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RESUMO

Sistemas MIMO (do inglês multiple-input multiple-output) são frequentemente utilizados para

aumentar os ganhos de diversidade e/ou multiplexação através da transmissão de múltiplas

versões do mesmo sinal ou de dados independentes através de diferentes canais de comunicação.

Como outra forma de explorar diversidade espacial, as comunicações cooperativas vêm surgindo

como uma técnica promissora para as novas gerações de sistemas de comunicação sem fio,

melhorando significativamente o desempenho e a confiabilidade desses sistemas. Neste contexto,

nas últimas décadas, decomposições tensoriais vêm sendo exploradas no processamento de

sinais multidimensionais em sistemas MIMO e, mais recentemente, em redes cooperativas,

permitindo o design de receptores eficazes para a estimação dos parâmetros de transmissão.

Em particular, decomposições aninhadas (nested decomposition) têm permitido a modelagem

de sinais em sistemas que se beneficiam de múltiplas diversidades, rendendo tensores de alta

ordem representados em uma forma compacta. Esta tese apresenta desenvolvimentos realizados

no âmbito de novas decomposições tensoriais aninhadas aplicadas à sistemas de comunicação

sem fio cooperativos com múltiplas antenas. Mais especificamente, as contribuições teóricas

desta tese estão ligadas à proposição de novas decomposições tensoriais aninhadas, bem como

à análise de suas propriedades de unicidade, juntamente com a proposição de novos sistemas

MIMO cooperativos que são modelados através das decomposições apresentadas. Na primeira

parte desta tese, dois novos modelos tensoriais, baseados no modelo NTD (do inglês nested

Tucker decomposition), são introduzidos. O primeiro modelo é chamado high-order nested

Tucker decomposition (HONTD), o qual estende o modelo NTD ao considerar tensores de ordem

mais alta que resultam da contração de diversas decomposições Tucker em formato de trem.

O segundo modelo, chamado coupled nested Tucker decomposition (CNTD), pode ser visto

como um acoplamento de múltiplos NTDs que compartilham um fator comum, associando

os conceitos de aninhamento e acoplamento inicialmente definidos para modelos PARAFAC,

estendendo-os para modelos baseados em decomposição Tucker. Nas partes subsequentes

desta tese, estes modelos tensoriais são usados na modelagem de três novos sistemas MIMO

cooperativos. Dois deles consideram casos com múltiplos relays (com retransmissão sequencial

e paralela, respectivamente) enquanto o outro considera um sistema com múltiplas portadoras

e relay único. Todos os sistemas propostos consideram codificações tensoriais nos nós de

transmissão. Para cada sistema proposto, os modelos tensoriais são explorados para obtenção de

algoritmos de estimação semi-cega, permitindo o desenvolvimento de receptores que estimam



conjuntamente os canais e símbolos transmitidos. Condições relacionadas à unicidade das

decomposições tensoriais e identificabilidade dos algoritmos propostos também são discutidas.

Por fim, resultados de simulações computacionais são apresentados no intuito de avaliar o

comportamento do sistema/receptor proposto, ilustrando a eficácia do processamento de sinais

baseado em decomposições tensoriais aninhadas.

Palavras-chave: Decomposição tensorial. Decomposição Tucker. Receptor semi-cego. Siste-

mas cooperativos. Sistemas MIMO.



ABSTRACT

Multiple-input multiple-output (MIMO) systems are often used to increase the diversity and/or

multiplexing gains, by transmitting multiple versions of the same signal or independent data

onto the communication channels. As another way to exploit spatial diversity, cooperative

communications have emerged as a promising technique for the new generations of wireless

communication systems, yielding significant improvements in the performance and reliability of

these systems. In this context, in the last decades, tensor decompositions have been exploited

in the processing of multidimensional signals in MIMO systems and, more recently, coope-

rative networks, allowing the design of effective receivers for estimation of the transmission

parameters. In particular, nested decompositions have allowed the modeling of signals from

systems that benefit from multiple diversities, yielding high-order tensors represented in a com-

pact way. This thesis presents developments carried out within the framework of new nested

tensor decompositions applied to cooperative wireless communication systems with multiple

antennas. Indeed, the theoretical contributions of the present thesis rely on the proposition of

new nested tensor decompositions, along with the corresponding uniqueness analysis, as well

as the proposition of new cooperative MIMO communication systems that are modeled using

the presented nested tensor models. In the first part of this thesis, two new tensor models based

on nested Tucker decompositions (NTD) are introduced. The first model, called high-order

nested Tucker decomposition (HONTD), extends NTD by considering higher order tensors

resulting from the contraction of several Tucker models in a train format. The second model,

called coupled nested Tucker decomposition (CNTD), can be viewed as a coupling of multiple

NTDs that share a common factor, associating the nesting and coupling concepts initially defined

for PARAFAC models, extending them to Tucker-based ones. In the subsequent parts of the

thesis, these tensor decompositions are used in the modeling of three new cooperative MIMO

systems. Two of them consider multiple relay cases (with sequential and parallel relaying,

respectively) and the other one considers a single-relay multicarrier network. All the proposed

systems consider tensor codings in the transmit nodes. For each proposed system, the tensor

models are exploited to obtain semi-blind estimation algorithms, allowing to design receivers

that jointly estimate the channels and transmitted symbols. Necessary conditions required to

the uniqueness of the tensor decompositions and identifiability of the proposed algorithms are

also discussed. Finally, computational simulation results are presented in order to evaluate the



behavior of the proposed systems/receivers, illustrating the effectiveness of signal processing

based on nested tensor decompositions.

Keywords: Cooperative systems. MIMO systems. Tensor decomposition. Tucker decomposi-

tion. Semi-blind receiver.



RÉSUMÉ

Les systèmes MIMO (multiple-input multiple-output) sont souvent utilisés pour augmenter

les gains de diversité et/ou multiplexage en transmettant plusieurs versions d’un même signal

ou des données indépendantes sur différents canaux de communication. Un autre moyen

d’exploiter la diversité spatiale sont les communications coopératives. Elles sont devenues une

technique prometteuse pour les nouvelles générations de systèmes de communication sans fil,

qui ont permis d’améliorer considérablement les performances et la fiabilité de ces systèmes.

Dans ce contexte, au cours des dernières décennies, les décompositions tensorielles ont été

exploitées dans le traitement de signaux multidimensionnels dans les systèmes MIMO et, plus

récemment, dans les réseaux coopératifs, permettant la conception de récepteurs efficaces pour

l’estimation des paramètres de transmission. En particulier, les décompositions imbriquées

(nested decomposition) permettent de modéliser les signaux dans les systèmes bénéficiant de

multiples diversités, ce qui entraîne des tenseurs d’ordre élevé qui sont représentés de manière

compacte. Cette thèse présente des développements réalisés dans le contexte de nouvelles

décompositions tensorielles imbriquées appliquées aux systèmes de communication sans fil

coopératifs avec plusieurs antennes. En effet, les contributions théoriques de la présente thèse

reposent sur la proposition de nouvelles décompositions tensorielles imbriquées, ainsi que

sur l’analyse de leurs propriétés d’unicité, ainsi que sur la proposition de nouveaux systèmes

MIMO coopératifs modélisés à l’aide des décompositions présentées. Dans la première partie

de cette thèse, deux nouveaux modèles tensoriels, basés sur le modèle NTD (nested Tucker

decomposition), sont introduits. Le premier, appelé high-order nested Tucker decomposition

(HONTD), étend le modèle NTD en prenant en compte les tenseurs d’ordre supérieur résultant

de la contraction de plusieurs décompositions Tucker dans un format de train. Le deuxième,

appelé coupled nested Tucker decomposition (CNTD), peut être vue comme un couplage de

plusieurs NTDs qui partagent un facteur commun, associant les concepts d’imbrication et de

couplage définis initialement pour les modèles PARAFAC, en les étendant à des modèles basés

sur décomposition Tucker. Dans les parties suivantes, ces décompositions tensorielles sont

utilisées dans la modélisation de trois nouveaux systèmes MIMO coopératifs. Deux d’entre

eux considèrent des cas avec plusieurs relais (avec retransmission séquentielle et parallèle,

respectivement), tandis que l’autre considère un réseau avec plusieurs porteuses et un seul

relais. Tous les systèmes proposés prennent en compte les codages tensoriels dans les nœds

de transmission. Pour chaque système proposé, les modèles tensoriels sont exploités pour



obtenir des algorithmes d’estimation semi-aveugles, permettant de développer des récepteurs

qui estiment conjointement les canaux et les symboles transmis. Les conditions liées à l’unicité

des décompositions tensorielles et à l’identifiabilité des algorithmes proposés sont également

discutées. Enfin, les résultats des simulations sont présentés afin d’évaluer le comportement

des systèmes/récepteurs proposés, illustrant l’efficacité du traitement du signal basé sur les

décompositions de tenseur imbriquées.

Mots-clés: Décomposition tensorielle. Décomposition Tucker. Récepteur semi-aveugle. Systè-

mes coopératifs. Systèmes MIMO.
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1 INTRODUCTION

Wireless communication between mobile stations, held for the first time in the

nineteenth century, has experienced from the beginning of 1990s a great growth in the number

of users. The consolidation of cellphones as a toll of personal communication led to a large

increasing in the industry of wireless communication devices. Cellphone systems can be

considered the most successful application of wireless networking [1]. Since the first voice

transmission between New York and San Francisco in 1915, these systems have been gaining

more and more industrial/commercial interest, leading to the insertion of innumerable resources,

as is the case of the most recent generations that integrate voice, data and images.

In this scenario, the demand for high data transmission rate and broader coverage

required to provide services such as online games, streaming TV, among other multimedia

applications, grows asymptotically. However, high-speed wireless transmission has fundamental

physical limitations such as interference from different sources, attenuation of signal power with

distance, and other signal fading effects connected to the wireless communication channel. In

order to increase the capacity of communication systems, new technologies using strategies that

aim to improve the spectral efficiency, ensuring quality and reliability in the transmission and

reception of information, are required.

The transmitted signals in wireless communication systems have a very irregular

behavior due to attenuation and distortion usually caused by noise and interference in the

communication channel. Roughly, the signal power is dropped due to effects that can be divided

in two classes [1–3]: large-scale (macroscopic) fading and small-scale (microscopic) fading.

The first one results from the combination of effects such as the inverse square law power loss,

absorption, ground reflection and shadowing (caused by blocking effects due to buildings and

natural features). The second one, also known as small-scale fading, comes from the constructive

and destructive interference between the multiple signal paths. Therefore, it is clear that the

understanding of how these fading occur is of extreme importance for the design of wireless

communication systems.

The study on channel behavior is a fundamental problem, since it allows to translate

the physical phenomena of the propagation in a model that synthesizes the modifications of the

environment on the transmitted signals. Mathematical models that aim to describe the behavior

of the communication channels and, consequently, the influence of these distortions in the

transmitted information are constantly exploited by the scientific community in order to develop
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equalizers and receivers adapted to each situation. In practice, these channels follow statistical

models characterized by means of time-varying random variables.

Besides the study of the channel behavior, the development of techniques that avoid

the deep fading of the signal before reaching its destination is needed. An alternative to deal with

these undesired effects present on wireless channels is to exploit the so called signal diversities,

such as space, time, frequency, coding, and cooperation diversities.

By diversity we mean a set of techniques that aims to enhance the quality of received

signals in communication systems, providing a wireless link improvement at a relatively low

cost [3, 4]. The main idea in diversity is create redundancies of the signal by exploiting the

random nature of the radio propagation in such a way that different and independent versions of

the same signal reach the destination. The probability of all these copies being simultaneously in

a deep fading is small.

There are many ways to obtain diversity. For instance, time diversity can be obtained

via coding: information is coded and the coded symbols are dispersed across time domain in

different periods so that different parts of the codewords experience roughly uncorrelated fadings.

On the other hand, when the channel is frequency-selective, one can exploit frequency diversity

replaying the signals across multiple subcarriers. Since diversity is such an important resource, a

wireless system can use several types of diversity simultaneously.

Spatial diversity can be found in multiple-input multiple-output (MIMO) systems,

which have multiple antennas at the transmit and receive nodes, allowing to improve the quality

of signal by exploiting diversity [5–7]. The benefit from spatial diversity with MIMO systems

comes from the redundancies in the transmitted signal, leading the receive antennas to possibly

obtain uncorrelated faded versions of the same signal. In this way, the probability of effective

reception of the transmitted information is increased.

MIMO systems are also useful to increase the transmission rate by multiplexing

data across the multiple antennas [1]. In this case, the channel structure is exploited to obtain

independent signaling paths that can be used to send independent data. Due to the importance

of MIMO systems in the development of new wireless communication generations, as well as

in the research addressed in this thesis, we highlight an overview of some features of MIMO

channels in the following section.
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Figure 1 – MIMO wireless system with MT transmit and
MR receive antennas
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1.1 MIMO communication systems

The increasing interest in MIMO systems began with the promising spectral effici-

ency obtained with wireless systems that have multiple transmit and receive antennas. In [8–10],

one can find some pioneering works that address the architecture and capacity of MIMO channels.

A simple wireless communication system with MT transmit and MR receive antennas is shown

in Figure 1. The signals received at the receiver in this system can be represented as y = Hx+n,

where x and y are the vectors whose the entries represent the transmitted and received symbols,

respectively. The vector n represents the additive noise at each receive antenna and H is the

MR ×MT matrix of channel gains, whose the entries are the impulse responses. It was deduced

that, under certain conditions, antennas separated by a distance of order of half wavelength

would have approximately uncorrelated channels [1]. This feature can be exploited to provide

diversity and multiplexing gains.

The diversity order in MIMO systems is equal to the product of the number of

antennas at the transmit and receive nodes, if the corresponding channels are independently

faded. For effective exploitation of this diversity, it is needed the knowledge of the matrix H,

which can be obtained by sending pilot sequences. Many studies assume a model where the

entries of H are independent and identically distributed (i.i.d.) zero mean, unit variance, complex

circularly symmetric Gaussian random variables. In general, different assumptions about the

channel state information (CSI) and its random nature lead to different channel capacities.

MIMO systems are also used to increase the multiplexing gain, by transmitting

independent data onto the independent channels. This multiplexing gain leads to an increasing

in data rate when compared to single-input single-output (SISO) systems, which have only
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one antenna at the transmit and receive nodes. However, the properties of H also determines

how much spatial multiplexing it can support. It is worth mentioning that the possibility of

these two mechanisms of MIMO system exploitation raises the question on which is the best

way to exploit multiple antennas (either through diversity gain, multiplex gain or both). Many

references [1, 11–13] that addressed this question show that there is a tradeoff between diversity

and multiplexing gains. In practice, it is possible to adapt the diversity and multiplexing gains

relative to channel conditions. In adverse scenarios, with deeper faded channels, more antennas

can be used for diversity gain, improving the quality of the signal, whereas in better scenarios,

more antennas can be used for multiplexing to obtain data rate gains. Adaptive techniques to

exploiting the diversity/multiplexing tradeoff based on channel conditions can find in [14, 15].

Another way to provide spatial diversity is through the concept of cooperative

communication. In the sequel, we discuss the characterization of communication channels in

cooperative systems, providing a motivation of their use.

1.2 Cooperative communication systems

Cooperative communication was proposed for the first time in 1971 in a work that

used a cooperative channel as a way to make easier to transmit information from the source to

the destination [16]. The cooperative diversity has been shown to be applicable in several types

of communication systems, such as cellphone networks, wireless local area networks (WLAN),

sensor arrays, among others [17], emerging as a promising technique in the development of

current and future generations of wireless communication systems.

Cooperative systems are based on the exploitation of users or fixed stations as re-

transmitters (relays) of the signal coming from other users. In order words, all the involved nodes

can be used as relays of the signal transmitted by the source. The repetition of the signal sent

by the source through the relay allows the extension of the coverage area, amplifying the signal

power that reaches the destination, yielding significant gains in the capacity and performance of

the system. Due to the resounding growth in the number of mobile stations in the last decades,

cooperative communications have emerged as a technique that can significantly improve the

quality of wireless communications systems, being prominent in the development of new signal

processing techniques for 5G communication systems.

Figure 2 shows a simple example of a wireless system that utilizes cooperative

communication. Cooperative systems are composed of a transmitter (source), one or more relays
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Figure 2 – Cooperative communication system
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and one or more receivers (destination). In this scenario, a user can act as a relay for another

user, forwarding the information by using established relaying protocols. Thus, the signal that

the destination will receive is a combination at different times of the direct and cooperative links.

According to Figure 2, the source-relay-destination link enlarges the coverage area, intensifying

the signal that arrives at the destination node. The literature has shown significant gains in the

capacity and performance of these systems, being similar to the gains obtained with MIMO

systems.

Systems such as represented in Figure 2 are said single-relay systems. These systems

improve the quality of the received signal, raising SNR levels by providing a signal power gain

before forwarding to the destination. However, when the direct (source-destination) link, also

called line-of-sight (LOS), is not available (corresponding to the case when the signals are deeply

faded), the single-relay system does not provide diversity, since there are no independent copies

of the signal. In order to effectively exploit the cooperative diversity, recent works [18–21]

have been addressed cooperative systems with multiple relays (multi-relay systems) in two

cooperation scheme, namely sequential and parallel relaying.

The use of cooperative channels can be roughly classified into two categories: fixed

and adaptive cooperation. The first one is characterized by the cooperative link being always

used, regardless of channel status and intensity levels of the forwarded signal. This type has

a simpler implementation, but requires constant relaying, even in unnecessary situations or in
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unfavorable scenario. On the other hand, adaptive cooperation uses the cooperative link in a

smart way, being required only when necessary. The cost of this cooperation kind is a more

complex implementation, requiring a higher processing cost.

Relaying (or cooperation) protocols are techniques that define the manner by which

the relays process the signal to be re-transmitted. It is possible to find in the literature many

relaying protocols. However, the main applications address some classes of protocols, namely:

AF (amplify-and-forward), DF (decode-and-forward), and CF (compress-and-forward). The use

of CF relays usually requires that the direct link is always available, which is not the case of

other protocols. However, by transmitting a smaller amount of information, the CF relays save

signal bandwidth, increasing the spectral efficiency of the system. In cases where the destination

is close to the source, CF relays are more efficient than DF relays.

These cooperation protocols can also be classified with respect to how the relays

deal with the signal to be re-transmitted. Protocols are said to be non-regenerative when the relay

just amplifies the received signal (e.g. AF protocol), and said to be regenerative when the relay

performs a treatment on the received signal before forwarding (e.g. DF or CF protocol). For the

last kind of protocols, the transmitted symbols can be modified during the demodulation process

at the relay node.

Yet on the operating scheme of the relays, they can be full-duplex or half-duplex.

In the full-duplex configuration [22, 23], the relays can transmit and receive the signals at the

same time. Although the spectral efficiency is improved, the cost of implementation is high

and the transmitted signals may cause strong interference to incoming relatively weak received

signals. The most common configuration is half-duplex [24, 25], where the relays receive and

transmit at different channels, being easier to implement. However, they cause a degradation in

spectral efficiency. This led to the development of bidirectional (or two-way) half-duplex relay

systems [26].

In general, cooperative communication brings advantages in terms of improving

system performance, quality of service, cost and structure reduction (since it uses mobile stations

already connected to the network). The main limitations are related to the increase in processing

load, relay selection (in adaptive protocols) and the need to estimate a larger amount of channels.

An efficient way to mitigate the undesirable effects in wireless communication links

is associate multiple types of diversity. Next generations of wireless communication systems

will be structurally provided with multiple diversity techniques in order to establish reliable
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transmission schemes and to compensate for the effects of signal fading and shadowing. In

the last years, cooperative MIMO systems have become one of the hot topics in the wireless

communications and have attracted much research interest [18, 20, 21, 24, 27–34].

When nodes in the cooperative system are installed with multiple antennas, frequen-

tly called MIMO relay communication system, we can obtain an optimal exploitation of the

diversity/multiplexing trade-off of the spatially-distributed antennas. Indeed, the cooperation

between the nodes can provide diversity by using multiple nodes to aid in forwarding different

versions of the signal to destination, while the nodes transmit independent data across the mul-

tiple antennas. In this way, MIMO relay systems can extend the network coverage, increase

the spatial diversity and multiplexing gains and improve the effectiveness and reliability of

communication systems.

Other systems that combine multiple diversities can be found in the literature. For

instance, in [35–38] we can find MIMO systems with codings that provides space-time (ST)

diversity. In [39–41], space-time-frequency (STF) codings are applied to orthogonal frequency

division multiplexing (OFDM) MIMO systems. ST MIMO relay [18, 30, 31, 34, 42] and STF

relay systems [43] were also addressed. In [44], we can also find cooperative MIMO systems

applied to wireless sensor networks (WSN). Works on the exploitation of OFDM MIMO systems

with cooperative diversity is still scarce.

Concerning the signal processing in systems that benefit from multiple diversities,

such as ST MIMO relay systems, the use of techniques based on tensor decompositions has

attracted considerable attention. In the sequel, we introduce the main features and motivations to

use tensor-based approaches to improve signal processing efficiency.

1.3 Signal processing based on tensor models

High order tensors (i.e., multiway arrays) and tensor decompositions (also called

tensor factorization) can be seen as useful tools for representing multidimensional data in a

compact way. Recent developments in multilinear algebra have made it possible to apply tensor

analysis to several areas [45–51].

In some applications, tensor decompositions can be viewed as generalizations of

matrix decompositions such as singular value decomposition (SVD) to higher order arrays. The

reading of a tensor by its decomposition factors is useful in analysis where different contributions

must be identified from measured data. In addition to enabling multidimensional data processing,
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tensor analysis has uniqueness properties that becomes possible to solve undetermined solution

problems under conditions more relaxed than conventional matrix approaches [6, 34, 45–48, 52].

In particular, tensor approaches have gained considerable space in signal processing.

The proposition of new factorizations of tensors, as well the study of uniqueness and identifiability

conditions, have a great potential to provide remarkable improvements in several areas as

biomedical engineering, machine learning and computer vision. In the literature, one can find

several applications of tensor approaches aiming to increase the capacity of wireless networks.

In [53,54], for instance, one can find tensor completion techniques applied to internet traffic data

to solve missing data problems. The recent studies show that it is more accurate to interpolate

the missing data with a 3-D tensor as compared with the interpolation methods based on a 2-D

matrix. In [55], a tensor approach is used to obtain a more accurate algorithm for data anomaly

detection. On the other hand, in [51, 56–58], tensor-based techniques are applied to solve the

blind source separation (BSS) of a mixture of signals received by an antenna array.

In wireless communications, the fact that the signals received at destination may

accumulate different systematic variations of the system suggests that they can be viewed as

multidimensional arrays (tensors) where each index may be linked to some particular form of

diversity, benefiting simultaneously all of them [6, 34, 47]. Its multilinear nature means that

each signal sample corresponds to an element of a multidimensional space, where each index is

associated with variations of a specific system parameter. This fact is one of the main reasons for

using tensor modeling in wireless communication.

Tensor models allow the benefit from multiple (more than two) forms of signal

diversity to perform jointly and blindly signal separation/equalization, information recovery

and channel estimation under mild conditions. Indeed, the identifiability of the parameters with

a tensor approach is ensured under less restrictive conditions when compared to conventional

approaches.

Tensor-based approaches also include the possibility of using tensor coding, with

simultaneous spatial multiplexing, spreading spectrum, time spreading and multicarrier modula-

tion, yielding diversity and spectral efficiency gains. In [59], a block coding scheme based on the

Khatri-Rao matrix product was proposed. We can find in [18,30,39,42] examples of applications

of this coding scheme to different systems based on different tensor decompositions.

In [35], a tensor space-time coding (TSTC) was proposed aiming to increase the

diversity and multiplexing gain by introducing two extra time dimensions (chips and blocks), in
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Figure 3 – Tridimensional visualization of the received signal in a MIMO system
with TSTC
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addition to common space and time (symbol period) dimensions, via a third-order coding tensor

and two allocation matrices in a MIMO system. A block-diagram interpretation of multimodal

data is illustrated Figure 3, where we can see the tensor of signals received at destination during

the p-th time-block. At each block p, a different set of data streams can be sent using a different

resources (transmit antennas), depending on the allocation matrices embedded in the coding

tensor. Globally, the received signals form a fourth-order tensor. The TSTC was also applied to

a two-hop MIMO relay systems in [34].

Among the most popular tensor decompositions, Tucker [60] and parallel factors

analysis (PARAFAC) [61], as well as their derivations (PARATUCK [35], nested PARAFAC [41],

coupled PARAFAC [62], generalized PARATUCK [40] and nested Tucker [34]), are commonly

used in signal processing for wireless communications. PARAFAC models have the important

property of being essentially unique. Tucker models are not essentially unique, except under

certain conditions like a priori knowledge of the core tensor. Despite this, Tucker models have

been emerged as one of the most flexible tensor decompositions [57].

For this thesis, in particular, nested and coupled decompositions are crucial. For the

nested decompositions based on PARAFAC and Tucker models found in the literature, the nesting

operation results from the fact that two successive tensors arranged in a train format have a

matrix factor in common. On the other hand, a set of tensor decompositions is said to be coupled

when at least one of the involved factors is shared by all the decompositions. To our knowledge,

the recent concept of coupled decompositions has been applied only to PARAFAC-based models

and have not yet been applied in the context of telecommunications. In this thesis, we extend

the concepts of nesting and coupling to higher-order tensors and/or to Tucker-based models. In

Subsection 2.2, we bring a more detailed overview of the main tensor decompositions found in

the literature.
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In this context, tensor decompositions have been widely exploited in the design of

algorithms for the blind estimation of transmission parameters, without require the use of training

sequences or previous knowledge of CSI. Different algorithms for parameter estimation applied

to cooperative MIMO systems, with different configurations, different relaying protocols and

different codings can be found in the literature [18, 21, 24, 27, 34, 39, 42, 48]. In Subsection 2.3,

we make a deeper bibliographic survey.

For cooperative networks, the reliability of signal detection depends on the accuracy

of CSI for all the links involved in the communication scheme [27]. The knowledge of individual

channels plays an important role for optimizing MIMO relay systems in terms of power allocation,

decoding and adaptive relaying protocols that must decide when a cooperation is feasible and

select a suitable relay [63, 64]. However, in most of real applications, CSI for all the links is not

available at the destination node and needs to be estimated.

The semi-blind estimation of symbols and channels has become a powerful tool

for the development of the next generations of wireless communication systems. Many papers

that propose receivers based on matrix and tensor models admit the use of training sequences

for channel estimation [20, 21, 65, 66] or assume the perfect knowledge of the CSI at the

receivers [29, 67–69]. The semi-blind receivers provide spectral efficiency gains by using fewer

pilot symbols. In this scenario, tensor-based receivers seem to be a promising solution.

Finally, the study of tensor models applied to more complex cooperative MIMO sys-

tems is still scarce. Such researches are important so that the scientific community can effectively

test and understand the behavior, advantages and limitations of each case, being therefore a topic

of interest for new communication strategies that enable a scientific-technological development

capable of following the demands of the new generations of wireless systems.

1.4 Thesis content

In this thesis, we address nested tensor decompositions applied to cooperative MIMO

communication systems. In particular, the main contributions of the this thesis rely on the propo-

sition of two new tensor decompositions applied to high-order tensors and of new cooperative

MIMO communication systems, which are modeled by the presented nested tensor models. In

the first part of this thesis, two new tensor models, called high-order nested Tucker decomposi-

tion (HONTD) and coupled nested Tucker decomposition (CNTD), are introduced. A detailed

discussion on the uniqueness properties of these new models is made. In the subsequent parts,
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the new proposed tensor models are used to modeling signals received at destination in three

new cooperative MIMO relay systems. By exploiting the tensor-based modeling, we derive

semi-blind receiver algorithms to jointly estimate the transmitted symbols and communication

channels of the proposed systems. Extensive Monte Carlo simulations to illustrate the behavior

and the effectiveness of the proposed schemes were performed.

Thesis organization

In addition to the global overview on wireless communication in this introduction,

the Chapter 2 brings a background on tensor models, operations and applications. The notations,

and main matrix and tensor operations that will be necessary along of this work are presented.

We also discuss some useful properties used throughout the thesis. An overview of the most

known tensor decomposition is introduced. At the end of this chapter, we summarize some recent

and important applications of tensor models to design wireless communication systems.

Chapter 3 presents the first original contributions of this work, by presenting the

tensor decompositions proposed in this thesis. Based on a nested Tucker decomposition (NTD)

proposed in [34], we derive to new tensor decompositions that generalize the NTD model to

higher-order tensors. The first one is called high-order nested Tucker decomposition (HONTD),

which is characterized by a train of Tucker models that share common decomposition factors.

The second one is called a coupled nested Tucker decomposition (CNTD). This model can be

seen as a combination of the concepts of coupled and nested decompositions that were originally

introduced separately. Coupled decomposition was initially introduced to PARAFAC-based

models and CNTD extends this concept to Tucker-based models. Details on the properties of the

proposed models are discussed and uniqueness theorems are provided.

In the following chapters, the proposed new tensor models are applied to three

different cooperative MIMO systems, whose relays operate in AF protocol and half-duplex

configuration. In Chapter 4, we propose a multi-hop MIMO relay system that uses a TSTC to

encode the signals to be transmitted at the source and the relays. The transmission scheme is

composed by K + 1 steps, where K is the number of relays available on the cooperative network.

The multi-hop scenario yields high-order tensor signals that satisfy a HONTD model, which is

exploited to derive semi-blind receiver algorithms for symbols and channels joint estimation.

The performance of the system is improved with this system due to the smaller path-loss and the
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multiple coding provided by the new TSTC at each transmit node. Although the system proposed

in this chapter exploits cooperative communications, it does not exploit the cooperative diversity.

