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EXISTENCE OF NONPARAMETRIC SOLUTIONS FOR
A CAPILLARY PROBLEM IN WARPED PRODUCTS

JORGE H. LIRA AND GABRIELA A. WANDERLEY

We prove that there exist solutions for a nonparametric capillary problem
in a wide class of Riemannian manifolds endowed with a Killing vector field.
In other terms, we prove the existence of Killing graphs with prescribed
mean curvature and prescribed contact angle along its boundary. These
results may be useful for modeling stationary hypersurfaces under the in-
fluence of a nonhomogeneous gravitational field defined over an arbitrary
Riemannian manifold.

1. Introduction

Let M be an (n+ 1)-dimensional Riemannian manifold endowed with a Killing
vector field Y . Suppose that the distribution orthogonal to Y is of constant rank and
integrable. Given an integral leaf P of that distribution, let �⊂ P be a bounded
domain with regular boundary 0=∂�. We suppose for simplicity that Y is complete.
In this case, let ϑ : R×�→ M be the flow generated by Y with initial values in
M . In geometric terms, the ambient manifold is a warped product M = P ×1/

√
γ R,

where γ = 1/‖Y‖2.
The Killing graph of a differentiable function u : �→ R is the hypersurface

6 ⊂ M parametrized by the map

X (x)= ϑ(u(x), x), x ∈�.

The Killing cylinder K over 0 is in turn defined by

(1) K = {ϑ(s, x) : s ∈ R, x ∈ 0}.

The height function with respect to the leaf P is measured by the arc length parameter
ς of the flow lines of Y ; that is,

ς =
1
√
γ

s.

Fixing these notations, we are able to formulate a capillary problem in this geometric
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context which models stationary graphs under a gravity force whose intensity
depends on the point in the space. More precisely, given a gravitational potential
9 ∈ C1,α(�×R) we define the functional

(2) A[u] =
∫
6

(
1+

∫ u/
√
γ

0
9(x, s(ς)) dς

)
d6.

The volume element d6 of 6 is given by

1
√
γ

√
γ +‖∇u‖2 dσ,

where dσ is the volume element in P . In what follows we denote

W =
√
γ +‖∇u‖2.

The first variation formula of this functional may be deduced as follows. Given an
arbitrary function v ∈ C∞c (�) we compute

d
dτ

∣∣∣∣
τ=0

A[u+ τv]

=

∫
�

(
1
√
γ

〈∇u,∇v〉√
γ +‖∇u‖2

+
1
√
γ
9(x, u(x)) v

)
√
σ dx

=

∫
�

(
div
(

1
√
γ

∇u
W
v

)
− div

(
1
√
γ

∇u
W

)
v+

1
√
γ
9(x, u(x)) v

)
√
σ dx

−

∫
�

(
1
√
γ

div
(
∇u
W

)
−

1
√
γ

〈
∇γ

2γ
,
∇u
W

〉
−

1
√
γ
9(x, u(x))

)
v
√
σ dx,

where
√
σ dx is the volume element dσ expressed in terms of local coordinates in

P . The differential operators div and ∇ are respectively the divergence and gradient
in P with respect to the metric induced from M .

We conclude that stationary functions satisfy the capillary-type equation

(3) div
(
∇u
W

)
−

〈
∇γ

2γ
,
∇u
W

〉
=9.

Notice that a Neumann boundary condition arises naturally from this variational
setting: given a C2,α function 8 : K → (−1, 1), we impose the prescribed angle
condition

(4) 〈N , ν〉 =8

along ∂6, where

(5) N =
1
W
(γY −ϑ∗∇u)
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is the unit normal vector field along 6 satisfying 〈N , Y 〉 > 0 and ν is the unit
normal vector field along K pointing into the Killing cylinder over �.

Equation (3) is the prescribed mean curvature equation for Killing graphs. A
general existence result for solutions of the Dirichlet problem for this equation
may be found in [Dajczer et al. 2008] and [Dajczer and de Lira 2012]. There the
authors used local perturbations of the Killing cylinders as barriers for obtaining
height and gradient estimates. However this kind of barrier is not suitable to obtain
a priori estimates for solutions of Neumann problems. Indeed, these barriers depend
on Dirichlet boundary data and do not involve any a priori information about the
prescribed contact angle. It turns out that for Dirichlet boundary conditions the
slope of the graph along the boundary is controlled in terms of the height of the
graph.

For that reason we now consider local perturbations of the graph itself, adapted
from the original approach by N. Korevaar [1988] and its extension by M. Calle
and L. Shahriyari [2011].

