

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

LUCAS ARAÚJO ABREU

MÉTODO DE CONSTRUÇÃO DA ESCADA DA SUSTENTABILIDADE: UMA PROPOSTA METODOLÓGICA PARA O ESTADO DO CEARÁ

FORTALEZA

2019

LUCAS ARAÚJO ABREU

MÉTODO DE CONSTRUÇÃO DA ESCADA DA SUSTENTABILIDADE: UMA PROPOSTA METODOLÓGICA PARA O ESTADO DO CEARÁ

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Civil (Recursos Hídricos) do Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará, como parte dos requisitos para obtenção do título de Mestre em Engenharia Civil. Área de concentração: Saneamento Ambiental.

Orientadora: Prof^a. Dra. Ana Bárbara de Araújo Nunes

FORTALEZA

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária

Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A145m Abreu, Lucas Araújo.

Método de construção da Escada da Sustentabilidade : uma proposta metodológica para o estado do Ceará / Lucas Araújo Abreu. – 2019.

165 f.: il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Saneamento Ambiental, Fortaleza, 2019.

Orientação: Prof. Dr. Ana Bárbara de Araújo Nunes.

Barômetro da Sustentabilidade.
 Escada da Sustentabilidade.
 indicadores ambientais.
 sustentabilidade.
 tomada de decisão.
 Título.

CDD 628

LUCAS ARAÚJO ABREU

MÉTODO DE CONSTRUÇÃO DA ESCADA DA SUSTENTABILIDADE: UMA PROPOSTA METODOLÓGICA PARA O ESTADO DO CEARÁ

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Civil (Recursos Hídricos) do Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará, como parte dos requisitos para obtenção do título de Mestre em Engenharia Civil. Área de concentração: Saneamento Ambiental.

Aprovada em: 21/02/2019

BANCA EXAMINADORA

Profa. Dra. Ana Bárbara de Araújo Nunes (Orientadora)
Universidade Federal do Ceará (UFC)

Prof. Dr. Francisco Suetônio Bastos Mota
Universidade Federal do Ceará (UFC)

Prof. Dr. Lindemberg Lima Fernandes Universidade Federal do Pará (UFPA)

A Deus.

A minha família e amigos.

AGRADECIMENTOS

Primeiramente a Deus pela dádiva da vida e por todas as oportunidades providas.

Aos meus pais, Liliana e Sérgio por todo amor e compreensão dedicados, por representarem apoio, incentivo e força em qualquer situação da minha vida, por abdicarem de tantas coisas por mim e por meus irmãos e pelos seus esforços incansáveis para nos proporcionar uma boa educação. Minha imensa gratidão.

Aos meus irmãos, Iuri e Sarah, pela paciência, cumplicidade e convivência. Sei que poderei contar com vocês durante a minha vida.

À Prof^a. Ana Bárbara, pela orientação, pelas oportunidades concedidas, pelos conselhos e pelo apoio e incentivo durante o mestrado.

Aos membros da banca examinadora, Suetônio e Lindemberg, pelo tempo dedicado, pela gentileza, atenção e pelas valiosas colaborações e sugestões.

A todos os professores aos quais tive o prazer e oportunidade de ser aluno no DEHA, pela dedicação e conhecimento transmitidos ao longo do mestrado, indispensáveis para minha formação profissional.

Aos amigos e colegas de curso com quem convivo durante todos esses anos de UFC, que me ajudaram a passar por todas as dificuldades e me proporcionaram excelentes momentos. Muito obrigado!

Ao Departamento de Engenharia Hidráulica e Ambiental, professores, coordenação e secretaria, pela essencial contribuição com a minha formação acadêmica.

À CNPq, pela concessão da bolsa de estudos.

"Eu posso fazer tudo através dele que m	e dá
força." Filipenses	4:13.

RESUMO

Elaborar novas propostas as quais assumam um caráter de instrumentos de apoio para avaliar o nível de sustentabilidade de territórios torna-se muito relevante para a análise das condições humanas e ambientais existentes. No Ceará, pouco tem sido feito a respeito. Nesse contexto, busca-se determinar, através desse estudo, a situação apresentada pelo estado e seus 184 municípios no que tange ao desenvolvimento sustentável, utilizando para isso um índice, denominado Escada da Sustentabilidade (ES). Baseado em uma proposta de construção metodológica e aplicável, a ES é constituída por diversas etapas, que vão desde a consulta aos especialistas para definição dos indicadores de desenvolvimento sustentável até a representação gráfica dos resultados obtidos. As classes que compõem o índice são: crítico, alerta, moderado, aceitável e ideal, com amplitudes de intervalo de escala baseadas no Índice de Desenvolvimento Humano Municipal (IDH-M), o qual se caracteriza por ser um índice que utiliza uma metodologia global. Além disso, foi feita uma comparação entre o índice proposto e o Barômetro da Sustentabilidade (BS). Os resultados mostraram que nenhum município do estado do Ceará se enquadra na melhor classificação da ES (ideal), enquanto no patamar "crítico" mais de 50% das localidades estão inseridas. Ademais, o desempenho do estado, de forma geral, se configura como "crítico", e ao fazer a comparação com o BS, verificou-se que os valores encontrados ao aplicar a metodologia da ES são menos conservadores.

Palavras Chave: Barômetro da Sustentabilidade; Escada da Sustentabilidade; indicadores ambientais; sustentabilidade; tomada de decisão.

ABSTRACT

It is very important to elaborate new proposals that take the form of support instruments to evaluate the sustainability level of the territories for analysis of existing human and environmental conditions. In Ceará, little has been done about it. In this context, the purpose of this study is to determine the situation presented by the state and its 184 municipalities in terms of sustainable development, using the Sustainability Ladder index. The ES construction was based on a methodological and applicable proposal and It is constituted by several stages. These steps range from consultation to specialists in order to define the indicators of sustainable development, to the graphic representation of the results. The classes that make up the index are critical, alert, moderate, acceptable, and ideal. The scale interval amplitudes are based on the Municipal Human Development Index (HDI-M), which is characterized as an index that uses a global methodology. In addition, a comparison was made between the proposed index and the Sustainability Barometer (BS). The results showed that no city in Ceará is in the best classification of the ES (ideal), while more than 50% of the places are inserted at the "critical" level. In addition, the performance of the state, in general, is set as "critical", and when comparing with BS, it was verified that the values found when applying the ES methodology are less conservative.

Keywords: Sustainability Barometer; Sustainability Ladder; environmental indicators; sustainability; decision-making.

LISTA DE FIGURAS

Figura 3.1:	Publicações que solidificaram o conceito de Desenvolvimento Sustentável	22
Figura 3.2:	Aspectos determinantes do Desenvolvimento Sustentável	24
Figura 3.3:	Produção de informação a partir dos dados	25
Figura 3.4:	Esquema do modelo DPSIR	29
Figura 3.5:	Faixas do Índice de Desenvolvimento Humano Municipal	30
Figura 3.6:	Painel da Sustentabilidade	31
Figura 3.7:	Esquema gráfico do Barômetro da Sustentabilidade	33
Figura 4.1:	Regiões de planejamento do estado do Ceará	43
Figura 4.2:	Semiárido brasileiro	44
Figura 4.3:	Etapas empregadas na aplicação da ES para o estado do Ceará	45
Figura 4.4:	Representação geométrica de uma função de grau 1 e seus pontos	58
Figura 4.5:	Representação gráfica da Escada da Sustentabilidade	67
Figura 5.1:	Posição dos municípios da Região de Planejamento do Cariri na Escada Sustentabilidade	
Figura 5.2:	Desempenho das regiões de planejamento na ES	73
Figura 5.3:	Posição do Ceará na Escada da Sustentabilidade	82
Figura 5.4:	Desempenho dos municípios cearenses na ES	83

LISTA DE QUADROS

Quadro 3.1:	Etapas do processo de tomada de decisão40
Quadro 4.1:	Dimensão ambiental (Tema: Saneamento e arborização): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.2:	Dimensão social (Tema: Trabalho): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.3:	Dimensão social (Tema: População): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.4:	Dimensão social (Tema: Cultura): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.5:	Dimensão social (Tema: Saúde): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.6:	Dimensão social (Tema: Educação): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.7:	Dimensão social (Tema: Habitação): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses.
Quadro 4.8:	Dimensão econômica (Tema: Quadro econômico): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.9:	Dimensão institucional (Tema: Participação popular e informação): indicadores, fontes, descrição e bases de referência para a construção da ES para os municípios cearenses
Quadro 4.10:	Indicadores que compõem a Escada da Sustentabilidade56

Quadro 4.11:	Etapas do processo decisório de seleção dos indicadores	57
Quadro 4.12:	Metodologias aplicadas para padronização dos dados	62
Quadro 4.13:	Intervalos da ES e seus respectivos setores	65
Quadro 5.1:	Ranking da ES para os municípios do Ceará	74
Quadro 5.2:	Síntese dos resultados obtidos por cada dimensão	82
Quadro 5.3:	Comparação entre o BS e a ES	84

LISTA DE TABELAS

Tabela 4.1:	Dimensão ambiental: indicadores propostos, notas atribuídas pelos
	especialistas e média aritmética55
Tabela 4.2:	Dimensão ambiental: temas, indicadores, média e média acumulada para
	construção da ES para os municípios cearenses
Tabela 4.3:	Cálculo dos pesos dos indicadores no Índice Ambiental63
Tabela 4.4:	Cálculo do Índice Ambiental para o município de Fortaleza64
Tabela 4.5:	Valores referentes aos pesos de cada dimensão64
Tabela 4.6:	Cálculo da ES para o município de Fortaleza65
Tabela 5.1:	Valores das dimensões na ES e situação do desenvolvimento sustentável de
	cada dimensão para o município de Fortaleza
Tabela 5.2:	Comparação entre faixas do BS e da ES

LISTA DE EQUAÇÕES

Equação 1	58
Equação 2	58
Equação 3	59
Equação 4	59
Equação 5	59
Equação 6	60
Equação 7	60
Equação 8	60
Equação 9	60
Equação 10	60
Equação 11	60
Equação 12	63
Equação 13	64

LISTA DE ABREVIATURAS E SIGLAS

BS Barômetro da Sustentabilidade

CDS Comissão para o Desenvolvimento Sustentável das Nações Unidas

CGSDI Consultative Group on Sustainable Development Indicators

DPSIR Driving-force/Pressure/State/Impact Response

DSR Driving-force/State/Response

ES Escada da Sustentabilidade

HDI Human Development Index

IDS Indicadores de Desenvolvimento Sustentável

ISA Índice de Sustentabilidade Ambiental

MEP Monitoring Environmental Progress

OECD Organização para Cooperação e Desenvolvimento Econômico

ONU Organização das Nações Unidas

PSR Pressure/State/Response

SUMÁRIO

1	INTRODUÇÃO	.18
2	OBJETIVOS	.20
2.1	Geral	.20
2.2	Específicos	.20
3	REVISÃO DA LITERATURA	.21
3.1	A relação entre o crescimento econômico e a crise ambiental	.21
3.2	A construção do conceito de Desenvolvimento Sustentável	.22
3.3	Os Indicadores de Sustentabilidade	.25
3.3.1	Abordagens Conceituais	. 25
3.3.2	Os Sistemas de Indicadores de Sustentabilidade	. 27
3.3.2.1	PSR (Pressure/ State/ Response)	. 28
3.3.2.2	DSR (Driving-force/ State/ Response)	. 28
3.3.2.3	DPSIR (Driving-force/ Pressure/ State/ Impact Response)	. 29
3.3.2.4	HDI (Human Development Index)	. 29
3.3.2.5	Dashboard of Sustainability	. 30
3.3.2.6	Barometer of Sustainability	. 31
3.3.2.7	Ecological Footprint Method	. 33
3.3.2.8	Monitoring Environmental Progress	. 34

3.3.2.9	IDS Brasil (Indicadores de Desenvolvimento Sustentável)35
	Índice de Sustentabilidade Ambiental - ISA (Environmental Sustainability Index)35
3.3.3	Outras Abordagens de Sistemas de Indicadores pelo Brasil36
3.4	Ferramentas de apoio à decisão37
3.4.1	Definição37
3.4.2	Tomada de decisão aplicada a questões ambientais38
3.4.3	Atores39
3.4.4	Etapas do processo40
4	METODOLOGIA41
4.1	Área de estudo41
4.2	Construção da Escada da Sustentabilidade para os municípios cearenses43
4.2.1	Seleção dos indicadores para desenvolvimento da Escada da Sustentabilidade 44
4.2.2	Padronização dos dados56
4.2.3	Cálculo dos índices temáticos e da Escada da Sustentabilidade61
4.2.4	Apresentação dos resultados por meio de representação gráfica64
4.2.5	A utilização da Escada da Sustentabilidade como ferramenta de análise de desempenho
5	RESULTADOS67
5.1	Desempenho dos municípios por dimensões67

5.2	Situação do desenvolvimento sustentável dos 184 municípios do Ceará por
	Regiões de Planejamento70
5.3	Ranking geral73
5.4	Situação do desenvolvimento sustentável no Estado do Ceará (visão geral)81
5.5	Comparação da Escada da Sustentabilidade com o Barômetro da
	Sustentabilidade83
5.6	Análise qualitativa dos resultados da Escada da Sustentabilidade89
6	CONCLUSÃO91
	REFERÊNCIAS92
	APÊNDICE A – INDICADORES SELECIONADOS PARA COMPOSIÇÃO
	DA ESCADA DA
	SUSTENTABILIDADE
	APÊNDICE B – VALORES DOS INDICADORES, EM ESCALA REAL, DOS MUNICÍPIOS DO CEARÁ
	APÊNDICE C – VALORES DOS INDICADORES, NA ESCALA DA ESCADA
	DA SUSTENTABILIDADE DOS MUNICÍPIOS DO
	CEARÁ131
	APÊNDICE D – CÁLCULO DOS PESOS CORRESPONDENTES AOS
	INDICADORES SELECIONADOS DE CADA ÍNDICE TEMÁTICO
	APÊNDICE E – VALORES DE CADA ÍNDICE TEMÁTICO E DA ESCADA
	DA SUSTENTABILIDADE DOS MUNICÍPIOS DO
	CEARÁ

APÊNDICI	E F - MAPAS	DE DESEM	PENHO DOS MUNICÍPIOS DO	CEARÁ
NA	ESCADA	DA	SUSTENTABILIDADE,	POR
DIMENSÕ	ES	•••••		162

1 INTRODUÇÃO

O final do século XX pode ser considerado um marco histórico nas discussões sobre desenvolvimento, período em que novos estudos avaliaram e estabeleceram abordagens inéditas consideradas centrais em seu escopo. Nesse contexto, surge o conceito de desenvolvimento sustentável, caracterizado como aquele que não esgota os recursos para o futuro, aliando desenvolvimento econômico e conservação ambiental, proporcionando uma maior concentração de investimentos, e de forma mais eficiente, em três segmentos: educação, saúde e meio ambiente.

Embora tenha sido alvo de críticas nos últimos anos por não dar maior ênfase ao fator econômico, o conceito de desenvolvimento sustentável foi o que mais despertou a atenção da opinião pública e da comunidade científica mundial ao conseguir reunir, em sua concepção, grande parte das questões associadas ao desenvolvimento através das inquietações no que diz respeito ao estilo de vida atual e futuro, à qualidade de vida, à prosperidade econômica e aos problemas ambientais (SILVA; CÂNDIDO; MARTINS, 2009).

Nesse sentido, a Agenda 21 (2002) aponta para a importância da participação popular na determinação de prioridades e nas tomadas de decisão associadas ao desenvolvimento sustentável, enfatizando que um dos principais desafios para a construção da sustentabilidade é o de se criar instrumentos que possam mensurá-lo, tais como os indicadores, os quais têm sido utilizados em diversas metodologias por serem capazes de sintetizar a informação de caráter técnico e científico. Além disso, esses indicadores possibilitam a preservação da parte essencial dos dados originais, utilizando apenas as variáveis que melhor se adequam ao alcance dos objetivos (IBGE, 2004).

A realização de um estudo de trabalhos nacionais e internacionais, relacionados à construção de modelos de sustentabilidade, aponta que as questões levantadas pelos indicadores não têm igual importância. Para a resolução dessa indagação, é necessário que julgamentos de valor destes indicadores, bem como uma ponderação de sua relevância, sejam levados em consideração na avaliação da dinâmica do desenvolvimento local, de acordo com sua significância para os atores sociais nele inseridos (SILVA; CÂNDIDO; MARTINS, 2009).

Na literatura, observa-se que a grande maioria dos estudos direcionados à análise do grau de desenvolvimento sustentável de uma localidade tem sido realizada de maneira generalista, principalmente quando se trata de unidades federativas. Nesse caso, as avaliações

são feitas baseadas em números que tentam traduzir a realidade do estado como um todo, ignorando os diferentes tipos de cenários encontrados em cada município, o que dificulta a interpretação sobre o efetivo estágio de sustentabilidade apresentado por esses locais.

Percebe-se, portanto, que há uma necessidade de se dispor de procedimentos metodológicos os quais proporcionem uma avaliação dinâmica do desenvolvimento desses territórios, considerando a importância de todas as dimensões- ambiental, social, econômica e institucional- e a participação dos atores sociais envolvidos.

Dessa forma, mensurar de maneira mais específica o grau de desenvolvimento sustentável do Ceará, incluindo seus 184 municípios, assume um caráter essencial para se estabelecer um panorama das condições ambientais e humanas apresentadas por essas localidades, o que pode influenciar diretamente nos processos de tomada de decisão por parte dos gestores locais.

Para tanto, diversas metodologias têm sido propostas, desenvolvidas e verificadas com o intuito de expressar os resultados em forma de índices de desenvolvimento sustentável (SIENA, 2008).

2 OBJETIVOS

2.1 Geral

Propor um índice, intitulado Escada da Sustentabilidade, que seja capaz de avaliar o nível de sustentabilidade dos municípios do estado do Ceará.

2.2 Específicos

- ➤ Elaborar um índice de sustentabilidade o qual seja capaz de abordar as dimensões ambiental, social, econômica e institucional dos municípios cearenses.
- Avaliar e comparar o desempenho dos municípios cearenses quanto aos temas dos indicadores.
- Apresentar a situação do desenvolvimento sustentável do Ceará sob uma perspectiva geral por meio da aplicação da ferramenta Escada da Sustentabilidade.
- Verificar a consistência metodológica da Escada da Sustentabilidade por meio da comparação dos resultados obtidos entre o índice e o Barômetro da Sustentabilidade.

3 REVISÃO DA LITERATURA

3.1 A relação entre o crescimento econômico e a crise ambiental

A crescente busca por aumento de lucros e geração de riquezas é considerada uma das principais preocupações da sociedade na atualidade. Acreditando na infinidade dos recursos naturais e adotando práticas cada vez mais exploracionistas, a humanidade passou a acelerar o processo de degradação do meio, aceitando como inevitáveis os danos ambientais ocasionados, o que, mais tarde, se tornaria um custo a ser pago pela coletividade. Com o foco ainda prevalente no desenvolvimento econômico, a construção do bem-estar social centra-se na produção de bens de consumo, o que coloca em plano secundário o desenvolvimento social, o equilíbrio e a proteção ambiental (MALHEIROS; COUTINHO; PHILIPPI JR., 2012a).

Nesse contexto, a Revolução Industrial do século XIX pode ser considerada um marco histórico da busca pela expansão econômica ilimitada, caracterizada pela intensificação e mecanização dos sistemas de produção aliada ao estímulo ao consumo, o que resulta em um aumento da produção de bens e serviços. Além disso, o crescimento geométrico da população, associado à necessidade de ocupação de terras e à expansão da geração de resíduos, elevou o processo de degradação ambiental a níveis jamais vistos. A Organização das Nações Unidas (ONU) estima que, em 2030, existirão oito bilhões e meio de pessoas no planeta (NAÇÕES UNIDAS DO BRASIL, 2015).

De acordo com Moraes (2001), a Revolução Industrial simbolizou uma divisão das relações entre o homem e a natureza, pois foi a partir desse marco que se deu início a um processo de extração desenfreada dos recursos naturais associadas a sua escassez. Sem o conhecimento da capacidade limitada de resiliência do meio, a sociedade abdicou da adoção de práticas preventivas as quais levassem em consideração o desenvolvimento econômico equilibrado, o que acelerou o processo de degradação.

Diante desse cenário, aumenta-se a responsabilidade da sociedade quanto à conservação e ao compartilhamento dos recursos naturais. Van Bellen (2002) cita acontecimentos ocorridos nas últimas décadas os quais ilustram a grande magnitude e alcance de desastres ambientais e de que maneira eles provocaram um significativo aumento de conscientização na Europa, como o ocorrido na Baía de Minamata, no Japão, o acidente de Bhopal, na Índia, e o acidente na usina nuclear de Chernobyl, na extinta União Soviética.

Nesse contexto de aumento da sensibilização ambiental, Melo (2006) reforça que o desequilíbrio do binômio consumo – produção e suas relações causais sobre o meio ambiente e a saúde humana representam o elo entre problemas ambientais e socioeconômicos.

3.2 A construção do conceito de Desenvolvimento Sustentável

As primeiras discussões acerca do tema Desenvolvimento Sustentável surgiram no âmbito das temáticas de Desenvolvimento e Meio Ambiente pela *World Conservation Union*, através do documento intitulado *World's Conservation Strategy*. Nesse registro, se afirma que para o desenvolvimento ser considerado sustentável é necessário que se considere aspectos sociais e ecológicos, bem como fatores econômicos, de recursos vivos e não vivos e as vantagens de curto e longo prazo de ações alternativas (AMORIM; SANTOS; CÂNDIDO, 2008).

Nesse cenário, o conceito "desenvolvimento sustentável" surge em 1987 no Relatório de *Brundtland*, que o definiu como "aquele que atende as necessidades do presente sem comprometer a possibilidade de as gerações futuras atenderem as suas próprias necessidades". Tal noção de desenvolvimento sustentável representou uma evolução na simbologia do termo, já que a ênfase se desloca para o elemento humano, e não mais somente para a questão da integridade do meio ambiente como anteriormente, gerando um equilíbrio entre as dimensões econômica, ambiental e social (VAN BELLEN, 2005).

Historicamente, algumas publicações e eventos contribuíram diretamente para a solidificação desse conceito. Cavalcanti *et al.* (2004) destacam cinco desses, os quais estão representados na Figura 3.1.

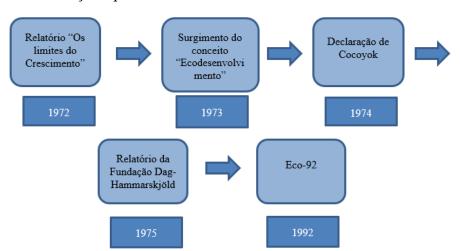


Figura 3.1: Publicações que solidificaram o conceito de Desenvolvimento Sustentável

Fonte: Elaborado pelo autor, 2019.

O relatório intitulado *The Limits to Growth* (Os Limites do Crescimento) foi lançado em 1972, no mesmo ano em que foi realizada a Conferência de Estocolmo, e afirmava que para se atingir a estabilidade econômica e respeitar a finitude dos recursos naturais seria necessário congelar o crescimento da população global e do capital industrial (OLIVEIRA, 2012). Naquele mesmo ano, a Conferência de Estocolmo já era considerada um importante marco na discussão acerca dos problemas ambientais na esfera internacional, ao concentrar seu foco no crescimento populacional, no processo de urbanização e na tecnologia envolvida na industrialização (MALHEIROS; COUTINHO; PHILIPPI JR., 2012b).

Já em 1973, Maurice Strong propõe, pela primeira vez, o conceito de "ecodesenvolvimento", o qual denotava um estilo de desenvolvimento adaptado às áreas rurais do "Terceiro Mundo", baseado na utilização criteriosa dos recursos locais, sem exauri-los (LAYRARGUES, 2017).

Em 1974, a Declaração de Cocoyok é formulada como resultado de uma reunião da Conferência das Nações Unidas sobre Comércio e Desenvolvimento e do Programa de Meio Ambiente das Nações Unidas. Neste documento, três hipóteses são formuladas: (1) quanto maior a pobreza, maior é o crescimento demográfico; (2) a destruição ambiental também decorre da pobreza; (3) os países desenvolvidos também são culpados pelos problemas globais uma vez que têm um elevado nível de consumo (LAYRARGUES, 2017).

Mais tarde, em 1975, a Fundação Dag-Hammarskjöld aprofunda as conclusões da Declaração de Cocoyok publicando um relatório o qual destaca que se faz necessário mobilizar forças capazes de mudar as estruturas dos sistemas vigentes para a efetivação de um novo desenvolvimento (VAN BELLEN, 2004).

Em 1992, realizou-se a Conferência Mundial sobre Meio Ambiente, a Eco-92, a qual propunha uma interligação entre desenvolvimento socioeconômico e as transformações do meio ambiente por meio do discurso oficial da maioria dos países do mundo (LAYRARGUES, 2017). Diversos compromissos internacionais importantes foram assinados desde então, com destaque para: Declaração do Rio de Janeiro, a Agenda 21 Global, a Convenção do Clima, a Convenção da Biodiversidade e, mais tarde, a Declaração de Joanesburgo, em 2002.

Diante desse cenário de discussões e debates, conceituar desenvolvimento sustentável não foi algo fácil. A concepção do termo é resultado de uma longa reavaliação crítica da relação entre a sociedade e o meio natural. Cândido (2004) destaca que por se tratar

de um processo contínuo e complexo, observa-se que existem muitas abordagens as quais procuram explicar o conceito de sustentabilidade, e isso se evidencia pelo grande número de definições relativas a esse termo.

Através do trabalho de construção de indicadores de desenvolvimento sustentável da Comissão para o Desenvolvimento Sustentável das Nações Unidas (CDS), quatro aspectos relevantes foram propostos: os aspectos institucionais, que compreendem a estrutura e o funcionamento de todas as organizações e entidades, suas orientações políticas, além do esforço empreendido para a efetiva implementação do desenvolvimento sustentável, seja por meio de investimento em ciência e tecnologia ou pela concretização de acordos multilaterais; os aspectos econômicos, os quais têm como objetivo a eficiência dos processos produtivos, questões financeiras, além do consumo de materiais e uso de energia; os aspectos sociais, os quais estão ligados à satisfação das necessidades humanas, melhoria da qualidade de vida e justiça social; e os aspectos ambientais, que estão relacionados ao uso dos recursos naturais e sua conservação e/ou degradação (MALHEIROS; COUTINHO; PHILIPPI JR., 2012c).

A Figura 3.2 ilustra os aspectos considerados determinantes para o estabelecimento do desenvolvimento sustentável.

Aspectos institucionais

Desenvolvimento
Sustentável

Aspectos econômicos

Aspectos ambientais

Figura 3.2: Aspectos determinantes do desenvolvimento sustentável

Fonte: Elaborado pelo autor, 2019.

Outras interpretações surgiram ao longo do tempo para "Desenvolvimento Sustentável". Martins e Cândido (2008), por exemplo, acreditam que o desenvolvimento sustentável é resultado da interação entre seis dimensões principais: social, econômica, ambiental, demográfica, político-institucional e cultural, e para facilitar a operacionalização dessas dimensões, a criação de indicadores que meçam o índice de sustentabilidade das localidades se faz extremamente necessária.

3.3 Os Indicadores de Sustentabilidade

3.3.1 Abordagens Conceituais

O termo indicador tem origem do latim *indicare*, que significa descobrir, apontar, anunciar e estimar. Geralmente, informam e/ou comunicam o progresso em relação ao alcance de uma meta. Além disso, os indicadores podem ser entendidos como um recurso que deixa mais perceptível uma tendência ou fenômeno que não seja imediatamente detectável (HAMMOND et al, 1995 *apud* VAN BELLEN (2005)).

Segnestan (2002), ao conceituar o termo, define que os dados são o componente básico no trabalho com indicadores, se constituindo como ferramenta analítica para o estudo de mudanças na sociedade. A combinação de indicadores forma índices, os quais são usados com mais frequência em níveis de análise mais agregada, como em escalas regionais e nacionais.