Chapter 5 introduces a new two-hop MIMO multi-relay system with TSTC at the

source and the relays. Unlike the system presented in Chapter 4, the multi-relay system proposed

here takes into account a parallel cooperation scheme, which provide an exploitation of the

cooperative diversity. The multiple relays use orthogonal channels (parallel relaying) to increase

the diversity order, assuming that all the relays can communicate directly with the destination,

resulting in a combination of independent versions of the same information sent from the source

and forwarded by the relays. This system can be viewed as a generalization of recently proposed

systems [24, 30, 34, 35], aiming to exploit the cooperative diversity provided by the multiple

relays in a MIMO system with TSTC. Indeed, the presented system extends previous works

in different ways, either by proposing a more general tensor decomposition, by using a more

general relay coding, by extending these works to the multi-relay case and/or by using a different

estimation algorithm. The signals at destination are described as a fifth-order tensor that satisfies

a CNTD model. The coupling of this decomposition is given in the sense that coded symbols sent

by the source are common to all the relays, playing a role of coupling factor of multiple NTDs.

The use of the CNTD model in this chapter is the first application of coupled tensor models in the

context of wireless communications. CNTD-based system is exploited to derive a closed-form

semi-blind receiver that jointly estimates the symbols and individual channels. Performance

gains on the parameter estimation show the effectiveness of globally process coupled data.

In Chapter 6, a new two-hop OFDM MIMO relay system with TSTC at the source

and the relay is presented. This system is another application of the CNTD model. In this case,

the transmitter sends a data tensor using a TSTC with multiplexing of the symbols across space

(antennas), time (blocks) and frequency (subcarriers) domains and the relay forwards the received

data tensor to the destination by using a new TSTC. The subcarriers used by the source are

assumed neighbors in such a way that the channel coefficients are invariant across the subcarriers.

The signals received at the destination form a fifth-order tensor that satisfies a CNTD, which

have a different structure when compared to the one exploited in Chapter 5. Indeed, in the tensor

model exploited in this chapter, the channel matrices perform the coupling factor, being common

to all the subcarriers. The tensor modeling is exploited to derive a closed-form semi-blind

receiver for jointly estimating the symbols and channels. Simulation results corroborate the

advantages of exploiting approaches based on coupled tensor decompositions.
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In Chapter 7, a raising of the main conclusions on the contributions of this work is

made. Some advantages and limitations of the addressed methods and systems are highlighted.

Finally, in Chapter 8, some perspectives for future researches are drawn.

Main original contributions

Briefly, the main contributions of this thesis can be summarized as follows:

Chapter 3

• Presentation of the new tensor model called HONTD, which generalizes the existing NTD

proposed in [34] to higher order tensors, by considering successive Tucker models in a

train format;

• Presentation of the new tensor model called CNTD, which generalizes the existing NTD

proposed in [34] to higher order tensors and extends the coupling concept, introduced

for PARAFAC models, to Tucker-based decompositions, by considering the coupling of

multiple NTDs that share a common factor;

• Demonstration of the uniqueness of new tensor models under certain conditions, filling a

lack in the literature on the uniqueness of NTD models.

Chapter 4

• Presentation of a new multi-hop MIMO relaying system with TSTC at all the nodes,

generalizing recently proposed systems [18, 24, 34, 42]. It is shown that the signals at

destination satisfy a HONTD model;

• Exploitation of proposed HONTD to develop semi-blind receivers, based on iterative and

non-iterative (closed-form) methods, for jointly estimating the symbol matrix and the

individual channels;

• Discussion on identifiability conditions of the proposed algorithms;

• Presentation of extensive Monte Carlo simulation results for illustrating the effectiveness

of the proposed systems and evaluating the receiver performance.

Chapter 5

• Presentation of a new two-hop MIMO multi-relay system with TSTC at the source and the

relays, generalizing systems proposed in previous works. It is shown that the signals at

destination satisfy a fifth-order CNTD model;



36

• Exploitation of proposed CNTD to develop a semi-blind receiver, based on closed-form

solution, for jointly estimating the symbol matrix and the individual channels;

• Discussion on identifiability conditions of the proposed algorithms;

• Presentation of extensive Monte Carlo simulation results for illustrating the effectiveness

of the proposed systems and evaluating the receiver performance.

Chapter 6

• Presentation of a new two-hop OFDM MIMO relay system with TSTC at the source

and the relay with tensor data multiplexing symbols across the subcarriers, generalizing

systems proposed in previous works. It is shown that the signals at destination satisfy a

fifth-order CNTD model;

• Exploitation of proposed CNTD to develop a semi-blind receiver, based on closed-form

solution, for jointly estimating the symbol matrix and the individual channels;

• Discussion on identifiability conditions of the proposed algorithms;

• Presentation of extensive Monte Carlo simulation results for illustrating the effectiveness

of the proposed systems and evaluating the receiver performance.

Scientific production

The studies addressed in this thesis yielded five full papers (two for international

conferences and three for international journals), which the results are presented along this

manuscript. Below, one can find the references of the related papers.

Conference papers

ROCHA, D.S.; FAVIER, G.; FERNANDES, C.A.R. Tensor coding for three-hop MIMO relay

systems. In: IEEE Symposium on Computers and Communication (ISCC2018), Natal, Bra-

zil, June 2018.

ROCHA, D.S.; FERNANDES, C.A.R.; FAVIER, G. Space-Time-Frequency (STF) MIMO

Relaying System with Receiver Based on Coupled Tensor Decompositions. In: Asilomar Con-

ference on Signals, Systems, and Computers, Pacific Grove, USA, October 2018.
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Journal papers

ROCHA, D.S.; FAVIER, G.; FERNANDES, C.A.R. Closed-Form Receiver for Multi-Hop

MIMO Relay Systems with Tensor Space-Time Coding. Accepted to publication in Journal of

Communication and Information Systems (JCIS), December 2018.

ROCHA, D.S.; FERNANDES, C.A.R.; FAVIER, G. MIMO multi-relay systems with tensor

space-time coding based on coupled nested Tucker decomposition. Accepted to publication in

Digital Signal Processing – Elsevier, March 2019.

ROCHA, D.S.; FERNANDES, C.A.R.; FAVIER, G. Doubly coupled nested Tucker decomposi-

tion (D-CNTD) for cooperative OFDM-MIMO systems with multiple relays. Under construction,

2019.
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2 TENSOR REQUISITES

The theory of tensors is a branch of linear algebra called multilinear algebra. A tensor

can be interpreted in many ways depending on its application. For the interests of this thesis, in a

simple way, tensors are multimodal arrays with order higher than two. System modeling based on

tensor approaches plays an increasing role in many areas such as chemometrics, psychometrics,

numerical analysis, telecommunications and signal and image processing [6, 34, 45, 46, 49, 70].

In particular, tensor models have been extensively used for designing different types of signal

processing techniques for wireless communication systems during the last decades.

In this chapter, we introduce the mathematical background necessary for the deve-

lopment of this work. In Section 2.1, we define the notations, the main concepts of multilinear

algebra and some basic operations involving matrices and tensors, which are used throughout

this thesis. In Section 2.2, we recall the main tensor decompositions exploited in the literature.

In Section 2.3, we bring up an overview of tensor decompositions applied to communication

systems.

2.1 Notations, definitions and basic matrix and tensor operations

Scalars, column vectors, matrices and tensors of order higher than two are denoted

by lowercase (a, b, . . . ), boldface lower case (a,b, . . . ), boldface uppercase (A,B, . . . ) and

uppercase calligraphic (A,B, . . . ) letters, respectively. Given a matrix A ∈ CI×J , the transpose,

conjugate, Hermitian transpose, Moore-Penrose pseudo-inverse and rank are denoted respectively

by AT , A∗, AH , A† and rA. The i-th element of a is denoted by [a]i or ai, the (i, j)-th element

of A is denoted by [A]i,j or ai,j , and the (i1, · · · , iN)-th element of the N -th order tensor A is

given by [A]i1,··· ,iN or ai1,··· ,iN . Moreover, the i-th row and the j-th column of the matrix A are

respectively denoted by the vectors ai· and a·j .

The vector e
(N)
n ∈ RN represents the n-th vector of the canonical base of the

Euclidean space RN (i.e., vector containing an element equal to 1 in its n-th position and zeros

elsewhere). The operator vec(·) transforms a matrix into a column vector by stacking the columns

of its matrix argument. The operator diag(a) forms a diagonal matrix from its vector argument

while diagn(A) forms a diagonal matrix from the n-th row of the matrix A. Similarly, the

operator bdiag(Ak) , bdiag(A1, . . . ,AK) forms a block-diagonal matrix composed of the K

matrices Ak, with k = 1, . . . , K. In the sequel, we present some matrix operations widely used
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in the context of tensor algebra.

Definition 1. (Kronecker product) The Kronecker product of two matrices A ∈ CI×J and

B ∈ CM×N is defined as

A⊗B =


a1,1B a1,2B · · · a1,JB

a2,1B a1,1B · · · a1,1B
...

... . . . ...

aI,1B a1,1B · · · a1,1B

 ∈ CIM×JN . (2.1)

Note that the matrix defined by A ⊗B has all possible combinations of products

of the elements of A and B. Given a set S = {1, . . . , N} and the matrices A(n) ∈ CIn×Jn , we

represent a multiple Kronecker product as ⊗
n∈S

A(n) = A(1)⊗A(2)⊗· · ·⊗A(N) ∈ CI1···IN×J1···JN .

A generalization of the Kronecker product for partitioned matrices was introduced by Tracy

and Singh [71], and it is called block Kronecker product or π-product [72, 73]. Intuitively, a

partitioned matrix can be viewed as a matrix that has a concatenation of vertical and/or horizontal

sections called blocks or submatrices. If A is a partitionated matrix with I vertical blocks

and J horizontal blocks, I, J > 1, then we can write A = [Ai,j] ∈ CIM×JN , with blocks

Ai,j ∈ CM×N , for i = 1, . . . , I and j = 1, . . . , J . In particular, in this thesis, it will be useful

the case where the matrices are equally partitioned. In this case, the block Kronecker product is

said to be balanced [72].

Definition 2. (Balanced block Kronecker product) Let A = [Ak] ∈ CI×KJ and B = [Bk] ∈

CM×KN be partitioned matrices composed of K horizontal blocks Ak ∈ CI×Jand Bk ∈ CM×N ,

respectively. The balanced block Kronecker product is defined as

A ./ B =
[

A1 ⊗B1 A2 ⊗B2 · · · AK ⊗BK

]
∈ CIM×KJN . (2.2)

Definition 3. (Khatri-Rao product) The Khatri-Rao product of two matrices A ∈ CI×J and

C ∈ BM×J is equivalent to a column-wise Kronecker product and is defined as

A �B =
[

A·1 ⊗B·1 A·2 ⊗B·2 · · · A·J ⊗B·J

]
∈ CIM×J . (2.3)

The Khatri-Rao product of two matrices only exists if they have the same number of

columns. Another way to compute the Khatri-Rao product is given by

A �B =


Bdiag1(A)

...

BdiagI(A)

 . (2.4)
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Figure 4 – (i) Column fiber; (ii) row fiber; (iii) tube fiber
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Let us define some useful matrix properties that involve the presented operations.

For this, we consider the matrices A ∈ CI×P , B ∈ CP×M , C ∈ CJ×M , D ∈ CM×N .

Property 1.

vec(ABCT ) = (C⊗A)vec(B) ∈ CJI . (2.5)

Property 2.

(A⊗C)(B⊗D) = (AB)⊗ (CD) ∈ CIJ⊗MN . (2.6)

Property 3. Let A be a full column rank matrix, then rAB = rB. This implies that AB is full

column rank if and only if A and B are full column rank.

Property 4. Given M = A⊗C, then rM = rArC. This implies that M is full column rank if

and only if A and C are full column rank.

For demonstrations and discussions on these properties, see [45, 73]. For the next

definitions presented in this section, unless otherwise stated, we consider the following tensors:

- a N -th order tensor A ∈ CI1×···×IN ;

- a M -th order tensor B ∈ CJ1×···×JM ;

- a third-order tensor X ∈ CI×J×K .

Definition 4. (Fiber) Fibers are vectors obtained by fixing the indices of all modes of a tensor,

except for one. For example, the third-order tensor X has three kinds of fibers: (i) column fibers

(x·jk ∈ CI) obtained by fixing the indices j and k; (ii) row fibers (xi·k ∈ CJ) obtained by fixing

the indices i and k; (iii) tube fibers (xij· ∈ CK) obtained by fixing the indices i and j. Figure 4

illustrates the fibers for this case.

Definition 5. (Matrix slice) Matrix slices are matrices obtained by varying the indices of two

modes and fixing all the others. For a N -th order tensor, there are
(
N
2

)
ways to slice it, where
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Figure 5 – (i) Frontal slice; (ii) vertical slice; (iii) horizontal slice
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(
N
2

)
denotes the binomial coefficient, i.e., the number of possibilities to choose 2 elements from a

set of N elements. For the third-order tensor X , the three kinds of slices are: (i) frontal slices

(X··k ∈ CI×J); (ii) vertical slices (X·j· ∈ CI×K); (iii) horizontal slices (Xi·· ∈ CJ×K). Figure

5 illustrates the three kinds of slices of a third-order tensor.

Commonly, slices are defined as matrices obtained by varying two indices of the

tensor, as above defined. In this thesis, we propose a generalization of this concept for tensor

slices, which are obtained by varying N1 indices of a N -th order tensor, with 3 ≤ N1 ≤ N ,

while the others N −N1 indices remain fixed, resulting in a N1-th order tensor slice. Note that

if we assume N1 = 1, we get fibers, and if we assume N1 = 2, we get matrix slices. By fixing

the index in of A, for instance, we define a (N − 1)-th order tensor, which will be denoted by

[A](in) or A(in) ∈ CI1×···×In−1×In+1×···×IN .

Definition 6. (Unfolded matrix) Matrix unfolding is a matrix representation (or matricization) of

a high-order tensor. The tall (or flat) mode-n unfolding of A is obtained by mapings its elements

into a matrix AP1···PN−1×PN (or APN×P1···PN−1
), where {P1, · · · , PN} is any permutation of

{I1, · · · , IN}, whose the entries are ap1,··· ,pN = [AP1···PN−1×PN ]p̄,pN , with

p̄ = (p1 − 1)P2 · · ·PN−1 + (p2 − 1)P3 · · ·PN−1 + · · ·+ (pN−2 − 1)PN−1 + pN−1. (2.7)

From Definition 6, we can see a mode-n unfolding as a rearrangement of the elements

of A obtained by varying a index in and keeping the other indices fixed, in such a way that the

fibers of the n-th mode are placed along the rows (tall unfolding) or columns (flat unfolding).

For example, let us consider the third-order tensor X . There are two flat mode-1 unfoldings,

XI×KJ and XI×JK , which consist of column fibers placed side by side, according to the order of

combination of the modes. The order of appearance of the modes forms different unfoldings and

may vary from one definition to another. Here, we consider that the indices that vary faster are the

ones appearing in the right, i.e., [XI×KJ ]i,(k−1)J+j = [X ]i,j,k and [XI×JK ]i,(j−1)K+k = [X ]i,j,k.
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Figure 6 – Matrix representation for third-order tensor
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Equivalently, an unfolded matrix can be obtained by stacking the slices of a given mode, as

shown in Figure 6. Note that, in our notation, the subscript characters in the unfolded matrix

explicit the order in which the modes are combined and, consequently, the size of the unfolded

matrix.

Unlike the mode-n unfolding, which combines all modes of a tensor in rows (or

columns) excepting for the n-th mode, it is possible to define a generalized unfolding where

multiple modes are combined in rows and columns of the resulting unfolded matrix. For this

generalized unfolding, let us define the set S = {1, · · · , N} and the representations IS, ĪS and iS,

which denote, respectively, short forms for the dimension, product of the dimensions and the set

of indices associated to the modes of the set S. For instance, forN = 3, we have IS = I1×I2×I3,

ĪS = I1I2I3 and iS = {i1, i2, i3}. Thus, defining S1 and S2 as ordered subsets of the set S, such

that S1 ∪ S2 = S, we can make the matricization of A ∈ CIS as

AĪS1×ĪS2
=

I1∑
i1=1

· · ·
IN∑
iN=1

ai1,··· ,iN

(
⊗
n∈S1

e
(In)
in

)(
⊗
n∈S2

e
(In)
in

)T
, (2.8)

with ĪS1 and ĪS2 being any ordered combination of the dimensions of the tensor A.

Definition 7. (Inner product) Let us consider a tensor T ∈ CI1×···×IN of same order of A. The

inner product between A and T is defined as

〈A, T 〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

ai1,··· ,iN t
∗
i1,··· ,iN . (2.9)

Definition 8. (Outer product) The outer product between the N -th order tensor A and the M -th

order tensor B yields a new tensor, whose the entries are defined as

[A ◦ B]i1,··· ,iN ,j1,··· ,jM = ai1,··· ,iN bj1,··· ,jM . (2.10)

Equation (2.10) defines a (N +M)-th order tensor with dimension I1 × · · · × IN ×

J1 × · · · × JM and can be interpreted as a generalization of the concept of outer product of two

vectors.
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Definition 9. (Rank-one tensor) The tensor A is said to be a rank-one tensor if it can be written

as the outer product of N vectors u(n) ∈ CIn , with n ∈ [1, N ], as follows

A = u(1) ◦ · · · ◦ u(N), (2.11)

whose the entries are ai1,··· ,iN = u
(1)
i1
· · ·u(N)

iN
.

Note that this definition is a generalization of the concept of rank-one matrix, where

a matrix A ∈ CI1×I2 has rank equal to one if there are two vectors u(1) ∈ CI1 and u(2) ∈ CI2

such that A = u(1) ◦ u(2) = u(1)u(2)T . As will be discussed later, some tensor decompositions

express the tensor as linear combinations of rank-one tensors.

Definition 10. (Tensor rank) The rank of a tensor is the smallest number of rank-one tensors

needed to write this tensor in a linear combination.

The above definition implies that any arbitrary tensor of rank R ≥ 1 can be written

as a sum of R rank-one tensors, i.e., if A has rank R, we can write

A =
R∑
r=1

u(1)
r ◦ · · · ◦ u(N)

r . (2.12)

Hitchcock [74] was the first to introduce the idea of writing a tensor as a sum of rank-one tensors.

Definition 11. (Kruskal rank) The Kruskal-rank, or simply k-rank, of a matrix A∈ CM×N is the

maximum number kA such that any set of kA columns of A is linearly independent. Note that

the k-rank is always less than or equal to the rank of a matrix: kA ≤ rA ≤ min(M,N).

Definition 12. (Identity tensor) A identity tensor of order N , denoted by I(N)
R ∈ CR×R×···×R, is

a superdiagonal tensor containing elements equal to 1 in the positions where all indices are the

same, and equal to zero elsewhere.

Definition 13. (Frobenius norm) Frobenius norm of the tensor A is defined by

‖A‖F =
√
〈A,A〉 =

(
I1∑
i1=1

· · ·
IN∑
iN=1

|ai1,··· ,iN |2
)1/2

. (2.13)

Frobenius norm can be viewed as a measure of the square root of the energy of a

tensor and it is useful to compute the angle between two tensors. For the tensors A and T , the

angle can be obtained as

θ = arccos
〈A, T 〉
‖A‖F‖T ‖F

. (2.14)
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Definition 14. (Tensor-matrix mode-n product) Let us consider a matrix U ∈ CRn×In , whose

number of columns is equal to the dimension of the n-th mode of A. The mode-n pro-

duct between the tensor A and the matrix U yields a N -th order tensor C = A ×n U ∈

CI1×···×In−1×Rn×In+1×···×IN defined as

ci1,··· ,in−1,rn,in+1,··· ,iN =
In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iNurn,in . (2.15)

Definition 15. (Tensor-tensor mode-n product) Given a set S = {1, · · · , N}, let St be an ordered

subset of S− {n}, with 1 ≤ n ≤ N . Let us consider a Nt-th order tensor T ∈ CRn×In×ISt , with

3 ≤ Nt ≤ N + 1. The mode-n product between the tensors A and T , denoted by A×n T , gives

a tensor C ∈ CI1×···×In−1×Rn×In+1×···×IN defined as

ci1,··· ,in−1,rn,in+1,··· ,iN =
In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN trn,in,iSt . (2.16)

Note that, by convention, in Definitions 14 and 15, we assume that the second mode

of U (or T ) is equal to the n-th mode of A. In both cases, the mode-n product does not change

the size of the resulting tensor, but provides a liner transformation on the n-th mode of A.

Property 5. Considering the tensors A, T (1) ∈ CRn,In,IS1 and T (2) ∈ CPn,Rn,IS2 of orders N ,

N1 and N2, respectively, let us define S1 and S2 as two ordered subsets of S− {n}, with N1 − 2

and N2 − 2 elements, respectively, such that S1 ⊆ S2. We have(
A×n T (1)

)
×n T (2) = A×n

(
T (1) ×n T (2)

)
∈ CI1×···×In−1×Pn×In+1×···×IN . (2.17)

Proof.

(
A×n T (1)

)
×n T (2) =

Rn∑
rn=1

In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN t
(1)
rn,in,iS1

t
(2)
pn,rn,iS2

=
In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN

(
Rn∑
rn=1

t
(1)
rn,in,iS1

t
(2)
pn,rn,iS2

)
= A×n

(
T (1) ×n T (2)

)
, (2.18)

which is the desired result.

Definition 16. (Contraction operation) Let us consider the tensors A and B sharing a common

dimension (Ip = Jq = K, with 1 ≤ p ≤ N and 1 ≤ q ≤ M ). The contraction of A with B,

denoted by A ∗qp B, is defined as the following sum over the common mode (ip = jq = k) [75]

ci1,··· ,ip−1,j1,··· ,jq−1,jq+1,··· ,jM ,ip+1,··· ,iN =
K∑
k=1

ai1,··· ,ip−1,k,ip+1,··· ,iN bj1,··· ,jq−1,k,jq+1··· ,jM , (2.19)
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which results in a (N+M−2)-th order tensor C ∈ CI1×···×Ip−1×J1×···×Jq−1×Jq+1×···×JM×Ip+1×···×IN .

Note that the contraction operation, unlike mode-n product, accumulates all the

modes of both involved tensors, except for the common mode. However, it can be rewritten as

the following tensor-matrix mode-k products by combining some modes of A or B

CI1×···×Ip−1×J1···Jq−1Jq+1···JM×Ip+1×···×IN = A×k BJ1···Jq−1Jq+1···JM×K , (2.20)

CJ1×···×Jq−1×I1···Ip−1Ip+1···IN×Jq+1×···×JM = B ×k AI1···Ip−1Ip+1···IN×K , (2.21)

where BJ1···Jq−1Jq+1···JM×K and AI1···Ip−1Ip+1···IN×K are tall unfoldings of B and A, respectively,

and CI1×···×Ip−1×J1···Jq−1Jq+1···JM×Ip+1×···×IN and CJ1×···×Jq−1×I1···Ip−1Ip+1···IN×Jq+1×···×JM are con-

tracted forms of the tensor C, whose the sizes are explicit in the subscript characters.

Definition 17. (Concatenation operation) Let us consider the N -th order tensors A(r) ∈

CI1×···×IN , with r = 1, ...., R. The concatenation of the R tensors A(r) along the (N + 1)-

th mode yields the (N + 1)-th order tensor G ∈ CI1×···×IN×R as follows

G = A(1) tN+1 A(2) · · · tN+1 A(R) ⇐⇒ gi1,··· ,iN ,r = a
(r)
i1,··· ,iN . (2.22)

The matrix representation presented in Definition 6 can be viewed as a concatenation

operation. The stacking of the slices represented in Figure 6 is obtained by concatenating the

frontal slices of the tensor X (X··k) along the second mode as follows

XI×KJ = X··1 t2 X··2 · · · t2 X··K ⇐⇒ [XI×KJ ]i,(k−1)J+j = xi,j,k. (2.23)

2.2 Background on tensor decompositions

In this section, we present the most important decompositions of high-order tensors.

Tensor decomposition, also referred as multi-way factor analysis, is a tool that allows recovering

information of multivariate datasets by decomposing tensors into elementary factors. The

analysis of a tensor in terms of its decomposed factors is useful in problems where a given

parameter is subject to different influences that must be separately identified. In several signal

processing problems, tensor decomposition applications are related to the separation of signals

transmitted by different sources.

In some cases, tensor decompositions can be viewed as generalizations of PCA or

SVD to orders higher than two. For example, a third-order Tucker decomposition can also
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be viewed as a generalization of the higher-order singular value decomposition (HOSVD)

[45, 70], since it replaces the singular vectors by matrix factors. The main motivation for using

tensor-based approaches is related to their natural capability to model multimodal data, with

useful uniqueness properties under more relaxed conditions, in contrast to conventional matrix

approaches, such as SVD, where the pair of singular matrices is unique due to the imposition

of orthogonality. When convenient, we recall the uniqueness properties and conditions for

the presented tensor models. Demonstrations of the theorems of uniqueness are given in the

Appendix A.

Tucker [60] and PARAFAC [61] models, as well as theirs derivations, are the

most commonly used tensor decompositions in signal processing for wireless communications.

PARAFAC models have the important property of being essentially unique, which is not the case

of the Tucker models, except under certain conditions, like the a priori knowledge of the core

tensor. Essential uniqueness means that the decompositions are unique up to arbitrary scaling

and permutation of columns of the factor matrices. However, Tucker models are one of the

most important and flexible tensor decompositions [57]. From these main models, several tensor

decompositions are derived for specific cases. A combination of the structures of the PARAFAC

and Tucker decompositions was proposed in [76], yielding a model named PARATUCK, which

considers an iteration between its matrix factors. Other derivations as nested PARAFAC [41],

generalized PARATUCK [40] and nested Tucker [34] decompositions were proposed with

application in signal processing problems.

2.2.1 Tucker decomposition

The Tucker decomposition was introduced by L. Tucker in 1966 [60]. This model

consists on the decomposition of a tensor into a core tensor of the same order that interacts with

factor matrices. For a N -th order tensor X ∈ CI1×···×IN , the Tucker decomposition is defined as

X = G ×1 A(1) ×2 A(2) · · · ×N A(N), (2.24)

where G ∈ CR1×···×RN is the core tensor and A(n) ∈ CIn×Rn , with n = 1, . . . , N , are the factor

matrices. It can be written in scalar form as

xi1,··· ,iN =

R1∑
r1=1

· · ·
RN∑
rN=1

gr1,··· ,rN

N∏
n=1

a
(n)
in,rn

. (2.25)

The Tucker decomposition defined in (2.24) has the following matrix representation,
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Figure 7 – Block-diagram of a Tucker decomposition for a third-order tensor
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which corresponds to a generic formulation for a tall mode-n unfolding

XIn+1···IN I1···In−1×In = (A(n+1) ⊗ · · · ⊗A(N) ⊗A(1) ⊗ · · · ⊗A(n−1))GnA
(n)T , (2.26)

where Gn ∈ CRn+1···RNR1···Rn−1×Rn is the corresponding tall mode-n unfolding of G. A cor-

responding generic flat mode-n unfolding is obtained by transposing (2.26). Commonly, the

mode-n unfolding XIn+1···IN I1···In−1×In is denoted simply by Xn.

Special cases of the Tucker model consider the decomposition of a N -th order tensor

that has N1 factor matrices, with N > N1. That is, N −N1 decomposition factors are equal to

identity matrices. Considering A(n) = IIn for n = N1 + 1, . . . , N , which implies Rn = In, the

Tucker–(N1, N) model [77] corresponds to

X = G ×1 A(1) ×2 A(2) · · · ×N1 A(N1) ×N1+1 IIN1+1
· · · ×N IIN , (2.27)

or simply

X = G ×1 A(1) ×2 A(2) · · · ×N1 A(N1) = G ×N1
n=1 A(n), (2.28)

with G ∈ CR1×···×RN1
×IN1+1×···×IN . For the case X ∈ CI1×I2×I3 , with the core tensor G ∈

CR1×R2×R3 and the factors A(1) ∈ CI1×R1 , A(2) ∈ CI2×R2 and A(3) ∈ CI3×R3 , the third-order

Tucker decomposition X = G ×1 A(1) ×2 A(2) ×3 A(3) is illustrated in Figure 7. This model

can also be represented in a compact form as (G,A(1),A(2),A(3)).

Some authors use the nomenclature Tucker-3 to the third-order Tucker decomposition

above represented. When one of the matrix factors of this decomposition is equal to the identity

matrix, for example A(1) = I, we say that we have a Tucker-2 given by X = G ×2 A(2) ×3 A(3),

which is equivalent to a Tucker-(2, 3) decomposition. Similarly, when two of the matrix factors

are equal to identity matrices, for example A(1) = A(2) = I, we define a Tucker-1, or Tucker-

(1, 3) decomposition, and X becomes X = G ×3 A(3).
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Uniqueness

The Tucker model is not essentially unique, since the factor matrices A(n) and the

core tensor G are not identifiable in a unique way, i.e., they can be replaced by Ā(n) = A(n)∆n

with ∆n ∈ CRn×Rn nonsingular, and the core tensor G replaced by Ḡ = G×Nn=1 (∆n)−1, without

changing the tensor X . Indeed, from (2.24), we have

X = Ḡ ×Nn=1 Ā(n)

= G ×Nn=1 (∆n)−1 ×Nn=1 A(n)∆n

= G ×Nn=1 A(n)∆n(∆n)−1

= G ×Nn=1 A(n). (2.29)

This result means that there are alternatives for the matrix factors and core tensor

that satisfy the same decomposition model. However, if we consider the core tensor G known,

the following uniqueness theorem is valid for Tucker models.

Theorem 1. Consider a N -order tensor X ∈ CI1×···×IN that satisfies a Tucker decomposition.

