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RESUMO

Neste trabalhamos invetigamos a existéncia de hipersuperficies com cur-
vatura prescrista num contexto amplo. Inicialmente estudamos o problema
de Dirichlet para uma equagao totalmente nao-linear do tipo curvatura,
definida em uma variedade Riemanniana. Este problema estd intimamente
relacionado a existéncia de hipersuperficies com curvatura e bordo prescritos.
Neste contexto obtemos alguns resultados que extendem para uma varieadade
Riemanniana resultados obtidos anteriormente por Caffarelli, Nirenberg,
Spruck e Bo Guan para o espao Euclideano.

Investigamos também a existéncia de hipersuperficies com curvatura média
anisotropica prescrita. Estabelecemos a solubilidade do problema de Dirichlet
relacionado a equacao da curvatura média anisotrépica prescrita. Este re-
sultado assegura a existncia de graficos de Killing com curvatura média
anisotropica e bordo prescritos numa variedade Riemanniana dotada com
um campo de Killing sem singularidades. Finalmente, provamos a existéncia
de hiperesferas com curvatura média anisotrépica prescrita no espago FEu-
clideano, extendendo o resultado obtido Treibergs e Wei para a curvatura
média usual.



ABSTRACT

We investigate the existence of hypersurfaces with prescribed curvature
in a wide context. First we study the Dirichlet problem for a class of fully
nonlinear elliptic equations of curvature type on a Riemannian manifold,
which are closely related with the existence of hypersurfaces with prescribed
curvature and boundary. In this setting we prove some existence results which
extend to a Riemannian manifold previous results by Caffarelli, Nirenberg,
Spruck and Bo Guan for the Euclidean space.

We also study the existence of hypersurfaces with prescribed anisotropic
mean curvature. We prove existence results for the Dirichlet problem re-
lated to the anisotropic mean curvature equation. This ensures the existence
of Killing graphs with prescribed anisotropic mean curvature and boundary
in a Riemannian manifold endowed with a nonsingular Killing vector field.
Finally, we prove the existence of hyperspheres with prescribed anisotro-
pic mean curvature in the Euclidean space, extending a previous result of
Treibergs and Wei.
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Chapter 1

Introduction

The problem of existence of hypersurfaces with prescribed curvature is
closely related to the theory of nonlinear elliptic equations of second order.
This close relationship is due to the success of the search for such hyper-
surfaces which are globaly graphs over suitable domains. Consequently, the
history of the study of hypersurfaces with prescribed curvature is strongly
linked to the historical development of the theory of nonlinear elliptic equa-
tions. In fact, as is stated for instance in [17], the prescribed mean curvature
equation

(14 |Dul)Au — v'wdu;; = nH(1 + |Dul?)*?

was the prototype which led the development of the theory of quasilinear
elliptic equations of second order as well as the Monge-Ampere equation

det (uZ]) = ¢(x,u, Du) > 0,

which is closely related to the existence of hypersurfaces with prescribed
Gauss-Kroneeker curvature. This guided the study of fully nonlinear elliptic
equations of second order. We will describe some of the recent advances
obtained in the study of this problem.

Using previously contributions of Bernstein, Leray, Jenkins, Finn and
others, J. Serrin [36] discovered necessary and sufficient conditions for the
solvability of the Dirichlet problem for the quasilinear prescribed mean cur-
vature equation, which depends on the curvature of the boundary of the
underlying domains. The corresponding problem for closed hypersurfaces
was studied by Aeppli, Aleksandrov, Bakelman, Kantor, Treibergs and Wei.
They were able to establish the existence of hyperspheres with prescribed



mean curvature in the Euclidean space, see [41]. The Monge-Ampere equa-
tions received attention from eminent mathematicians as Pogorelov, Calabi,
Nirenberg, Yau, Trudinger, Urbas, Ivochkina and others. The effort em-
ployed by these mathematicians culminated in the results obtained by Catf-
farelli, Nirenberg and Spruck in [7]. These advances allowed to treat the
problem of the existence of hypersurface with prescribed mean or Gauss-
Kroneeker curvature and boundary in the Euclidean space.

In the closed case, Oliker [34] established an analog of the result obtained
by Bakelman, Treibergs et al, for the prescribed Gauss-Kroneeker curvature.
In the eighties, it began the study of hypersurfaces with prescribed k-th
order mean curvature. In a series of papers, Caffarelli, Nirenberg and Spruck
studied the Dirichlet problem and the closed problem for a general class of
curvature functions, which includes the higher order mean curvature. Inde-
pendently, Ivochkina established the solvability of the Dirichlet problem for
the equation of prescribed k-th order mean curvature under certain curvature
conditions on the boundary of the underlying domains. Later, Trudinger, Li
and Ivochkina treated the Dirichlet problem for the prescribed curvature
quotient equations which do not belong to the class considered by Caffarelli,
Nirenberg and Spruck.

In the last decade, many results that were obtained just in the Euclidean
space have been extended to more general enviroments such as the space
forms, or more generally, warped product manifolds. The existence results
corresponding to the Dirichlet problem associated with the prescribed mean
curvature equation was extended for a wide class of enviroments, thanks
to the efforts of many mathematicians, such as Alias, Dajczer, Hinojosa,
Sa Earp, Barbosa, Lira, Oliker, Spruck and others (see, e.g. [15], [39]).
The Monge-Ampere equation on Riemannian manifolds was treated inde-
pendently by Bo Guan and Yan Yan Li in [20] and Atallah and Zuily in [3].
Recently, the closed problem for general curvature function deserved a lot of
research efforts. As a consequence of the works of Lira, Barbosa, Oliker, Yan
Yan Li and Jin the existence of closed hypersurfaces with prescribed higher
order mean curvature was established in space forms. In [2] it is proved the
existence of closed hypersurfaces of prescribed general curvature functions in
warped product manifolds.

Recently, the techniques presented in [22] and [44] allowed a great de-
velopment in the study of hypersurfaces with prescribed Gauss-Kroneeker
curvature and boundary since these techniques permit the authors to prove
the existence of hypersurfaces which are not necessarily global graphs. Guan



and Spruck [23] made use of these techniques to extend the existence result
obtained in [22] for general curvature functions defined in the positive cone.
We must mention also the contributions of Gerhardt to this kind of problem,
see e.g. [16]. In fact, the list of contributions to these kind of problem is
hardly exhausted in few lines.

In order to present the results of this thesis, we will do a more technical
and detailed description of some of the results quoted above. The most
important class of fully nonlinear elliptic equation related to differential
geometry are implicitly defined equations of the form

F(A) = F(MA)) = ¥,

where A, for example, is the second fundamental form of a hypersurface,
f(X) is a function of the eigenvalues of A and V¥ is a prescribed function of
the position. In the nonparametric setting this equation takes the form

Flu] = f(sfu]) = W(z, u), (L1)

where k[u] denotes the principal curvatures of the graph of w.

In the first part of this thesis we study the classical Dirichlet problem
for this kind of equations, which is named equations of prescribed curvature
type. The ambient space will be a complete smooth Riemannian manifold
(M, o). More precisely, we will consider the classical Dirichlet Problem

Flu] = f(klu)) =¥ in Q (1.2)
u=¢ on 0,
where k[u] = (K1, ,ky,) denotes the principal curvatures of the graph
Y = {(z,u(z)),z € Q} of a real function u defined in a bounded domain
Q) C M, ¥ is a prescribed positive function defined on Q x R, ¢ is a function
in C2%(Q) and f is a smooth symmetric function defined in an open, convex,
symmetric cone I' C R™ with vertex at the origin and containing the positive
cone
' = {k € R" : each component x; > 0}.

As we said above, the first breakthroughs in the solvability of the Dirichlet
problem (1.2) for general curvature functions f were due to Caffarelli, Niren-
berg and Spruck [11]. Under natural geometric conditions, they proved the
solvability of the Dirichlet problem (1.2) corresponding to general curvature



functions. Their result covered curvature functions f which satisfies the
structure conditions

of _
- 1.3
=gl (1.9
and
f is a concave function. (1.4)

In addition, f is assumed to satisfy the following more technical assumptions

> filk) = e >0 (1.5)

> filk)ri > co >0 (1.6)
lim sup f (k) < ¥y < ¥ (1.7)
H_@F fi(k) > 1 >0 forany k € I’ with x; <0 (1.8)
(fr- fa)""" > 1o (1.9)

fornely ={kel : ¥y < f(r) <V¥;} and constants ¢y and py depending
on ¥, and ¥, where ¥y = inf ¥ and ¥; = sup V. In this context, a function
u € C?(Q) is called admissible if k[u] € T at each point of its graph. The
result due to Caffarelli, Nirenberg and Spruck is restricted to strictly convex
domains and for constant boundary data. More precisely, they proved the
following theorem:

Theorem ([11], Theorem 1). Let f be a curvature function satisfying (1.3)-
(1.8). Assume that

(1) Q C R™ is a domain with smooth strictly convex boundary 0S;
(i1) There is an admissible function u, such that u = 0 on 09
and

Flu) = f(slu) > ¥ in G (1.10)

(11i) For every C > 0 and every compact set E in I' there is a
number R = R(C, E) such that

f(k1,- ,kn+R)>C, VkeE. (1.11)

Then there exists a unique admissible smooth solution w to the Dirichlet
problem (1.2) with ¢ = 0.



The main example of general curvature functions that satisfies (1.3)-(1.9)
are the k-th root of the higher order mean curvature functions

Sk(k) = Z Kiy =+ K-

I{il<...<ik

Despite the cases f = (Sk)l/ * be covered by the generality of f in the above
theorem, the condition (1.11) excluded the (k — [)-th root of the quotients
SkJ :Sk/Sl, 0<lI<k<n.

Using a different approach, [26] Ivochkina solved (1.2) for f = Sy and
general boundary values. Her approach also allows to weaken the hypothesis
about 0f2 from strictly convex to k-convexity, adding a suitable type of Serrin
condition. The weak or viscosity solution approach of Trudinger [42] allows
such a generality about the curvature function f that the cases f = Si,
were included, establishing existence theorems of Lipschitz solutions when
the domain is f-convex and satisfies a kind of Serrin condition. We note
that a domain Q with boundary 9Q € C? is said to be f-convex (uniformly

!/

-conver) if the principal curvatures &' = (k},--- , K/ _;) of 0Q satisfies
p p 1 n—1

(K}~ ,K,_1,0) €T (1.12)

In the subsequent articles [31] and [27] Ivochkina, Lin and Trudinger adapted
the approach used by Ivochkina to solve the Dirichlet problem (1.2) corres-
ponding to the quotients Sj;. Their approach make use of highly specific
properties of these functions. As our work extends to a general curvature
function a result presented in [31] for the quotients we will include here a
brief description of it.

Theorem ([31], Theorem 1.1). Let 0 <[ <k <n, 0 < a < 1. Assume that

(i) Q is a bounded (k-1)-conver domain in R™ with boundary
o0 € C*;

(i) ¥ € C**(Q x R), U >0, 2L >0 in Q x R;

(111) VU(x,0) < Sk.(k") on 0N, where k' are the principal curva-
tures of 0€).

Then, provided there exists any bounded admissible viscosity subsolution of
equation (1.2) in Q, there exists a unique admissible solution u € C+*(Q) of
the Dirichlet problem (1.2) for f = Sk; and ¢ = 0.



As we could see on the theorems presented above, conditions on the
geometry of the boundary 0f) plays a key role in the study of the solva-
bility of the Dirirchlet problem (1.2). Nevertheless, the replacement of the
geometric conditions on the boundary by the more general assumption of
the existence of a subsolution satisfying the boundary condition had already
been done by several authors. We may mention the results presented in the
articles [18] and [21] of Guan and Spruck, where the Monge-Ampere equa-
tion is treated. In [8] and [19] is shown the existence of a close relationship
between the convexity of the boundary and the existence of such subsolu-
tions. This kind of hypothesis is also used in [23], where Guan and Spruck
studied the existence of locally strictly convex hypersurfaces with constant
prescribed curvature function. There they obtained the following result.

Theorem ([23], Theorem 1.4). Let Q be a bounded domain in R™ and f
be a curvature function defined on I'V that satisfies the structure conditions
(1.8)-(1.7) and (1.11). Assume that

(i) there exists a locally convex viscosity subsolution u € C%*(Q)

of the equation (1.2) with u = ¢ on 9Q and u is C? and locally

strictly convex (up to the boundary) in a neighborhood of OS2

(i1) U is a positive smooth function defined on Q2 x R and satisfies

% >0

0z — 7°
Then there exists a unique locally strictly convex solution u € C>®(Q) of the
Dirichlet problem (1.2) satisfying u > u on €.

We point out that this result extends the theorem of Caffarelli, Niren-
berg and Spruck (the first of those presented above) to non-convex domains
and general boundary condition, but just for a restricted class of curvature
functions f defined in the positive cone I't and that must be zero on OI'". In
23] this theorem is used to prove the existence of locally convex hypersur-
faces with prescribed curvature function f constant and prescribed bound-
ary. However these hypersurfaces are not necessarily global graphs and their
boundary may be very complicated.

Our results may be seen as an extension of some of the results cited above
for domains €2 contained in a Riemannian manifold. We point out that for
equations of Monge-Ampere type (f = S,,) this extension was made by Guan
and Lin in [20] and by Atallah and Zuily in [3] while the prescribed mean
curvature equation (f = H) has been studied in [39], as we mentioned above.



Our first result extends the above result of Guan and Spruck to a general
Riemannian manifold and for a class of curvature function larger than the
one considered in [23] and that is defined in a general cone I', not necessarily
being the positive cone I't. However, we assume some natural conditions on
M, which are naturally satisfied by the Euclidean space.

Theorem 1.1. Let M be a complete orientable Riemannian manifold with
nonnegative Ricci curvature and f be a curvature function that satisfies (1.3)-
(1.9). Assume that

(i) Q is a bounded domain in M and OS2 has nonnegative mean
curvature with respect to inward orientation;,

(i) there exists a viscosity subsolution u € C%*(Q) of the equation
(1.2) with w = ¢ on 0 and u is C? and locally strictly conver
(up to the boundary) in a neighborhood of 0%;

(iii) W is a positive smooth function defined on QxR and satisfies
92 > 0;

(iv) there exists a locally strictly convex function in C%(Q).

Then there exists a unique admissible solution u € C*(QQ) of the Dirichlet
problem (1.2) for any smooth boundary data .

We note that the condition on the mean curvature of 99 in (i) and the
existence condition in (iv) was used before, for instance in [16], [19] and [24],
moreover the Euclidean ambient satisfies all of them. When M = R" the
above result extend the theorem of Caffarelli, Nirenberg and Spruck pre-
sented in [11] to non-convex domains and general boundary values, without
the assumption (1.11). We note that by using the techniques discovered in
[22] and Theorem 1.1 we may extend the results of [23] to a larger class of
curvature functions than the ones covered in [23].

Replacing the assumption about the existence of a subsolution satisfying
the boundary condition by geometric conditions on 0f2, we obtain an exten-
sion of the Theorem 1.1 in [31] (the second one presented above) for a general
class of curvature functions and a complete Riemannian manifold.

Theorem 1.2. Let f be a curvature function that satisfies (1.3)-(1.9) and M
a complete orientable Riemannian manifold with nonnegative Ricci curvature.
Assume that



(i) Q is a bounded domain in M with smooth boundary O;
(i) ¥ € C**(Q x R), U >0, 2L >0 in Q x R;

(111) Q is f-convex and satisfies the Serrin conditions

f(K,0) > U(z, p)
fn(K',0) >0

on 0N, where k' are the principal curvatures of 082; B
(iv) there exists a locally strictly convex function in C?((2).

(1.13)

vV 1V

Then, provided there exists any bounded admissible subsolution u Oji equation
(1.2) in Q, there exists a unique admissible solution v € C**(Q) of the
Dirichlet problem (1.2) with ¢ constant.

As is pointed out in [42], [23] and [27], the main difficulty to solve the
Dirichlet problem (1.2) lies in the derivation of the second derivative esti-
mates at the boundary for prospective solutions. The essence of our work
lies in the derivation of the mixed tangential-normal derivatives by using a
barrier function that is a combination of the barrier function used previ-
ously by Guan and Ivochkina. To prove the double normal second derivative
estimate we adapt the tecnique used in [19].

As we said above, in this thesis we also study the existence of hypersur-
faces with prescribed anisotropic mean curvature. The notion of anisotropic
mean curvature has drawn attention of many mathematicians. We may cite
the recent articles [6], [13], [14], [25], [35], [45] and [46]. Bergner and Dittrich
6] studied the existence of graphs with prescribed anisotropic mean curvature
and boundary in the Euclidean space. We are able to obtain an extension
of their result to a Riemannian manifold endowed with a nonsingular Killing
vector field. More precisely, we obtain a similar result to the one obtained
in [15] for the usual mean curvature. We also treat the closed problem for
the anisotropic mean curvature in the Euclidean space. More precisely, we
prove the analog result to the one obtained in [41] for the usual mean cur-
vature which establishes the existence of hyperspheres with prescribed mean
curvature.



Chapter 2

The Dirichlet Problem

In this chapter we fix the notation used in the whole text. It is also
proved some useful lemmas and basic facts about curvature functions are
established.

2.1 The Geometric Setting

In the sequel, we use Latin lower case letters i, j,... to refer to indices
running from 1 to n and greek letters «, 3, ... to indices from 1 to n—1. The
Einstein summation convention is used throughout the text.

Let (M"™, o) be a complete Riemannian manifold. We consider the pro-
duct manifold M = M x R endowed with the product metric. The Rieman-
nian connections in M and M will be denoted respectively by V and V. The
curvature tensors in M and M will be represented by R and R, respectively.
The convention used here for the curvature tensor is

RU, V)W = Vy VW — Vi Vy W + Vi W.

In terms of a coordinate system (z°) we write

o 0 o 0
Rw’kl—"(R <a_a_) 373_)

With this convention, the Ricci identity for the derivatives of a smooth
function u is given by
ui;jk == ui;kj + Rilkjul. (21)



2.1 The Geometric Setting

Let © be a bounded domain in M. Given a differentiable function w :
) — R, its graph is defined as the hypersurface X parameterized by Y (z) =
(x,u(z)) with € Q. This graph is diffeomorphic with © and may be globally
oriented by an unit normal vector field NV for which it holds that (N, d;) > 0.
With respect to this orientation, the second fundamental form in ¥ is by
definition the symmetric tensor field b = —(dN, dX). We will denote by V'’
the conexion of >.

The unit vector field

1
N=—
W

W= /1+ |Vul. (2.3)

Here, |Vu|? = u'u; is the squared norm of Vu. The induced metric in 3 has
components

(0 — V) (2.2)

is normal to X, where

9i = (Y3, Yj) = 035 + uiu; (2.4)
and its inverse has components given by
g7 =0 Tzt :

We easily verify that the second fundamental form b of ¥ with components
(a;;) is determined by
- 1
aij = (Vy, Y5, N) = jrusy
where u;;; are the components of the Hessian V2u of u in €. Therefore the
components a’ of the Weingarten map A* of the graph ¥ are given by

) . 1 ) 1 .
k k k
CLg = g] Ak; = W (Uj - WUJJU ) Uy - (26)

For our purposes it is crucial to know the rules of computation involving
the covariant derivatives, the second fundamental form of a hypersurface and
the curvature of the ambient. In this sense, the Gauss and Codazzi equations
will play a fundamental role. They are, respectively,

/
ik = Rkl + @ikt — agagy

Qijik = Qi + Riojk

10



2.1 The Geometric Setting

where the index 0 indicates the normal vector N and R’ is the Riemann
tensor of X. We note that a,;,; indicates the componentes of the tensor V'b,
obtained by deriving covariantly the second fundamental form b of ¥ with
respect to the metric g.

The following identities for commuting second derivatives of the second
fundamental form will be quite useful. It was first found by Simons in [38].

