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An Upper-Bound on the Ergodic Capacity of
Rayleigh-Fading MIMO Channels using

Majorization Theory
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Abstract—In this paper, we investigate the ergodic capacity of
multiple-input multiple-output (MIMO) wireless communication
systems over spatially uncorrelated Rayleigh-fading channels,
assuming that the channel state information (CSI) is unknown
at the transmitter and perfectly known at the receiver. Applying
some results of majorization theory, we provide an analytical
closed-form upper-bound to the ergodic capacity at any signal-
to-noise ratio (SNR). In addition, we also derive an approximation
to the ergodic capacity in high-SNR regimes. Finally, we present
numerical results that confirm our theoretical analysis.

Keywords—Ergodic Capacity, MIMO systems, Rayleigh-
fading, Majorization Theory.

I. INTRODUCTION

Recently multiple-input multiple-output (MIMO) wireless
communication systems have received significant attention
among the research community due to the potential to provide
large spectral efficiency in the presence of multi-path fading
improvement over single-input single-output (SISO) systems.
Then, since the works by Telatar [1] and Foschini [2], who
provide that the ergodic capacity increases linearly with the
minimum number of antennas at the transmitter or receiver
over a Rayleigh-fading MIMO channel, the analysis on the
ergodic capacity has been investigated in various fading mo-
dels and settings to understanding the fundamental limits of
the channel. In particular, to obtain an analytical closed-form
to the ergodic capacity, especially in some cases, is still a great
challenge due to difficulty in manipulating the non-Gaussian
joint channel statistics. Thus, to overcome this problematic, we
resort to the study of bounding techniques, which intention is
to propose lower and upper bounds as close as possible to
the empirical ergodic capacity, obtained through Monte Carlo
methods.
Rayleigh distribution is a fading model, which is frequently

used to model the short-term of mobile-radio signals [3]. In
other words, the envelope of the received complex low-pass
signal can be modeled as a random variable with a Rayleigh
distribution for non-light-of-sight (NLoS) propagation. Several
works, operating in Rayleigh-fading MIMO systems, have
been published about closed-form analytical expressions for
upper-bounds to the ergodic capacity. In [4], a lower-bound for
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independent and identically distributed (i.i.d.) flat-fading chan-
nels was derived, while [5] has been analyzed the frequency-
selective fading case. In [6], tight upper and lower bounds
on the ergodic capacity for spatially correlated channels were
provided. The spatial double-sided correlation with keyhole
has been examined in [7]. Newly, tight bounds for spatially
correlated Rician MIMO channels were proposed by [8], [9] at
any signal-to-noise ratio (SNR) and for any number of receive
and transmit antennas. Moreover, these references devote a
significant part to the study of the Rayleigh-fading channels
as a particular case.

In this paper, we focus on the ergodic capacity of spatially
uncorrelated Rayleigh-fading MIMO channels. Specifically,
we derive a closed-form analytical upper-bound assuming that
the channel state information (CSI) is available only at the
receiver. Part of the motivation for this work stems from the
results of [10] and [11], which have obtained capacity bounds
in Nakagami-m fading MIMO channels using majorization
theory [12], [13]. This mathematical tool have allowed to
investigate the ergodic capacity through the distribution of
the diagonal elements of the Wishart matrix. Furthermore, the
analysis in this work distinguishes from previous results on
Rayleigh-fading MIMO channels due the use of majorization
theory applied to i.i.d. Kronecker channel model.

The remaining of this paper is organized as follows: Sec-
tion II introduces the Rayleigh-fading MIMO channel model
and includes the definition of ergodic capacity. Section III
presents briefly the Gamma random variable. In Section IV,
we introduce some basic notions and results of majorization
theory. We derive an upper-bound, at any SNR value, and an
approximation, in high-SNR regime, to the ergodic capacity
in Section V. The theoretical and the simulation results are
discussed in Section VI. Finally, we conclude the paper in
Section VII.