When the core tensor G ∈ CR1×···×RN is known, the matrix factors A(n) ∈ CIn×Rn , for n =

1, . . . , N , are unique up to the scalar ambiguities Ā(n) = A(n)∆n, such that ∆n = δnIRn , with∏N
n=1 δn = 1.

Proof. See Appendix A.

2.2.2 Generalized Tucker decomposition

The generalized Tucker decomposition corresponds to a Tucker decomposition where

some (or all) matrix factors are replaced by tensors, i.e., A(n) in (2.24) is replaced by A(n),

resulting in tensor-tensor mode-n products. Similarly to the Tucker model, a special case of

the generalized Tucker model was introduced in [40] for cases where some factors are equal to

identity matrices. For a given N -th order tensor X ∈ CI1×···×IN , the generalized Tucker–(N1, N)

model can be written as

X = G ×1 A(1) ×2 A(2) · · · ×N1 A(N1) = G ×N1
n=1 A(n), (2.30)
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with core tensor G ∈ CR1×···×RN1
×IN1+1×···×IN and tensor factors A(n) ∈ CIn×Rn×ISn , where Sn

is an ordered subset of the set S = {N1 + 1, . . . , N}. The tensor factor A(n) is a Nn-th order

tensor, with 3 ≤ Nn ≤ N −N1 + 2.

The matricization of a generalized Tucker model depends on the number of matrix

and tensor factors, as well as on the set Sn. Therefore, it is not possible to define a generic

formulation to its unfolding, as defined in (2.26) for Tucker models. However, it is possible

to define the unfolding matrices of some particular cases of generalized Tucker models. In

the sequel, we take a generalized Tucker-(2, 4) model as example, which will be useful to the

problems addressed in this thesis. Let us consider a fourth-order tensor X ∈ CI1×I2×I3×I4 and

the tensor factors A(1) ∈ CI1×R1×I4 and A(3) ∈ CI3×R3×I4 . A possible generalized Tucker-(2, 4)

decomposition of X is given by X = G ×1 A(1) ×3 A(3), where G ∈ CR1×I2×R3×I4 is the core

tensor, and it can be written in a scalar form as

xi1,i2,i3,i4 =

R1∑
r1=1

R3∑
r3=1

gr1,i2,r3,i4a
(1)
i1,r1,i4

a
(3)
i3,r3,i4

. (2.31)

In the model (2.31), there are two factors, over the first and the third modes, in such

a way that S = {2, 4} and S1 = S2 = {4}. Let us define two useful unfoldings of this tensor

model. The first one, a tall mode-3 unfolding, is given by

XI2I4I1×I3 =
[
II2 ⊗ bdiag

(
A

(1)
··i4

)]
GI2I4R1×I4R3A

(3)
I4R3×I3 , (2.32)

where A
(3)
I4R3×I3 is a tall mode-1 unfolding of A(3), bdiag

(
A

(1)
··i4

)
results in a matrix of size

I4I1 × I4R1 and GI2I4R1×I4R3 =
[
bdiag (G·1·i4)

T · · · bdiag (G·I2·i4)
T
]T

. The second useful

unfolding of X is obtained by combining the first and third modes as rows and the second and

fourth modes as columns of the unfolded matrix, as follows

XI1I3×I4I2 =
[
A

(1)
I1×I4R1

./ A
(3)
I3×I4R3

]
GI4R1R3×I4I2 , (2.33)

where the unfoldings A
(1)
I1×I4R1

and A
(3)
I3×I4R3

can be seen as block matrices with I4 column

blocks and the balanced block Kronecker product, as defined in (2.2), is A
(1)
I1×I4R1

./ A
(3)
I3×I4R3

=[
A

(1)
··1 ⊗A

(3)
··1 · · · A

(1)
··I4 ⊗A

(3)
··I4

]
. The demonstrations of these two unfoldings are given in Ap-

pendix B.

Uniqueness
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The generalized Tucker decomposition, like the Tucker one, is also not essenti-

ally unique when the core tensor is unknown, since its factors are unique up to nonsingular

transformations. To discuss the uniqueness properties of this decomposition, let us consider

the generalized Tucker-(2, 4) model in (2.31). By fixing the index i4, the tensor X becomes a

Tucker–(2, 3) model, denoted by X(i4) ∈ CI1×I2×I3 , and its unfolding given in (2.33) simplifies

as

[XI1I3×I2 ](i4) =
(
A

(1)
··i4 ⊗A

(3)
··i4

)
[GR1R3×I2 ](i4), (2.34)

for i4 = 1, . . . , I4.

Let us consider an alternative solution for (2.34) given by Ā
(1)
··i4 = A

(1)
··i4∆

(1)
··i4 , Ā

(3)
··i4 =

A
(3)
··i4∆

(3)
··i4 and Ḡ = G ×1 F (1) ×3 F (3), with nonsingular matrices ∆

(n)
··i4 ∈ CRn×Rn and F (n) ∈

CRn×Rn×I4 being a tensor with mode-3 slices given by (∆
(n)
··i4)
−1, for n = 1, 3. The triplet

(Ḡ, Ā(1)
··i4 , Ā

(3)
··i4) lead to the same unfolding [XI1I3×I2 ](i4) given in (2.34). The demonstration is

obtained by considering [Ḡ](i4) = [G](i4) ×1

(
∆

(1)
··i4

)−1

×3

(
∆

(3)
··i4

)−1

for any value of i4, such

that (2.34) becomes

[X̄I1I3×I2 ](i4) =
(
Ā

(1)
··i4 ⊗ Ā

(3)
··i4

)
[ḠR1R3×I2 ](i4). (2.35)

Being (2.35) a Tucker decomposition, we can easily get [X̄I1I3×I2 ](i4) = [XI1I3×I2 ](i4),

which shows that the generalized Tucker-(2, 4) is not unique. However, if we consider the core

tensor G known, the following uniqueness theorem is valid.

Theorem 2. Consider a fourth-order tensor X∈ CI1×I2×I3×I4 that satisfies a generalized Tucker-

(2, 4) decomposition as defined in (2.31). When the core tensor G∈ CR1×I2×R3×I4 is known,

the tensor factors A(1) ∈ CI1×R1×I4 and A(3) ∈ CI3×R3×I4 are unique up to the ambiguities

Ā
(1)
··i4 = δ

(1)
i4

A
(1)
··i4 and Ā

(3)
··i4 = δ

(3)
i4

A
(3)
··i4 , with δ(1)

i4
δ

(3)
i4

= 1, ∀i4 ∈ [1, I4].

Proof. See Appendix A.

2.2.3 Nested Tucker decomposition

The nested Tucker decomposition (NTD) was recently introduced in [34] as a special

case of the tensor train (TT) decomposition [78,79]. This model can be viewed as a nesting of two

Tucker-(2, 3) models which share a matrix factor. Considering the core tensors G(1) ∈ CR1×I2×R2

and G(2) ∈ CR3×I3×I4 and the factors A(1) ∈ CI1×R1 , A(2) ∈ CR2×R3 and A(3) ∈ CI4×R4 , let
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Figure 8 – Block-diagram of a nested Tucker decomposition for a fourth-order
tensor

X = A
(1) G

(1)
A

(2)

A
(3)

T (1)

T (3) T (4)

T (2)

G
(2)

us define two Tucker-(2, 3) models (G(1),A(1),A(2)T ) and (G(2),A(2),A(3)), with A(2) being

the common factor. The nesting of these two models by the common matrix factor yields a

fourth-order NTD, denoted by NTD(4), which is defined as

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

a
(1)
i1,r1

g
(1)
r1,i2,r2

a(2)
r2,r3

g
(2)
r3,i3,r4

a
(3)
i4,r4

. (2.36)

Figure 8 illustrates a block-diagram for this NTD.

Since the matrix A(2) can be associated with both the core tensors G(1) and G(2),

(2.36) can be decomposed into two different forms (also illustrated in Figure 8). For instance,

let us consider the following Tucker-(1, 3) and Tucker-(2, 3) models, representing the tensors

T (1) ∈ CI1×I2×R2 and T (2) ∈ CR2×I3×I4 ,

t
(1)
i1,i2,r2

=

R1∑
r1=1

g
(1)
r1,i2,r2

a
(1)
i1,r1

, (2.37)

t
(2)
r2,i3,i4

=

R3∑
r3=1

R4∑
r4=1

g
(2)
r3,i3,r4

a(2)
r2,r3

a
(3)
i4,r4

. (2.38)

Note that the dimensions of X accumulates the dimensions of T (1) and T (2), except for the

common dimension (R2). Therefore, we can write X as the following summation

xi1,i2,i3,i4 =

R2∑
r2=1

t
(1)
i1,i2,r2

t
(2)
r2,i3,i4

, (2.39)

which represents a contraction operation (Definition 16). Thus, the tensor X is obtained by

contracting the tensors T (1) and T (2) along their common mode r2, in such a way that the NTD(4)

(A(1),G(1),A(2),G(2),A(3)) is defined as

X = T (1) ∗1
3 T (2). (2.40)
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We say that the tensors T (1) and T (2) are components of the NTD, while A(1), A(2)

and A(3) are the decomposition factors, and G(1) and G(2) are the core tensors. Similarly, we can

define the NTD(4) as a contraction of the tensors T (3) and T (4) (see Figure 8), by associating the

factor A(2) with the core tensor G(1).

The NTD, as a Tucker-based model, is not essentially unique. Let us consider that

the contraction in (2.40) can be written as a mode-1 product deduced from (2.21)

XI2I1×I3×I4 = T (2) ×1 T
(1)
I2I1×R2

, (2.41)

where T
(1)
I2I1×R2

is a tall mode-3 unfolding of T (1) andXI2I1×I3×I4 is a third-order contracted form

of X obtained by combining the first and second modes. Assuming T̄ (2) = T (2) ×1 ∆−1 and

T̄
(1)
I2I1×R3

= T
(1)
I2I1×R3

∆ as alternative solutions for (2.41), where ∆ ∈ CR3×R3 is a nonsingular

ambiguity matrix, the tensor XI2I1×I3×I4 becomes

X̄I2I1×I3×I4 = T̄ (2) ×1 T̄
(1)
I2I1×R2

= (T (2) ×1 ∆−1)×1 (T
(1)
I2I1×R3

∆)

= T (2) ×1 (T
(1)
I2I1×R3

∆∆−1)

= T (2) ×1 T
(1)
I2I1×R2

= XI2I1×I3×I4 . (2.42)

This identity implies that the contracted form XI2I1×I3×I4 is not unique, since T̄ (1) ∗1
3

T̄ (2) = T (1) ∗1
3 T (2). In other words, it is not possible to uniquely decompose X into the

components T (1) and T (2), since the contraction T (1) ∗1
3 T (2) is not unique. Consequently, the

matrix factors of the NTD of X are not unique. The authors of [34] present a brief discussion

on the uniqueness properties of the NTD model, but it has not been proven. In this thesis, we

present a deeper discussion about the uniqueness of NTD models in the next chapter.

2.2.4 PARAFAC decomposition

The PARAFAC decomposition, also know as CANDECOMP (CANonical DECOM-

Position) or CP (Canoncial Polyadic), was introduced in 1970 by R. Harshman [61] and Caroll &

Chang [80]. This decomposition factorizes a tensor into a sum of polyads (i.e., rank-one tensors).

The main feature of the PARAFAC model is its intrinsic uniqueness. Indeed, the PARAFAC

decomposition of higher-order tensors is essentially unique, i.e., the factors can be estimated up

to scaling and permutation ambiguities.
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Figure 9 – Block-diagram of a PARAFAC decomposition for a third-order tensor (i)
as a special case of the Tucker decomposition and (ii) as a sum of triads.
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The PARAFAC decomposition of a given N -th order tensor X∈ CI1×···×IN is expres-

sed in terms of the outer product (Definition 8) as

X =
R∑
r=1

a(1)
·r ◦ a(2)

·r ◦ · · · ◦ a(N)
·r , (2.43)

where a
(n)
·r ∈ CIn are column vectors (also called factor loadings) of the matrix factors A(n) ∈

CI1×R , for n = 1, . . . , N . The PARAFAC model has the following scalar form

xi1,··· ,iN =
R∑
r=1

N∏
n=1

a
(n)
in,r
. (2.44)

It is worth to note that R represents the rank of X . Indeed, R denotes the number of columns of

the factor matrices and, consequently, the amount of elements to be added in the summations in

(2.43) or (2.44) (see Definition 10).

The PARAFAC decomposition can also be interpreted as a special case of a Tucker

decomposition with an identity core tensor, as introduced in Definition 12, which yields the

following formulation in terms of the mode-n product

X = I(N)
R ×1 A(1) ×2 A(2) · · · ×N A(N). (2.45)

Figure 9 illustrates both formulations for a PARAFAC decomposition of a third-order tensor. By

using (2.8), we can define the following generic formulation for a tall mode-n unfolding of a
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PARAFAC model

XIn+1···IN I1···In−1×In = (A(n+1) � · · · �A(N) �A(1) � · · · �A(n−1))A(n)T . (2.46)

Notice the similarity between the Equations (2.46) and (2.26). The Kronecker product in the

unfolding of the Tucker model is replaced by the Khatri-Rao product in the unfolding of the

PARAFAC model due the fact that the matrix factors have the same number of columns, while

the core tensor is replaced by the identity tensor.

Let us consider the case where a third-order tensor satisfies the PARAFAC decom-

position X=(A,B,C)∈ CI1×I2×I3 , with A∈ CI1×R, B∈ CI2×R and C∈ CI3×R. Equation (2.43)

becomes a sum of triads (triple products) as follows

X =
R∑
r=1

a·r ◦ b·r ◦ c·r. (2.47)

By fixing values of the indices i1, i2 and i3 in the column vectors a·r, b·r and c·r, respectively,

we can write the following matrix slices

Xi1·· =
R∑
r=1

ai1,rb·rc
T
·r = Bdiagi1(A)CT ∈ CI2×I3 , (2.48)

X·i2· =
R∑
r=1

bi2,rc·ra
T
·r = Cdiagi2(B)AT ∈ CI3×I1 , (2.49)

X··i3 =
R∑
r=1

ci2,ra·rb
T
·r = Adiagi3(C)BT ∈ CI1×I2 , (2.50)

for i1 = 1, . . . , I1, i2 = 1, . . . , I2 and i3 = 1, . . . , I3. From the above slices, by stacking them

columnwise, we get the three possible tall unfoldings of the tensor X in (2.47)

XI1I2×I3 =


Bdiag1(A)

...

BdiagI2(A)

CT = (A �B) CT , (2.51)

XI2I3×I1 =


Cdiag1(B)

...

CdiagI3(B)

AT = (B �C) AT , (2.52)

XI3I1×I2 =


Adiag1(C)

...

AdiagI1(C)

BT = (C �A) BT . (2.53)
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Uniqueness

The uniqueness of PARAFAC model was discussed in several works as [47, 52, 76,

81–85], among others, but the most well-known result is attributed to Kruskal [82]. Kruskal

derived conditions for essential uniqueness of third-order PARAFAC models and Sidiropoulos et

al. [47, 81] extended the results for an N -th order tensor.

The PARAFAC decomposition, unlike models based on the Tucker decomposition,

is essentially unique, i.e., the tensor X in (2.43) can be decomposed into the matrices A(n) in a

unique way, although they suffer effects of permutation and scaling ambiguities over its columns.

This uniqueness property is true if the following sufficient condition is satisfied

N∑
n=1

kA(n) ≥ 2R + (N − 1), (2.54)

where kA(n) is the k-rank of the the matrix factors A(n) ∈ CIn×R. Since any arbitrary tensor

can be written as a PARAFAC decomposition (sum of a finite number of rank-one tensors), the

following theorem is valid for any tensor that satisfies the referred condition.

Theorem 3. Consider the a N -th order tensor X∈ CI1×···×IN that satisfies a PARAFAC decom-

position. If the sufficient condition (2.54) is satisfied, the matrix factors A(n) ∈ CIn×R, for n =

1, . . . , N , are unique up to permutation and scaling ambiguities, such that Ā(n) = A(n)Π∆n,

where Π ∈ CR×R is a permutation matrix and ∆n ∈ CR×R are diagonal scaling matrices, with∏N
n=1 ∆n = 1.

The proof of this theorem is based on the k-rank of Khatri-Rao products and rewrite

a N -th order PARAFAC model as another PARAFAC model of third order by concatenating

N − 2 factor matrices in only one matrix [81].

2.2.5 Coupled PARAFAC decomposition

Coupled tensor decompositions have been recently proposed in [62, 86–88] for

PARAFAC models and they are an emerging tool to analyse multiple datasets in signal processing

and statistics. A set of tensor decompositions is said to be “coupled” when at least one of the

involved factors is common to all the decompositions. For instance, let us consider the fourth-

order tensor X ∈ CI1×I2×I3×N such that, for each value of n, with n ∈ [1, N ] for N ≥ 2,
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Figure 10 – Block-diagram of a coupled PARAFAC decomposition for a fourth-
order tensor
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we have a tensor X(n) ∈ CI1×I2×I3 satisfying third-order PARAFAC model. We say that the

collection of tensors {X(1), · · · ,X(N)} satisfies a coupled PARAFAC decomposition if each X(n),

for n = 1, . . . , N , is given by

X(n) =
R∑
r=1

a(1)
·rn ◦ a(2)

·rn ◦ a(3)
·r , (2.55)

where the column fibers a
(1)
·rn ∈ CI1 , a

(2)
·rn ∈ CI2 and a

(3)
·r ∈ CI3 compose the factor ma-

trices A
(1)
(n) =

[
a

(1)
·1n · · · a

(1)
·Rn

]
∈ CI1×R, A

(2)
(n) =

[
a

(2)
·1n · · · a

(2)
·Rn

]
∈ CI2×R and A(3) =[

a
(3)
·1 · · · a

(3)
·R

]
∈ CI3×R. Notice that the matrix factor A(3) is independent of the index n,

being common to all the N tensors. Figure 10 illustrates a block-diagram for this coupled

decomposition. The uniqueness properties of coupled PARAFAC decompositions of third-order

tensors was discussed in [86] and the presented results show that the uniqueness conditions can

be improved taking into account the coupling between a set of tensor decompositions.

2.3 Bibliographic review on tensor decompositions applied to wireless communication

systems

In this section, we provide a survey of works found in the literature that address

tensor models applied to wireless communication systems. Within this area, there are many

works with different applications. We focus on those that deal with systems and applications that,

in some way, are related to the main theme of this thesis (tensor decompositions, MIMO/coope-
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rative systems and blind signal and channel estimation) or can provide premises for something

addressed here. An overview on fundamental tensor models and applications for several MIMO

and cooperative systems can be found in [48].

The interest on the use of tensor models as a signal processing tool applied to wireless

communication systems started with the pioneer work of Sidiropoulos et al. in 2000 [47]. The

authors have proposed a blind multiuser separation-equalization-detection for a direct-sequence

code-division multiple access (DS-CDMA) systems by using a PARAFAC-based modeling that

provides performances close to a non-blind minimum mean-squared error (MMSE) receiver.

However, blind receivers provide spectral efficiency gains by using a smaller number of pilot

symbols, in contrast to other receivers that assume the use of training sequences for channel

estimation [20, 21, 65, 66] or the perfect knowledge of the CSI at destination [29, 67–69].

Also in [47], the authors show an interesting feature of the PARAFAC model that is

the fact that the PARAFAC-based receiver does not require knowledge of spreading codes and of

channel coefficients or statistic independence to recover the transmitted signals. Moreover, the

identifiability of the signals and propagation parameters with a tensor approach is ensured under

conditions more relaxed than those based on conventional matrix approaches [6, 45, 47, 81]. In

addition, tensor-based approaches in the context of wireless communications allows the benefit

from multiple (more than two) forms of signal diversity to perform jointly and blindly multiuser

signal separation/equalization and channel estimation under mild conditions.

The authors of [89] propose a PARAFAC-based approach that aims to unify the re-

ceived signal model of three types of multiuser wireless communication systems, which consider

multiple antennas at destination and frequency-selective multipath fading. The proposed mode-

ling is exploited to design a blind receiver that perform user signal separation and equalization

iteratively. The simulation results show that the proposed algorithm has a performance close to

the MMSE solution, which considers the perfect knowledge of propagation parameters.

Another advantage of tensor approaches applied to wireless systems is the possi-

bility of designing tensor codings to encode the information to be transmitted. A TSTC for

MIMO systems was proposed in [35], allowing to spread and multiplex the transmitted symbols,

belonging to R data streams, in space and time domains. This tensor coding is defined as a

third-order tensor, whose the modes corresponding to the transmit antenna, data stream and chip,

and two matrices that allocate the transmit antennas and data streams at each time-block. This

configuration leads the signals received at destination to form a fourth-order tensor that satisfies
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a PARATUCK-(2, 4) decomposition. Finally, a blind receiver based on an iterative algorithm is

proposed for joint symbols and channel estimation.

In [39], the authors propose a generalized fourth-order PARATUCK2 tensor model

applied to a MIMO system with a STF coding. In this model, the core tensor of the fourth-order

PARATUCK2 decomposition is a spatial coding matrix combined with two third-order tensor

that control the allocation of the data streams and transmit antennas at each time-frequency

resource. A receiver based on a Levenberg-Marquardt (LM) algorithm is proposed for blind joint

estimation of the information symbols, channels and coding.

In [40], a new tensor space-time-frequency (TSTF) coding structure has been propo-

sed for a MIMO OFDM-CDMA wireless communication system. Two new constrained tensor

models called generalized PARATUCK–(N1, N) and generalized Tucker–(N1, N) models, with

high-order tensors as decomposition factors, are introduced. By exploiting these models, two

semi-blind receivers for jointly estimating the unfolding of the channel tensor and the symbol

matrix are proposed. The first one is based on a two-step alternating least squares (ALS) algo-

rithm, while the second one is a closed-form and low-complexity solution based on the least

square (LS) estimation of Kronecker products.

Most recently, the work [37] proposes a new closed-form tensor-based receiver for

channel estimation in a MIMO system. The proposed receiver exploits the received signal

modeling, which satisfies a fourth-order PARATUCK-(2, 4) tensor model, and performs channel

estimation by combining Khatri–Rao and Kronecker factorizations. The authors still propose a

modified space-time coding scheme that incorporates a formatting filter.

In the context of cooperative systems, individual channel estimation is a fundamental

problem. The CSI of all links between source, relays and destination plays an important role for

decision-making that optimizes MIMO relay systems in terms of power allocation, decoding

and adaptive relaying protocols that allow to know when a cooperation is feasible and to select

a suitable relay [63, 64]. Thus, the reliability of systems with cooperative diversity strongly

depends on the accuracy of CSI associated with each hop.

For example, the authors in [19] propose tensor-based receivers for uplink multiuser

systems with cooperative diversity, which consider AF and DF relaying protocols. In this case,

it is assumed that the CSI is not available and, then, blind receivers using the LM algorithm

are proposed to jointly estimate the transmitted symbols and the channels. For this, the authors

propose a tensor formulation of the received signal that unify all the considered relaying protocols
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in a PARAFAC-based model.

A two-hop AF relay system, with the source using a simplified Khatri-Rao space-

time (KRST) coding to encode the signals to be transmitted was introduced in [30]. The used

matrix coding induces the signals received at destination to be a third-order tensor, which

satisfies a PARAFAC decomposition when considered the direct link (source-destination) and a

PARATUCK2 decomposition when considered the relay-assisted link (source-relay-destination).

Thus, three receivers that combine these two models are proposed for a joint and semi-blind

estimation of transmitted symbols and channels of both hops.

In order to represent high-order tensor in a compact way, the authors of [34] have

derived the model NTD, already presented in Subsection 2.2.3, from the idea of multiple Tucker

models in a train decomposition format. The presented model is then applied in a one-way two-

hop half-duplex MIMO relay system with the source and the relay using a TSTC to encode the

symbol matrix. The tensor modeling for the signals received at destination satisfies a fourth-order

NTD, or NTD(4). Unfoldings for the proposed NTD(4) were developed to design four receivers

(two semi-blind and two supervised) for symbols and channels joint estimation.

In cooperative networks, the existence of relaying antennas between the source and

destination lead to a decrease of the signal fading. Consequently, in a multi-hop scenario, when

the number of relays is increased we get smaller path-loss of each hop, yielding performance

gains and allowing an extension of the coverage area. However, we can not yet find many works

that address multi-hop systems.

In [32], a three-hop relaying scenario is addressed, considering a AF relaying

protocol. The received signal tensor is modeled by combining PARAFAC and Tucker tensor

models and a joint channel estimator based on ALS method is proposed. When compared to

conventional matrix-based channel estimators, the proposed estimator can operate under more

flexible antenna configurations, improving channel estimation accuracy.

Recently, a one-way multi-hop AF relay system that assumes a KRST coding at each

relay was addressed in [18]. The system with K relays is modeled by means of K+ 1 third-order

PARAFAC models. A closed-form semi-blind receiver based on a Khatri-Rao factorization was

derived to jointly estimate the symbols and the individual channels. Simulation results show

performance gains with an increase of the number relays.

For frequency-selective wireless channels, a multicarrier modulation associated to

cooperative networks can overcome the rate limitation imposed by multipath and help to mitigate
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the deep fading on some spectral bands and the intersymbol interference. In [90], the authors

addressed the blind signal recovery for two-hop AF OFDM relaying systems. The signals

received at the destination form a third-order tensor (receive antenna, transmitting symbol and

subcarriers) and this model is exploited to propose a PARAFAC-based blind algorithm. The

exploitation of OFDM systems with cooperative diversity under tensor approaches is still scarce.
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3 ORIGINAL CONTRIBUTIONS ON TENSOR DECOMPOSITIONS

In this chapter, the first original contributions of this work are presented. In particular,

the new tensor decompositions proposed in this thesis are described in the sequel. In the first

part, we generalize the NTD model, initially exploited for a fourth-order tensor [34], to higher

order tensors. We propose a generic theorem for the uniqueness of this decomposition that fills

the lack of discussion on the literature about the NTD uniqueness. In the following, we introduce

a new tensor decomposition, which associate the concepts of nested and coupled decompositions.

Theorems involving their uniqueness conditions are also provided. The theoretical contributions

presented in this chapter will be used directly in the modeling of the cooperative MIMO com-

munication systems in the next chapters, which serves as motivation for the development of the

new tensor decompositions addressed here. These new models will also be exploited to derive

receiver algorithms and identifiability conditions in order to estimate unknown parameters.

3.1 High-order nested Tucker decomposition – HONTD

This section addresses the high-order nested Tucker decomposition (HONTD), which

is a generalization of NTD(4), introduced in [34] and recalled in Subsection 2.2.3, to high-order

tensors. It is worthing to remember that, in the case of NTD(4), the nesting takes place by

sharing a common factor between two Tucker-(2, 3) models or, equivalently, by contracting a

Tucker-(1, 3) decomposition with a Tucker-(2, 3) one.

For a given integer N > 0, let us consider the following third-order tensor models:

- a tensor T (0) ∈ CP1×J0×K that satisfies a Tucker-(2, 3) decomposition defined by

T (0) = G(0) ×1 B(0) ×3 C; (3.1)

- a set of tensors T (n) ∈ CPn+1×Jn×Pn , for n = 1, . . . , N − 1, that satisfy Tucker-(1, 3)

decompositions defined by

T (n) = G(n) ×1 B(n); (3.2)

- a tensor T (N) ∈ CI×JN×PN that satisfies a Tucker-(1, 3) decomposition defined by

T (N) = G(N) ×1 A, (3.3)

with the core tensors G(n) ∈ CRn×Jn×Pn , for n = 0, · · · , N , and the matrix factors A ∈ CI×RN ,

C ∈ CK×P0 and B(n) ∈ CPn+1×Rn , for n = 0, · · · , N − 1.
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Figure 11 – Block-diagram of a HONTD for a (N + 3)-order tensor
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Given a (N + 3)-th order tensor X∈ CI×JN×···×J0×K , we define the HONTD of X ,

denoted by X = (A,G(N),B(N−1),G(N−1), · · · , B(0),G(0),C), as

X = T (N) ∗1
3 T (N−1) ∗1

3 · · · ∗1
3 T (1) ∗1

3 T (0), (3.4)

or equivalently

X = (G(N)×1 A) ∗1
3 (G(N−1)×1 B(N−1)) ∗1

3 · · · ∗1
3 (G(1)×1 B(1)) ∗1

3 (G(0)×1 B(0)×3 C). (3.5)

Figure 11 illustrates a block-diagram for this decomposition model. It can be viewed

as a nesting of Tucker-(2, 3) models (G(n),B(n),B(n−1)), where two successive models (for n

and n+ 1) share the factor matrix B(n), for n = 0, . . . , N − 1. At the middle level of Figure 11,

the HONTD is represented as the contraction of the Tucker-(2, 3) model T (0) defined in (3.1)

with the Tucker-(1, 3) models T (n) defined in (3.2)-(3.3), as in (3.4). The HONTD is written in

scalar form as

xi,jN ,··· ,j0,k =

RN∑
rN=1

PN∑
pN=1

· · ·
R0∑
r0=1

P0∑
p0=1

ai,rNg
(N)
rN ,jN ,pN

b(N−1)
pN ,rN−1

· · · b(0)
p1,r0

g
(0)
r0,j0,p0

ck,p0 . (3.6)

Note that, due to the consecutive contractions between the tensors T (n), only the end

factors (A and C) and the core tensors (G(n)) contribute to the dimensions of the modes of the

tensor X . This means that the dimensions of the modes of the intermediate factors B(n) do not

contribute to the dimensions of the resulting tensor. The contraction operations are performed

among the modes of B(n). For this reason, the end factors A and C are denoted by letters

different from the other factor matrices. The application of this model for a communication

system, exploited in the next chapter, justifies the choice of the notation presented here, where,
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given a integer value N , we describe a (N + 3)-th order tensor as successive contractions of

N + 1 tensors. We will comment on this later.