A Figura 3.3 apresenta um esquema da maneira como se dá a produção de informação a partir dos dados.

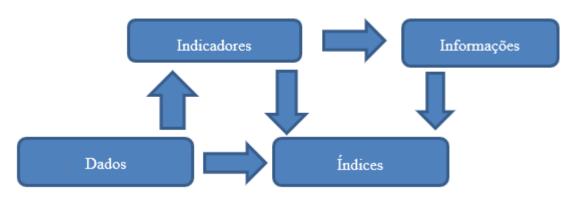


Figura 3.3: Produção de informação a partir dos dados

Fonte: Adaptado de Segnestan (2002, p. 3).

Tunsdall (1994; *apud* ARAVÉCHIA JR., 2010) aponta que entre as principais funções dos indicadores estão: a avaliação de condições e tendências; a comparação entre lugares e situações; a avaliação de condições e tendências em relação às metas e aos objetivos; o provimento de informações de advertência; e a antecipação de futuras condições e inclinações.

Segundo Kronemberger *et al.* (2008), o ponto de partida para a criação dos diversos indicadores e índices ambientais foi a Eco-92. Essa afirmação tem embasamento no fato de a Agenda 21, em seu capítulo 40, enfatizar a indispensabilidade de se implementar

indicadores de sustentabilidade que fossem capazes de mensurar, monitorar e avaliar. Nessa conferência, a proposta considerava a definição de padrões sustentáveis de desenvolvimento os quais englobassem aspectos ambientais, econômicos, sociais, éticos e culturais, fornecendo subsídios à formulação de políticas nacionais e acordos internacionais, além de auxiliar gestores públicos e privados nas tomadas de decisão (BRAGA, *et al.*, 2004).

Para que um indicador possa medir o desenvolvimento sustentável, é necessário que ele possibilite o estabelecimento de relações entre as atividades antrópicas e as modificações ou impactos os quais estão sendo causados, o que pode vir a comprometer negativamente ou potencializar a qualidade de vida presente e futura (MALHEIROS; COUTINHO; PHILIPPI JR., 2012a).

Considerando os critérios utilizados para a escolha dos indicadores de sustentabilidade mundo afora, algumas características deles são consideradas essenciais no contexto e escopo da pesquisa. São elas: ser relevante politicamente; ser significativo; permitir repetir as medições de tempo; revelar tradução sintética e fiel do enfoque do estudo; ter mensurabilidade; permitir um enfoque integrado; ser de fácil interpretação; e ter uma metodologia de medição bem determinada e transparente (AMORIM; SANTOS; CÂNDIDO, 2008).

Nesse sentido, alguns aspectos a serem atendidos incluem viabilizar a capacidade de integração e síntese, assim como favorecer horizontes de planejamento os quais atendam às demandas atuais e não comprometam as oportunidades das gerações futuras. Um dos fatoreschave para viabilizar bons índices de sustentabilidade é o estabelecimento de sistemas de monitoramento que possibilitem a coleta de dados com qualidade, regularidade e acesso pelos diferentes atores envolvidos no processo de tomada de decisão (MALHEIROS; COUTINHO; PHILIPPI JR., 2012b).

À vista disso, os indicadores manifestam-se como instrumentos de análise dos processos de desenvolvimento, servindo tanto como subsídio na formação de políticas como também no acompanhamento e fiscalização da execução dessas políticas (AMORIM; SANTOS; CÂNDIDO, 2008).

Em linhas gerais, os indicadores incidem em períodos de curto e médio prazo, sua escala de preferência é a nacional e, geralmente, todos se defrontam com dificuldades no que concerne à obtenção de dados, tanto no quesito disponibilidade quanto na sua qualidade (BRAGA, *et al.*, 2004).

Da mesma forma, Mousinho (2001) destaca a dificuldade de acesso e recuperação da informação no contexto ambiental, a qual não está adequadamente organizada e, em geral, fragmentada, o que leva ao questionamento de sua qualidade e confiabilidade. Cardoso (2014) reforça, ainda, o fato de os indicadores de sustentabilidade serem, muitas vezes, produzidos a partir de diferentes fontes e metodologias, o que dificulta a comparação dos resultados obtidos quanto ao grau de sustentabilidade de um território ou atividade.

Dessa forma, Esty e Porter (2002) consideram ser necessária a construção de mecanismos os quais assegurem o controle da qualidade dos dados e que proporcionem certo grau de padronização, eliminando, dessa forma, o risco de produzir uma extensa quantidade de dados com baixa capacidade de informação.

Meadows (1998) destaca, portanto, a importância na escolha dos indicadores de sustentabilidade. A seguir são apresentados os erros mais comuns que devem ser evitados na seleção desses indicadores, segundo o autor:

- a) Agregação exagerada de dados, o que pode tornar a mensagem final indecifrável;
- b) Medir o que é mensurável em detrimento de medir o que é importante;
- c) Depender de falsos modelos, ou seja, escolher indicadores os quais refletem uma informação equivocada;
- d) Falsificação deliberada, que ocorre quando um índice carrega más notícias e os governantes são tentados a perdê-los os suprimi-los, mudando seus termos e definições.

Nesse cenário, em 1996, a CDS publicou o documento "Indicators of sustainable development: framework and methodologies", mais conhecido como "Livro Azul". A edição mais recente do livro, de 2012, cataloga com 62 indicadores de desenvolvimento sustentável distribuídos em 16 temas (BRASIL, 2014). O "Livro Azul" serviu como modelo para vários tipos de sistemas de indicadores de sustentabilidade, o que pode ser visto no tópico a seguir.

3.3.2 Os Sistemas de Indicadores de Sustentabilidade

Diante da abrangência e complexidade que envolve o termo "desenvolvimento sustentável", vários são os enfoques e abordagens cuja finalidade é sintetizá-lo e mensurá-lo. Van Bellen (2002) elenca três como "as mais relevantes e promissoras em termos de avaliação do processo de desenvolvimento observado sob a perspectiva da sustentabilidade"

através de uma "amostra internacional de especialistas da área". As ferramentas selecionadas, na percepção desses especialistas consultados, são: o Barômetro da Sustentabilidade; a Pegada Ecológica; e o Painel da Sustentabilidade. Cândido (2009) é mais abrangente e aponta outros sistemas existentes na literatura os quais buscam mensurar a sustentabilidade, como se destaca a seguir.

3.3.2.1 PSR (Pressure/ State/ Response)

Desenvolvido pela Organização para Cooperação e Desenvolvimento Econômico (OECD), esse conjunto de indicadores se segmenta em três partes: indicadores de pressão ambiental (P), os quais descrevem as pressões das atividades humanas exercidas sobre o meio ambiente; os indicadores de estado ou condição (S) que se referem à qualidade do ambiente, bem como a qualidade e quantidade dos recursos naturais; e os indicadores de resposta (R) os quais mostram as reações sociais ao responder às mudanças e às preocupações ambientais (CÂNDIDO, 2009).

Consoante Carvalho e Barcellos (2010), o Modelo Pressão- Estado- Resposta se fundamenta em um marco conceitual que aborda os problemas ambientais sob uma ótica de relação de causalidade, o que lhe proporciona ser o recurso mais utilizado para análise de estatísticas e indicadores da área ambiental e do desenvolvimento sustentável. Entre as vantagens da utilização do modelo estão sua aceitação pela comunidade internacional, no que se refere à sua simplicidade; seu uso facilitado como instrumento eficaz capaz de acompanhar e monitorar os progressos alcançados; e a possibilidade de sua aplicação a diferentes níveis, escalas e atividades humanas (BRASIL, 2017).

3.3.2.2 DSR (Driving-force/ State/ Response)

Desenvolvido pela Comissão das Nações Unidas sobre Desenvolvimento Sustentável, essa ferramenta é derivada do modelo PSR, em que o conceito de "pressure" foi substituído por "driving- force", com o objetivo de inserir de modo mais específico os indicadores referentes às questões sociais, econômicas e institucionais, descrevendo impactos os quais podem ser tanto positivos quanto negativos. A matriz incorpora horizontalmente os três tipos de indicadores (driving-force, state, response) e verticalmente as dimensões do desenvolvimento sustentável (econômico, social, institucional e ambiental) (SILVA, 2003).

3.3.2.3 DPSIR (Driving-force/ Pressure/ State/ Impact Response)

O modelo DPSIR, uma extensão do modelo PSR desenvolvido pela OECD, foi concebido com a finalidade de descrever os problemas ambientais mediante a formalização das relações entre setores de atividades humanas e o meio ambiente tomando por base uma relação de causalidade (SOARES *et al.*, 2008).

Navone et al. (2006) consideram que o indicador "pressure" deve representar a fragilidade ou a força da relação entre o ambiente natural, a economia e a sociedade, e o indicador "state" deve representar a situação atual do processo antes que ele atinja patamares de grande gravidade. Nesse modelo são definidos valores para as atividades humanas responsáveis por gerar pressões (driving-forces), além de considerar os elementos do impacto no ambiente, exigindo ações de resposta nos diferentes setores por meio de ações políticas e macroeconômicas (impact responses). Esse método traz como vantagem a capacidade de avaliar as interações do meio ambiente com o desenvolvimento social e econômico (SOARES et al., 2008).

A Figura 3.4 apresenta uma síntese das relações estabelecidas pelo modelo DPSIR.

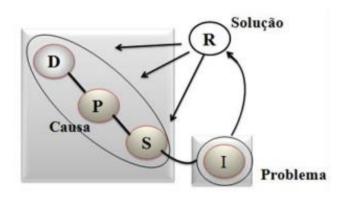


Figura 3.4: Esquema do modelo DPSIR

Fonte: Soares (2008), apud. Soares, (2007), Adapt. Giupponi (2002).

3.3.2.4 HDI (Human Development Index)

Desenvolvido pelas Nações Unidas e publicado anualmente desde 1990, o modelo HDI, mais conhecido como IDH no Brasil, tem como objetivo principal mensurar, de maneira sumária, o desenvolvimento humano dos países levando-se em consideração não somente a geração de renda, mas também, englobando outros fatores os quais contribuem para que as pessoas possam usufruir de uma vida digna. Para o alcance deste objetivo, três componentes são consideradas: educação, longevidade e renda (SPANGER, 2011).

As justificativas para a seleção desses componentes são muitas. A educação, por exemplo, é vista como indicador das escolhas das pessoas para adquirir conhecimento, levando em consideração a escolaridade de jovens na faixa dos 25 anos e o período de tempo que esses jovens passam na escola. A longevidade, mensurada pela expectativa de vida da população, indica o período que as pessoas têm para usufruir de uma vida longa e saudável. Já a renda é vista como o meio que fará as pessoas terem acesso a bens e serviços, e é medida pelo Rendimento Nacional Bruto per capita (FJP; IPEA; PNUD, 2016).

Para o cálculo do HDI, desde 2010 é feita uma média geométrica das três componentes citadas anteriormente, em uma escala que varia de 0 a 1. Quanto mais próximo de um, significa que mais alta é a taxa de desenvolvimento humano do país. No Brasil, essa metodologia tem sido aplicada em municípios, recebendo o nome de IDH-M, levando em consideração as mesmas dimensões da escala global, mas com uma diferença: adequa a metodologia ao contexto brasileiro e à disponibilidade de indicadores nacionais, sendo considerado mais adequado para avaliar o desenvolvimento dos municípios e regiões metropolitanas brasileiras (FJP; IPEA; PNUD, 2016). A Figura 3.5 apresenta as faixas do Índice de Desenvolvimento Humano municipal.

Figura 3.5: Faixas do Índice de Desenvolvimento Humano Municipal

Fonte: FJP, IPEA, PNUD, 2016.

3.3.2.5 Dashboard of Sustainability

Criado em 1999 pelo grupo *Consultative Group on Sustainable Development Indicators*— CGSDI, o modelo conhecido como *Dashboard of Sustainability*, ou Painel da Sustentabilidade, tem como objetivo principal mensurar o desenvolvimento sustentável por meio da criação de um software o qual gera um índice que reflete o grau de sustentabilidade de uma localidade baseado em suas três dimensões (BENETTI, 2006):

- Ambiental: solo, ar, água e biodiversidade;
- ➤ Social: saúde, equidade, segurança, educação, habitação e população;
- Econômica: produção e estrutura e padrões de consumo.

O CGSDI, desde a sua concepção, trouxe como inovação um sistema de trabalho baseado na comunicação via *Internet*, o que possibilitou a participação de membros de diversos países para a formulação do índice (VAN BELLEN, 2002).

Rodrigues e Rippel (2015) apontam para o fato de o Painel de Sustentabilidade fazer alusão ao painel de um automóvel, chamando a atenção pela visualização atrativa dos resultados. Dessa maneira, o programa apresenta quatro mostradores, considerando que muitos pesquisadores acrescentam a dimensão "Institucional", os quais correspondem às dimensões do desenvolvimento sustentável propostas pelo método, conforme o observado na Figura 3.6.

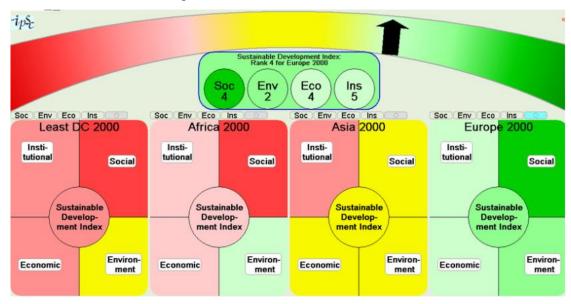


Figura 3.6: Painel da Sustentabilidade

Fonte: Benetti, 2006.

3.3.2.6 Barometer of Sustainability

O método *Barometer of Sustanaibility* (Barômetro da Sustentabilidade) foi desenvolvido por especialistas de dois Institutos: *o The World Conservation Union* (IUCN) e o *The International Development Research Centre* (IDRC). Diversos autores defendem o uso dessa metodologia pelo fato dela ser aplicada a diferentes escalas de tempo e espaço, o que permite uma comparação entre a natureza e a sociedade, tendo em vista os dois grandes eixos abarcados pelo método: o Bem-Estar Humano e o Bem-Estar Ambiental (VAN BELLEN, 2002; KRAMA, 2009; CARDOSO, 2014; CETRULO; MOLINA; MALHEIROS, 2013; KRONEMBERGER et al, 2004).

Estes dois eixos se subdividem em cinco dimensões. Para a sociedade tem-se: saúde e população; riqueza; conhecimento e cultura; comunidade; e equidade. Para o meio ambiente considera-se: terra; ar; água; espécies; e utilização de recursos (PRESCOTT-ALLEN, 2001a). As dez dimensões que compõem esses eixos são integradas por indicadores, sendo sua seleção feita através de um método hierarquizado, o qual se inicia com a definição do sistema e da meta, e deve chegar aos indicadores mensuráveis e em seus critérios de desempenho (VAN BELLEN, 2004).

Consoante Prescott-Allen, o principal pesquisador envolvido no desenvolvimento desta ferramenta, um ponto inovador do Barômetro da Sustentabilidade é a sua capacidade de combinar indicadores, permitindo aos usuários chegarem a conclusões a partir de dados considerados, por vezes, contraditórios (PRESCOTT-ALLEN,2001a).

Van Bellen (2002) e Krama (2009) ainda pontuam outras vantagens do Barômetro da Sustentabilidade, que são: sua abordagem holística, a qual integra o bem estar humano com o ambiental; permite ao leitor uma abordagem comparativa; além de sua excelente apresentação gráfica acerca do grau de desenvolvimento sustentável.

Ao ser aplicado no estado do Ceará, o BS proposto por Silva (2017) teve sua metodologia desenvolvida através de quatro etapas: determinação dos indicadores e obtenção de seus valores reais; determinação das Escalas de Desempenho; Transposição dos indicadores das Escalas de Desempenho para a escala do BS; e apresentação dos resultados por meio de gráfico bidimensional.

Na primeira etapa, 24 indicadores foram propostos dos quais todos tem algum tipo de relação com aspectos que influenciam o atendimento das necessidades atuais e futuras dos seres humanos e do meio ambiente.

Já na segunda etapa, a formulação das chamadas escalas de desempenho envolve a avaliação da situação do indicador em relação à meta ou padrão estabelecido, e aplicadas a diferentes períodos, possibilita o monitoramento de avanços e retrocessos em direção ao desenvolvimento sustentável (KRONEMBERGER *et al.*, 2004). O estabelecimento das Escalas de Desempenho envolveu associar à escala do BS, que é dividida em cinco intervalos, outros cinco intervalos subjetivamente definidos.

A terceira etapa, que consiste na Transposição dos indicadores das Escalas de Desempenho para a escala do BS, foi realizada através de interpolação linear, classificando os valores reais em relação aos intervalos da escala do BS. Em outras palavras, essa etapa

consistiu em determinar o intervalo, tanto na Escala de Desempenho quanto na escala do BS, que o valor real do indicador se enquadraria.

Por fim, a última etapa consistiu na utilização de um recurso visual para apresentar os resultados, por meio de um gráfico bidimensional em que os índices referentes ao Bem-Estar Humano e ao Bem-Estar Ambiental foram representados nos eixos e a intersecção de tais índices determinou o grau de sustentabilidade do sistema, conforme pode ser visualizado na Figura 3.7.

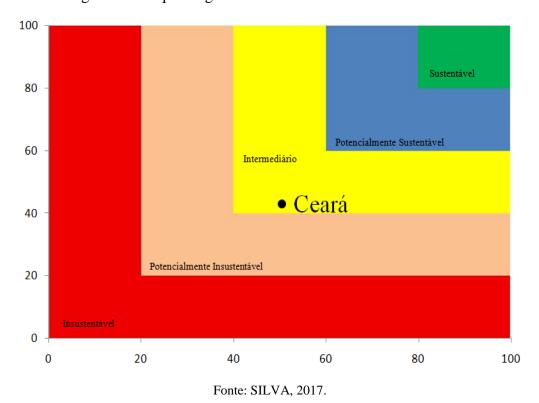


Figura 3.7: Esquema gráfico do Barômetro da Sustentabilidade

3.3.2.7 Ecological Footprint Method

O modelo *Ecological Footprint Method*, popularmente conhecido como Pegada Ecológica, foi proposto por Mathis Wackernagel e William Rees da Universidade de Colúmbia Britânica em Vancouver, no Canadá, no ano de 1996. O método consiste basicamente na contabilização dos fluxos de matéria e energia que entram e saem de um determinado sistema econômico e converte estes fluxos em uma área correspondente de terra ou água existente na natureza para sustentar este sistema ou população. Dessa forma, a apropriação de uma determinada população sobre a capacidade de carga do sistema total é representado pelo método. Esta ferramenta apresenta todos os cálculos de consumo de matéria e energia na unidade de área hectare (ha = 10.000 m²) (VAN BELLEN, 2002).

Krama (2009) aponta que o método identifica as "pegadas da atividade humana", alertando para o fato dos recursos naturais existentes no planeta serem limitados e, dessa maneira, o modelo pretende avaliar a diferença entre a superfície do território mundial explorada e a superfície disponível para tal exploração.

A Pegada Ecológica apresenta, portanto, caráter analítico e educacional, partindo do pressuposto que ela não analisa somente a sustentabilidade das atividades humanas, mas também contribui para a construção de consciência pública a respeito dos problemas ambientais, o que a caracteriza como uma ferramenta de auxílio no processo decisório (VAN BELLEN, 2002).

3.3.2.8 Monitoring Environmental Progress

Desenvolvido pelo World Bank em 1995, fundamenta-se na ideia de que a sustentabilidade é medida por uma riqueza *per capita* não decrescente (CÂNDIDO, 2009). O *Monitoring Environmental Progress* (MEP) torna mais amplo o conceito de contabilidade ambiental ao incorporar em seu escopo tópicos como recursos humanos (investimentos em educação, treinamento e saúde) e infraestrutura social (associações) (WORLD BANK, 1995).

Apesar de possuir algumas limitações, como avaliabilidade e confiabilidade de dados, de maneira geral esse sistema agrega informações importantes aos tomadores de decisão. A produção de bens, muitas vezes vista como principal determinante de riqueza em vários países, na verdade expressa, efetivamente, apenas um quinto da riqueza real na maioria dos países, sejam eles pobres ou ricos. Portanto, a análise de riqueza considera que a mistura de bens possa mudar com o tempo, embora algumas fronteiras críticas devam ser respeitadas dentro de cada categoria (VAN BELLEN, 2010).

Essa mistura de bens é influenciada pelo fluxo de receitas, produção e despesas de um determinado lugar. O MEP ressalta que o meio para se criar riqueza é o fluxo de poupança verdadeiro, calculado com base no resultado da produção ou receita menos o consumo, a depreciação dos bens de manufatura e a redução de recursos naturais. Esse sistema apresenta aspectos positivos tendo em vista que, muitas vezes, mostra que não existe produção de riqueza, apenas uma substituição de bens. Em sua segunda edição, o MEP refina suas medidas tomando por base o conceito de riqueza como a soma de quatro tipos de capital: produzido, natural, humano e social (VAN BELLEN, 2010).

3.3.2.9 IDS Brasil (Indicadores de Desenvolvimento Sustentável)

Publicado pelo Instituto Brasileiro de Geografia e Estatística (IBGE), que recebe as orientações recomendadas pela Comissão de Desenvolvimento Sustentável (CDS) da ONU, os IDS constituem-se uma série iniciada em 2002 a qual dispõe à sociedade um conjunto de informações sobre a realidade brasileira no que diz respeito as suas dimensões ambiental, social, econômica e institucional (CÂNDIDO, 2009).

Este estudo conta com cinco edições: 2004, 2008, 2010, 2012 e 2015. Sua versão mais recente dispõe da introdução de novos indicadores, em sintonia com as questões contemporâneas sobre o tema, além daqueles constantes nas edições anteriores, os quais permitem a comparabilidade histórica dos dados, abrangendo tanto as escalas estaduais como a nacional, o que permite o acompanhamento dos fenômenos ao longo do tempo e uma análise de sua ocorrência no território. Esses novos indicadores incorporam sugestões apresentadas pela CDS no Livro Azul, em sua edição de 2007, além de outras informações importantes para a realidade brasileira, no que se refere às dimensões ambiental e institucional do desenvolvimento sustentável (IBGE, 2015).

Nesta publicação os indicadores são ilustrados por meio de gráficos e mapas e antepostos de uma ficha contendo sua descrição, a indicação das variáveis e fontes utilizadas em sua construção, além da relevância para o desenvolvimento sustentável. Souto (2012) aponta que o estudo possui uma estrutura que facilita a leitura dos indicadores, seja pela classificação dos indicadores em dimensões do desenvolvimento sustentável, seja pela inclusão desses elementos gráficos os quais auxiliam o entendimento dos resultados apresentados. Nesse contexto, o esforço em tornar esse relatório, de natureza bastante técnica, em uma obra de leitura mais simples é elogiável, funcionando como um facilitador na adoção dos indicadores pelos gestores públicos.

3.3.2.10 Índice de Sustentabilidade Ambiental- ISA (Environmental Sustainability Index)

O ISA, elaborado pelas universidades norte-americanas de Yale e Columbia, tem como objetivo principal analisar e avaliar a sustentabilidade ambiental ao longo do tempo, identificando os determinantes do "sucesso ambiental" e da sustentabilidade a longo prazo (CÂNDIDO, 2009). O índice, em seu escopo, envolve cinco dimensões, com cada uma delas considerando seus principais componentes (VEIGA, 2009):

➤ Sistemas ambientais: ar, água, solo e ecossistemas;

- ➤ Estresse ambiental: algum tipo muito crítico de poluição ou qualquer nível exorbitante de exploração de recurso natural;
- Vulnerabilidade humana: situação nutricional e doenças relacionadas ao ambiente:
- ➤ Capacidade social e institucional: existência de capacidade socioinstitucional para lidar com os problemas e desafios ambientais;
- ➤ Responsabilidade global: esforços e esquemas de cooperação internacional representativos da responsabilidade global.

De acordo com os autores, o ISA deve ser interpretado como algo mais estrutural, focado no esforço dos países em melhorar seu desempenho ambiental. Dentre suas vantagens, consta-se: a quantificação de objetivos, medindo o progresso e identificando níveis de desempenho; a mensuração da sustentabilidade ambiental, preenchendo o vazio que existia no campo da política ambiental; constitui-se como uma base de apoio para tomada de decisão; e cria uma base de dados facilmente compreensível, fazendo uso de uma metodologia acessível, reprodutível e que pode ser aperfeiçoada ao longo do tempo (ESI, 2005).

3.3.3 Outras Abordagens de Sistemas de Indicadores pelo Brasil

Devido à significativa relevância do tema no cenário mundial atual, vários sistemas de indicadores têm surgido no Brasil com o objetivo de mensurar o grau de sustentabilidade de uma determinada localidade. No entanto, devido à escassez de dados, ou mesmo diante de sua frágil confiabilidade, o uso desses sistemas de indicadores vem se restringindo, muitas vezes, a aplicação em apenas um município ou localidade específica.

Exemplo disso é a construção de índices de sustentabilidade aplicados a municípios como: João Pessoa, Campina Grande e Cabaceiras, na Paraíba; em Ribeirão Pires, em São Paulo; além da região do Rio Piracicaba, em Minas Gerais (AMORIM, SANTOS, CÂNDIDO, 2008; SILVA, CÂNDIDO, MARTINS, 2009; VASCONCELOS, 2011; COUTINHO; MALHEIROS, 2012; BRAGA, *et al.*, 2004).

Em outros estudos, a abordagem do tema tem sido realizada de maneira generalista, principalmente quando se trata de unidades federativas, como remetem os estudos aplicados ao estado de Mato Grosso do Sul, proposto por Pereira, Sauer e Fagundes (2015), e ao estado da Paraíba, proposto por Martins e Cândido (2008). Nesse caso, as avaliações são feitas baseadas em valores que tentam traduzir a realidade do estado como um todo,

ignorando os diferentes tipos de cenários encontrados em cada município, o que dificulta a interpretação sobre o efetivo estágio de sustentabilidade apresentado por esses locais.

Percebe-se, portanto, que há uma necessidade de se dispor de procedimentos metodológicos os quais proporcionem uma avaliação dinâmica do desenvolvimento desses territórios, considerando a importância de todas as dimensões- ambiental, social, econômica e institucional- e a participação dos atores sociais envolvidos. Nesse sentido, estudos que empregam índices já consagrados na literatura já vêm sendo desenvolvidos, como o Barômetro da Sustentabilidade aplicado ao estado do Ceará, proposto por Silva (2017), englobando os seus 184 municípios, o que gera uma perspectiva mais abrangente e aprofundada acerca do tema.

Nesse contexto, a utilização de ferramentas de apoio à decisão vem sendo cada vez mais constante na construção de índices de sustentabilidade, considerando seu potencial para justificar a seleção dos indicadores, além do fato de se embasarem em modelos matematicamente consistentes, o que gera maior credibilidade ao estudo.

3.4 Ferramentas de apoio à decisão

3.4.1 Definição

A palavra *decisão* significa "parar de cortar" ou "deixar fluir". Uma decisão precisa ser tomada sempre que se está diante de um problema o qual possui mais de uma alternativa para sua solução. Isso acontece até mesmo quando possuímos apenas uma ação a tomar, considerando a existência de alternativas como tomar ou não essa ação. Concentrar-se no problema certo possibilita direcionar corretamente todo o processo. (GOMES; GOMES, 2014).

Para Romero (1996), o processo de tomada de decisão (TD) pode ser concebido como a eleição por parte de um centro decisor, que pode ser um indivíduo ou um grupo de indivíduos, da melhor alternativa entre todas as possíveis. No entanto, o problema consiste em definir o melhor e o possível nesse tipo de processo.

As decisões podem acarretar abrangência diversificada. Zeleny (1994) defende que a TD é um esforço para tentar resolver problemas de objetivos conflitantes, em que sua presença impede a existência de uma solução ótima e conduz à procura do "melhor compromisso".

Gomes e Gomes (2014) acreditam que para cada decisão há um ganho e uma perda. Malczewski (1999) elenca três situações em que é necessária sua tomada: quando uma oportunidade ou um problema existem; quando algo não é o que deveria ser; ou ainda quando existe uma oportunidade de melhoria ou otimização.