Following these two sources we suppose that the data 9 and 8 satisfy

(i) |9| + ‖∇9‖ ≤ C9 in �×R,

(ii) 〈∇9, Y 〉 ≥ β > 0 in �×R,

(iii) 〈∇8, Y 〉 ≤ 0,

(iv) (1−82)≥ β ′,

(v) |8| + ‖∇8‖+‖∇28‖ ≤ C8 in K ,

for some positive constants C9,C8, β and β ′, where ∇ denotes the Riemannian
connection in M . Assumption (ii) is classically referred to as the positive gravity
condition. Even in the Euclidean space, it seems to be an essential assumption in
order to obtain a priori height estimates. A very geometric discussion about this
issue may be found in [Concus and Finn 1974]. Condition (iii) is the same as in
[Calle and Shahriyari 2011] and [Korevaar 1988] since in those references N is
chosen in such a way that 〈N , Y 〉> 0.

The main result in this paper is the following:

Theorem 1. Let� be a bounded C3,α domain in P. Suppose that9 ∈C1,α(�×R)

and 8 ∈ C2,α(K ) with |8| ≤ 1 satisfy conditions (i)–(v) above. Then there exists a
unique solution u ∈ C3,α(�) of the capillary problem (3)–(4).

We observe that 9 = nH , where H is the mean curvature of 6 calculated with
respect to N . Therefore Theorem 1 establishes the existence of Killing graphs
with prescribed mean curvature 9 and prescribed contact angle with K along the
boundary. Since the Riemannian product P ×R corresponds to the particular case
where γ = 1, our result extends the main existence theorem in [Calle and Shahriyari
2011]. Space forms constitute other important examples of the kind of warped
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products we are considering. In particular, we encompass the case of Killing graphs
over totally geodesic hypersurfaces in the hyperbolic space Hn+1.

In Section 2, we prove a priori height estimates for solutions of (3)–(4) based on
the method presented in [Uraltseva 1973]. These height estimates are one of the
main steps for using the well-known continuity method in order to prove Theorem 1.
At this respect, we refer the reader to the classical references [Concus and Finn
1974], [Gerhardt 1976] and [Simon and Spruck 1976].

Section 3 contains the proof of interior and boundary gradient estimates. There
we follow closely a method due to Korevaar [1988] for graphs in the Euclidean
spaces and extended by Calle and Shahriyari [2011] for Riemannian products.
Finally the classical continuity method is applied to (3)–(4) in Section 4 for proving
the existence result.

2. Height estimates

In this section, we use a technique developed by N. Uraltseva [1973] (see also
[Ladyzhenskaya and Uraltseva 1964] and [Gilbarg and Trudinger 2001] for classical
references on the subject) in order to obtain a height estimate for solutions of the
capillary problem (3)–(4). This estimate requires the positive gravity assumption
(ii) stated in the introduction.

Proposition 2. Set

(6) β = inf
�×R
〈∇9, Y 〉 and µ= sup

�

9(x, 0).

Suppose that β > 0. Then any solution u of (3)–(4) satisfies

(7) |u(x)| ≤
sup� ‖Y‖
inf� ‖Y‖

µ

β

for all x ∈�.

Proof. Fix an arbitrary real number k with

(8) k >
sup� ‖Y‖
inf� ‖Y‖

µ

β
.

Suppose that the superlevel set

�k = {x ∈� : u(x) > k}

has nonzero Lebesgue measure. Define uk :�→ R as

uk(x)=max{u(x)− k, 0}.
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From the variational formulation we have

0=
∫
�k

(
1
√
γ

〈∇u,∇uk〉√
γ +‖∇u‖2

+
1
√
γ
9(x, u(x)) uk

)
√
σ dx

=

∫
�k

(
1
√
γ

‖∇u‖2

W
+

1
√
γ
9(x, u(x))(u− k)

)
√
σ dx

=

∫
�k

(
1
√
γ

W 2
− γ

W
+

1
√
γ
9(x, u(x))(u− k)

)
√
σ dx

=

∫
�k

(
W
√
γ
−

√
γ

W
+

1
√
γ
9(x, u(x))(u− k)

)
√
σ dx .

However

9(x, u(x))=9(x, 0)+
∫ u(x)

0

∂9

∂s
ds ≥−µ+βu(x).