The simplest case for this decomposition is obtained when N = 1. In this case,

the tensor X∈ CI×J1×J0×K assumes the decomposition X = (A,G(1),B(0),G(0),C), with

G(n) ∈ CRn×Jn×Pn , for n = {0, 1}, A ∈ CI×R1 , B(0) ∈ CP1×R0 and C ∈ CK×P0 , yielding the

tensor components T (1) ∈ CI×J1×P1 and T (0) ∈ CP1×J0×K . In this case, Equation (3.4) becomes

X = T (1) ∗1
3 T (0)

= (G(1) ×1 A) ∗1
3 (G(0) ×1 B(0) ×3 C), (3.7)

and it can be written in scalar form as

xi,j1,j0,k =

R1∑
r1=1

P1∑
p1=1

R0∑
r0=1

P0∑
p0=1

ai,r1g
(1)
r1,j1,p1

b(0)
p1,r0

g
(0)
r0,j0,p0

ck,p0 , (3.8)

which is equivalent to the NTD(4) in (2.36). Thus, the model presented in (3.4) generalizes the

NTD(4) model [34] given in (3.8), in order to represent high-order tensors (higher than four) as a

cascade of multiple Tucker models nested by sharing a common matrix factor.

The HONTD can also be viewed as a specific case of a tensor-train (TT) decomposi-

tion [79], which consists of a concatenation of third-order tensors, instead of a nesting of Tucker

models, and two matrix factors at the extremities, representing a N -th order tensor as

xi,jN ,··· ,j0,k =

RN∑
rN=1

PN∑
pN=1

· · ·
R1∑
r1=1

P0∑
p0=1

ai,rNg
(N)
rN ,jN ,pN

g
(N−1)
pN ,jN−1,pN−1

· · · g(1)
p2,j1,r1

g
(0)
r1,j0,p0

ck,p0 . (3.9)

The above model differs from the one given in (3.6) because it does not consider matrix factors

between the tensors G(n) and G(n−1), for n = 1, . . . , N .

3.1.1 Uniqueness analysis

In this subsection, we discuss the uniqueness of the HONTD. Firstly, note that the

non-uniqueness of tensor components in a contraction operation, as discussed in Subsection 2.2.3,

can be extended to multiple contractions, i.e., tensors that are written by successive contractions

are also not unique. Then, we conclude that the HONTD is also not essentially unique. However,

in the following theorem, we demonstrate that, under certain conditions, the HONTD is unique

up to scaling ambiguities.

Theorem 4. Consider the (N + 3)-order tensor X∈ CI×JN×···×J0×K that satisfies a HONTD,

as defined in (3.4). When the core tensors G(n) ∈ CRn×Jn×Pn , for n = 0, . . . , N , are known,
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the factors A ∈ CI×RN , C ∈ CK×P0 and B(n) ∈ CPn+1×Rn , for n = 0, · · · , N − 1, are unique

up to the following ambiguities: Ā = A∆A, C̄ = C∆C and B̄(n) = B(n)∆B(n) , such that

∆A = δAIRN , ∆C = δCIP0 and ∆B(n) = δB(n)IRn , with δAδC
∏N−1

n=0 δB(n) = 1.

Proof. Let us consider the following formulation for the HONTD (3.4)

X = T (N) ∗1
3 X (N), (3.10)

where X (N) ∈ CPN×JN−1×···×J0×K is a (N + 2)-th order tensor that satisfies a HONTD defined

recursively as follows

X (η+1) = T (η) ∗1
3 X (η), (3.11)

with X (η) ∈ CPη×Jη−1×···×J0×K , for η = 1, . . . , N , X (N+1) = X and X (1) = T (0).

By taking a mode-1 unfolding of X (η), we can rewrite the contraction in (3.11) as

the following mode-3 product deduced from (2.20)

X (η+1)
Pη+1×Jη×Jη−1···J0K = T (η) ×3 X

(η)
Jη−1···J0K×Pη . (3.12)

Equation (3.12) represents a Tucker model, where we can assume T̄ (η) = T (η) ×3 ∆−1 and

X̄
(η)
Jη−1···J0K×Pη = X

(η)
Jη−1···J0K×Pη∆ as alternative solutions, with ∆ ∈ CPη×Pη being a nonsin-

gular ambiguity matrix. However, as it can viewed in (3.2), T (η) only has a decomposition

factor in first mode, which means that the decomposition factor of third mode is known and

equal to identity matrix IPη . Then, we conclude that ∆ = δ∗IPη , where δ∗ is the scaling factor

associated to the ambiguity of a contraction operation, which leads to T̄ (η) = δ−1
∗ T (η) and

X̄
(η)
Jη−1···J0K×Pη = δ∗X

(η)
Jη−1···J0K×Pη . This means that T (η) and X

(η)
Jη−1···J0K×Pη can be estimated

from X (η+1)
Pη+1×Jη×Jη−1···J0K with a scalar ambiguity, for η = 1, . . . , N .

Moreover, it has been demonstrated that the matrix factors of a Tucker decomposition

are unique, up to scalar ambiguities, when the core tensor is known (Theorem 1, Subsection

2.2.1). As T (η), for η = 1, . . . , N , is a Tucker model, once we assume that the core tensors

G(η) are known, the matrix factors A, B(η) and C are unique and admit the scaling ambiguities

Ā = δAA, B̄(η) = δB(η)B(η) and C̄ = δCC. In order to prove the relation between the scalar

ambiguities, we rewrite (3.12) for n = N as

XI×JN×JN−1···J0K = δ−1
∗ (G(N) ×1 Ā)×3 X̄

(N)
JN−1···J0K×PN , (3.13)
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which yields the following tall unfolding

XIJN−1···J0K×JN = δ−1
∗ (Ā⊗ X̄

(N)
JN−1···J0K×PN )G

(N)
RNPN×JN

= δ−1
∗ (δAA⊗ δX(N)X

(N)
JN−1···J0K×PN )G

(N)
RNPN×JN

= δ−1
∗ δAδX(N)(A⊗X

(N)
JN−1···J0K×PN )G

(N)
RNPN×JN , (3.14)

where δX(N) represents a generic scalar that comprise the ambiguities of the decomposition

factors included in X (N).

By using the recurrent relation in (3.11) and following the steps in (3.12)-(3.14), we

get to show that δX(N) = δ∗

(∏N−1
n=0 δB(n)

)
δC. Then (3.14) becomes

XIJN−1···J0K×JN = δA

(
N−1∏
n=0

δB(n)

)
δC(A⊗X

(N)
JN−1···J0K×PN )G

(N)
RNPN×JN . (3.15)

Note that the scaling ambiguity δ∗ was eliminated in (3.15). Thus, the factors A, B(n), for

n = 0, . . . , N − 1, and C are unique with the scalar ambiguities satisfying

δA

(
N−1∏
n=0

δB(n)

)
δC = 1. (3.16)

The uniqueness of NTD under the knowledge of the core tensors was not proved

in [34]. However, one can note that the above discussion on the HONTD uniqueness remain

valid if N = 1, which corresponds to a NTD. In other words, the uniqueness properties discussed

here are also valid for the NTD model.

3.2 Coupled nested Tucker decomposition – CNTD

In this section, we introduce a new tensor decomposition that can be viewed as a

coupling of multiple NTD [34] models that share common factors. This decomposition is called

a coupled nested Tucker decomposition (CNTD) and, in this thesis, it is defined for fifth-order

tensors, although it may be applied to higher order tensors. This new tensor model combines the

ideas of the models recalled in Subsections 2.2.3 and 2.2.5, generalizing the NTD by assuming

tensor factors and extending the coupling concept, initially defined for PARAFAC models, to

Tucker-based decompositions. The application of the CNTD model in this thesis represents

the first application of such coupled tensor models in the context of wireless communications.

Indeed, up to now, the coupled decompositions based on PARAFAC models [62, 86, 88] have



66

not found applications in telecommunications. As explained in Subsection 2.2.5, the concept of

coupled tensor decompositions is related to the existence of one or more components of each

decomposition that are shared by all the decompositions.

Consider a set of I5 tensors X(i5) ∈ CI1×I2×I3×I4 , for i5 = 1, . . . , I5, which satisfy

NTD models as follows

X(i5) = T (1)
(i5) ∗

1
3 T (2), (3.17)

where T (1)
(i5) ∈ CI1×I2×R3 and T (2) ∈ CR3×I3×I4 are third-order tensors that satisfy Tucker

decompositions. Note that, in (3.17), the tensor T (2) is independent of the index i5, being

common to all I5 decompositions. Thus, we say that the collection of tensors {X(1), · · · ,X(I5)}

form a coupling of NTDs by sharing the common tensor T (2).

Let us consider, as a useful example, that the tensors T (1)
(i5) and T (2) satisfy the

following Tucker-(2, 3) and Tucker-(1, 3) models, respectively, assuming that the core tensor

and the matrix factors of T (1)
(i5) also vary with the index i5

T (1)
(i5) = G(1)

(i5) ×1 A
(1)
(i5) ×3 A

(2)
(i5)

T
, (3.18)

T (2) = G(2) ×3 A(3), (3.19)

with G(1)
(i5) ∈ CR1×I2×R2 , G(2) ∈ CR3×I3×R4 , A

(1)
(i5) ∈ CI1×R1 , A

(2)
(i5) ∈ CR2×R3 and A(3) ∈ CI4×R4 .

Taking into account the coupling of the I5 NTDs, we define a fifth-order CNTD of a tensor

X∈ CI1×I2×I3×I4×I5 as the following contraction operation

X = T (1) ∗1
3 T (2), (3.20)

where the I5 tensors T (1)
(i5) ∈ CI1×I2×R3 are stacked to form a single fourth-order tensor T (1) ∈

CI1×I2×R3×I5 , satisfying the following generalized Tucker-(2, 4) decomposition

T (1) = G(1) ×1 A(1) ×3 A(2)′, (3.21)

where A(1) ∈ CI1×R1×I5 and A(2) ∈ CR2×R3×I5 , with the tensor A(2)′ ∈ CR3×R2×I5 obtained

by permuting the first two modes of A(2), i.e., A
(2)
(i5)

′
= A

(2)
(i5)

T
∈ CR2×R3 . The above coupling

operation can be given as a concatenation (Definition 17) of the I5 tensors T (1)
(i5) along the fourth

mode

T (1) = T (1)
(1) t4 T (1)

(2) · · · t4 T (1)
(I5), (3.22)
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Figure 12 – Block-diagram of a CNTD for a fifth-order tensor
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with

G(1) = G(1)
(1) t4 G(1)

(2) · · · t4 G(1)
(I5), (3.23)

A(1) = A
(1)
(1) t3 A

(1)
(2) · · · t3 A

(1)
(I5), (3.24)

A(2)′ = A
(2)
(1)

T
t3 A

(2)
(2)

T
· · · t3 A

(2)
(I5)

T
. (3.25)

A block-diagram for this tensor decomposition is shown in Figure 12. The first level

of the figure illustrates the multiple NTDs given in (3.17) and the second one represents the

CNTD defined in (3.20). From the figure, it is easy to note that the coupling of I5 branches leads

to a compact tensor structure, which replaces the matrix factors by tensor factors. Thus, in the

case of a fifth-order tensor, CNTD generalizes NTD by coupling I5 NTDs or, equivalently, by

contracting a generalized Tucker–(2, 4) model with a Tucker–(1, 3) one. In a scalar form, we

can write this CNTD as

xi1,i2,i3,i4,i5 =

R3∑
r3=1

t
(1)
i1,i2,r3,i5

t
(2)
r3,i3,i4

, (3.26)
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with

t
(1)
i1,i2,r3,i5

=

R1∑
r1=1

R2∑
r2=1

g
(1)
r1,i2,r3,i5

a
(1)
i1,r1,i5

a
(2)
r2,r3,i5

, (3.27)

t
(2)
r3,i3,i4

=

R4∑
r4=1

g
(2)
r3,i3,r4

a
(3)
i4,r4

. (3.28)

3.2.1 Uniqueness analysis

Note that the CNTD model, defined in (3.20), is given as contraction between

two tensors. From the discussion in Subsection 2.2.3, we can then conclude that the CNTD

is not essentially unique, which means that alternative solutions T̄ (1) and T̄ (2) for the tensor

components of the contraction in (3.20) leads to the same model, i.e., T̄ (1) ∗1
3 T̄ (2) = T (1) ∗1

3 T (2).

However, like all Tucker-based presented here, the knowledge of the core tensors

can ensure that the decomposition factors are unique up to scaling ambiguities. In the following

theorem, we provide conditions for the uniqueness of the CNTD model.

Theorem 5. Consider the fifth-order tensor X ∈ CI1×I2×I3×I4×I5 expressed by means of a CNTD,

as in (38), by contracting the tensors T (1) ∈ CI1×I2×R3×I5 and T (2) ∈ CR3×I3×I4 over their

common mode (r3). When the core tensors G(1) ∈ CR1×I2×R2×I5 and G(2) ∈ CR3×I3×R4 are

known, the factors A(1) ∈ CI1×R1×I5 , A(2) ∈ CR2×R3×I5 and A(3) ∈ CI4×R4 are unique up to

the following ambiguities: Ā
(1)
··i5 = A

(1)
··i5D

(1)
··i5 , Ā

(2)
··i5

T
= A

(2)
··i5

T
D

(2)
··i5 and Ā(3) = A(3)D(3), such

that D
(1)
··i5 = δ

(1)
i5

IR1 , D
(2)
··i5 = δ

(2)
i5

IR2 and D(3) = δ(3)IR4 , with δ(1)
i5
δ

(2)
i5
δ(3) = 1, ∀i5 ∈ [1, I5].

Proof. Let us rewrite the contraction in (3.20) as the following mode-1 product

XI2I5I1×I3×I4 = T (2) ×1 T
(1)
I2I5I1×R3

, (3.29)

where T
(1)
I2I5I1×R3

is a tall mode-3 unfolding of T (1) and XI2I5I1×I3×I4 is a third-order contracted

form of X obtained by combining the first, second and fifth modes.

Assuming that T (2) and T
(1)
I2I5I1×R3

can be replaced by the alternatives T̄ (2) =

T (2) ×1 ∆−1 and T̄
(1)
I2I5I1×R3

= T
(1)
I2I5I1×R3

∆, we can also conclude that ∆ = δ∗IR3 , where δ∗

is the scaling ambiguity associated to the contraction in (3.20), since T (2) (3.19) only has a

factor in third mode. However, as showed in (3.15), the factor δ∗ is eliminated by the properties

of a mode-n product. Therefore, the contraction in (3.20) is unique and the uniqueness of the

decomposition factors depends on the uniqueness of tensor components T (1) and T (2). As T (1)
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is a generalized Tucker decomposition, the factors A(1) and A(2) admit the ambiguities Ā
(1)
··i5 =

δ
(1)
i5

A
(1)
··i5 , Ā

(2)
··i5

T
= δ

(2)
i5

A
(2)
··i5

T
, for i5 = 1, . . . , I5, as shown in Subsection 2.2.2. On the other

hand, T (2) is a Tucker decomposition and the factor A(3) admits the ambiguity Ā(3) = δ(3)A(3).

Now we prove the relation between the scalar ambiguities δ(1)
i5

, δ(2)
i5

and δ(3) of the

decomposition factors. By fixing the index i5 in (3.29), we have

[XI2I1×I3×I4 ](i5) = T (2) ×1 [T
(1)
I2I1×R3

](i5), (3.30)

where [T
(1)
I2I1×R3

](i5) is deduced from (2.32) as

[T
(1)
I2I1×R3

](i5) =
(
II2 ⊗A

(1)
··i5

)
[GI2R1×R2 ](i5)A

(2)
··i5 . (3.31)

Replacing the tensors T (2) and [T
(1)
I2I1×R3

](i5) by their respective definitions in (3.32), and the

factors A
(1)
··i5 , A

(2)
··i5 and A(3) by the ambiguities δ(1)

i5
A

(1)
··i5 , δ(2)

i5
A

(2)
··i5 and δ(3)A(3), gives

[X̄I2I1×I3×I4 ](i5) =
(
G(2) ×3 δ

(3)A(3)
)
×1

((
II2 ⊗ δ

(1)
i5

A
(1)
··i5

)
[GI2R1×R2 ](i5)δ

(2)
i5

A
(2)
··i5

)
, (3.32)

which yields the following tall unfolding

[X̄I4I2I1×I3 ](i5) =
[((

II2 ⊗ δ
(1)
i5

A
(1)
··i5

)
[GI2R1×R2 ](i5)δ

(2)
i5

A
(2)
··i5

)
⊗ δ(3)A(3)

]
G

(2)
R4R3×I3 ,

= δ
(1)
i5
δ

(2)
i5
δ(3)

[((
II2 ⊗A

(1)
··i5

)
[GI2R1×R2 ](i5)A

(2)
··i5

)
⊗A(3)

]
G

(2)
R4R3×I3 .(3.33)

Thus, the factors A(1), A(2) and A(3) are unique if the condition δ(1)
i5
δ

(2)
i5
δ(3) = 1 is satisfied.

3.2.2 Alternative structure for the CNTD model

In this subsection, we present an alternative structure for the proposed CNTD model,

which will be useful in Chapter 6 in an application to wireless communication systems. The

CNTD model introduced in previous sections can be expressed as a contraction between a

generalized Tucker model and a Tucker one.

In the sequel, we propose a CNTD a little different from the one above mentioned.

Indeed, in (3.17)-(3.20), the decomposition model is characterized as a contraction between

a generalized Tucker–(2, 4) model and a Tucker–(1, 3) one, while the CNTD of the present

subsection is a contraction between a Tucker–(2, 3) model and a generalized Tucker–(1, 4) one.

Let us consider a set of I5 tensors Y(i5) ∈ CI1×I2×I3×I4 , for i5 = 1, . . . , I5, which

satisfy NTD models as follows

Y(i5) = T (3) ∗1
3 T

(4)
(i5), (3.34)
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with T (3) ∈ CI1×I2×R3 and T (4)
(i5) ∈ CR3×I3×I4 satisfying Tucker decompositions. Since the tensor

T (3) is independent of the index i5 and common to all I5 decompositions, the collection of

tensors {Y(1), · · · ,Y(I5)} form a coupling of NTDs by sharing the common tensor T (3).

Now, let us define the tensors T (3) and T (4)
(i5) as the following Tucker–(2, 3) model

and Tucker–(1, 3) one

T (3) = G(3) ×1 B(1) ×3 B(2)T , (3.35)

T (4)
(i5) = G(4)

(i5) ×3 B
(3)
(i5), (3.36)

with G(3) ∈ CR1×I2×R2 , G(4)
(i5) ∈ CR3×I3×R4 , B(1) ∈ CI1×R1 , B(2) ∈ CR2×R3 and B

(3)
(i5) ∈ CI4×R4 .

By coupling the I5 decompositions, we get a fifth-order CNTD of the tensor Y∈

CI1×I2×I3×I4×I5 as follows

Y = T (3) ∗1
3 T (4). (3.37)

The tensors T (4)
(i5), for i5 = 1, ..., I5, are stacked in such a way that yields the fourth-order tensor

T (4) ∈ CR3×I3×I4×I5 , which satisfies the following generalized Tucker-(1, 4) decomposition

T (4) = G(4) ×3 B(3), (3.38)

with

T (4) = T (4)
(1) t4 T (4)

(2) · · · t4 T (4)
(I5) ∈ CR3×I3×I4×I5 , (3.39)

G(4) = G(4)
(1) t4 G(4)

(2) · · · t4 G(4)
(I5) ∈ CR3×I3×R4×I5 , (3.40)

B(3) = B
(3)
(1) t3 B

(3)
(2) · · · t3 B

(3)
(I5) ∈ CI4×R4×I5 . (3.41)

A block-diagram for this model is shown in Figure 13. The CNTD model in (3.37) has the

following scalar notation

yi1,i2,i3,i4,i5 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

b
(1)
i1,r1

g
(3)
r1,i2,r2

b(2)
r2,r3

g
(4)
r3,i3,r4,i5

b
(3)
i4,r4,i5

. (3.42)

Note that, in a general way, the decomposition (3.37) for the tensor Y is equivalent

to the one introduced in (3.20) for the tensor X , being the difference due to the structure of the

tensor components T (1), T (2), T (3) and T (4). Hence, we can assume that the same uniqueness

properties remain valid.

In the next three chapters, we propose some applications of the new tensor models

introduced in this chapter for the context of cooperative MIMO systems. The presented tensor
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Figure 13 – Block-diagram of the alternative CNTD model
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=

B
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B
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··I5

B
(1)

B
(1)

structures are used to describe the signals received at destination in a multi-hop MIMO relay

system, a two-hop MIMO multi-relay system and a two-hop OFDM MIMO relay system,

respectively.
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4 MULTI-HOP MIMO RELAY SYSTEM WITH TSTC BASED ON HONTD

In this chapter, we present a new one-way multi-hop AF MIMO relaying system

composed of K relays, where the source and the relays use a third-order TSTC [35] to encode

the signals to be transmitted. This system can be viewed as a generalization of recently proposed

systems [18, 24, 34, 42] to the multi-hop case using tensor coding, leading to the description

of a high-order tensor model in a compact way. The signals received at destination satisfy a

HONTD of order (K + 3), as introduced in Section 3.1. For a case with two relays (K = 2), for

instance, the signals yield a fifth-order HONTD. This modeling is then exploited to propose new

semi-blind receivers to jointly estimate the symbols and the individual channels. In this chapter,

we also provide Monte Carlo simulation results to illustrate the impact of design parameters on

the system performance and the behavior of the proposed receivers in terms of symbol-error-

rate (SER), normalized mean square error (NMSE) of the estimated channels and speed of

convergence.

4.1 System model

Let us consider the multi-hop MIMO relaying system illustrated in Figure 14, compo-

sed of a source (S), K relays (R1, . . . , RK) and a destination (D). The numbers of transmit and

receive antennas at node k are denoted by M t
k and M r

k , respectively, with k ∈ {0, . . . , K + 1}.

The nodes indexed by 0 andK+1 correspond to the source and the destination, respectively. The

transmission consists of K + 1 steps via K relays. The source and the relays encode the signals

to be transmitted by means of a TSTC and the relays operate in half-duplex mode, using the AF

protocol, i.e., retransmitting the received signals without decoding. Synchronization is assumed

at the symbol level and the channels undergo frequency-flat fading, with H(k) ∈ CMr
k+1×M

t
k

being the channel matrix between the nodes k and k + 1, for k = 0, . . . , K.

The symbol matrix encoded by the source is denoted by S ∈ CN×R, R being the

number of data streams transmitted during each symbol period and N being the number of

data symbols per data stream. The TSTC used by the source and the k-th relay are represented

respectively by the tensors C(0) ∈ CMt
0×P0×R and C(k) ∈ CMt

k×Pk×M
r
k , for k = 1, . . . , K, where

Pk, for k ∈ {0, . . . , K}, is the time spreading length of the TSTC used by the node k.
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Figure 14 – Multi-hop MIMO relaying system with K relays
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4.1.1 Case with two relays

In this subsection, we consider the particular case with two relays (K = 2). In the

next subsection, we generalize the modeling to an arbitrary number K of relays. The coded

signals transmitted by the source towards the relay R1 forms the tensor Y(0) ∈ CMt
0×P0×N

defined as the following mode-3 product

Y(0) = C(0) ×3 S ⇐⇒ y
(0)

mt0,p0,n
=

R∑
r=1

c
(0)

mt0,p0,r
sn,r. (4.1)

After transmission through the channel H(0), R1 receives the following signal tensor

X̃ (1) = X (1) +N (1)

= Y(0) ×1 H(0) +N (1)

= C(0) ×1 H(0) ×3 S +N (1) ∈ CMr
1×P0×N , (4.2)

which satisfies a Tucker-(2, 3) model. The tensor X̃ (1) represents the noisy version of the signal

tensor X (1), with N (1) ∈ CMr
1×P0×N being the additive white Gaussian noise (AWGN) tensor at

the relay R1.

The relays re-encode the received signals by means of the coding tensor C(k), for

k ∈ {1, 2}. The signals coded at the relay R1 yield the tensor Y(1) ∈ CMt
1×P1×P0×N , which is

given by the following contraction operation

Y(1) = C(1) ∗1
3 X̃ (1) ⇐⇒ y

(1)

mt1,p1,p0,n
=

Mr
1∑

mr1=1

c
(0)

mt1,p1,m
r
1
x̃

(1)
mr1,p0,n

. (4.3)

The coded signal Y(1) is then transmitted to the relay R2 through the channel H(1). The signals

received by R2 can be written as follows

X̃ (2) = Y(1) ×1 H(1) +N (2)

= (C(1) ∗1
3 X̃ (1))×1 H(1) +N (2) ∈ CMr

2×P1×P0×N , (4.4)
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where N (2) ∈ CMr
2×P1×P0×N is the AWGN tensor at the relay R2. Since the above contraction

over the mode mr
1 is an operation in the third mode of the tensor C(1), the tensor (4.4) can also be

rewritten as

X̃ (2) = (C(1) ×1 H(1)) ∗1
3 X̃ (1) +N (2), (4.5)

from which we define the Tucker-(1, 3) model T (1) = C(1)×1 H(1) ∈ CMr
2×P1×Mr

1 and, then, the

noiseless signals X (2) received by R2 can be written as

X (2) = T (1) ∗1
3 X (1)

= (C(1) ×1 H(1)) ∗1
3 (C(0) ×1 H(0) ×3 S), (4.6)

with the following scalar notation

x
(2)
mr2,p1,p0,n

=

Mt
1∑

mt1=1

Mr
1∑

mr1=1

Mt
0∑

mt0=1

R∑
r=1

h
(1)

mr2,m
t
1
c

(1)

mt1,p1,m
r
1
h

(0)

mr1,m
t
0
c

(0)

mt0,p0,r
sn,r. (4.7)

The model defined in (4.6)-(4.7) satisfies a NTD(4) [34] – Equations (3.7)-(3.8) – with the

correspondences (A,G(1),B(0),G(0),C)⇐⇒ (H(1), C(1),H(0), C(0),S).

Finally, in the third hop, R2 re-encodes X̃ (2) and forwards the coded signals to the

destination through the channel H(2), yielding analogously the following model for the received

signals

X̃ (3) = (C(2) ×1 H(2)) ∗1
3 X̃ (2) +N (3)

= T (2) ∗1
3 X̃ (2) +N (3) ∈ CMr

3×P2×P1×P0×N , (4.8)

withN (3) ∈ CMr
3×P2×P1×P0×N being the AWGN tensor at destination and T (2) = C(2)×1 H(2) ∈

CMr
3×P2×Mr

2 . Thus, the noiseless received signals tensor X (3) follows the generic tensor structure

introduced in Section 3.1 and given as

X (3) = T (2) ∗1
3 T (1) ∗1

3 X (1)

= (C(2) ×1 H(2)) ∗1
3 (C(1) ×1 H(1)) ∗1

3 (C(0) ×1 H(0) ×3 S), (4.9)

which satisfies a fifth-order HONTD – Equations (3.4)-(3.5), for N = 2 – with the following cor-

respondences (A,G(2),B(1),G(1),B(0),G(0),C)⇐⇒ (H(2), C(2),H(1), C(1),H(0), C(0),S). Then,

we can rewrite the noisy received signals tensor X̃ (3) in (4.8) as

X̃ (3) = X (3) + N̄ (3), (4.10)
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where the tensor N̄ (3) represents the global noise at destination and given by

N̄ (3) = N (3) + T (2) ∗1
3

(
N (2) + T (1) ∗1

3 N (1)
)
. (4.11)

4.1.2 General case – K relays

Let us now consider the general case with K ≥ 2 relays. The signal received at

the relay R1 is the same as defined in (4.2). Similarly as in (4.5) and (4.8), we can derive

the expressions for the signals received at the subsequent nodes, assuming that each relay Rk,

for k = 1, . . . , K, re-encodes the received signals X̃ (k) ∈ CMr
k×Pk−1×···×P0×N by means of a

coding tensor C(k) resulting in the coded signals Y(k) = C(k) ∗1
3 X̃ (k) ∈ CMt

k×Pk×···×P0×N to be

transmitted. After transmission via channel H(k), the signals received at the node k + 1 form a

(k + 3)-th order tensor given by

X̃ (k+1) = Y(k) ×1 H(k) +N (k+1)

= T (k) ∗1
3 X̃ (k) +N (k+1) ∈ CMr

k+1×Pk×···×P0×N , (4.12)

whereN (k+1) ∈ CMr
k+1×Pk×···×P0×N is the AWGN tensor at the node k+1 and T (k), representing

the effective channel of each hop, is defined as

T (k) = C(k) ×1 H(k) ∈ CMr
k+1×Pk×M

r
k . (4.13)

Thus, from the recurrent relation (4.12), we can deduce the following formulation

for the signals received at the node k + 1

X̃ (k+1) = X (k+1) + N̄ (k+1), (4.14)

where the noiseless received signal X (k+1) and the global noise N̄ (k+1) are given respectively as

X (k+1) = T (k) ∗1
3 X (k) (4.15)

N̄ (k+1) = N (k+1) + T (k) ∗1
3 N̄ (k). (4.16)

The tensor in (4.15) can then be rewritten in the following Tucker train format

X (k+1) = T (k) ∗1
3 T (k−1) ∗1

3 · · · ∗1
3 T (1) ∗1

3 X (1), (4.17)

from which we derive the noiseless signal tensor received at destination, (K + 1)-th node, as

X (K+1) = T (K) ∗1
3 T (K−1) ∗1

3 · · · ∗1
3 T (1) ∗1

3 X (1) ∈ CMr
K+1×PK×···×P0×N . (4.18)
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The tensor (4.18) satisfies a (K+3)-th order HONTD – Equations (3.4)-(3.5) – with the following

correspondences

(A,G(N),B(N−1),G(N−1), ...,B(0),G(0),C)⇔ (H(K), C(K),H(K−1), C(K−1), ...,H(0), C(0),S).