Proposition 2.1. The second derivatives of the second fundamental form b
satisfies the identity

m m m m
Qijikl = Qklyji + ARIA; Qjm — Qi Qim + A1A; Agm — QA Ak
D m D m D m D D
+ Riikma;’ + Riijmay — Bmjiea)” — Roiojar + Rowokij (2.9)
_ SR Y
— Rykja;” — ViRojik — ViRokji-

Proof. Since (2.9) is a tensorial inequality it is enough to check this formula
for a fixed coordinate system. Given p € ¥ we fix a geodesic coordinate
system centered at p. By the Codazzi equation (2.8) we first get

/ D, (D
Aijikl = V; (akj;i - ROjik) = Qj:il — VZ(ROjik)-
Then we compute from the definition of a;;
! D 7 D m D D D
Vi (Rojit) = ViRojik + a]" Rpnjir, — aaRojor — arRojio
and commute V; and V; to derive
/ m / m wal .
kjsit = Okgsti + Ry @5 + Riyjjay’ — ViRojin
_ S _
—Rpijra;” + Rojoraq + Rojioap-
Then we use the Codazzi equation again to get

/ D !
arjpi = V' (ar; — Rorjt) = arji — V' (Rokjt)
_ _ . s _
= aki;ji — Vilorji — Rmkja;” + aijRogo + aig Roxjo-

Employing the Gauss equation (2.7) we finally conclude
gkt =i + Riigm @] + Rigjmai" — Rmjira)" + Rojorai + Rojiotuk
— Ry + Rororai; + Rorjoaq — ViRojik — ViRokj

m m m m
+ Qi A — Qi) Ay + AQ; Qg — GGy Ay

and the conclusion follows from the symmetries of R. [

11



2.2 General Curvature Functions

2.2 General Curvature Functions

Now we present a brief description of a general curvature function f and
we also present some useful properties of these functions. For further details
see the reference [16].

Let I' be an open convex cone with vertex at the origin in R™ and
containing the positive cone I'y = {A € R™ : X\; > 0}. Suppose that T
is symmetric with respect to interchanging coordinates of its points, i.e.,

A=N) el = (M) el Vrm e P,

where P, is the set of all permutations of order n. Let f be a positive diffe-
rentiable function defined in I'. Suppose that f is symmetric in \;, i.e.,

Then, f is said to be a curvature function. Let S C T%*(X) be the space
of all symmetric covariant tensors of rank two defined in the Riemannian
manifold (X, g) and Sr be the open subset of those symmetric tensors a € S
for which the eigenvalues, with respect to the metric g, are contained in I'.
Then we can define the mapping

F:S —R

by setting

F(a) = f(\a)),
where \(a) = (A, -+, \,) are the eigenvalues of a with respect to the metric
g. It is well known, see e.g. [16], that F' is as smooth as f. Furthermore, as
is shown in [16], the curvature function F' can be viewed as depending solely
on the mixed tensor af, obtained by raising an index of the given symmetric
covariant 2-tensor a, as well as depending on the pair of covariant tensors

(a,9),
F(a*) = F(a,9).

In terms of components, in an arbitrary coordinate system we have
F(a}) = F(aij, 9:7)

with a{ = ¢’*a;;. We denote the first derivatives of F' by

oF oF

and Fij: -

Fi =
aai]’ 8&2

12



2.2 General Curvature Functions

and the second one is indicated by

Fij,kl — aQF
aaijaakl ’

Hence F'“ are the components of a symmetric covariant tensor, while Fij
define a mixed tensor which is contravariant with respect to the index j and
covariant with respect to the index 1.

As in [26], we extend the cone I' to the space of symmetric matrices of
order n, which we denote (also) by S. Namely, for p € R™, let us define

[(p)={resS : Ap,r) €T},

where A(p,r) denotes the eigenvalues of the matrix A(p,r) = g~ '(p)r given
by

pePp ) r, (2.10)

1
Ap,r:—(l——
)= mm L TP

(with eigenvalues calculated with respect to the Euclidean inner product).
A(p,r) is obtained from the matrix of the Weingarten map with (p,r) in
place of (Vu, V2u) and 67 in place of ¢%/. We note that the eigenvalues of
A(p,r) are the eigenvalues of r (unless the 1/4/1 + |p|? factor) with respect
to the inner product given by the matrix ¢ = I + p ® p. In this setting it is
convenient to introduce the notation (see [9])

G(p,r) = F(A(p.r)) = fF(Ap. 7).
Hence, as in [11] and [23] we may write equation (1.1) in the form
Flu] = G(Vu,V?u) = f(k[u]) = ¥(z,u). (2.11)

Now we will calculate the derivatives of F. The computations become
simpler if we assume that the matrix (aij) is diagonal with respect to the
metric (gz»j), as is shown in the following lemma.

Lemma 2.2. Let a € Sr and (e;) € T, be an orthonormal (with respect to
the metric (g;;)) basis of eigenvectors for a(x) with corresponding eigenva-
lues ;. Then, in terms of this basis, the matriz (F"7) is also diagonal with

13



2.2 General Curvature Functions

eigenvalues f; = =-. Moreover, F is concave and its second derivatives are
given by

FoRn g = kamkkmz + Z )\k il ne (2.12)
for any (n;;) € S. Finally we have

fimfi o
oy (2.13)

These expressions must be interpreted as limits in the case of principal cur-
vatures with multiplicity greater than one.

Proof. First we calculate by the chain rule,

Of O O\
%] — —_— —
P=3 O\ Dayj 2 Ji day; (2.14)
k k
and O, O 0\
ij}rs — k l k
F ; fkl (9az-j aam Z fk aawaars <215>

Therefore, we must calculate the rate of Change of the eigenvalues of the
matrix (a;;) with respect to variation of its components. We then define a
variation of (a;;) in two parameters by

CNLZ']' = Clij + tbij -+ SCij,

for certain matrices (b;;) and (¢;;) to be determined later. Therefore, we must
expand the characteristic polynomial

p(A, t, S) = det (dU — /\5U)
in powers of ¢t and s. For this, assume that (a;;) is diagonal with
(aij) = ()\1, ey >\n)

Suppose further that the eigenvalues of (a;;) are simple. We denote by A =
A(s,t) an eigenvalue of (a;;), i.e.,

A=A L 0
0=p(\t,s)=det : : + t(by;) + s(cij)

14



2.2 General Curvature Functions

Expanding the determinant, we obtain

0=\ —A)...(A, = \) +Z>\1 (i + 5¢i) . (A — A)
+ Z )\1 tb” + SCZZ) c. (tbjj + Sij) c. (/\n — )\)
1<J
=) (M = A) (b scig) (g 4 sei) - (A — A) + O(|( ) ).
1<J

Therefore, differentiating with respect to ¢ and evaluating at ¢ = 0 we obtain

dp dX
0_5_—2(&—».. & O =)
~—

7

%

i#j \d/t-/
J
Y =N bi ey (A — )
1<j
+Z(/\1_/\)Sczzb]j(/\n_/\)
1<j
—ZZ(Al—)\)SC“SC”%(An—/\)
1<j 14,5 \l/
1<j
1<j
—|—ZZ(A1—)\)...sct-...scl-... da (A = A) FO(5?).
— Y e "
1<j l#i,j ~—~

l

15



2.2 General Curvature Functions

Now we differentiate with respect to s and evaluating at s = 0 to obtain

d?p GEDY
0= = Z(Al—)\)...dtds...()\n—)\)
? v
dA dA
+Z(A1—)\)...dt. FPRERI Y
7] ~~
( J
=) (A=A by 3—A (A=)
i#j ~~
J
i#] QP
J
1<j
1<j
1<j
1<j

Since A|; = 0 is an eigenvalue of (a;;), necessarily X = X\;, at ¢ = 0, for
some k. As the eigenvalues of (a;;) are supposed to be simple, it follows that
(Ai — A) # 0 for i # k at t = 0. Consequently,

d dA —
dIZ|st0 —E()\l Aeoc (M= A) oo (A= A)

F = A) b (A — N

0=

If we choose by, = 1 or by, = 0, we get from the last equations, respectively,

dA
R
dt

or d)\
—=o.
dt

16



2.2 General Curvature Functions

In particular, the directional derivatives of A with respect to the paths given
by

t— (aij) + tekk
and

t— (aij) + telm,

where [ # k or m # k and e, is the matrix with 1 in the entries rs and 0 in
all remaining entries, are given respectively by
Ok Ok

=1 =0
Oagy, 7 Oayy, ’

where | # k or m # k. As these functions take values in the discrete set
{0,1}, it follows from the continuity that these expressions are valid for all
matrices (a;;), with possible multiple eigenvalues.

Now we use the above expansion to obtain informations about the second
order derivatives. We have for by, = 1 (the other entries of (b;;) are zero)

dx  an
dt_aakk
and
d2p A2\
= = (A — A Ap — A
0=Gias = W= Mgy =N
k
dx  dx
+Z()\1—)\)...g. ey
5 ¥ Y
=Y =N =N (A= )
i#k
dX
=) M =N o FTRERI Y
, t
i#£k
30 =N (=N i (= A)
k<i
Y =N (= A) (A= ),
i<k

17



2.2 General Curvature Functions

which implies

d2p 42\
= = =) (=)
k
dx - dA
+Z(/\1—/\)...E...$. (An — A)
= ¥ Y
dx
—Z()\l—)\)...ckk...E...()\n—A).
i#k ~—~

K]
Thus, if we choose ¢, = 1 and the other entries equal to zero in (¢;;) we
get % = g{i’; = 1 and the last two terms on the right hand side of the
last equation cancel out. On the other hand, if we choose ¢;,,, = 1 for some
[ # k or m # k and the other entries (in particular cg;) equal to zero, then
% = aaa);fn = (0 and, in this case, these two terms are both zero. Hence, we

have

dZ\
(Al—)\)...%...()\n—)\)—o
=~
k
and
d2\ 9\
=0

dtds [s4=0 = Da;jOagy,

for all values of i, j.

Now we consider a variation obtained by taking b;,, = 1 for | # k or
m # k and putting the other entries equal to zero (including the by one).
Without loss of generality, we may consider ¢,, = 1 for n # k or r # k and

the other entries equal to zero. As%:iﬁzoe%:%:OWe have
d?p SEDY
= =—(A—AN)... (A=A
dids — MmN g )
k
i<j
i<j

18



2.2 General Curvature Functions

Therefore,

A —A)... A e Qa =) =) =N e (= A

k<j

=Y M =N bk (A= A)
=Y M=AbA = A

i<k

So, if we choose by, = 1 for some m < k and the other entries equal to zero
we get

42\
A=A i O =N == = A) e Coe e b e (A — A),
@ ©

wich implies
N1
AmkAkm B )\k - /\m’

if £ > m. Choosing by, = 1 for some k < m and the other entries equal to
zero, we obtain

d2\
D= A) e o = A = == A) e b e o e (A — ),
e Ry
then
P 1
AmkQkm B )\m_>\k

for £ < m. By raising indices and permuting the order, we get

A\, 1

QmkAlm )\k - >\m

for £ > m.
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2.2 General Curvature Functions

Applying this formula in the expression of the derivative of F' above, we
conclude that, given an arbitrary symmetric co-vector 7;;, we have

Fin; = Z fimii (2.16)
and
g O\, OA 0?\
nijF” " Z fkl i l 7713777“8 + Z fknm b 777“3
ij Oay Oa;j0a,
8 /\k a )\k 2
= Z Skt + Z Jemg—F— Dar D Mo + Z Jomg—F— Dar D Mem
= Z Jrmkenu + Z ~ Jm e
At — Am
k#m
This completes the proof of the lemma. n

Since a} = g*ay;, we have

i oF _ OF dak¥ _ i ki
8aij Gaf 8&2']' k
Similarly,

da;;O0ak = 9d” 8az gg"

In particular, if we denote

O 0G y 0*G
GY = and GVM =~ —
an a"nijrkl
we obtain )
Gl — —_ i
w
and 1
gkl i5.kl
GJ - WFJ .

Hence, it follows from the above lemma that, under condition (1.3), equation
(2.11) is elliptic, i.e., the matrix G (p, r) is positive-definite for any r € T'(p).
Moreover, under condition (1.4) the restriction of the function G(p,-) to the
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2.2 General Curvature Functions

open set I'(p) is a concave function. We point out that since 1/ and 1 are

respectively the lowest and the largest eigenvalues of ¢, we also have
L pisi < Gis, < - Fls 2.17
a0y =GP0 < 3 Eo) (2.17)

Now we analyze some consequences of the conditions (1.3)-(1.7). First
we note that under these conditions f satisfies

f(sk) > sf(k), 0<s<l1 (2.18)
and
> filw)s < f. (2.19)
In fact, from the concavity condition we have

flsk+ (1 —9)er) > sf(k)+ (1 —s)f(er) > sf(k),

for any 0 < ¢ < s < 1. The inequality (2.18) follows by taking ¢ — 0. To
prove (2.19) we note that, for 0 < s < 1,

f(sr) = f(&) _ sf(K) = [(5)
s—1 - s—1

By taking s — 17, we get %]3:1 < f(k), which proves (2.19). We may

also prove that the concavity of f and the condition (1.7) imply that
d ki >05>0 (2.20)

for any x € I' that satisfies f(x) > Wy. In fact, we note that the set
Duy = (€T fl) > Uy}

is closed, convex and symmetric. The convexity follows from the concavity
of f since for any k, A € 'y we have

(L =s)r+8A) = (1 =) f(r) + sf(A) = Yo.

The symmetry follows from the symmetry of f.
So, the closest point of I'y, to the origin has the form (o, ..., ko).
Otherwise, if this point x contains two distinct coordinates, say k; # K;,
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2.3 Some Useful Lemmas

then the point 1 obtained from k by reversing the positions of x; and x; will
also be a minimum, by the definition of distance. Therefore, by the convexity
of I'y, the line segment whose the endpoints are x and p is contained in this
set. On the other hand, it is clear that its midpoint is closer to the origin
than the extremes points. This contradiction implies that all components of
K are equal. Moreover kg # 0 since lim sup,_op f(A) < W.

We show thus that every x € I'y, lies above the hyperplane

H:{/\ER”:ZMZTMO},

i

which is the support hyperplane of the convex set ['y, at the point (kq, . .., ko).
In fact, its normal direction is determined by the segment connecting the ori-
gin to the closest point. Thus, every sk € I'y, is necessarily contained in the
convex side of the cone I'y, wich lies above H. This geometric fact implies
that upper bounds for the principal curvatures of the graph of an admissible
solution immediately ensure lower bounds for these curvatures.

2.3 Some Useful Lemmas

In this section we present some lemmata that will be used in the next
chapters. The first one gives an useful formula involving the second and third
derivatives of the prospective solutions of the problem (1.2).

Lemma 2.3. Let u be a solution of equation (2.11). The derivatives of u
satisfy the formula

G =WGY dbuguy + WG9 dbugu; + —Golauiug,
ki Wk U Ukl W JIU Ui, (2.21)

- Giniljkul + Uy 4+ V.

Proof. Deriving covariantly equation (2.11) in the k-th direction with respect
to the metric o of M we obtain

oG oG g .
Uy + Wiy, = Do ik + 5y ik = Gk + G'ugg. (2.22)
] i
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2.3 Some Useful Lemmas

From F(al[u]) = G(Vu, V?u) we calculate

. 0G OFoas .0 (1
¢ = T dwow L on (Wg “l“")

. s 0 1 1 .0 s
=Fgyg lul;r% (W) + —F Ou (9 l) Ul

We compute

0 (1 g 1 .
F;gSlul;r‘ (_> . FggSlul;r = ——G"%a,5u’

and
1 .0 ,. , o .
WFS a_ul (g l) Uy = G pgsp aul (g l) Uy:r

= —G" (69" us + g™ uy)up,
= —WG”aéul — WGYd}u;,

where we have used

agSl S s 2
gsp% = —g l(disup + usdip) = _(51‘;09 lus + g lUp)'

It follows that

1

Gl =
W

G a,u’ — WGijaé-ul - WGljafuj.
Replacing these relations into (2.22) we obtain
ij Lows ij 1j i
Uy + Wy, = GYuy i — WG arsu' Uiy — WG ajuugg, — WG ajujuig.

Using the Ricci identity (2.1), equation (2.21) is easily obtained. O

A choice of an appropriate coordinate system simplifies very much the
calculation of the components af of the Weingartein operator. We describe
how to obtain such a coordinate system. Fixed a point x € M, we choose a
geodesic coordinate system (z°) of M around z such that the vectors Y, - 22|,
form a basis of principal directions of ¥ at Y (x) and % » 1s orthonormal
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2.3 Some Useful Lemmas

with respect to the inner product given by the matrix ¢ = I + Vu® Vu, i.e.,
the vectors Y, - %LE are orthonormal in Ty(,)3. With this choice we have

al(z) = a;(x) = %Ui;j(x)% = K67

and

. | 1 - 1 ;
Gz]:_Fz k]:_i(sz(skj:_ié‘q’
i = o = i
since (FY) is diagonal whenever (a!) is diagonal and g%/ = §¥ whereas Y, 22|,

are orthonormal in Ty (,)X. From now on we will call such coordinate system
as the special coordinate system centered at x.

We note that, at the center of a special coordinate system the formula
(2.21) takes the more simple form

Z fittis = 2W Z fikiuitgg, + % Z fikiulug;

(2.23)
- Z fiRaau' + W (Vg + V).

Remark 2.4. Since the principal curvatures k[u] of ¥ are the roots k of the
equation
det(aij — Kvgij) = O,

instead of the Weingarten matriz (al), some authors, as in [11] and [23],
prefer to work with the symmetric matriz given by

~] _ ~k kj
a; = 7; arly

where )
i i _ i
7 W(l+W)
and %j - Y. The main feature of this choice is the symmetry of the
matrix a;.

Following [8], to obtain the a priori hessian estimates on the boundary of
prospective solutions we will make use of the following technical lemmas.
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2.3 Some Useful Lemmas

Lemma 2.5. Consider a n x n symmetric matrizc

d1 O aq
dy
M = .
Q dnfl Qp—1
aq Ap—1 a

with dy, . ..,d,_1 fized, |a| tending to infinity and
la;| <C, i=1,...,n—1.
Then the eigenvalues A1, ..., A\, behave like
Aa=do+o0(1), 1<a<n-—1
w=a(i+0(2)),
a

where the o(1) and O(1/a) are uniform — depending only on dy, ... ,d,—1 and
C.

Proof. See [8], Lemma 1.2 (p. 272). O

Lemma 2.6. Let IV C R"! be an open, convez, symmetric cone which is not
all of R™™ L and contains the positive cone. Suppose that A= ()\1, e )\n 1) €
" and Ay < ... < M\_1. Then the cone I has a plane of support, i.e., there
exists p' = (ul, ey 1) € R™ such that

I’ c {/\’ ER N f =D Napta > O},
with i satisfying gy > ... > pp_1 > 0,

Z,uazl and Z,ua a—dzst)\ GF)

Proof. See [8], Lemma 6.1 (p. 286). O

Lemma 2.7. Let A = (a;;) be a square n xn symmetric matriz with eigenva-
lues \y < ... < A\, Let py > ... > pp, > 0 be given numbers. Consider an
orthonormal basis of vectors b*,... b" and set

a =, 1<i<n.
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2.4 The Continuity Method

Then

Z(Aai,ai> > Z'ui)‘i'

i

Z iG> Z JTEPYR

Proof. See [8], Lemma 6.2 (p. 287). O

In particular, we have

2.4 The Continuity Method

In this section we apply the continuity method to reduce the problem of
existence of solution in Theorems 1.1 and 1.2 to the derivation of a priori
estimates for prospective solutions. We are going to include here a suc-
cinct description of this method. For a detailed description of the continuity
method we refer the reader to [17], chapter 17.