Since
√
γ /W ≤ 1 we conclude that

|�k | − |�k | −µ

∫
�k

1
√
γ
(u− k)+β

∫
�k

1
√
γ

u(u− k)≤ 0,

where |�k | is the Lebesgue measure of �k . Hence we have

β

∫
�k

1
√
γ

u(u− k)≤ µ
∫
�k

1
√
γ
(u− k).

It follows that

βk inf
�
‖Y‖

∫
�k

(u− k)≤ µ sup
�

‖Y‖
∫
�k

(u− k).

Since |�k | 6= 0 we have

k ≤
sup� ‖Y‖
inf� ‖Y‖

µ

β
,

which contradicts the choice of k. We conclude that

|�k | = 0 for all k ≥
sup� ‖Y‖
inf� ‖Y‖

µ

β
.

This implies that

u(x)≤
sup� ‖Y‖
inf� ‖Y‖

µ

β

for all x ∈�. A lower estimate may be deduced in a similar way. �

Remark 3. The construction of geometric barriers similar to those in [Concus and
Finn 1974] is also possible at least in the case where P is endowed with a rotationally
invariant metric and � is contained in a normal neighborhood of a pole of P .
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3. Gradient estimates

Let �′ be a subset of � and define

(9) 6′ = {ϑ(u(x), x) : x ∈�′} ⊂6

to be the graph of u|�′ . Let O be an open subset in M containing 6′. We consider
a vector field Z ∈ 0(TM) with bounded C2 norm and supported in O. Hence
there exists ε > 0 such that the local flow 4 : (−ε, ε)×O→ M generated by Z is
well-defined. We also suppose that

(10) 〈Z(y), ν(y)〉 = 0

for any y ∈ K ∩ O. This implies that the flow line of Z passing through a point
y ∈ K ∩O is entirely contained in K .

We define a variation of 6 by a one-parameter family of hypersurfaces 6τ ,
τ ∈ (−ε, ε), parametrized by Xτ :�→ M , where

(11) Xτ (x)=4(τ, ϑ(u(x), x)), x ∈�.

It follows from the implicit function theorem that there exist�τ ⊂ P and uτ :�τ→R

such that 6τ is the graph of uτ . Moreover, �τ ⊂�.
Hence given a point y ∈ 6, denote yτ = 4(τ, y) ∈ 6τ . It follows that there

exists xτ ∈�τ such that yτ = ϑ(uτ (xτ ), xτ ). Then we denote by ŷτ = ϑ(u(xτ ), xτ )
the point in 6 in the flow line of Y passing through yτ . The vertical separation
between yτ and ŷτ is by definition the function s(y, τ )= uτ (xτ )− u(xτ ).

Lemma 4. For any τ ∈ (−ε, ε), let Aτ and Hτ be, respectively, the Weingarten
map and the mean curvature of the hypersurface 6τ calculated with respect to the
unit normal vector field Nτ along 6τ which satisfies 〈Nτ , Y 〉> 0. Denote H = H0

and A = A0. If ζ ∈ C∞(O) and T ∈ 0(T O) are defined by

(12) Z = ζNτ + T

with 〈T, Nτ 〉 = 0 then

(i) ∂s/∂τ |τ=0 = 〈Z , N 〉W ,

(ii) ∇ Z N |τ=0 =−AT −∇6ζ ,

(iii) ∂H/∂τ |τ=0 =16ζ + (‖A‖2+RicM(N , N ))ζ +〈∇9, Z〉,

where W = 〈Y, Nτ 〉−1
= (γ + ‖∇uτ‖2)−1/2. The operators ∇6 and 16 are,

respectively, the intrinsic gradient operator and the Laplace–Beltrami operator in
6 with respect to the induced metric. Moreover, ∇ and RicM denote, respectively,
the Riemannian covariant derivative and the Ricci tensor in M.



NONPARAMETRIC SOLUTIONS FOR A CAPILLARY PROBLEM 413

Proof. (i) Let (x i )ni=1 be a set of local coordinates in �⊂ P . Differentiating (11)
with respect to τ we obtain

Xτ∗
∂

∂τ
= Z |Xτ = ζNτ + T .

On the other hand differentiating both sides of

Xτ (x)= ϑ(uτ (xτ ), xτ )

with respect to τ we have

Xτ∗
∂

∂τ
=

(
∂uτ
∂τ
+
∂uτ
∂x i

∂x i
τ

∂τ

)
ϑ∗Y +

∂x i
τ

∂τ
ϑ∗

∂

∂x i

=
∂uτ
∂τ

ϑ∗Y +
∂x i

τ

∂τ

(
ϑ∗

∂

∂x i +
∂uτ
∂x i ϑ∗Y

)
.