(4.19)

Note that for the node k = 0, since the tensor T (k) is defined for k = 1, . . . , K, the signal model

in (4.17) becomes the received signal X (1) defined in (4.2) for the first hop.

4.2 Semi-blind receivers

In this section, we exploit the tensor model of the multi-hop MIMO relaying system

presented in Section 4.1 to develop two new semi-blind receivers to jointly estimate the symbols

and the channel matrices. The first one is an iterative algorithm based on ALS method, while

the second one is a closed-form solution based on LS estimation of Kronecker products (KP),

denoted by LSKP.

The estimation of the unknown parameters in a unique way is related to the unique-

ness properties of the involved tensor models. A HONTD-based model is unique up to scaling

ambiguities when the core tensors are known (see Theorem 4, Subsection 3.1.1). Thus, we

assume that the tensor codings used by the source and the relays, corresponding to the core

tensors of the Tucker models in (4.17), are known at destination. In the sequel, for the sake of

simplicity, the equations are derived for the noiseless case.

4.2.1 ALS Receiver

In the sequel, we establish matrix unfoldings of the tensor X (K+1) of signals received

at destination that will be used to derive the LS cost functions of the ALS-based algorithm for

estimating the unknown matrices S and H(k), for k = 0, . . . , K. For that, we rewrite the signal

tensor received at destination, using (4.15) and (4.18), in K + 1 different ways (with respect to

each hop), as follows

for k = 0, X (K+1) = A(0) ∗1
3 X (1), (4.20)

for k = 1, ..., K − 1, X (K+1) = A(k) ∗1
3 X (k+1)

= A(k) ∗1
3 T (k) ∗1

3 X (k) (4.21)

for k = K, X (K+1) = T (K) ∗1
3 X (K), (4.22)
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with X (k) being defined in (4.17) and the auxiliary tensor A(k) ∈ CMr
K+1×PK×···×Pk+1×Mr

k+1

accumulating the factors on the left of T (k) as follows

A(k) = T (K) ∗1
3 · · · ∗1

3 T (k+1), if k ∈ {0, · · · , K − 1}. (4.23)

Note that the tensors A(k) is not defined for k = K and T (k) is not defined for k = 0.

Firstly, let us analyse the case k = K. Since the auxiliary tensor A(K) is not defined,

we get the K-th contracted tensor from (4.22) as

X (K+1)
K = C(K) ×1 H(K) ×3 X

(K)
PK−1···P0N×Mr

K
. (4.24)

Since the tensor in (4.24) satisfies a Tucker-(2, 3) decomposition, by using the matricization

defined in (2.26), we can obtain the following matrix unfolding

X
(K+1)
PK ···P0N×Mr

K+1
=

(
IPK ⊗X

(K)
PK−1···P0N×Mr

K

)
C

(K)

PKM
r
K×M

t
K

H(K)T , (4.25)

where X
(K)
PK−1···P0N×Mr

K
is obtained by combining some modes of the tensor X (K). This unfolded

matrix will be useful to estimate the channel matrix H(K).

By combining some modes of the tensors A(k) and X (k), we can get the tall matrix

unfoldings A
(k)
Mr
K+1PK ···Pk+1×Mr

k+1
and X

(k)
Pk−1···P0N×Mr

k
, from which we can rewrite the tensor

X (K+1) in (4.21) as a k-th contracted tensor X (K+1)
k ∈ CMr

K+1PK ···Pk+1×Pk×Pk−1···P0N given as

X (K+1)
k = T (k) ×1 A

(k)
Mr
K+1PK ···Pk+1×Mr

k+1
×3 X

(k)
Pk−1···P0N×Mr

k

= C(k) ×1 A
(k)
Mr
K+1PK ···Pk+1×Mr

k+1
H(k) ×3 X

(k)
Pk−1···P0N×Mr

k
. (4.26)

The unfoldings A
(k)
Mr
K+1PK ···Pk+1×Mr

k+1
and X

(k)
Pk−1···P0N×Mr

k
can be obtained from Definition 6.

The contracted tensor (4.26) satisfies a Tucker-(2, 3) decomposition and can be exploited to

derive LS cost functions useful for estimating the channel matrices H(k), for k = 1, ..., K − 1.

Thus, (4.26) gives the following matrix representation for the tensor X (K+1) of received signals

X
(K+1)
Pk···P0N×Mr

K+1PK ···Pk+1
=
(
IPk ⊗X

(k)
Pk−1···P0N×Mr

k

)
C

(k)

PkM
r
k×M

t
k

(
A

(k)
Mr
K+1PK ···Pk+1×Mr

k+1
H(k)

)T
.

(4.27)

By applying the Property 1, we can easily get a vectorized form of the matrix in (4.27)

x
(K+1)
k = vec

(
X

(K+1)
Pk···P0N×Mr

K+1PK ···Pk+1

)
∈ CMr

K+1PK ···P0N (4.28)

=
[
A

(k)
Mr
K+1PK ···Pk+1×Mr

k+1
⊗
(
IPk ⊗X

(k)
Pk−1···P0N×Mr

k

)
C

(k)

PkM
r
k×M

t
k

]
vec
(
H(k)T

)
.

This vector will be useful to estimate the channel matrices H(k), for k = 1, . . . , K − 1.
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Finally, for k = 0, since the tensor T (0) is not defined, the tensor X (K+1) can be

rewritten from the first line of (4.20) as

X (K+1) = A(0) ∗1
K+2 X (1). (4.29)

By combining some modes of A(0), we define the following contracted tensor

X (K+1)
0 = X (1) ×1 A

(0)
Mr
K+1PK ···P1×Mr

1

= C(0) ×1 A
(0)
Mr
K+1PK ···P1×Mr

1
H(0) ×3 S ∈ CMr

K+1PK ···P1×P0×N , (4.30)

from which are obtained the following unfolded matrices

X
(K+1)
Mr
K+1PK ···P0×N =

(
A

(0)
Mr
K+1PK ···P1×Mr

1
H(0) ⊗ IP0

)
C

(0)

Mt
0P0×RST (4.31)

X
(K+1)
P0N×Mr

K+1PK ···P1
= (IP0 ⊗ S) C

(0)

P0R×Mt
0

(
A

(0)
Mr
K+1PK ···P1×Mr

1
H(0)

)T
. (4.32)

The unfolding (4.31) will be useful to estimate the symbol matrix S, while the unfolding (4.32)

will be useful to estimate the channel matrix H(0) under its vectorized form. By applying the

Property 1, we get

x
(K+1)
0 = vec

(
X

(K+1)
P0N×Mr

K+1PK ···P1

)
∈ CMr

K+1PK ···P0N

=
[
A

(0)
Mr
K+1PK ···P1×Mr

1
⊗ (IP0 ⊗ S) C

(0)

P0R×Mt
0

]
vec
(
H(0)T

)
. (4.33)

Note that the vectorizations in (4.33) and (4.28) are different ways of writing the same unfolding

of X (K+1).

From the unfoldings (4.25), (4.28), (4.31) and (4.33), we deduce the following LS

cost functions that will be minimized (in an alternate and iterative way) with respect to H(K),

H(k), S and H(0), respectively, performing a (K + 2)-step ALS-based algorithm

Ĥ(K) = arg min
H(K)

‖X(K+1)
PK ···P0N×Mr

K+1
− (IPK⊗

X
(K)
PK−1···P0N×Mr

K

)
C

(K)

PKM
r
K×M

t
K

H(K)T‖2
F (4.34)

Ĥ(k) = arg min
H(k)

‖x(K+1) −
[
A

(k)
Mr
K+1PK ···Pk+1×Mr

k+1
⊗(

IPk ⊗X
(k)
Pk−1···P0N×Mr

k

)
C

(k)

PkM
r
k×M

t
k

]
vec
(
H(k)T

)
‖2
F (4.35)

Ŝ = arg min
S

‖X(K+1)
Mr
K+1PK ···P0×N −

(
A

(0)
Mr
K+1PK ···P1×Mr

1
H(0)⊗

IP0) C
(0)

Mt
0P0×RST‖2

F (4.36)

Ĥ(0) = arg min
H(0)

‖x(K+1) −
[
A

(0)
Mr
K+1PK ···P1×Mr

1
⊗

(IP0 ⊗ S) C
(0)

P0R×Mt
0

]
vec
(
H(0)T

)
‖2
F . (4.37)
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Table 1 – ALS receiver for multi-hop MIMO relay system

1. Randomly initialize Ŝit=0 and Ĥ
(k)
it=0, for k = 0, . . . ,K − 1

2. Update the tensor X̂ (K)
it

3. it← it+ 1
4. Calculate the LS estimate of H(K):

Ĥ
(K)T

it =

[(
IPK
⊗
(
X̂

(K)
PK−1···P0N×Mr

K

)
it−1

)
C

(K)

PKMr
K×Mt

K

]†
X̃

(K+1)
PK ···P0N×Mr

K+1

5. Calculate the LS estimate of H(k):
for k = K − 1 : 1

update the tensors X̂ (k)
it and Â(k)

it

vec
(
Ĥ

(k)T

it

)
=
[(

Â
(k)
Mr

K+1PK ···Pk+1×Mr
k+1

)
it
⊗
(
IPk
⊗
(
X̂

(k)
Pk−1···P0N×Mr

k

)
it

)
C

(k)

PkMr
k×M

t
k

]†
x̃(K+1)

end

6. Update the tensor Â(0)
it and calculate the LS estimate of S:

ŜT
it =

[((
Â

(0)
Mr

K+1PK ···P1×Mr
1

)
it
Ĥ

(0)
it−1 ⊗ IP0

)
C

(0)

Mt
0P0×R

]†
X̃

(K+1)
Mr

K+1PK ···P0×N

7. Calculate the LS estimate of H(0):

vec
(
Ĥ

(0)T

it

)
=
[(

Â
(0)
Mr

K+1PK ···P1×Mr
1

)
it
⊗
(
IP0 ⊗ Ŝit

)
C

(0)

P0R×Mt
0

]†
x̃(K+1)

8. Return to step 2 until convergence.
9. Eliminate the scaling ambiguities using (4.40) and project the estimated symbols onto the symbol alphabet.

The ALS receiver derived from the LS cost functions (4.34)-(4.37) is summarized in Table 1. It

is worth to note that all unknown parameters are estimated from the noisy signal tensor received

at destination, avoiding error propagation.

Identifiability conditions and ambiguity relations

For computing the pseudo-inverses in the steps 4 to 7 of the Table 1, some conditions

are required to ensure the uniqueness of LS solutions. Their arguments must be left-invertible,

i.e., they must be full column rank. The analysis of the necessary conditions that ensure its

uniqueness depends on the number K of relays and must be carried out by considering the

Properties 3 and 4 (Section 2.1). For the case K = 2, the following necessary conditions are

required

P0 ≥ max
(
M t

0

R
,
R

M t
0

,
M r

1

N

)
, P1 ≥ max

(
M r

1

M r
2

,
M r

2

M r
1

)
,

P2 ≥ max (M r
2/M

r
3 ) , M r

1 ≥M t
0, N ≥ R. (4.38)

From the Theorem 4, the unknown parameters are affected by the following scaling

ambiguities: Ŝ = δS S and Ĥ(k) = δH(k) H(k), for k = 0, . . . , K, such that

δS

(
K∏
k=0

δH(k)

)
= 1. (4.39)
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The scaling ambiguity of Ŝ can be removed by assuming the a priori knowledge of one pilot

symbol (s1,1). Concerning the scaling ambiguity of Ĥ(k), in order to plot the simulation results,

we assumed that one coefficient (h(k)
1,1) of each channel is known at destination. This assumption

has already been adopted in other works [18, 20, 21, 24, 34, 42] in the context of relaying systems.

In practice, such a priori information could be obtained by a simple LS estimation using a

pilot-symbol generated by the relays [24]. If the use of a pilot-symbol isn’t possible, the channel

matrices Ĥ(k) are estimated up to a scalar constant. However, this ambiguity would not affect

the symbol estimation neither the design of precoding schemes with CSI. Thus, to eliminate the

scaling ambiguities on the estimated parameters, we use the following equations

Ŝ ← (δS)−1 Ŝ

Ĥ(k) ← (δH(k))−1 Ĥ(k), (4.40)

with δS = ŝ1,1/s1,1 and δH(k) = ĥ
(k)
1,1/h

(k)
1,1.

4.2.2 LSKP Receiver

The LSKP receiver, unlike the ALS-based algorithm, is a closed-form (non-iterative)

solution based on LS estimation of factors that compose Kronecker products, by applying a

SVD-based low-rank approximation algorithm, introduced in [91] and proposed for the first time

in [40] for point-to-point systems. Appendix C shows the procedure of estimation of the matrix

factors of a Kronecker product by low-rank approximation.

Starting from (4.15), we can get a contracted tensor similar to (4.24) for the noiseless

signal tensor X (k+1) received by the node k + 1, for k = 1, . . . , K. Thus, by combining the last

k + 1 modes, the following contracted tensor satisfies a Tucker-(2, 3) model

X (k+1)
k = C(k) ×1 H(k) ×3 X

(k)
Pk−1···P0N×Mr

k
∈ CMr

k+1×Pk×Pk−1···P0N . (4.41)

A tall mode-2 unfolding of the above model is given by

X
(k+1)
Mr
k+1Pk−1···P0N×Pk =

(
H(k) ⊗X

(k)
Pk−1···P0N×Mr

k

)
C

(k)

Mt
kM

r
k×Pk

. (4.42)

Let us now define the KP Ω(k) = H(k) ⊗X
(k)
Pk−1···P0N×Mr

k
∈ CMr

k+1Pk−1···P0N×Mt
kM

r
k ,

such that we can derive the LS estimation of Ω(k) as

Ω̂(k) = X
(k+1)
Mr
k+1Pk−1···P0N×Pk

(
C

(k)

Mt
kM

r
k×Pk

)†
. (4.43)
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The main idea of the proposed receiver is to estimate recursively the channel matrix H(k) and the

matrix unfolding X
(k)
Pk−1···P0N×Mr

k
, from k = K to k = 1, by using the LS estimate (4.43) of Ω(k)

and applying the low-rank approximation algorithm.

In order to avoid error propagation effects, the symbol matrix S is directly estimated

using the tensor of signals received at destination, as detailed below. From the contracted tensor

in (4.30), we define the matrix B = A
(0)
Mr
K+1PK ···P1×Mr

1
H(0) and take a tall mode-2 unfolding,

obtaining

X
(K+1)
Mr
K+1PK ···P1N×P0

= (B⊗ S) C
(0)

Mt
0R×P0

. (4.44)

Thus, defining Ω(0) = B⊗ S, we get the following LS estimate for Ω(0)

Ω̂(0) = X
(K+1)
Mr
K+1PK ···P1N×P0

(
C

(0)

Mt
0R×P0

)†
. (4.45)

Once Ω̂(0) estimated using the signals received at destination, the SVD-based low-

rank approximation algorithm allows us to estimate the Kronecker factors B and S directly from

the signals X (K+1) received at destination. The LS estimate of the channel matrix H(0) is then

given by

Ĥ(0) =
(
Â

(0)
Mr
K+1PK ···P1×Mr

1

)†
B̂. (4.46)

The estimated matrix Â
(0)
Mr
K+1PK ···P1×Mr

1
is obtained from (4.23) with the channel matrices repla-

ced by their estimates Ĥ(k), for k = 1, . . . , K, obtained in previous steps of the algorithm. The

LSKP receiver derived from the LS estimates (4.43), (4.45) and (4.46) is summarized in Table 2.

The LSKP algorithm has the interesting advantage of benefiting from the choice of a

coding designed from a unitary (or orthogonal in the real case) matrix. This comes from the fact

that the LSKP technique uses only one matrix unfolding of each coding tensor. The “unitary

coding” consists of a tensor chosen in such a way that one of its unfoldings is a truncated unitary

matrix, leading the unfolded coding to be row-orthonormal. Since a row-orthonormal matrix C

has its Hermitian transpose equal to its inverse (i.e. CHC = I), the computation of the pseudo-

inverses in (4.43) and (4.45) are simplified. Although the term “unitary” is related to a square

matrix, we will use throughout this thesis the term “unitary coding” for the row-orthonormal

unfolded matrices, whether square or not.

In addition, unitary transformations are isometric (i.e. preserve the norm), leading

the LSKP algorithm to benefit of exploit the following property [92].
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Table 2 – LSKP receiver for multi-hop MIMO relay system
Stage 1: estimation of the channel matrices H(k), for k = 1, . . . ,K

1. X̂
(K+1)
Mr

K+1PK−1···P0N×PK
= X̃

(K+1)
Mr

K+1PK−1···P0N×PK
.

2. Calculate the estimates of H(k) and X
(k)
Pk−1···P0N×Mr

k
from Ω(k) = H(k) ⊗X

(k)
Pk−1···P0N×Mr

k
:

for k = K : 1

Ω̂(k) = X̂
(k+1)
Mr

k+1Pk−1···P0N×Pk

(
C

(k)

Mt
kM

r
k×Pk

)†
Apply the low-rank approximation algorithm in Appendix C to obtain Ĥ(k) and X̂

(k)
Pk−1···P0N×Mr

k

X̂
(k)
Mr

kPk−2···P0N×Pk−1
← reshape

(
X̂

(k)
Pk−1···P0N×Mr

k

)
end

Stage 2: estimation of the channel H(0) and symbol S matrices
3. Calculate the estimates of B and S from Ω(0) = B⊗ S:

Ω̂(0) = X
(K+1)
Mr

K+1PK ···P1N×P0

(
C

(0)

Mt
0R×P0

)†
.

Apply the low-rank approximation algorithm in Appendix C to obtain B̂ and Ŝ

4. Build Â(0) from (4.23), with T̂ (k) composed by Ĥ(k) estimated in Stage 1
5. Calculate the LS estimate of H(0) using:

Ĥ(0) =
(
Â

(0)
Mr

K+1PK ···P1×Mr
1

)†
B̂.

6. Eliminate the scaling ambiguities using (4.40) and project the estimated symbols onto the symbol alphabet.

Property 6. Let H1 and H2 be two Hermitian spaces of the same finite dimension. A trans-

formation T : H1 → H2 is a unitary transformation, or a linear isometry, if it is linear and

‖Tx‖ = ‖x‖, (4.47)

for all x ∈ H1.

Proof. Since the norm of a vector x is given by

‖x‖ =
√
〈x,x〉 =

√
xHx,

we have

‖Tx‖ =

√
(Tx)H Tx =

√
xHTHTx.

As THT = I, then ‖Tx‖ =
√

xHx = ‖x‖.

Thus, by allowing the exploitation of unitary coding, the LSKP receiver avoids noise

enhancement by conserving the energy of the received signals.

Identifiability conditions and ambiguity relations
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The parameter identifiability is linked to the uniqueness of the LS estimates (4.43)

and (4.45), which require the unfoldings C
(k)

Mt
kM

r
k×Pk

and C
(0)

Mt
0R×P0

to be full row rank to compute

their right inverse. That leads to the necessary identifiability conditions Pk ≥ M t
kM

r
k and

P0 ≥ M t
0R. Regarding (4.46), the unfolding Â

(0)
Mr
K+1PK ···P1×Mr

1
must be left-invertible, which

leads to the condition M r
K+1PK · · ·P1 ≥M r

1 .

Moreover, the factors of a KP can only be estimated up to scalar ambiguities, as

shown in Appendix C. As the steps of the proposed receiver perform the factorization of the

KP matrix Ω(k), the estimated factors have the ambiguities Ĥ(k) = δH(k)H(k) and Ŝ = δS S.

Similarly to the ALS receiver in the previous subsection, these ambiguities are eliminated by

assuming a priori knowledge of one pilot symbol (s1,1) and one channel coefficient (h(k)
1,1) of

each channel H(k), for k = 1, · · · , K. The ambiguities are then cancelled as given in (4.40). By

comparison, the receiver of [18] based on the estimation of the factors of Khatri-Rao products

needs the knowledge of one row of each factor matrix.

4.3 Simulation resutls

In this section, we provide simulation results to illustrate the efficiency of the

proposed receivers. The results were averaged over 5 × 104 Monte Carlo runs. The SER and

channel NMSE are plotted as function of the transmission power to noise spectral density ratio

(PT/N0). White Gaussian noises were added at each receiving node with the same noise variance

N0. At each run, N0 was fixed according to the desired PT/N0 value. The transmitted symbols

were randomly generated from a unit energy 4-QAM alphabet. We assume flat-fading channels,

with i.i.d. (independent and identically distributed) complex Gaussian entries. The variance of

the channel coefficients follows an exponential path-loss model given by σ2
H = 1/d4, where

d = D/(K+ 1) is the distance between two relays, and D is the distance between the source and

destination arbitrarily chosen equal to 1. We assume the relays are uniformly distributed between

the source and the destination. For all the simulations, we have considered a same number of

receive and transmit antennas at the relays, i.e., M r
k = M t

k. The design parameter values used in

the simulations are indicated above each figure.

In Subsections 4.3.1 and 4.3.2, the elements of the coding tensors have unit amplitude

and random phase drawn from a uniform distribution between 0 and 2π. Each tensor C(k) was

multiplied by a fixed scalar gain so that the mean power at each transmitting antenna of each

node is kept constant. Thus, the coding tensors become C(k) ←
√
β(k)C(k), for k ∈ {0, . . . , K},
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Figure 15 – ZF receiver performance for different numbers of data stream
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with β(k) given by

β(0) = PT/RM
t
0 (4.48)

β(k) = PT/(M
r
kM

t
k(PTσ

2
H +N0)), for k = 1, . . . , K. (4.49)

The total transmission power at each node is given as PT = Ptotal/(K + 1), where K + 1 is the

number of hops and Ptotal is the power fixed for the system and arbitrarily chosen equal to 1.

4.3.1 Zero-forcing receiver with perfect channel knowledge

In this subsection, the impact of the choice of the design parameters was evaluated

(regardless of the influence of algorithm) in the case of perfect channel knowledge using a

zero-forcing (ZF) receiver, which is derived from step 6 of the algorithm in Table 1 and given by

ŜT =
[(

A
(0)
Mr
K+1PK ···P1×Mr

1
H(0) ⊗ IP0

)
C

(0)

Mt
0P0×R

]†
X̃

(K+1)
Mr
K+1PK ···P0×N . (4.50)

In the first results, we consider a three-hop system, with two relays (K = 2). In

the following, we show the impact of the number R of data streams on symbol estimation

performance with the ZF receiver. Figure 15 shows the SER versus PT/N0 for R ∈ {2, 4, 8}. As

expected, one can note an increase of the SER when the value of R is increased. However, a

greater number of data streams improves the spectral efficiency by sending more symbols in the

same time block.

Figure 16 shows the SER versus PT/N0 for different time-spreading lengths P0, P1

and P2 of the coding tensors. The significant gain of the configuration (P0, P1, P2) = (4, 2, 2)

with respect to the others shows that it is more efficient to have higher time-spreading at the



85

Figure 16 – ZF receiver performance for different values of P0, P1 and P2
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Figure 17 – ZF receiver performance for different numbers of antennas
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nodes closest to the source. This result comes from the fact that the time-spreading at these

nodes is repeated by all the subsequent nodes, increasing even more the number of transmission

blocks.

Figure 17 shows the SER versus PT/N0 for different numbers of antennas. One can

note better results when increasing the number of antennas at the first two hops. These results

corroborate the conclusions obtained in [34] concerning a greater efficiency in the exploitation

of the spatial diversity at the first hops and can be explained by the dependence of the tensor

coding with respect to the number of antennas, which generates redundancy of symbols with less

noise and fading in the nodes closer to the source. As expected, the case (4, 4, 4, 4) yields better

performance than all the other cases, due to a greater number of antennas globally used at the

source, the relays and the destination, while the case (2, 2, 2, 2) provides the biggest SER among

the tested configurations.

Figure 18 shows the SER versus PT/N0 for different numbers of relays, K ∈
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Figure 18 – ZF receiver performance for different numbers of relays
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{1, 2, 3}, in order to evaluate the impact of an increase in the number of hops. The case with a

single relay (K = 1) is equivalent to the two-hop MIMO relay system based on a fourth-order

NTD proposed in [34]. We can see that when the number of relays is increased, the SER

performance is clearly improved. This result can be explained by the smaller path-loss between

nodes and the higher diversity (due to the multiple spreading implemented by the relays) when

the number of relays is increased.

4.3.2 ALS receiver preformance

The next results evaluate the performance of the proposed semi-blind ALS receiver.

For the sake of comparison, we also consider an equivalent one-hop system, corresponding to

the case when the direct link is available, where the signals are sent directly from the source to

the destination through the channel H(0→3) ∈ CMr
3×Mt

0 . For this case, (4.31) and (4.32) becomes

X
(0→3)
Mr

3P0×N =
(
H(0→3) ⊗ IP0

)
C

(0)

Mt
0P0×RST (4.51)

X
(0→3)
P0N×Mr

3
= (IP0 ⊗ S) C

(0)

P0R×Mt
0

(
H(0→3)

)T
, (4.52)

from which we can derive the LS cost functions to estimate the matrices H(0→3) and S. The ALS

receiver for the single-hop system can be derived from Table 1, excluding the steps 2, 4 and 5

and replacing the steps 6 and 7 by the LS estimates based on (4.51) and (4.52).

For both the cases, the convergence criterion of the iterative algorithms is based on

the reconstruction of the received signal tensor (X (·)
rec) performed from the estimated parameters.

The difference between the Frobenius norm of the current estimation error and the Frobenius

norm of the previous estimation error was calculated at each iteration. We have assumed that
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Figure 19 – SER performance for the proposed ALS receiver
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the convergence is achieved when this difference is less than 1.0 × 10−5. This procedure is

represented below(
‖X̃ (·) −X (·)

rec‖2
F

)
it
−
(
‖X̃ (·) −X (·)

rec‖2
F

)
it−1
≤ 1.0× 10−5. (4.53)

Figure 19 shows the SER versus PT/N0 for the ALS receiver with the three-hop

(cooperative link) and the one-hop (direct link) scenarios. One can conclude that the proposed

three-hop system provides a significant gain over the estimation with the one-hop link. That

comes from the multiple TST coding and from the fact that for the three-hop system the path-loss

of each hop is smaller than the one of the single-hop system, due to the proportionality of the

path-loss to d4. For a fixed SER value (10−3), it can be observed that the PT/N0 gap is around 5

dB and 20 dB for the ALS receivers of the three-hop and one-hop systems, respectively, when

compared with the ZF receiver. Despite this degradation, the proposed semi-blind ALS receiver

has for advantages on the ZF receiver not to require the a priori knowledge of CSI and also to

allow a joint estimation of the symbols and the channels.

Figure 20 shows the number of iterations needed to achieve the convergence by the

iterative receivers versus PT/N0. One can note the fastest convergence of the three-hop link for

low PT/N0 values, showing the advantage of the cooperative network in an adverse situation.

However, for high PT/N0 values, the smaller number of parameters to be estimated in the direct

link increases the speed of convergence, overcoming the one obtained with the relay-assisted

link.

In order to evaluate the estimation of the individual channels, Figure 21 shows the

channel NMSE versus PT/N0 for all the hops of the relay system. The NMSE has been computed
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Figure 20 – Convergence of the proposed ALS receiver
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Figure 21 – Channel NMSE for the proposed ALS receiver
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as

NMSE =
1

MC

∑
mc

(
‖Hmc − Ĥmc‖2

F

)
/
(
‖Hmc‖2

F

)
, (4.54)

with mc = 1, . . . ,MC, MC corresponding to the number of Monte Carlo runs, and Hmc and

Ĥmc being respectively the real channel and the estimated channel in the mc-th run. One can

note that the channel estimation is improved for the nodes closest to the destination. That comes

from the noise enhancement with each new coding applied by the relays. Moreover, we can

conclude that the channel estimation is better with the cooperative link than with the direct link.

4.3.3 LSKP receiver preformance

Now, we evaluate the performance of the proposed LSKP receiver. In this case, three

different choices for the coding tensors are considered: i) tensors with elements of unit magnitude
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Figure 22 – SER performance comparison with LSKP receiver for K = 2
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and phase randomly drawn from a uniform distribution between 0 and 2π; ii) tensors such that the

unfolding C
(0)

Mt
0R×P0

(resp. C
(k)

Mt
kM

r
k×Pk

) is a truncated discrete Fourier transform (DFT) matrix,

i.e., composed of the first M t
0R (resp. M t

kM
r
k ) rows of the DFT matrix of dimension P0 × P0

(resp. Pk × Pk); iii) tensors such that the unfolding C
(0)

Mt
0R×P0

(resp. C
(k)

Mt
kM

r
k×Pk

) is a truncated

Hadamard matrix, i.e., composed of the first M t
0R (resp. M t

kM
r
k ) rows of the Hadamard matrix

of dimension P0 × P0 (resp. Pk × Pk).

Figure 22 compares the SER versus PT/N0 obtained with the proposed LSKP

receiver for three different coding tensors and two relays (K = 2). We also plot the performance

of the ZF receiver introduced in Subsection 4.3.1. The DFT and Hadamard codings with the

LSKP receiver give significant SER improvements, overcoming the performance obtained in the

other cases. That comes from the fact that in (4.43) and (4.45) – Steps 2 and 3 of the Table 2

– the coding unfolded matrices are unitary, which avoids noise enhancement, since orthogonal

transformations preserve the norm and therefore the noise power.