Throughout this article, matrices and vectors will be repre-
sented by bold uppercase and lowercase letters, respectively.
We use I or Ip for the identity matrix of dimension p× p and
C

m×n indicates the m×n complex vector space. The supers-
cripts (·)H denotes Hermitian transpose, while the subscript
(·)i is the i-th element of a vector, and (·)ij is the (i, j)-th entry
of a matrix. The operator ≺ denotes the majorization relation,
E{·} represents the statistical expectation, and det(·) stands
for the determinant of a square matrix. Finally, the vectors d(·)
and λ(·) denote the main diagonal elements and eigenvalues
of a Hermitian matrix, respectively.
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II. SYSTEM MODEL AND ERGODIC CAPACITY

We focus our study on single-user MIMO communications
over flat-fading wireless channels with nT transmit antennas,
and nR receive antennas. The input-output relationship is
given by

y = Hx+ n, (1)

where y ∈ CnR×1 and x ∈ CnT×1 are the received and
transmitted signal vectors, respectively, while n ∈ CnR×1 is
the complex additive white Gaussian noise (AWGN) vector
with zero mean and covariance matrix E

{

nnH
}

= N0I. We
assume that the transmitted signal vector satisfies the power
constraint E

{

xHx
}

≤ PT . In addition, H ∈ CnR×nT is
the MIMO channel matrix, which elements hij represent the
complex fading parameter between the j-th transmit and i-th
receive antenna. The channel gain is considered to undergo
Rayleigh-fading [14], without spatial correlation occurring at
both ends of the MIMO link. Furthermore, the entries hij are
i.i.d. random variables with zero mean and unit variance. In
other terms, the complex entry hij can be expressed as

hij = hIij + jhQij , (2)

where the inphase and quadratic components (denoted by hIij
and hQij , respectively) follow a real-valued Gaussian random
variance with zero mean and identical variance, i.e.,

σ2
hI
ij
= σ2

h
Q
ij

= σ2. (3)

Since, the element hij is a complex Gaussian process with
zero mean and unit variance, the envelope

|hij | =
√

[hIij ]
2 + [hQij ]

2 (4)

has Rayleigh distribution, which will be denoted by

|hij | ∼ Rayleigh (σ2). (5)

Moreover, the probability density function is given by [15]

p|hij |(r) =
r

σ2
exp

(

−
r2

2σ2

)

u(r), (6)

where u(r) represents the unit step function. In our case, we
have that σ2 = 1/2.
In the sequel, we consider that the receiver has perfect

channel state information (CSI), and an equal-power allocation
across the transmit antennas. In this situation, the capacity
ergodic can be expressed as [8]

C = E

{

log2

[

det

(

I+
ρ

nT

Γ

)]}

, (7)

where ρ
△

= PT

N0

is the received signal-to-noise (SNR) ratio and
Γ is the Wishart matrix, which is defined as

Γ =

{

HHH , nR ≤ nT

HHH, nR > nT .
(8)

For convenience, we define the constants r = min{nR, nT }
and t = max{nR, nT }. Thus, Γ is always a square matrix of
order r×r. Furthermore, we assume that the number of receive
antennas does not exceed the number of transmit antennas.

However, using the identity det (I+AB) = det (I+BA),
ensures that all results can be extended to the case nR > nT .
Now, using the singular value decomposition (SVD) on the

matrix Γ, the ergodic capacity in Eq. (7) can be represented
by

C = E

{

r
∑

i=1

log2

(

1 +
ρ

nT

)

λi

}

, (9)

where λi denotes the i-th eigenvalue of the Wishart matrix Γ.

III. THE GAMMA DISTRIBUTION

In this section, we provide a brief discussion on the Gamma
distribution. In particular, we discuss the sum of independent
Gamma variables, and the possibility of obtaining a Gamma
random variable from a Rayleigh distribution.
Definition 1 ( [15]): A random variable X follows a

Gamma distribution with parameters α > 0 and β > 0,
denoted by X ∼ γ(α, β), if the p.d.f. of X is given by [15]

pX(x) =
xα−1 exp (−x/β)

βαΓ(α)
u(x), (10)

where Γ(·) denotes the gamma function. The constants α
and β are known as the shape and scale parameters of the
distribution.
Now, we describe the possibility of generating a Gamma

distribution from a Rayleigh random variable. This can be
accomplished using the following transformation.
Lemma 1: If X ∼ Rayleigh (σ2), then the random variable