Since the term between parenthesis after the second equality is a tangent vector
field in 6τ we conclude that

∂uτ
∂τ
〈Y, Nτ 〉 =

〈
Xτ∗

∂

∂τ
, Nτ

〉
= ζ,

and it follows that
∂uτ
∂τ
= ζW

and
∂s
∂τ
=
∂

∂τ
(uτ − u)=

∂uτ
∂τ
= ζW.

(ii) Now we have

〈∇ Z Nτ ,X∗∂i 〉= −〈Nτ ,∇ Z X∗∂i 〉 = −〈Nτ ,∇X∗∂i Z〉 = −〈Nτ ,∇X∗∂i (ζN+T )〉

= −〈Nτ ,∇X∗∂i T 〉−〈Nτ ,∇X∗∂i ζNτ 〉 = −〈AτT,X∗∂i 〉−〈∇
6ζ,X∗∂i 〉,

for any 1≤ i ≤ n. It follows that

∇ Z N =−AT −∇6ζ.

(iii) This is a well-known formula whose proof may be found in a number of
references, such as [Gerhardt 2006]. �

For further reference, we point out that the comparison principle [Gilbarg and
Trudinger 2001] when applied to (3)–(4) may be stated in geometric terms as
follows. Fix τ , and let x ∈�′ be a point of maximal vertical separation s( · , τ ). If
x is an interior point we have

∇uτ (x, τ )−∇u(x)=∇s(x, τ )= 0,
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which implies that the graphs of the functions uτ and u + s(x, τ ) are tangent at
their common point yτ = ϑ(uτ (x), x). Since the graph of u+ s(x, τ ) is obtained
from 6 only by a translation along the flow lines of Y we conclude that the mean
curvatures of these two graphs are the same at corresponding points. Since the
graph of u+ s(x, τ ) is locally above the graph of uτ we conclude that

(13) H(ŷτ )≥ Hτ (yτ ).

If x ∈ ∂�⊂ ∂�′, we have

〈∇uτ , ν〉|x −〈∇u, ν〉|x = 〈∇s, ν〉 ≤ 0,

since ν points toward �. This implies that

(14) 〈N , ν〉|yτ ≥ 〈N , ν〉|ŷτ .

3.1. Interior gradient estimate.

Proposition 5. Let BR(x0) ⊂ �, where R < inj P. Then there exists a constant
C > 0 depending on β,C9, � and K such that

(15) ‖∇u(x)‖ ≤ C
R2

R2− d2(x)
,

where d = dist(x0, x) in P.

Proof. Fix �′ = BR(x0)⊂�. We consider the vector field Z given by

(16) Z = ζN ,

where ζ is a function to be defined later. Fix τ ∈ [0, ε), and let x ∈ BR(x0) be a
point where the vertical separation s( · , τ ) attains a maximum value.

If y = ϑ(u(x), x) it follows that

(17) Hτ (yτ )− H0(y)=
d Hτ
dτ

∣∣∣∣
τ=0
τ + o(τ ).

However, the comparison principle implies that H0(ŷτ )≥ Hτ (yτ ). By Lemma 1(iii)
we conclude that

H0(ŷτ )− H0(y)≥
d Hτ
dτ

∣∣∣∣
τ=0
τ + o(τ )= (16ζ +‖A‖2ζ +RicM(N , N )ζ )τ + o(τ ).

Since ŷτ = ϑ(−s(y, τ ), yτ ), we have

(18)
d ŷτ
dτ

∣∣∣∣
τ=0
=−

ds
dτ
ϑ∗
∂

∂s
+
∂yi
τ

∂τ
ϑ∗

∂

∂x i =−
ds
dτ

Y +
dyτ
dτ

∣∣∣∣
τ=0
=−

ds
dτ

Y + Z(y).
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Hence using Lemma 1(i) and (16) we have

(19)
d ŷτ
dτ

∣∣∣∣
τ=0
=−ζW Y + ζN .

On the other hand, for each τ ∈ (−ε, ε) there exists a smooth ξ : (−ε, ε)→ TM
such that

ŷτ = expy ξ(τ ).

Hence we have

d ŷτ
dτ

∣∣∣∣
τ=0
= ξ ′(0).

With a slight abuse of notation we denote 9(s, x) by 9(y), where y = ϑ(s, x). It
results that

H0(ŷτ )− H0(y)=9(xτ , u(xτ ))−9(x, u(x))=9(expy ξτ )−9(y)

= 〈∇9|y, ξ
′(0)〉τ + o(τ ).