The above conclusion is reached by analyzing the condition number of the pseudo-

inverses in (4.45) used by the LSKP receiver for estimating the symbols, as the condition number

measures how sensitive a solution is with respect to perturbations in the observed data. It is

well known that unitary (isometric) transformations have condition number equal to 1. We have

calculated, by means of simulation, the condition number of the pseudo-inverse for each choice

of the coding (Hadamard, DFT and random). They are shown in Table 3. The bad conditioning

of the pseudo-inverse in (4.45) with the random coding justifies the great degradation of the

performance with this coding type. We can also see the similar performances provided by the

DFT and Hadamard codings, illustrating the advantage in exploiting the orthogonality property
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Table 3 – Condition number of the LSKP and ZF receivers with different
codings

Receiver Coding type Condition number
(mean) (standard deviation)

LSKP
Hadamard 1 0
DFT 1 0
Random 10.32 13.84

ZF DFT 2.48 1.17
Random 1.73 0.51

Figure 23 – SER performance with the LSKP receiver for different numbers of
relays
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regardless of the kind of the used unitary matrix.

It is worth mentioning that a coding with unitary unfoldings is feasible for the LSKP

receiver, due to the use of only one matrix unfolding of each coding tensor. This orthogonality

property can not be exploited with the ZF receiver, which explains the performance degradation

of this receiver. This becomes clear when we observe the conditioning of the pseudo-inverse

in (4.50). Table 3 also shows the condition number of this pseudo-inverse for the scenario

considered in Figure 22. The non-orthogonality of the pseudo-inverse in (4.50) leads to weaker

conditioning, which may cause noise enhancement. From the values in Table 3, we can also

conclude that the ZF receiver get a better conditioning with random coding.

Figures 23 and 24 show the SER versus PT/N0 for different system configurations,

using the DFT coding. In Figure 23, we evaluate the impact of an increase of the number of

relays, K ∈ {1, 2, 3, 4}, for two different values of the number R of data streams. The multiple

time-spreading generated by the TSTC, along with the smaller path-loss of each hop when the

number of relays is increased, lead to a performance gain that corroborates the effectiveness of
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Figure 24 – SER performance with the LSKP receiver for different values of R and
P0
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Figure 25 – NMSE of the individual channel estimates with LSKP receiver for
K = 2
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the multi-hop scenario. One can also note a SER degradation with an increase of R, due to the

larger amount of symbols to be estimated.

Figure 24 shows the impact of the number R of transmitted data streams and of the

time spreading length P0 at the source. These two parameters are crucial to the transmission

rate of the proposed system. For the case with K = 2, the transmission rate is proportional

to R/P0(1 + P1 + P1P2). From this figure, one can conclude that increasing P0, with R

fixed, improves the SER, due to a higher time-diversity at the source, at the cost of a smaller

transmission rate. On the other hand, increasing R with P0 fixed leads to higher SERs, due to

a larger number of symbols to be estimated. Note that a same value of R/P0 implies the same

transmission rate, with similar SERs.

Figure 25 shows the channel NMSE versus PT/N0 for the individual channels. We
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compare the NMSE obtained with the random, DFT and Hadamard codings for the proposed

receiver. The results corroborate with the advantage of the system with unitary (DFT and

Hadamard) codings, when compared with a random coding. Moreover, the results show a

channel estimation improvement for the hops closest to destination. That comes from the

recurrent channel estimation that begins with the last hop and ends with the first hop, leading to

an error propagation from the nodes closest to destination to the others.

4.3.4 Performance comparison of the proposed receivers

In this subsection, we provide a performance comparison of the proposed semi-blind

receivers. We also show the SER performance of receiver based on a Khatri-Rao factorization

(KRF) algorithm proposed in [18], which exploits a generalized nested PARAFAC model for a

multi-hop relaying system that uses a simplified KRST coding. To plot the curves, the parameters

were chosen to ensure roughly the same transmission rate for all the systems. For the proposed

system, the transmission rate is proportional to R/P0(1 + P1 + P1P2), while for the system

of [18], it is proportional to M t
0/P0(1 + P1 + P1P2).

For large values of N , the computational complexities of the LSKP, KRF and ZF

receivers are respectively given by O(M3PK+1N), O(M2PK+1N) and O(MPK+1N). This

shows that the proposed algorithm is a little more complex than the other two techniques, which

can be explained by the fact that the KRF uses a tensor coding simpler than the one of the

proposed receiver. Moreover, the ZF receiver assumes the perfect knowledge of all the channel

matrices, which greatly simplifies the estimation of the information symbols.

From Figure 26, one can note that the ALS performance is better than the one

obtained with the LSKP receiver when a random coding is considered. This gain can be

explained by the refinement provided by the ALS technique until to achieve the convergence

criterion. Despite that, the exploitation of the orthogonality of the coding tensors with the LSKP

receiver yields a significant gain over the iterative receiver. We can also conclude from Figure 26

that the proposed LSKP receiver gives a better performance than the receiver of [18] due to the

use of TSTC, which exploits spatial transmit diversity at the source and relay nodes.

Figure 27 shows the channel NMSE versus PT/N0 for the individual channels. We

compare the NMSE obtained with the random and DFT codings for the proposed ALS and LSKP

receivers, respectively, and the KRF receiver [18]. The results illustrate the advantage of the

system with DFT coding, compared with random coding and with the system [18], in most of
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Figure 26 – SER performance comparison for K = 2
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Figure 27 – NMSE of the individual channel estimates for K = 2
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the cases.

4.4 Summary

In this chapter, we have proposed a multi-hop AF MIMO relay system with TSTC

at the source and the relays. We have showed that the signals received at destination form a

(K + 3)-th order tensor (K is the number of relays) that satisfies a HONTD. The contributions

in this chapter extends previous works in different ways, either by using a more general relay

coding, by extending these works to the multi-hop case and/or by using a different estimation

algorithm.

By exploiting the proposed tensor modeling, we have derived two semi-blind recei-

vers, called ALS and LSKP receivers. The receivers allow to jointly estimate the individual

channels and the information symbols by exploiting a iterative method, in the case of the ALS
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receiver, and by exploiting a closed-form solution, in the case of LSKP receiver. In addition, a

ZF receiver was considered to evaluate the impact of some design parameters on the performance

of the system.

Simulation results have shown that the performance of the proposed multi-hop

system is better than the one obtained by using a direct (source-destination) link, i.e., an increase

of K improve significantly the performance in terms of SER and channel NMSE. Among the

different receivers, when considered the use of random coding, the iterative nature of the ALS

algorithm provides a refinement of the channels estimation, yielding a better SER than the

closed-form LSKP receiver. However, the LSKP receiver allow to exploit a tensor coding with

a unitary unfolding, which overcomes the results obtained with the ZF receiver and the ALS

one. We also showed that the multi-hop system with TSTC at the source and the relays has

performance that overcomes the one obtained with the simpler KRST coding (system in [18]).

For the above reasons, for purposes of application and simulation in the following

chapters, we will consider the LSKP method with unitary unfoldings.
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5 TWO-HOP MIMO MULTIRELAY SYSTEM WITH TSTC BASED ON CNTD

In this chapter, we present a two-hop MIMO multi-relay system with TSTC at the

source and the relays. In this system, the multiple relays use orthogonal channels (parallel

relaying) to increase the diversity order, assuming that all the relays can communicate directly

with the destination. The proposed communication system generalizes the system model of [34]

by introducing an additional diversity to the system: the cooperative diversity, obtained through

the use of multiple relays in a parallel way. This system can also be viewed as an extension

of previous works [24, 30, 35] in different ways, either by proposing a more general tensor

decomposition, by using a more general relay coding, by extending these works to the multi-relay

case and/or by using a different estimation algorithm.

We show that the signals received at destination form a fifth-order tensor, where

each mode is linked with a different signal dimension (space, source code, relay code, time and

number of relays), satisfying a CNTD model, as introduced in Subsection 3.2.

The tensor approach presented in this chapter is used to develop a receiver algorithm

based on LSKP technique for jointly estimating the symbol matrix and the individual channels

with a global processing of all dataset received from multiple relays. Monte Carlo simulations are

provided to illustrate the effectiveness of the cooperative diversity exploitation and to compare

the performances of the proposed receiver with other existing ones.

5.1 System model

Let us consider the cooperative communication system shown in Figure 28, which is

composed of a source (S) sending data to the destination through multiple relays (R1, . . . , RK),

where K is the number of relays. The source-relay and relay-destination channelsare assumed to

be flat fading and quasi-static. All nodes of the system employ multiple antennas and the relays

operate in half-duplex mode.

The following key assumptions are made: (i) the direct link between the source and

destination nodes is not available, corresponding to a link with deep fading; (ii) the code tensors

are known at the destination; (iii) the relays use the AF protocol; (iv) the relays are synchronized

at symbol level and they transmit in orthogonal channels in different time slots.

The global transmission is composed of K + 1 steps, the first step corresponding to

the transmission from the source to the relays and the remaining K steps corresponding to the
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Figure 28 – Two-hop MIMO relaying system with K relays
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sequential transmission from the K relays to the destination. While a relay is transmitting to the

destination, the other relays remain silent.

Regarding the use of multiple relays operating in orthogonal channels, also known

as parallel relaying, we can find many works in the literature that use this kind of approach

[19–21, 93]. However, these works use more simple channel models. Indeed, [20, 93] consider

single-antenna nodes, [19, 21] use conventional matrix coding and [19, 21, 93] perform the

channel estimation with the use of training sequences.

In this sequel, for the sake of simplicity, we consider the noiseless case for describing

the system model. In the first hop of transmission, the symbol matrix S ∈ CN×R, with R data

streams composed of N symbols each, is transmitted by MS antennas at the source. TSTC at

the source using the coding tensor C(S) ∈ CMS×P×R provides temporal spreading with length P ,

leading to the following tensor of coded signals to be transmitted

X (S) = C(S) ×3 S ∈ CMS×P×N ⇐⇒ x(S)
mS ,p,n

=
R∑
r=1

c(S)
mS ,p,r

sn,r, (5.1)

with mS = 1, . . . ,MS , p = 1, . . . , P and n = 1, . . . , N . After transmission through the channel

H
(SR)
··k ∈ CMR×MS , the signals received by MR antennas at the k-th relay, during the n-th symbol

period of the p-th transmission block form a fourth-order tensor given by

x
(R)
mR,p,n,k

=

MS∑
mS=1

h
(SR)
mR,mS ,k

x(S)
mS ,p,n

=

MS∑
mS=1

R∑
r=1

h
(SR)
mR,mS ,k

c(S)
mS ,p,r

sn,r, (5.2)

with mR = 1, . . . ,MR and k = 1, . . . , K. The signals (5.2) received at the relaying node define

the fourth-order tensor X (R) ∈ CMR×P×N×K given as the following generalized Tucker-(2, 4)

decomposition

X (R) = X (S) ×1 H(SR) = C(S) ×1 H(SR) ×3 S, (5.3)
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withH(SR) ∈ CMR×MS×K .

Each relay k re-encodes the received signals, using also a TSTC C(R)
(k) ∈ CMT×J×MR

with length J , before transmitting the coded signals to destination. The signals transmitted by

MT antennas at the k-th relay, through the channel H
(RD)
··k ∈ CMD×MT , associated with the n-th

symbol period of the p-th transmission block at the source and the j-th transmission block at the

relay are given by

X (T ) = C(R) ∗1
3 X (R) ∈ CMT×J×P×N×K ⇐⇒ x

(T )
mT ,j,p,n,k

=

MR∑
mR=1

c
(R)
mT ,j,mR,k

x
(R)
mR,p,n,k

, (5.4)

with mT = 1, . . . ,MT and j = 1, . . . , J . Finally, after transmission from the k-th relay, the

noiseless tensor of signals received by MD antennas at the destination is given by

x
(SRD)
mD,j,p,n,k

=

MT∑
mT=1

h
(RD)
mD,mT ,k

x
(T )
mT ,j,p,n,k

, (5.5)

with mD = 1, . . . ,MD. Replacing x(T )
mT ,j,p,n,k

by its expression deduced from (5.4) and (5.2)

gives

x
(SRD)
mD,j,p,n,k

=

MT∑
mT=1

MR∑
mR=1

MS∑
mS=1

R∑
r=1

h
(RD)
mD,mT ,k

c
(R)
mT ,j,mR,k

h
(SR)
mR,mS ,k

c(S)
mS ,p,r

sn,r. (5.6)

Thus, the signals received at destination form a fifth-order tensor X (SRD) ∈ CMD×J×P×N×K ,

whose modes are associated with space, coding (at source and relays), time and cooperative

diversities. Note that the tensor in (5.6) satisfies a CNTD model – Equations (3.26)-(3.26) – with

the correspondences (A(1),G(1),A(2),G(2),A(3))⇐⇒ (H(RD), C(R),H(SR), C(S),S).

From (5.6), let us define the following generalized Tucker–(2, 4) model

h
(SRD)
mD,j,mS ,k

=

MT∑
mT=1

MR∑
mR=1

c
(R)
mT ,j,mR,k

h
(RD)
mD,mT ,k

h
(SR)
mR,mS ,k

, (5.7)

which can be expressed in tensor form as

H(SRD) = C(R) ×1 H(RD) ×3 H(SR)
′

∈ CMD×J×MS×K , (5.8)

where the tensorH(SR)
′
∈ CMS×MR×K is formed by permuting the first two modes ofH(SR) ∈

CMR×MS×K , i.e. H
(SR)

′

··k = H
(SR)T

··k ∈ CMS×MR . The tensor H(SRD) can be viewed as the

effective channel between the source and the destination.

Thus, we can write the received signal model (5.6) as follows

x
(SRD)
mD,j,p,n,k

=

MS∑
mS=1

h
(SRD)
mD,j,mS ,k

x(S)
mS ,p,n

, (5.9)
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which yields the following contraction between the tensorsH(SRD), defined in (5.8), and X (S),

defined in (5.1),

X (SRD) = H(SRD) ∗1
3 X (S) ∈ CMD×J×P×N×K . (5.10)

Fixing the index k in (5.8), the generalized Tucker–(2, 4) model H(SRD) can be

viewed as K Tucker–(2, 3) models H(SRD)
(k) ∈ CMD×J×MS , leading to the following modeling

for the tensor of signals received at destination from the k-th relay

X (SRD)
(k) = H(SRD)

(k) ∗1
3 X (S) ∈ CMD×J×P×N . (5.11)

Note that the effective channelH(SRD) is formed by the concatenation of the individual channels

of each relay as given below

H(SRD) = H(SRD)
(1) t4 H(SRD)

(2) · · · t4 H(SRD)
(K) . (5.12)

The tensor (5.11) satisfies a fourth-order NTD, as introduced in [34] and recalled in

Subsection 2.2.3, which leads us to write the tensor X (SRD) in (5.10) as a coupling of K tensors

X (SRD)
(k) , satisfying a fifth-order CNTD, as introduced in Section 3.2. Indeed, the tensors (5.1),

(5.8), (5.10) and (5.11) correspond to the tensors (3.19), (3.21), (3.20) and (3.17), respectively,

resulting in the following correspondences between the models

(T (1), T (2),A(1),G(1),A(2),G(2),A(3))⇐⇒ (H(SRD),X (S),H(RD), C(R),H(SR), C(S),S).

(5.13)

Figure 29 shows a block-diagram of the tensor of received signals X (SRD) decompo-

sed into K branches, illustrating that the tensor of coded signals at the source X (S) is transmitted

to the destination via K relays. Each branch corresponds to a NTD that shares the same tensor

X (S) with the other branches, characterizing a coupling of K NTD models. Hence, the aim is to

jointly estimate the transmitted information symbols and the channels from this dataset using a

semi-blind receiver.

It is worth mentioning that the case with a single relay (K = 1), the system model

proposed in the present chapter is equivalent to the one discussed in Chapter 4.

5.2 Semi-blind receiver

By exploiting the CNTD modeling of the proposed MIMO relaying system, we

propose a semi-blind receiver for jointly estimating the symbol matrix and the channel tensors.
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Figure 29 – Tensor model of noiseless received signals
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The receiver is based on a LSKP algorithm, as already used in previous chapter in a different

system model. In this section we derive the LSKP for the CNTD model above presented. We

assume that the coding tensors C(S) and C(R), corresponding to the core tensors of the models

(5.1) and (5.8), are known by the receiver. Thus, we have the channel tensorsH(SR) andH(RD)

and the symbol matrix S as unknown factors to be estimated. The knowledge of the coding

tensors ensures that these factors are unique up to scaling ambiguities (see Theorem 5).

By using the correspondences (6.11), the ambiguity relations given in Theorem 5

become δ(RD)
k δ

(SR)
k δ(S) = 1, where δ(RD)

k , δ(SR)
k and δ(S) are the scalar ambiguity factors of

H(RD),H(SR) and S, respectively. Note that the ambiguities onH(RD) andH(SR) depend on the

relay.

To derive the LSKP receiver, let us define LS estimations of Kronecker products

based on a low-rank approximation algorithm. Applying (2.20) to the tensor X (SRD) in (5.10),

we get the following mode-3 product

X (SRD)
MD×J×PN×K = H(SRD) ×3 X

(S)
PN×MS

, (5.14)

where X
(S)
PN×MS

is mode-1 unfolding of (5.1). By replacing H(SRD) and using the Property 5,

the tensor X (SRD)
MD×J×PN×K becomes

X (SRD)
MD×J×PN×K = C(R) ×1 H(RD) ×3

(
H(SR)

′

×1 X
(S)
PN×MS

)
. (5.15)

Defining V = H(SR)
′
×1X

(S)
PN×MS

∈ CPN×MR×K , the above model is a generalized Tucker–(2, 4)
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decomposition, which allows us to write, from (2.33), the following unfolding

X
(SRD)
MDPN×KJ =

(
H

(RD)
MD×KMT

./ VPN×KMR

)
C

(R)
KMTMR×KJ , (5.16)

where

VPN×KMR
= X

(S)
PN×MS

H
(SR)
MS×KMR

= (IP ⊗ S) C
(S)
PR×MS

H
(SR)
MS×KMR

. (5.17)

On the other hand, applying (2.21) to (5.10) and replacing X (S) by (5.10), we can

deduce the following mode-1 product

X (SRD)
JKMD×P×N = X (S) ×1 H

(SRD)
JKMD×MS

= C(S) ×1 H
(SRD)
JKMD×MS

×3 S. (5.18)

The above model is a Tucker–(2, 3) decomposition, from which we can write the following tall

unfolding

X
(SRD)
NJKMD×P =

(
S⊗H

(SRD)
JKMD×MS

)
C

(S)
RMS×P , (5.19)

where the matrix H
(SRD)
JKMD×MS

is the following tall mode-3 unfolding ofH(SRD) deduced from

(2.33) as

H
(SRD)
JKMD×MS

=
[
IJ ⊗ bdiag

(
H

(RD)
··k

)]
C

(R)
JKMT×KMR

H
(SR)
KMR×MS

(5.20)

Defining the matrices Φ = H
(RD)
MD×KMT

./ VPN×KMR
∈ CMDPN×KMTMR and

Ω = S ⊗H
(SRD)
JKMD×MS

∈ CNJKMD×RMS , we deduce the following LS estimates of KP from

(5.16) and (5.19)

Φ̂ = X
(SRD)
MDPN×KJ

(
C

(R)
KMTMR×KJ

)†
, (5.21)

Ω̂ = X
(SRD)
NJKMD×P

(
C

(S)
RMS×P

)†
. (5.22)

Thus, the LSKP receiver estimates the matrices H
(RD)
MD×KMT

, VPN×KMR
, S and

H
(SRD)
JKMD×MS

as factors of a balanced block KP and of a KP, by applying the low-rank approxi-

mation algorithm proposed in [91] and recalled in Appendix C, using the LS estimates Φ̂ and

Ω̂ in (5.21) and (5.22), respectively. For the case of (5.21), which is related to the factorization

of a block Kronecker product, a straightforward extension of the method in [91] was needed.

The discussion on this extension to block Kronecker products is also presented in Appendix

C. Once V̂PN×KMR
and Ĥ

(SRD)
JKMD×MS

are estimated, the unfolding H
(SR)
KMR×MS

can be estimated
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Table 4 – LSKP receiver for two-hop MIMO multirelay system

1. Calculate the LS estimate of the block Kronecker product Φ = H
(RD)
MD×KMT

./ VPN×KMR
:

Φ̂ = X̃
(SRD)
MDPN×KJ

(
C

(R)
KMTMR×KJ

)†
.

2. Apply the SVD-based low-rank approximation algorithm in Appendix C to estimate the matrices
Ĥ

(RD)
MD×KMT

and V̂PN×KMR
from Φ̂ calculated in step 1.

3. Calculate the LS estimate of the Kronecker product Ω = S⊗H
(SRD)
JKMD×MS

:

Ω̂ = X̃
(SRD)
NJKMD×P

(
C

(S)
RMS×P

)†
.

4. Apply the SVD-based low-rank approximation algorithm in Appendix C to estimate the matrices
Ŝ and Ĥ

(SRD)
JKMD×MS

from Ω̂ calculated in step 3.
5. Eliminate the scaling ambiguities using (5.23).
6. Estimate the channelH(SR), from (5.17), using

Ĥ
(SR)
MS×KMR

=
[(

IP ⊗ Ŝ
)

C
(S)
PR×MS

]†
V̂PN×KMR

,
or from (5.20), using

Ĥ
(SR)
KMR×MS

=
[(

IJ ⊗ bdiag
(
Ĥ

(RD)
··k

))
C

(R)
JKMT×KMR

]†
Ĥ

(SRD)
JKMD×MS

.
7. Project the estimated symbols onto the symbol alphabet.

from (5.17) or (5.20). The LSKP receiver derived from the above LS estimates is summarized in

Table 4.

Identifiability conditions and ambiguity relations

Note that for computing the pseudo-inverses in (5.21) and (5.22), as well as for

computing Ĥ
(SR)
KMR×MS

, some conditions are required to ensure the uniqueness of LS solutions.

The unfoldings C
(R)
KMTMR×KJ and C

(S)
RMS×P must be full row rank and then the conditions

J ≥ MTMR and P ≥ RMS are necessary. For the LS estimate of H
(SR)
KMR×MS

from (5.17) or

(5.20), we must have PR ≥MS and N ≥ R or JMT ≥MR and MD ≥MT .

For eliminating the scaling ambiguities on the estimates, we assume the knowledge

of one pilot symbol (s1,1). In order to plot the simulation results, we assumed the a priori

knowledge of one coefficient of H(RD) for each relay (h(RD)
1,1,k ) such that we get the following

ambiguity relations

Ĥ
(RD)
··k ←

(
δ

(RD)
k

)−1

Ĥ
(RD)
··k

V̂··k ← δ
(RD)
k V̂··k

Ŝ ←
(
δ(S)
)−1

Ŝ

Ĥ
(SRD)
JKMD×MS

← δ
(S)
k Ĥ

(SRD)
JKMD×MS

, (5.23)

with δ(RD)
k = ĥ

(RD)
1,1,k /h

(RD)
1,1,k and δ(S) = ŝ1,1/s1,1. The computational complexity of the proposed

receiver isO((NKPJMD(KMRMT +RMS)). AssumingR = MD = MR = MT = MS = M
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and P = J , it becomes O(NKP 2M3(K + 1)).

5.3 Simulation resutls

In this section, we provide Monte Carlo simulation results to illustrate the effective-

ness of the proposed two-hop MIMO multi-relay system. In order to evaluate the impact of the

choice of the design parameters on the system behavior (regardless of the influence of algorithm),

we consider a ZF receiver, which is obtained by assuming a perfect knowledge of the channel

tensors at destination. The ZF receiver is defined from an unfolding of (5.18) as

ST =
((

IP ⊗
[(

IJ ⊗ bdiag
(
H

(RD)
··k

))
C

(R)
JKMT×KMR

H
(SR)
KMR×MS

])
C

(S)
PMS×R

)†
X

(SRD)
PJKMD×N .

(5.24)

Then, the performance of the proposed LSKP receivers is evaluated.

The receiver performance were averaged over 5× 104 Monte Carlo runs for various

system configurations. The SER and the NMSE of the channels were plotted as function

of the transmission power to noise spectral density ratio (PT/N0). The transmitted symbols

were randomly generated from a unit energy 4-QAM alphabet. Several system configurations

were tested for the proposed system. The design parameter values used in the simulations are

indicated above each figure. In all the simulations we consider the same number of receiving and

transmitting antennas at the relays (MR = MT ).

The channel tensors H(SR) and H(RD) are assumed to be Rayleigh flat-fading and

quasi-static, composed of i.i.d. complex Gaussian entries with zero-mean and unit variance. The

channel powers were adjusted taking into account the same exponential path-loss model given by

σ2
H = 1/d4, where d is the distance of each hop. The distance d of each hop was considered the

same and equal to D0/2, where D0 is the source-destination distance, arbitrarily chosen equal to

1.

AWGN were added at each receiving node with the same noise variance N0. In the

noisy model, we consider the global noise tensor N (SRD) ∈ CMD×J×P×N×K given by

n
(SRD)
mD,j,p,n,k

=
√
N0 n

(D)
mD,j,p,n,k

+

MT∑
mT=1

MR∑
mR=1

h
(RD)
mD,mT ,k

c
(R)
mT ,j,mR,k

(√
N0 n

(R)
mR,p,n,k

)
, (5.25)

where n(D)
mD,j,p,n,k

and n(R)
mR,p,n,k

are entries of the tensors N (D) ∈ CMD×J×P×N×K and N (R) ∈

CMR×P×N×K that represent the noise at the destination and at the relays, respectively. At each

run, N0 was fixed according to the desired PT/N0 value.
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Figure 30 – ZF receiver performance for different numbers of relays
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For the simulations with the ZF receiver, the coding tensors C(S) and C(R) were

generated with unit amplitude coefficients and random phase drawn from a uniform distribution

between 0 and 2π. For the LSKP receiver, as discussed in the previous chapter, the coding

tensors were chosen in such a way that the unfolding used in the algorithm is a row-orthonormal

matrix (unitary coding – truncated DFT matrix). In both cases, each coding tensor was multiplied

by a fixed scalar gain so that all the transmission nodes have the same mean power and the total

transmission power is kept constant, regardless of the number of relays and antennas. Thus, the

coding tensors become C(S) ←
√
β(S) C(S) and C(R) ←

√
β(R) C(R), with

β(S) = PT/MSR (5.26)

β(R) = PT/(MTMR(PTσ
2
H +N0)), (5.27)

where PT = Ptotal/(K + 1), with Ptotal being the total system power arbitrarily chosen equal to

1.

5.3.1 ZF performance with perfect channel knowledge

Now, we present some simulation results concerning the use of the ZF receiver in

order to study the behavior of the proposed system when some parameters are modified. Although

some parameter settings used in this subsection do not satisfy the identifiability conditions given

in Subsection 5.2 for the LSKP receiver, the presented results aim to evaluate the impact of the

choice of these parameters on the system performance, regardless of the estimation algorithm.

Figure 30 shows the SER provided by the ZF receiver versus PT/N0 for K ∈

{1, 2, 3, 4} in order to evaluate the impact of an increase in the number of relays on the system
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Figure 31 – ZF receiver performance for different time-spreading lengths P and J
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Figure 32 – Trade-off for the time-spreading lenghts P and J
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performance. The case with a single relay (K = 1) is equivalent to the two-hop MIMO relay

system proposed in [34], as well as to the system model presented in Chapter 4 when K = 1. A

more reasonable comparison between the two systems will be discussed in more details later.

For the ZF receiver, the SER performance is clearly improved when the number of relays is

increased. This result shows the gain provided by the cooperative diversity. Unless otherwise

defined, the next results are obtained with two relays (K = 2).

In Figures 31 and 32, we evaluate the impact of the time-spreading lengths P and

J on the system performance. Figure 31 shows the SER versus PT/N0 for the combinations

(P, J) = (2, 2), (2, 4), (2, 8), (4, 2) and (8, 2). We can note that any increase of P or J yields a

performance improvement. However, an increase of P clearly provides a greater gain than an

increase of J . That is evidenced by the difference between the curves with (P, J) = (4, 2) and

(8, 2), and the ones with (P, J) = (2, 4) and (2, 8). It can also be justified by the correlation of

the relay noise (5.25) with the temporal spreading J , via relay coding. In order to clarify the
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Figure 33 – ZF receiver performance for different numbers of data streams
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Figure 34 – ZF receiver performance for different numbers of antennas
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dependence of the SER with respect to the time-spreading lengths J and P , Figure 32 shows,

for fixed levels of PT/N0, SER curves as functions of P or J . In this figure, only one of the

time-spreading lengths varies at each time, the other one is kept constant. When P varies, we set

J = 4, and when J varies, we have P = 4. From the slope of the curves, we can clearly see that

an increase of P leads to greater SER gains, as the spread signal at the source is subject to a new

spreading at relay node. One can also note a SER floor when J is increased, in scenarios with

low PT/N0 values, establishing then a trade-off between the performance gain and transmission

rate degradation due to an increasing in the time-spreading at the relays.

Figure 33 shows the SER versus PT/N0 for R ∈ {2, 4, 8}. The results show, as

expected, the SER degradation by increasing the number of data streams sent by the source.

A higher value of R implies more information to be estimated at destination with the same

resources. Note that the dimensions of the received signals tensor does not depend on R.

In the sequel, we evaluate the impact of the number of antennas at the source, relays
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Figure 35 – ZF receiver performance for KMR constant
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and destination. Figure 34 shows the SER versus PT/N0 for the combinations (MS,MR,MD) =

(2, 2, 2), (4, 2, 2), (2, 4, 2), (2, 2, 4) and (4, 4, 4). The performance obtained with (4, 4, 4), when

compared with the one obtained with (2, 2, 2), shows the expected improvement by increasing the

number of antennas in the MIMO system. From the curves with (4, 2, 2), (2, 4, 2), (2, 2, 4), we

also observe that increasing MS or MR leads to a more pronounced improvement than increasing

MD. That can be explained by the dependence of the tensor codings C(S) and C(R) with MS

and MR. Due to the multiple TSTC, a better performance is expected with an increase of MS .

