proposed
algorithms on literature:l1-Magic [12], Orthogonal Matching
Pursuit(OMP) [13],Basis Pursuit(BP) [14],Dantzig-Selector
(DS) [11].

Returning to our purpose, we desire to compress the CSI
to reduce the feedback load. According toH features, it is
not sparse to use CS for compression. Songet al. proposed a
CSI sparse approximation method [4]. Like the quantization
codebook, aNt × 2B matrix Q = [q1 . . .qm . . .q2B ], called
dictionary, is required. After this, the method consists ofthree
steps:

1) Column Selection:S columns maximally correlated
with their own CSI (h) are selected. Letπ(i) be
the ith column index largely correlated with the
channel vector. Each receive antenna selects the co-
lumn maximally correlated from the initial column
index set Λ0 = {1, ..., m, ..., 2B} of Q as π(1) =
argmaxm∈Λ0

|〈qm,h〉|, where〈, 〉 stands for the inner
product, and|.| stands for the absolute value. After
selectingi− 1 columns, theith column can be selected
within Λi−1 = {m|m ∈ Λi−2 and m 6= π(i − 1)} as
π(i) = arg maxm∈Λi−1

|〈qm,h〉|. This continues until
the S columns are selected.Π(i) = {π(1), ..., π(S)}
is the index set for the selected columns. Since this
procedure can find theS-dimensional subspace maxi-
mally correlated toh over theNt-dimensional complex
domain, the approximation error can be minimized.
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2) CSI Approximation: Each receive antenna channel vec-
tor h is aproximated by the selectedS columns in the
minimum-mean-square-error sense, as follows:

z(Π) = argmin
a(Π)

||h− Q(Π)a(Π)||2

= Q(Π)†h = (Q(Π)HQ(Π))−1Q(Π)Hh,
(8)

where ||.|| is the Frobenius norm, ()† is the pseu-
doinverse,Q(Π) is the Nt × S matrix consisting of
column vectors corresponding toΠ, z(Π) is the optimal
coefficient vector forQ(Π), and a(Π) is a candidate
vector forz(Π).

3) Sparse CSI creation: The2B × 1 sparse CSI can be
obtained as follows:

h̃ = Q(Π)z(Π) = Qz. (9)

In the first equality, the fact thatQ(Π) andz(Π) depend
onΠ makes it difficult to design a universal compression
matrix, which does not depend on the channel vector.
To design the given universal compression matrix, we
must redefinẽh in the second equality of (9) withQ
being independent ofΠ andz only containingS nonzero
elements corresponding toΠ.

Thus,z is S-sparse and CS can be used to compress this
information to be feedback to the transmit antennas

b = Az, (10)

whereA is aM×2B measurement matrix,z can be recovered
by one of the algorithms previously mentioned, at the transmit
antennas, andh can be estimated byh = Qz.

So, the difference between quantization codebook and com-
pressive sensing is that the transmit and receive antennas in
quantization codebook has to know the codebookC used at
each antenna. On the other hand, in compressive sensing they
has to know the dictionaryQ and the measurement matrixA.

III. F EEDBACK LOAD REDUCTION

For our studies, it was considered two spatially multiplexed
MIMO systems. The first one hasNt = Nr = 4 and the
secondNt = Nr = 8. The sparsity valueS = 1 was the
same for both systems. When we simulated theNt = Nr = 8
system, to sparsify the8 × 8 channel matrixH we had to
divide it into four 4 × 4 matrices to use the same sparsity
value and the number of measurementsM as the first system
(Nt = Nr = 4) and obtain the same feedback load reduction.
S can be recovered with high probability as long asM is
sufficiently large andA satisfies RIP [10]. SinceA is an i.i.d
Gaussian matrix, according to [8]M has to satisfy

M ≥ kS log2(Nt/S), (11)

wherek is a constant. Consideringk = 1, we obtainM = 2,
which is used at all simulations.

Defined these parameters, the feedback load reduction is
calculated for the two systems utilized. We have the following

example that works for every value ofB bits:

[
a11 a12 . . . a12B

a21 a22 . . . a22B

]











011

...
z
...

012B











T

=

[
b11

b21

]

, (12)

where (12) is the matrix representation of (10). SinceS =
1, z contains only one non-zero element and this sparse
representation can be compressed intoM = 2 measurements,
equal to the length ofb. ConsideringNt = Nr = 4, it means
thatH = [h1,h2,h3,h4]

T and eachh can be compressed into
b. So the necessary feedback load for this case is represented
by the following matrix representation:

B =

[
b11 b12 b13 b14

b21 b22 b23 b24

]

. (13)

This feedback load is smaller than the one used by the quan-
tization feedback, since each vectorh has to be representated
by one codewordc and its length isNt. So, the feedback
load necessary by quantization feedback, in this case, is 32
and the one necessary by compressive sensing is 16, which
is represented by each value of (13). It means that, utilizing
compressive sensing, the feedback load can be reduced to half
of the one used by quantization feedback. It is according to
the compression ratio equation provided by [2]:

η = TM/(NT NR), (14)

whereTM represents the total number of measurements. The
same compression ratio (η) is obtained whenNt = Nr = 8,
since, as explained before, each receive antenna separate in
two 4 × 1 vectors the8 × 1 CSI vector calculated at it.