Y = kX2 has a Gamma distribution with parameters α = 1
and β = 2kσ2, i.e., Y ∼ γ(1, 2kσ2).
Finally, we complete this section with the sum of inde-

pendent Gamma variables with different shape parameters but
having the same scale parameter.
Lemma 2: Let {Xi}

m
i=1 be a set of m independent Gamma

random variables such as Xm ∼ γ(αm, β), then the p.d.f. of
Y =

∑m

i=1Xi has a Gamma distribution. Specifically,

Y ∼ γ

(

m
∑

i=1

αi, β

)

. (11)

IV. MAJORIZATION THEORY

Majorization theory is a topic of much interest in vari-
ous areas of the mathematics and recently has been applied
in problems of wireless communications systems [16]–[19].
The definition of majorization relationship allows to com-
pare two vectors by reordering its coordinates in decrea-
sing order. In other words, let x be a vector of Rn×1 and
[x] =

(

x[1], x[2], · · · , x[n]
)

another vector of Rn×1 consis-
ting of the coordinates of x, but putting them in decreasing
order, that is, x[1] ≥ x[2] ≥ · · · ≥ x[n]. We say that y majorizes
x or x is majorized by y, and writes x ≺ y, if the following
conditions are met:

k
∑

i=1

x[i] ≤
k
∑

i=1

y[i], 1 ≤ k ≤ n− 1, (12a)

n
∑

i=1

x[i] =

n
∑

i=1

y[i]. (12b)
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Intuitively, the vector y majorizes the vector x if the
coordinates of y are more “dispersed” or “spread out” than the
coordinates of x [12]. However, treating with more accuracy,
the “majorization inequality” is a partial order relation on
vectors of real numbers. Then, to understand this definition, we
consider the vectors x = (3; 3; 3; 3; 3), y = (5; 4; 3; 2; 1)
and z = (7; 5; 2; 0.8; 0.2) of R5×1. Note that, we have the
following majorization relationships: x ≺ y ≺ z. The behavior
of these coordinates are illustrated in Fig. 1.

vector x vector y vector z

0.2
0.81

22

33333 3

4

55

7

≺ ≺

Fig. 1. Geometric interpretation of the majorization relationship.

There is an extensive list of properties involving the majo-
rization theory, which can be found in the classical references
[12], [13]. However, for this work, we highlight the following:
Lemma 3 (Schur’s inequality [12, 9.B.1]): If A ∈ Cn×n is

an Hermitian matrix, then

d (A) ≺ λ(A). (13)
Next, defines a real-valued function φ(·), which applies to

the previously majorized, changes the partial order relation.
Definition 2 ( [12, 3.A.1]): A real-valued function φ(·) on

Rn×1 is said to be Schur-concave if

x ≺ y ⇒ φ(x) ≥ φ(y). (14)
The following result is an important case, for our purpose,

of Schur-concave function.
Lemma 4 ( [12, 3.C.1]): Let the real-valued function φ(·)

on Rn×1. If g : R → R is concave, then φ(·) defined by

φ(x) =

n
∑

i=1

g(xi) (15)

is Schur-concave.
Finally, we present an application of Lemma 4, which will

be used in Section V.
Example 1 ( [11, Appendix II]): The real-valued function

φ(·) on Rn×1, defined by φ(x) =
∑n

i=1 log2 (1 + αxi), with
α > 0, is a Schur-concave function.

V. UPPER-BOUND ON ERGODIC CAPACITY

Making use of the sum of independent Gamma random
variables, in the case that all Gamma distributions have
the same scale parameter but different shape parameters,
and majorization theory, we will obtain, in this section, an
analytical closed-form upper-bound to the ergodic capacity on
spatially uncorrelated Rayleigh MIMO channels in terms of
the Meijer G-function [20, Eq. (9.301)]. The main contribution
of this paper is presented in the following theorem.