Tomar decisões é uma das tarefas mais difíceis que podem ser enfrentadas por um indivíduo ou um grupo desses, pois quase sempre elas devem atender a mais de um objetivo e seus impactos dificilmente são corretamente identificados (GOMES; GOMES, 2014). Dessa forma, o processo de TD se desenvolve por meio de interação constante entre o seu tomador com o ambiente para o qual essas decisões serão direcionadas, o que envolve uma série de consequências e riscos. Assim, é essencial identificar as prioridades a serem trabalhadas em longo prazo, principalmente quando se tem divergências de recursos e informações (SILVA; CÂNDIDO; MARTINS, 2009).

3.4.2 Tomada de decisão aplicada a questões ambientais

O tratamento de assuntos ligados a questões ambientais, incluindo a elaboração de políticas, estudos e projetos envolve, frequentemente, tomada de decisão, que pode geralmente se configurar como um processo de grande complexidade e aparentemente sem solução, principalmente em função dos diversos pontos de vista dos atores envolvidos no processo (KIKER *et al.*, 2005; NIJKAMP, 1989).

Nesse contexto, a década de 1960 se tornou um marco histórico da mudança de postura dos gestores públicos, considerando que os impactos de políticas, programas e projetos passaram de uma análise sob o enfoque técnico e financeiro para uma visão que adota critérios ambientais na formulação dessas políticas públicas, inserindo novas condicionantes para avaliação da viabilidade de implantação de projetos econômicos. Assim, a decisão passa a ser encarada como um processo social, inserindo em seu escopo questões do comportamento humano e mecanismos quantitativos na estruturação e resolução de problemas (ARAÚJO, 2014; DIAS, 2000; GOMES, GOMES, ALMEIDA, 2006; MATZENAUER, 2003).

Dessa forma, o que emerge dessa discussão sobre TD, gestão ambiental e desenvolvimento sustentável é a demanda por sinais os quais possam orientar a sociedade sobre os rumos a serem desenhados, no que se refere a termos de política e de padrões de consumo e produção associados. Essa mudança de perspectiva reflete diretamente na escolha de indicadores apropriados aos processos de TD, tanto no âmbito individual quanto no coletivo, em escalas local e global (MALHEIROS; COUTINHO; PHILIPPI JR., 2012c).

À vista disso, segundo Meadows (1998) e Hodge *et al.*, (1999) a ideia consiste no uso das lentes de sustentabilidade para enxergar o planeta (olhar global) e suas partes (a questão local e suas especificidades), o que favorece a decisão de onde concentrar esforços de forma a potencializar as energias do sistema no melhor uso dos recursos sob o enfoque do desenvolvimento sustentável. Nesse contexto, os indicadores de sustentabilidade ocupam papel fundamental no processo, considerando que podem ser usados com ferramenta de mobilização das partes interessadas, na análise e avaliação da sustentabilidade do desenvolvimento, assim como nos processos de educação e comunicação.

Portanto, os indicadores de sustentabilidade devem ser uma ferramenta presente e constante nos processos decisórios. Além disso, é necessário que se construam indicadores de automonitoramento dos sistemas gestores, numa perspectiva de aprendizado contínuo, de melhoria progressiva, a qual possa responder às complexas redes de decisão política nos diversos níveis de atuação (MALHEIROS; COUTINHO; PHILIPPI JR., 2012a).

3.4.3 *Atores*

Em qualquer procedimento de tomada de decisão a definição dos seus atores, ou seja, aqueles que participam ou não do processo decisório, se faz necessária, considerando que as funções executadas por eles são distintas. Nesse contexto, três tipos de atores são destacados e definidos (GOMES; GOMES, 2014):

- a) Decisor: é aquele que influencia no processo decisório de acordo com o juízo de valor que representa e/ou as relações que se estabeleceram. Pode ser representado por uma pessoa ou um grupo dessas, em nome do qual se toma a decisão. O decisor não participa do processo decisório, no entanto, se possuir o poder de veto, pode influenciá-lo.
- b) Facilitador: é um líder experiente que deve focalizar sua atenção na resolução do problema, coordenando os diferentes pontos de vista dos decisores. Deve manter uma postura neutra no processo decisório, de forma que não intervenha nos julgamentos; esclarecer e modelar o processo de avaliação e/ou negociação para que se consiga tomar uma decisão; e manter o decisor sempre motivado, destacando seu aprendizado.
- c) Analista: é o indivíduo que faz a análise, ou seja, auxilia o facilitador e o decisor na estruturação, evolução, solução e configuração do problema. Seu

trabalho consiste, principalmente, na formulação do problema, e em ajudar as pessoas a visualizarem-no.

3.4.4 Etapas do processo

A partir da década de 1980, vários métodos e metodologias aplicáveis ao processo decisório passaram a ser formulados com o objetivo de estruturar racionalmente o problema de decisão. Chiavenato (1983), Uris (1989), Shamblin e Stevens Jr. (1989), Binder (1994) e Costa (1997) são alguns dos autores os quais propuseram arranjos contendo as etapas a serem contempladas durante o processo de tomada de decisão. A seguir, o Quadro 3.1 apresentará uma síntese dessas etapas com suas respectivas descrições, mesclando as considerações desses autores.

Quadro 3.1: Etapas do processo de tomada de decisão

ETAPAS	DESCRIÇÃO
1	Identificação dos atores
2	Listagem das alternativas
3	Definição dos critérios relevantes
4	Avaliação das alternativas em relação aos critérios
5	Determinação da importância relativa dos critérios
6	Determinação das soluções satisfatórias
7	Análise de sensibilidade (opcional)

Fonte: Elaborado pelo autor, 2019.

Nesse contexto, definir o tipo de problemática abordada é essencial para que se tracem as melhores estratégias as quais serão adotadas para sua resolução. Entre esses tipos, Roy (1996) destaca os seguintes:

- ➤ Problemática de escolha: procura auxiliar na escolha da melhor ação, orientando a investigação com o objetivo de encontrar um subconjunto de ações tão pequeno quanto possível;
- ➤ Problemática de classificação: tem como objetivo a alocação de cada ação em uma classe, definidas a partir de normas aplicáveis ao conjunto de ações;

- ➤ Problemática de ordenação: tem como objetivo construir um *ranking* das alternativas em ordem decrescente de preferência;
- Problemática de descrição: procura apoiar a decisão por meio de uma descrição das ações e de suas consequências.

A definição do tipo de problemática, bem como o cumprimento das etapas descritas no Quadro 3.1, são essenciais para que o processo decisório seja bem encaminhado e a melhor solução possível seja aplicada para a resolução do problema.

4 METODOLOGIA

4.1 Área de estudo

O estado do Ceará, unidade federativa da Região Nordeste, é o oitavo estado mais populoso do Brasil e o segundo da Região, com número de habitantes estimado em 9.022.477 no ano de 2017 (IBGE, 2017). Além disso, possui extensão territorial de 148.886,31 km² e é composto por 184 municípios agrupados em quatorze regiões de planejamento, como pode ser observado na Figura 4.1.

Essa divisão do Estado em regiões de planejamento se deu a partir do ano de 2015, por meio da Lei complementar nº 154. Antes dessa concepção, utilizava-se a divisão do local em macrorregiões, as quais agrupavam os municípios em oito áreas (IPECE, 2015). A justificativa para a nova delimitação se deu pelo aperfeiçoamento das atividades de planejamento, monitoramento e implementação de políticas públicas de forma regionalizada, agrupando os municípios semelhantes em relação as suas características geoambientais, socioeconômicas, culturais e de rede de fluxos (MEDEIROS et al. 2015; IPECE, 2015).

No que tange às suas características físicas, o estado está localizado, em sua totalidade, na sub-região do sertão nordestino, conforme pode ser observado na Figura 4.2. Além disso, é caracterizado pelo clima semiárido e apresenta hidrografia pobre, uma vez que reflete as condições climáticas dominantes. No que diz respeito ao seu território, o estado limita-se: a norte com o Oceano Atlântico; ao sul com Pernambuco; a leste com o Rio Grande do Norte e a Paraíba; e a oeste com o Piauí (IPECE, 2017).

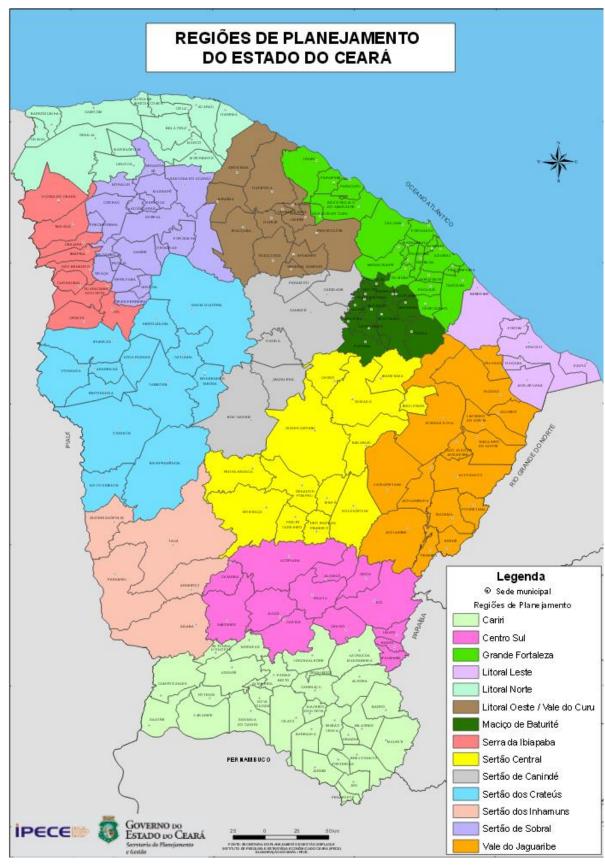


Figura 4.1: Regiões de planejamento do estado do Ceará

Fonte: IPECE, 2017.



Figura 4.2: Semiárido brasileiro

Fonte: Agência Nacional de Águas, 2005.

4.2 Construção da Escada da Sustentabilidade para os municípios cearenses

A Escada da Sustentabilidade (ES) proposta por esse trabalho tem como objetivo mensurar o progresso dos municípios cearenses em direção ao desenvolvimento sustentável, de tal forma que sejam contempladas as quatro principais dimensões propostas em seu escopo: ambiental, social, econômica e institucional. Para isso, a ES é constituída por indicadores que apresentam forte consistência metodológica e que contém base de dados de alta confiabilidade. Além disso, ela incorpora ferramentas de tomada de decisão para a seleção desses indicadores, o que torna o seu desenvolvimento diferenciado em relação aos demais Índices de Sustentabilidade presentes na literatura.

A metodologia empregada na construção da ES compreende quatro etapas, conforme ilustra a Figura 4.3 a seguir.

Seleção dos indicadores

Padronização dos dados

Cálculo dos índices temáticos e da ES

Representação gráfica

Figura 4.3: Etapas empregadas na aplicação da ES para o Estado do Ceará

4.2.1 Seleção dos indicadores para desenvolvimento da Escada da Sustentabilidade

A Escada da Sustentabilidade proposta nesse trabalho pretende ser uma ferramenta destinada às agências governamentais e não governamentais, aos tomadores de decisão e às pessoas envolvidas com questões relativas ao desenvolvimento sustentável, quaisquer sejam seus níveis de atuação.

Dessa forma, considerando o possível uso institucional do método, optou-se por selecionar indicadores passíveis de serem levantados em fontes oficiais de informação, a constar: o Instituto Brasileiro de Geografia e Estatística (IBGE), o Instituto de Pesquisa e Estratégia Econômica do Ceará (IPECE), a Secretaria de Estado da Educação (SEDUC), a Secretaria da Saúde do Estado do Ceará (SESA), a Companhia de Água e Esgoto do Ceará (CAGECE), a Secretaria da Cultura do Estado do Ceará (SECULT), a Secretaria da Fazenda (SEFAZ), o Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP) e o Tribunal Regional Eleitoral (TRE).

Considerando que a catalogação de dados levou em consideração fontes oficiais de informação associadas a uma base de dados de qualidade reconhecida, uma possível identificação de valores extremos (*outliers*) não se faz necessária. No entanto, por se tratar da elaboração de um método de construção de índice de sustentabilidade, em casos de utilização de dados duvidosos, recomenda-se uma alternativa para a redução da influência de valores extremos.

O levantamento desses indicadores foi baseado em revisão bibliográfica, levando em consideração o conceito de sustentabilidade, ou seja, quais deles relacionam-se direta ou indiretamente com aspectos que influenciam o atendimento das necessidades atuais e futuras

dos seres humanos e do meio ambiente. Além disso, a disponibilidade de dados foi um fator de extrema relevância e agente limitante para o levantamento desses indicadores, considerando a dificuldade em encontrar uma extensa massa de dados a qual contemplasse todos os 184 municípios do Ceará.

Os Quadros 4.1 a 4.9 apresentam todos os indicadores levantados neste trabalho. Além disso, a fonte desses indicadores, bem como uma breve descrição deles e suas respectivas bases de referência, foram apresentadas.

Quadro 4.1: Dimensão ambiental (Tema: Saneamento e Arborização): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

	descrição e bases de referência para construção da ES para os municípios cearenses					
Temas	Indicadores	Fonte	Descrição e bases de referência			
Saneamento e arborização	Taxa de cobertura de esgoto (%)	CAGECE, 2015	Percentual da população atendida domiciliarmente por rede de coleta de esgoto operado pela Companhia de Água e Esgoto do Ceará – CAGECE no ano considerado. Por se tratar de um serviço essencial, o ideal a ser considerado é uma cobertura de 100% (OMS).			
	Taxa de cobertura de coleta de lixo (%)	IBGE, 2010	Percentual da população atendida domiciliarmente, direta ou indiretamente, por serviço regular de coleta de lixo, em determinado espaço geográfico, no ano considerado. O ideal é 100% de cobertura (OMS).			
	Arborização de vias públicas (%)	IBGE, 2010	Refere-se à presença de árvores na face ou na face confrontante ou no canteiro central, ao longo da calçada/passeio e/ou em canteiro que divide pistas de um mesmo logradouro, mesmo que apenas em parte. Considerou-se também a arborização quando existente em logradouros sem pavimentação e/ou sem calçada/passeio.			
	Taxa de cobertura de água (%)	CAGECE, 2015	Razão entre da população atendida pela CAGECE domiciliarmente por serviço regular de abastecimento de água e a população total, no ano considerado. O ideal é 100% de cobertura (OMS).			
	Volume de água tratada	IBGE, 2010	Percentual do volume de água tratada distribuída para a população em relação ao volume total de água disponível, por dia. O ideal é que toda água distribuída seja tratada.			

Quadro 4.2: Dimensão social (Tema: Trabalho): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores	Fonte	Descrição e bases de referência
	Nível de ocupação das pessoas (%)	IBGE, 2010	É o percentual de pessoas na força de trabalho na semana de referência em relação às pessoas em idade de trabalhar.
Trabalho	Trabalho infantil (%) (10 a 13 anos)	IBGE, 2010	É toda forma de trabalho exercido por crianças e adolescentes abaixo da idade mínima legal permitida para o trabalho, que no Brasil é de 14 anos. A meta era eliminar as piores formas de trabalho infantil até 2015 e de erradicar a totalidade do trabalho infantil até 2020 (OIT). Na interpolação linear, foi considerado como limite superior o valor atribuído ao município de Umari, com 1,1 %, e como limite inferior o valor atribuído ao município de Deputado Irapuan Pinheiro, com 21,6%.
	Taxa de empregos formais	IPECE, 2016	Número de empregos formais em relação à quantidade de pessoas em idade de trabalhar residentes no município.

Quadro 4.3: Dimensão social (Tema: População): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores Fonte Descrição e bases de refe						
População	Extrema pobreza (%)	IBGE, 2010	População com rendimento domiciliar per capita mensal de até R\$ 70,00 (MDS). A situação ideal é erradicar a extrema pobreza (ODM).				
	Taxa de crescimento da população	IPECE, 2016	Taxa média geométrica de incremento anual da população residente, considerando o período entre os anos de 2005 e 2011. Utilizou-se como limites superior e inferior os valores atribuídos aos municípios cearenses com menor e maior taxa de crescimento populacional, respectivamente. São eles: Guaramiranga, com -32,1%, e General Sampaio, com 42,8%.				
	Taxa de urbanização (%)	IBGE, 2010	Percentagem da população urbana em relação à população total de uma dada região. Considerou-se que é no ambiente urbano onde se concentram as oportunidades de emprego, moradia, acesso ao saneamento básico e educação de qualidade, entre outros serviços.				
	Densidade demográfica	IBGE, 2010	É a medida expressada pela relação entre a população e a superfície do território.				

Quadro 4.4: Dimensão social (Tema: Cultura): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores Fonte Descrição e bases de referên							
Cultura	Bibliotecas públicas, teatros e museus	SECULT, 2015	Quantidade de bibliotecas públicas municipais, teatros e museus, por municípios. Utilizou-se como referência os parâmetros estabelecidos pelo Ministério da Cultura, o qual estipulou: para população de até 10.000 habitantes, mínimo de 01; entre 10.000 e 20.000 habitantes, mínimo de 02; entre 20.000 e 100.000 habitantes, mínimo de 03; acima de 100.000 habitantes, mínimo de 04. Essas quantidades dizem respeito às três modalidades, ou seja, englobam tanto bibliotecas, como teatros e museus. Para esse indicador, utilizou-se a metodologia de interpolação linear.					
	Monumentos históricos tombados e preservados	SECULT, 2015	Quantidade de bibliotecas públicas municipais, teatros e museus, por municípios. Atribuiu-se nota zero para os municípios com ausência de monumentos históricos tombados e um para os municípios com presença de monumentos históricos tombados e/ou preservados.					
	Bandas de música	SECULT, 2015	Quantidade de bandas de música locais por município.					

Quadro 4.5: Dimensão social (Tema: Saúde): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores Fonte Descrição e bases de referênci					
Saúde	Taxa de mortalidade infantil	IPECE, 2016	É o número de óbitos de menores de 1 ano de idade em relação a 1 000 nascidos vivos referente ao ano de 2015. Utilizou-se na interpolação linear como limites superior e inferior os valores atribuídos aos municípios cearenses com menor e maior taxa de mortalidade infantil respectivamente. São eles Araripe, com 2,9, e Ererê, com 71,4.			
	Unidades de saúde por 1000 hab.	SESA, 2015	Quantitativo de unidades de saúde a cada mil habitantes. Ideal acima de 2,2 (MS). A metodologia de cálculo empregada foi interpolação linear.			
	Imunização contra doenças infecciosas infantis (%)	SESA, 2015	Imunização em menores de um ano de idade. A imunização abrangeu as seguintes vacinas: BCG, Poliomielite, Pentavalente e Rotavírus-Vorh.			
	Número de médicos por 1000 hab.	SESA, 2015	Preconiza-se 2,5 médicos para cada mil hab. (MS). Considerou-se Barbalha como limite superior para construção do índice, com valor de 6,15 médicos para cada 1000 habitantes. A metodologia de cálculo empregada foi interpolação linear.			
	Leitos hospitalares por 1000 hab.	IPECE, 2016	Quantitativo de leitos hospitalares a cada mil habitantes.			
	Óbitos fetais	IPECE, 2016	Quantitativo de óbitos fetais a cada mil habitantes.			
	Taxa de natalidade	IPECE, 2016	A taxa de natalidades de uma região é o número de nascimentos por 1000 habitantes (nesta região) em um ano.			

Quadro 4.6: Dimensão social (Tema: Educação): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

	referência para construção da ES para os municípios cearenses					
Temas	Indicadores	Fonte	Descrição e bases de referência			
	Analfabetismo (%) (15 anos ou mais de idade)	IBGE, 2010	Segundo a ONU 100% da população deve ser alfabetizada.			
Educação	IDEB (Ensino fundamental)	INEP, 2015	É o principal indicador da qualidade do ensino básico. Em uma escala de 0 a 10, sintetiza dois conceitos, a aprovação escolar e o aprendizado em português e matemática (MEC). No cálculo do índice, levou-se em consideração a média aritmética entre as notas do IDEB das séries iniciais e finais do ensino fundamental da rede pública de ensino. Para esse indicador foi utilizada a metodologia de interpolação linear.			
	Escolarização do ensino fundamental (%)	SEDUC, 2015	Razão entre o número de matrículas de alunos com idade prevista para estar cursando determinada etapa de ensino e a população total na mesma faixa etária. No ensino fundamental, esperase que haja 100% de escolarização em 2024 (PNE 2011-2020).			
	Escolarização da educação infantil (%)	SEDUC, 2015	Razão entre o número de matrículas de alunos com idade prevista para estar cursando determinada etapa de ensino e a população total na mesma faixa etária. A meta era universalizar, até 2016, a Educação Infantil na préescola para as crianças de 4 a 5 anos de idade. Considerou-se Guaramiranga como limite superior de escolarização da educação infantil, com valor numericamente igual a 1,102.			
	Escolarização do ensino médio (%)	SEDUC, 2015	Razão entre o número de matrículas de alunos com idade prevista para estar cursando determinada etapa de ensino e a população total na mesma faixa etária. A meta estabelecida até 2016 foi de 85% para o ensino médio.			
	Rendimento escolar ensino médio (%)	SEDUC, 2015	Taxa de rendimento escolar dos alunos que cursam o ensino médio. Três fatores são levados em consideração para composição do índice: taxa de aprovação, taxa de reprovação e taxa de abandono escolar.			

(Continua)

Quadro 4.6: Dimensão social (Tema: Educação): indicadores, fontes, descrição e bases de

referência para construção da ES para os municípios cearenses (Continuação)

	Estabelecimentos de ensino com educação profissional	SEDUC, 2015	Quantitativo de estabelecimentos de ensino com educação profissionalizante. Atribuiu-se nota zero para os municípios com ausência de estabelecimentos de ensino com educação profissionalizante e um para os municípios com presença de estabelecimentos de ensino com educação profissionalizante.
	Salas de aula existentes e utilizadas	IPECE, 2016	Quantitativo de salas de aula existentes e utilizadas a cada 50 estudantes.
	Estabelecimento de ensino com educação de jovens e adultos	IPECE, 2016	Quantitativo de estabelecimentos de ensino com educação de jovens e adultos.
	Estabelecimento de ensino com educação especial	IPECE, 2016	Quantitativo de estabelecimentos de ensino com educação especial a cada 1000 estudantes.

Fonte: Elaborado pelo autor, 2019.

Quadro 4.7: Dimensão social (Tema: Habitação): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores	Fonte	Descrição e bases de referência
Habitação	Densidade adequada de moradores por dormitório (%)	IBGE, 2010	São considerados adequados para moradia os domicílios que têm, ao mesmo tempo, abastecimento de água por rede geral, esgotamento sanitário por rede coletora ou fossa séptica, coleta de lixo direta ou indireta e até dois moradores por dormitório.
	Vias públicas com urbanização adequada (%)	IBGE, 2010	Refere-se à presença de bueiro, calçada, pavimentação e meio-fio nas vias públicas na face ou na sua face confrontante dos domicílios.
	Acesso à energia elétrica (%)	IBGE, 2010	Percentual da população que tem acesso à energia elétrica domiciliarmente no ano considerado. Entre os Objetivos do Desenvolvimento Sustentável está o de assegurar o acesso confiável, sustentável, moderno e a preço acessível à energia para 100% da população (ONU/ODS).
	Domicílios com paredes de alvenaria	IBGE, 2010	Percentual da população que reside em casas com paredes em alvenaria.

Quadro 4.8: Dimensão econômica (Tema: Quadro econômico): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores	Fonte	Descrição e bases de referência
Quadro econômico	Renda domiciliar per capita	IBGE, 2010	Valor do rendimento nominal médio mensal per capita dos domicílios particulares permanentes. Na interpolação linear, considerou-se o valor atribuído a Fortaleza como limite superior de renda domiciliar per capita, com valor de R\$ 994,29, e o valor atribuído ao município de Moraújo como limite inferior, com R\$ 218,54.
	Índice de Gini da distribuição do rendimento	IBGE, 2010	Mede o grau de desigualdade existente na distribuição de renda de um local. Seu valor varia de zero (não há desigualdade) a um (desigualdade máxima). Para esse indicador, foi utilizada a metodologia de interpolação linear.
	Produto Interno Bruto- PIB per capita	IBGE, 2014	O PIB per capita de cada município é estimado pela razão entre o valor do PIB e sua população. O ranking utilizado não só considerou a soma das riquezas produzidas no país pela população, como também a pela paridade de poder de compra (PPP), o que significa que leva em conta os custos reais dos serviços e a inflação nos países.
	Valor adicionado a preços correntes	IPECE, 2016	Valor adicionado bruto a preços correntes somando todos os setores-agropecuária, indústria, serviços, administração, saúde, educação e seguridade social.
	Movimentação financeira nas instituições	IPECE, 2016	Movimentação financeira das instituições sob a supervisão do Banco Central.

Quadro 4.9: Dimensão institucional (Tema: Participação popular e informação): indicadores, fontes, descrição e bases de referência para construção da ES para os municípios cearenses

Temas	Indicadores	Fonte	Descrição e bases de referência
Participação popular e informação	Participação nas eleições (%)	TRE, 2016	Taxa percentual de eleitores que não se abstiveram do voto nas Eleições de 2016, referentes ao 1º turno.
	Acesso a serviço de telefonia (%)	IBGE, 2010	Quantitativo percentual da população que tem acesso a serviço de telefonia móvel em relação à população total do município.
	Acesso a serviço de internet (%)	IBGE, 2010	Quantitativo percentual da população que tem acesso a serviço de internet, em microcomputador, em relação à população total do município.
	Número de conselhos municipais	IPECE, 2016	Quantitativo de conselhos municipais presentes no município com atuação nos seguintes segmentos: assistência social, educação, saúde, combate às drogas, entre outros.

É válido salientar que o período das fontes dos indicadores levantados diz respeito a sua base de dados mais atual, justificando as divergências encontradas nesse quesito. Ademais, é importante pontuar que os indicadores abordam tanto as populações provenientes de áreas urbanas como rurais.

Após a conclusão da listagem desses indicadores, especialistas das mais diversas áreas ligadas à sustentabilidade foram consultados, com o objetivo de selecionar os indicadores mais relevantes para a construção da ES dentre os 45 propostos. Entre as formações desses especialistas, consta-se: sociólogo (1), jurista (1), geógrafo (1), engenheiro sanitarista (1) e biólogo (1), ou seja, diferentes visões e opiniões acerca da temática foram abrangidas. A eles, foi solicitado que preenchessem uma planilha em Excel a qual continha as seguintes instruções:

- ➤ 1ª etapa: Avalie e atribua a cada um dos indicadores listados uma nota que expresse sua relevância para o tema "Sustentabilidade". Essa nota deve estar compreendida entre 0 e 1, obedecendo a intervalos de 0,25, ou seja, somente podem ser atribuídas as seguintes notas: 0; 0,25; 0,50; 0,75 e 1.
- ➤ 2ª etapa: Para cada tema (Exemplo: Saneamento e arborização), a soma das notas dos indicadores deve ser igual a 1.

- ➢ 3ª etapa: Atribua também uma nota que expresse a relevância de cada dimensão (ambiental, econômica, social e institucional) para o tema "Sustentabilidade" utilizando a escala descrita na 1ª etapa.
- ➤ 4ª etapa: A soma das notas das dimensões também deve ser igual a 1.

Com as planilhas devidamente preenchidas, os dados coletados foram analisados e uma média aritmética das notas atribuídas pelos especialistas para cada um dos indicadores foi realizada, como exemplo a ser visto na Tabela 4.1 para a o tema "Saneamento e Arborização", da dimensão ambiental.