However,

〈∇9, ξ ′(0)〉 = ζ 〈∇9, N −W Y 〉 = −ζW
∂9

∂s
+ ζ 〈∇9, N 〉.(20)

We conclude that

−ζW
∂9

∂s
τ + ζ 〈∇9, N 〉τ + o(τ )≥ (16ζ +‖A‖2ζ +RicM(N , N )ζ )τ + o(τ ).

Suppose that

(21) W (x) >
C +‖∇9‖

β

for a constant C > 0 to be chosen later. Hence we have

(16ζ +RicM(N , N )ζ )τ +Cζ τ ≤ o(τ ).

Following [Calle and Shahriyari 2011] and [Korevaar 1988] we choose

ζ = 1−
d2

R2 ,

where d = dist(x0, · ). It follows that

∇
6ζ =−

2d
R2∇

6d,

and

16ζ =−
2d
R216d −

2
R2 ‖∇

6d‖2.
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However, using the fact that P is totally geodesic and that [Y,∇d] = 0, we have

16d =1M d −〈∇N∇d, N 〉+ nH〈∇d, N 〉

=1Pd −
〈
∇∇u/W∇d,

∇u
W

〉
− γ 2
〈Y, N 〉2〈∇Y∇d, Y 〉+ nH〈∇d, N 〉.

Let π : M→ P be the projection defined by π(ϑ(s, x))= x . Then

π∗N =−
∇u
W
.

We denote
π∗N⊥ = π∗N −〈π∗N ,∇d〉∇d.

If Ad and Hd denote, respectively, the Weingarten map and the mean curvature of
the geodesic ball Bd(x0) in P we conclude that

16d = nHd −〈Ad(π∗N⊥), π∗N⊥〉+ γ 〈Y, N 〉2κ + nH〈∇d, N 〉,

where
κ =−γ 〈∇Y∇d, Y 〉

is the principal curvature of the Killing cylinder over Bd(x0) relative to the principal
direction Y . Therefore we have

|16d| ≤ C1

(
C9, sup

BR(x0)

(Hd + κ), sup
BR(x0)

γ
)

in BR(x0). Hence setting
C2 = sup

BR(x0)

RicM ,

we fix

(22) C =max
{

2(C1+C2), sup
R×�

‖∇9‖
}
.

With this choice we conclude that

Cζ ≤
o(τ )
τ
,

a contradiction. This implies that

(23) W (x)≤
C −‖∇9‖

β
.

However,

ζ(z)W (z)+ o(τ )= s(X (z), τ )≤ s(X (x), τ )= ζ(x)W (x)+ o(τ )
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for any z ∈ BR(x0). It follows that

W (z)≤
R2
− d2(z)

R2− d2(x)
W (x)+o(τ )≤

R2

R2− d2(x)
C −‖∇9‖

β
+o(τ )≤ C̃

R2

R2− d2(x)
,

for very small ε > 0. �

Remark 6. If � satisfies the interior sphere condition for a uniform radius R > 0,
we conclude that

(24) W (x)≤
C

d0(x)
,

for x ∈�, where d0(x)= dist(x, 0).

3.2. Boundary gradient estimates. Now we establish boundary gradient estimates
using another local perturbation of the graph, which this time has also tangential
components.

Proposition 7. Let x0 ∈ P and R > 0 such that 3R < inj P. Denote by �′ the
subdomain �∩ B2R(x0). Then there exists a positive constant C , depending only
on R, β, β ′,C9,C8, �, K , such that

(25) W (x)≤ C,

for all x ∈�′.

Proof. Now we consider the subdomain �′ =�∩ B2R(x0). We define

(26) Z = ηN + X,

where
η = α0v+α1d0,

and α0 and α1 are positive constants to be chosen and d0 is a smooth extension of
the distance function dist( · , 0) to �′ with ‖∇d0‖ ≤ 1 and

v = 4R2
− d2,

where d = dist(x0, · ). Moreover,

X = α08(vν− d0∇v).

In this case we have

ζ = η+〈X, N 〉 = α0v+α1d0 +α08(v〈N , ν〉− d0〈N ,∇v〉).

Fix τ ∈ [0, ε), and let x ∈ �′ be a point where the maximal vertical separation
between 6 and 6τ is attained. We first suppose that x ∈ int(∂�′ ∩ ∂�). In this
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case, setting yτ = ϑ(uτ (x), x) ∈6τ and ŷτ = ϑ(u(x), x) ∈6, it follows from the
comparison principle that

(27) 〈Nτ , ν〉|yτ ≥ 〈N , ν〉|ŷτ .