Theorem 1: The ergodic capacity of spatially uncorrelated
Rayleigh MIMO channels is upper bounded by

C ≤
r

Γ(t) ln 2
G1,3

3,2

(

ρ

nT

∣

∣

∣

1−t,1,1

1,0

)

, (16)

where ρ is the SNR, andGm,n
p,q (· | ·) is the Meijer G-function

[20, Eq. (9.301)].

Proof: We start defining the following vectors in Rr×1

d(Γ)
△

= (d1, d2, · · · , dr) (17a)

λ(Γ)
△

= (λ1, λ2, · · · , λr) (17b)

where di corresponds to the i-th diagonal element of the matrix
Γ, and λi represents the respective eigenvalue. Now, let be the
real-valued function φ(·) on Rr×1 defined by

φ(x) =
r
∑

i=1

log2

(

1 +
ρ

nT

xi

)

. (18)

Since the vector λ(Γ) majorizes d(Γ), i.e., d(Γ) ≺ λ(Γ)
(see Schur’s inequality) and φ(·) is a Schur-concave function
(from Example 1), we have

φ(λ (Γ) ) ≤ φ(d(Γ) ) . (19)

Applying the expectation operator E {·} in the inequality (19)
and observing that the ergodic capacity presented in Eq. (9)
is equal to E {φ(λ (Γ) )}, we obtain an upper-bound to the
ergodic capacity as shown below:

C ≤ E {φ(d(Γ) )} . (20)

We now express the expectation in Eq. (20) in the integral
form, that is,

E {φ(d(Γ) )} = E

{

r
∑

i=1

log2

(

1 +
ρ

nT

di

)

}

=

r
∑

i=1

E

{

log2

(

1 +
ρ

nT

di

)}

=
1

ln 2

r
∑

i=1

∫ ∞

0

ln

(

1 +
ρ

nT

ε

)

pi(ε)dε, (21)

where pi(·) is the p.d.f. of the random variable di. Noting that

di =

t
∑

j=1

|hij |
2, i = 1, 2, · · · , r, (22)

and from Lemmas 1 and 2, we have that di is given by the sum
of i.i.d. Gamma random variables. Specifically, di ∼ γ(t, 1)
or

pi(ε) =
εt−1 exp (−ε)

Γ(t)
u(ε), (23)

for all i = 1, 2, · · · , r. Thus, the upper-bound in Eq. (21)
becomes

E {φ(d(Γ) )} =
r

Γ(t) ln 2

∫ ∞

0

ln

(

1 +
ρ

nT

ε

)

εt−1 exp (−ε) dε.

(24)
On the other hand, using the fact that the logarithmic

function can be expressed in terms of the Meijer G-function,
we have [11]

ln

(

1 +
ρ

nT

ε

)

= G1,2
2,2

(

ρ

nT

ε
∣

∣

∣

1,1

1,0

)

. (25)



XXX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’12, 13-16 DE SETEMBRO DE 2012, BRASÍLIA, DF

Now, substituting the Meijer G-function in Eq. (25) into to
Eq. (21) and applying the following result, called Laplace
transform [20, 7.813-1], [11],
∫ ∞

0

x−ρ exp (−βx)Gm,n
p,q

(

αx
∣

∣

∣

a1,a2,··· ,ap

b1,b2,··· ,bq

)

dx =

βρ−1Gm,n+1
p+1,q

(

α

β

∣

∣

∣

ρ,a1,a2,··· ,ap

b1,b2,··· ,bq

)

, (26)

we conclude, after some algebra, that the upper-bound is given
by

E {φ(d(Γ) )} =
r

Γ(t) ln 2
G1,3

3,2

(

ρ

nT

∣

∣

∣

1−t,1,1

1,0

)

. (27)

This completes the proof.
Though the upper-bound obtained can be expressed in

a closed-form analytical expression and can be evaluated
very efficiently using standard softwares like Maple R© and
Mathematica R©, was observed in some cases (see Section VI)
that our result did not presents a good approximation to
the ergodic capacity in high-SNR regimes compared with a
previously published upper-bound. However, to minimize this
loss, we provide from Eq. (24) a tightest capacity upper-bound.