Tabela 4.1: Dimensão ambiental: indicadores propostos, notas atribuídas pelos especialistas e média aritmética

Temas	Indicadores	Esp. 1	Esp. 2	Esp. 3	Esp. 4	Esp. 5	Média
Saneamento e arborização	Taxa de cobertura de esgoto	0,25	0,25	0,25	0,25	0,5	0,3
	Taxa de cobertura de coleta de lixo	0,25	0,25	0,25	0,25	0,25	0,25
	Arborização de vias públicas	0,25	0,25	0,25	0,25	0	0,2
	Taxa de cobertura de água	0,25	0,25	0,25	0	0,25	0,2
	Volume de água tratada	0	0	0	0,25	0	0,05

Fonte: Elaborado pelo autor, 2019.

Em posse desses valores, os indicadores foram submetidos a uma hierarquização, por temas, de tal forma que a sua seleção se encerrava a partir do momento em que a média aritmética acumulada chegava a 80% (0,8), valor este baseado em revisão de literatura levantada pelo autor (JOHNSON; WICHERN, 1998; SILVA; CÂNDIDO; MARTINS, 2009). A tabela 4.2 ilustra a hierarquização obtida para os indicadores da dimensão ambiental, de tal forma que os selecionados para compor a ES estão assinalados em negrito. A seleção dos demais indicadores pertencentes às outras dimensões se encontram no Apêndice A.

Tabela 4.2: Dimensão ambiental: temas, indicadores, média e média acumulada para construção da ES para os municípios cearenses

Temas	Indicadores	Média	Média acumulada
	Taxa de cobertura de esgoto	0,3	0,3
Saneamento e arborização	Taxa de cobertura de coleta de lixo	0,25	0,55
	Arborização de vias públicas	0,2	0,75
	Taxa de cobertura de água	0,2	0,95
	Volume de água tratada	0,05	1

Importante pontuar que a supressão de possíveis dimensões ou a opção pela não inclusão de outros indicadores para avaliação dos especialistas resulta da indisposição de indicadores para todos os municípios do Ceará, uma vez que se preconizou a realização de um único índice, com os mesmos indicadores, para os 184 municípios.

O Quadro 4.10 apresenta os 30 indicadores selecionados pelos especialistas para composição do Índice, dentre os 45 propostos inicialmente.

Quadro 4.10: Indicadores que compõem a Escada da Sustentabilidade

	T 11 1		
	Indicadores		
1.	Taxa de cobertura de esgoto		
2.	Taxa de cobertura de coleta de lixo		
3.	Arborização de vias públicas		
4.	Taxa de cobertura de água		
5.	Extrema pobreza		
6.	Taxa de crescimento da população		
7.	Taxa de urbanização		
8.	Bibliotecas públicas, teatros e museus		
9.	Monumentos históricos tombados e preservados		
10.	Nível de ocupação das pessoas		
11.	Trabalho infantil		
12.	Taxa de mortalidade infantil		
13.	Unidades de saúde por 1000 hab.		
14.	Imunização contra doenças infecciosas infantis		
15.	Número de médicos por 1000 hab.		
16.	Analfabetismo		
17.	IDEB (Ensino Fundamental)		
18.	Escolarização do ensino fundamental		
19.	Escolarização da educação infantil		
20.	Escolarização do ensino médio		
21.	Rendimento escolar do ensino médio		
22.	Estabelecimentos de ensino com educação profissional		
23.	Densidade adequada de moradores por dormitório		
24.	Vias públicas com urbanização adequada		
25.	Acesso à energia elétrica		
26.	Renda domiciliar per capita		
27.	Índice de Gini da distribuição do rendimento		
28.	Participação nas eleições		
29.	Acesso a serviço de telefonia		
30.	Acesso a serviço de internet		

Dessa forma, em posse dessas informações, conclui-se que o processo decisório presente na etapa de seleção dos indicadores está estruturado conforme explanado no Quadro 4.11 (em referência ao Quadro 3.1).

Quadro 4.11: Etapas do processo decisório de seleção dos indicadores

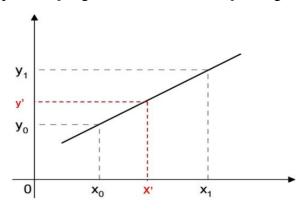
ETAPAS	DESCRIÇÃO
	Decisores: especialistas
1	Facilitador: Idealizador do trabalho (autor)
	Analista: Orientadora do trabalho
2	As alternativas são os indicadores
3	Critério: relevância dos indicadores para o tema "Sustentabilidade"
4	A avaliação das alternativas mediante os critérios será realizada por meio da atribuição de notas aos indicadores pelos especialistas
5	A existência de somente um critério no processo decisório torna dispensável essa etapa
6	A solução satisfatória se dará por meio de seleção dos indicadores efetuada por meio do corte de 80%

Fonte: Elaborado pelo autor, 2019.

4.2.2 Padronização dos dados

Após a seleção dos indicadores pelos especialistas, a próxima etapa do trabalho consistiu em padronizar os dados dos 30 indicadores selecionados, considerando que cada um deles está disponível em diferentes escalas. Exemplo disso é o indicador "Mortalidade Infantil", que é calculado numa faixa que vai de zero a cem, enquanto o indicador "IDEB do Ensino Fundamental" tem seu cálculo atribuído a notas que variam de zero a dez. O objetivo ao padronizar os dados é abranger todos os valores atribuídos aos indicadores dentro do intervalo proposto para a ES, o qual varia entre zero e um. O Apêndice B apresenta os valores dos indicadores, para cada município, em suas escalas reais.

A padronização foi realizada utilizando dois tipos de metodologias de cálculo, a depender da natureza do dado. São elas:


➤ Interpolação linear;

➤ Atribuição das notas 0 ou 1;

A interpolação linear foi utilizada, principalmente, para os indicadores representados por taxas percentuais. Nesses casos, concebeu-se a ideia de uma função em que y = f(x), conhecida apenas por um conjunto finito e discreto de pontos (a,b) formados por pares de valores (x_0, y_0) e (x_1, y_1) . Os valores x_0 e x_1 representariam os limites mínimos e máximos, respectivamente, do indicador, enquanto que y_0 e y_1 corresponderiam aos limites mínimos e máximos, respectivamente, da ES. O valor real do indicador (x') equivale a um dos valores que compõe um ponto (x', y') que se encontra no espaço compreendido entre os pontos "a" e "b", conforme pode ser ilustrado geometricamente pela Figura 4.4.

É válido ressaltar que a interpolação linear simples pode ser utilizada quando os valores numéricos de uma função são conhecidos apenas por um conjunto de pontos e objetiva-se inferir os valores de outro ponto não dado, caso em que se enquadra a transposição dos valores dos indicadores para a escala da ES.

Figura 4.4: Representação geométrica de uma função de grau 1 e seus pontos

Fonte: Elaborado pelo autor, 2019.

A interpolação linear simples utilizada na transformação dos valores dos indicadores para a escala da ES pode ser descrita conforme as Equações (1) e (2).

$$\left(\frac{x'-x_0}{x_1-x_0}\right) = \left(\frac{y'-y_0}{y_1-y_0}\right) \tag{1}$$

Logo:

$$y' = \left(\frac{x' - x_0}{x_1 - x_0}\right)(y_1 - y_0) + y_0 \tag{2}$$

Em que:

x' = valor real do indicador

y' = valor na escala da ES

 x_0 = limite mínimo do indicador

 x_1 = limite máximo do indicador

 y_0 = limite mínimo da escala da ES

y₁ = limite máximo da escala da E

As Equações (3) a (5) exemplificam o cálculo realizado para o indicador "Taxa de cobertura de água", cujo valor real é de 99,72% em Fortaleza, no ano de referência.

$$y' = \left(\frac{99,72 - 0}{100 - 0}\right)(1 - 0) + 0\tag{3}$$

$$y' = \left(\frac{99,72}{100}\right)(1) + 0\tag{4}$$

$$y' = 0.9972$$
 (5)

Além de ser utilizada para indicadores representados numericamente por taxas percentuais, a interpolação linear também foi empregada nos casos em que, na ausência de padrões em nível mundial, nacional ou local, foi adotado que os limites máximos e mínimos que constituiriam essa interpolação seriam provenientes de referências locais, ou seja, os melhores e piores valores encontrados dentre os 184 municípios cearenses, respectivamente.

É o caso do indicador "Taxa de crescimento da população", o qual utilizou como limite superior o valor do município de Guaramiranga, com taxa igual a -0,321, e como limite inferior o valor do município de General Sampaio, com taxa de 0,428, entre os anos de 2005 e 2011. A escolha desses limites como superior e inferior se deu pelo fato de o referido indicador ser representado por uma escala decrescente, ou seja, quanto maior o valor encontrado, menor é o nível de sustentabilidade. Isso se deve pelo fato de maiores valores de taxa de crescimento da população refletirem em maiores degradações ao meio ambiente, bem como em uma maior dificuldade por parte dos gestores em fornecer serviços de saneamento básico, educação, emprego, entre outros fatores.

Para o indicador acima descrito, as equações (6) a (8) demonstram como se deu o cálculo da ES para o município de Fortaleza, considerando sua taxa de crescimento populacional de 0,043 para o período de referência considerado.

$$y' = \left(\frac{0,043 - (0,428)}{(-0,321) - (0,428)}\right)(1 - 0) + 0 \tag{6}$$

$$y' = \left(\frac{-0.385}{-0.749}\right) + 0\tag{7}$$

$$y' = 0.514$$
 (8)

Por fim, a metodologia de interpolação linear também foi utilizada para os indicadores relacionados ao cumprimento ou não de metas pré-estabelecidas em nível mundial, nacional ou local. É o caso do indicador "Número de médicos", em que a meta preconizada pelo Ministério da Saúde (MS) é de pelo menos 2,5 médicos a cada mil habitantes. É válido salientar que esse indicador é representado por uma escala crescente, ou seja, quanto maior o valor encontrado, maior é o nível de sustentabilidade do local.

As equações (9) a (11) exemplificam o cálculo desse indicador para o município de Fortaleza, considerando sua disponibilidade de médicos igual a 1,94 para cada mil habitantes. O limite superior adotado para esse indicador foi o valor atribuído ao município de Barbalha, o qual supera a meta estabelecida pelo MS, totalizando 6,15 médicos a cada mil habitantes, conforme o que foi descrito no Quadro 4.5.

$$y' = \left(\frac{1,94 - 0}{6.15 - 0}\right)(1 - 0) + 0\tag{9}$$

$$y' = \left(\frac{1,94}{6,15}\right) + 0\tag{10}$$

$$y' = 0.315$$
 (11)

Já a segunda metodologia de cálculo para padronização dos dados diz respeito aos indicadores representados pela ausência ou presença do objeto descrito por ele, no qual se utilizou a metodologia de atribuir apenas duas notas: zero para os municípios que não apresentavam o objeto descrito pelo indicador e um para os municípios que o apresentavam. É o caso, por exemplo, do indicador "Monumentos históricos tombados e preservados", o qual mostra que somente vinte municípios cearenses contam com a presença desses monumentos, aos quais foi atribuído valor um. Aos demais, foi atribuído valor zero, considerando a sua ausência.

Essa metodologia se baseou no fato dela refletir o esforço da gestão pública de cada município em proporcionar à sua população o acesso aos objetos descritos pelos indicadores, levando em consideração que esse propósito pode ser alcançado por qualquer um dos municípios em questão, independente de suas particularidades, como tamanho ou potencial econômico. Além do indicador "Monumentos históricos tombados e preservados", essa metodologia somente foi empregada no indicador "Estabelecimentos de ensino com educação profissional".

O Apêndice C apresenta os valores dos indicadores na escala da ES para todos os municípios cearenses.

O Quadro 4.12 apresenta uma síntese das metodologias empregadas na padronização dos dados de cada um dos indicadores selecionados.

Quadro 4.12: Metodologias aplicadas para padronização de dados

	Indicadores	Metodologia empregada
1.	Taxa de cobertura de esgoto	Interpolação linear
2.	Taxa de cobertura de coleta de lixo	Interpolação linear
3.	Arborização de vias públicas	Interpolação linear
4.	Taxa de cobertura de água	Interpolação linear
5.	Extrema pobreza	Interpolação linear
6.	Taxa de crescimento da população	Interpolação linear
7.	Taxa de urbanização	Interpolação linear
8.	Bibliotecas públicas, teatros e museus	Interpolação linear
9.	Monumentos históricos tombados e preservados	Ausência ou presença do objeto descrito pelo indicador
10.	Nível de ocupação das pessoas	Interpolação linear
11.	Trabalho infantil	Interpolação linear
12.	Taxa de mortalidade infantil	Interpolação linear
13.	Unidades de saúde por 1000 hab.	Interpolação linear
14.	Imunização contra doenças infecciosas infantis	Interpolação linear
15.	Número de médicos por 1000 hab.	Interpolação linear
16.	Analfabetismo	Interpolação linear
17.	IDEB (Ensino Fundamental)	Interpolação linear
18.	Escolarização do ensino fundamental	Interpolação linear
19.	Escolarização da educação infantil	Interpolação linear
20.	Escolarização do ensino médio	Interpolação linear
21.	Rendimento escolar do ensino médio	Interpolação linear
22.	Estabelecimentos de ensino com educação profissional	Ausência ou presença do objeto descrito pelo indicador
23.	Densidade adequada de moradores por dormitório	Interpolação linear
24.	Vias públicas com urbanização adequada	Interpolação linear
25.	Acesso à energia elétrica	Interpolação linear
26.	Renda domiciliar per capita	Interpolação linear
27.	Índice de Gini da distribuição do rendimento	Interpolação linear
28.	Participação nas eleições	Interpolação linear
29.	Acesso a serviço de telefonia	Interpolação linear
30.	Acesso a serviço de internet	Interpolação linear

4.2.3 Cálculo dos índices temáticos e da Escada da Sustentabilidade

O procedimento para o cálculo de cada índice temático *i* (ambiental, social, econômico e institucional) derivou do somatório do produto de cada um dos seus indicadores pela ponderação atribuída pelos especialistas, como mostra a equação 12.

$$IT_i = P_1 * I_1 + P_2 * I_2 + P_3 * I_3 + \dots + P_n * I_n$$
(12)

Em que:

IT_i= índice temático i;

I_n= indicador n;

 P_n = peso atribuído a cada indicador ($\sum P_n$ =1).

Dessa forma, as médias aritméticas das notas atribuídas pelos especialistas foram aproveitadas para o cálculo dos pesos referentes a cada um dos indicadores. No entanto, com o corte dos indicadores inexpressivos durante a seleção, esses pesos tiveram que ser recalculados, considerando a proporcionalidade das suas respectivas participações no novo contexto, conforme exemplifica a Tabela 4.3 para o cálculo do Índice Ambiental, em que os valores das médias iniciais atribuídas a cada indicador foram divididos pela média acumulada utilizada na sua seleção. O mesmo procedimento foi aplicado aos demais temas pertencentes às outras dimensões.

Tabela 4.3: Cálculo dos pesos dos indicadores no Índice Ambiental

Dimensão Ambiental			
Temas	Indicadores	Média inicial	Média recalculada
Saneamento e arborização	Taxa de cobertura de esgoto	0,3	0,3/0,95 = 0,3158
	Taxa de cobertura de coleta de lixo	0,25	0,25/0,95 = 0,2632
	Arborização de vias públicas	0,2	0,2/0,95 = 0,2105
	Taxa de cobertura de água	0,2	0,2/0,95 = 0,2105

Fonte: Elaborado pelo autor, 2019.

É válido ressaltar que na dimensão social, por ser a única entre as quatro a apresentar mais de um tema, as médias recalculadas atribuídas a cada indicador, através das notas dos especialistas, foram divididas pelo total de temas presentes na dimensão, ou seja, seis. Dessa forma, garantiu-se que o somatório final desses pesos, incluindo todos os temas, fosse igual a um, como o preconizado inicialmente pela equação 12. A justificativa para o uso de tal metodologia se deve ao fato de todos os temas terem igual importância na composição do Índice Social e, consequentemente, na Escada da Sustentabilidade. O Apêndice D apresenta o cálculo dos pesos dos indicadores selecionados para cada dimensão, por temas.

Matematicamente, cada índice temático pode ser visto como a agregação ponderada aditiva dos seus respectivos indicadores. A Tabela 4.4 exemplifica como se deu o cálculo do Índice Ambiental para o município de Fortaleza.

Tabela 4.4: Cálculo do Índice Ambiental para o município de Fortaleza

ÍNDICE AMBIENTAL (IA)				
Temas	Indicadores	Índice padronizado (a)	Peso no IA (b)	Índice ponderado (a*b)
	Taxa de cobertura de esgoto	0,577	0,3158	0,182
Saneamento e	Taxa de cobertura de coleta de lixo	0,988	0,2632	0,26
arborização	Arborização de vias públicas	0,748	0,2105	0,158
	Taxa de cobertura de água	0,997	0,2105	0,21
			ÍNDICE AMBIENTAL	0,81

Nesse contexto, o cálculo da ES se deu pela agregação ponderada aditiva dos seus quatro índices temáticos: ambiental, social, econômico e institucional, conforme mostra a Equação 13.

$$ES = [(P_e * I_e) + (P_s * I_s) + (P_a * I_a) + (P_i * I_i)] / (P_e + P_s + P_a + P_i)$$
(13)

Em que:

 $I_n =$ Índice de cada dimensão;

 P_n = Peso de cada índice ($\sum P_n$ =1).

O peso de cada índice temático *i* pode ser interpretado como a percentagem de um peso total relativo a um índice particular. Ele foi calculado baseado na média aritmética das notas atribuídas pelos especialistas para as dimensões, no que tange à relevância de cada uma delas para o estabelecimento do desenvolvimento sustentável. A Tabela 4.5 apresenta os valores dos pesos referentes a cada uma das dimensões e a Tabela 4.6 ilustra uma síntese do cálculo da ES para o município de Fortaleza.

Tabela 4.5: Valores referentes aos pesos de cada dimensão

DIMENSÕES	Peso
Ambiental	0,4
Social	0,25
Econômica	0,25
Institucional	0,1

Tabela 4.6: Cálculo da ES para o município de Fortaleza

DIMENSÕES	Peso	Valor na ES
Ambiental	0,4	0,81
Social	0,25	0,757
Econômica	0,25	0,804
Institucional	0,1	0,732
	ÍNDICE	0,787

Ressalta-se, ainda, que alguns indicadores apresentaram falta de dados para todos os municípios, principalmente no caso do indicador Mortalidade Infantil. Nesses casos, optouse por suprimir o indicador do cálculo da ES, redistribuindo os pesos entre os demais indicadores para esses municípios que apresentaram ausência de dados.

Dessa forma, o cálculo da ES oferece informações relevantes para a definição de políticas públicas adequadas à realidade de cada município cearense, de modo que seja possível estabelecer condições favoráveis para o processo de desenvolvimento sustentável.

4.2.4 Apresentação dos resultados por meio de representação gráfica

Uma representação gráfica da ES foi construída com o intuito de facilitar a visualização dos resultados obtidos por cada município cearense no que tange ao seu nível de sustentabilidade. Essa ilustração consiste em uma escada composta por cinco degraus de diversas cores, de tal forma que esses degraus simbolizam o estágio de desenvolvimento desempenhado pelos municípios. Cada um deles abrange amplitudes de intervalo diferentes, em uma escala que varia de 0 a 1, conforme pode ser observado no Quadro 4.13. A divisão das classes foi baseada na escala adotada pelo Índice de Desenvolvimento Humano Municipal (IDH-M), o qual se caracteriza por ser um índice que utiliza metodologia global, com a diferença de ser adequado ao contexto brasileiro e à disponibilidade de indicadores nacionais (IPEA, 2018).

Quadro 4.13: Intervalos da ES e seus respectivos setores

Degrau	Escala de performance da ES
Ideal (azul)	0,800 - 1,000
Aceitável (verde)	0,700 - 0,799
Moderado (amarelo)	0,600 - 0,699
Alerta (laranja)	0,500 - 0,599
Crítico (vermelho)	0 - 0,499

A representação gráfica da ES pode ser vista na Figura 4.5. A concepção dessa ilustração é de que cada município cearense (interpretado pelo boneco) esteja inserido em um dos degraus demonstrados e, por meio da realização de políticas públicas eficazes e do esforço da sociedade civil como um todo, possa subir gradativamente, até atingir o patamar "ideal" de desenvolvimento sustentável.

4.2.5 A utilização da Escada da Sustentabilidade como ferramenta de análise de desempenho

Com o intuito de dar maior consistência metodológica ao Índice, uma comparação entre a Escada da Sustentabilidade e o Barômetro da Sustentabilidade (BS), proposta por Silva (2017) e aplicada aos 184 municípios cearenses, foi realizada. Espera-se que essa comparação gere informações valiosas no que tange ao desenvolvimento sustentável desses municípios, bem como forneça informações detalhadas do patamar em que se encontra o estado do Ceará como um todo, considerando a amplitude do BS, que é um Índice utilizado mundialmente. Ademais, outra comparação foi realizada, que consiste numa exposição do desempenho das quatorze regiões de planejamento existentes no Estado do Ceará perante a ES.

Além disso, uma análise qualitativa dos resultados apresentados pela aplicação da ES foi exposta, com o intuito de explanar as devidas interpretações as quais devem ser extraídas em consequência do emprego do índice.

SUSTENTABILIDAD Escada da Sustentabilidade IDEAL ACEITÁVEL (0.8 - 1.0)(0,7 - 0,799)MODERADO (0,6 - 0,699) ALERTA (0,5 - 0,599)CRÍTICO (0 - 0,499)

Figura 4.5: Representação gráfica da Escada da Sustentabilidade

5 RESULTADOS

5.1 Desempenho dos municípios por dimensões

Os valores das dimensões elencadas, uma vez transpostas para a escala da Escada da Sustentabilidade, resultaram na obtenção de quatro índices, como exemplificado pela Tabela 5.1, a qual explana os números obtidos para o município de Fortaleza. No Apêndice E é possível verificar os valores de cada dimensão para os 184 municípios cearenses, bem como os valores finais da ES.

Tabela 5.1: Valores das dimensões na ES e situação de desenvolvimento sustentável de cada dimensão para o Município de Fortaleza

difficilisao para o Municipio de Fortaleza		
Dimensões	Valor do Índice Temático na ES	Situação de desenvolvimento sustentável das dimensões
Ambiental	0,81	Ideal
Social	0,739	Aceitável
Econômica	0,755	Aceitável
Institucional	0,732	Aceitável

Fonte: Elaborado pelo autor, 2019.

Por meio dos valores dos índices temáticos na escala da ES pôde-se, também, identificar os melhores e piores desempenhos dos municípios, no que tange ao seu nível de sustentabilidade, de maneira específica a cada dimensão. Através dessa hierarquia, é possível verificar em que locais os esforços emergenciais devem ser tomados por parte do Poder Público, minimizando os problemas mais graves e permitindo um avanço por parte do município.

No que tange à dimensão ambiental, os municípios que apresentaram os piores desempenhos foram: Abaiara, Monsenhor Tabosa e Mulungu, todos eles enquadrados no degrau "crítico" da ES, enquanto os que apresentaram melhores resultados foram: Limoeiro do Norte, Guaramiranga e Sobral, estando todos inseridos no degrau "ideal" da ES.

Em Limoeiro do Norte, município com melhor desempenho na dimensão ambiental, existe Plano de Saneamento Básico municipal desde o ano de 2009 e programas tais como "Meu limão, meu limoeiro", o qual tem por objetivo a plantação de mudas frutíferas nas dependências das escolas municipais da cidade, bem como nas avenidas que têm canteiro central (GOVERNO MUNICIPAL DE LIMOEIRO DO NORTE, 2009). Tais situações justificam o bom desempenho do município nessa dimensão, diferente do município de

Abaiara, último colocado do *ranking*, em que menos da metade da população tem acesso a serviço de coleta de lixo e inexiste sistema de esgotamento sanitário.

No que diz respeito à dimensão social, os destaques negativos ficam por conta dos seguintes municípios: Graça, Amontada e Aiuaba, todos eles concentrados no degrau "crítico" da ES, enquanto os melhores desempenhos se deram nos municípios de Sobral, Fortaleza e Barbalha, todos eles enquadrados no degrau "aceitável" da ES.

Em Sobral, aspectos importantes justificam o bom desempenho do município na dimensão social, como a melhor nota do Brasil no IDEB de 2017 no ensino fundamental, além do fato da cidade se destacar em áreas como a saúde, onde figura entre os dez municípios mais bem colocados no *ranking* nacional sobre qualidade da Atenção Básica (PREFEITURA DE SOBRAL, 2018). Em Aiuaba, município com pior colocação, fatores como altos índices de extrema pobreza, mortalidade infantil e analfabetismo refletem graves problemas em diferentes áreas, como qualidade de vida da população, saúde e educação, o que gera resultados bastante insatisfatórios.

Já no que tange à dimensão econômica, os piores resultados se deram pelos municípios de Granja, Miraíma e Choró, os quais além de estarem representados pelo degrau "crítico" na ES, ainda apresentam resultados pífios, com valores que sequer chegam a 0,2. Quanto aos melhores resultados, apenas Fortaleza apresentou resultado satisfatório, enquadrado no degrau "ideal", considerando que os demais municípios atingiram, no máximo, o degrau "alerta" na ES.

O município de Fortaleza, segundo dados do Painel de Indicadores Socioeconômicos: os 10 maiores e os 10 Menores Municípios Cearenses – 2017 (IPECE, 2017), concentra 45% da economia do Ceará no ano de referência, o que justifica a grandiosidade do município perante os demais no que tange à dimensão econômica. Esse dado, apesar de estar relacionado somente ao Produto Interno Bruto (PIB), indicador que não faz parte do escopo da ES, tem reflexos nos dois indicadores que compõem a dimensão econômica, considerando a geração de emprego e renda oriunda dessa macroeconomia. Já o município de Granja, pior colocado no *ranking*, apresenta baixas rendas entre seus domicílios, além de uma má distribuição, justificando sua situação 'crítica'.

Por fim, a dimensão institucional apresentou os seguintes resultados: Itatira, Poranga e Monsenhor Tabosa apresentaram os piores desempenhos, estando todas elas concentradas no degrau "crítico" da ES, enquanto os municípios de Eusébio, Maracanaú e

Fortaleza apresentam os melhores resultados na ES para essa dimensão, enquadradas no degrau "aceitável".

O município de Fortaleza, por apresentar maior cobertura de acesso a serviços de *internet* e telefonia em relação às demais localidades, é o mais bem colocado no *ranking* da dimensão institucional, diferente do município de Itatira, que exibe a pior cobertura do serviço de telefonia do estado, além da *internet* não chegar a sequer 5% dos domicílios.

Em números percentuais e quantitativos, observa-se que no Índice Ambiental apenas 4,9% dos municípios se enquadram no degrau "ideal", enquanto a grande maioria, 46,7% deles, está inserida no degrau "alerta". Há ainda uma parcela considerável de 10,3% dos municípios que apresentaram desempenho considerado "crítico" para esse índice temático, número que comprova a fragilidade das medidas ligadas ao meio ambiente adotadas pelo Poder Público.

No Índice Social, 17 municípios, o que corresponde a 9,2% do total, se enquadram no degrau "crítico" da ES, enquanto nenhum município está inserido na faixa "ideal" de desenvolvimento, o que caracteriza uma situação bastante preocupante, considerando que esse índice está ligado a tomadas de decisão relacionadas à qualidade de vida da população. A grande maioria das localidades, 67,9% delas, apresenta desempenho "alerta" na ES.

O Índice Econômico é o que apresenta resultados mais alarmantes. Dos 184 municípios considerados pela pesquisa, 182 deles, ou 98,9% do total, estão inseridos no degrau "crítico", enquanto somente o município de Fortaleza apresenta desempenho enquadrado na faixa "ideal". Analisando o peso do indicador "Renda familiar per capita" na composição do Índice Econômico, é possível inferir que os municípios cearenses estão apresentando resultados bastante insatisfatórios no que concerne a esse indicador, retratando um estado caracterizado pela fraca geração de emprego e, consequentemente, renda.

Já o Índice Institucional aponta dados um pouco mais homogêneos em relação ao desempenho dos municípios cearenses, já que exatamente metade deles estão enquadrados no degrau "moderado" da ES. Destaca-se ainda a ausência de municípios inseridos na faixa "ideal" de desenvolvimento, assim como o ocorrido com o Índice Social.