Note that ŷτ ∈ ∂6. Moreover, since Z |K∩O is tangent to K there exists y ∈ ∂6
such that

y =4(−τ, yτ ).

We claim that

(28)
∣∣∣∣〈∇〈Nτ , ν〉, dyτ

dτ

∣∣∣
τ=0

〉∣∣∣∣≤ α1(1−82)+ C̃α0,

for some positive constant C̃ = C(C8, K , �, R).
Hence (4) implies that

〈N , ν〉|ŷτ −〈N , ν〉|y =8(ŷτ )−8(y)= τ
〈
∇8,

d ŷτ
dτ

∣∣∣
τ=0

〉
+ o(τ ).

Therefore

〈N , ν〉|yτ −〈N , ν〉|y ≥ τ
〈
∇8,

d ŷτ
dτ

∣∣∣
τ=0

〉
+ o(τ ).

On the other hand we have

〈N , ν〉|yτ −〈N , ν〉|y = τ
〈
∇〈N , ν〉,

dyτ
dτ

∣∣∣
τ=0

〉
+ o(τ ).

We conclude that

τ

〈
∇〈N , ν〉,

dyτ
dτ

∣∣∣
τ=0

〉
≥ τ

〈
∇8,

d ŷτ
dτ

∣∣∣
τ=0

〉
+ o(τ ).

Hence we have

α1(1−82)τ + C̃α0τ ≥ τ

〈
∇8,

d ŷτ
dτ

∣∣∣
τ=0

〉
+ o(τ ).

It follows from (28) that

α1(1−82)+ C̃α0 ≥−ζW 〈∇8, Y 〉+ ζ 〈∇8, N 〉+ o(τ )/τ.

Since

〈∇8, Y 〉 =
∂8

∂s
≤ 0,

we conclude that

(29) W (x)≤ C(C8, β ′, K , �, R).
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We now prove the claim. For that, observe that Lemma 1(ii) implies that

〈N , ν〉|yτ −〈N , ν〉|y = τ
∂

∂τ

∣∣∣∣
τ=0
〈Nτ , ν〉|yτ + o(τ )

= τ(〈N ,∇ Zν〉|y −〈AT +∇6ζ, ν〉|y)+ o(τ ).

Since Z |y ∈ Ty K , it follows that

〈N , ν〉|yτ −〈N , ν〉|y =−τ(〈AK Z , N 〉|y +〈AT +∇6ζ, ν〉|y)+ o(τ ),

where AK is the Weingarten map of K with respect to ν. We conclude that

(30) −τ(〈AK Z , N 〉|y +〈AT +∇6ζ, ν〉|y)≥ τ
〈
∇8,

d ŷτ
dτ

∣∣∣
τ=0

〉
+ o(τ ),

where

νT
= ν−〈N , ν〉N .

We have

〈∇
6ζ + AT, νT

〉 = α0〈∇v, ν
T
〉+α1〈∇

6d0, νT
〉+ 〈∇

6
〈X, N 〉, νT

〉+ 〈AT, νT
〉.

We compute

〈∇
6
〈X, N 〉, νT

〉 = α0(v〈N , ν〉− d0〈N ,∇v〉)〈∇8, νT
〉

+α08
(
〈∇v, νT

〉〈N , ν〉+ v(〈∇νT N , ν〉+ 〈N ,∇νT ν〉)

−〈∇d0, νT
〉〈N ,∇v〉− d0(〈∇νT N ,∇v〉+ 〈N ,∇νT∇v〉)

)
.

Hence we have at y that

〈∇
6
〈X, N 〉, νT

〉 = α0(v8− d0〈N ,∇v〉)〈∇8, νT
〉

+α08
(
〈∇v, νT

〉8+ v(−〈AνT , νT
〉+ 〈N ,∇νν〉

− 〈N , ν〉〈N ,∇Nν〉)−〈ν, ν
T
〉〈N ,∇v〉

− d0(−〈AνT ,∇v〉+ 〈N ,∇ν∇v〉− 〈N , ν〉〈N ,∇N∇v〉)
)
.