Generally speaking, the continuity method involves the embedding of the
given problem in a family of problems indexed by a closed interval, say [0, 1].
The subset S of [0, 1] for which the corresponding problems are solvable is
shown to be nonempty, closed and open, and hence it coincides with the
whole interval. First we present an abstract functional analytic formulation.
Let E and F' be Banach spaces and T" a mapping from an open set U C E
into F. The mapping 7T is called Frechet differentiable at u € U is there exists
a bounded linear mapping L : ¥ — F' such that

| TTu+ ] = Tlu] = L{A][[/[|A]]e — 0 (2.24)

as h — 0 in E. The linear mapping L is called the Frechet derivative of
T at v and will be denoted by T,,. It is evident from the definition that the
Frechet differentibility of T" at u implies that T is continuous at u and that the
Frechetderivative T, is determined uniquely by (2.24). We call T' continuously
differentiable at w if T is Frechet differentiable in a neighbourhood of u and
the resulting mapping

v— T, € L(E,F)

is continuous at u. Here L(E, F') denotes the Banach space of bounded linear
mappings from F into ' with norm given by

|| Lol

vemsozo ||V]E

|IL]| =
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2.4 The Continuity Method

An implicit function theorem holds for Frechet differentiable mappings.
Suppose that E, F and X are Banach spaces and that G : F x X —
F is Frechet differentiable at a point (u,t) € E x X. The partial Frechet
derivatives, G%u’t), G%u’t) at (u,t) are the bounded linear mappings from F, X

respectively, into F' defined by
G(u,t) (h7 k) = G%u,t) [h’] + G%u,t) [k]

for (h,k) € E x X. We state the implicit function theorem in the following
form.

Theorem ([17], Theorem 17.6). Let E,F and X be Banach spaces and G
a mapping from an open subset of E x X into F. Let (ug,to) be a point in
E x X satisfying:

Z) G[UQ,to] = 0;

ii) G is continuously diffrentiable at (ug,to);

iii) the partial Fréchet derivative L = G%uo’to) is wnvertible.
Then there exists a neighbourhood N of to in X such that the equation
Glu,t] = 0, is solvable for each t € N, with solution uw = u, € E.

In order to apply this theorem we suppose that E and F are Banach
spaces with T" a mapping from an open subset U C FE into F. Let ug be a
fixed element in U and define for v € U, t € R the mapping G : U xR — F
by

Glu,t] = Flu] — tFlu).

Let S and R be the subsets of [0, 1] and E defined by

S={tel0,1] : Glu,t] =0 for some u € U}
R={ueU : Glu,t] =0 for some t € [0,1]}

Clearly 1 € S, up € Rsothat S and R are not empty. Let us next suppose
that the mapping 7" is continuosly differentiable on R with invertible Frechet
derivative T,. It follows then from the implicit function theorem that the
set S is open in [0, 1]. Consequently we obtain the following version of the
method of continuity.

Proposition 2.8. The equation T'[u] = 0 is solvable for u € U provided the
set S is closed in [0, 1].
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2.4 The Continuity Method

Now we are going examine the application of this result to the Dirichlet
problem (1.2):
Flul =V in
{ U= on 0f).
First we need to designate a suitable family of problems. Consider the family
of functions

U =10+ (1-6)¥

)

0<t<,
where we denotes
U = Flu] = f(s[u]).
Now we consider the family of problems
{ Flu] = V! in Q
U= on 0f2.

We can reduce to the case of zero boundary values by replacing u with
v = u — @, so this problem is equivalent to

Flv+¢] =0 in Q
v=20 on 02,

In order to show the existence of solutions for ¢ = 1 we define de (closed)

subespaces £ = {v € C**(Q) : v = 0on 9Q} and F = C%(Q), for some
0 < a < 1. We define the mapping G : £ x R — F' by

Glu,t] = Flu+ o] — V',

Let (ug,to) € E x R be a solution of G[u,t] = 0. It follows that u + ¢ is an
admissible function, so the partial Frechet derivative L = G%uo’ o) is invertible
(by Schauder theory) since

L[h] = G%uo,to)[h] = Gijhi;j + GZhZ + ch
where G is the operator given in (2.11) and

OF

G7 = — (V(u+ ), V(u+p))
sy
- 0G
G = o (Vi (u+ ), V(u+¢))
_ o ovh _ov
S
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Hence it follows from the above discution (Proposition 2.8) that the existence
of solutions of equation G[u,1] = 0 is reduced to the closedness of the set
S ={t € [0,1] : Glu,t] = 0 for some u € E}. On the other hand, the
closedness of S will follows from the C%“ a priori estimates for the solutions.
In fact, since C2%(Q2) — C2(Q) every bounded sequence in C**({)) admits
a convergent subsequence in C%(Q). So, if t, € S and t,, — t, the solutions
u, associated with ¢, admits a subsequence whose converges to a solution u
of the problem Glu,t] = 0, which implies that ¢ € S. Hence, a existence of
solutions is reduced to the C*% a priori estimates.

We note that since G is concave it suffices to establish the C? estimates.
In fact, the Evans-Krylov C*® estimates may be applied to improve the
estimates. We note that teh boundary C*® estimates have been simplified
by Caffarelli as is pointed out in [28]. For more details about the boundary
C?** estimates we refer the reader to [7], [10] and [17].

29



Chapter 3

A Priori Estimates

In this chapter we obtain the a priori estimates of prospective solutions
of the Dirichlet problem (1.2).

3.1 The Height and Boundary Gradient Es-
timates

Let u be an admissible solution of the Dirichlet problem (1.2). We first
consider that the hypotheses in Theorem 1.1 are satisfied. In this context
the height estimates for admissible solutions of (1.2) is a direct consequence
of the existence of a subsolution u satisfying the boundary condition and the

inequality
Z ki >0 >0,

which is satisfied for any k € {k € I : f(k) > Uy}, where § > 0 is a positive
constant which depends only on I'. In fact, it follows from the comparison
principle applied to equation (1.2) that u < u, which yields a lower bound.
An upper bound is obtained using the function @ = sup ¢ as barrier, which
satisfies

where () is the mean curvature operator. So, it follows from the comparison
principle for quasilinear elliptic equations that v < u. Hence the proof of the
height estimate, under the hypotheses of Theorem 1.1, is done. We also note
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3.1 The Height and Boundary Gradient Estimates

that if ¢ is constant then @ also yields an upper barrier for u, which provides
the gradient bound on 0f2.

To obtain the boundary gradient estimate (under the hypotheses of The-
orem 1.1) we use the function @ as an upper barrier, which satisfies

0= Qi) < Q] in©

3.1
u =@ on 0, (3:1)

which implies that v < u. The hypothesis that the Ricci curvature of M
and the mean curvature of 9€) are nonnegative ensure the existence of such
a solution (see, e.g. [39]). Since u = u = u on 02, the inequality u < u < u
implies the boundary gradient estimate

|Vu| < C on 0f. (3.2)

This completes the height and boundary gradient estimate in Theorem 1.1.

Now we consider Theorem 1.2. Following the ideas presented in [42],
we will use the hypotheses on the boundary geometry to construct a lower
barrier function. Let d be the distance function to the boundary 92. In a
small tubular neighborhood A of 9Q we define the function w = ¢ — f(d),
where f is a suitable real function. We choose N = {x € Q : d(z) < 0},
where a > 0 is chosen sufficiently small to ensure that d € C2(N) (see [30]).
Fixed a point gy in 992. We fix around y, Fermi coordinates (y°) in M along
Nae) = {z € Q : d(z) = d(yo)}, such that y” is the normal coordinate and
the tangent coordinate vectors {8%|y0}7 1 < a <n—1, form an orthonormal
basis of eigenvectors that diagonalize V?u at 1. Since Vd = v is the unit
normal outward vector along Nyy,), we have

—V2d(yo) = diag(k, kY, ..., k" 1,0),

where " = (kY, k5, ..., kh_,) denotes the principal curvatures of Ny, at

yo. Hence, at yo, w; = 0 (i < n), w,(yo) = —f" and
VZ,w — diag(f’ﬁ", —f”),

since d, = 1 and d; = 0, © < n. Therefore, the matrix of the Weingarten
operator of the graph of w at (yo,w(yo)) is

Afuw] =( g™ (w)au(w) )
zldiag(f’/a", —i—g),

()
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3.1 The Height and Boundary Gradient Estimates

where v = /1 + f’2. Hence the principal curvatures & = (g1, ..., k,) of the
graph of w at (yo, w(yo)) are
~ f, "
A 3.3
k=L (33
~ f//

To proceed further, we take f of the form

£(d) = ilog(l + kd)

for positive constants u, k to be determined. We have

— k 1
Jid) = p(1+ kd) = p(l+ ka) (35)

f'(d) = —pf'(d)*.

We may thus estimate
K, > 2

- 2v

provided v > vy, i > o, where g and vg are constants depending on €2 and

its boundary. Therefore

ey (3.7)

|'%z - K,ﬂ S E"{na

for a futher constant yq, since the principal curvatures &, . .., K, will differ

from &Y,..., K _; by O %) as v — 00. Let g € 02 be the closest point of

Yo in 0L, we thus estimate

U (yo, w) < Y(go, ) + [¥|1d
3 U

S W(?JO; 80) + | |1

U

v
S f('%lvo) + Q?
LV

where we used (3.5) and the hypotheses (ii) and (iii) of Theorem 1.2. Note
that &' denotes the principal curvature of 02. For a > 0 small, we may

32



3.1 The Height and Boundary Gradient Estimates

replace k] by &} in (3.7). By condition (1.13) there exist positive constants
0o, to such that

f(R) = f(K,0) = dotiy, (3.8)

whenever t < to, |R; — K| < tk,, i =1,...,n — 1. To apply (3.8) we should
observe that (1.13) implies # € T'. Then, to deduce our desired inequality,
Flw] > W, we fix u so that

M1 2 |\I/|1
> — d > —.
2 o e and gl 2 e

Setting M = sup(y¢ — u) we then choose k and a so that
ka=e"™ —1 and k> vo,ue“M

to ensure v > vy, w < u on ON . Therefore, we find that w is a lower barrier,
that is,

Flw] = f(R[w]) > ¥ in N
w<u ondN,

which implies that « > w in A. Since the condition (iii) of Theorem 1.2
implies the mean curvature of 02 is nonnegative we conclude that there
exists a solution @ of (3.1) which is an upper barrier. This establishes the
height and boundary gradiente estimates in Theorem 1.2.

Remark 3.1. Under the hypotheses of Theorem 1.2 the function w defined
above satisfies w < w in N and V*w € T'(Vu) on N, for any solution u
of (1.2). In fact, since uw = @ is constant on 02 we have that the matriz

A(Vu, V?w) defined in (2.10) has the form

1 . ! 7 f//
A[U)] = deg(f ,—\/Tiui>

on 0N, where k' € T' denotes the principal curvatures of 0). Hence, if we
choose [ as above we have V*w € T'(Vu) on 982 Since T'(Vu) is an open set
it follows that V?w € T'(Vu) in N'. We will use w as a lower barrier u in the
Lemma 3.4 when we consider the conditions of Theorem 1.2.
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3.2 A Priori Gradient Estimates

3.2 A Priori Gradient Estimates

In this section we derive (the interior) a priori gradient estimates for an
admissible solution u of (1.2).

Proposition 3.2. Let u € C3(Q)NCY () be an admissible solution of (1.2).
Then, under the conditions (1.3)-(1.8),

Vu| < C  inQ, (3.9)
where C' depends on |uly, |u|; and other known data.

Proof. Set x(u) = ve™, where v = |Vu|? = u*uy and A is a positive constant
to be chosen later. Let zy be a point where y attains its maximum. If
X(zg) = 0 then |Vu| = 0 and so the result is trivial. If x achieves its
maximum on 02, then from the boundary gradient estimate obtained in the
last section, we have a bound and we are done. Hence, we are going to
assume that x(zo) > 0 and 2y € Q. We fix a normal coordinate system (z)
of M centered at z(, such that

0 1

Orl |$0 = |vu|<l’0)vu(:p0)

In terms of these coordinates we have u;(zo) = |Vu(xg)| > 0 and u;(xg) =0
for 7 > 1. Since z( is a maximum for x, we have

0= x(xo) = QAU(xO)GQA“(xO)ui(xo) + eQA“(”O)vi(xO)

= 2e240) (Avu(29) + ulur(w0))
and the matrix V2x(z¢) = {xi.j(%0)} is nonpositive. It follows that
ul (zo)uri(z0) = —Av(wo)ui(20) (3.10)

for every 1 <1 < n.
From now on all computations will be made at the point zy. As the matrix
{G%7} is positive definite we have

Gijxi;j < 0.
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3.2 A Priori Gradient Estimates

We compute
Xisj 2462Au(Aulul;iuj + AzUUin)
n 262A"(u?§ul;i + gy + 240l u; + Avugg)
—9p24u (ulul;ij + Ufz‘ul;j + Avui;j + 2Aulul;jui
—I—QAUZUZU"LLZ‘ + 2A2U’LLZ‘U]‘) :
Hence

0>

2¢e24u Gijxi;j :Gijulul;ij + Gijufiul;j + AvGijui;j
+ 4AG T g juy + 247G uuy.
It follows from (3.10) that
4AGijulul;iuj = —4A2vGijuiuj,
SO
Guluy; + GUulwy — 240G wuy + AvGPu; < 0.

We use the formula (2.21) at the Lemma 2.3 to obtain

G”ulul;ij :WG”afulul;iuk + WG”a?ulul;kui + WG”ClijulukUl;k

- Giniljkuluk + ul\I/l + \I/tv.

Since
Rz-jlkuluk =0
WGijaé?ulul;iuk = WGijaf(—Avui)uk = —AvWGija?uiuk
I 1 .. 1 L
WG”aijulukul;k = WG”aijuk(—Avuk) = —WszG”aij,
we get

g g Av?
G”ulul;ij = —QAUWG”CL?UZ‘Uk — WUGUGJZ‘]‘ + ul\Ill + \I/tv.

Plugin this expression bock to (3.11) we obtain

- Av? .
— 2AvWG”afuiuk — WUG”QZ-J- +ul U, + T

+ Gijufiul;j — QAQUGijuiuj + AvGijui;j <0.
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3.2 A Priori Gradient Estimates

Since

we may rewrite the above inequality as
Gijufiul;j - 2AWvG”a§uiuk — 2A21)Gijuiuj
Av® ij l
+ AUW_W G aij—ku\Ifl—i—\Iltng.
Using the hypothesis ¥; > 0 and that

Av? Av
Ao — 22 = 28
v woowW’

we obtain
G”ufiul;j — QAWUGZ]CL?uiUk — 2A2UG”uin + WUG”aij + Ul <0. (3.12)
From the choice of the coordinate system and (3.10),
uy =—Av and wy; =ui =0 (i >1).

After a rotation of the coordinates (z?,...,2") we may assume that V?u =
{w;.;(z0)} is diagonal. Since

, , 1 R A
J_ ik, Jk _ A
a; = g Qg = W g W2 Ui,

at o we then have

al =0 (i #}])

1 Av
ai:mul;lz m<0
Cu (> 1)
al = —u;; (1 )

W

It follows from Lemma 2.2 that the matrix {Ff } is diagonal. Then the matrix
{G"} is also diagonal with

i i ki )
G =g fee = g i
1 1
G = gt = s



3.2 A Priori Gradient Estimates

Using these relations and discarding the term

Av .. Av
WGjaz‘j = mezﬁz >0

we get from (3.12) the following inequality
Gz, — 2AW VG ag(u1)? — 2A4%0G (uy)? + Wy <0,

which may be rewritten as

2A2 3
> oG, + G (Wg —2A%° + A%?) + U0 < 0.
a>1
Since 24203 o o 9o AP — A%?
—2A A = —————
e vt 4+ A% 102
we have
A%p3 — A%?
Z Gaaui;a + WGH + \111\/1_) S 0.
a>1
Then AQ 3 AQ 2 1
v° — A%v
Wﬁﬁ < —¥1yv < |DY|V/v.
Once 4
v
K1 = a% = —W 0,

we may apply hypothesis (1.8) to get fi > vy > 0, which implies that
A%3 — A% | DY
< .

W5\/5 Ty
Now we choose
9 1/2
A= (— Sup|D\II|> :
Co MxI
where [ is the interval I = [—C, C| with C being a uniform constant that

satisfies |u|p < C. It follows that

(u1)*((w)* = 1)
(14 (u1)?)>2

1
< -
-2
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3.3 The Boundary Estimates for Second Derivatives

(10)° — (ur)® — (14 (w))*? < 0.

Since u; > 0 this yields a bound for u; and hence for x(x(), which implies
the desired estimate. O]

3.3 The Boundary Estimates for Second Deri-
vatives

In this section we establish a a priori boundary estimates to the second
derivatives of prospective solutions of (1.2). The estimate for pure tangential
derivatives follows from the relation u = ¢ on 0f). It remains to estimate the
mixed and double normal derivatives.

In order to obtain the mixed and double normal derivatives we use the barrier
method. The linear operator to be used is given by

L=GY -V,
where .
bl = W Z f]/i]ul
J
As it was shown in last chapter, it follows from the concavity of f that

D fim <,

(see 2.19). Hence, we may conclude from (1.6) and the C° estimate that
|b'| < C' for an uniform constant C.

To proceed, we first derive some key preliminary lemmas. Let zy be a
point on 0. Let p(x) denote the distance from x to xy,

p(x) = dist(z, z),

and set
Qs ={xe€Q: plx) <}

Since (p?)ij(wo) = 20:;(xo), by choosing & > 0 sufficiently small we may
assume p smooth in €25 and

0ij S (pZ) isj S 30ij in Q(;. (313)
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3.3 The Boundary Estimates for Second Derivatives

Since 0f) is smooth, we may also assume the distance function d(x) to the
boundary 0f2 is smooth in ;. In what follows, we denote (also) by ¢ the
extension of the boundary function ¢ to )s being constant along of the
geodesic normals starting from 0f).

Now we begin the construction of our barrier function. Let & be a C?
arbitrary vector field defined in €25 and y any extension to 25 of the vector
Vu(zp). Consider the function

w = (Vu,€) ~ (Vi &) — 2|V~ X (3.14)

The function w satisfies a fundamental inequality.

Proposition 3.3. Assume that f satisfies (1.3)-(1.6). Then the function w
satisfies B B
Liw] < C(1+ GY04 + GPwyw;)  in Qs, (3.15)

where C' is a uniform positive constant.

Proof. For convenience we denote p = (Vip,&). First we calculate the deri-
vatives of w in an arbitrary coordinate system. We have

w; = (V;Vu, &) + (Vu, Vi&) — i — (ViVu — Vix, Vu — x)
= (& + X" = ") wy + ((€5)i + 0F)0) we — i — (Vax, X)
and

wi; =(V;ViVu, &) + (V;Vu, V;8) + (V;Vu, V&) + (Vu, V;Vil)
— pi;; — (V;ViVu — V;Vix, Vu — x) — (V,;Vu— V;x, V;Vu - V;x)
= (6" + K€" — uF) wp; + ((€5); + (X)) una + (€% + (XF)s) vy
— bt + ()i + (M)ig) wr — w1 — (Vax, Vix) — (V;Vix, X,
where we denote by &, (€%); and (£¥);.; the components of the vectors &, V;€

and V;V,;¢, respectively (the same notation is used for y).
Therefore,

Gwij = (6" + K& —u®) GPupgij +2G7 ((€7); + (XM);) uri — GV ulju
+ Gij( (€)1 + (X")ig) we — piy — (Vax, Vix) — (V;Vix, X))-
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3.3 The Boundary Estimates for Second Derivatives

Now we use (2.21) to obtain
(& + X = u¥) GTupyyy =W (€8 + xF = u*) Gl gy + W (€5 + X* — o)
. 1 ) .
X G”aéuk;lui + W (fk + Xk - uk) Gﬂaﬂuluk;i
+ (fk + Xk - uk) (\I/k + \I/tuk - Giniljkul) .
On the other hand, it follows from the expression for w; that
(fk +xF - Uk) Ui = Wy — ((fk)z + (Xk)z) ug + i + (Vix, x)-
Substituting this equality in the above equations we get
1
w
+2G7 ((€9); + (X);) uri + WG aly (Mz’ — (€ + (X)) u
+ (Vix, X>> + WGijaé'ui <,uz — (€ + OF)) we + (Vix, X>>+

oGt (s = (€9 + (6¢)0) wa + (Vo )
+ Gij< ((€%)i5 + 0F)ig) we — g — (Vix, Vix) — (V;Vix, X)

- (fk + X" — Uk) Riljkul) + (fk + X" - Uk) (Vg + Wyuy).

ij ij 1 ij T ij. k
G wi; = WG aywiu + WG ajwiu; + — G agu'w; — GYujug

(3.16)

Now note that, since (3.15) does not depend on the coordinate system,
i.e., it is a tensorial inequality, it is sufficient to prove it in a fixed coordinate
system. Given x € Q, let (2%) be the special coordinate system centered at
x. In this coordinates, at x, the inequality (3.15) takes the form

1 : 1 1
L[w] = W Zfiwi;i - bzwi < C (1 + W Zfzdu + WZﬁw?) . (317)

We will prove the above inequality. In what follows all computations are
done at the point z.
In these coordinates we have (at x)

; 1
) _
Ki = 05 = Qi = 75 U503

w
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3.3 The Boundary Estimates for Second Derivatives

and
G = %fidf.
Since the quantities depending on Vu, &, x and p are under control, we get
G”a Wiy = me win; < 5me + - Zfz
<e Z fiki +C Z fow;
G (), + () s = 2 (€0 + (1)) o < DB
WG dup; = Z fikiuip; < EZ firi + C’Z fi

G”u Uk —GJO' UpiUgsj = WQGWU ;A = Wa”f,-/ff

> COZJCZ'/%’

| ;
WGJlaﬂu Wi = s ijffju i < C'ij/ij <C
J J

Gy = % Zfi,ui;i < CZfi,

where € > 0 is any positive number and Cy > 0 depends only on o|g. Note
that to obtain the above inequalities we made use of the ellipticity condition
fi > 0. Estimating all the terms in (3.16) as above, we conclude that equality
(3.16) implies the inequality

G w;j; — WGﬂagzuiwi < 802]%’%2 + OZfz‘w? —Cy Zfi'f?
+CY fi+C,

1.e.