O Apêndice F apresenta o desempenho dos municípios cearenses por meio de mapas que utilizam as cores representativas a cada uma das faixas da ES.

5.2 Situação do desenvolvimento sustentável dos 184 municípios do Ceará por Regiões de Planejamento

A partir dos valores obtidos para cada um dos municípios na ES, é possível fazer uma análise do grau de desenvolvimento sustentável alcançado por eles. No entanto, como se tratam de 184 municípios, ilustrar o desempenho de cada um desses seria inviável.

Nesse sentido, para fins didáticos, a Figura 5.1 explana as condições encontradas pelos municípios cearenses no que tange ao desenvolvimento sustentável através de uma análise por Região de Planejamento, divisão territorial já abordada no tópico 4.1 desse trabalho. A ilustração que se segue leva em consideração uma análise quantitativa, ou seja, em que degrau da ES a maioria dos municípios pertencentes à Região de Planejamento do Cariri está inserida. A mesma avaliação pode ser realizada para as demais localidades.

Na Região de Planejamento do Cariri, dos 29 municípios existentes, 20 estão contidos no degrau "crítico", 5 no degrau "alerta" e outros 4 no degrau "moderado". Dessa forma, a localidade acima citada encontra-se no patamar "crítico".

IDEAL

ACEITÁVEL

MODERADO

(4)

ALERTA

(5)

CRÍTICO

(20)

Figura 5.1: Posição dos municípios da Região de Planejamento do Cariri na Escada da Sustentabilidade

Fonte: Elaborado pelo autor, 2019.

Analisando a situação apresentada pelas quatorze Regiões de Planejamento, percebe-se que embora muitos municípios apresentem desempenho considerado "alerta", a grande maioria deles está inserida no degrau "crítico" da ES, o que denota uma situação bastante preocupante no que tange ao nível de sustentabilidade apresentado por essas localidades. Os piores cenários podem ser vistos nas regiões dos Inhamuns, com 80% dos

municípios inseridos no degrau "crítico" da ES, e na região do Sertão de Canindé, em que mais de 83% dos municípios se encontram neste mesmo patamar.

Já os cenários menos preocupantes podem ser vistos no Maciço de Baturité, em que pouco mais de 30% dos municípios estão localizados no degrau "crítico" da ES, bem como a região da Grande Fortaleza, onde menos de 22% se encontram nesse patamar de sustentabilidade.

A Figura 5.2 apresenta o desempenho de todas as regiões de planejamento do Ceará na ES por meio de um mapa, o qual utiliza as cores representativas a cada uma das faixas do índice.

Sustentabilidade REGIÕES DE PLANEJAMENTO DO ESTADO DO CEARÁ LITORAL NORTE LITORAL OESTE SERTÃO DE SOBRAL GRANDE FORTALEZA SERRA DA IBIAPABA MACIÇO DE BATURITÉ SERTÃO DE CANINDÉ LITORAL LESTE SERTÃO DOS CRATEÚS VALE DO JAGUARIBE SERTÃO CENTRAL SERTÃO DOS INHAMUNS **CENTRO SUL** CARIRI PERNAMBUCO **LEGENDA** Ideal (1 - 0,8) Aceitável (0,799 - 0,7) Moderado (0,699 - 0,6) GOVERNO DO ESTADO DO CEARÁ Secretaria do Planejamento e Gestão Alerta (0,599 - 0,5) **IPECE** Crítico (0,499 - 0) TE: INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE).

Figura 5.2: Desempenho das regiões de planejamento do estado do Ceará na Escada da Sustentabilidade

5.3 Ranking geral

Para fins de comparação, o Quadro 5.1 a seguir lista as colocações dos 184 municípios cearenses em relação aos quatro índices temáticos: ambiental, social, econômico e institucional, além de prover um *ranking* geral decrescente dos municípios.

Quadro 5.1: Ranking da ES para os municípios do Ceará (continua)

Posição	Ranking Índice Ambiental	Ranking Índice Social	Ranking Índice Econômico	Ranking Índice Institucional	Ranking Geral
1°	Limoeiro do Norte	Sobral	Fortaleza	Fortaleza	Fortaleza
2°	Guaramiranga	Fortaleza	Eusébio	Maracanaú	Sobral
3°	Sobral	Barbalha	Crato	Eusébio	Limoeiro do Norte
4°	Pacoti	Crato	Sobral	Crato	Barbalha
5°	Jaguaribara	Iguatu	Tianguá	Limoeiro do Norte	Guaramiranga
6°	Brejo Santo	Aquiraz	Juazeiro do Norte	Horizonte	Juazeiro do Norte
7°	Crateús	Aracati	Iguatu	Aquiraz	Crateús
8°	Fortaleza	Caucaia	Limoeiro do Norte	Juazeiro do Norte	Jaguaribara
9°	Quixelô	Quixadá	Jijoca de Jericoacoara	Itaitinga	Aquiraz
10°	Paraipaba	Canindé	Caucaia	Iguatu	Eusébio
11°	Alcântaras	Tauá	Russas	Barbalha	Crato
12°	Forquilha	Quixeramobim	Crateús	Pacatuba	Brejo Santo
13°	Barbalha	Camocim	Maracanaú	Paraipaba	Pacoti
14°	Juazeiro do Norte	Juazeiro do Norte	Barbalha	Guaramiranga	Maracanaú
15°	Pedra Branca	Itarema	Ipaumirim	Caucaia	Iguatu
16°	Pacatuba	Limoeiro do Norte	Pacajus	Pacajus	Aracati
17°	Maracanaú	São Gonçalo do Amarante	Tabuleiro do Norte	Sobral	Pacatuba
18°	Jucás	Guaramiranga	Aquiraz	Penaforte	Russas
19°	Aquiraz	Jaguaribara	Pacatuba	Baturité	Tianguá
20°	Massapê	Cascavel	Horizonte	São Gonçalo do Amarante	Quixelô

	Quauto	5.1. Kunking da ES para Os	s municipios do Ceara	(Continuação)	
21°	Russas	Maracanaú	Aracati	Caridade	Forquilha
22°	Capistrano	Eusébio	São João do Jaguaribe	Jaguaribara	Paraipaba
23°	Aracati	Baturité	Groaíras	Milagres	Jijoca de Jericoacoara
24°	Itapipoca	Crateús	Guaramiranga	Pindoretama	Caucaia
25°	Barro	Icó	Arneiroz	Brejo Santo	Quixeramobim
26°	Tianguá	Morada Nova	Itaiçaba	Tianguá	São Gonçalo do Amarante
27°	Jijoca de Jericoacoara	Pacoti	Cascavel	Aratuba	Canindé
28°	Croatá	Russas	Ubajara	Groaíras	São João do Jaguaribe
29°	Bela Cruz	São João do Jaguaribe	Nova Russas	São João do Jaguaribe	Quixadá
30°	Canindé	Penaforte	Quixadá	Granjeiro	Alcântaras
31°	Quixeramobim	Pacatuba	Brejo Santo	Banabuiú	Itapipoca
32°	Icó	Altaneira	Pindoretama	Fortim	Horizonte
33°	São Gonçalo do Amarante	Aratuba	Paracuru	Mulungu	Jucás
34°	Barreira	Tianguá	São Gonçalo do Amarante	Paracuru	Beberibe
35°	Novo Oriente	Itaitinga	Senador Pompeu	Russas	Paracuru
36°	Granjeiro	Redenção	Iracema	Ubajara	Camocim
37°	Mucambo	Horizonte	Cedro	Cascavel	Capistrano
38°	Beberibe	Frecheirinha	Campos Sales	Nova Olinda	Icó
39°	Nova Russas	Viçosa do Ceará	Quixeramobim	Várzea Alegre	Pedra Branca
40°	Coreaú	Brejo Santo	Forquilha	Capistrano	Tauá
41°	São João do Jaguaribe	Senador Pompeu	Maranguape	Abaiara	Baturité
42°	Itarema	Ipu	Jaguaribara	Quixelô	Granjeiro
43°	Guaiúba	Pacujá	Orós	Maranguape	Pacajus
44°	Iguatu	Maranguape	Baturité	Chorozinho	Tabuleiro do Norte
45°	Campos Sales	Itapipoca	Beberibe	Tabuleiro do Norte	Nova Russas

	Quadro	5.1: Kanking da ES para os	municipios do Ceara	(continuação)	
46°	Crato	Itaiçaba	Jaguaribe	São Luís do Curu	Barro
47°	Camocim	Carnaubal	Icapuí	Itaiçaba	Massapê
48°	São Benedito	Porteiras	Cruz	Caririaçu	Itarema
49°	Frecheirinha	Várzea Alegre	Itaitinga	Forquilha	Frecheirinha
50°	Paracuru	Paracuru	Palhano	Itapajé	Mucambo
51°	Acarape	Granjeiro	Ipu	Farias Brito	Barreira
52°	Catarina	Uruburetama	Baixio	Beberibe	Jaguaribe
53°	Jaguaribe	Jijoca de Jericoacoara	Jaguaruana	Itapipoca	Cascavel
54°	Independência	Beberibe	Palmácia	Quixadá	Itaiçaba
55°	Mauriti	Farias Brito	Varjota	Meruoca	Penaforte
56°	Aurora	Icapuí	Jati	Acarape	Groaíras
57°	Palmácia	Capistrano	Tauá	Palhano	Guaiúba
58°	Quixadá	Orós	Paraipaba	Ibiapina	Bela Cruz
59°	Paramoti	Nova Olinda	Meruoca	Ipaumirim	Acarape
60°	Uruoca	Forquilha	Redenção	Aracati	Campos Sales
61°	Itapajé	Potiretama	Chorozinho	Baixio	Maranguape
62°	Horizonte	Tejuçuoca	Pacoti	Jijoca de Jericoacoara	Orós
63°	Tauá	Jardim	Alto Santo	Jucás	Cedro
64°	Poranga	Palhano	Acarape	Jati	Independência
65°	Tabuleiro do Norte	Groaíras	Solonópole	Crateús	Quixeré
66°	Guaraciaba do Norte	Quixelô	Quixeré	Ibicuitinga	Redenção
67°	Ocara	Quixeré	Várzea Alegre	Pentecoste	Ipaumirim
68°	Eusébio	Arneiroz	Missão Velha	Santana do Cariri	Aurora
69°	Cedro	Jati	Morada Nova	Icapuí	Aratuba
70°	Acopiara	Chorozinho	Penaforte	Ocara	Icapuí

	Quuui.	J.J. Ranking da Lis para o	5 mamerpros do Ceara	(Continuação)	
71°	Varjota	Pindoretama	Milagres	Missão Velha	Itapajé
72°	Baturité	Poranga	Assaré	Cariús	Uruburetama
73°	Quixeré	Mucambo	Fortim	Alto Santo	Palmácia
74°	General Sampaio	Jaguaretama	Ibiapina	Cruz	Varjota
75°	Caucaia	General Sampaio	Alcântaras	Camocim	Pacujá
76°	Uruburetama	Antonina do Norte	Independência	Cariré	Croatá
77°	Orós	Araripe	Marco	Iracema	Coreaú
78°	Jaguaruana	Apuiarés	Mucambo	Cedro	São Benedito
79°	Pacajus	Pacajus	Lavras da Mangabeira	Quixeré	Ipu
80°	Graça	Barreira	Canindé	Potiretama	Chorozinho
81°	Aratuba	Paraipaba	São Benedito	Barreira	Catarina
82°	Pacujá	Guaiúba	Pacujá	Jaguaruana	Arneiroz
83°	Granja	Cariré	Pentecoste	Frecheirinha	Jaguaruana
84°	Fortim	Ubajara	Icó	Itapiúna	Várzea Alegre
85°	Penaforte	Iracema	Barro	Redenção	General Sampaio
86°	Acaraú	Acopiara	Nova Olinda	Aracoiaba	Pindoretama
87°	Redenção	Croatá	Uruburetama	Pacoti	Senador Pompeu
88°	Martinópole	Tururu	General Sampaio	Jaguaretama	Acopiara
89°	Porteiras	Aracoiaba	Milhã	Marco	Altaneira
90°	Itaiçaba	São Luís do Curu	Guaraciaba do Norte	Altaneira	Fortim
91°	Icapuí	Aurora	Itapipoca	Catarina	Morada Nova
92°	Irauçuba	Catunda	Hidrolândia	Morada Nova	Porteiras
93°	Ipaumirim	Pedra Branca	Frecheirinha	Martinópole	Novo Oriente
94°	Maranguape	Pentecoste	Jardim	Bela Cruz	Guaraciaba do Norte
95°	Altaneira	Baixio	Caririaçu	Porteiras	Itaitinga

	Quadro	5.1. Kanking da ES para OS	municipios do Ceara	(continuação)	
96°	Groaíras	Ibiapina	São Luís do Curu	Barro	Mauriti
97°	Ipu	Moraújo	Mombaça	Paramoti	Jati
98°	Tarrafas	Chaval	Itapajé	Piquet Carneiro	Iracema
99°	Chorozinho	Jaguaribe	Ererê	Hidrolândia	Baixio
100°	Pentecoste	Santa Quitéria	Aurora	Ererê	Paramoti
101°	Saboeiro	Potengi	Antonina do Norte	Pires Ferreira	Palhano
102°	Farias Brito	Hidrolândia	Jucás	Aurora	Pentecoste
103°	Cascavel	Monsenhor Tabosa	Camocim	Guaiúba	Ubajara
104°	Arneiroz	Banabuiú	Catarina	Varjota	Farias Brito
105°	Antonina do Norte	Martinópole	Quixelô	Novo Oriente	Potiretama
106°	Lavras da Mangabeira	Jucás	Mulungu	Jaguaribe	São Luís do Curu
107°	Hidrolândia	Santana do Cariri	Aratuba	Tururu	Jaguaretama
108°	Potengi	Cedro	Aracoiaba	Orós	Poranga
109°	Potiretama	Umari	Jaguaretama	Santana do Acaraú	Hidrolândia
110°	Umirim	Barroquinha	Guaiúba	Palmácia	Nova Olinda
111°	Carnaubal	Ererê	Massapê	Quixeramobim	Acaraú
112°	Várzea Alegre	Acaraú	Umari	Independência	Antonina do Norte
113°	São Luís do Curu	Independência	Reriutaba	Umari	Missão Velha
114°	Jaguaretama	Tabuleiro do Norte	Altaneira	Nova Russas	Cruz
115°	Baixio	Meruoca	Cariús	Irauçuba	Ocara
116°	Piquet Carneiro	Mombaça	Boa Viagem	Uruburetama	Martinópole
117°	Senador Pompeu	Nova Russas	Abaiara	Trairi	Aracoiaba
118°	Jati	Guaraciaba do Norte	Barreira	Umirim	Carnaubal
119°	Morrinhos	Reriutaba	Acopiara	Acopiara	Ibiapina
120°	Assaré	Missão Velha	Granjeiro	Morrinhos	Solonópole

	Quau	ro 5.1: <i>Kanking</i> da ES para os	municipios do Ceara	(continuação)	
121°	Iracema	Solonópole	Potiretama	Choró	Assaré
122°	Solonópole	Varjota	Deputado Irapuan Pinheiro	Itarema	Lavras da Mangabeira
123°	Aracoiaba	Salitre	Apuiarés	Reriutaba	Apuiarés
124°	Miraíma	Ibaretama	Banabuiú	Canindé	Uruoca
125°	Missão Velha	Itapajé	Cariré	Massapê	Cariré
126°	Tamboril	Senador Sá	Pedra Branca	Senador Sá	Ererê
127°	Apuiarés	Alcântaras	Monsenhor Tabosa	Mauriti	Caririaçu
128°	Cruz	Umirim	Ipueiras	Senador Pompeu	Irauçuba
129°	Parambu	Morrinhos	Porteiras	Milhã	Marco
130°	Morada Nova	Tamboril	Acaraú	Madalena	Meruoca
131°	Pindoretama	Barro	Farias Brito	Pacujá	Reriutaba
132°	Salitre	Caridade	Senador Sá	Viçosa do Ceará	Umirim
133°	Moraújo	Bela Cruz	Mauriti	Coreaú	Banabuiú
134°	Marco	Assaré	Piquet Carneiro	Apuiarés	Jardim
135°	Palhano	Granja	Itapiúna	Alcântaras	Cariús
136°	Tururu	Deputado Irapuan Pinheiro	Coreaú	Salitre	Potengi
137°	Aiuaba	Cruz	Carnaubal	Pereiro	Tarrafas
138°	Caririaçu	Jaguaruana	Madalena	Tauá	Umari
139°	Trairi	Fortim	Santa Quitéria	Arneiroz	Tururu
140°	Araripe	Cariús	Parambu	Assaré	Morrinhos
141°	Reriutaba	Paramoti	Viçosa do Ceará	Lavras da Mangabeira	Caridade
142°	Ererê	Ipaporanga	Catunda	Ipu	Milagres
143°	Cariré	Irauçuba	Itarema	Icó	Graça
144°	Cariús	Itapiúna	Santana do Cariri	Mucambo	Granja
145°	Nova Olinda	Ibicuitinga	Bela Cruz	Jardim	Tejuçuoca

	Quadro 5.1. Kanking da ES para os municípios do Ceara (continuação)				
146°	Barroquinha	Tarrafas	Saboeiro	Miraíma	Tamboril
147°	Ubajara	Alto Santo	Tamboril	Tejuçuoca	Piquet Carneiro
148°	Ibicuitinga	Campos Sales	Tarrafas	Moraújo	Alto Santo
149°	Boa Viagem	Coreaú	Paramoti	Parambu	Salitre
150°	Santana do Acaraú	Massapê	Ocara	Chaval	Moraújo
151°	Caridade	Acarape	Tejuçuoca	São Benedito	Santana do Cariri
152°	Ararendá	Milagres	Aiuaba	General Sampaio	Saboeiro
153°	Umari	Ipaumirim	Trairi	Amontada	Milhã
154°	Ibiapina	Itatira	Caridade	Campos Sales	Senador Sá
155°	Madalena	Caririaçu	Ararendá	Mombaça	Parambu
156°	Itaitinga	Mauriti	Morrinhos	Solonópole	Deputado Irapuan Pinheiro
157°	Deputado Irapuan Pinheiro	Ararendá	Pereiro	Ipaporanga	Ibicuitinga
158°	Tejuçuoca	Milhã	Capistrano	Acaraú	Araripe
159°	Senador Sá	Lavras da Mangabeira	Santana do Acaraú	Uruoca	Catunda
160°	Milhã	Marco	Potengi	Antonina do Norte	Barroquinha
161°	Ipueiras	Miraíma	Araripe	Guaraciaba do Norte	Madalena
162°	Banabuiú	Madalena	Chaval	Deputado Irapuan Pinheiro	Boa Viagem
163°	Pereiro	São Benedito	Itatira	Santa Quitéria	Trairi
164°	Catunda	Catarina	Poranga	Boa Viagem	Viçosa do Ceará
165°	Jardim	Palmácia	Novo Oriente	Tarrafas	Itapiúna
166°	Santana do Cariri	Parambu	Ibicuitinga	Carnaubal	Miraíma
167°	Itatira	Mulungu	Graça	Tamboril	Santa Quitéria
168°	Ibaretama	Boa Viagem	Martinópole	Ibaretama	Chaval
169°	Meruoca	Saboeiro	Ibaretama	Catunda	Santana do Acaraú
170°	Chaval	Abaiara	Quiterianópolis	Graça	Mombaça

				(**************************************	
171°	Quiterianópolis	Trairi	Umirim	Barroquinha	Ararendá
172°	Amontada	Novo Oriente	Pires Ferreira	Potengi	Ibaretama
173°	Itapiúna	Ocara	Salitre	Pedra Branca	Pereiro
174°	Santa Quitéria	Choró	Barroquinha	Quiterianópolis	Ipueiras
175°	Milagres	Uruoca	Irauçuba	Ararendá	Mulungu
176°	Alto Santo	Ipueiras	Tururu	Saboeiro	Aiuaba
177°	Ipaporanga	Santana do Acaraú	Uruoca	Croatá	Itatira
178°	Pires Ferreira	Piquet Carneiro	Ipaporanga	Granja	Ipaporanga
179°	Mombaça	Pereiro	Moraújo	Ipueiras	Pires Ferreira
180°	Viçosa do Ceará	Pires Ferreira	Amontada	Aiuaba	Quiterianópolis
181°	Choró	Quiterianópolis	Croatá	Araripe	Monsenhor Tabosa
182°	Mulungu	Graça	Choró	Monsenhor Tabosa	Amontada
183°	Monsenhor Tabosa	Amontada	Miraíma	Poranga	Choró
184°	Abaiara	Aiuaba	Granja	Itatira	Abaiara

5.4 Situação do desenvolvimento sustentável no Estado do Ceará (visão geral)

Para analisar o nível de sustentabilidade apresentado pelo Estado do Ceará como um todo se utilizou a mesma metodologia empregada no item 5.2 deste trabalho, a qual consiste em uma avaliação quantitativa de localidades inseridas em cada uma das faixas da ES. Em outras palavras, avaliou-se em que degrau do Índice a maioria dos municípios cearenses está inserida. Os resultados obtidos encontram-se no Quadro 5.2 a seguir.

Quadro 5.2: Síntese dos resultados obtidos por cada dimensão

Dimensões	Degrau da ES
Ambiental	Alerta
Social	Alerta
Econômica	Crítico
Institucional	Moderado

Fonte: Elaborado pelo autor, 2019.

No que tange ao valor final obtido pelos municípios na Escada da Sustentabilidade, observa-se que a maioria deles (103) está inserida no degrau "crítico"; 65 estão no degrau "alerta"; 15 no degrau "moderado"; e um no degrau "aceitável". Destaca-se ainda a ausência de municípios enquadrados no degrau "ideal". A Figura 5.3 ilustra a posição obtida pelo Estado após a realização desta análise.

IDEAL
(0,8 - 1,0) ACEITÁVEL
(0,7 - 0,799)
(1)
(0,6 - 0,699)
(15)
(0,5 - 0,599)
(65)
(0 - 0,499)
(103)

Figura 5.3: Posição do Ceará na Escada da Sustentabilidade

Já a Figura 5.4 apresenta o desempenho dos municípios na ES por meio de um mapa o qual utiliza as cores representativas a cada uma das faixas do Índice.

DIVISÃO MUNICIPAL - ESTADO DO CEARÁ LEGENDA Ideal (1 - 0,8) Aceitável (0,799 - 0,7) Moderado (0,699 - 0,6) GOVERNO DO ESTADO DO CEARÁ Alerta (0,599 - 0,5) **IPECE** Crítico (0,499 - 0)

Figura 5.4: Desempenho dos municípios cearenses na Escada da Sustentabilidade

5.5 Comparação da Escada da Sustentabilidade com o Barômetro da Sustentabilidade

Com o objetivo de dar maior consistência à base metodológica utilizada para o cálculo da Escada da Sustentabilidade, a realização de uma comparação entre esse Índice e outros já consagrados na literatura se faz de extrema relevância. Nesse sentido, em pesquisa levantada pelo autor deste trabalho, verificou-se que o único estudo o qual incorpora uma mensuração da sustentabilidade dos 184 municípios do Ceará diz respeito ao Barômetro da Sustentabilidade (BS), proposto por Silva (2017).

A metodologia utilizada pelo BS, conforme o que foi explanado no item 3.3.2.6 deste trabalho, é reconhecida mundialmente por apresentar vantagens tais como a clareza na apresentação das informações, além de sua fácil aplicação e compreensão (RODRIGUES; RIPPEL, 2015). Ao ser aplicado para todos os municípios cearenses, Silva (2017) obteve um *ranking* dessas localidades, o qual, colocado lado a lado com o *ranking* obtido pela aplicação da ES, dá origem ao Quadro 5.3.

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continua)

Posição	Ranking BS	Ranking ES	
1°	Fortaleza	Fortaleza	
2°	Maracanaú	Sobral	
3°	Sobral	Limoeiro do Norte	
4°	Guaramiranga	Barbalha	
5°	Juazeiro do Norte	Guaramiranga	
6°	Limoeiro do Norte	Juazeiro do Norte	
7°	Eusébio	Crateús	
8°	Horizonte	Jaguaribara	
9°	Barbalha	Aquiraz	
10°	Jaguaribara	Eusébio	
11°	Russas	Crato	
12°	Forquilha	Brejo Santo	
13°	Brejo Santo	Pacoti	
14°	Iguatu	Maracanaú	
15°	Pacatuba	Iguatu	
16°	Aquiraz	Aracati	
17°	Uruburetama	Pacatuba	
18°	São João do Jaguaribe	Russas	
19°	Penaforte	Tianguá	
20°	Pacajus	Quixelô	
21°	Crateús	Forquilha	
22°	Granjeiro	Paraipaba	

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continuação)

220	Sustentabilidade (conti	1 '
23°	Baturité	Jijoca de Jericoacoara
24°	Pacoti	Caucaia
25°	Quixelô	Quixeramobim
26°	Quixeré	São Gonçalo do Amarante
27°	Orós	Canindé
28°	Frecheirinha	São João do Jaguaribe
29°	General Sampaio	Quixadá
30°	Crato	Alcântaras
31°	Jaguaruana	Itapipoca
32°	Aracati	Horizonte
33°	Baixio	Jucás
34°	Cedro	Beberibe
35°	Massapê	Paracuru
36°	Alcântaras	Camocim
37°	Varjota	Capistrano
38°	Ipu	Icó
39°	Canindé	Pedra Branca
40°	Groaíras	Tauá
41°	Icapuí	Baturité
42°	Jati	Granjeiro
43°	Potiretama	Pacajus
44°	Pacujá	Tabuleiro do Norte
45°	Pedra Branca	Nova Russas
46°	Jaguaribe	Barro
47°	Jijoca de Jericoacoara	Massapê
48°	Croatá	Itarema
49°	Aracoiaba	Frecheirinha
50°	Redenção	Mucambo
51°	Arneiroz	Barreira
52°	Paraipaba	Jaguaribe
53°	Pentecoste	Cascavel
54°	Aurora	Itaiçaba
55°	Maranguape	Penaforte
56°	Itaitinga	Groaíras
57°	Itaiçaba	Guaiúba
58°	Campos Sales	Bela Cruz
59°	Chorozinho	Acarape
60°	Porteiras	Campos Sales
61°	Mucambo	Maranguape
		

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continuação)

	Sustentabilidade (continuação)				
62°	São Luís do Curu	Orós			
63°	Fortim	Cedro			
64°	Nova Russas	Independência			
65°	Farias Brito	Quixeré			
66°	Barreira	Redenção			
67°	Irauçuba	Ipaumirim			
68°	Quixadá	Aurora			
69°	Tabuleiro do Norte	Aratuba			
70°	Tauá	Icapuí			
71°	Itapipoca	Itapajé			
72°	Quixeramobim	Uruburetama			
73°	Independência	Palmácia			
74°	Umari	Varjota			
75°	Hidrolândia	Pacujá			
76°	Várzea Alegre	Croatá			
77°	Parambu	Coreaú			
78°	Acopiara	São Benedito			
79°	Paramoti	Ipu			
80°	Palhano	Chorozinho			
81°	Senador Pompeu	Catarina			
82°	Carnaubal	Arneiroz			
83°	São Gonçalo do Amarante	Jaguaruana			
84°	Ararendá	Várzea Alegre			
85°	Solonópole	General Sampaio			
86°	Itarema	Pindoretama			
87°	Saboeiro	Senador Pompeu			
88°	Tianguá	Acopiara			
89°	Cascavel	Altaneira			
90°	Ipaumirim	Fortim			
91°	Apuiarés	Morada Nova			
92°	Cruz	Porteiras			
93°	Palmácia	Novo Oriente			
94°	Antonina do Norte	Guaraciaba do Norte			
95° Assaré		Itaitinga			
96° Martinópole		Mauriti			
97° Guaraciaba do Norte		Jati			
98°	Tururu	Iracema			
99°	Ubajara	Baixio			
100°	Jaguaretama	Paramoti			

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continuação)

1010	Sustentabilidade (continuação)				
101°	Ocara	Palhano			
102°	Coreaú	Pentecoste			
103°	Paracuru	Ubajara			
104°	Bela Cruz	Farias Brito			
105°	Caucaia	Potiretama			
106°	Morrinhos	São Luís do Curu			
107°	Marco	Jaguaretama			
108°	Umirim	Poranga			
109°	Piquet Carneiro	Hidrolândia			
110°	Novo Oriente	Nova Olinda			
111°	Morada Nova	Acaraú			
112°	Itapajé	Antonina do Norte			
113°	Moraújo	Missão Velha			
114°	Cariré	Cruz			
115°	Acaraú	Ocara			
116°	Uruoca	Martinópole			
117°	Lavras da Mangabeira	Aracoiaba			
118°	Missão Velha	Carnaubal			
119°	Iracema	Ibiapina			
120°	Poranga	Solonópole			
121°	Tejuçuoca	Assaré			
122°	Pereiro	Lavras da Mangabeira			
123°	Jucás	Apuiarés			
124°	Pindoretama	Uruoca			
125°	São Benedito	Cariré			
126°	Ibiapina	Ererê			
127°	Tamboril	Caririaçu			
128°	Ibicuitinga	Irauçuba			
129°	Senador Sá	Marco			
130°	Potengi	Meruoca			
131°	Icó	Reriutaba			
132°	Caririaçu	Umirim			
133°	Camocim	Banabuiú			
134°	Deputado Irapuan Pinheiro	Jardim			
135°	Catarina	Cariús			
136°	Aratuba	Potengi			
137°	Ererê	Tarrafas			
138°	Tarrafas	Umari			
139°	Ipaporanga	Tururu			

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continuação)

Sustentabilidade (continuação)				
140°	Beberibe	Morrinhos		
141°	Aiuaba	Caridade		
142°	Graça	Milagres		
143°	Miraíma	Graça		
144°	Cariús	Granja		
145°	Mauriti	Tejuçuoca		
146°	Monsenhor Tabosa	Tamboril		
147°	Boa Viagem	Piquet Carneiro		
148°	Meruoca	Alto Santo		
149°	Ibaretama	Salitre		
150°	Acarape	Moraújo		
151°	Jardim	Santana do Cariri		
152°	Reriutaba	Saboeiro		
153°	Catunda	Milhã		
154°	Milagres	Senador Sá		
155°	Capistrano	Parambu		
156°	Barro	Deputado Irapuan Pinheiro		
157°	Guaiúba	Ibicuitinga		
158°	Milhã	Araripe		
159°	Altaneira	Catunda		
160°	Araripe	Barroquinha		
161°	Caridade	Madalena		
162°	Nova Olinda	Boa Viagem		
163°	Santana do Acaraú	Trairi		
164°	Banabuiú	Viçosa do Ceará		
165°	Itapiúna	Itapiúna		
166°	Alto Santo	Miraíma		
167°	Pires Ferreira	Santa Quitéria		
168°	Santa Quitéria	Chaval		
169°	Quiterianópolis	Santana do Acaraú		
170°	Ipueiras	Mombaça		
171°	Viçosa do Ceará	Ararendá		
172°	Madalena	Ibaretama		
173°	Itatira	Pereiro		
174°	Choró	Ipueiras		
175°	Amontada	Mulungu		
176°	Santana do Cariri	Aiuaba		
177°	Chaval	Itatira		
178°	Salitre	Ipaporanga		

Quadro 5.3: Comparação entre o Barômetro da Sustentabilidade e a Escada da Sustentabilidade (continuação)

Sustemuemaude (Commandus)				
179°	Mombaça	Pires Ferreira		
180°	Trairi	Quiterianópolis		
181°	Granja	Monsenhor Tabosa		
182°	Barroquinha	Amontada		
183°	Abaiara	Choró		
184°	Mulungu	Abaiara		

Fonte: Elaborado pelo autor, 2019.