Corollary 1: In high-SNR regimes, the ergodic capacity
upper-bound E {φ(d(Γ) )} for spatially uncorrelated Ray-
leigh MIMO channels can be approximated as

E {φ(d(Γ) )} ≈
r

ln 2

(

ln

(

ρ

nT

)

+ ψ(t)

)

, (28)

where ψ(·) is the Euler Digamma function [20, 8.365-4].

Proof: In high-SNR regimes (large ρ), the function
ln (1 + ρ/nT ) can be approximated by ln (ρ/nT ). In turn,
from the Eq. (24), we define

Capp
△

=
r

Γ(t) ln 2

∫ ∞

0

ln

(

ρ

nT

ε

)

εt−1 exp (−ε) dε. (29)

Note that Capp ≈ E {φ(d(Γ) )} and

Capp =
r

Γ(t) ln 2

[

ln

(

ρ

nT

)
∫ ∞

0

εt−1 exp (−ε) dε+

∫ ∞

0

ln (ε)εt−1 exp (−ε)dε

]

. (30)

Now, using the integral identities [20, 8.312-2]
∫ ∞

0

xν−1 exp (−x) dx = Γ(ν) (31)

and [20, 4.352-1]
∫ ∞

0

ln (x)xν−1 exp (x) dx = Γ(ν)ψ(ν), (32)

the approximation to the ergodic capacity Capp can alternatively
be expressed as

Capp =
r

ln 2

(

ln

(

ρ

nT

)

+ ψ(t)

)

. (33)

VI. NUMERICAL RESULTS

To illustrate the theory described in this paper, we evaluate
the capacity upper-bound to the ergodic capacity in several
MIMO configurations. Moreover, we compare our result with
a previously published upper-bound [9]. This reference inves-
tigates the i.i.d. Rayleigh-fading channels as a particular case
of Rice-fading channels.
The ergodic capacity for 1 × 1, 1 × 2 and 1 × 4 systems

for various values of SNR is showed in Fig. 2. It is clear
that the our upper-bounds are much tighter than proposed by
Jin et al. [9].

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

SNR (dB)

E
rg

o
d

ic
 C

a
p

a
c
it
y
 (

b
p

s
/H

z
)

 

 

Analytical upper−bound 1x1

Monte Carlo simulations 1x1

Proposed by Jin et al. 1x1

Analytical upper−bound 1x2

Monte Carlo simulations 1x2

Proposed by Jin et al. 1x2

Analytical upper−bound 1x4

Monte Carlo simulations 1x4

Proposed by Jin et al. 1x4

Fig. 2. Comparison of the empirical ergodic capacity and analytical upper-
bound for 1× 1, 1× 2 and 1× 4 uncorrelated Rayleigh-fading channels.

Fig. 3 and Fig. 4 depict that the analytical expression
presented in Eq. (16), for low-SNR regimes, is as tight as
proposed by [9]. In high-SNR regimes, for 2 × 2 and 2 × 4,
we can consider that the upper-bounds are equally tight.
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Fig. 3. Comparison of the empirical ergodic capacity and analytical upper-
bound for 2× 2, 3× 3 and 4× 4 uncorrelated Rayleigh-fading channels.
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Finally, Fig. 5 plots the high-SNR approximations of the
upper-bound. From the graphs, it is apparent that, for each
SNR value, our propose (from Corollary 1) produces results
very close to the empirical ergodic capacity.
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Fig. 5. Comparison of the empirical ergodic capacity and analytical high-
SNR upper-bound approximation for 1 × 2, 2 × 2 and 3 × 4 uncorrelated
Rayleigh-fading channels.

VII. CONCLUSIONS

In this paper, we present a new analytical upper-bound on
the ergodic capacity for uncorrelated Rayleigh-fading MIMO
channels assuming that transmitter has not knowledge of the
CSI. We have also derived an analytical approximation for the
ergodic capacity from upper-bound on high-SNR regimes. Ba-
sed on some results on majorization theory, we demonstrated

that our bound, in some cases, it is tighter than previously
known upper-bound. In other ones, the result is equally tight,
mainly for low-SNR regimes. Furthermore, for high-SNRs, the

simulation results showed that the upper-bound approximation
is very close to the ergodic capacity. In the future, we will
investigate the case for Rice channels with correlated fading
components.
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