Lw] < (eC = Co) > fir2 +C Y fw? +C Y fi+C. (3.18)
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3.3 The Boundary Estimates for Second Derivatives

Choosing € > 0 sufficiently small such that the first term on the sum above
becomes negative we obtain

Liw] < C(1+ Zf + Zf,-w?).

Using that oy > Cy > 0 in Q and W is under controll, we get (3.17). ]
We note that inequality (3.15) may be simplified further. In fact, since
Gijaij > dg > 0,
replacing C' to C'/dy + C' (we may assume 1 > §y > 0) we get
Llw] < C(GY0; + GYwyw;)  in Q. (3.19)

Setting
W=1—e 0w (3.20)

for a positive constant ag, we get

a

w; = age” Y w;

and

~ —agw
’LUZ‘;]' = Qp€ 0 (wi;j — aowiwj) .

Therefore,
L[@] = G — b'b; = age™ ™" (L[w] — agGYwwy),
if we choose ag large such that ag > C, where C' is the constant in (3.19),
Lw] — agG"wyw; < Lw] — CGPww; < CGYoy;.
Therefore
L[w] < CGY0y;. (3.21)

The following lemma gives the elements to complete the construction of our
barrier function.
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3.3 The Boundary Estimates for Second Derivatives

Lemma 3.4. Assume that [ satisfies (1.3)-(1.9). There exist some uniform
positive constants t,d,e sufficiently small and N sufficiently large such that
the function

N
v=(u—u)+td— ?12 (3.22)
satisfies B
Liv] < —e(14+ GY0y5)  in s (3.23)

and
v>0  on 09;s.

Proof. Since u is locally strictly convex in a neighborhood of 92 we may
choose § > 0 small enough such that the eigenvalues A\(V?u) € I't in Q5. In
particular, we have that Vu € I'(Vu) in Q.

Consider the function v* = u — 3ep?. Since I'(Vu) is open and Flu] > 0, we
may choose € > 0 sufficiently small, such that v* is admissible and V?v* €
['(Vu) in Q.

We recall that it follows from the concavity of G(p,-) the inequality

GY(p,7)(rij — s5) < G(p,r) — G(p,s) Vr,s € T(p).
Applying this property we get
Llu — u] = Lu — v* — 3¢p?]
= G¥ (i — i) — V(s — 0f) — 3L[]

Y]
< G(Vu, V?u) — G(Vu, V2v*) — b’ (u; — v)
— 3eG(p?) i.; + 62pb' p;.

Since G(Vu, V2u) = ¥ and G(Vu, V*0*) > 0, it follows from the C'* estimate
and the boundedness of ' that

Liu - u] £ Gy — 3:GY ().
Hence, we conclude from (3.13)
L[U — Q] S Cl — 3€Gij0'i;j. (324)

As in the previous lemma, the inequality proposed is a tensorial one. So, it
is enough to prove (3.23) in a fixed coordinate system. Since d is smooth on
5 we may define Fermi coordinates on {25 as follows: we associate to x € (s
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3.3 The Boundary Estimates for Second Derivatives

coordinates (y') such that z = exp™ (y"v(y)), where y(z) = (y',...,y"})
is the closest point to « in 9, v(y) is the interior unit normal vector field to
0 and y" = d(z). In these coordinates we have d,(z) =0,1 < a <n—1,
and d,(x) = 1. Hence, a direct calculus yields

LP%—%%}_@—dNﬂ&ﬂ—NGm.

Since there exists a uniform positive constant C' that satisfies d;;; < C'oy; in
Qs and |b'| < C, we have

N y
This inequality and (3.24) give

MﬂgLW—M+LPd—%f}

S Ol — 3€Gij0'ij + Cz(t + N(S)(l + Gijaij) - NG™

Now we follow the reasoning presented in [19]. We choose indices such that
fi = -+ > f,. Since the eigenvalues of the matrix G¥ are - f1, ..., 75 fa, it
follows from our choice of indices that

1
G"™ > an > c1fn

and we also have

Gijo'ij > Co wa
i

where the constants ¢; depend only on |ul;, and the metric of M, o|g. To
verify the above inequalities we fix (') the special coordinate system centered
at the given point x € ;. In terms of these coordinates, the matrices G%
and ¢ are diagonal at the given point z, therefore

g dy' dy’ da” Ox*
g kl _x kl :1: _
GJO.’L] G Tsal'k al’l ay ay] Opt = szl i = CQZf’L
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3.3 The Boundary Estimates for Second Derivatives

Similarly,
ady" oy™ 1 ay"\° 1 Oy \”
nn __ kl~d I — Y >
¢ G Ok Ox! Wzi:fz(ﬁxi) - anz or?

1
R TRAES Zfi-

We use the arithmetic-geometric mean inequality and (1.9) to get
G0+ NG™ > ¢ Z fi+aNf,

>cne(Nfy ... f)Y/" = CsNY™,
Now we apply this relation into the above inequality to get
L[v] < Cy + Oy(t 4+ N§) + (Cy(t + N§) — 26)GYay; — CaNY/™,

Since §? < t§/N implies t§ — N/26* > 0 and u > u, we choose t = s¢; and
6 < % to get v >0 on QN Q. With this choice we have

L[U] S CI — €Gij0'ij — C3N1/n.
By choosing N large such that C3N'/™ > C) 4 2¢ we obtain (3.23). [

Remark 3.5. Under the hyphoteses of Theorem (1.2) we construct a subsolution
w defined in Qs and that is not necessarily strictly convex but satisfies V2w €
['(Vu). We replace u by w in the proof presented above to get the result. See
Remark 3.1.

Mixed Second Derivative Boundary Estimate
We define the function
h =1 + bop* + cou, (3.25)

where by and ¢y are constants to be chosen later. Assume the vector field £
is tangent along 02 N 9Qs. With this choice we have

1
Ww=1—-e""=1-—exp (—GO<VU,€> +ao(Vep, &) + a0§|Vu — X|2)

1
=1—exp <a0§|Vu — X|2)
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3.3 The Boundary Estimates for Second Derivatives

on 002N 0Qs, for u = ¢ on 9N. We also note that, since x(x¢) = Vu(xy), for
any vector field n tangent along 0€2 N 0€2s, we have

’(D(I()) = anz)(l'o) = 0.

Hence we conclude that @ = O(p?) on 92 N 0N, i.e., there exists a positive
constant M such that

W< Mp®  on 9QN 9N,

if 9 > 0 is small enough. Then, since v > 0 on 0, if by is sufficiently large
we have h > 0 on 0€s. On the other hand, it follows from (3.13), (3.21) and
(3.23) that

L[h] = L[@] + boL[p*] + coL[v]
§ (Cl + Cgbo — 006)(1 + GijO'ij) + bo.

in Qg

Therefore, for ¢y > by > 1 both sufficiently large, we get L[h] < 0
h 0 in Q(;.

and h > 0 on 0€s. It follows from the maximum principle that
Consequently,

<
>

Vyh(I()) Z 0

i.e.,

Voh(zo) = age™ ") (ug,, + (Vu, V,.€) — |Vu — x|V, |Vu — x|) ()
+ 2b0pVup(z0) + o (Vo (u —u) + tV,d — NdV,d) (x¢)
= ague, (o) + ao(Vu, V,€) (zo) + co(u — w),(z0) + cot > 0.
So

g (0) 2 —(Vu, Vo) (o) = -2 (u = w)y(wo) — 2.

Replacing & by —¢ at the definition of w we establish a bound for the mixed
normal-tangential derivatives on 010, i.e.,

|uf§V($0)| S 07
for any direction tangent £ to 0S). Since x; is arbitrary, we have

|U€;V’ <C o09. (326)
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3.3 The Boundary Estimates for Second Derivatives

Double Normal Second Derivative Boundary Estimate

For the pure normal second derivative, since ). k;[u] > dy > 0, we need
only to derive an upper bound

Uy, < C  on OSL (3.27)

In fact, it follows from the trace invariance that
tr(al) = Zaﬁ = Zmi >6>0,
i i

regardless of the coordinate system chosen. Hence, given an arbitrary point
y € 99, fixing a coordinate system (y) centered at y such that %]y =v(y)

and the coordinate vector fields aiyi|y} are orthogonal with respect to the
induced inner product given by g = I'd + Vu ® Vu, we obtain (at y)

1

i 3 W i W 5%
_ZW ZWU“—Fu Wi
In this coordinates we have

Ujpi = A?u,,;l, + 2A; By, + Bf‘Bfua;g, 1<i<n—1,

where indices o and 3 denote tangential derivatives. Hence

. A2 ) 2ABu,,a+BBua5
> 7 )
Uy =2 (zZ:I: W(O'“ +U?)> (5 Z Uzz‘f‘ui) > )

since A,, = 1 and we already have tangential and tangential-normal estimates,
it follows that

w = Unp > C,

for a uniform constant C. Therefore, it remains only to prove (3.27).
First we note that the equality u = ¢ on 02 implies

Uen (V) = Pen(y) — w (YT, 1) (y), (3.28)
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3.3 The Boundary Estimates for Second Derivatives

for any tangent vectors &,n € T,(0Q2) C T, M, y € 09, where II denotes the
second fundamental form of 9. Let T,, be the (0, 2) tensor defined on 052 by

T, = (Vo — u1II), (3.29)

where V is the induced conexion on 9€2. We note that, since ¢, = 0 we
have V2p = V2 on T(9Q). Since (op = %ua;g, it follows from the equality
(3.28) that the components of T}, in terms of tangent coordinates (y*) are
Waens. We denote by & = (&1, ..., R,—1) the eigenvalues of the tensor T;, with
respect to the inner product defined on 9Q by the matrix § = 6 + Vo ® Ve,
where ¢ is the induced metric on 0f2 by o.

Let T” be the projection of T' on R"™1 ie., if K = (k1,...,k,) € ' then
kK = (K1,...,kn-1) € I". We denote by d(x') the distance from ' € I' to
OI'". We point out that I is also an open convex symmetric cone.

We will analyze the behavior of d(x'[u]), for an admissible solution u of
(1.2). First we fix Fermi coordinates (y') in M along 052, such that y™ is
the normal coordinate and the tangent coordinate vectors {%]yo}, I<a<
n — 1, is an orthonormal basis of eigenvectors that diagonalize T}, at a given
Yo € 09, with respect to the inner product § = 6 + Vi ® V. At yp the
matrix of the second fundamental of 3, in terms of this coordinate system is
given by

Ui 0 e Uy

1 O u2;2 e u2;l/
w=g| Nk (3.30)

Uy;p Upx v Uy
We note that & = (ug1,...,Uy—1.n—1) are (also) the eigenvalues of the tensor
T, defined above. Since the principal curvatures x[u] = (ki,...,k,) of ¥

at (yo,u(yo)) are the real roots of the equation det (aij — /{gij) = 0 and
908(Y0) = Gap(Yo) = 0ap for 1 < a, f < n — 1, they satisfy

1 1
g — K N
1
0 U292 — K tee U2y — g
W 42; w Y2v 2n
det i =0.
1 1 1
Wul/;l — Jin Wuu;l —92n WUV;V — KGn;n
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3.3 The Boundary Estimates for Second Derivatives

By Lemma 1.2 of [8], the C' and the tangential-normal estimates, the prin-
cipal curvatures £[u](y) = (k1,...,K,) of &, at (yo, u(yo)), behave like

1
Ra = Wua;a + 0(1)7 I1<a<n-— 17 (331>

1 1
n — v | 1 ) 32
: Wgn;nu ’ ( o (UV;V>) (3:32)

as |u,,,| — oo. Since u is admissible, we have k'[u] = (ko) € I", therefore
Wr'[u] € I'. Hence, since I is open, for u,,, large (we may assume wu,.,, > 0
because we already have a lower bound) we have & = (uy.1, ..., Up—1.,-1) € I'.
Since yo € 0f) is arbitrary, it follows from the gradient, the tangent and
tangent-normal second estimate that there exists a uniform positive constant
Ny > 0 such that the eigenvalues & of T), satisfy & € I'' when u,,, > No.

The following lemma is the key ingredient to obtain our estimate. It is an
adaption to the case of curvature equations of the technique used by Guan
for Hessian equations in [19]. On the other hand, the technique employed by
Guan is inspired in the brilliant idea introduced by Trundiger in [43].

Lemma 3.6. Let Ny be the constant defined above and suppose that w,., >
No. Then there exists a uniform constant co > 0 such that

d(y) = d(k[ul(y)) = o on OQ.

Proof. Consider a point yy € 02 where the function d(y) attains its mini-
mum in . It suffices to prove that d(yy) > co > 0. As above we fix Fermi
coordinates (y) in M along 02, centered at o, such that y” is the normal
coordinate and the tangent coordinate vectors {%Lm }a<n that diagonalize

T, at yo with respect to the inner product given by & + Vo ® V. We choose
indices such that

Ri(yo) < -+ < Rpo1(v0)-

It follows from (3.28) that the coordinate system (y“) diagonalizes also the
restriction of V2u to T(99) at yy and

Ra(Y0) = Uaa(yo) <. (3.33)

We extend v to the coordinate neighborhood by taking its parallel transport
along normal geodesics departing from 0€) and set

o 0 0
bOéﬂ (aya7 ayﬁ) <v63‘1 ayﬂ)l]>
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3.3 The Boundary Estimates for Second Derivatives

Using Lemma 6.1 of [8], we may find a vector p/ = (uy,...,Hn1) € R*1
such that

,U/IZ"'ZN?L—IZO, Z,ua:]-

a<n
and
d(yO) = Z N’Oél%a(yO) (Z Z Mocua;oc(yO)) . (334)
a<n a<n
Moreover

I'c{NeR"': - XN>0}. (3.35)
Now we apply Lemma 6.2 of [8], with u, = 0, to obtain, for all y € 92 near
Yo,

Y taTaaly) =D Hotiasa(y) = D pafialy) > dy) > d(yo),  (3.36)

a<n a<n a<n

where we have used (3.35) and |u| < 1 in the second inequality. We differ-
entiate covariantly the equality u — ¢ = 0 on 02 to obtain

(u—)ey = —(u— @), II(E,n) on 9, (3.37)

for any vectors fields £ and 7 that are tangent to 0€2. Then, for y € 9€) near
Yo, we have

U () Y pabaa(y) = D 1a($p — Wasa(y)-

a<n a<n
Then
U,/(y) Z :uocboza<y> = Z Na@a;a(y) - Z /iaua;a(y)
a<n a<n a<n
(3.38)
S Z Ma@oa;a(y) - d(?JO)?
a<n

where we used (3.36) in the last inequality.

Since u is locally strictly convex in a neighborhood of 0f2 it follows that
K'(Uq:5(10)) belongs to I (since I'™ C I'). We point out that £'(u,.5) denotes
the eigenvalues of V2u, not the principal curvatures of the graph of u. We
may assume

A00) < (K (s 30),

20



3.3 The Boundary Estimates for Second Derivatives

otherwise we are done.
Now we use the equality u = u on 92 to get

(u - LL)V Z :uabaa = Z ﬂa(ﬂ - U)a;aa

a<n a<n

on 0f2. Therefore we conclude from (3.37), (3.35) and Lemma 6.2 of [8] that

(u__u yO zzzﬁ%xaa yO j{:#u_aa yO jzzﬂuuaa yO

a<n a<n a<n

> d (K (ua:5(y0)) — d(yo)
> %d(ga;@(?/o)) > 0.

Since (v —u), > 0 on 99, we conclude that there exist uniform positive
constants ¢, > 0, such that

jg:[%yaa >Cc> O

a<n

for every y €  satisfying dist(y, yo) < 0. Hence we may define the function

p(y) = Zam b (Z HaPasa(y (?Jo)) , (3.39)

a<n

for y € Q5 = {x € Q : p(x) = dist(x,yy) < §}, where we have extended ¢
being constant along of the normal geodesics departing from 0¢2. We obtain
from (3.38) that u, < pon 02N0Qs and from (3.34) and (3.37) that u,(yo) =
1(yo). Now we may proceed as it was done for the mixed normal-tangential
derivatives to get the estimate V,,u(yy) < C, for a uniform constant C.

In fact, at the definition of the function w in (3.14) we may choose the
vector field ¢ as being an extension of v and change the function p there by
the function p defined above, at the equation (3.39). Defining @ in the same
way as in (3.20), the inequality (3.21) remains true, hence the function h
defined at equation (3.25) still satisfies L[h] < 0in Q5 and A > 0 on 9Q3N €,
for appropriate constants ag, by, co and § > 0 sufficiently small. To get the
inequality h > 0 on 095 N 02 we must use that u, < p on 9Q N I (this
is the main point!). Then, like it was done for the mixed normal-tangential
derivatives case, we may conclude that

Uy (Y0) < C. (3.40)
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3.3 The Boundary Estimates for Second Derivatives

Therefore k[u](yp) is contained in an a priori bounded subset of I'. Since
Flu] = f(k[u]) =¥ > Vg =inf ¥ >0
it follows from (1.7) that
dist(k[u](yo), ') > ¢ >0

for a uniform constant ¢ > 0. This implies d(yo) > ¢o, for some uniform
constant ¢y > 0. [

We are now in position to prove (3.27). We may assume that u,.,, > Ny,
where Nj is the uniform constant defined above (otherwise we are done). By
our choice of Ny we have that Rlu] € TV on 0f2, where & are the eigenva-
lues of the tensor T, defined in (3.29). Fixed y € 052, we may choose
Fermi coordinates centered at y as it was done above to conclude that
Rlul(y) = (u1a,...,Up—1.n—1) are the eigenvalues of T, and such that the
principal curvatures k[ul(y) = (k1,...,k,) of X, at (y,u(y)), behave like

1
Ko = Wua;a(y) +o(1) 1<a<n-1 (3.41)

= ﬁuwy(y) (1+o<@)) (3.42)

as |u,,(y)| — oo. Since u,,,(y) have a lower bound the module may be
removed. Therefore, since -#[u] € I and I" is open, there exists a uni-
form constant N; such that, if w,,(y) > N; then the distance of x'[u] =

K (al[u])(y) to OI" is greater then cy/2, where cq is the constant at Lemma
3.6. So we have
A(Wul()) =

forye A={yeQ : u,(y) > N}
Since there exists a uniform constant dy > 0 such that

Co
Ea

lim f(x'[u](y),t) > W(x,u)+ d (3.43)

t—o0

uniformly for y € A, we have a uniform upper bound k,[ul(y) < C for
y € A. This yields a uniform upper bound V,,u(y) < C for y € A and thus
establishes (3.27).