Therefore we have

〈∇
6
〈X, N 〉, νT

〉 = α0(v8− d0〈N ,∇v〉)〈∇8, νT
〉

+α08
(
〈∇v, νT

〉8− v(〈AνT , νT
〉+ 〈N , ν〉〈N ,∇Nν〉)

−〈ν, νT
〉〈N ,∇v〉

+ d0(〈AνT ,∇v〉− 〈N ,∇ν∇v〉+ 〈N , ν〉〈N ,∇N∇v〉)
)
.
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It follows that

〈∇
6ζ + AT, νT

〉 = 〈AT, νT
〉+α0〈∇v, ν

T
〉+α1〈ν, ν

T
〉

+α0(v8− d0〈N ,∇v〉)〈∇8, νT
〉

+α08
(
〈∇v, νT

〉8− v(〈AνT , νT
〉+ 〈N , ν〉〈N ,∇Nν〉)

−〈ν, νT
〉〈N ,∇v〉

+ d0(〈AνT ,∇v〉− 〈N ,∇ν∇v〉+ 〈N , ν〉〈N ,∇N∇v〉)
)
.

However,

〈AT, νT
〉 = 〈AνT , X〉 = α08v〈AνT , νT

〉−α08d0〈AνT ,∇v〉.

Hence we have

〈∇
6ζ + AT, νT

〉 = α0〈∇v, ν
T
〉+α1〈ν, ν

T
〉+α0(v8− d0〈N ,∇v〉)〈∇8, νT

〉

+α08
(
〈∇v, νT

〉8− v8〈N ,∇Nν〉− 〈ν, ν
T
〉〈N ,∇v〉

− d0(〈N ,∇ν∇v〉− 〈N , ν〉〈N ,∇N∇v〉)
)
.

Since d0(y)= 0, we have

〈∇
6ζ + AT, νT

〉 = α0〈∇v, ν
T
〉+α1〈ν, ν

T
〉+α0v8〈∇8, ν

T
〉

+α08
(
〈∇v, νT

〉8− v8〈N ,∇Nν〉− 〈ν, ν
T
〉〈N ,∇v〉

)
.

Rearranging terms we obtain

〈∇
6ζ + AT, νT

〉 = α1(1−〈N , ν〉2)+α0〈∇v, ν
T
〉(1+82)+α0v8〈∇8, ν

T
〉

−α08
(
v8〈N ,∇Nν〉+ (1−〈N , ν〉2)〈N ,∇v〉

)
.

Therefore there exists a constant C = C(8, K , �, R) such that

(31) |〈∇
6ζ + AT, νT

〉| ≤ α1(1−82)+Cα0.

Since d0(y)= 0, it holds that

|〈AK Z , N 〉| = ‖AK‖‖Z‖ ≤ ‖AK‖(η+‖X‖)≤ 4R2α0‖AK‖(1+8),

from which we conclude that

(32)
∣∣∣∣〈∇〈Nτ , ν〉, dyτ

dτ

∣∣∣
τ=0

〉∣∣∣∣≤ α1(1−82)+ C̃α0,

for some constant C̃(C8, K , �, R) > 0.
Now we suppose that x ∈ ∂�′ ∩�. In this case we have v(x)= 0. Then η=α1d0

and
X =−α08d0∇v
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at x . Thus
ζ = η+〈X, N 〉 = α1d0 + 2α08dd0〈∇d, N 〉.

Moreover, we have

W (x)≤
C

d0(x)

(see Remark 6). It follows that

ζW ≤ C(α1+ 2α08d〈∇d, N 〉)≤ C(α1+ 4Rα08).(33)

We conclude that

W (x)≤ C(C8, K , �, R).(34)

Now we consider the case when x ∈�∩�′. In this case we have

16ζ = α016v+α116d0 +α0168(v〈N , ν〉− d0〈N ,∇v〉)

+α08
(
16v〈N , ν〉+ v16〈N , ν〉+ 2〈∇6v,∇6〈N , ν〉〉−16d0〈N ,∇v〉

− d016〈N ,∇v〉− 2〈∇6d0,∇6〈N ,∇v〉
)
+ 2α0

〈
∇
68,∇6v〈N , ν〉

+ v∇6〈N , ν〉−∇6d0〈N ,∇v〉− d0∇6〈N ,∇v〉
〉
.