However, the similar performance between the curves (4, 2, 2) and (2, 4, 2) can be explained

from the fact that an increase in the value of MR implies a greater addition of antennas, since,

globally, the number of relaying antennas depends on the number of relays, i.e. KMR.

In Figure 35, the curves show the SER versus PT/N0 for different configurations

that keep KMR constant. From this figure, we can conclude that exploiting the cooperative

diversity (increasing K) is more effective than an increase of the number of antennas at the relays

(MR). This comes from the fact that an increase in K yields more diversity, since the size of the

received signals tensor – Equation 5.9 – depends on the number of relays and does not depend

on the number of antennas MR.

In order to evaluate configurations with the same size of the received signal tensor

(i.e. same amount of signals received at destination), Figure 36 shows the SER versus PT/N0

when KMD constant. From the figure, we can see that the exploitation of the cooperative

diversity is still more effective than exploiting the spatial diversity at destination (increasing

MD). This comes from the fact that the multiple relays use orthogonal channels, i.e. the relays

do not interfere with each other, while multiple antennas interfere each other.
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Figure 36 – ZF receiver performance for KMD constant
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Figure 37 – Impact of the number of relays on the SER performance
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5.3.2 LSKP receiver performance

In the next experiments, we evaluate the performance of the proposed LSKP receiver

for the proposed MIMO multi-relay system. Firstly, we study the behavior of the proposed

semi-blind receiver by changing the number of relays and in the time-spreading lengths, for fixed

PT/N0 values. Figure 37 shows the SER versus K (number of relays) for the LSKP receiver in

comparison with the ZF method. This figure shows that the number of relays has a great impact

on the SER, illustrating the benefits of the cooperative diversity in the network. Moreover, it

is possible to see that the proposed receiver provides a SER performance very close to the one

of the ZF method, especially for a low SNR. Figure 38 shows the SER versus P for two values

of J and PT/N0. This figure shows that the proposed receiver is able to efficiently exploit the

time-spreading at the source and relay in order to improve the SER. Once again, it can be viewed

that the LSKP and the ZF receivers provide close SER curves.
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Figure 38 – Impact of the time-spreading length on the SER performance
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Figure 39 – SER performance for the LSKP receiver with JK = 8
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Figures 39 and 40 show the SER obtained by the LSKP versus PT/N0, for several

values of K and J , considering the cases (a) JK = 8 and (b) JK = 12. When K = 1, the

proposed system is equivalent to the NTD-based MIMO single-relay system introduced in [34].

For a fair comparison between the systems, we plot curves with configurations that preserve the

same transmission rate. The transmission rate of the proposed multi-relay system is proportional

to R/P (JK + 1). For the single-relay system of [34] (case K = 1), the transmission rate is

proportional to R/P (J + 1). In other words, to keep the same transmission rate for both systems,

we use the same values of R and P , and the same value of the product JK.

In both cases, one can note significant gains in the SER performance with an increase

in the number of relays, for a fixed value of JK. The cooperative diversity exploited by the

CNTD-based system allows to improve the symbol estimation in comparison with the NTD-based

system. The single-relay system does not exploit cooperative diversity, inducing an increase of J

to obtain the same transmission rate. The simulation results show that the cooperative diversity
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Figure 40 – SER performance for the LSKP receiver with JK = 12
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gain is more advantageous than the gain provided by time-spreading. Once again, the LSKP

receiver gives performances close to the one obtained with the ZF receiver.

In Figures 37 to 40, we can note that the LSKP overcomes the ZF performance in

some cases. This degradation can be explained by the orthogonality property of the matrices

C
(R)
KMTMR×KJ and C

(S)
RMS×P , discussed in Property 6, which cannot be exploited by the ZF

receiver. As discussed in Chapter 4, the pseudo-inverse in (5.24), used by the ZF receiver, has a

weaker conditioning when compared to the pseudo-inverse in (5.22) used by the LSKP receiver,

which may cause noise enhancement. By means of simulation, we have calculated the condition

number of the pseudo-inverse in (5.24). It has an average value of 1.62, with a standard deviation

of 0.43, for the considered scenario.

Aiming to illustrate the advantages of the CNTD-based system over other tensor-

based approaches, in Figure 41, we provide a SER comparison between the proposed LSKP

receiver and two existing systems that consider space-time coding structures. The first one is

a receiver based on a Khatri-Rao factorization (KRF) algorithm proposed in [18] for a nested

PARAFAC based multi-hop relaying system that uses a simplified KRST coding. The second

one is a non-cooperative system using a TSTC at the source, equivalent to the one proposed

in Chapter 4 (Subsection4.3.2), which is equivalent to the one proposed in this chapter when

relays are absent. For the sake of comparison, we propose a LSKP-based solution for this system,

which is based on the following relationship

S⊗H(SD) = X
(SD)
NMD×P

(
C

(S)
RMS×P

)†
, (5.28)

where H(SD) ∈ CMD×MS is the channel matrix between the source and destination and X
(SD)
NMD×P

is the tall mode-3 unfolding of the received signal tensor X (SD) ∈ CMD×P×N that satisfies a
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Figure 41 – SER performance comparison for several receivers
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Figure 42 – NMSE of H(SR) for the LSKP receiver with (a) JK = 8 and (b)
JK = 12
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third-order Tucker decomposition. In order to have a fair comparison, we simulated the proposed

LSKP with K = 1.

From Figure 41, we can conclude that the use of TSTC leads the proposed receiver

to give better performance than the one of [18], due to a more efficient exploitation of the

spatial transmit diversity at the source and relay nodes by this coding. When compared to the

non-cooperative system, as expected, one can conclude that the proposed relay system provides

a remarkable gain in the symbol estimation, which can be explained by the smaller path-loss

experienced by each hop in a cooperative system, leading to a less severe channel attenuation.

The new TSTC applied by the relay, inserting more diversity, also justify this outperforming.

Figures 42 and 44 give the NMSE of the estimated channels computed as given

in 4.54. Figures 42 (a) and 43 (a) show respectively the NMSE of H(SR) and H(RD) versus

PT/N0 for JK = 8 and Figures 42 (b) and 43 (b) show respectively the NMSE of H(SR) and
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Figure 43 – NMSE of H(RD) for the LSKP receiver with (a) JK = 8 and (b)
JK = 12
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Figure 44 – Channel NMSE comparison for several receivers
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H(RD) versus PT/N0 for JK = 12. It can be noted in Figures 42 (a) and 42 (b) that the NMSEs

of H(SR) are similar for all the tested configurations, including the two different values of the

product JK. However, for the NMSE of H(RD), one can note in Figures 43 (a) and 43 (b) a

degradation in the estimate of the channels when the number of relays is increased. That comes

from the fact that, with more relays, there are more channel coefficients to be estimated by the

receiver with the same number of received signals. Note that when we fix JK, the system has

the same quantity of data arriving at destination.

Figure 44 compares the NMSE of H(SR) and H(RD) provided by the proposed

receiver with the ones provided by the technique of [18] and by the non-cooperative approach

based on (5.28). Once again, in order to have a fair comparison, we simulated the proposed LSKP

with K = 1. From this figure, we can conclude that the non-cooperative approach provides

NMSE much worst the other methods. Moreover, the proposed receiver and the method of [18]
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provided roughly similar NMSE curves.

5.4 Summary

In this chapter, a two-hop MIMO multi-relay system using TSTC at the source

and the relay nodes has been proposed. The signals received at destination define a fifth-order

tensor, which satisfies a CNTD model. This CNTD is characterized by a contraction between a

generalized Tucker decomposition and a Tucker one. Assuming the core tensors known, essential

uniqueness of a fifth-order CNTD has been established.

By exploiting this tensor modeling, a semi-blind receiver has been derived for the

proposed system, which exploits the cooperative diversity induced by K relays operating in

a sequential way. The performance of the proposed receiver has been evaluated by means of

extensive Monte Carlo simulations. The simulation results show the effectiveness of exploiting

the cooperative diversity by increasing the number of relays. In comparison with the NTD-

based single-relay system [34], the proposed CNTD-based system allows to improve the SER

performance, keeping the same transmission rate. It is also shown that the CNTD-based system

with TSTC at the source and the relays outperform the cooperative system of [18] and the

non-cooperative system of Chapter 4, which are based on other tensor approaches.
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6 TWO-HOP OFDM MIMO RELAY SYSTEM WITH TSTC BASED ON CNTD

In this chapter, we present a two-hop OFDM MIMO relay system with tensor codings

at the source and the relay. The transmission scheme is composed of two steps. In the first one,

the source sends a data tensor using a TSTC with multiplexing of the symbols across space

(antennas), time (blocks) and frequency (subcarriers) domains. In the second one, the AF relay

re-encodes the received signals by using a new TSTC before forwarding them to the destination.

The signals received at destination form a fifth-order tensor that satisfies a CNTD, as introduced

in Subsection 3.2.2.

The system proposed in this chapter exploits a little different structure for the CNTD

model in relation to Chapter 5. Indeed, in the previous chapter, the received signal tensor is

written as a fifth-order CNTD, characterized as a contraction between a generalized Tucker–(2, 4)

model and a Tucker–(1, 3) one, while the CNTD of the present chapter is given as a contraction

between a Tucker–(2, 3) model and a generalized Tucker–(1, 4) one.

By exploiting matrix unfoldings of the signal tensor model, we derive a closed-

form semi-blind receiver, based on the LSKP technique, for jointly estimating the symbols and

channels. Monte Carlo simulation results are provided to evaluate the behavior of the system and

to illustrate the effectiveness of the proposed receiver.

6.1 System Model

Let us consider a two-hop OFDM MIMO relay system as given in Figure 45, com-

posed of a source (S), a relay (R) and a destination (D), with a transmission scheme in two

steps. In the first one, the source sends symbols multiplexed in space, time and frequency to

the relay. The information symbols constitute a tensor S ∈ CN×R×F that is encoded by the

TSTC C(S)
(f) ∈ CMS×P×R, which provide multiplexing of the symbols across the space, time and

frequency domains, with f = 1, . . . , F , where N , R, F , P and MS are respectively the numbers

of symbol periods, data streams, subcarriers, transmission blocks and transmit antennas. The

subcarriers used by the source are assumed neighbors in such a way that the channel coefficients

are invariant across the subcarriers. Due to this assumption, the number F of subcarriers must

not be very high. The coded signals to be transmitted by the mS-th antenna of the source, during

n-th symbol period of the p-th transmission block, associated with the f -th subcarrier, are given
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Figure 45 – Two-hop OFDM MIMO relaying system
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by

x
(S)
mS ,p,n,f

=
R∑
r=1

c
(S)
mS ,p,r,f

sn,r,f . (6.1)

The above equation shows that, at each symbol period n of the p-th block, the source transmits a

linear combination ofR data streams, using a certain transmit antenna and subcarrier. The signals

are sent to the MR receive antennas at the relay node through the channels with coefficients

h
(SR)
mR,mS , for 1 ≤ mR ≤ MR and 1 ≤ mS ≤ MS , that attenuate in the same way over all the

subcarriers. The signals received by the relay are given as

x
(SR)
mR,p,n,f

=

MS∑
mS=1

R∑
r=1

h(SR)
mR,mS

c
(S)
mS ,p,r,f

sn,r,f . (6.2)

For the sake of simplicity, the noise was omitted in the description of the received signals.

In the second step, the relay re-encodes the received signals before forwarding

them to the destination through the channels with coefficients h(RD)
mD,mT , for 1 ≤ mD ≤ MD

and 1 ≤ mT ≤ MT , where MD and MT are respectively the numbers of receive antennas at

destination and transmit antennas at the relay. The relay uses the TSTC C(R) ∈ CMT×J×MR ,

where J is the number of transmission blocks, which gives the following signals received at

destination

x
(SRD)
mD,j,p,n,f

=

MT∑
mT=1

MR∑
mR=1

MS∑
mS=1

R∑
r=1

h(RD)
mD,mT

c
(R)
mT ,j,mR

h(SR)
mR,mS

c
(S)
mS ,p,r,f

sn,r,f . (6.3)

Note that the tensor in (6.3) satisfies the CNTD model given in (3.42), with the correspondences

(B(1),G(3),B(2),G(4),B(3))⇐⇒ (H(RD), C(R),H(SR), C(S),S).

The coded transmitted signals defined in (6.1) satisfy a generalized Tucker-(1, 4)

model with the following tensor representation

X (S) = C(S) ×3 S ∈ CMS×P×N×F . (6.4)
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From the received signal model (6.3), we can define the effective channel between the source

and the destination as

h
(SRD)
mD,j,mS

=

MT∑
mT=1

MR∑
mR=1

h(RD)
mD,mT

c
(R)
mT ,j,mR

h(SR)
mR,mS

, (6.5)

which has the following tensor notation

H(SRD) = C(R) ×1 H(RD) ×3 H(SR)T ∈ CMD×J×MS , (6.6)

corresponding to a Tucker-(2, 3) model. The received signals in (6.3) are then written as the

following summation

x
(SRD)
mD,j,p,n,f

=

MS∑
mS=1

h
(SRD)
mD,j,mS

x
(S)
mS ,p,n,f

(6.7)

which represents the contraction between the tensorsH(SRD) and X (S) over the common mode

(mS).

By fixing the index f in (6.4), we get the tensor X (S)
(f) = C(S)

(f) ×3 S(f) ∈ CMS×P×N

that represents the coded signals transmitted by the subcarrier f . Thus, we can write the signals

received by the destination with the subcarrier f as the following contraction between the tensors

H(SRD) and X (S)
(f) over the common mode mS

X (SRD)
(f) = H(SRD) ∗1

3 X
(S)
(f) ∈ CMD×J×P×N . (6.8)

The tensor (6.8) represents the signals received at destination of the system of Figure

45 when a single subcarrier (f ) is considered and satisfies a fourth-order NTD [34]. For the

multicarrier case, the collection of tensors {X (SRD)
(1) , · · · ,X (SRD)

(F ) } forms a coupling of NTDs by

sharing the common tensorH(SRD). Note that the tensorH(SRD) is independent of the index f ,

being common to all F decompositions. Thus, the tensor of received signals (6.3) can be viewed

as a coupling of tensors X (SRD)
(f) , for f = 1, . . . , F , and, then, it is rewritten as the following

CNTD

X (SRD) = H(SRD) ∗1
3 X (S) ∈ CMD×J×P×N×F . (6.9)

Note that the symbol tensor X (S) is given by concatenating the slices X (S)
(f) along the fourth mode

as follows

X (S) = X (S)
(1) t4 X (S)

(2) · · · t4 X (S)
(F ) . (6.10)
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Figure 46 – Block diagram for the CNTD-based signal model
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X (S)

The tensors (6.4), (6.6), (6.8) and (6.9) correspond to the tensors (3.38), (3.35), (3.34) and (3.37),

respectively, with the following correspondences between the models

(T (3), T (4),B(1),G(3),B(2),G(4),B(3))⇐⇒ (H(SRD),X (S),H(RD), C(R),H(SR), C(S),S).

(6.11)

Figure 46 shows a block diagram to illustrate this modeling for the signals in (6.9)

based on a CNTD. As discussed in Subsection 3.2.2, the tensor model exploited here is another

application of CNTD, different from the one exploited in Chapter 5, by considering a contraction

between a Tucker–(2, 3) model and a generalized Tucker–(1, 4) one, instead of a generalized

Tucker–(2, 4) model and a Tucker–(1, 3) one.

In the noisy model

X̃ (SRD) = X (SRD) +N (SRD), (6.12)

we consider the global noise tensor N (SRD) ∈ CMD×J×P×N×F given by

N (SRD) = N (D) + (C(R) ×1 H(RD)) ∗1
3 N (R), (6.13)

which has the following scalar notation

n
(SRD)
mD,j,p,n,f

= n
(D)
mD,j,p,n,f

+

MT∑
mT=1

MR∑
mR=1

h(RD)
mD,mT

c
(R)
mT ,j,mR

n
(R)
mR,p,n,f

, (6.14)

where n(D)
mD,j,p,n,f

and n(R)
mR,p,n,f

are entries of the tensors N (D) ∈ CMD×J×P×N×F and N (R) ∈

CMR×P×N×F that represent the noise at the destination and at the relay, respectively.

6.2 Semi-blind receiver

In this section, we develop a closed-form semi-blind receiver to estimate the symbols

and the channel matrices. The receiver follows the LSKP approach used in previous chapter.
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By combining the first two modes of (6.9), we define the following contracted form of X (SRD),

which satisfies a generalized Tucker-(2, 4) model,

X (SRD)
MDJ×P×N×F = X (S) ×1 H

(SRD)
MDJ×MS

= C(S) ×1 H
(SRD)
MDJ×MS

×3 S, (6.15)

from which we can get the following unfolded matrix

X
(SRD)
NMDJ×FP =

(
SN×FR ⊗H

(SRD)
MDJ×MS

)
C

(S)
FRMS×FP , (6.16)

where H
(SRD)
MDJ×MS

represents a mode-3 unfolding of the effective channel (6.6) and it is given by

H
(SRD)
MDJ×MS

=
(
H(RD) ⊗ IJ

)
C

(R)
MT J×MR

H(SR). (6.17)

To define the unfoldings in (6.17) and (6.16), we used the matrices C
(R)
MT J×MR

and C
(S)
FRMS×FP ,

respectively, which represent unfoldings of the coding tensors C(R) and C(S). Note that the

unfolding C
(S)
FRMS×FP is defined as a block matrix given by bdiag

[
C

(S)
··1f · · · C

(S)
··Rf

]
.

From (6.16), we define the KP Ω = SN×FR ⊗H
(SRD)
MDJ×MS

∈ CNMDJ×FRMS . Thus,

we derive the LS estimate of Ω as

Ω̂ = X
(SRD)
NMDJ×FP

(
C

(S)
FRMS×FP

)†
. (6.18)

From the LS estimate (6.18), we obtain the estimates of the symbols and the effective channel

ŜN×FR and Ĥ
(SRD)
MDJ×MS

by applying the low-rank approximation algorithm.

In order to estimate the individual channel matrices H(SR) and H(RD), we consider a

reshaped form of Ĥ
(SRD)
MDJ×MS

defined as follows

Ĥ
(SRD)
MDMS×J =

(
H(RD) ⊗H(SR)T

)
C

(R)
MTMR×J . (6.19)

Defining the KP Γ = H(RD) ⊗H(SR)T ∈ CMDMS×MTMR , the LS estimate of Γ is given by

Γ̂ = Ĥ
(SRD)
MDMS×J

(
C

(R)
MTMR×J

)†
. (6.20)

Once Γ̂ is estimated using Ĥ
(SRD)
MDMS×J , obtained previously by the algorithm, we apply again

the low-rank approximation algorithm to estimate Ĥ(SR) and Ĥ(RD). The LSKP receiver is

summarized in Table 5, where X̃
(SRD)
NMDJ×FP is the noisy version of the unfolding X

(SRD)
NMDJ×FP .

Identifiability Conditions
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Table 5 – LSKP receiver for two-hop OFDM MIMO relay system

1. Compute the LS estimate of the KP Ω = SN×FR ⊗H
(SRD)
MDJ×MS

:

Ω̂ = X̃
(SRD)
NMDJ×FP

(
C

(S)
FRMS×FP

)†
.

2. Estimate the matrix unfoldings ŜN×FR and Ĥ
(SRD)
MDJ×MS

by applying the low-rank approximation
algorithm in Appendix C.

3. Ĥ
(SRD)
MDMS×J ← reshape

(
Ĥ

(SRD)
MDJ×MS

)
.

4. Compute the LS estimate of the KP Γ = H(RD) ⊗H(SR)T :

Γ̂ = Ĥ
(SRD)
MDMS×J

(
C

(R)
MTMR×J

)†
.

5. Estimate the matrices Ĥ(RD) and Ĥ(SR) by applying the low-rank approximation algorithm in
Appendix C.
6. Eliminate the scaling ambiguities using (6.21) and project the estimated symbols onto the alphabet.

To compute the LS estimates in (6.18) and (6.20), the unfoldings of the known

tensor codings C
(S)
FRMS×FP and C

(R)
MTMR×J must be right-invertible, which leads to the necessary

identifiability conditions P ≥ RMS and J ≥MTMR. As already discussed in previous chapters,

the factors of a KP can only be estimated up to scalar ambiguities, as shown in Appendix C.

Thus, the factorization of the KPs Ω̂ and Γ̂ leads to estimated factors with the ambiguities

ŜN×FR = αSSN×FR and Ĥ(·) = αH(·)H(·), where αS and αH(·) are the scaling ambiguities.

These ambiguities can be removed by assuming the a priori knowledge of one pilot symbol

(s1,1,1) and one coefficient of one channel matrix (h(RD)
1,1 ) in such a way that we can make

αS = ŝ1,1,1/s1,1,1 and αH(RD) = ĥ
(RD)
1,1 /h

(RD)
1,1 . The ambiguities are then cancelled as follows

ŜN×FR ← α−1
S ŜN×FR

Ĥ(RD) ← α−1
H(RD) Ĥ(RD)

Ĥ(SR) ← αH(RD) Ĥ(SR). (6.21)

6.3 Simulation Results

In this section, simulation results are provided to illustrate the efficiency of the

proposed receiver for the two-hop OFDM MIMO relay system. The results were averaged over

5× 104 Monte Carlo runs and are given in terms of SER and channel NMSE, which are plotted

as function of the total transmission power to noise spectral density ratio (PT/N0).

The transmitted symbols were randomly generated from a unit energy 4-QAM

alphabet and white Gaussian noises with variance N0 were added at each receiving node. At

each run, N0 was fixed according to the desired PT/N0 value. The channels are assumed to be

flat-fading, with i.i.d. complex Gaussian entries. An exponential path-loss model is assumed to



119

simulate the variance of the channel coefficients, i.e. σ2
H = 1/d4, where d is the distance of each

hop.

The coding tensors C
(S)
FRMS×FP and C

(R)
MTMR×J were chosen as a truncated discrete

Fourier transform (DFT) matrix in order to avoid the noise enhancement, as discussed previously.

The coding tensors are normalized by using (5.26)-(5.27) in order to control the transmission

power at each node. The total system power PT is kept constant and arbitrarily chosen equal to 1.

The other parameters used in the simulations are indicated above each figure.

In some results, we provide a comparison with a non-coupled estimation of the

symbol and channel matrices, in order to illustrate the advantage of the proposed receiver based

on a coupled tensor model. The non-coupled estimation is done by considering separately the

signals of each subcarrier, which is equivalent to F independent estimations of a single-carrier

system. In other words, the non-coupled receiver is simply the application of the proposed LSKP

method with F = 1, which is equivalent to the NTD-based receiver of [34].

Since the information symbols are multiplexed across the multiple carriers, each

non-coupled estimate yields a slice S··f ∈ CN×R of the symbol tensor. However, to compute

the SER performance in the non-coupled case, the entire estimated symbol tensor is taken into

account.

We also provide the performance for the case of perfect channel knowledge using a

ZF receiver, which can be derived from (6.15) as

STN×FR =
[(

IFP ⊗H
(SRD)
MDJ×MS

)
C

(S)
FPMS×FR

]†
X̃

(SRD)
FPMDJ×N . (6.22)

6.3.1 ZF and LSKP performance

Figure 47 shows the SER versus PT/N0 for different numbers of subcarriers, F ∈

{1, 2, 4}. One can note that the SER performance is not significantly changed when F is

increased. That leads to the conclusion that, compared to the single-carrier two-hop MIMO relay

system (case F = 1), the multi-carrier system allows to increase the number of information

symbols without degrading the SER performance due to a simultaneous increase of received

signals. However, it is worth noting that the spectral efficiency of the system, given by R/P (J +

1), does not depend on the number F of subcarriers. Compared to the non-coupled estimation,

we also conclude that the symbols estimation is not significantly changed, regardless the number

of subcarriers.

Figure 48 shows the SER versus F for fixed PT/N0 values with the ZF and LSKP
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Figure 47 – SER performance for different numbers of subcarriers
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Figure 48 – Influence of the number of subcarriers on the SER performance
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Figure 49 – Performance comparison with ZF receiver for different values of P and J
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receivers, in order to illustrate more clearly how sensitive is the system to an increase in F .

From this result, one can really note the low impact of the number of subcarriers on the system

performance in relation to symbol estimation, regardless the receiver algorithm.
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Figure 50 – NMSE of H(SR) for coupled and non-coupled estimation

-15 -10 -5 0 5 10 15 20 25

P
T
/N

0
 [dB]

-45

-35

-25

-15

-5

5

N
M

S
E

 o
f 

H
(S

R
)

Ms=Mr=Mt=Md=R=2, P=J=4, N=10

F=1
Coupled LSKP (F=2)
Coupled LSKP (F=4)
Non-coupled LSKP (F=2)
Non-coupled LSKP (F=4)

Figure 51 – NMSE of H(RD) for coupled and non-coupled estimation

-15 -10 -5 0 5 10 15 20 25

P
T
/N

0
 [dB]

-60

-50

-40

-30

-20

-10

0

N
M

S
E

 o
f 

H
(R

D
)

Ms=Mr=Mt=Md=R=2, P=J=4, N=10

F=1
Coupled LSKP (F=2)
Coupled LSKP (F=4)
Non-coupled LSKP (F=2)
Non-coupled LSKP (F=4)

Figure 49 compares the SER versus PT/N0 provided by the proposed system for

different values of the time spreading lengths P and J . As expected, an increase of P and J

yields a performance improvement, with an increase of P providing a more pronounced gain

than an increase of J . We can note a SER degradation when the proposed receiver is compared

to the ZF one. For a target SER of 10−3, the ZF receiver provides a gain of around 2 dB over the

proposed one. However, the proposed semi-blind LSKP receiver has for advantage over the ZF

one the fact that it does not assume the channel knowledge, allowing a joint estimation of the

symbols and the channels.

Concerning the channel estimation, Figure 50 and 51 show the NMSE of the estima-

ted channels versus PT/N0 for the same cases addressed in Figure 47. We can note that, for both

H(SR) and H(RD) matrices, the non-coupled channel estimation keeps the same performance

when the number of subcarriers is increased. These results are equivalent to the case F = 1.
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Figure 52 – Impact of the number of subcarriers on the channel NMSE
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For the coupled-based receiver, we can note some improvement in the channel

estimation when F is increased, being more significant for the relay-destination channel (H(RD)).

For a fixed NMSE value, the coupled LSKP gives gains of 1 dB for H(SR) and approximately 6

dB for H(RD) with F = 4. The channel estimation gain of the coupled-based receiver is due to

the fact that the channel matrices compose the coupled factorH(SRD), common to all subcarriers,

leading the destination to have a greater amount of resources (received signals) to be jointly

processed.

Figure 52 shows the NMSE of the estimated channels versus F for fixed values of

PT/N0, corroborating with the above conclusions. From the slope of the curves, one can note a

more significant influence of the number of subcarriers on the estimation of H(RD), while we

can note a slight gain in the estimation of H(SR).

6.3.2 Performance comparison of CNTD-based systems

In this subsection, we provide a comparison between the two CNTD-based systems

proposed in this thesis (corresponding to Chapters 5 and 6). Although these chapters deal with

different systems – a two-hop MIMO multirelay system in Chapter 5 and a two-hop OFDM

MIMO single-relay system in Chapter 6 – we would like to compare the behavior of systems

based on coupled tensor decompositions, such as the proposed CNTD model.

It is worth remembering that both systems are modeled by using different tensor

structures of the CNTD model. The multirelay system is written in terms of the coupling of K

effective channel tensorsH(SRD)
(k) , where K is the number of relays and k = 1, ..., K, having as

common factor the coded symbol tensor X (S). The coupling of the multicarrier system is given
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Figure 53 – SER performance for CNTD-based systems
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Figure 54 – NMSE of H(SR) for CNTD-based systems

-15 -10 -5 0 5 10 15 20 25

P
T
/N

0
 [dB]

-45

-35

-25

-15

-5

5

C
h

an
n

el
 N

M
S

E
: 

H
(S

R
)

Ms=Mr=Mt=Md=R=2, P=J=4, N=10

Multicarrier system F=2
Multicarrier system F=3
Multirelay system K=2
Multirelay system K=3

Figure 55 – NMSE of H(RD) for CNTD-based systems
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in terms of F coded symbol tensors X (S)
(f) , where F is the number of subcarriers and f = 1, ..., F ,

having as common factor the effective channel tensorsH(SRD).
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Figures 53, 54 and 55 show respectively the SER, the NMSE of H(SR) and the

NMSE of H(RD) versus PT/N0 for both the systems, considering K = {2, 3} and F = 1 for the

mulltirelay system and K = 1 and F = {2, 3} for the multicarrier system.

One can note in Figure 53 that the addition of relays in the multirelay system

improves significantly the estimation of symbols, which is not observed for an increase in the

number of subcarriers in the multicarrier system. That is due to the fact that an increase in F

does not add diversity, since the channel attenuation is the same for all subcarriers. On the other

hand, from Figures 54 and 55, it is noticeable that a greater number of subcarriers provides some

improvement in the channel estimation, which does not happen with an addition of relays in

the multirelay system. Note that the estimation gains in each system are given in terms of the

common factors.

The common tensors X (S) and H(SRD) define the coupling of a collection of de-

compositions in their respective systems, and therefore we call them by coupling factors. The

respective non-common factors H(SRD)
(k) and X (S)

(f) , for k = 1, ..., K and f = 1, ..., F , are then

coupled so that the destination has more resources to estimate the common parameters, yielding

thus some improvement on the receiver performance. The fact that these performance gains

occur in terms of the coupling (common) factors can be understood as a good advantage of tensor

approaches based on coupled decompositions.