Remark 3.7. Under the hyphoteses of Theomem 1.2 we replace the subsolution
u by the function w defined in section 1, see Remark 3.1.
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3.4 Global Bounds for The Second Derivatives

This section is devoted to the proof of the global Hessian estimate of
solutions u of (1.2). We will show that the terms of the second fundamental
form b of the graph of u are bounded by above. Combined with the fact
that > k; > d > 0 (see Chapter 1), this provides us with uniform bounds for
b. Since we already have the C! estimate, then this information allow us to
obtain the Hessian estimate.

Proposition 3.8. Suppose that conditions (1.3)-(1.7) hold and that there
exists a locally strictly convez function x € C*(Q). Let u € C*(Q)NC*(Q) be
an admissible solution of (1.2). Then

V2u| < C  in Q, (3.44)
where C' depends on |uly, maxaq |V2ul, |uls and other known data.

Proof. First we extend the locally strictly convex function x € C%(Q) to
2 X R by setting

x(x,t) = x(z) + 2

This extension is also locally strictly convex and we will use the same symbol
X to represent it also.
We define the following function on the unit tangent bundle of X,

((y, &) = b(&, &) exp (3(7(y)) + Bx(y)),

where y € ¥, € is a unit tangent vector to X at y, the function 7 is the support
function defined on X by 7 = (NN, 0;), 8 > 0 is a constant to be chosen later
and ¢ is a real function defined as follows. By definition the function 7 is
bounded by constants depending on bound for Vu. Hence, it is possible to
choose a > 0 so that 7 > 2a. Thus, we define

o(t) = —In(r — a).
Hence, differentiating with respect to 7, we conclude that

. 9 1 _ 1+¢€ _ €
¢—(1+e)¢>—(7_a)2 - ap <T_a)2<0, (3.45)
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3.4 Global Bounds for The Second Derivatives

for any positive constant € > 0. Notice that, by the choice of a, given an
arbitrary positive constant C', we have

' . . L T B C1€
~A+on) + 00 -1+ 9") = -1+ — — 5
g A (3.46)
Z r—ap 2 ¢

for some positive constant C depending on the bound for Vu.

If the maximum of ¢ is achieved on 9, we can estimate it in terms of
uniform constants (see the last section) and we are done. Thus, suppose the
maximum of ¢ is attained at a point yo = (o, u(xy)) € %, with 2o € €,
and along the direction &, tangent to ¥ at yo = (x, u(xp)). We fix a normal
coordinate system (y') of ¥ centered at yo, such that

0

a_y1’y0 = &o.

Notice that & is a principal direction of ¥ at o, hence alz (yo) = 0, for any
i > 1. We then consider the local function a;; = b(:2; 5T) 5o -9.). Thus we easily
verify that the function

¢ = a1 exp(o(7) + Bx) (3.47)

attains maximum at yo = (o, u(zo)). Thus, it holds at

= (In¢); = 11“ + é7i + B (3.48)

and the Hessian matrix with components

Q11;i5 A11;i411;5
(ln C)i;j = o i ] + quZ] + ngzT] + ﬁXz,]
aii a11

is negative-definite. Thus
1

G](lIl C)i;j :a—HG CL11 7 %IG]CLH;Z‘CLH;]‘ + QbGJTZ‘;j (349)

quijTiTj + 5Gijxi;j S 0.

We may rotate the coordinates (y?,...,4") in such a way that the new
coordinates diagonalize the matrix {a;;(yo)}. By Lemma 2.2 it results that
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3.4 Global Bounds for The Second Derivatives

the matrix {G¥} is also diagonal with G = o f;. We denote x; = a;(yo)
and choose indices in such a way that

K1 2> Ky 2+ 2 Kp.

Moreover, we assume without loss of generality that x; > 1 at yy. Thus,
according to Lemma 2.2, we have

From (3.49) we get
1 1 , S
Z <K—1fi@11;u' - ?fi|a11;i| + ¢ fiTii + @ film|” + 5fiXi;i> <0.  (3.50)
Z' 1

Now, we differentiate covariantly with respect to the metric (g;;) in X the
equation (2.11) in the direction of %bo obtaining Fa,;;, = ¥; and differ-
entiating again

Fij(lij;ll + Fij’klaijglakl;l = ‘111;1. (351)

From the Simons formula (2.9) we have

Fijaij;n = Fiiaii;ll = Z (fiall;ii + Hlfi’%? - ’i%fi"ii
i (3.52)
+r1 fiRioio — Riowo fiki + fiRivion — fiRlilo;i)~
We use the fact that co <> . fidi < f =V to get
Fijaijgll < — Kjco + | Riowo| ¥
) _ _ _
+ Z (fiall;ii + K1 fik; + K1 fiRioio + fiRioion — fz'wa;i)-

)

Combining this expression and (3.51) we obtain
Z fiarrs 2V — Fij7klaij;1ak:l;1 + 5%5 - |R1010|¢
i

— Z ()\1fz'/\z2 - AlfiRiOiO - fiRz’OiO;l + fiRIOIO;i)-
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3.4 Global Bounds for The Second Derivatives

Replacing this into (3.50) we obtain

1 g _
R—(‘I/m — F9" a5 a1.0 + Kico — |Rio10|P)
1

1 _ _ _
. Z (’flfi’f? — k1 fiRioio — fiRioion + fz‘R1010;i)
1 &
+ 32 (Bfima = g Hlanal’ + Sl + ) <0

Therefore, we have

U, 1 _ 1
—= 4+ —(cor} — Y| Ryonol) — —F" azqap, — Z fik?
K1 K1 K1 .

> / 1 .
- Z fiRiOiO + ZZ: (¢f¢7’i;i — ,g_%fi|a112i|2 + ¢fi|7'¢|2 4 5fz‘Xz';i>
1 _ _
ke Z fi(Rivior — Rionoi) < 0.
K1 p

It is well known that
Ty = —a;1
Tiy = =N @ik — 0" Riijo — T} ag;,
where n* are the components of the vector 9, i.e.,

ka

Notice that 97 is the projection of d; onto TX. Hence, since $ < 0, we have
(at yo)

9252 JiTii = —¢< Z nkfiaii;k + Z nkRkiz‘Ofi> - éT Z fz‘/i?-
Since
Z fitiir = W,

we have

dSZ fiti = —é(nk\pk + Z nkRkiiofi) _ qBTZ k2.

o6



3.4 Global Bounds for The Second Derivatives

We denote by T' = >, fi. By estimating the ambient curvature terms by a
uniform constant C' > 0, we obtain

Zﬁkﬁ’mofi <CT.
Then,
—é(n’“‘lfk + ZﬁkRkiiofi) > —|¢|(C +CT).
Therefore, we have
gbesz > —|¢|(C + CT) — ngTmef
Now, we suppose without loss of generality that
K1 2 é ; | Rioion — Rioosil,
for some C' > 0. Moreover, supposing also that x; > 1, we have
—%1‘11|R1010| > —C

and T
s o
R1

for some positive constant C'. We note that, since
Uiy = Uyp(ur)? + Ypurs + Ui

the above assumption is allowed. Finally we have

— ZfiRz'OiO > —T max | Rip0| > —CT.

We then conclude from these inequalities that

1 1
—C = COT + cyky — H—lF”’klaij;lakl;l — Z fiki — 2 Z filaxrl®
. : e ' (3.53)
—[ol(C+CT) — ¢7'Zfz"f? + ¢Zfz‘|7'z‘|2 + ﬁZfiXi;i <0.
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3.4 Global Bounds for The Second Derivatives

Now, to proceed further with our analysis, we consider two cases.
Case I: In this case we suppose that x,, < —60k; for some positive constant ¢
to be chosen later.

We have from (3.48) and the Cauchy inequality with e that

1 . 1 )
?fi|a11;i|2 = filomi + Bxal* < (1 + 2)52fi|Xi|2 + (1 +e)d*filnl?,  (3.54)
1

for any € > 0 and any 1 < ¢ < n. Now we replace the sum of the terms in
(3.54) in the inequality (3.53) to obtain

corr — C(1+[¢]) = CT(1 +|¢]) — %Fij’klaij;lakl;l —(L+97) ) fir]
1 . .
—(U+ 28 Y fibal* + (6= (14 9%) D filml + 8 fixis <0,

Since {a;;} is diagonal at yo and 0; is known, we have
S RImP =D ENmP <O fiRl,

so, it follows from (3.45) that

6=+ Y filnl? = (6= (1+€d*)C Y fir?.
We also may use that |Dy| is a known data to get

Zfz’b(z"z <CT.
Hence, we obtain

cor1 — C(1+|9]) — %Fij7klaij;1akl;1 — (1416 + (1 + %)ﬁQ)C’T
. ! . (3.55)
(4 +CB -1+ D fint + 8 fixa <0

Using the concavity of F' and the convexity of y we may discard the third
and the last terms in the left-hand side of (3.55) since they are nonnegative,
obtaining

—Cy(B) = Co(B)T + corr + C Y _ fir? <0,

o8



3.4 Global Bounds for The Second Derivatives

where C] depends linearly on g and Cy depends quadratically on (. Since
Jn = %T, we have

1
me? > fn/ii > EQQTF@%.
Thus it follows that
~1
—C) — CyT + coky + 0592%@% <0. (3.56)

This inequality shows that x; has a uniform upper bound. In fact, the left-
hand side of this inequality may be seen as a polynomial in x; and therefore

R1 < K+,

co <cg +4CL02T(Cy + CoT) ) 12
Ky =Sup§ — —= + = .
T 2C' 12T AC2 L0472

We may conclude that (3.56) implies the estimate also in another way. In
fact, notice that the coefficients of the terms in 7" in (3.56) are

where

A1
0502/{% - CQ.
Then, if k; > C for a (suitable) uniform constant C, we have
A1 o o
C—=0°ki — Cy > 0.
n

In this case, since T' = ). f; > 0, we may discard the terms in 7" in (3.56)
to obtain
—Cl + Ccok1 S 0

i.e.,
C
K1 S —.
Co
Case II: In this case, we assume that x, > —0k,. Hence, k; > —0r;. We

then group the indices {1,...,n} in two sets

L ={j; f; <4f},
I ={j; f; > 41}
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3.4 Global Bounds for The Second Derivatives

Using (3.54), we have for i € I

1
K—%fi’an;z‘\Q

< (1+OFflnl + (1 + DB fibl
(1+€)¢2fl‘ﬂ‘2+0( )(ﬁ) fi.

Therefore, it follows from (3.54) that

1 . :
—C —=CT + cok1 — )\—sz’klaz‘j;lakl;l — 1 + ¢7' Z fir?

Zf]|allj| - |¢|<C+CT) ( 1+6 Zfz|7_1|2

JEIz

(1+ ﬁ2f1+ﬂZfZX“_

Notice that we had summed up to the inequality the non-positive terms
—(L+elof Y filml
i€ls

Using that
73| = [Rini| < Chr

we may conclude as above that

—(L+¢7) Y firi+ (6= (L+e)o ZfZ|TZ|2>CZfZ (3.57)

for some positive constant C. Thus we have

1 .. N
—C = CT + coky — H—F”’klaz‘j;lakl;l + CZ fir?

1

1 :
- K—%Zfﬂan;jf— [6I(C+CT) = C(1 + ﬁ2f1+62fzxu <
JEI2
(3.58)
Using Codazzi’s equation

aij;1 = a1y + Roiji
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3.4 Global Bounds for The Second Derivatives

and Lemma (2.2) we get

1. Tk — i
ij Kl k— J1 n?
——F"" a0 = —— g friQkr1au — E Mkl

K1 Kk — Ki
> Z fk _fl 2
- lik—lil
fi—
2__2,% —H] al]l 2
j€el2 1 J
fi— SN2
= ——Z L (a1 + Royjn)
K1 “ R1 — Rj
JEl2

since 1 ¢ I and ;]-: ::i ll < 0. We claim that for all j € I5 it holds the inequality

2 fl fj f]

KK — Kj /{1'

(3.59)

This is equivalent to
2fik1 < fir1 + fikj.

It is clear that j € I implies f; > 4f;. If k; > 0, this is obvious. If x; < 0,
then —0k; < k; <0, and then

fit1+ [ =2 (L= 0) fir1 > 4(1 = 0) fik1 > 21k

if we choose 6 = 1/2. Hence, with this choice, we use (3.59) to obtain

1 = 2
i,k ]
— FR g ap > g 2 Cln;j + ROljl)

K1
J€El2 ol
fa
= g all] 242 E CL11 ]R01]1 + E ngl
]612 ]E]Q ]€I2

Using this inequality in (3.58) and estimating the curvature term |Roi;1|* we
obtain

—C - CT—i_Coﬁl—i_Z 6111_7 +22 a’ll]R01]1+CZfl

JEIQ J€12

P =3 Flanl - rez's\(C +CT) = C(1+ )P+ 63 fixaa <0

Ljen
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3.4 Global Bounds for The Second Derivatives

Using (3.48) we get

—C = CT + coriy — 22 (m + Bx;) Roijn + OZ}%

3612

- |¢‘(C +CT) — C(l + E)ﬁzfl + 5Zfixz‘;i <0.

Since gb <0, kj < Ky and —k; < 0Ky < K1 we have the estimate

oo £ i . L
K—Jl(—qﬁTj)Rom = Qﬁ—i%ﬂjRMﬂ > 2é¢|/‘6j!|77j301j1| > 2f;0n; Rojul-

We also may suppose, without loss of generality, that
> 3|XjRo1j1|
Yo
for all j € I, where g is a positive constant that satisfies
Xi;i2/70>07 ‘v’lgzgn

Note that this assumption is equivalent to

" |XjR01j1|7
3 = K1

which implies

—22 5)(3301]1 > — 22 J; 6|Xg301]1|

J€I2 JEIz
2_2zﬁfﬂo > 2@T
ey 3 3

These inequalities imply that

— C — CT+00I€1 +22fj¢‘an01jl| Z%T

JEl2

# O i IO+ CT) =1+ P A+ 9 fos <0

62



3.4 Global Bounds for The Second Derivatives

Since >, fj < T, In;R;1| < C and ¢ < 0 we have

- 1 A
~C = (C+ I+ 205 = )T = O(1+ )5 fi + com + C it < 0.

Choosing # > 0 sufficiently large, the term in 7T is positive and we may
discard it, obtaining

—C — Co(B) f1 + corr + C 12 <0, (3.60)

where (5 depends quadratically on 3. Reasoning as above, we conclude that
this inequality gives an upper bound for ;. This time, we have the following
upper bound for x4

K1 < Ry,

where

ki = sup
I

_ Co I (C(Q] + 4@]”1(0 + C2f1))1/2
20y 4C2 f?
Notice that, if fi — 0, equation (3.60) becomes
e—C + CoR1 S O,
for some € «~ 0. Since ¢y > 0 this inequality implies the desired estimate. [

Remark 3.9. In the case M = R", the assumption about the existence of a
strictly convex function x is not necessary. In fact, in this case, the auxiliar
function

{(y, &) = n"b(&, &) exp (¢(7(y))),

works as the function ¢ defined above, with n = t|x being the height function.
This is shown with details in [37].
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Chapter 4

Killing Graphs with Prescribed
Anisotropic Curvature

In this chapter we study the existence of Killing graphs with prescribed
anisotropic mean curvature. Our approach is inspired in the article [15] where
the usual mean curvature case is treated.

4.1 Preliminaries

In this section we fix some notations and present the definition of anisotro-
pic mean curvature. For more details about the notion of anisotropic mean
curvature we refer the reader to [33]. Let M be a complete oriented (n + 1)-
dimensional Riemannian manifold with metric and Riemannian connection
denoted by g and V, respectively. We denote by TM the tangent bundle of M
and by 7 the natural projection of TM onto M. At each point (y,n) € TM,
the projection 7 defines the subspace

Viym) = ker 7T*|(yﬂ7)7

called the vertical subspace of T(ym)TM . On the other hand, the connection
V defines a subspace Hy,), called the horizontal subspace of TM at (y,n),
which satisfies

T(y,n)TM = Viym) © Hiym) (4.1)
and it is the kernel of the connection map K : TTM — TM defined by
K(ym)(X*C) = vCXa Ce TyM?
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where X € T'(T'M) is a vector field in M with X (y) = n. Associated to the
decomposition in (4.1) we have the natural projections

v T(ym)TM — Viym) and 7P T(ym)TM — Hyn-

We also denote by XV and X", respectively, the vertical and horizontal lift of
a vector field X € T'(T'M). In what follows we assume that TM is endowed
with the Sasaki metric and we will denote by D the associated Levi-Civita
connection.

A parametric Lagrangian in 7'M is a smooth function

F: TM\ {0} — R,

which is positively homogeneous with respect to the second variable, i.e., for
any (y,n) € TM \ {0} we have

F(y,tn) =tF(y,n), t>0,

and satisfies the following ellipticity condition (see [45])

0*F

W(%n)(“@ > 0,

D*F(y)(¢, ) =
for any vertical vector field { = Ca% € I(TM), ¢ # 0, satisfying

<C7 77V>T]\7[ = 0.

The main example of parametric Lagrangian is given by

Fy,n) = [nl.

In this particular case, the hessian of F' is given by

92 F 1 1
(977“3775( ) T (4.2)

Given an isometric immersion v : ¥ — M oriented by a unit normal
vector field IV, we define the parametric functional

Fl) = /M P, N)dE,
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where d¥. is the volume element induced on ¥ by . Note that, when F'(y,n) =
In| the functional F is the classical area functional.
We define along the cross-section

v €Y r— p(x) = (y = ¥(2),n = N(¥(2))) € TM,
the vector fields ¢ and x by setting
DF|, =& +x"
It was shown in [33] that, if ¢ is a critical point for the functional
v — FlY] + AV,

where A is a constant and V' denotes the volume functional, then 1 satisfies
the Euler-Lagrange equation

dng§ + <X, N> = —A.

From now on we will restrict ourselves to parametric Lagrangians F' that are
horizontally constant. A parametric Lagrangian F is said to be horizontally

constant if
™ (DF) = 0.

In particular, it holds in this case that xy = 0, and the above Euler-Lagrange
equation becomes
diVEf = —A.

This suggests the definition of the anisotropic mean curvature of 3 associated
with the parametric Lagrangian F' as

In order to obtain a workable expression for Hr we define on X the following
bilinear form

where (-, )y denotes the Sasaki metric on TM. Hence,
TZHF = —dngg
= —9(D(s 3y DF, X )i 0 p = try Ap (4.5)
= try AZA,
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where A is the Weingarten map of ¥, g;; are the components of the metric
of ¥ and A}, is the linear operator metrically equivalent to the bilinear form
Apr. Now we will describe the geometry setting that will be considered.

We assume that M is endowed with a nonsingular Killing vector field Y
with complete flow lines and such that the orthogonal distribution

pEM—{veT,M: (v,Y)=0}

is integrable. We note that the integral leaves of the distribution are totally
geodesic hypersurfaces. Let M be a fixed integral leaf. The lux ¥: Rx M —
M generated by Y takes isometrically M = M, to the leaf M, = W (M) for
any s € R, where U, = U(s, -). Given local coordinates z!,...,z" for M,
then s, 2',..., 2" are local coordinates for M defined by

g€ M (s,z",....2") if q=U(sp),

where p € M is the point with coordinates z!,...,2". The corresponding
coordinate vector field along the flux are

Q(a) = - W(s.p) = Y (W(s.p)

and

.(0) = 5 W(s.p) = V.. (2)OL(0)

The ambient metric in terms of these coordinates has components

Goo = (0s,0s) = 0,  Goi = (0s,0;) =0

and
Gij = (V0;, V,,.0;) = (0;,05) = 04y,
where 0;; are the components of the metric in M in terms of the coordinates

(x%). Observe that the components of the metric do not depend on s. The
gradient of the function s is

Vs=g"0=|Y|’Y = 7Y.