Notice that given an arbitrary vector field U along 6, we have

〈∇
6
〈N ,U 〉, V 〉 = −〈AU T , V 〉+ 〈N ,∇V U 〉

for any V ∈ 0(T6). Here, U T denotes the tangential component of U . Hence
using Codazzi’s equation we obtain

16〈N ,U 〉 ≤ 〈∇(nH),U T
〉+RicM(U T , N )+C‖A‖,

for a constant C depending on ∇U and ∇2U . Hence using (3) we conclude that

16〈N ,U 〉 ≤ 〈∇9,U T
〉+ C̃‖A‖,(35)

where C̃ is a positive constant depending on ∇U,∇2U and RicM .
We also have

16d0 =1Pd0 + γ 〈∇Y∇d, Y 〉− 〈∇N∇d0, N 〉+ nH〈∇d0, N 〉

≤ C09 +C1,

where C0 and C1 are positive constants depending on the second fundamental form
of the Killing cylinders over the equidistant sets d0= δ for small values of δ. Similar
estimates also hold for 16d and then for 16v.

We conclude that

(36) 16ζ ≥−C̃0− C̃1‖A‖,
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where C̃0 and C̃1 are positive constants depending only on �, K , RicM , and
|8| + ‖∇8‖+‖∇28‖.

Now proceeding similarly as in the proof of Proposition 5, we observe that
Lemma 1(iii) and the comparison principle yield

H0(ŷτ )− H0(y)≥
d Hτ
dτ

∣∣∣∣
τ=0
τ + o(τ )

= (16ζ +‖A‖2ζ +RicM(N , N )ζ )τ + τ 〈∇9, T 〉+ o(τ ).

However,
H0(ŷτ )− H0(y)= 〈∇9|y, ξ ′(0)〉τ + o(τ ).

Using (18) we have

〈∇9, ξ ′(0)〉 = 〈∇9, Z − ζW Y 〉 = 〈∇9, Z〉− ζW
∂9

∂s
.

We conclude that

−ζW
∂9

∂s
τ + ζ 〈∇9, N 〉τ + o(τ )≥ (16ζ +‖A‖2ζ +RicM(N , N )ζ )τ + o(τ ).

Suppose that

(37) W >
C +‖∇9‖

β
,

for a constant C > 0 as in (22). Hence we have

(16ζ + |A|2ζ +RicM(N , N )ζ )τ +Cζ τ ≤ o(τ ).

We conclude that

−C0−C1|A| +C2‖A‖2+C ≤
o(τ )
τ
,

a contradiction. It follows from this contradiction that

(38) W (x)≤
C +‖∇9‖

β
.

Now, proceeding as in the end of the proof of Proposition 5, we use the estimate
for W (x) in each one of the three cases for obtaining a estimate for W in �′. �

4. Proof of Theorem 1

We use the classical continuity method for proving Theorem 1. For details, we refer
the reader to [Gerhardt 1976] and [Ladyzhenskaya and Uraltseva 1964]. For any
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τ ∈ [0, 1], we consider the Neumann boundary problem Nτ of finding u ∈ C3,α(�)

such that

F[τ, x, u,∇u,∇2u] = 0,(39) 〈
∇u
W
, ν
〉
+ τ8= 0,(40)

where F is the quasilinear elliptic operator defined by

F[x, u,∇u,∇2u] = div
(
∇u
W

)
−

〈
∇γ

2γ
,
∇u
W

〉
− τ9.(41)

Since the coefficients of the first and second order terms do not depend on u, it
follows that

(42)
∂F

∂u
=−τ

∂9

∂u
≤−τβ < 0.

We define I⊂ [0, 1] as the subset of values of τ ∈ [0, 1] for which the Neumann
boundary problem Nτ has a solution. Since u= 0 is a solution for N0, it follows that
I 6=∅. Moreover, the implicit function theorem (see [Gilbarg and Trudinger 2001,
Chapter 17]) implies that I is open in view of (42). Finally, the height and gradient
a priori estimates we obtained in Sections 2 and 3 are independent of τ ∈ [0, 1].
This implies that (3) is uniformly elliptic. Moreover, we may ensure the existence
of some α0 ∈ (0, 1) for which there exists a constant C > 0 independent of τ such
that

|uτ |1,α0,�
≤ C.

Redefine α = α0. Thus, this fact, Schauder elliptic estimates and the compactness
of C3,α0(�) in C3(�) imply that I is closed. It follows that I= [0, 1].

The uniqueness follows from the comparison principle for elliptic PDEs. We
point out that a more general uniqueness statement — comparing a nonparametric
solution with a general hypersurface with the same mean curvature and contact
angle at corresponding points — is also valid. It is a consequence of a flux formula
coming from the existence of a Killing vector field in M. We refer the reader to
[Dajczer et al. 2008] for further details.

This finishes the proof of the Theorem 1.
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