IV. RESULTS

The results were obtained considering the ZF technique
model using 4-QAM modulation provided by [1] with some
adaptation to the feedback limitation and it also provided
the codebook design parameters which are the same in IEEE
802.16e specification. All results show the BER variation as
SNR increases between the two protocols discussed before for
limited feedback and the same variation for ZF, but with full
CSI. ConsideringB = 10 bits, Nt = Nr = 4 and the other
parameters already defined at section III , the first result is
shown in Figure 2.

In order to evaluate if the feedback load reduction was going
to harm the BER, Figure 2 shows that, for a dictionary in
CS with the same length of the codebook in QC, there is
no degradation in terms of BER, i.e., they show the same
behavior. Comparing both limited feedback schemes to ZF
with full CSI, their behaviors is very different. At ZF as long as
SNR increases, BER decreases. Otherwise, at the two schemes,
the decaiment of BER is worst than the first and it tends to
stabilize even if SNR increases.

In order to achieve a better performance for the two limited
feedback schemes compared to ZF with full CSI and still
compare all of them, there was a raise in the dictionary and
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Fig. 2. BER vs SNR for the three schemes utilized withB = 10 bits and
4× 4 SM-MIMO.

codebook lengths. This second result was obtained utilizing
B = 13 bits and is shown in Figure 3.
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Fig. 3. BER vs SNR for the three schemes utilized withB = 13 bits and
4× 4 SM-MIMO.

Figure 3 shows that utilizingB = 13 bits a better appro-
ximation to ZF with full CSI is achieved, but, even with this
performance increase, the limited feedback schemes continue
tending to stabilize, at this time with lower BER and higher
SNR, showing the advantage of using more bits. This tendency
continues for every raise in the number of bitsB. Comparing
only CS and VQ, they obtain the same BER variation.

From now on, the results obtained were consideringNt =
Nr = 8, and the other parameters were kept the same. So, for
B = 10 andB = 13 bits the relation BER vs SNR is shown,
respectively, in Figures 4 and 5.

In Figures 4 and 5 BER exhibit the same behavior presented
on Figures 2 and 3, respectively. Comparing CS and QC, BER
variation is the same and increasing the number of bits, it was
obtained a better approximation to ZF with full CSI for both
limited feedback schemes.

The advantage of using CS is shown over all the results
over the obtained feedback load reduction in terms of BER
compared to QC, since they always have the same BER
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Fig. 4. BER vs SNR for the three schemes utilized withB = 10 bits and
8× 8 SM-MIMO.
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Fig. 5. BER vs SNR for the three schemes utilized withB = 13 bits and
8× 8 SM-MIMO.

behavior. Otherwise, the amount of required memory and the
computational complexity, as shown in Table I, is higher than
in QC. Note that one complex value is saved by a double-
precision floating point (64bits/value).

V. CONCLUSIONS

This paper suggests using CS to reduce the load of CSI
feedback in an i.i.d SM-MIMO systems. The feedback com-
pression can be carried out by compressive sensing, and
highly-accurate channel information recovery can be achie-
ved with a significant compression ratio, in our case 50%.
Obtained the feedback load reduction, the performance was
not compromised compared to quantization codebook scheme.
So, we conclude that CS is a promising approach to reduce
CSI feedback for SM-MIMO systems. In order to implement
the utilized mechanisms in real systems, many practical issues
that we did not consider, such as channel estimation errors and
radio impairments in the feedback link, should be adressed in
future studies.
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TABELA I

COMPARISON OF THE AMOUNT OF REQUIRED MEMORY AND THE

COMPUTATIONAL COMPLEXITY.

Compressive Sensing Quantization
Codebook

Amount of
required
memory

64×Nt × 2B

︸ ︷︷ ︸

dictionary

+ 64×C× 2B

︸ ︷︷ ︸

measurement matrix

64 ×Nt × 2B

︸ ︷︷ ︸

codebook

Computational
complexity

S ×Nt × 2B

︸ ︷︷ ︸
max.

correlation

+ S × C
︸ ︷︷ ︸

compression

+ N
3
t + S(N2

t + Nt)
︸ ︷︷ ︸

sparse approximation

Nt × 2B

︸ ︷︷ ︸
max.

correlation
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