1

Fixed coordinates p — (s,z!...,2") in M, a tangent vector n € T,M may

be written as
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Then we may define local coordinates on the tangent bundle T'M setting

(pﬂ?) — (S,l’l,"' 7xn77]07"' 77]n)7

the coordinate vector fields associated are
o 0 g 0 0
ds’ oxt’ T oxn on® T ongn
We also assume that the parametric Lagrangian F' is invariant under W, i.e.,
oF
— =0.
Js

Given a bounded C%® domain  in M and a function u on Q, we define
the associated Killing graph by

X ={X(p) = ¥(ulp),p) : p € Q}.

In terms of the coordinates s, 2!

parametrization of X

..., 2™ defined above, we have the following

X(p) € S (u(xt,... 2", 2", ... a").
Associated with this parametrization we have the coordinate vectors

Xi(q) = ui(p)oo(q) + 9(q)

and the components of the metric in X are

U;Uj
9ij = Oij + :
The unit vector field
1 -
N=—Vd=—(v0; — ¥, Vu) (4.6)
w
is normal to X, where
W? =7+ |Vul?.

Hence, the local section of TM defined by ©(q) = (¢,7(q)) € TM, where
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maps points in ¥ to the unit normal field N defined above.

We point out that it follows from the homogeneity of F' the Euler relations

0%F - 02F
| = 47
7(9770(9773 o Onond |y (4.7)
0°F - 92F
B I 4.
Yool " 877’877°‘so (48
OF . OF OF
S —— oy _uZ - 49
annP 1y Pl anenPd (4.9)

Note that above and throughout this chapter (again) we use the Einstein

summation convention, with Latin lower case letters i, j, ... to refer to indices

running from 1 to n.

Now we compute the components of A in terms of the local coordinates

defined above. We have

(Ar)ij = Ar(Xi, X;) = (Dxy DF, X])pp 0 ¢

82

8776“87]5

OF ‘ N O*F N O*F N PF
on°on° onPomile " OnPonile T anioni 1,

Let b be the second fundamental form of 2. Since
Ap = ApA= (g7 Ar)g 0 = (9 Arg™ D,

to calculate Hp is sufficient to compute ¢ ' Apg~! and b. We denote

v v g
Fu= 8] (1) () ) = pooa].

Now we compute

ki ~1 kp -1
Gk F" gj =i + 7 wiug) (0P ) (o0 + v ujuy)
k ! -1 -1 kp 1
=00 F pqOjl + oo kP o TFpqy  ujug + 7 ujupo ot Fyoj
kp _lq 1
+ v tuupotPo Foov ™ ujuy

=Fy; +7 ' PujuiFyy + v~ 15qu WP Ey + v uuuPul Fy,
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then it follows from (4.7) and (4.8) that

9inF™ gji = Fj 4 ui Foj + uiFo; + Foouiu,
= (Ar)ij-
Hence 4 ' -
9" (Ap)ug? = FY.

Therefore the anisotropic mean curvature is given by

nHp = F7b (4.10)

ij-

It remains to compute the components of the second fundamental form b of
Y. By definition, B
bij = (Vx, X, N).

We compute
Vx,. Xj =Vuo+0, (10 + ;)
:uijf)o + Ujvaiao + uﬁaoaj + Ujuivaoao + ?aﬁj,
from the expression for N given in (4.6) we get
Wbij = ’}/(’LL” <80, 80> + U]' (?5100, 80> + ui(?aoé?j, 80>
+ U; Uy <VQ080, 3()} + (Vaﬁj, @0>) — Uyy <60, \I/*Vu>

— u;(V,00, V.Vu) — u;{V,0;, ¥.Vu)
— u;u;{V,00, V. V) — (V5.0;, U, Vu).

(4.11)

As the leaves M, are totally geodesic, we have
(V5,05,00) = (V,00, V. Vu) = (V,0;, ¥.Vu) = 0.
Moreover, since Y is a Killing field,
(V,00,00) = 0.

On the other hand,

_ 1
(Va, 0o, 0;) = —5@‘(7_1) =—c-=
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and

Replacing these expressions into (4.11) we obtain

Wbi; =uij — (Vo,0;, V) — yui(Va,00, ;)
— YUy <v8080, ai) — UUy <V8080, Vu>.

Since u;; = w;; — (Vp,0;, Vu) are the components of the second covariant
derivative of u with respect to the connection of M, we may rewrite the above
expression as

1 1 oy 1
W bij = U5 — —ui—% — —U'—,y — —uiujuk—%. (412)
f)/

Therefore the anisotropic mean curvature of ¥ is given by

o 1 1 1 k
HWHF = F](u,-;j — %UJ]’}/Z — %uz’b — 2—72ujuiu ’Vk)
There is also an useful alternative expression for Hg. Using (4.7) and (4.8)
we obtain 1
nWHp = Fu;; — Fjny; — §F00fyiui,
hence, it follows from

_ 1 _
<U7 V’Y> = U(|ao|2> - 272<V80607U>7

the expression
TLWHF = Fijui;j — Fg")/l — ’}/2F00<?30(90, VU) (413)

We conclude that a function v € C?%(M) whose Killing graph has pres-
cribed anisotropic mean curvature Hp satisfies the PDE

1 1 1 i
Denoting
i_ gy 1Fi+1Fi+H
a’ = — = — i+ —= u; +np,
W ) W 07 il 007 F
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the anisotropic mean curvature equation (4.14) becomes
Qlu] = au;; —b=0.
We point out that, in the particular case of the area ' = |n]|, since

. outud . u |Vul?
ij o g i _
Y=g — —  Fj= and  Fpy =

the anisotropic mean curvature equation (4.14) is
L[, ud u |Vul|?
iy (Y R P
W(U Wz)“’?ﬂ W3Z+2 Su%—i—nH

1 g iyl i 1 i
W (a“ - ﬂ) = e O (4.15)

or

w w2 St w,
This equation agree with the equation of prescribed mean curvature obtained
n [15].
Killing Cylinders
We call the Killing cylinder over I' = 0€) the submanifold
K={¥(s,p):seR, pel}.

ruled by the flow lines of Y. If s, ..., s" ! are local coordinates for I', then

s,st, ..., 8" 1 are coordinates for K. We denote by 0, 01, . . ., 0,,_1 the corres-

ponding coordinate vector fields. Let v be the unit normal vector field along

I' as a submanifold of M. We equally denote by v the unit normal vector
field ¥, v along K. Thus

<l/, 85> =0= <V, 8Z>
Since v and 0; are tangent to the totally geodesic leaves Py we have
(?aﬁs, V> = 0.

Hence 0 is a principal direction of K and the corresponding principal cur-
vature is the geodesic curvature

= f}/<vasas7 V>
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of the flow lines through T'.

In the sequel, we deduce some useful properties of the distance function
d = dist(-, K) from K. We denote by I'. and K, the level sets d = € in
M and M, respectively. Thus I'. and K, are equidistant from I' and K,
respectively. Clearly K. is the Killing cylinder over I'.. Since we assume that
[ is smooth, the function d is also smooth at points of W(R x €), where
Qp C 1 is the set of points which can be joined to I' by a unique minimizing
geodesic. We point out that it was shown in [30] that the function d in Qg
has the same regularity as I'. We may define coordinates on W(R x ) as
follows: for ¢ € U(R x Q) we associate coordinates (s',d) by ¢ = exp, (dv),
when p = p(s,s!,...,s"1) in K. Then

Voa0d = 0
and B
|Vd| = 1.
It follows from these relations that
d'd;; =0, (4.16)

where d' = §d; as usual. We observe that Vd|. = d; = v is the unit inward
normal field to K..

Now we will compute the anisotropic mean curvature H5 (¢) of K. First
we note that the components of the metric induced on K. are

O = Oap,  Boa =0, and g =7"",
with 1 < a,b <n — 1. Hence
—nHg (¢) = divi. £ = 0°(Dis,, vay DF, 8)rizop+7(Dis,, vay DF, 05 0%
where ¢ is the local section of the tangent bundle TM defined by
p(z) = (2,v(2)) = (2, Vd(2)).

Since

(Va,Vd, D) = (V,Vd,0,) =0,
we have
—nHf () =67 (V,Vd, Ox) (Doy DF, 05 )as © ¢
+ 73 (Va,Vd, o) (Dag DF, 05 )rar 0 ¢
=F|,di; + 7 Fool (V. Vd, ).
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Note that, as the n-th coordinate corresponds to the function d, the sum
above may be taken from 1 up to n, since 6,,, = 0, Vgq0d = 0 and (Vd, 9,) =
0,ifl1<a<n-—1.

Finally, the anisotropic mean curvature of the cylinder K. is

nHp'(e) = —Fodisj + ¥ Fool ot (4.17)

when the orientation is defined by taking the inward normal. The Weingarten
operator of K, will be denoted by A.. The anisotropic mean curvature of K
is denoted just by HZ'

If the orientation is defined by choosing the outward normal, the anisotro-
pic mean curvature of K. becomes

nHy(e) = FY5dis; — vFool gk, (4.18)

where ¢ is the local section of TM defined by @(x) = (x, —Vd). Note that
the choice of the orientation is indicated by a bar on H".

Following [33] we define the anisotropic Ricci curvature of M in a given
direction X as the tensor Ricp given by

Ricp(X) = Z = AF(R(GZ‘>X)X7 61’)7

where R is the curvature tensor in M and ey,...,e,, X is an orthonormal
basis. Our aim in this chapter is the establishment of the following existence
result.

Theorem 4.1. Let Q C M be a bounded domain with C*>* boundary I' = 5.
Suppose that

i]r\lzf Ricp > —nA irllf nyl,

where X > 0 is the smallest eigenvalue of Ap and Hy is the usual mean
curvature of T. Let Hp € C*(Q) and ¢ € C**(T") be given. If

HY < Hp < HY'

then there exists a unique function u € C**(Q) N C°(Q) satisfying u|r = ¢
whose Killing graph has anisotropic mean curvature Hp.

To prove this theorem we will use the continuity method which reduces the
problem to the establishment of a priori estimates for prospective solutions.
In the next sections we will establish such estimates.
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4.2 The C" Estimates

In this section we will present the C° estimates for prospective solutions
of the problem

Qlu] = aijui;j —-b=0

4.19
Ujp = o, ( )

where ¢ is a C%“ function defined on T'. As (4.19) is a quasilnear elliptic
PDE, we may apply the maximum and comparison principles. Thus we
must construct barriers for the solutions u of (4.19). The barriers will be
cylinders, hence we must know how the anisotropic mean curvature of the
cylinders K. are related.

Lemma 4.2. Assume that the anisotropic Ricci curvature of M satisfies

Ricp(v,v) > —nA irrlf H,. (4.20)

Let x € T be the closest point to a given point y € I'c C Qqy. Then

HY(e)), < HY,. (4.22)

where HY'(€) and HY'(e) are the anisotropic mean curvature of T. with
respect to the inward and outward (normal) orientation, respectively.

Proof. Applying the formula for the second variation obtained in [33] we get
nHY' () = tr(A%A°) + Ricp (v, v). (4.23)

By the trace invariance, we may suppose that the above matrices are diago-
nal, say,

% =diag(Ay, -+, A,) and  A° = diag(ky, -, Kn),

where A3 is the bilinear form defined on K. as in (4.4). Hence

tr(AFAT) = D Nkf Z A K7
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where A > 0 is the smallest eigenvalue of A%. We apply the Cauchy-Schwarz
inequality to obtain

nHe(e) = ZK,Z' < nl/Z(ZH?)I/Q,

i

where Hy(¢) is the mean curvature of K.. Replacing this inequality into
(4.23) we obtain

nH}yl(e) > n\H?

cyl

(e) + Ricp(v,v) > nA (H2

cyl

(¢) — inf nyl> .
Therefore,

H(d) > M Hea(d) + inf Heyt) (Hepi(d) — inf Hey).
Hence, HY'(d) > ¢(Heyi(d)—infr Hey) in some interval d € [0, do] (do > 0) for
a constant ¢ > 0. It follows that H%'(d) does not decrease with increasing d,

which proves (4.21). The proof of inequality (4.22) is completely analogous.
O

Under the condition (4.20) we may construct barriers for solutions of
(4.19) setting a function of the form

@ =supp+hod,
T

where d is the distance from I in M and h € C*(R) is a real function that
will be chosen later.

Proposition 4.3. Assume that (4.20) holds and

inf Hp > sup HY (4.24)
T

Then, for a suitable choice of h, the function y satisfies
Q] <0 onQ,

where g C ) is the set of points which can be joined to I' by a unique
minimizing geodesic.
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Proof. Fixed x € Q, let K, be the cylinder equidistant from K that contains
x. In the sequel, all computations are done on x and, for convenience, we omit

it. Setting

eCA

h(d) = (1 — e,

where A > diam(2) and C' > 0 are constants that will be chosen later. By
definition, &' = e“(“=9 and k"’ = —Ch'. Along €y we have

Qi = h/dl and Yij = h/di;j -+ h//didj.

The unit vector field

- — W'vd
n W(vﬁs Vvd)

is normal (outward) along the Killing graph generated by ¢, where W =
~v + h2. Hence,

n I
Qlp) =7 Filydiy — O Filydid,

% -
W7F00|nffa - —F olnyi —nHp

_F]’( Vddzj_CF”’l Vd)dd
~ Vil —vate = 3 Fal(s —var — nHr.

Applying the mean-value theorem to the real function

16) = Fll gy _guplsys <01
we get
Fi”(%v*w)diﬂ F(Zg _vayisi + ;,F”|(977_W)di;j7 0<6<
Similarly,
Fool(2,—va) = Foolo,-va) + h,Fooo| va)? 0<h<1

Using these relations we get
Qle]l =F|0,-vaydi; — YFool0.—vayke — CH'EFY|(, —pvaydid; — nHp

1 ;
—I— H {—F0|( )’7@ +7F]|(;'Iy _ d)dz,] + Y F000|(€T’/Y7_Vd)/{8} .
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From the definition of H$' presented in (4.18),

Qly] :nH;yl(@ - Ch/Fij|(w,—h'w)didj —nHp

1 . g
7 )| _ 2 -
+ 37 { Pl o £ 1F Lty oo + 7" Fonl gy _cyve}

It follows from the ellipticity condition satisfied by F' that
—CNWFY| ¢y —pvaydid; < 0.

Hence, by Lemma 4.2 we conclude

1 i ij
Ayl < {_Fo!%—w)% Yl g, v + VQFOOO‘@»*W)KE}
—+ nH;yl — 7’LHF

Now consider the compact subset S of TM defined by
S={(x,n) €TM :z € Qyand 1< || <2}. (4.25)

If h'? > ~, we have
O~ 0~ Oy
(aﬁ,—w), (x,ﬁ,—Vd), (x,ﬁ,—Vd) €S
Let i : & — R be the real function defined by

1(2,8) = —Fil@e)i(@) + 7(@) Fy |@e)dii () + 7 (@) Foool (w,e) e

There exists a uniform constant R = R(~, V7, D*F, D3F) such that p < R.
We also have from the hypothesis (4.24) that %' — Hp < 0 in Qq. Therefore,
the inequality

Qlu] < n(Hy' ~ Hp) + 1

implies that Q[p] < 0, if we choose b’ large such that

N> i
max 4 v, SuUp —————- ¢ -
Qo TL(HF - HFy )

Since h' — +oo0 as C' — +o0, if C' > 0 is large enough, the above inequality
holds. m
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To obtain a lower barrier we set the function
P = il%f ¢ —hod.
As was done above, we compute

Ql@] = — Fo.vaydij + YFoolovayke + CH FY| (. pvaydid,

1 i ij
+o {—Fo|(%,w)% = V5| 8y _gqdi — ’YQFoool(%w)/is} —nHp
>nHY' () — nHp + %

where [ is a function defined in § in a similar way to the function p defined
above. Therefore, under the hypothesis H}yl > Hp we have Q[g] > 0, if

, R
h' > max { v,8up —————— 5.
0o n(Hp — Hy")
These results allow the following conclusion.

Proposition 4.4. Suppose that the anisotropic Ricci curvature of M satisfies

(4.20). If i
Y < Hp < HY' (4.26)

(or alternatively, infr HY' > supg, Hp and infq Hp > supp HY'), then there
exists a uniform constant C = C(F, D*F, D3F, Hp, Q) such that

lulo < C + 9o
if u e C*(Q) N C°Q) satisfies Qlu] =0 and u). = ¢.
Proof. As it was explaned above, the functions

p=supp+hod and @:irllfgb—hod,
r

satisfy
Qle] < Qu] and  Q[p] > Q]
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in Q4. We also have
Pz uwp and P <y,

since d = 0 on I and h(0) = 0. Therefore, it follows from the comparison
principle (see [17], Teorema 10.1 ) that

p<u<y

in . To extend these inequalities to © we follow [15]. We will prove that
© > u in Q by contradiction. Assume that there exist points for which the
continuous function 4 = u — ¢ satisfies & > 0. Hence m = 4(y) > 0 at a
maximum point y € Q of @. Choose a minimizing geodesic 7 joining y to I for
which the distance d = d(y,I) is attained. Thus, v(t) = exp, tv, 0 <t < d,
starts from a point yg € I' with unit speed v. Since v is minimizing, we
have d(y(t),T') = t and the function ¢ restricted to + is differentiable with
¢ (v(t)) = e“™1. Since the maximum of @ restricted to v occurs at t = d,
i.e., at the point y, we have

' (y(d)) — ¢'(7(d)) = & (v(d)) = 0.
This implies that
(Vuly),7'(d)) = ¢ (7(d)) = 74 > 0.
In particular Vu(y) # 0, and hence the level hypersurface
S={z€QNB,(y) : u(z) =uly)}
is regular for small radius . Along S we have
() +o(x) = a(y) + ¢(y) = aly) +¢(y).

Thus ¢(x) > ¢(y). Since ¢ is an increasing function of d( -, I"), it follows that
d(xz,T") > d(y,I") = d. Hence, the points in S are at a distance at least d from
r.

Since S is O? it satisfies the interior sphere condition: there exists a small
ball B.(z) touching S at y contained in the side for which Vu(y) and +'(d)
point. Thus, the points of B.(z) satisfy u(x) > u(y), and hence

o(r) +m > u(x) >u(y) =ply) + m, =€ B(2),
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where in the first inequality we used the definition of m. Again because ¢
is an increasing function of d, we have d(z,I") > d on B.(z), and therefore
this ball is contained in the interior of €2 far away from I'. This allows us to
extend the geodesic v through B.(z). We claim that the center z of the ball
is contained in this extension. Otherwise, the broken line consisting of v and
of the radius in B.(z) from z to y has length smaller than the minimizing
geodesic joining z to yo (for a suitable small € such a geodesic must cross
the level hypersurface S at a point = # y at distance to I' greater than d).
Thus, if there exists at least two distinct minimizing geodesics joining y to
I', then the point z is contained in the extension of both geodesics after its
intersection at y. Choosing ¢ sufficiently small, we see that this configuration
is not possible (the construction we made above applies to both geodesics).
This contradiction implies that the maximum point y belongs to €2y. However,
in this case, &« < 0, a contradiction. We conclude that © < ¢ throughout
Q) and therefore ¢ is a continuous supersolution for the Dirichlet problem
(4.19). In a similar way, we may prove that ¢ is a continuous subsolution for
(4.19). Tt is clear that the existence of these barries implies the C° a priori
estimate estated in the proposition. O

Remark 4.5. We point out that hypothesis (4.27) in Proposition 4.4 is also
used in [6], where the Fuclidean case is treated (see [6], Theorem 5).

4.3 Boundary Gradient Estimates

In this section we will establish the a priori gradient estimates along the
boundary for the Dirichlet problem (4.19).

We proceed in a similiar way to the last section. We will use barriers of
the form ¢ = hod+ ¢, where d = dist( -, I"), h is a real function to be chosen
later and we denote (also) by ¢ the extension of the boundary function ¢ to
a tubular neighborhood ., by setting ¢(s%,d) = ¢(s").