Ao realizar uma breve análise dos resultados obtidos pelos dois índices, observase que existem muitas semelhanças. Dos 15 primeiros colocados do ranking do BS, 10 estão presentes no ranking da ES, o que gera uma compatibilização de quase 67%. Entre os 15 piores colocados do ranking do BS, sete estão presentes na ES, obtendo uma concordância de quase 47% entre os resultados.

Uma segunda comparação ainda pode ser realizada levando em consideração a quantidade de municípios presentes em cada uma das faixas, tanto do BS como da ES, já que ambos os índices apresentam a mesma quantidade de classes (cinco). Partindo desse pressuposto, a Tabela 5.2 a seguir apresenta esses resultados, em taxas percentuais.

Tabela 5.2 Comparação entre faixas do Barômetro da Sustentabilidade e da Escada da Sustentabilidade

Classificação na Escala do BS	Percentagem sobre o total	Classificação na Escala da ES	Percentagem sobre o total
Sustentável	0,00%	Ideal	0,00%
Potencialmente Sustentável	0,00%	Aceitável	0,54%
Intermediário	75,54%	Moderado	8,15%
Potencialmente Insustentável	25, 46%	Alerta	35,33%
Insustentável	0,00%	Crítico	55,98%

Fonte: Elaborado pelo autor, 2019.

Apesar de algumas concordâncias entre os resultados, como a ausência de municípios inseridos na melhor faixa de classificação, ressalta-se nessa comparação uma grande divergência na divisão de localidades entre os níveis de sustentabilidade. Isso se deve, possivelmente, a uma etapa preponderante no cálculo do BS que inexiste na ES, que é a formulação das chamadas "escalas de desempenho", as quais são utilizadas para avaliar a situação de um indicador em relação a uma meta ou padrão previamente estabelecido. O

motivo do suprimento dessas escalas na Escada da Sustentabilidade se deve à grande subjetividade inerente ao seu desenvolvimento, o que poderia distorcer os resultados apresentados pelo Índice no que tange ao nível de sustentabilidade apresentado por cada um dos 184 municípios cearenses.

5.6 Análise qualitativa dos resultados da Escada da Sustentabilidade

Através dos resultados obtidos por meio da aplicação da Escada da Sustentabilidade a uma determinada localidade, é possível diagnosticar em que setores da Gestão Pública devem ser concentrados esforços de forma prioritária, com o objetivo de melhorar diversos aspectos que influenciam diretamente na composição do Índice.

Na dimensão ambiental, por exemplo, percebe-se que a grande maioria dos indicadores está relacionada a serviços do saneamento básico, como água, esgoto e resíduos sólidos. Dessa forma, maus resultados na ES, para essa dimensão, possivelmente estão associados a problemas na oferta de serviços essenciais para a população, o que demanda esforços emergenciais de forma corretiva e um planejamento em longo prazo, levando em consideração que serviços de abastecimento de água e de coleta e tratamento de esgoto são bastante onerosos e dependem da cooperação da população para poderem ser efetivos.

Na dimensão social, a análise qualitativa deve ser realizada sob uma perspectiva mais ampla, tomando por base a quantidade de temas presentes em seu escopo. Aspectos como cultura, trabalho, saúde, educação e habitação, assim como na dimensão ambiental, estão diretamente relacionados a investimentos do Poder Público na melhoria das condições de vida da sociedade, além de uma participação mais efetiva da população no que tange à exigência no cumprimento de seus direitos enquanto cidadão. Nesse sentido, ressalta-se a importância do tema "população" para uma análise mais aprofundada acerca dos resultados da ES, pois seu bom desempenho está correlacionado a investimentos nos demais temas da dimensão social, demonstrando uma inter-relação entre os indicadores.

Enquanto isso, na dimensão econômica, observa-se a grande relevância do indicador "renda domiciliar per capita" para a composição deste índice temático, levando em consideração o peso relativo atribuído a ele e a pequena quantidade de indicadores presentes no tema. Dessa forma, municípios os quais apresentem maus resultados para esse indicador tendem a obter Índice Econômico insatisfatório, condição que é reflexo da má distribuição de renda presente no Ceará, onde uma parcela significativa da população não é bem remunerada.

Nesse sentido, é possível inferir que existe uma correlação entre o Índice Econômico e os demais índices temáticos, tomando por base que famílias de baixa renda estão mais susceptíveis a ocuparem locais sem infraestrutura com saneamento básico adequado, bem como tendem a ter acesso limitado a serviços de cultura, saúde, educação e habitação. Em outras palavras, uma melhoria dos resultados apresentados pelos indicadores das demais dimensões deve favorecer um aumento do Índice Econômico.

Por fim, o Índice Institucional apresentou os melhores desempenhos, entre todos os índices temáticos, para os 184 municípios cearenses. Analisando indicadores tais como "acesso a serviço de telefonia" e "acesso a serviço de *internet*" observa-se que tratam de instrumentos de fácil alcance e baixo custo, o que favorece uma democratização desses serviços. Além deles, o indicador "participação nas eleições" também reforça a boa performance dessa dimensão na ES, ao estar intimamente relacionada à atuação popular no processo, o que independe de investimentos ou posição social, denotando uma homogeneidade na avaliação dos municípios por meio dos indicadores do Índice Institucional.

6 CONCLUSÃO

O entendimento de que homem e natureza estão em constante relação, ou seja, um modificando o outro, indica a necessidade de equilíbrio nessa associação para que haja o estabelecimento da sustentabilidade nos territórios. A partir daí surge a necessidade de mensurá-la, para que tomadores de decisão, sejam eles organismos internacionais, governos, instituições acadêmicas ou pesquisadores, possam não somente avaliar o desenvolvimento, mas, também, orientá-lo numa direção mais segura para a sociedade.

Nesse sentido, a Escada da Sustentabilidade surge como um índice capaz de avaliar o desenvolvimento dos 184 municípios cearenses por meio de quatro dimensões: ambiental, social, econômica e institucional. Para tal, foram utilizados 30 indicadores que, selecionados por especialistas na área, refletem as condições humanas e ambientais que uma determinada gestão oferece à sua população. Dados reais destes indicadores foram padronizados e transpostos para a escala da Escada da Sustentabilidade e, após a realização de cálculos com ponderações entre eles, compuseram um índice que espelha as condições sociais e ambientais dos municípios do Estado.

Os resultados obtidos provêm dados os quais permitem uma avaliação de desempenho de cada localidade de forma individualizada. De forma geral, pôde-se observar que o desempenho sustentável dos municípios cearenses é baixo, principalmente no que diz respeito às dimensões social e econômica, reflexo das políticas públicas ineficazes as quais estão sendo implantadas. Além disso, analisando o desempenho do Ceará como um todo, observa-se que somente Fortaleza se encontra em um patamar de desenvolvimento considerado aceitável, além de nenhum município estar inserido na faixa "ideal", reforçando a análise de que o Estado ainda se encontra em um patamar muito aquém do esperado.

Como a Escada da Sustentabilidade se trata da proposição de um novo índice, a etapa de verificação de sua consistência metodológica é de suma importância para que uma futura utilização dele possa ser feita de forma mais segura pelos decisores. Nesse sentido, uma comparação dos resultados obtidos entre o índice e o Barômetro da Sustentabilidade, metodologia utilizada mundialmente, foi realizada, o que reforçou o nível de desempenho de vários municípios. Dessa forma, espera-se que os dados produzidos e relatados possam auxiliar e prover base para eventuais tomadas de decisão quanto à direção a ser tomada rumo ao atingimento de melhores níveis de sustentabilidade no estado do Ceará.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS. Ministério da Integração. **Nova Delimitação do Semi- Árido Brasileiro.** Brasília: ANA, 2005. 35 p. Disponível em: http://www.mi.gov.br/c/document_library/get_file?uuid=0aa2b9b5-aa4d-4b55-a6e1-82faf0762763&groupId=24915. Acesso em: 02 mar. 2018.

AGENDA 21 Brasileira: ações prioritárias. Brasília, DF: Comissão de Políticas de Desenvolvimento Sustentável e da Agenda 21 Nacional, 2002. Disponível em: http://www.mma.gov.br/port/se/agen21/publicac.htm.

AMORIM, B. P.; SANTOS, J. A.; CÂNDIDO, G. A. Índice de Sustentabilidade municipal e as suas relações com as políticas e ações para geração do desenvolvimento sustentável: um estudo aplicado na cidade de João Pessoa- PB. 2008. 15 p. Disponível em: https://www.aedb.br/seget/arquivos/artigos08/553_Artigo%20SEGET.pdf. Acesso em: 12 set. 2017.

ARAÚJO, F. T. V. **Metodologia de Avaliação Multicritério da Vulnerabilidade à Desertificação no Semiárido.** 2014. 200f. (Doutorado em Engenharia Civil) — Universidade Federal do Ceará, Ceará, 2014. Disponível em: < http://www.repositorio.ufc.br/bitstream/riufc/11592/1/2014_tese_ftvaraujo.pdf> Acesso em: 23 out. 2017.

ARAVÉCHIA JÚNIOR, J. C. Indicadores de Salubridade Ambiental (ISA) para a região Centro-Oeste: Um estudo de caso no Estado de Goiás. 2010. 134f. (Mestrado em Planejamento e Gestão Ambiental) — Universidade Católica de Brasília, Brasília, 2010. Disponível em: https://bdtd.ucb.br:8443/jspui/bitstream/123456789/1597/1/Jose%20Carlos%20Aravechia%20Junior.pdf Acesso em: 13 set. 2017

BENETTI, L. B. Avaliação do Índice de Desenvolvimento Sustentável (IDS) do município de Lages/ SC através do método do Painel de Sustentabilidade. 2006. 203 f. Tese (Doutorado) - Curso de Pós-graduação em Engenharia Ambiental, Universidade Federal de Santa Catarina, Florianópolis, 2006. Disponível em: http://professor-ruas.yolasite.com/resources/Tese_Luciana_PGEA0261.pdf>. Acesso em: 25 Set. 2017.

BINDER, F. V. Sistemas de apoio à decisão. São Paulo: Érica, 1994.

BRAGA, T. M.; FREITAS, A. P. G.; DUARTE, G. S.; SOUSA, J. C. **Índices de sustentabilidade municipal:** o desafio de mensurar. Revista Nova Economia, Belo Horizonte, n. 14, p.11-33, dez. 2004. Disponível em: < http://www.observatorioambiental.iff.edu.br/publicacoes/publicacoes

BRASIL. Ministério do Meio Ambiente. **Indicadores são o tema do segundo dia de debate**: Jornada sobre os Objetivos de Desenvolvimento Sustentável reforça a importância dos indicadores sob diversos aspectos. 2014. Disponível em: http://mma.gov.br/index.php/comunicacao/agencia-informma?view=blog&id=590>. Acesso em: 14 set. 2017.

BRASIL. Ministério do Meio Ambiente. **Metodologia do Sistema Nacional de Informações sobre Meio Ambiente**. 2017. Disponível em: http://www.mma.gov.br/governanca-ambiental/sistema-nacional-de-informacao-sobre-meio-ambiente-sinima/metodologia>. Acesso em: 20 set. 2017.

CÂNDIDO, G. A. A Aplicação das dimensões do desenvolvimento sustentável e os níveis da competitividade sistêmica: Um estudo comparativo entre regiões produtoras de calçados no Brasil. 2004. Tese (Concurso Professor Titular) - Departamento de Administração e Contabilidade do Centro de Humanidades da Universidade Federal de Campina Grande, 2004.

CÂNDIDO, G. A. **Sistematização de Indicadores de Sustentabilidade:** uma proposta de modelo a partir da participação de atores sociais e institucionais. Edital MCT/CNPq nº 14/2009- Universal. Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq. Brasília, 2009.

CARDOSO, A. S. Sustentabilidade e gestão ambiental no município de Moju/Pa: desafios para a produção do biodiesel. 2014. 86 f. Dissertação (Mestrado) - Curso de Programa de Pós-graduação em Ciências Ambientais, Universidade Federal do Pará, Belém, 2014.

CARVALHO, P. G. M. de.; BARCELLOS, F. C. **Mensurando a Sustentabilidade.** In. MAY, P. Economia do Meio Ambiente: Teoria e Prática. 3. ed. Rio de Janeiro, Editora Campus, 2010, p. 99-132.

CAVALCANTI, C. *et al* (Org.). **Desenvolvimento e Natureza:** Estudos para uma sociedade sustentável. Recife: Inpso/fundaj, 2004. 262 p. Disponível em: https://www.researchgate.net/profile/Andri_Stahel/publication/242508694_DESENVOLVIMENTO_E_NATUREZA-Estudos-para-uma-sociedade-sustentavel.pdf>. Acesso em: 12 set. 2017.

CETRULO, T. B.; MOLINA, N. S.; MALHEIROS, T. F. **Indicadores de sustentabilidade:** proposta de um barômetro de sustentabilidade estadual. Revista Brasileira de Ciências Ambientais, Rio de Janeiro, n. 30, p.33-45, dez. 2013. Mensal. Disponível em: http://abes-dn.org.br/publicacoes/rbciamb/PDFs/30-07_Materia_4_artigos376.pdf>. Acesso em: 25 Set. 2017.

CHIAVENATO, I. **Introdução à teoria geral da administração.** 3. ed. São Paulo: McGraw-Hill do Brasil, 1983.

COSTA, J. J. S. **Teoria da decisão:** um enfoque objetivo. 2. ed. Rio de Janeiro: Editora Rio, 1997.

COUTINHO, S. M. V.; MALHEIROS, T. F. Indicadores de sustentabilidade local: caso de Ribeirão Pires, SP. **Indicadores de Sustentabilidade e Gestão Ambiental**, 1. ed. p. 189-221, 2012.

DIAS, L. M. C. 2000. 269 f. **A informação imprecisa e os modelos multicritério de apoio à decisão:** identificação e uso de conclusões robustas. Tese (Doutorado em Organização e Gestão de Empresas) – Faculdade de Economia, Universidade de Coimbra, 2000.

ESI. Environmental Sustainability Index. Global Leaders of Tomorrow Environmental Task Force - World Economic Forum. In collaboration with: Yale Center for Environmental Law and Policy, Yale University; Center for International Earth Science Information

Network, Columbia University, 2005. Disponível em: < http://www.ciesin.columbia.edu>. Acesso em: 25 Set. 2017.

ESTY, D.; PORTER, M. **National Environmental Performance:** measurements and determinants. In: ESTY, D.; CORNELIUS, P. *Environmental Performance Measurement*: the global report 2001-2002. Oxford Press, 2002.

FUNDAÇÃO JOÃO PINHEIRO – FJP, INSTITUTO DE PESQUISA ECONÔMICA APLICADA – IPEA, PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO – PNUD. **Índice de desenvolvimento Humano dos Municípios Brasileiros–IDH.** 2016. Disponível em: http://www.fjp.gov.br/publicaçoes/indicededesenvolvimentohumanodosmunicipiosbrasileirosidh(fjp/ipea/pnud).html. Acesso em: 25 Set. 2017.

GOMES, L. F. A. M.; GOMES C. F. S. **Tomada de Decisão Gerencial:** enfoque multicritério. 5. ed. São Paulo. Atlas, 2014.

GOMES, L. F. A. M.; GOMES, C. F. S.; ALMEIDA, A. T. **Tomada de decisão gerencial** Enfoque Multicritério. 2. ed. São Paulo: Atlas, 2006.

GOVERNO MUNICIPAL DE LIMOEIRO DO NORTE. **Plano de Saneamento Básico de Limoeiro do Norte/CE.** 2009. Disponível em: < http://www.saae-limoeiro.com.br/portal/public/arquivos/leis/planosaneamento/DIAGNOSTICO_ABASTECI MENTO-min.pdf>. Acesso em: 25 Set. 2018.

HODGE, R. A.; HARDI, P.; BELL, D. V. J. *Seeing change through the lens of sustainability*. Costa Rica: 1999. Disponível em: http://iisd.ca/measure/scipol/docs.htm. Acesso em: 24 fev. 2018.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Indicadores de Desenvolvimento Sustentável.** Rio de Janeiro: IBGE, 2004. 472 p. (Estudos e pesquisas. Informação geográfica, n.5).

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. IBGE. **Indicadores de desenvolvimento sustentável.** Rio de Janeiro: IBGE, 2015. 352 p. (Estudos e pesquisas). Disponível em: http://biblioteca.ibge.gov.br/visualizacao/livros/liv94254.pdf>. Acesso em: 14 set. 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Ceará – IBGE Cidades**. Ceará: IBGE, 2017. Disponível em: https://cidades.ibge.gov.br/brasil/ce/panorama. Acesso em: 22 fev. 2018.

INSTITUTO DE PESQUISA ECONÔMICA APLICADA. **O atlas.** IPEA, 2018. Disponível em: < http://www.atlasbrasil.org.br/2013/pt/o_atlas/idhm/>. Acesso em: 28 fev. 2018.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ. Painel de Indicadores Socioeconômicos: os 10 maiores e os 10 Menores Municípios Cearenses – 2017. Fortaleza: IPECE, 2017. Disponível em: < http://www.ipece.ce.gov.br/publicacoes/Painel%20de%20Indicadores%20Sociais%20e%20E con%C3%B4micos/Painel_Indicadores_2017.pdf> Acesso em: 21 set. 2018.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ. Panorama Socioeconômico das Regiões de Planejamento do Estado do Ceará. Fortaleza: IPECE, 2017. Disponível em: http://www.ipece.ce.gov.br/publicacoes/Livro_Panorama_Regioes_Planejamento_Ceara_20 17.pdf>. Acesso em: 20 mar. 2018.

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ. **Texto para Discussão**: As Regiões de Planejamento do Estado do Ceará. Fortaleza: IPECE, 2015. Disponível em: http://www.ipece.ce.gov.br/textos_discussao/TD_111.pdf> Acesso em: 21 mar. 2018.

JOHNSON, R. A.; WICHERN, D. W. **Applied multivariate statistical analysis**. Madison: Prentice Hall International, 1998. 816p.

KIKER, G. A. *et al.* Application of multicriteria decision analysis in environmental decision making. **Integrated environmental assessmentand management**, v. 1, n. 2, p. 95-108, 2005.

KRAMA, M. R. Análise dos Indicadores de Desenvolvimento Sustentável no Brasil, Usando a Ferramenta Painel de Sustentabilidade. 2009. 171 f. Dissertação (Mestrado) - Curso de Programa de Pós-graduação em Engenharia de Produção e Sistemas, Pontifícia Universidade Católica do Paraná, Curitiba, 2008. Disponível em: http://indicadores_de_Sustainablity.pdf>. Acesso em: 25 Set. 2017.

KRONEMBERGER, D. M. P.; CLEVELARIO Jr., J.; NASCIMENTO, J. A. S.; COLLARES, J. E. R.; SILVA, L. C. D. Desenvolvimento Sustentável no Brasil: uma análise a partir da aplicação do Barômetro da Sustentabilidade. **Sociedade & Natureza,** v.20, p.25 – 50, 2008. Disponível em: < http://www.scielo.br/pdf/sn/v20n1/a02v20n1>. Acesso em: 13 set. 2017.

KRONEMBERGER, D. M. P.; CARVALHO C. N.; CLEVELARIO JR., J. Indicadores de sustentabilidade em pequenas bacias hidrográficas: uma aplicação do barômetro da sustentabilidade à bacia do Jurumirim (Angra dos Reis, RJ). **Geochimica Brasiliensis**, v.18, n.2, p.86 - 98 2004. Disponível em: http://www.ppegeo.igc.usp.br/index.php/geobras/article/view/10216 .Acesso em: 13 set. 2017.

LAYRARGUES, P. P. **Do ecodesenvolvimento ao desenvolvimento sustentável:** evolução de um conceito?, 2017. Disponível em: http://files.zeartur.webnode.com.br/200000038-e0ad2e2a19/LAYRARGUES Do ecodesenvolvimento ao desenv sustentavel.pdf>. Acesso em: 12 set. 2017.

MALCZEWSKI, J. GIS and multicriteria decision analysis. New York: John Wiley, 1999.

MALHEIROS, T. F.; COUTINHO, S. M. V.; PHILIPPI JR, A. Desafios do uso de indicadores na avaliação da sustentabilidade. **Indicadores de Sustentabilidade e Gestão Ambiental**, 1. ed. p. 01-29, 2012a.

MALHEIROS, T. F.; COUTINHO, S. M. V.; PHILIPPI JR, A. Indicadores de sustentabilidade: uma abordagem conceitual. **Indicadores de Sustentabilidade e Gestão Ambiental**, 1. ed. p. 31-76, 2012b.

MALHEIROS, T. F.; COUTINHO, S. M. V.; PHILIPPI JR, A. Construção de indicadores de sustentabilidade. **Indicadores de Sustentabilidade e Gestão Ambiental**, 1. ed. p. 77-87, 2012c.

MARTINS, M. F.; CÂNDIDO, G. A. **Metodologia para Construção e Análise de Índices de Desenvolvimento Sustentável: uma aplicação no Estado da Paraíba.** João Pessoa - PB: Edições SEBRAE, 2008.

MATZENAUER, H. B. Uma metodologia multicritério construtivista de avaliação de alternativas para o planejamento de recursos hídricos de bacias hidrográficas. 2003. 669 f. Tese (Doutorado em Engenharia de Recursos Hídricos e Saneamento Ambiental) – Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental, Universidade Federal do Rio Grande do Sul. 2003.

MEADOWS, D. Indicators and information systems for sustainable development. The Sustainability Institute. 1998. Disponível em: http://www.iisd.org/pdf/s_ind_2.pdf. Acesso em: 24 fev. 2018.

MEDEIROS, C. N; GOMES, D. C. M; FALCÃO, F. C. B; PONTES, L. M. V; MENESES JÚNIOR, R. A. **As Regiões de Planejamento do Estado do Ceará**. Texto para Discussão nº 111. Instituto de Pesquisa e Estratégia Econômica do Ceará - IPECE, 58 p. 2015. Disponível na internet: http://www.ipece.ce.gov.br/textos_discussao/TD_111.pdf>. Acesso em: 08 mar. 2018.

MELO, C. M. **ISO 26000:** Uma Análise da Elaboração da Norma Internacional de Responsabilidade Social. 2006. 132f. Dissertação (mestrado) - Universidade Federal Fluminense, Niterói, 2006.

MORAES. J. L. A. Capital Social e políticas públicas para o desenvolvimento regional. Unisc, 2001.

MOUSINHO, P. O. **Indicadores de desenvolvimento sustentável:** modelos internacionais e especificidades do Brasil. Rio de Janeiro, 2001. Dissertação (Mestrado em Ciência da Informação)- Universidade Federal do Rio de Janeiro.

NAÇÕES UNIDAS DO BRASIL. **Novo estudo da ONU indica que mundo terá 11 bilhões de habitantes em 2100.** 2015. Disponível em: https://nacoesunidas.org/novo-estudo-da-onu-indica-que-mundo-tera-11-bilhoes-de-habitantes-em-2100/. Acesso em: 11 set. 2017.

NAVONE, S.; BARGIELA, M.; MAGGI, A.; MOVIA, C. (2006). **Indicadores biofísicos de desertificación em El noroeste argentino:** desarrollo metodológico. In: Indicadores de La Desertificación para América Del Sur. IICA-BID ATN JF7905 – RG. IICA-BID-Fundo Especial do Governo do Japão. Fundação Grupo Esquel Brasil. Mendoza, Argentina. ISBN: 978 - 987 - 23430 - 0 - 2. p. 103 - 111.

NIJKAMP, P. Multicriteria analysis: a decision support system for sustainable environmental management. In: **Economy and Ecology**: Towards Sustainable Development. Springer Netherlands, 1989. p. 203-220.

OLIVEIRA, L. D. Os "Limites do Crescimento" 40 anos depois: Das "Profecias do Apocalipse Ambiental" ao "Futuro Comum Ecologicamente Sustentável". **Revista Continentes,** Rio de Janeiro, v. 1, n. 1, p.56-71, jul. 2012. Semestral. Disponível em: http://r1.ufrrj.br/revistaconti/index.php/continentes/article/view/6. Acesso em: 12 set. 2017.

PEREIRA, M. S.; SAUER, L.; FAGUNDES, M. B. B. Mensurando a sustentabilidade local: uma proposta de índice para o Mato Grosso do Sul. 2015. Disponível em: http://www.scielo.br/pdf/inter/v17n2/1518-7012-inter-17-02-0327.pdf>. Acesso em: 13 mar. 2018.