6.4 Summary

In this chapter, we have proposed a two-hop OFDM MIMO relay system with a

TSTC at the source and the relay. The coded signals transmitted by the source multiplexes

symbols in space, time and frequency domains, and the signals received at destination form a

fifth-order tensor that satisfies a CNTD, which consists in a contraction between a Tucker-(2, 3)

model and a generalized Tucker-(1, 4) one.

The tensor modeling was exploited in order to derive a non-iterative receiver for

the proposed system, based on the LSKP method. Monte Carlo simulation results have been

provided to illustrate the behavior of the system and evaluate the effectiveness of the proposed

joint and semi-blind receiver. Simulation results show that the OFDM MIMO relay system

allows to increase the number of information symbols to be transmitted from the source without

loss of SER performance and spectral efficiency. The results also show an improvement in the
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channel estimation when the number of subcarriers is increased, due to the joint processing of all

the subcarriers.

We have also provided a comparison between the two CNTD-based systems proposed

in this thesis. The results have shown that systems based on coupled decompositions have

interesting advantages in the estimation of some parameters. The common factors, through

which the coupling takes place in each case, had gains in their estimates.
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7 CONCLUSION

This thesis has addressed the study of nested tensor decompositions applied to

the signal processing in cooperative MIMO systems. In particular, generalizations of nested

decompositions based on Tucker model were proposed in order to model received signals in

MIMO relay system with tensor codings at the source and the relays. A performance analysis

of each proposed system was provided to illustrate their behavior and effectiveness, evaluating

the improvements of the techniques addressed for wireless communication. In the sequel, we

provide a brief conclusion of each chapter that have proposed original contributions.

In Chapter 3, we have introduced two new tensor decompositions, called high-order

nested Tucker decomposition (HONTD) and coupled nested Tucker decomposition (CNTD).

Both the models generalize the NTD introduced in [34] to higher order tensors. HONTD

results from the contraction of several Tucker models in a train format, yielding a (N + 3)-th

order tensor, where N ≥ 1 is the number of nesting between two consecutive Tucker models.

CNTD admits tensor factors, contrarily to NTD and HONTD that assume only matrix factors.

The proposed CNTD can be viewed as a coupling of multiple NTDs that share a common

factor, and it extends the coupling concept initially defined for PARAFAC models [62, 86, 87]

to Tucker-based ones. This model was particularly studied for two cases of a fifth-order tensor.

The first one is characterized as a contraction between a generalized Tucker–(2, 4) model and

a Tucker–(1, 3) one, while the second is a contraction between a Tucker–(2, 3) model and a

generalized Tucker–(1, 4) one. Uniqueness conditions for both models were deeply discussed,

showing that, under certain conditions, the decomposition factors are unique up to scaling

ambiguities. It was shown that the proposed uniqueness theorem is also valid to the NTD model

introduced in [34], filling the lack of discussion on the NTD uniqueness in the literature.

In Chapter 4, we have proposed a multi-hop MIMO relaying system composed of

K AF relays operating with TSTC. This system generalizes existing systems [18, 24, 34, 42]

in different ways, either by using a more general relay coding, by extending these works to

the multihop case and/or by using a different estimation algorithm. Assuming a third-order

TSTC at the source and the relays, we show that the signals received at destination satisfy the

new HONTD. Considering the tensor codings known at the destination, we have derived two

semi-blind receivers based on a recurrent relations of the received signals for jointly estimating

the information symbols and the individual channels. The first one is a iterative solution based

on an ALS method. The second one is a closed form solution based on a LSKP technique
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that considers a SVD-based low-rank approximation algorithm. Identifiability conditions and

ambiguity relations were provided. The LSKP receiver exploits matrix unfoldings of coding

tensors under the form of unitary matrices, avoiding noise enhancement. Monte Carlo simulation

were provided to evaluate the performance of the proposed receivers and the impact of the

number of relays. Simulation results have shown that a tensor coding with a unitary unfolding

yields a better performance when compared to random codings. An increase of the number of

relays also improve significantly the performance.

In Chapter 5, we have proposed a two-hop MIMO multi-relay system with TSTC

at the source and the relays. The multiple relays use orthogonal channels (parallel relaying)

to increase the diversity order, assuming that all the relays can communicate directly with

the destination. This system can be viewed as a generalization of recently proposed systems

[24, 30, 34, 35], aiming to exploit the cooperative diversity provided by the multiple relays in

a MIMO system with tensor coding. We show that the signals received at destination form a

fifth-order tensor, where each mode is linked with a different signal dimension (space, source

code, relay code, time and number of relays). Indeed, the proposed system exploits both the

space (antenna) and cooperative diversities, as well as time-spreading at the source and relays.

This tensor satisfies the new CNTD. This tensor modeling is used to develop a receiver algorithm

for jointly estimating the symbol matrix and the individual channels with a global processing of

all datasets received from multiple relays. The proposed algorithm is a closed-form solution that

uses the LSKP technique. Monte Carlo simulations are provided to illustrate the effectiveness of

the cooperative diversity exploitation and to compare the performances of the proposed receiver

with other existing ones. Simulation results show the improvement induced by an increase of the

number of relays.

Chapter 6 we have proposed a two-hop OFDM MIMO relaying system with tensor

codings at the source and the relay. We assume a TSTC at the source, with data symbols

multiplexed across space, time and frequency domains. In the second hop, the AF relay re-

encodes the received signals by using a new TSTC before forwarding them to the destination.

The signals received at destination form a fifth-order tensor that satisfies a CNTD. However, the

CNTD used presented in this chapter is a little different from the one used in Chapter 5. By

exploiting matrix unfoldings of the signal tensor model, we have proposed a semi-blind LSKP

receiver for jointly estimating the symbols and the channels. Monte Carlo simulation results

have been provided to illustrate the behavior of the system and evaluate the effectiveness of
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the proposed joint and semi-blind receiver. The results show an improvement in the channel

estimation when the number of subcarriers is increased, due to the joint processing of all the

subcarriers. CNTD-based OFDM MIMO relay system also allows to increase the number of

information symbols to be transmitted from the source without loss of SER performance and

spectral efficiency. A comparison between the two CNTD-based systems proposed in this thesis

have also provided. The results have shown that systems based on coupled decompositions have

interesting advantages in the estimation of coupling parameters.

Globally, from the results presented in Chapters 4, 5 and 6, we can conclude some

important features, advantages, concerns and limitations of the proposed cooperative MIMO

systems and receivers, which can be highlighted as follows:

• The tensor structure of the TSTC applied to the addressed systems provides an addition of

diversity, leading to performance gains in most of the cases;

• As a cost of this performance gain, TSTC provides a degradation in the transmission rate

due to the multiple spreading at the source and the relays, undergoing a greater loss in

multi-hop cases;

• It is possible to draw a tradeoff between an increase of diversity provided by the time-

spreading and a degradation of the transmission rate;

• We can note, in all cases, that the spreading generated by the TSTC is more effectively

exploited at the source than at the relay nodes;

• The spatial diversity of antennas is better exploited in the first hops (closer to the source);

• The multiple amplifications of the noise provided by the AF relays become the estimation

of the channels of the first hops more difficult. Channels closest to the destination are

better estimated;

• A OFDM source sending a data tensor with symbols multiplexed in space, time and

frequency domains allows to increase the number of symbols to be transmitted without

loss of SER performance and spectral efficiency;

• Due to the iterative nature, ALS-based receivers can work better than closed-form receivers

when the coding is randomly chosen. However, if the algorithm allows unitary (orthogonal)

coding, the closed-form receiver performance can overcome the one obtained with an

iterative algorithm;

• The computational cost may be high for large numbers of symbols, antennas and relays (in

the multi-relay cases);
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• The proposed tensor-based solutions require that some a priori information is available at

destination to ensure their uniqueness and to eliminate the scaling ambiguities;

• These solutions are also related to the LS uniqueness of some pseudo-inverses, which

impose necessary conditions for some configuration parameters. Furthermore, these

conditions are are less restrictive than the ones imposed by conventional matrix approaches.

• Receivers based on coupled tensor decompositions yield gains in the estimation of coupling

(common) factors.
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8 FUTURE WORKS

In view of the presented results and the main conclusions highlighted in the previous

chapter, in this chapter, we raise the main perspectives and future works that can be derived from

the research developed in this thesis. In the first part, we summarize some partial developments

carried out with a new cooperative OFDM MIMO system and a new coupled tensor model,

which can be viewed as an extension of the CNTD and of the systems proposed in the Chapters

5 and 6. Finally, we quote some generic perspectives that can be addressed in future researches.

8.1 Two-hop OFDM MIMO multi-relay system and doubly coupled tensor decomposi-

tion

In this section, we present partial developments carried out with a new cooperative

two-hop OFDM MIMO multi-relay system based on a new tensor decomposition called doubly

coupled nested Tucker decomposition (D-CNTD). This cooperative network can be viewed as a

combination of the systems proposed in Chapters 5 and 6 and is composed by a OFDM source

sending a coded symbol tensor with data multiplexed in the space, time and frequency domains,

K AF relays operating in parallel cooperation and a destination. This system generalizes the

two-hop MIMO multi-relay system of Chapter 5 by considering multiple carriers at the source to

send independent data or, equivalently, it generalizes the two-hop OFDM MIMO relay system of

Chapter 6 by considering a case with multiple relays. The purpose of combining multiple relays

with multiple carriers is to doubly benefit from the advantages observed in the systems based on

coupled decompositions. A scheme for this system is similar to the one in Figure 28.

Aiming to mitigate the limitation related to the low transmission rates, we assume

that the relays only forward the signals received from the source, block-by-block, without

implement a new spreading. Since the exploitation of the diversity provided by the TSTC is

more efficient at the source, the performance will not be so degraded due to the absence of a new

spreading at the relays. Moreover, the OFDM source allows to improve the transmission rate by

increasing the number of subcarriers, leading to a larger number of symbols to be transmitted

without loss of SER performance and spectral efficiency.

In the sequel, we briefly describe the transmission scheme and signal modeling for

this system. Let us assume the OFDM source sending the coded data X (S) defined in (6.4) as
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follows

X (S) = C(S) ×3 S ∈ CMS×P×N×F , (8.1)

with C(S) ∈ CMS×P×R×F and S ∈ CN×R×F . The signals are transmitted towards the K relays

through the channels H
(SR)
··k ∈ CMR×MS , for k = 1, ..., K. Analogously to the system of Chapter

6, we assume neighboring subcarriers in such a way that the channel matrices H
(SR)
··k are invariant

across the subcarriers. Thus, we can write the signals received at the k-th relay, associated with

the f -th subcarrier as

X (R)
···kf = X (S)

(f) ×1 H
(SR)
··k ∈ CMR×P×N . (8.2)

The relay k re-encodes the received signals, using a coding C(R)
(k) ∈ CMT×P×MR ,

which does not apply a new spreading of the signals. The tensor C(R)
(k) only apply a matrix coding

MT ×MR for each time-block p received from the source. Then, the signals transmitted by MT

antennas of the k-th relay, associated with the f -th subcarrier are given by

X (T )
···kf = C

(R)
(k) ∗

1
3 X

(R)
···kf ∈ CMT×P×N . (8.3)

Finally, after transmission through the channel matrices H
(RD)
··k ∈ CMD×MT , the tensor of signals

received at destination coming from the k-th relay, associated with the f -th subcarrier is given

by

X (SRD)
···kf = X (T )

···kf ×1 H
(RD)
··k ∈ CMD×P×N , (8.4)

which can be written in the scalar notation as

x
(SRD)
mD,p,n,k,f

=

MT∑
mT=1

MR∑
mR=1

MS∑
mS=1

R∑
r=1

h
(RD)
mD,mT ,k

c
(R)
mT ,p,mR,k

h
(SR)
mR,mS ,k

c
(S)
mS ,p,r,f

sn,r,f . (8.5)

From the signal modeling given in (8.5), we can define the effective channel tensor

H(SRD)
(k) ∈ CMD×P×MS as

H(SRD)
(k) = C

(R)
(k) ×1 H

(RD)
··k ×2 H

(SR)
··k , (8.6)

and then rewrite the received signal tensor in (8.4) as

X (SRD)
···kf = H(SRD)

(k) ∗1
3 X

(S)
(f) ∈ CMD×P×N . (8.7)

Since the tensors H(SRD)
(k) and X (S)

(f) satisfy respectively a Tucker-(2, 3) decomposition and a

Tucker-(1, 3) one, the tensor in (8.7) corresponds to a fourth-order NTD.
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Figure 56 – Block-diagram for a doubly coupled nested Tucker decomposition
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This tensor model suggests the existence of a double coupling of the signals, whether

due to multiple relays or multiple subcarriers. In other words, we can say that the destination

receives the tensor of signals

X (SRD)
····f = H(SRD) ∗1

3 X
(S)
(f) ∈ CMD×P×N×K , (8.8)

with the information forwarded by all relays and associated to a subcarrier f or, otherwise, we

can say that the destination receives the tensor of signals

X (SRD)
···k· = H(SRD)

(k) ∗1
3 X (S) ∈ CMD×P×N×F , (8.9)

coming from a given relay k and associated with all subcarriers. The decompositions in (8.8)

and (8.10) individually satisfy a CNTD, since each one represent a coupling of K and F NTDs,

respectively. In this way, we define the received signal tensor X (SRD) ∈ CMD×P×N×K×F as a

doubly coupled nested Tucker decomposition (D-CNTD), which is characterized by the following

contraction between a generalized Tucker-(2, 4) decomposition and a generalized Tucker-(1, 4)

one

X (SRD) = H(SRD) ∗1
3 X (S). (8.10)

Figure 56 shows a block-diagram for the scheme of the proposed decomposition.

Note that for each subcarrier f , the tensor X (S)
(f) is common to all relays and, for each relay k,

the tensorH(SRD)
(k) is common to all subcarriers. The double coupling can be viewed in different

ways in order to improve the estimations of all unknown parameters, allowing, for instance, to

get performance gains in the channel and symbol estimations simultaneously.
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8.2 Perspectives

Future developments related to the system and tensor decomposition mentioned in

the previous section are still necessary. A deep analysis on the uniqueness of the D-CNTD model

is required in order to get necessary conditions to ensure it, as well as the relationship between

the ambiguities. The tensor modeling will be exploited aiming to derive semi-blind receivers to

jointly estimate the symbols and individual channels. The future studies include the development

of optimization algorithms, including supervised techniques, as well as theoretical analyses of

the performance and numerical stability of the proposed algorithms.

Other perspectives refer to the study of two-way MIMO relay systems, where the

transmission occurs in both directions (downlink and uplink), and cooperative networks that

involve relays operating in full-duplex mode, which allow to receive and transmit signals

simultaneously. Tensor codings for these systems should be considered. A study on alternative

structures for the coding tensor in order to overcome the limitations of the transmission rate

imposed by the TSTC is also quoted.
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APPENDIX A – UNIQUENESS PROPERTIES OF TENSOR MODELS

A.1 - Proof of Theorem 1 for the uniqueness of the Tucker model

Let us consider the following mode-n unfolding of X ∈ CI1×···×IN given in (2.26)

Xn = (A(n+1) ⊗ · · · ⊗A(N) ⊗A(1) ⊗ · · · ⊗A(n−1))GnA
(n)T . (A.1)

We want to demonstrate that, when the core tensor G is known, the matrices A(n) are unique up

to scaling ambiguities δn, for n = 1, . . . , N . By vectorizing the mode-n unfolding (A.1), and

using the Property 1, we get

vec(Xn) = (A(n) ⊗ · · · ⊗A(N) ⊗A(1) ⊗ · · · ⊗A(n−1))vec(Gn). (A.2)

Replacing A(n) by the alternative Ā(n) and using the Property 2 gives

vec(Xn) = (A(n)∆n ⊗ · · · ⊗A(N)∆N ⊗A(1)∆1 ⊗ · · · ⊗A(n−1)∆n−1)vec(Gn)

= (A(n) ⊗ · · · ⊗A(N) ⊗A(1) ⊗ · · · ⊗A(n−1))

(∆n ⊗ · · · ⊗∆N ⊗∆1 ⊗ · · · ⊗∆n−1)vec(Gn). (A.3)

Comparing (A.3) with (A.1), we can conclude that these models are equivalent if the term

(∆n ⊗ · · · ⊗∆N ⊗∆1 ⊗ · · · ⊗∆n−1) is equal to a identity matrix IR̄ of size R̄ × R̄, with

R̄ =
∏N

n=1 Rn. This is true if ∆n = δnIRn , for n = 1, . . . , N , and
∏N

n=1 δn = 1.

A.2 - Proof of Theorem 2 for the uniqueness of the generalized Tucker model

Let us take Ā
(1)
··i4 = A

(1)
··i4∆

(1)
··i4 and Ā

(3)
··i4 = A

(3)
··i4∆

(3)
··i4 as alternative solutions for A

(1)
··i4

and A
(3)
··i4 in the unfolding (2.34), and consider the core tensor G as known. From (2.35), we get

[X̄I1I3×I2 ](i4) =
(
A

(1)
··i4∆

(1)
··i4 ⊗A

(3)
··i4∆

(3)
··i4

)
[GR1R3×I2 ](i4)

=
(
A

(1)
··i4 ⊗A

(3)
··i4

)(
∆

(1)
··i4 ⊗∆

(3)
··i4

)
[GR1R3×I2 ](i4). (A.4)

By comparing (A.4) with (2.34), we can conclude that the tensors X and X̄ are

identical if the term
(
∆

(1)
··i4 ⊗∆

(3)
··i4

)
is equal to a identity matrix IR1R3 , which implies ∆

(n)
··i4 =

δ
(n)
i4

IRn , for n = 1, 3, with δ(1)
i4
δ

(3)
i4

= 1, ∀i4 ∈ [1, I4]. Each δ(n)
i4

is the scalar ambiguity for the

i4-th mode-3 slice of A(n).
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APPENDIX B – MATRIX REPRESENTATION OF A GENERALIZED TUCKER

DECOMPOSITION

B.1 - Proof of the unfolding (2.32)

We want to demonstrate the tall mode-3 unfolding given in (2.32) for the generalized

Tucker–(2, 4) decomposition in (2.31). Considering the matricization defined in (2.8) with

S1 = {2, 4, 1} and S2 = {3} for a fourth-order tensor X∈ CI1×I2×I3×I4 , the tall mode-3

unfolding is given by

XI2I4I1×I3 =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

xi1,i2,i3,i4

(
e

(I2)
i2
⊗ e

(I4)
i4
⊗ e

(I1)
i1

)(
e

(I3)
i3

)T
, (B.1)

where xi1,i2,i3,i4 is given in (2.31). From (2.8), it is easy to deduce the following expression for

gr1,i2,r3,i4

gr1,i2,r3,i4 =
(
e

(I2)
i2
⊗ e

(I4)
i4
⊗ e(R1)

r1

)T
GI2I4R1×I4R3

(
e

(I4)
i4
⊗ e(R3)

r3

)
. (B.2)

Replacing (2.31) and (B.2) into (B.1) gives

XI2I4I1×I3 =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

R1∑
r1=1

R3∑
r3=1

a
(1)
i1,r1,i4

a
(3)
i3,r3,i4(

e
(I2)
i2
⊗ e

(I4)
i4
⊗ e

(I1)
i1

)(
e

(I2)
i2
⊗ e

(I4)
i4
⊗ e(R1)

r1

)T
GI2I4R1×I4R3

(
e

(I4)
i4
⊗ e(R3)

r3

)(
e

(I3)
i3

)T
. (B.3)

By taking the summations with common terms, from Property (2), we get

I1∑
i1=1

I2∑
i2=1

R1∑
r1=1

a
(1)
i1,r1,i4

(
e

(I2)
i2
⊗ e

(I4)
i4
⊗ e

(I1)
i1

)(
e

(I2)
i2
⊗ e

(I4)
i4
⊗ e(R1)

r1

)T
=

(
I2∑
i2=1

e
(I2)
i2

e
(I2)
i2

T

)
⊗
(
e

(I4)
i4

e
(I4)
i4

T
)
⊗

(
I1∑
i1=1

R1∑
r1=1

a
(1)
i1,r1,i4

e
(I1)
i1

e(R1)
r1

T

)
= II2 ⊗ e

(I4)
i4

e
(I4)
i4

T
⊗A

(1)
··i4 (B.4)

and

I3∑
i3=1

R3∑
r3=1

a
(3)
i3,r3,i4

(
e

(I4)
i4
⊗ e(R3)

r3

)(
e

(I3)
i3

)T
= e

(I4)
i4
⊗

(
I3∑
i3=1

R3∑
r3=1

a
(3)
i3,r3,i4

e(R3)
r3

e
(I3)
i3

T

)
= e

(I4)
i4
⊗A

(3)
··i4

T
. (B.5)
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Replacing (B.4) and (B.5) into (B.3), we get

XI2I4I1×I3 =

I4∑
i4=1

(
II2 ⊗ e

(I4)
i4

e
(I4)
i4

T
⊗A

(1)
··i4

)
GI2I4R1×I4R3

(
e

(I4)
i4
⊗A

(3)
··i4

T
)
. (B.6)

Solving the summation in equation above, we obtain (2.32), q.e.d.

B.2 - Proof of the unfolding (2.33)

Now, we will demonstrate the unfolding in (2.33) for the same generalized Tucker-

(2, 4) decomposition. Let us consider S1 = {1, 3} and S2 = {4, 2} and, from (2.8), we write the

unfolding XI1I3×I4I2 as follows

XI1I3×I4I2 =

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

xi1,i2,i3,i4

(
e

(I1)
i1
⊗ e

(I3)
i3

)(
e

(I4)
i4
⊗ e

(I2)
i2

)T
(B.7)

=

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

I4∑
i4=1

R1∑
r1=1

R3∑
r3=1

gr1,i2,r3,i4a
(1)
i1,r1,i4

a
(3)
i3,r3,i4

(
e

(I1)
i1
⊗ e

(I3)
i3

)(
e

(I4)
i4
⊗ e

(I2)
i2

)T
,

with gr1,i2,r3,i4 given by

gr1,i2,r3,i4 =
(
e

(I4)
i4
⊗ e(R1)

r1
⊗ e(I3)

r3

)T
GI4R1R3×I4I2

(
e

(I4)
i4
⊗ e

(I2)
i2

)
. (B.8)

Replacing (B.8) into (B.7) gives

XI1I3×I4I2 =

I4∑
i4=1

I3∑
i3=1

I2∑
i2=1

I1∑
i1=1

R1∑
r1=1

R3∑
r3=1

a
(1)
i1,r1,i4

a
(3)
i3,r3,i4

(
e

(I1)
i1
⊗ e

(I3)
i3

)
(
e

(I4)
i4
⊗ e(R1)

r1
⊗ e(R3)

r3

)T
GI4R1R3×I4I2

(
e

(I4)
i4
⊗ e

(I2)
i2

)(
e

(I4)
i4
⊗ e

(I2)
i2

)T
.(B.9)

By using Property (2) and separating the summations with common terms, we get

XI1I3×I4I2 =

[
I4∑
i4=1

(
e

(I4)
i4

T
⊗

I1∑
i1=1

R1∑
r1=1

a
(1)
i1,r1,i4

(
e

(I1)
i1

e(R1)
r1

T
)
⊗

I3∑
i3=1

R3∑
r3=1

a
(3)
i3,r3,i4

(
e

(I3)
i3

e(R3)
r3

T
))]

GI4R1R3×I4I2

[
I4∑
i4=1

e
(I4)
i4

e
(I4)
i4

T
⊗

I2∑
i2=1

e
(I2)
i2

e
(I2)
i2

T

]
, (B.10)

which simplifies as

XI1I3×I4I2 =

I4∑
i4=1

(
e

(I4)
i4

T
⊗A

(1)
··i4 ⊗A

(3)
··i4

)
GI4R1R3×I4I2 (II4 ⊗ II2)

=
[
A

(1)
··1 ⊗A

(3)
··1 A

(1)
··2 ⊗A

(3)
··2 · · · A

(1)
··I4 ⊗A

(3)
··I4

]
GI4R1R3×I4I2 , (B.11)

which corresponds to the unfolding (2.33). The term between parentheses is equivalent to a

block Kronecker product as given in Definition 2 (Section 2.1).
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APPENDIX C – LS ESTIMATION OF KRONECKER PRODUCT FACTORS

Let us consider the matrix Φ = A⊗B ∈ CIM×JN defined as a Kronecker product

between the matrices A ∈ CI×J and B ∈ CM×N . The estimation of the Kronecker matrices

consists in factorizing of the input data Φ in order to get the factors A and B. This factorization

can be viewed as the following optimization problem

arg min
Â,B̂

‖Φ− Â⊗B‖2
F . (C.1)

The minimization of the above LS cost function can be solved by using a low-rank

approximation method, which has as goal to find the matrix argument that minimizes (C.1),

under the constraint of the rank being less than or equal to a value r ∈ N. The traditional solution

for this approximation is obtained by exploiting a truncated SVD of the input data. For that, we

recall the Eckart-Young-Mirsky Theorem.

Theorem 6. (Eckart-Young-Mirsky Theorem) Let D = UΣVH be the SVD and D̂ be an

estimate of the matrix D∈ Cm×n. The m columns of U∈ Cm×m and the n columns of V∈ Cn×n

are the left- and right-singular vectors of D, respectively, and Σ ∈ Cm×n is a diagonal matrix

with non-negative real entries called singular values of D. The rank-r matrix D̂r that minimizes

the error ‖D− D̂‖F is obtained from the truncated SVD D̂r = UrΣrV
H
r , where Σr is the same

matrix Σ except for containing only the r largest singular values (other singular values are

replaced by zero).

In other words, the minimizer D̂r, obtained by the rank-r truncated SVD of D, is

the matrix that best approximates D̂ to D, i.e.

‖D− D̂r‖F = min
D̂|rank(D̂)≤r

‖D− D̂‖F , (C.2)

with r < rank(D). The proof of this theorem can be found in [94].

Based on the above theorem, we can obtain a rank-1 approximation by computing

the largest singular value and its corresponding singular vectors. The rank-one approximation

is given by σ1u·1v
H
·1 , where u·1 and v·1 are the left- and right-singular vector, respectively,

associated to the largest singular value σ1.

For the problem in (C.1), which is related to the factorization of Kronecker products,

we can use the method proposed in [91]. The main idea is to get Ω← reshape(Φ) ∈ CNM×JI ,

a rearrangement of the elements of Φ ∈ CIM×JN , so that ‖Φ − Â⊗B‖2
F is exactly equal to
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‖Ω− vec(B̂)vec(Â)
T
‖2
F . Since vec(B̂)vec(Â)

T
generates a rank-1 matrix, we ensure that the

truncated matrix Ωr=1 = σ1u·1v
H
·1 = vec(B̂)vec(Â)

T
is the matrix that minimizes the error

Frobernius norm. Thus, the estimated matrices Â and B̂ can be obtained under their vectorized

forms vec(B̂) = σ1u·1 and vec(Â) = v∗·1. The necessary permutation in the elements of Φ to

obtain Ω is described below.

We can write Φ = A ⊗ B ∈ CIM×JN in the following block-form (where each

element aijB represents one block)

Φ =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

... . . . ...

aI1B aI2B · · · aIJB

 . (C.3)

The permutation of the elements of Φ to become Ω a rank-1 matrix is given by the following

vectorized form, obtained by block-to-block vectorization, represented by the operator vecb(·)

v = vecb(Φ)

=
[
vec(a11B)T · · · vec(aI1B)T · · · vec(a1JB)T · · · vec(aIJB)T

]T ∈ CJINM . (C.4)

Note that the vector v can be equivalently obtained by the Khatri-Rao product between the

vectorizations of the matrices A and B, v = vec(A) � vec(B). Now, we take the matrix form of

this vector, obtaining the matrix Ω = unvec(v) ∈ CNM×JI . It is easy to note that the matrix Ω

can be obtained by vec(B̂)vec(Â)
T

.

Due to the properties of matrix products, the scalar σ1, or even fractions of it, can

float between the factors, i.e. vec(B̂)vec(Â)
T

= (σ1u·1)vH·1 = u·1(σ1v
H
·1 ) = (δuu·1)(δvv

H
·1 ),

with δuδv = σ1. Thus, the reconstruction of the factors A and B can be affected by scaling

ambiguities Â = δAA and B̂ = δBB, so that

A⊗B = Â⊗ B̂

= (δAA)⊗ (δBB)

= δAδB(A⊗B). (C.5)

The above equation is only true if δAδB = 1. To eliminate these ambiguities, it is enough to

know an element of A or B, or impose it equal to 1, such that δA = â1,1/a1,1 or δB = b̂1,1/b1,1

and δA = δ−1
B .
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For the case where the matrices A ∈ CI×KJ and B ∈ CM×KN are partitioned and

Φ is defined as an block Kronecker product of A with B (see Definition 2 - Section 2.1) a

straightforward extension is required.

Let us consider the matrix Φ given as

Φ = A ./ B =
[

A1 ⊗B1 A2 ⊗B2 · · · AK ⊗BK

]
∈ CIM×KJN . (C.6)

Defining Φk = Ak ⊗ Bk, for k = 1, ..., K, such that Φ = [Φ1 · · · ΦK ], we can get the

reshaped matrix Ω as follows

Ω =
[
unvec(vecb(Φ1)) · · · unvec(vecb(ΦK))

]
=

[
vec(B̂1)vec(Â1)T · · · vec(B̂K)vec(ÂK)T

]
∈ CNM×KJI . (C.7)

In this way, the matrix Ω is then composed by K rank-1 blocks, which can be solved separately

in the approximation problem. In other words, we can solve the low rank approximation

by computing K SVDs related to the blocks Ωk = vec(B̂k)vec(Âk)
T . This block-by-block

approximation yields a scaling ambiguity for each computed SVD, leading the matrices A and

B to be affected by the following ambiguities Âk = δ
(k)
A Ak and B̂k = δ

(k)
B Bk, with δ(k)

A δ
(k)
B = 1,

for k = 1, ..., K.
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