81



4.3 Boundary Gradient Estimates

Using the same notation used in Proposition 4.4 we compute
Fy—wva—vo) (' did; + W'dij + di5) — Fgly—wva-ve) Vi
— Y Foo|(y—nva-ve)(Vo,00, W'V d + V) — nHp

i B . 1 Z
:Fj|(%7_%_vcl)di;j + WF]|(1/ _% d d + h/F]|(%7_%_Vd)¢i;j

Q] =

>

(%, -V va)Vi LR, 7
Y _
- —F00|(%7,%7W)(V3080, Vo) —nHp.

As we have done in the last section, we apply the mean-value theorem to the

real function
0<6<1,

1(0) = FY |(7_7V¢ Vd)di§j7

h/’ h/
to obtain
iJ ] ij
FC avgovadis =F7l0-vadi; + h/F |(7,—Wv¢> vay B
k
GINe _
T ’(h—7,—h—7v¢—w>di;j'
In a similar way we get
F —F F ua
00/ (2 (%~ Vé-Vd) = 00/ (0,-vay + 000| o G ) Ty
¢k
- WFOOH(%—%W—W)‘

For sake of convennience we will denote

el ——qu vd), 0<0<l.

Vo= (5

We may rewrite the expression obtained above for Q]
g h' .
OQle] =F"|0,-vaydi;; — vFool0,-vayke — nHp + WFU|V1didj

1 . . _ i
+ ﬁ {FZJ|V1¢i;j - F(§|V1/7i - ’72F00|V1 <V30607 V¢> + 7F0J|V§di;j

o ¢kFlij‘ngi;j - 72F000’V§f§5 + ’Y¢kF00k’V§I€E} .
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4.3 Boundary Gradient Estimates

Let S be the set defined in (4.25). Note that, if h”? > 42 + supg, |[V|?, the
points of the form (x,Vp) belong to S. Consider the function u : & — R
defined by

1z, €) :=F9|ehi; — Folevi — v Foole(V oy 0o, Vo) + VEY |ediy* FY |eds 5
— 2 Foooleke + 70" Fook |¢ ke

There exists a uniform constant R = R(v, Vv, D*F, pSF) such that pu < R.
On the other hand, it follows from the definition of %' that

— h// y ILL
Qlig] = nH'(d) — nHp + WFJ(‘/?[)didj + e
We define
h(d) = pln(l + Kd)

for certain positive constants p and K to be chosen later. Then

pK Lone
B o= d W= —=(h)2
1+ kd ™ )

We choose 1 in such a way that y — 0 as K — oo. It suffices to take

e
P+ K)

for some constant C' > 0 to be chosen later. In this case, as K — oo we
have

 CK
~In(1 + K)

It also holds that hW/ ~1as K — oo.
It follows from the expression of h that

1'(0)

— +00.

5 1 g
QWPW%W@—%MFjﬁTW%M@+%
| )
Sn(]'-le1 — Hp) + R

where we have also used the ellipticity condition on F' and Lemma 4.2 to get
the last inequality. Hence, if

H%yl < HF,

83



4.3 Boundary Gradient Estimates

and

Qo Qo n(HF - H;yl)

we obtain Q[p] < 0 in a small tubular neighborhood . of T'. For K and C
large enough we also have that ¢ > u on both components of 0€2.. Similarly,
under the hypothesis Hp < H®' we obtain Q[@] > 0, where ¢ = —hod + ¢
and ¢ < wu on JS).. Thus we have the following result.

2
h' > max {(72 +sup |[Vo[?)?, sup R;} :

Proposition 4.6. Suppose that the anisotropic Ricci curvature of M satisfies
(4.20). Assume that )
HY' < Hp < HY' (4.27)

(or alternatively, infr HY' > supq, Hp and infq Hp > supp HY'), then there
exists a uniform constant C = C(F, D*F, D3F, Hp, ,$,n) such that

sup |Vl < C,
N

if u € C*() N C°Q) satisfies Qu] = 0 and u,. = ¢.

Proof. As we show above, we may define barriers ¢ and ¢ such that the
function u satisfies

Qlp] < Qu] in Q. Qlg] > Qu] in Q.
u<p on OS2, u>Q on 0f2..

Hence we conclude from the comparison principle that
o <u<g,
in €2.. Since ¢ =u = @ on I', the above inequalities imply

p _Ou _ 09
ov — Ov = ov’

where v is the unit normal inward vector along I'. These inequalities and the
equality u = ¢ on I' produce the desired estimate. O
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4.4 Interior Gradient Estimates

4.4 Interior Gradient Estimates

The last step in providing a priori estimates for (4.19) is the interior
gradient estimate of prospective solutions.

Using a suitable test function and the Ricci identities allows us to elimi-
nate third derivatives and to obtain global estimates for |Vu| in terms of the
height and the boundary C! estimates.

We assume that u € C?(Q) and satisfies Q[u] = 0 in Q, with u|p = ¢.
Consider the test function

I »
X = —e4,
u

where v = |Vu| = (u*u;,)'/? and A > 0 is a constant to be chosen later (if
u = 0 at some point, we replace u by u + Cy, where Cy > 0 is a uniform
constant that satisfies Cy > w in Q). Let zy € Q) be a point where the
function x achieves its maximum. If zy € I' we have a uniform bound for
|Vul in € as desired. Hence, we may assume that xo € 2 is an interior point.
We may also assume that v > 1 at xy (otherwise we are done). We fix local
coordinates around x, such that Vu = u'0;. Since

k
U; U U v/A
i — | — + : € y
X ( u? Avu)

it follows from x;(xo) = 0 that

Av
Uy = —— =! Kv and Uy = 0 (Z > 1) (428)
u
We may rotate the coordinates z2, - - - , 2™ in such a way that (u;;) is diagonal

at zo. We note that the matrix {x;;} is negative-definite. We compute

k ) k k1
oAy Wizj | Wilksj U Ui WU Uy U n 2U¢Uj
Xisj = u? Auwv Auv Auwv’ u3
(4.29)
ukuluk;iul;j ukuk;iuj ukuk;jui
A2u0? Au?v Auv

To proceed we differentiate the equation Q[u] = 0 in the direction of 0.

We have l
ul y 1.
_leFzJ“z‘;j + %Fojui;j + gt i = br.
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4.4 Interior Gradient Estimates

Using (4.28), we get

Kv 1 .
W2F“ isi -+ mF” i3 + WFZJui;jl = bl- (430)
Now we use the Ricci equation

k
Uisj1 = Ui1j + Rigjiu,

and the inequality F¥y;.; < 0 to obtain the expression

1 .. 1 .. - -
— FVu. < — —F9R jquf + —FVu,., — — F9yfu,,.;
W Uil S W kU + W U i U U (4.31)
K*v _,, Kv*_,, '
—F - —F".
W ulW
Replacing (5.13) into (4.30), we deduce
Kv? K% 1
Fll o Fll o Fn K Fn i
uw W e H (4.32)
— F9Rpj + —F"u}, — Kb+ b <0.
+W 131+UW U + 01 <
Applying the Cauchy inequality with epsilon we get
1 ii i Lo i ii
Wh/lFO — KvFy'[Jug| < WF “2 +Fuw/g(%Fo — KvFy')?,
SO
1 i i 1 i ii
_W(%FO — Kol )uy; > — leFo — KvFy||ui|
L o v i i) 2
e T ”—F,-,-—Wg,(%Fo — KvFy')".
Replacing this inequality into (4.32), we obtain
Kv? K?v v . g
0> Fll o Fll _ _ Fé _ KyF#® 2
v
+ WF”Riljl — Kb+ by.

Now we will analyze the term

by = byt + buul = by + by Kv.
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4.4 Interior Gradient Estimates

By the definition of b = b(z, Vu) we have

1 . 1 .
b :WF(;’}Q + WFQQ’}/ZUZ' + nHF,
AL
_ i Vi1 Vv Vv
by Fi + Fi+ =1 F —— [ H
T 2 Lo + 513 Hpp2 o0 + oy Ho0 +n(Hp)1,
1
Vi i y'v g
bt = WQF e ooz Foor + WFOO

Hence we conclude that there exist uniform constants
A; = Ai(n, Hp, v, Vv, VHp, F,D*F, D*F, K)

that satisfy
|b| S Al and |b1| S Ag.

Therefore we obtain from (4.33) an inequality of the form
Civ—Cy <0,
where Cy = £F™ > ¢ > 0 is a positive constant and
Cy = Cy(n, Hp,v,Vy,VHp, F, D*F, D*F, K, Ricyy).
This yelds the desired estimate and we have the following result.

Proposition 4.7. Assume that u € C3(Q) N CY(Q) satisfies Qu] = 0 in Q
and ulr = ¢. If u is bounded in Q and |Vu| is bounded in T, then |Vu| is
bounded in 2 by a uniform constant that depends only on n, |u|y, supp |Vul,
Hp,v,Vv,VHp, F,D*F,D3F, K and Ricy;.

The usual elliptic regularity results guarantee that the above estimate is
also true for a C** function (see [17]).

Remark 4.8. To obtain a priori estimates presented above we have to deal
with the third derivatives of the function F. We will present the expression
of this derivative for some particular cases. We believe this will help to
understand the computations and arguments presented above.

When F(x,n) = |n| we have

i 5 L Gusmo + Gosms + Gosa) (4.34)
- NaMgte — GasTe gdasT] gosMNa ) - .
ndnPon® — "’ T o

87



4.5 The Existence of Solutions

In particular, if n is the normal to the graph of u we get

72— Vu* —1
10+ [Vaf
B 3ulu! Oij

FOOOZ3

o = Jpa — g
372U, 3
F 7 - I——C 7
00 e ’YWU
Another example is obtained setting
= [l (Y. o) raa),
iyl

where f is a suitable positive real smooth function. In this case we have

PF
ononPo?

1 ©
=1 |5(3f —15f" — O3 f"\namsne + 7 |2f A0 0pag

|17|5 WZ UaUTIO' | |5(4®f _26 f” ZT]O'UUT]O'

+ W<®2f”l + 3@f//> Z oo Ty

1 / 17 _
+ W(Qf - f - 62’77|2f )Zgaanm

where © = (Y, T |> and Y = a%0,.

4.5 The Existence of Solutions

The existence of solutions is obtained by way of the well-known continuity
method to the family of Dirichlet problems

Qo’[u] = 07 u‘F = 0¢7

where o € [0,1] and
Q,[u] = a’u; — b,,

where

1 1
by = WFS% 2WF00’Y u; +noHp.

88



4.5 The Existence of Solutions

The subset I of [0, 1] consisting of values of ¢ for which the above Dirichlet
problems has a C*® solution is nonempty, since 0 € I. The openness of I is a
direct consequence of a standard application of the implicit function theorem,
since the derivative of Q is a linear homeomorphism. The closedness of I
follows from the a priori estimates we had proved and from the linear elliptic
PDE theory. Thus, the continuity method assures that 1 € I. This establishs
the proof of Theorem 4.1.
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Chapter 5

Hyperspheres with Prescribed
Anisotropic Curvature

In this chapter we study the existence of hyperspheres in the Euclidean
space with prescribed anisotropic mean curvature, extending a result of
Treibergs and Wei [41].

5.1 Preliminaries

As we observed in the last chapter, the notion of anisotropic mean curva-
ture arises naturally in the study of variational problems as a generalization
of the usual mean curvature. In the Euclidean space this curvature has a
natural geometric interpretation also. Our line of explanation will follow
that one presented in [46], [35] and [25].

We consider parametric functional of the form

where the integrand F' € C*(R""1\ {0}) is a positive Lagrangian satisfying
the homogeneity condition

F(tz) =tF(z), forallzeS" t>0.

Here, X : M —— R"*! is an immersed closed and oriented hypersurface with
Gauss mapping N and induced volume element dM. Moreover, F' is always
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5.1 Preliminaries

assumed to be elliptic, i.e.,

O*F
2 _ .t il
D7F(z) = (821823'(2))1',3‘—1 o : (5.1)

=1,...

is a positive definite endomorphism for all z € S™, or equivalently

A=\F) = inf (D*F(2) -v,v) > 0.

Zz€S™, vezt, |v]=1

Clearly, F generalizes the area functional

A(X) = /M dM,

which is obtained when F(z) = |z| is the area integrand. Geometrically,
the ellipticity condition (5.1) implies that F'is the support function of some
convex body

Ny e R™ : (y,2) < F(2)),

zeSn

the boundary Wr of which is the convex hypersurfaces parametrized by
O :S"— Wp, O(z) = DF(z).

In the terminology of Taylor [40], Wp = ®(S") is called the Wulff shape.
Let us now consider an arbitrary variation X, of X = X, with variation

vector field Y = <L(X.)|.—o. Decomposing Y = N + tangential terms, it is

well known (see [35], [46] and [14]) that the first variation of F is given by

d
SF(X,Y) = S F(X)m = - /M HpodM,

where Hp is the anisotropic mean curvature of X which is defined as follows.
Let
Nep - Mv+— Wp, Np=®oN,

denotes the generalized Gauss mapping into the Wulff shape. The operator
Sp = —dX ! odNy is named the anisotropic Weingarten operator. We note
that

Sp=ApoA,
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5.1 Preliminaries

where A = —dX ' odN is the classical Weingarten operator of X and Ap is
the symmetric positive definite (1, 1)-tensor given by

Ap =dX 'odPodX = —dX 'o D*F(N)odX.
Finally, the anisotropic mean curvature of X is defined by
HF = tI‘(SF>

For instance, the anisotropic mean curvature of the sphere S"(r) of radius r
is

Hp =AF(-z), z¢€S8"(r). (5.2)

In fact, the unit normal vector of S"(r) at a point z is N = —+z and its
Weingarten operator is A = %I . Hence,

Hp(z) = %tr(D2F< - %z)) = AF(-2z),
since D?F is homogeneous of degree —1 and D*F|x(N,N) = 0.

Although the anisotropic Weingarten operator is not necessarily symmet-
ric, it has n real eigenvalues (see e.g. [25]). In fact, to see this we define the
abstract metric

gr(v,w) = (A'v,w), v,w € TM.

Note that the operator Ap is positive definite, hence it is invertible and its
inverse is also positive. We have

gr(Spv,w) = (AZ (ApA)v, w) = (Av,w) = (v, Aw) = gr(v, Spw)

for all v,w € TM, which gives that S is symmetric with respect to this
inner product. Thus there exists an orthonormal basis (with respect to the
metric gr) that diagonalize Sp. The eigenvalues Aq, ..., A, of Sg are called
the anisotropic principal curvatures of X. Obviously, Hr is the sum of these
curvatures. We point out that these definitions coincide with their classical
counterparts in case F'(z) = |z| is the area-integrand.

Here we are interested on the existence of closed hypersurfaces with
prescribed anisotropic mean curvature. Treibergs and Wei have studied
this problem for the classical mean curvature in [41]. More precisely, they
considered the following problem raised by Yau: is there an embedding
Y : S" — R of the n-dimensional sphere into Euclidean (n + 1)-space,
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5.1 Preliminaries

whose mean curvature is a preassigned sufficiently smooth function H defined
on R"™1? A theorem of Bakelman and Kantor in [4] together with the results
obtained in [41] asserts the existence of such hypersurfaces assuming only the
natural condition that H decay faster than the mean curvature of concentric
spheres. Specifically, they proved that, if H is a C! positive function defined
on the closure of the annular region U = {z € R"™ : r; < |z| < ry}, where
0 <r; <1< ry, and satisfies

(%pH(pz) <0, forall pzeU (5.3)

and

-1
H(z) > |z|_1, for |z| = r, (5.4)
H(z) <|z|7", for |z| =1,
then, for some 0 < « < 1, there exists an embedded hypersphere YV €
C?*(S™) with mean curvature H which is also a graph over the unit sphere
and also satisfies 1 < Y| < ro.
We obtain an extension of this result for the anisotropic mean curvature
under similar hypothesis. Our result is:

Theorem 5.1. Suppose the function H € C*(U) satisfies condition (5.3) in
the annular region U defined above and
H(z) > AF(—=z), for |z] <,

H(z) < AF(=2), for 2| > ra. (5.5)

Then there exists a function u € C*(S") whose radial graph is contained in
U and has prescribed anisotropic curvature Hp = H. Moreover, if there is a
second function v € C*(S") that also satisfies the above conditions, then

v = (1+t0)u

for somety > —1, and all intermediate homotheties v, = (14-t)u has anisotro-
pic mean curvature H.

To prove this theorem we use again the PDE elliptic theory and the
continuity method.
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5.2 The Anisotropic Mean Curvature

5.2 The Anisotropic Mean Curvature

In this section we will derive a suitable expression for the anisotropic mean
curvature of a radial graph. First we calculate the second fundamental form
of the graph using moving frames. In this chapter we adopt the convention

that lower case indices i, j, k, . .. are summed from 1 to n and a, b, c, ... from
1ton+1.
Let {e1, -+ ,e,y1} be alocal orthonormal frame field defined in R™*! such

that e, is the outward radial direction. Let {6} denote the dual coframe
field. The connection forms are defined as the skew symmetric matrix {6}
such that

do* = 6 A 6.

The covariant differentiation on R"*! is given by
de, = QZeb.

For a hypersphere S"(r) of constant radius r, the position vector is X = re, .
Hence {¢;} provide an orthonormal frame on X and we have dX = 6’¢;, which
implies that

o' =rb. .. (5.6)
Let u be a smooth function defined on the sphere S”. We denote by V the
connection of S”. The graph Y is conveniently represented by Y = e“e, 1. If
u is extended to R"™! \ {0} as a constant along radii, the gradient and the
Hessian of u, given by

du = u;0°, U0’ = du, — ubQZ,

are homogeneous of degrees —1 and —2 respectively, since u is homogeneous
of degree 0. Using (5.6) we get

Uns1i = Uns1p0°(€;) = ity (e) — ubﬁzﬂ(ei) = —e "u;t’(e;) = —e ;.

Hence, restricting to Y we get the following Hessian formula
uijﬁj = du, — uﬂf + efuuﬂ"*l.

The vector fields E; = e; + e"u;e, 1 form a basis to the tangent space at Y.
In terms of this basis, the induced metric of Y has components

gij = <Eu E]> = (52']' + 62”uiuj.
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5.2 The Anisotropic Mean Curvature

Hence its inverse matrix is given by ¢¥ = §;; — f?e*™u;u;, where
f= 1+ Tup)

The unit normal vector to Y is
N = f(e"uie; — epya).

Therefore,

—dN =df(ens1 — e"wie;) + f(deniq — e*dunze; — e*duze; — e uyde;)
=d(log f)N + f(@thei — e“uﬂjuiei — e"e;(ui 07 + uﬂf — e‘“uié’"“))
— fe'u;fle,
=d(log f)N + f(e “0;; — e"wju; — e“uij)Hje,- + fu0"e; + fuifle, .
Hence the components of the second fundamental form b of Y are

bij = —<dN(El), EJ> = f€7u<(5ij + eQuuiuj — ezuuij).

By the homogeneity of the derivatives of u, we can equate their values on Y
and S". Pulling back, we conclude that on S”

bij = (1 + |VU|2)_1/2€_u((5ij + U;uy — UU) (57)

On the other hand, the components of the bilinear form A g metrically equiva-
lent to the operator Ap are
(Ar)iy =Ar(Ei, E;) = (Ap(E;), Ej)
=FuE}E}
=€2an+1n+1Uin + " F i + e Frpjuy + Fyj,
where F};, denote the components of the Hessian of F' in terms of the frame

field {e,}. Note that the above derivatives of F' are calculated in N. In terms
of matrices,

Sp=AprA=(g7"Ar)g b= (¢ Arg 0.