PREFEITURA DE SOBRAL. **Secretaria de Saúde.** Em resultado parcial, Sobral conquista décimo lugar em ranking nacional sobre qualidade da Atenção Básica. 2018. Disponível em: http://saude.sobral.ce.gov.br/noticias/principais/sobral-conquista-decimo-lugar-em-ranking-nacional-sobre-qualidade-da-atencao-basica>. Acesso em: 25 Set. 2018.

PRESCOTT-ALLEN, R. **The Barometer of Sustainability**, IUCN, 2001 a. Disponível em: http://www.iucn.org/themes/eval/english/barom.htm>. Acesso em: 25 Set. 2017.

RODRIGUES, K. F.; RIPPEL, R. Desenvolvimento Sustentável e Técnicas de Mensuração. **Revista da Gestão Ambiental e da Sustentabilidade:** Vol. 4, N. 3. Setembro./ Dezembro. 2015, São Paulo, v. 4, n. 3, p.73-88, set. 2015. Disponível em: http://www.revistageas.org.br/ojs/index.php/geas/article/view/387>. Acesso em: 25 Set. 2017.

ROMERO, C. Análises de las decisiones multicritério. Madri: Idefe, 1996.

ROY, B. **Multicriteria Methodology for Decision Aiding,** Kluwer Academic Publishers, London, 1996.

SEGNESTAN, L. Environment and sustainable development theories and practical experience. Washington, DC: The World Bank Environment Department, 2002. (Environmental Economics Series. Paper n. 89). Disponível em: http://siteresources.worldbank.org/INTEEI/936217-

1115801208804/20486265/IndicatorofEnvironmentandSustainableDevelopment2003.pdf> Acesso em: 25 fev. 2018

SHAMBLIN, J. E.; STEVENS Jr., G. T. **Pesquisa operacional:** uma abordagem básica. São Paulo: Atlas, 1989.

SIENA, O. Método para avaliar desenvolvimento sustentável: técnicas para escolha e ponderação de aspectos e dimensões. **Production,** São Paulo, v. 18, n. 2, p.359-374, maio 2008. Quadrimestral. Disponível em: http://www.scielo.br/pdf/prod/v18n2/12.pdf>. Acesso em: 10 jan. 2018.

SILVA, A. **Desenvolvimento Sustentável no Ceará**: Uma análise a partir da aplicação do Barômetro da Sustentabilidade. 2017. 129 p. Dissertação (Mestrado)- Universidade Federal do Ceará, Ceará, 2017.

SILVA, V. G. Avaliação da Sustentabilidade de edifícios de escritórios brasileiros: diretrizes e base metodológica. 2003. 210p. Tese (Doutorado) - Universidade de São Paulo, São Paulo, 2003.

SILVA, M. G.; CÂNDIDO, G. A.; MARTINS, M. F. **Método de Construção do Índice de Desenvolvimento Local Sustentável: Uma Proposta Metodológica e Aplicada.** Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 11, n.1, p. 55-72, 2009.

SOARES, A.; ABREU, M. C. S.; ANTONIO, L. de Q.; SILVA FILHO, J. C. L. 2008. Revisando a estruturação do Modelo DPSIR como base para um Sistema de Apoio a Decisão para a Sustentabilidade de Bacias Hidrográficas. XV SIMPEP — Simpósio de Engenharia de Produção. Disponível em: . Acesso em: 21 set. 2017.

SOUTO, R. D. Indicadores de Desenvolvimento Sustentável- Brasil: análise e contribuições. 2012. 16p. 2011. Disponível em < http://seer.ufrgs.br/index.php/estatisticaesociedade/article/view/42799/28512>. Acesso em: 25 Set. 2017.

SPANGER, U. **O desafio na medição do desenvolvimento humano:** o caso do IDH. Disponível em: http://www.ecoeco.org.br/conteudo/publicacoes/encontros/ix_en/GT5-102-224-20110620211339.pdf>. Acesso em: 25 Set. 2017. Apresentado no IX Encontro Nacional da EcoEco. Brasília, 2011.

URIS, A. O livro de mesa do executivo. São Paulo: Pioneira, 1989.

VAN BELLEN, H. M. **Indicadores de Sustentabilidade:** Uma Análise Comparativa. 2002. 220 f. Tese (Doutorado) - Curso de Pós-graduação em Engenharia de Produção, Universidade Federal de Santa Catarina, Florianópolis, 2002. Disponível em: http://cmapspublic2.ihmc.us/rid=1188902033989_1460031917_8589/Tese_de_Van_Bellen.pdf>. Acesso em: 11 set. 2017.

VAN BELLEN, H. M. **Desenvolvimento sustentável:** uma descrição das principais ferramentas de avaliação. Campinas. Ambiente & Sociologia, v. 7, n. 1. jan/jun. 2004. Disponível em: < http://www.scielo.br/pdf/asoc/v7n1/23537.pdf >. Acesso em: 12 set de 2017.

VAN BELLEN. H. M. V. **Indicadores de Sustentabilidade: uma análise comparativa.** Rio de Janeiro: Editora FGV. 2005.

VAN BELLEN, H. M. **As dimensões do desenvolvimento:** Um estudo exploratório sob a perspectiva das ferramentas de avaliação. Revista de Ciências da Administração, v. 12, n. 27, p. 143-168, 2010. Disponível em: < https://periodicos.ufsc.br/index.php/adm/article/view/2175-8077.2010v12n27p143/17418>. Acesso em: 25 set. 2017.

VASCONCELOS, A. C. F. **Índice de desenvolvimento municipal participativo:** uma aplicação no município de Cabaceiras- PB. 2011. 159 f. Dissertação (Mestrado) - Curso de Pós-graduação em Engenharia de Produção, Universidade Federal da Paraíba, João Pessoa, 2011. Disponível em: < http://tede.biblioteca.ufpb.br/bitstream/tede/5289/1/arquivototal.pdf >. Acesso em: 11 set. 2017.

VEIGA, J. E. **Indicadores socioambientais:** evolução e perspectivas. Revista de Economia Política, v.29, n.4. São Paulo, 2009. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-31572009000400007#back. Acesso em: 25 Set. 2017.

WORLD BANK. **Monitoring environmental progress:** *a report on work in progress*. ESSD Environmentally & Socially Sustainable Development Work in Progress. Washington, D.C.: 1995. The World Bank. Disponível em: < http://documents.worldbank.org/curated/en/378701468765915443/Monitoring environmental-progress-a-report-on-work-in-progress>. Acesso em: 25 Set. 2017.

ZELENY. Six Concepts of Optimality. TIMS/ORSA Joint Meeting, Boston, Apr. 1994.

APÊNDICE A – INDICADORES SELECIONADOS PARA COMPOSIÇÃO DA ESCADA DA SUSTENTABILIDADE

DIMENSÃO AMBIENTAL			
Temas	Indicadores	Média	Média acumulada
	Taxa de cobertura de esgoto	0,3	0,3
	Taxa de cobertura de coleta de lixo	0,25	0,55
Saneamento e arborização	Arborização de vias públicas	0,2	0,75
	Taxa de cobertura de água	0,2	0,95
	Volume de água tratada	0,05	1

DIMENSÃO SOCIAL			
Temas	Indicadores	Média	Média acumulada
População	Extrema pobreza	0,35	0,35
	Taxa de crescimento da população	0,3	0,65
	Taxa de urbanização	0,25	0,9
	Densidade demográfica	0,1	1

	DIMENSÃO SOCIAL		
Temas	Indicadores	Média	Média acumulada
	Bibliotecas públicas, teatros e museus	0,5	0,5
Cultura	Monumentos históricos tombados e preservados	0,4	0,9
	Bandas de música	0,1	1

	DIMENSÃO SOCIAL		
Temas	Indicadores	Média	Média acumulada
	Nível de ocupação das pessoas	0,5	0,5
Trabalho	Trabalho infantil	0,35	0,85
	Taxa de empregos formais	0,15	1

	DIMENSÃO SOCIAL		
Temas	Indicadores	Média	Média acumulada
	Taxa de mortalidade infantil	0,3	0,3
	Unidades de saúde por 1000 hab.	0,2	0,5
Coddo	Imunização contra doenças infecciosas infantis	0,2	0,7
Saúde	Número de médicos por 1000 hab.	0,2	0,9
	Leitos hospitalares por 1000 hab.	0,05	0,95
	Óbitos fetais	0,05	1
	Taxa de natalidade	0	1

	DIMENSÃO SOCIAL			
Temas	Indicadores	Média	Média acumulada	
	Analfabetismo	0,2	0,2	
	IDEB (Ensino Fundamental)	0,15	0,35	
	Escolarização do ensino fundamental	0,15	0,5	
	Escolarização da educação infantil	0,1	0,6	
	Escolarização do ensino médio	0,1	0,7	
	Rendimento escolar do ensino médio	0,1	0,8	
Educação	Estabelecimentos de ensino com educação profissional	0,1	0,9	
	Salas de aula existentes e utilizadas	0,05	0,95	
	Estabelecimento de ensino com educação de jovens e adultos	0,05	1	
	Estabelecimento de ensino com educação especial	0	1	

DIMENSÃO SOCIAL			
Temas	Indicadores	Média	Média acumulada
	Densidade adequada de moradores por dormitório	0,35	0,35
Habitação	Vias públicas com urbanização adequada	0,3	0,65
	Acesso à energia elétrica	0,25	0,9
	Domicílios com paredes de alvenaria	0,1	1

DIMENSÃO ECONÔMICA			
Temas	Indicadores	Média	Média acumulada
	Renda domiciliar per capita	0,55	0,55
Quadro econômico	Índice de Gini da distribuição do rendimento	0,25	0,8
	Produto Interno Bruto- PIB per capita	0,2	1
	Valor adicionado a preços correntes	0	1
	Movimentação financeira nas instituições	0	1

DIMENSÃO INSTITUCIONAL								
Temas	Indicadores	Média	Média acumulada					
5	Participação nas eleições	0,35	0,35					
Participação popular e	Acesso a serviço de telefonia	0,3	0,65					
informação	Acesso a serviço de internet	0,2	0,85					
miormação	Número de conselhos municipais	0,15	1					

APÊNDICE B – VALORES DOS INDICADORES, EM ESCALA REAL, DOS MUNICÍPIOS DO CEARÁ

	Indicadores	Abaiara	Acarape	Acaraú	Acopiara	Aiuaba
1.	Taxa de cobertura de esgoto (%)	0,00	43,11	22,80	27,25	0,00
2.	Taxa de cobertura de coleta de lixo (%)	40,23	61,95	45,38	48,44	51,35
3.	Arborização de vias públicas (%)	22,30	69,20	93,90	90,60	93,20
4.	Taxa de cobertura de água (%)	92,39	98,60	97,97	99,52	96,54
5.	Extrema pobreza (%)	22,86	53,53	31,91	29,79	36,14
6.	Taxa de crescimento da população	0,23	0,06	0,14	0,12	0,07
7.	Taxa de urbanização (%)	43,37	52,04	49,07	49,31	24,38
8.	Bibliotecas públicas, teatros e museus	1,00	1,00	2,00	3,00	1,00
9.	Monumentos históricos tombados e preservados	0,00	0,00	0,00	0,00	0,00
10.	Nível de ocupação das pessoas (%)	46,10	47,80	52,40	50,50	54,50
11.	Trabalho infantil (%)	6,10	2,00	9,20	9,90	13,00
12.	Taxa de mortalidade infantil	21,58	-	14,53	4,73	47,95
13.	Unidades de saúde por 1000 hab.	0,62	1,23	0,52	0,55	0,47
14.	Imunização contra doenças infecciosas infantis (%)	100,00	98,56	100,00	100,00	95,00
15.	Número de médicos por 1000 hab.	0,88	1,11	1,21	0,68	0,59
16.	Analfabetismo (%)	29,70	21,80	28,80	33,00	34,10
17.	IDEB (Ensino Fundamental)	4,95	4,65	4,90	5,70	5,30
18.	Escolarização do ensino fundamental (%)	68,11	71,08	89,75	87,43	71,05
19.	Escolarização da educação infantil (%)	59,06	45,63	50,69	44,29	45,74
20.	Escolarização do ensino médio (%)	42,16	27,15	51,27	55,18	34,95
21.	Rendimento escolar do ensino médio (%)	84,20	76,70	88,30	83,10	88,00
22.	Estabelecimentos de ensino com educação profissional	0,00	0,00	1,00	0,00	0,00
23.	Densidade adequada de moradores por dormitório (%)	50,28	69,58	60,28	62,92	55,69
24.	Vias públicas com urbanização adequada (%)	0,00	1,60	1,70	5,30	2,30
25.	Acesso à energia elétrica (%)	99,14	98,71	95,75	98,30	94,86
26.	Renda domiciliar per capita	272,42	297,57	303,22	304,28	249,46
27.	Índice de Gini da distribuição do rendimento	0,49	0,43	0,61	0,58	0,53
28.	Participação nas eleições (%)	94,74	88,53	81,24	85,92	78,59
29.	Acesso a serviço de telefonia (%)	72,59	76,33	54,17	61,47	37,28
30.	Acesso a serviço de internet (%)	2,88	2,39	5,82	4,03	1,94

	Alcântaras	Altaneira	Alto Santo	Amontada	Antonina do Norte	Apuiarés	Aquiraz	Aracati
1.	75,56	26,81	0,00	7,61	0,00	0,00	49,57	46,08
2.	46,39	77,50	41,69	33,96	64,49	50,45	75,24	73,22
3.	98,40	38,00	83,60	82,90	88,10	96,20	81,10	82,90
4.	99,49	99,84	93,04	95,79	99,42	98,93	98,80	99,49
5.	22,92	32,60	23,70	40,34	29,28	32,12	10,83	17,42
6.	0,07	0,11	0,00	0,08	-0,05	-0,03	0,06	0,03
7.	32,01	72,30	49,15	40,65	71,58	41,45	92,37	63,67
8.	1,00	2,00	1,00	1,00	2,00	2,00	4,00	4,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	5,00	4,00
10.	50,90	40,00	52,90	51,60	48,40	47,80	55,80	53,80
11.	6,10	3,00	5,10	11,60	5,60	5,50	1,40	4,70
12.	9,26	10,00	24,04	17,33	-	19,87	4,82	15,66
13.	0,79	1,09	0,59	0,31	0,69	0,69	0,49	0,45
14.	95,22	100,00	99,58	98,48	92,41	82,29	99,23	100,00
15.	0,53	0,95	0,59	0,43	0,42	0,82	1,58	1,18
16.	29,10	31,80	30,10	25,70	32,60	26,80	20,80	20,80
17.	5,90	6,10	5,35	5,15	5,55	5,10	4,80	5,00
18.	84,51	94,96	81,76	88,85	97,19	80,86	92,85	94,19
19.	56,42	60,39	36,85	41,35	58,52	56,27	46,48	49,57
20.	41,69	43,66	44,93	47,15	64,81	46,04	48,50	53,04
21.	82,40	77,60	75,70	82,80	90,40	90,50	76,30	82,80
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,00
23.	72,40	69,72	52,75	52,71	59,58	56,82	74,67	75,07
24.	3,10	15,70	0,00	0,90	1,30	15,10	1,40	1,60
25.	98,39	98,71	98,69	94,96	98,40	97,76	99,10	98,47
26.	296,14	296,83	315,05	227,76	294,06	285,84	411,29	408,44
27.	0,47	0,55	0,48	0,56	0,51	0,54	0,50	0,54
28.	89,97	96,71	83,31	93,87	80,54	85,27	91,89	84,27
29.	53,27	56,60	76,70	43,16	53,95	57,43	85,09	75,09
30.	2,48	3,78	4,82	2,89	6,54	4,73	8,89	10,53

	Aracoiaba	Ararendá	Araripe	Aratuba	Arneiroz	Assaré	Aurora	Baixio
1.	0,00	0,00	0,00	47,83	0,00	0,00	35,04	0,00
2.	51,95	45,52	60,42	35,06	58,59	54,88	48,22	57,48
3.	95,30	89,40	80,80	68,80	95,40	91,80	93,00	91,80
4.	99,01	99,95	95,77	99,32	99,67	99,69	98,93	99,53
5.	26,24	38,71	40,64	8,20	5,60	31,39	27,57	21,11
6.	0,02	0,01	-0,01	-0,15	0,00	0,04	-0,04	0,02
7.	54,10	46,76	61,56	32,69	50,71	53,25	48,14	54,83
8.	3,00	1,00	3,00	4,00	1,00	2,00	2,00	1,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	51,20	41,70	47,60	57,40	53,60	48,80	44,50	51,80
11.	15,30	3,70	10,50	11,30	9,40	11,00	7,10	6,60
12.	13,74	38,83	2,92	11,56	-	10,34	9,17	51,95
13.	0,96	0,56	0,70	0,97	1,03	0,69	0,81	0,65
14.	88,97	100,00	100,00	99,52	100,00	99,66	99,33	87,03
15.	1,84	1,67	0,56	0,70	0,77	0,86	0,98	0,97
16.	30,10	33,70	33,50	25,40	30,30	31,70	27,60	23,80
17.	4,65	6,00	5,25	5,55	5,25	5,25	4,75	4,50
18.	92,76	100,00	95,06	100,00	88,95	84,82	85,51	100,00
19.	55,35	59,56	54,26	65,19	62,29	43,64	46,35	58,93
20.	59,96	49,14	50,57	75,44	40,98	54,13	44,59	33,25
21.	90,20	84,70	89,20	82,20	95,40	88,60	87,40	93,60
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	56,99	55,18	56,51	64,04	59,00	57,41	64,35	59,25
24.	3,80	6,00	5,80	0,00	2,60	5,70	14,40	5,70
25.	99,06	99,22	97,91	99,35	97,95	98,50	98,82	99,65
26.	289,08	249,93	253,46	279,09	383,40	345,38	299,56	321,06
27.	0,52	0,54	0,56	0,49	0,53	0,59	0,53	0,46
28.	88,39	78,26	77,29	95,59	84,14	78,65	81,68	83,98
29.	66,63	44,34	32,59	75,03	59,60	63,60	70,63	74,68
30.	4,39	4,43	4,64	2,43	1,72	4,57	5,57	11,26

	Banabuiú	Barbalha	Barreira	Barro	Barroquinha	Baturité	Beberibe	Bela Cruz
1.	0,00	53,96	52,49	99,48	31,71	4,17	46,43	56,71
2.	48,73	71,02	46,14	54,37	51,36	73,38	59,58	44,00
3.	88,00	94,70	87,40	92,00	39,00	93,00	84,00	91,00
4.	91,33	99,65	97,54	24,63	98,74	100,00	89,99	99,80
5.	32,61	12,97	23,30	26,63	39,51	19,89	25,43	34,89
6.	0,01	0,07	0,07	0,06	0,00	0,07	0,09	0,04
7.	50,55	68,73	41,52	61,17	67,49	73,34	43,83	42,09
8.	1,00	3,00	2,00	1,00	1,00	4,00	4,00	2,00
9.	0,00	2,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	47,80	57,00	44,20	43,50	44,80	52,90	55,10	58,30
11.	4,40	7,20	1,70	1,40	1,20	5,50	5,50	11,50
12.	3,79	12,16	3,13	9,57	14,71	11,11	7,85	11,34
13.	0,56	0,95	0,77	0,72	0,67	0,80	0,36	0,59
14.	98,61	91,39	88,24	98,59	100,00	99,27	99,46	100,00
15.	0,95	6,15	0,87	0,81	0,54	1,66	0,65	0,69
16.	30,20	18,70	27,50	23,60	35,50	22,50	26,10	27,10
17.	5,15	5,35	5,05	4,75	4,95	4,15	5,15	5,30
18.	85,60	100,00	94,91	84,44	92,28	91,48	94,27	76,24
19.	40,16	54,04	60,25	45,42	60,08	46,96	47,75	47,59
20.	41,36	65,33	49,94	39,43	57,90	46,32	56,45	53,13
21.	86,30	88,50	73,30	85,50	83,30	82,90	95,40	90,10
22.	1,00	1,00	0,00	0,00	0,00	2,00	0,00	0,00
23.	53,30	74,80	67,78	63,63	63,34	64,05	70,02	68,46
24.	1,70	8,90	6,40	0,40	1,40	5,10	0,40	1,30
25.	98,12	99,20	99,51	99,51	97,18	99,21	98,64	96,04
26.	292,35	435,56	278,37	303,19	237,93	339,26	365,69	264,65
27.	0,56	0,52	0,51	0,51	0,55	0,48	0,56	0,55
28.	94,68	92,23	87,08	76,91	84,47	92,84	85,01	94,34
29.	73,02	81,16	71,37	77,59	44,59	77,37	78,80	56,05
30.	5,90	12,25	2,65	5,19	4,67	8,15	6,09	7,65

	Boa Viagem	Brejo Santo	Camocim	Campos Sales	Canindé	Capistrano	Caridade	Cariré
1.	0,00	83,01	32,06	24,08	36,59	92,66	0,00	0,00
2.	45,99	70,90	72,66	70,98	61,83	37,26	56,53	51,69
3.	89,30	86,90	78,30	91,80	97,30	59,30	78,00	88,80
4.	100,00	92,61	93,35	95,79	100,00	99,66	97,77	98,30
5.	36,36	15,36	28,51	29,02	30,56	35,85	29,69	30,86
6.	0,02	0,10	0,04	-0,02	0,01	0,05	0,16	-0,04
7.	50,68	62,08	74,23	71,99	62,94	36,41	57,56	45,24
8.	2,00	2,00	2,00	1,00	3,00	2,00	2,00	2,00
9.	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00
10.	49,70	50,70	51,30	57,00	43,50	41,90	41,20	46,10
11.	13,50	2,30	4,10	15,40	3,90	7,10	4,70	6,50
12.	19,12	21,25	15,40	11,17	14,69	3,40	3,97	27,93
13.	0,33	0,89	0,54	0,81	0,45	0,85	0,41	1,02
14.	96,40	100,33	100,00	99,69	100,00	100,00	97,53	97,65
15.	0,52	2,27	0,70	1,03	1,12	1,48	1,24	0,97
16.	32,40	22,70	26,50	29,20	24,70	27,60	26,80	30,50
17.	4,75	7,00	5,20	4,95	4,70	4,80	4,40	6,15
18.	82,43	89,38	91,86	94,06	84,99	94,73	72,92	77,14
19.	31,42	68,65	51,24	53,37	50,80	51,79	47,90	42,51
20.	45,02	53,35	61,55	58,39	47,53	47,36	28,72	59,48
21.	92,30	90,00	85,30	87,10	91,30	83,50	95,70	87,70
22.	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00
23.	55,70	79,30	67,91	68,03	68,17	76,21	57,54	56,26
24.	4,10	6,70	1,40	2,10	6,10	4,30	0,80	0,50
25.	97,48	99,55	98,25	98,48	98,59	98,98	98,91	98,63
26.	309,47	374,16	312,80	380,51	337,53	256,25	245,61	284,98
27.	0,59	0,54	0,57	0,59	0,60	0,56	0,52	0,54
28.	75,85	91,56	92,83	75,62	77,55	94,66	95,44	94,56
29.	57,93	75,37	63,69	62,54	66,98	72,95	78,21	61,34
30.	5,16	9,54	7,35	5,63	7,84	3,60	2,12	7,60

	Caririaçu	Cariús	Carnaubal	Cascavel	Catarina	Catunda	Caucaia	Cedro
1.	0,00	0,00	0,00	4,40	34,86	0,00	26,11	16,79
2.	54,17	53,33	56,44	66,16	52,01	51,66	82,48	57,45
3.	86,20	92,90	95,90	82,80	93,70	75,90	51,60	96,20
4.	100,00	90,82	99,01	96,28	96,55	99,65	94,54	99,35
5.	31,75	33,42	33,25	16,02	22,88	32,35	10,42	26,66
6.	-0,07	-0,02	0,04	0,06	0,07	0,05	0,09	-0,01
7.	53,16	44,76	47,53	84,90	46,56	54,21	89,18	61,81
8.	2,00	1,00	2,00	1,00	1,00	2,00	5,00	1,00
9.	0,00	0,00	0,00	1,00	0,00	0,00	1,00	0,00
10.	58,30	44,20	56,80	54,70	42,90	44,10	58,60	48,70
11.	18,10	5,30	5,30	6,90	5,00	4,80	3,30	8,40
12.	19,83	4,81	4,35	9,46	12,74	32,61	11,05	18,73
13.	0,67	0,85	1,20	0,34	0,65	0,68	0,22	0,96
14.	100,00	90,95	98,81	99,82	100,00	96,75	80,90	100,00
15.	0,78	0,90	0,86	0,87	0,75	0,78	1,00	1,00
16.	31,70	31,80	29,70	22,90	29,40	30,00	12,90	27,80
17.	5,05	5,05	5,45	5,25	4,80	5,25	4,50	4,65
18.	88,95	81,06	83,29	93,66	59,97	89,55	81,77	93,55
19.	47,61	39,74	48,79	52,21	38,50	77,97	52,98	44,39
20.	51,14	32,19	44,23	52,51	37,75	39,88	44,53	60,46
21.	92,00	88,70	89,80	90,00	89,60	82,90	77,40	90,40
22.	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00
23.	56,20	55,35	59,70	61,70	65,16	56,32	68,61	63,28
24.	3,00	3,20	0,00	2,80	7,60	1,40	5,00	11,40
25.	99,04	98,68	98,95	98,63	94,00	97,71	99,41	99,40
26.	297,24	287,23	266,63	359,77	292,63	264,30	441,04	373,38
27.	0,52	0,53	0,54	0,49	0,52	0,54	0,49	0,57
28.	94,20	95,33	73,16	85,09	80,86	81,38	84,67	83,62
29.	69,79	64,16	58,82	82,02	75,39	49,78	85,29	73,07
30.	4,79	2,73	5,98	7,42	3,29	4,19	13,84	8,08

	Chaval	Choró	Chorozinho	Coreaú	Crateús	Crato	Croatá	Cruz
1.	0,00	0,00	0,00	47,92	75,41	33,00	38,32	0,00
2.	63,11	22,64	61,64	44,89	62,39	84,12	60,77	57,47
3.	60,40	85,00	95,90	90,10	97,60	58,30	98,10	95,30
4.	94,41	98,74	98,33	98,71	99,95	98,00	100,00	90,67
5.	34,02	45,84	20,20	35,31	22,55	11,05	45,67	30,16
6.	-0,04	0,01	-0,09	0,03	-0,01	0,08	0,02	-0,03
7.	72,68	29,52	60,41	64,79	72,30	83,11	52,95	42,57
8.	1,00	1,00	1,00	1,00	5,00	13,00	3,00	2,00
9.	0,00	0,00	0,00	0,00	0,00	4,00	0,00	0,00
10.	48,20	36,70	52,70	49,80	45,90	57,80	41,80	62,50
11.	1,80	7,20	1,80	7,10	4,00	5,50	4,80	18,50
12.	10,47	20,73	7,22	13,33	20,07	11,69	20,58	16,04
13.	0,70	1,13	0,94	0,83	0,50	0,55	0,73	0,68
14.	94,25	99,02	100,00	100,00	100,00	99,44	100,00	100,00
15.	0,77	0,98	0,68	0,44	1,06	1,59	0,79	0,97
16.	32,50	32,40	28,80	36,80	25,00	15,00	35,50	24,60
17.	4,70	4,65	4,85	6,70	5,15	4,65	5,10	6,60
18.	88,54	80,62	94,78	81,85	97,15	96,43	84,63	99,39
19.	66,94	51,80	58,02	49,34	46,05	57,80	45,62	58,47
20.	50,64	37,89	41,61	58,91	51,47	59,76	54,45	54,16
21.	80,10	88,90	85,60	80,10	87,90	84,10	88,10	86,10
22.	0,00	0,00	0,00	0,00	2,00	2,00	0,00	0,00
23.	57,01	48,75	59,54	65,18	78,83	72,73	70,27	56,33
24.	3,00	6,40	1,90	2,60	3,20	3,50	0,00	3,10
25.	96,13	95,97	98,70	97,54	99,18	99,43	99,19	98,14
26.	234,37	222,39	324,49	259,64	469,37	558,85	229,16	369,18
27.	0,51	0,58	0,50	0,51	0,61	0,57	0,59	0,59
28.	80,86	80,60	88,28	85,83	86,40	94,04	70,62	81,76
29.	58,75	68,12	78,46	57,74	71,49	81,45	48,09	72,60
30.	3,52	2,41	3,90	4,68	9,69	17,81	3,81	13,42