On the other hand, decomposing the Hessian matrix of F' as

FF
D2F — in+1 ) ’
( F’in+1 Fn+1n+1
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5.2 The Anisotropic Mean Curvature

we get from the Euler relation F,(2)2° = 0 that
(9F9)ij =girFrgs
:((57,k + eQuuiuk)(Fkl)Qﬂ + 62”ujul)
:Fij + ezuujukFl-k + ezuuiukaj + €4uUinukulel
=Fjj + e"uiFy1j + e"uiFryp + €2an+1n+1Uin

=(Ar)ij-

Then, in terms of matrices,

Sr = Fb.
We denote SF(Ez) = Zj SijEj- So
sij = Fir(N)by, (5.8)
k
which implies that
Hp =) Fy(N)by. (5.9)
b5J

Hence the anisotropic mean curvature of the graph of u is given by

Thus, the radial graph of a function u has prescribed anisotropic mean cur-
vature H if and only if u is a solution of the quasilinear elliptic equation

Qlx, u,u;,uj] — H =0,
where
Q[I‘, U, Uy, uij] = €7uW71Fij(N)((5ij + uiuj — UZ])

The second fundamental form of a Euclidean graph (z,v(z)) € R"" of a
smooth function v defined in a domain €2 C R", has components

Uij
1+ |Dv|?
Hence, as it was done above, we conclude that the anisotropic mean curvature
of the graph of v is

where W = /1 + |Dv|%.
We finalize this section with a maximum principle for graphs with pres-
cribed anisotropic mean curvature.

bij:_

WHF = _Ej (N)Uij,
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5.3 The Gradient Estimates

Proposition 5.2. Suppose the radial graph Y has prescribed anisotropic
mean curvature H and the function H € C*(R™™\ {0}) satisfies the condi-
tions (5.3) and (5.5). Then ry < |Y| < r.

Proof. Let u be the function whose radial graph is X. By contradiction as-
sume that R = sup e* = €"(xy) > rq. Let S be the sphere of radius R centered
at the origin. Observe that ¥ and S are tangent at the point Y (z) = e“(#0) .
Furthermore, with respect to the inwards normal vector common to both hy-
persurfaces at this point, X lies above §. Then the principal curvatures x;
of ¥ at this point are greater than or equal to %. Since the unit normal of X
at Y (xg) is
1 1

Vu—Y)=——
«/1—|—62“]Vu|2( ! ) R

Y,

we conclude that

H=Hp = tr(SF> = Z(AFA(Gi),€i>

2

— Z ki{Ar(e;), ;) > }% Z(AF<61')7 ei)

2

= AR~ Y (m0)) = AF( Y (),

where {e;} is an orthonormal basis of (T,,%, (-, -)) formed by eigenvectors of
A. But the above inequality contradicts (5.5). Hence u < ry. Proceeding in
a similar way with the minimum of v we conclude that u > ;. O

5.3 The Gradient Estimates

In this section, we prove a priori global estimate for gradient of prospective
solutions of equation (5.10). To prove this estimate we follow the technique
presented in [9].

Let u € C3(S™) be a solution of the anisotropic mean curvature equation
Hp = H. To estimate |Vu| we will obtain a uniform positive constant a =
a(n, H, F,sup |u|) that satisfies

(Y,N)?>a>0, (5.11)
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5.3 The Gradient Estimates

where N denotes the unit normal vector along ¥ = graph|, and Y (z) =
e®) g, is the position vector. This inequality implies the estimate of the
gradient of u. In fact, since

1
NY(r)) = ———=(Vu—e¢e“x), x€8",
Y (@) el 1+|Vu]2( )
we have )
<NY)2:L
’ 1+ |Vul?’

which implies
2u

(NYV?>a & |Vuff<S -1
a

The estimate (5.11) will be obtained by estimating the maximum of the
function ¢ defined on S™ by

1 1
p(r) = WGXP <W) = gexp(f),

where A is a positive constant to be chosen later. Clearly, an upper bound
for ¢ implies the estimate (5.11). We may assume (unless a rotation in the
R™"1) that ¢ achieves its maximum at the north pole ¢ = (0,---,0,1) € S™.
In a small neighborhood of Y(g) in ¥ we may then use a local Cartesian
representation for X, i.e., there exists a function v € C3(U), such that ¥ =
(z,v(z)) € R*™ 2 € U, where U C R" x {0} = R* C R""! contains the
origin and (0,v(0)) = Y(g). In terms of v, the unit normal vector and the
second fundamental form of ¥ are given by

Dv 1 Vji
Y by = —-
(VV7 W>’ J W’

where W2 = 1+ |Dv|?%. Near ¢ we may write ¢ as

1 1+ |Dol?
p(z) = EEEwER (A(zkvL —‘21)2) = gexp(f), zeU.

In particular,

1 1+ |Dv]?
0] = Fexp (A— -
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5.3 The Gradient Estimates

Hence, the maximum value of ¢, which is ¢(0), is controlled by |Dwv(0)].

Therefore, it is sufficient to obtain a uniform constant C' = C(n, H,
that satisfies |Dv(0)| < C.

We may assume that | Dv(0)| > 1, otherwise we are done. After
of the coordinates of R® C R™*!  if necessary, we have

Dv(0) = (v1,0,...,0) € R™

Since z = 0 is a maximum point of ¢, we have Dp(0) = 0 and als
is a negative definite matrix.
We compute
Dy = e!(Dg +gDf),

so Dp(0) = 0 implies

F,sup |ul)

a rotation

o (i5(0))

Dg(0) = —g(0)Df(0) = ¢(0)=—gfi(0), i=1,...,n.
It follows that the expression
©i;(0) = e/ (gij + gif; + g fi + afif; + £;)(0)
takes the form
i3 (0) = (935 + 9fij — 9:f3)e? (0), (5.12)
Now we compute the derivatives of the functions
2
g(z) = ]z|21—|— " and  f(z) = %, zeU.
We have
24+ vy
9i(2) = WTQ)y
and
k k 2
fis) =2 {(Zkzk“_’“w L2 72’;,&*_';2’ )} ,
£i(2) _2 vFog; 4+ vk 8 vF 2o, 2 v+ o (14 |Vol?)
A (ZFuop —v)? A (zFv, —v)2 A (zFvy, — v)3
N Ezkzlvkivlj(l + |Vv|?)
A (zFvg, — v)4
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5.3 The Gradient Estimates

In particular, at the origin we have

2 8 2
g, = _ﬁvi’ gij = ﬁvivj — F((S” + Ui’Uj + 'UUZ‘]‘) (513)
and
2 2 2
fi = e 21}’“%, fij = (vkvkj +v vku) ﬁw%zj. (5.14)

As we showed above, the anisotropic mean curvature of a Euclidean graph is
given by
WHF = —FZ](N)UZ'J',

. . P 2 .
where, for sake of convenience, we use the notation I = %, with
(2%,...,2") being the Cartesian coordinates of R® C R"*1. We derive the

equation Hp = H with respect to z* to obtain

U v .. ..
Wff Fy,; — F9NP vy — Fv = Hy + Hypqop. (5.15)
Since l l l
1 Uy V0P nt1 . VUi
Ne=w ~ o N ==y

for 1 <[ <n, we have

vlvlk

W3
VPV i 1 1
+ 373 (WFzJ - WFHJ-&ﬂ) vig = i

Applying the Euler relation

Hy, + Hyvp = Fiu;; —

FI(X)X*=-FI(X), a=1,....n+1, (5.16)
we get
% 1 % %
W}?lj o WFn{H = —F".

Replacing this into the above equation,

1

7, 1 77
WQFJUkUw WFJUZ-]-;C = Hyp + H, 1.
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5.3 The Gradient Estimates

As g; = —gf; at the origin, it follows from (5.13) and (5.14) that v*vy; = Avv;.
In particular,
V11 = Av  and V1 = 0, (l > 1)

Thus, contracting equation (5.15) with v*, we obtain (at the origin)

—iFlijUHUij — %F”wﬂ = H1’01 + HnJ’,lU%. (517)

We use the Euler relation (5.16) again to get

U1

y 1 . y
R =~ F o+ FY.

W n+1

Hence, equation (5.17) becomes

'UllFij,UiA V11 Fii v

W J W n+1%5 %74
Using again that WHp = —F%v;; = WH,

Fijl)ijl = Hl’Ul + Hn+1’l}%. (518)

V11

~ W

Y u

n+1Vij — WFijUZ'jl = HUH + Hl’Ul + Hn_HUf. (519)

Now we will eliminate from equation (5.19) the first and the second deri-

vatives of v. To proceed, we note that F7¢;; < 0, since the matrix (F7) is
positive definite and (cpl-j) is negative. Thus, it follows from (5.12) that

Fgi;+gFY fij — gF f; f; < 0.

Using (5.13) and (5.14) the above inequality becomes

Y Ukvlvkivlj

8 i 2 i

0 ZEFJUZ'UJ‘ — EFJ((SU + Uﬂ)j + UUZ']') — A21j6
2 ik k 2W? ij

+ MF (Ui Vi +v Ukij) -+ FF Vij-

Dividing this inequality by ”2—4 we get
—v Fjvkij Z4AFJ’UZ‘U]' — AFJ(5Z] + ViU; + ’U’Uij) — — "% Vki Ut

Av?
2

3 w2
+ FU/Ukaj -+ _FU/UZ‘]‘.
v
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5.3 The Gradient Estimates

Since WHyp = —FYv;; = WH and v; = 0, (i > 1), v1; = Av, we have

3 3 3 W3
—UlF”Uh‘j Z AFHU% + F”vakj - AFU(SZ‘]‘ + AWvH — —H. (520)
v

After rotation of the coordinates (22,...,2") we may assume that (v;;(0)) is
diagonal. Hence,

Y1 g A L A w?
—WF]UMJ' Z WFH’U% + WF 'U,L-Z,L- - WFjéij + AvH — TH (521)

Since vy;; = v;;1, we may apply inequality (5.21) to obtain from (5.19) that

v y A 1 .
HUH + le + Hn_;_lU% Z - W;;F;LZJAUM + WFHU% + WF”U%
y - (5.22)

Note that we eliminate the third derivatives of v on the last equation. To
do the same with the second derivatives we first note that £ > 0, for any
1=1,---n. In fact,

F" = Hess(F),, (e;, ;) = Hess(F), (e ,

e;) > Nel | >0,

since the tangent component e’ of the vector e; do not vanish whereas N is
not multiple of e;. Thus we may apply the Cauchy inequality with epsilon,

1
ab < ea? + —62,
€

with a = |v;], b= |F¥ | and € = % > 0, for each 1 <7 <n fixed. Then

i i (F# 1)2 i —(F’? 1)2
on|F2 | < WFW2 + 03 W} < WFW2 + A%? W+A .

Adding on i we get

3 . A’B
1)11|F71Z_,’_11)ii| S WF”?}Z-QZ- + W s
where Fii 2
B = v(0)*sup Fnr)” > 0.
s A

102



5.3 The Gradient Estimates

Hence,

V11 i V11 37 1 7,2 A2B 1
WFn-H i = _W |F +1Uzz| > _WF Vi — w3 = W

Fzz 2 A2 B
Replacing the last inequality into (5.22) we obtain

A A
Huvyy + Hyvy + Hyqvf > — A2B+ —F'M] — —F96;
W W
) (5.23)

+ AvH — KH.
v

As we have vy; = Av e W2 =1+ v (at the origin), the above equation may
be rewritten as

H H A A
Hyvy + 02 (Hpyy + ;) + " > —A’B + —F'"? —

—F5;
w w 7

It follows from hypothesis (5.3) that

H
HnJrl + — S 0.
v
In fact,
0
0> o (pH (p(0,v(0))), _, = H(0,v(0)) + v(0) Hy,41(0, v(0)).
Hence, we conclude from (5.23) that
H A A
H — > -A’B+ —F'W - _FU§,;. 5.24
11 + = + W LW j ( )
Since v; > 1 we hawv % > ”—12, SO
Uf s UL gy 1y
Y V()
Therefore,
H —|—H> —A’B + AT AF”(S (5.25)
v+ — —\ - — i .
101 NG W j
Since

1 ..
WFZ](S” < nA,
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5.4 Proof of the Theorem

where A is the largest eigenvalue of D*F, then it follows from (5.25) that

AN H

Thus, if we choose the constant A > 0 large such that A > ‘/Ti sup |DH|, we
obtain

H/v+ A’B + nAA
U1 > 5y H .
VoA

So, denoti
oI . H(0) 4+ A2B + nAA

3—; — H(0)

we obtain |Dv(0)] < C, with C = C(n, H, F,sup |u|), which proves the
following theorem.

Theorem 5.3. Under the conditions of Theorem 5.1, if u € C3(S") is a
solution of the prescribed anisotropic mean curvature equation Hp = H, then
there exists a uniform constant C' = C(n, H, F,sup |u|) such that

|Vu| < C.

5.4 Proof of the Theorem

To prove Theorem 5.1 we use the degree theory for nonlinear elliptic
partial differential equations developed by Yan Yan Li. We refer the reader
to [29] for more details.

We consider for each ¢, 0 <t < 1, the map

Hy(2) = tH(2) + (1 — )(|2)AF(=2), z€U, (5.26)

where ¢ is a positive real function defined in R, which satisfies the following
conditions
o(t) >1 for t <,

oty <1 for t>ry (5.27)

and ¢’ < 0. Note that these conditions imply the existence of a unique point
ro € (r1,7r2) such that ¢(ryp) = 1. We point out that, with this choice of the
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5.4 Proof of the Theorem

function ¢, H; also satisfies the conditions in Theorem 5.1. In fact, it follows
from (5.5) that

Hy(z) =tH(z) + (1 — 1)o(|2) AF(—2)
>(t+ (1= 1)o(|2]))AF(=2) = AF(=2)

for |z| < ry. Similarly, we verify that H;(z) < AF(—z) for |z| > . To prove
condition (5.3) we compute

5 (0i(p2)) =5 (t9H(92) + 0(1 = D6(plzDAF (~p2))
—to (pH() + (L= O (DAF(-2)

Sta% (o (p2)) <0,

where we use that AF' is homogeneous of degree —1 and is a positive function.
Now we consider the family of equations

Y(t,u) = Hp(Y) — H(Y) =0, Y =¢"Wz, ze8", (5.28)

where Hp is the anisotropic mean curvature of the radial graph defined by
u € C*(S"). It follows from the expression obtained above to Hp that we
may write (5.28) in the form

Y(t,z,u, Vu, V*u) =0, z¢&S" (5.29)

Notice that the constant function © = Inry is a solution to the problem
corresponding to t = 0. We denote it by ug. The following result ensures the
uniqueness of uyg.

Lemma 5.4. Fixed t = 0 there exists a unique solution ug of the equation
T(t,u(x)) =0, namely ug = Inry, where ro satisfies ¢(ro) = 1.

Proof. That ug is a solution to the problem it follows from (5.2) and
T(0,u0) =Hp(Y) — 6([V)AF(—Y)
—AF(-Y) = AF(-Y) =0,

where Y(x) = e"x = rox, v € S". Let @ be a solution of Y(0,u(x)) = 0.
This means that

Hr(Y) = o([Y)AF(-Y) =0, Y(z)=e""z, 28"
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5.4 Proof of the Theorem

Now, let 2o € S" be a minimum point of u. At this point, we have Vu = (
and V24 is positive-definite. We compute explicity at Y ()

bij = B_U((SZ“ — TLU)

Therefore, if we consider a local frame {e;} around xy which is orthonormal
at xo and which diagonalizes V2@ at this point, we obtain

where £; are the principal curvature of the radial graph defined by u. Hence,
since at Y (x) the unit normal of the graph Y is

_ 1 - _
N=-——Y=—¢",
Y]

the anisotropic mean curvature of Y satisfies

HF(Y(:EO)) = Z ki(Arei, e;) < e_ﬂAF(N(:EO)) = AF( — Y(xo)).

Therefore, at x,
P([YNAF(-Y)=Hp(Y) <AF(-Y) =9¢(|]Y|)AF(-Y).

Hence, since ¢ is a decreasing function we conclude from the choice of xy as
a minimum point that
u(z) > u(zo) > uo,

for all z € S™. In a similar way, we prove that
u(x) < g
for all x € S™. Thus, we get @ = ug. This finishes the proof. n

In the two last sections we proved that a differentiable function u which
solves the equations Y(¢,u) = 0 for some 0 < ¢ < 1 satisfies the following
bounds

r<u<ry (5.30)

and
uly < C, (5.31)
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5.4 Proof of the Theorem

for some positive constant C' which depends on n,rq, 79, H and F. The stan-
dard elliptic regularity theory then provides C*% estimates. If we suppose
that H is a C** data, then the regularity of the solution may be improved
for C**. Thus, we obtain a bound

s < C (5.32)

for some constant C' > 0.

We then denote by O the open ball in C***(S") with radius C. Thus, our
reasoning above shows that any solution u of Y(¢,u) = 0 for some 0 <t <1
is contained in O. In particular, if we consider the restriction

T:0C 04’0‘(8”) — C’z’a(Sn),
then we conclude that
T(t, )(0)Nno0 =0, 0<t<1.

Thus, according to Definition 2.2 in [29] the degree deg(Y(¢, - ), O, 0) is well-
defined for all 0 <t < 1.

Since Lemma 5.4 assures that uy = In ry is the unique solution to Y(0,u) =
0 in C**(S™), we must prove that the Frechét derivative Y, (0,uq) calculated
around ug is an invertible operator from C**(S™) to C%%(S™). We compute

T(0, puo) =Hr(Y,) = o(|Y,))AF (- Y))
=AF(-Y,) = o([V,))AF(-Y,),

where Y,(z) = ez, x € S*. Using the fact that ¢(ro) = 1 and that
@' (ro) < 0 we get

TU(O,UO) c Uy = dipT(O’puo)|p1 = —gbl(To)AF( - Yi) > 0.
On the other hand, since obviously Vug = 0 and V2uy = 0, then Y, (0, ug) - ug
is just a multiple of the zeroth order term in Y, (0,ug). We conclude that
T,(0,up) is an invertible elliptic operator.
We finally calculate deg(Y(1, - ), O,0). From Proposition 2.2 in [29], it
follows that deg(Y (¢, - ), O, 0) does not depend on ¢. In particular,

deg(Y(1, -),0,0) = deg(Y(0, -),0,0).
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5.4 Proof of the Theorem

On the other hand, we had just proved that the equation Y(0,u) = 0 has
a unique solution ug and that the linearized operator T, (0, ug) is invertible.
Thus, by Proposition 2.3 in [29] we get

deg(1(0, -),0,0) = deg(T,(0,up),0,0) = +1,

and, therefore,
deg(Y (1, -),0,0) = 1.

Thus, the equation Y(1,u) = 0 has at least one solution v € O. This com-
pletes the proof of the existence in Theorem 5.1. To obtain the unique-
ness result we follow the idea presented in [41]. First we extend the pres-
cribed function H to R™*'\ {0} on such a way that (5.3) remains true. Let
Yi(x) = ez, i = 1,2, solutions of the prescribed anisotropic mean curvature
equation. It follows from Proposition 5.2 that r; < |Y;| < re. Suppose that
u! > u? at some point. Let ¢ > 1 such that the radial graph

V2=t =t

satisfies Y| > |Y!| and Y?(z0) = Y (zo) for some point 2 € S". Let Hj
and H?% be the anisotropic mean curvature of Y? and Y2, respectively. We

have 1 1
Hy(Y?) = ;H%(YQ) = ;H(YQ)-
On the other hand, since the function ¢ (p) = pH(pz) is decreasing we have

H(Y?) = TH(Y?) > H(7). (53

Hence

which implies that .
—Qla*] + H(Y?) <0.

As
~Qu!]+ HY') =0,

u' < 4?, and wuy(zg) = u*(wg), we may apply the maximum principle to
obtain (see e.g., [9]) that @? = u'. In particular, Y2 = Y! is a solution of
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5.4 Proof of the Theorem

the anisotropic mean curvature equation, hence equality (5.33) holds. Using
condition (5.3) we may conclude from (5.33) that

11
—H(=YHY =H({Y"'), 1<s<t.
S S

Thus, since Hp(sY') = %HF(Y), ecach radial graph Y = sY!, 1 < s <t is a
solution. In fact,
% 1 1 1 1 e 1 Y
Hp(Y)=-Hp(Y')=-H(Y")=-H(-sY"')=H(sY") = H(Y).
s s s s

This completes the proof of Theorem 5.1.
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