	Deputado Irapuan Pinheiro	Ererê	Eusébio	Farias Brito	Forquilha	Fortaleza	Fortim	Frecheirinha
1.	0,00	0,00	13,70	0,00	54,65	57,72	0,00	20,88
2.	45,87	51,83	94,05	66,01	70,99	98,75	73,47	65,58
3.	95,50	87,00	58,50	88,40	97,90	74,80	95,30	98,50
4.	92,00	100,00	96,69	99,10	98,86	99,72	96,09	98,50
5.	34,63	25,95	8,24	34,40	12,65	5,46	22,64	27,54
6.	0,06	0,11	0,22	-0,14	0,17	0,04	0,11	-0,01
7.	45,44	50,56	100,00	46,67	71,02	100,00	64,84	58,78
8.	1,00	1,00	2,00	2,00	1,00	54,00	1,00	2,00
9.	0,00	0,00	0,00	0,00	0,00	36,00	0,00	0,00
10.	51,60	49,40	62,80	47,70	57,50	62,30	49,40	55,10
11.	21,60	6,60	3,10	9,00	1,50	3,10	6,10	5,80
12.	11,36	71,43	4,77	20,76	4,57	11,65	21,62	12,05
13.	1,16	0,70	0,57	1,33	0,54	0,11	0,50	0,59
14.	100,00	100,00	100,00	99,91	100,00	99,90	100,00	98,00
15.	0,95	0,70	3,36	0,95	0,59	1,94	0,75	1,33
16.	32,30	30,70	13,50	27,60	26,20	6,90	26,80	33,30
17.	6,80	4,90	5,55	5,55	5,75	4,80	5,30	6,75
18.	86,80	84,22	100,00	100,00	87,33	89,18	87,68	88,31
19.	41,72	53,30	58,52	59,54	53,20	46,69	42,65	57,29
20.	51,63	40,55	64,30	47,11	77,86	55,52	34,59	54,59
21.	93,20	91,50	73,40	86,70	90,70	83,30	83,30	87,10
22.	0,00	0,00	0,00	0,00	0,00	46,00	0,00	0,00
23.	54,20	56,73	69,46	59,82	72,97	83,56	63,25	65,18
24.	0,70	47,30	1,10	2,10	18,10	13,20	0,80	5,80
25.	98,01	98,78	99,34	99,18	99,60	99,70	98,75	98,45
26.	277,96	279,43	768,16	283,24	337,13	994,29	316,36	301,91
27.	0,51	0,47	0,66	0,55	0,47	0,63	0,51	0,53
28.	82,73	83,11	90,49	95,53	93,14	82,71	90,23	95,20
29.	52,10	68,98	89,91	68,04	68,52	90,68	77,98	58,18
30.	4,17	5,83	14,90	4,30	8,08	30,13	6,07	7,41

	General Sampaio	Graça	Granja	Granjeiro	Groaíras	Guaiúba	Guaraciaba do Norte	Guaramiranga
1.	0,00	24,05	50,00	52,03	0,00	45,07	33,77	80,40
2.	74,11	42,95	35,24	37,66	68,56	69,44	47,09	85,77
3.	97,40	94,20	84,50	95,80	89,00	58,80	85,70	82,30
4.	98,66	99,95	80,00	99,85	99,93	99,90	99,83	98,50
5.	25,97	42,58	47,49	31,69	18,58	21,49	26,50	12,46
6.	0,43	0,00	-0,01	-0,19	0,13	0,14	0,00	-0,32
7.	58,67	38,64	49,18	29,60	69,18	78,36	46,07	59,92
8.	2,00	1,00	3,00	1,00	2,00	2,00	2,00	4,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	50,50	38,00	46,40	58,20	58,50	50,90	60,40	54,70
11.	6,10	6,40	12,30	12,40	8,90	4,60	14,70	=
12.	11,76	-	18,43	17,54	34,48	9,38	6,62	13,70
13.	1,18	0,85	0,46	1,56	0,83	0,62	0,56	1,34
14.	98,36	77,57	100,00	91,78	100,00	89,77	99,18	100,00
15.	0,74	0,52	0,39	0,89	0,65	0,77	0,74	3,23
16.	31,30	35,70	38,60	30,60	25,20	23,10	28,40	17,90
17.	5,25	5,45	6,00	4,95	6,65	4,35	5,35	5,35
18.	99,88	78,24	87,21	100,00	87,32	78,86	91,56	100,00
19.	66,61	48,23	49,85	66,12	58,98	54,13	40,08	110,17
20.	66,43	35,86	60,91	54,82	54,54	50,77	59,92	77,66
21.	89,20	80,20	84,40	88,70	92,60	81,30	84,10	84,00
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	60,15	60,19	57,89	63,34	60,91	71,93	65,31	84,28
24.	3,00	0,70	1,80	12,40	0,00	4,90	5,50	6,90
25.	97,35	98,22	92,77	99,06	99,53	98,44	99,53	99,43
26.	302,71	250,37	225,19	278,21	376,68	273,43	301,79	366,24
27.	0,52	0,56	0,63	0,51	0,47	0,48	0,52	0,47
28.	90,51	72,80	81,13	95,15	96,52	85,71	74,95	87,33
29.	48,13	59,07	34,41	74,81	68,77	66,67	59,37	88,68
30.	1,87	3,72	4,33	2,89	10,19	4,42	7,27	5,47

	Hidrolândia	Horizonte	Ibaretama	Ibiapina	Ibicuitinga	Icapuí	Icó	Iguatu
1.	0,00	13,78	0,00	0,00	0,00	0,00	50,38	19,71
2.	58,72	91,04	36,99	51,26	50,55	82,44	49,19	76,88
3.	94,40	69,80	87,60	82,10	86,10	83,20	96,60	92,00
4.	99,75	95,96	100,00	99,94	97,51	91,10	91,40	94,80
5.	28,75	9,10	34,89	22,48	35,20	19,82	27,09	13,14
6.	0,11	0,31	-0,03	0,02	0,15	0,06	0,03	0,06
7.	57,20	92,50	34,41	45,12	50,66	31,46	46,54	77,34
8.	2,00	2,00	2,00	2,00	1,00	5,00	3,00	5,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	3,00	1,00
10.	48,80	58,90	46,10	60,60	41,00	55,60	46,00	57,00
11.	3,50	2,50	8,50	7,30	2,10	5,20	9,80	5,50
12.	10,20	7,21	34,48	13,74	=	16,04	23,60	7,20
13.	0,40	0,46	0,83	0,85	1,24	0,67	0,58	0,48
14.	99,46	100,00	99,86	97,76	89,09	100,00	100,00	100,00
15.	0,60	1,66	0,91	1,01	1,32	0,93	0,97	1,35
16.	30,20	15,70	34,30	25,30	29,30	25,90	32,80	23,20
17.	5,10	6,10	4,10	4,70	4,90	-	4,10	5,00
18.	83,79	100,00	85,15	83,70	100,00	99,98	92,19	98,49
19.	49,40	49,19	52,60	45,76	60,71	53,01	36,29	40,97
20.	51,85	63,95	50,50	40,75	53,40	38,46	44,99	61,07
21.	93,40	80,90	91,30	88,30	83,60	80,30	89,40	88,10
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,00
23.	59,33	69,11	53,02	58,74	56,42	64,68	66,05	67,60
24.	8,10	1,10	3,70	2,00	7,00	0,00	4,70	12,30
25.	97,97	99,51	98,08	99,15	98,79	98,41	99,26	99,53
26.	296,39	368,88	246,99	302,84	239,83	333,29	321,82	508,39
27.	0,51	0,43	0,55	0,48	0,53	0,48	0,56	0,55
28.	80,50	94,40	89,53	89,46	91,63	87,21	76,58	93,60
29.	70,72	86,51	41,78	72,65	68,91	72,65	64,54	80,20
30.	7,95	6,43	2,06	5,23	4,17	5,65	5,80	11,54

	Independência	Ipaporanga	Ipaumirim	Ipu	Ipueiras	Iracema	Irauçuba	Itaiçaba
1.	37,61	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2.	44,07	32,65	64,63	60,40	42,98	72,11	65,99	72,74
3.	96,00	83,70	96,80	96,10	91,90	70,10	94,80	98,90
4.	99,77	100,00	98,91	100,00	95,03	99,19	99,40	88,81
5.	27,90	41,41	24,14	24,29	39,70	23,45	35,87	15,76
6.	-0,02	-0,01	0,03	-0,02	-0,06	0,09	0,07	0,03
7.	44,86	36,46	59,40	63,48	48,49	71,56	64,25	58,49
8.	2,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9.	0,00	0,00	0,00	2,00	0,00	0,00	0,00	0,00
10.	48,10	37,20	45,00	51,50	48,20	53,20	36,20	56,40
11.	10,90	1,40	7,10	7,30	9,10	6,10	1,60	9,70
12.	14,23	12,66	23,81	10,62	16,88	5,49	13,99	12,66
13.	0,77	0,78	0,49	0,53	0,34	0,78	0,59	0,65
14.	99,24	100,00	98,75	99,51	100,00	100,00	99,28	101,00
15.	1,00	1,22	1,06	1,14	0,47	1,56	0,76	0,91
16.	28,90	33,80	27,30	28,10	32,00	27,20	28,00	22,80
17.	6,50	5,75	3,90	4,25	4,60	4,55	5,60	5,65
18.	86,35	89,44	90,47	84,46	83,21	93,41	90,07	96,55
19.	54,11	55,08	51,70	50,79	42,13	67,27	40,34	55,52
20.	65,17	50,21	34,53	47,09	40,59	65,60	58,48	62,23
21.	96,20	81,50	90,60	91,00	90,00	94,70	90,50	91,50
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	64,86	53,10	59,21	59,71	54,30	62,66	59,24	62,18
24.	2,50	0,40	1,00	5,50	1,90	0,00	14,10	1,10
25.	98,92	98,26	99,18	99,19	98,68	99,15	95,89	99,04
26.	328,24	232,55	476,32	359,38	288,74	369,91	261,94	348,19
27.	0,56	0,55	0,64	0,56	0,57	0,56	0,62	0,44
28.	80,01	85,83	84,34	75,56	68,36	80,88	95,51	90,92
29.	72,17	51,23	76,74	65,22	47,74	76,80	51,48	73,14
30.	3,46	2,30	8,01	6,65	5,71	8,24	3,94	6,12

	Itaitinga	Itapajé	Itapipoca	Itapiúna	Itarema	Itatira	Jaguaretama	Jaguaribara
1.	2,40	22,14	56,61	0,00	44,84	0,00	6,96	78,75
2.	94,15	75,96	54,55	47,76	44,90	41,97	48,22	75,16
3.	26,20	82,30	85,50	74,00	95,00	84,20	94,90	84,90
4.	97,46	90,00	98,89	98,80	95,23	99,06	98,04	99,84
5.	12,63	25,63	28,86	36,74	36,33	39,98	32,60	18,17
6.	0,09	0,07	0,12	0,03	0,14	0,15	-0,02	0,12
7.	99,30	70,30	57,65	47,35	42,53	50,40	47,41	69,35
8.	2,00	1,00	4,00	1,00	5,00	2,00	2,00	2,00
9.	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
10.	46,10	53,60	55,10	45,90	59,00	42,40	45,60	53,50
11.	2,50	5,20	9,30	4,80	7,30	8,30	5,60	10,40
12.	7,03	13,18	16,37	14,29	8,98	6,12	20,41	12,58
13.	0,60	0,57	0,48	0,46	0,50	0,74	0,61	0,63
14.	98,93	99,93	99,55	100,00	100,00	100,00	100,00	100,00
15.	2,21	0,80	0,96	1,52	1,01	0,59	0,89	0,99
16.	17,30	23,40	22,60	30,40	26,90	32,60	28,50	26,10
17.	4,85	5,10	5,10	4,50	5,55	4,95	5,20	4,30
18.	94,11	86,81	91,49	82,41	93,84	96,04	80,28	97,52
19.	57,33	44,58	50,17	48,49	52,61	44,33	42,95	58,03
20.	57,78	59,30	60,33	44,05	61,83	54,52	46,68	50,62
21.	82,30	88,20	93,10	90,20	89,60	86,50	89,80	93,20
22.	0,00	0,00	3,00	0,00	0,00	0,00	0,00	0,00
23.	65,95	64,35	71,01	55,40	63,53	52,28	58,74	83,58
24.	0,00	5,50	5,30	9,00	3,20	0,00	17,10	78,00
25.	98,97	97,79	97,40	98,97	95,59	97,76	98,49	97,94
26.	340,69	304,68	314,91	258,13	259,66	246,42	305,85	331,97
27.	0,51	0,54	0,56	0,50	0,53	0,54	0,57	0,46
28.	95,19	94,37	94,99	94,98	94,33	81,88	81,72	85,99
29.	82,36	67,73	65,83	60,19	51,78	23,96	72,76	84,16
30.	5,62	7,05	7,54	3,34	2,41	3,65	6,14	9,58

	Jaguaribe	Jaguaruana	Jardim	Jati	Jijoca de Jericoacoara	Juazeiro do Norte	Jucás	Lavras da Mangabeira
1.	19,76	0,00	9,97	0,00	49,78	37,24	65,00	0,00
2.	66,19	74,89	40,13	54,61	56,21	94,22	56,57	58,57
3.	95,10	94,00	74,10	93,40	88,50	89,60	95,10	95,70
4.	100,00	98,67	99,73	99,17	98,98	99,05	85,00	98,92
5.	20,34	18,90	29,96	24,57	21,78	9,64	27,74	31,40
6.	-0,06	0,01	-0,04	0,02	0,09	0,07	0,01	-0,01
7.	67,62	59,36	33,70	58,60	32,68	96,07	59,44	58,32
8.	1,00	1,00	3,00	1,00	2,00	8,00	2,00	1,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	54,00	57,80	50,40	60,00	63,60	57,90	40,40	41,40
11.	11,40	14,00	7,70	16,80	5,60	4,20	4,20	6,10
12.	8,35	4,85	16,36	23,08	21,74	14,47	23,39	7,77
13.	0,58	1,11	0,85	1,54	0,53	0,48	0,65	0,48
14.	100,00	100,00	100,00	100,00	99,14	97,30	100,00	100,00
15.	0,58	0,66	0,74	1,02	0,42	1,57	0,82	0,73
16.	25,60	27,20	26,30	26,20	23,50	16,20	31,20	28,90
17.	5,10	5,60	5,30	5,30	7,05	4,60	5,05	4,35
18.	97,36	80,97	100,00	92,98	97,48	88,09	93,91	86,16
19.	55,03	53,46	61,49	65,68	55,25	48,72	37,62	45,40
20.	54,83	50,56	54,96	49,01	48,73	60,51	54,33	36,20
21.	92,70	88,40	85,00	90,10	80,10	88,10	83,80	89,00
22.	1,00	0,00	0,00	0,00	0,00	7,00	0,00	0,00
23.	66,24	64,00	55,36	57,54	71,17	75,57	70,04	57,73
24.	0,30	0,00	9,10	12,20	1,20	11,60	4,00	8,30
25.	99,53	98,44	98,83	98,26	98,22	99,51	96,94	99,31
26.	358,03	324,29	302,68	329,27	488,65	509,05	287,91	334,41
27.	0,54	0,47	0,53	0,50	0,59	0,55	0,50	0,59
28.	78,56	86,43	87,78	91,51	83,95	89,45	94,04	76,41
29.	71,97	70,59	50,65	70,07	74,63	83,04	67,00	63,98
30.	8,49	4,64	5,65	4,03	11,18	14,86	4,53	7,23

	Limoeiro do Norte	Madalena	Maracanaú	Maranguape	Marco	Martinópole	Massapê	Mauriti
1.	90,00	0,00	41,71	11,20	0,00	0,00	42,25	37,86
2.	81,84	53,77	95,95	84,08	57,86	71,80	71,09	54,15
3.	96,40	80,20	70,20	55,30	83,20	91,30	95,20	91,50
4.	95,00	97,68	99,45	98,95	99,17	98,35	99,03	89,71
5.	10,48	32,12	7,05	11,95	23,76	37,55	23,09	32,88
6.	0,04	0,13	0,09	0,17	0,24	0,04	0,07	0,03
7.	57,73	49,29	99,31	76,00	62,48	78,39	68,15	52,63
8.	6,00	1,00	2,00	7,00	1,00	1,00	1,00	1,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	55,20	41,30	57,40	53,00	57,80	52,10	52,20	49,90
11.	4,50	4,60	2,90	3,90	7,30	5,50	10,40	11,20
12.	10,59	4,81	10,70	11,21	22,40	20,83	15,87	25,78
13.	0,48	0,57	0,28	0,35	0,49	1,19	0,43	0,80
14.	94,97	85,73	100,00	96,46	100,00	99,38	100,00	100,00
15.	1,41	0,46	1,87	0,85	0,60	0,73	0,59	0,85
16.	19,20	26,40	9,70	15,40	28,60	29,90	28,50	29,50
17.	5,00	4,60	5,20	4,95	5,20	5,70	6,30	4,90
18.	94,51	74,35	100,00	72,18	100,00	92,78	86,78	86,22
19.	45,39	39,86	62,63	37,29	52,41	51,14	53,18	61,31
20.	62,62	39,24	64,27	47,81	62,38	55,65	63,49	52,69
21.	90,00	86,40	78,40	80,50	90,60	86,30	89,50	89,30
22.	4,00	0,00	3,00	0,00	0,00	0,00	0,00	1,00
23.	88,22	56,54	77,13	66,52	56,04	59,82	70,99	63,05
24.	2,00	2,30	8,10	3,80	6,80	2,10	1,20	2,80
25.	99,44	98,52	99,42	99,05	96,64	97,30	98,15	98,44
26.	468,56	281,72	409,32	335,35	320,01	264,30	269,74	285,45
27.	0,51	0,58	0,44	0,47	0,54	0,60	0,47	0,56
28.	93,34	81,49	95,17	86,55	96,29	89,58	83,97	80,28
29.	83,99	62,71	87,83	77,64	55,25	63,48	59,31	65,36
30.	14,95	5,25	12,38	8,51	6,55	5,39	7,90	4,58

	Meruoca	Milagres	Milhã	Miraíma	Missão Velha	Mombaça	Monsenhor Tabosa	Morada Nova
1.	0,00	0,00	3,66	0,00	9,57	0,00	0,00	5,00
2.	53,63	45,53	50,01	50,94	47,61	39,77	9,64	55,97
3.	74,60	85,50	87,90	96,20	85,60	71,50	92,50	81,10
4.	92,12	87,45	84,99	99,23	99,54	96,69	99,63	98,00
5.	19,43	23,10	25,69	44,88	22,66	32,92	33,98	23,64
6.	0,17	-0,09	-0,06	0,05	-0,01	0,03	-0,01	-0,09
7.	54,19	47,87	45,61	53,49	44,99	44,08	56,04	57,04
8.	1,00	1,00	1,00	1,00	2,00	3,00	3,00	3,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	56,40	46,70	39,90	37,30	58,50	50,20	49,30	46,10
11.	8,70	7,70	5,90	4,10	12,50	10,90	9,30	4,00
12.	20,55	17,86	41,18	11,24	12,32	16,64	31,58	3,96
13.	0,89	0,67	0,76	0,67	0,65	0,37	0,82	0,60
14.	100,00	100,00	100,00	100,00	97,72	100,00	100,00	99,53
15.	0,95	0,78	0,84	0,45	0,99	0,46	1,06	1,10
16.	18,70	28,90	28,80	32,30	27,90	33,80	29,60	28,20
17.	6,25	4,80	6,55	4,35	5,25	5,05	4,85	4,65
18.	91,27	93,32	92,91	83,84	90,52	85,13	91,24	88,18
19.	48,35	57,64	55,51	44,04	56,15	41,03	48,56	54,08
20.	52,85	47,57	50,50	50,26	45,24	42,72	42,93	47,71
21.	87,70	90,70	95,00	94,40	87,20	90,20	93,60	87,80
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
23.	53,87	51,43	54,13	55,23	57,73	52,72	46,63	59,87
24.	22,80	11,10	0,00	4,20	2,20	9,20	7,30	5,80
25.	99,03	99,26	98,70	96,29	98,86	98,50	96,56	99,05
26.	317,05	306,54	310,84	240,81	345,95	305,05	286,12	326,59
27.	0,47	0,47	0,54	0,64	0,58	0,54	0,56	0,53
28.	94,49	92,63	82,60	95,75	93,45	77,53	77,73	83,21
29.	66,40	77,99	59,59	42,31	65,01	60,91	31,97	69,97
30.	7,16	7,13	8,37	3,80	5,19	4,26	3,80	6,85

	Moraújo	Morrinhos	Mucambo	Mulungu	Nova Olinda	Nova Russas	Novo Oriente	Ocara
1.	0,00	0,00	29,03	18,69	0,00	23,53	46,55	31,65
2.	53,37	56,18	65,69	61,82	68,35	69,64	44,70	43,12
3.	90,20	92,40	96,00	4,60	64,70	94,70	95,10	95,80
4.	98,83	97,55	97,73	95,94	99,76	100,00	99,97	97,08
5.	40,20	37,96	35,75	29,83	27,83	24,00	41,31	33,08
6.	0,08	0,04	-0,06	0,22	0,15	0,04	0,08	0,07
7.	44,66	46,43	64,29	36,55	68,01	75,07	51,83	31,68
8.	1,00	2,00	2,00	1,00	3,00	1,00	1,00	1,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	50,90	49,60	44,90	52,30	54,50	55,90	42,70	41,90
11.	9,70	8,10	6,40	4,10	11,30	9,50	13,00	8,70
12.	11,24	8,93	22,22	-	11,28	18,32	8,31	18,35
13.	0,94	0,59	0,49	0,72	0,86	0,47	0,64	0,84
14.	99,58	98,36	97,86	100,00	95,67	95,68	100,00	100,00
15.	0,82	0,78	0,84	1,44	0,86	0,97	0,39	1,07
16.	32,00	28,40	31,60	23,00	23,30	28,40	34,00	30,10
17.	5,25	6,05	5,50	4,80	6,15	4,70	6,75	5,50
18.	82,25	83,36	84,66	65,54	94,38	86,14	85,38	89,50
19.	49,76	48,63	64,25	36,62	54,88	43,84	58,76	45,07
20.	46,58	57,21	47,33	38,50	71,64	51,24	50,21	48,04
21.	94,70	91,90	85,40	92,70	87,90	89,30	94,90	78,40
22.	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
23.	55,51	56,96	66,65	62,54	60,38	68,50	65,54	62,66
24.	2,70	0,00	0,10	4,60	1,80	5,00	4,80	2,20
25.	96,23	97,96	99,43	98,91	99,10	99,35	98,80	98,58
26.	218,54	251,67	339,50	307,20	326,20	366,33	269,28	251,04
27.	0,52	0,55	0,60	0,57	0,58	0,51	0,61	0,53
28.	87,51	91,16	77,88	95,07	94,67	74,46	79,62	96,95
29.	52,25	53,33	61,63	73,87	72,87	73,19	74,01	63,75
30.	2,18	6,98	6,72	2,77	4,36	9,69	3,89	1,88

	Orós	Pacajus	Pacatuba	Pacoti	Pacujá	Palhano	Palmácia	Paracuru
1.	0,00	4,43	63,29	91,04	0,00	0,00	30,30	36,17
2.	74,10	82,23	93,69	67,88	68,95	54,12	53,31	76,45
3.	94,20	80,90	45,70	83,20	97,50	89,70	91,50	74,80
4.	99,73	95,29	98,49	97,45	100,00	97,17	98,79	85,38
5.	20,89	12,62	8,05	19,36	21,95	19,63	25,71	19,78
6.	-0,03	0,22	0,22	0,02	-0,01	0,07	0,26	0,01
7.	74,91	81,95	85,89	40,88	62,20	50,92	41,29	65,08
8.	2,00	1,00	4,00	3,00	2,00	2,00	1,00	2,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	52,10	60,20	55,40	55,90	55,00	57,00	40,30	57,30
11.	5,60	4,30	4,20	7,90	9,50	9,30	1,50	3,70
12.	22,47	11,01	13,66	5,78	14,71	-	18,69	10,36
13.	1,22	0,38	0,26	1,09	0,65	1,30	0,47	0,54
14.	98,79	98,08	100,00	100,00	100,00	100,00	91,99	90,38
15.	1,12	1,22	0,63	1,01	0,81	0,87	0,31	0,99
16.	29,70	18,30	9,40	20,40	28,20	28,40	24,10	20,20
17.	4,65	4,85	4,95	4,80	5,35	5,55	4,85	5,35
18.	100,00	93,06	62,10	90,32	89,96	100,00	68,20	97,94
19.	56,58	49,05	35,32	60,93	53,07	59,22	40,57	63,03
20.	39,61	56,73	34,62	58,21	100,00	45,14	49,01	72,67
21.	88,70	86,10	83,70	83,90	94,70	82,20	84,80	90,90
22.	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	63,15	65,08	81,01	82,58	62,72	60,24	61,66	68,04
24.	5,30	0,00	8,80	10,80	5,30	2,80	9,90	4,10
25.	99,19	99,35	99,17	98,98	99,31	98,85	98,25	98,09
26.	343,89	415,07	384,05	326,78	303,10	326,03	381,09	376,51
27.	0,49	0,48	0,47	0,51	0,50	0,47	0,64	0,55
28.	79,37	86,84	86,14	86,00	85,56	91,48	88,42	85,47
29.	73,94	86,21	87,80	68,83	56,91	71,62	62,64	82,56
30.	3,76	7,70	9,99	4,65	6,74	3,87	3,76	6,46

	Paraipaba	Parambu	Paramoti	Pedra Branca	Penaforte	Pentecoste	Pereiro	Pindoretama
1.	82,20	0,00	24,67	60,00	0,00	0,00	0,00	0,10
2.	53,97	48,20	52,19	59,81	71,12	62,25	39,85	69,56
3.	79,90	96,90	99,70	95,60	95,00	93,30	90,40	78,10
4.	99,46	99,98	99,72	98,00	99,23	99,75	99,96	90,82
5.	20,11	31,82	34,54	30,17	22,09	26,41	38,19	13,97
6.	0,05	-0,07	0,00	0,00	0,13	0,09	0,02	0,11
7.	44,72	45,05	48,99	58,51	77,79	60,44	34,48	60,38
8.	2,00	1,00	1,00	2,00	1,00	2,00	1,00	2,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	59,20	48,00	42,20	44,00	61,10	48,30	50,10	55,10
11.	10,30	13,00	5,80	4,80	13,00	4,70	16,60	4,70
12.	10,44	14,60	7,09	17,86	5,95	13,94	32,26	13,51
13.	0,53	0,67	0,61	0,49	1,25	0,57	0,62	0,64
14.	100,00	99,88	97,55	95,37	100,00	91,62	102,25	99,58
15.	0,63	0,89	0,43	0,73	1,59	1,06	0,62	1,39
16.	20,00	35,10	29,70	33,30	22,00	24,80	29,60	21,70
17.	6,40	5,30	4,85	5,30	5,40	5,20	5,05	5,20
18.	88,32	86,80	87,66	88,35	99,45	86,69	91,44	100,00
19.	57,78	49,03	50,16	54,90	70,51	51,88	50,13	61,35
20.	67,88	56,06	42,17	62,87	69,03	72,33	75,01	53,58
21.	89,10	92,40	79,90	91,60	80,50	92,30	76,00	82,10
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	77,02	56,24	62,48	72,73	61,68	58,63	52,83	59,74
24.	5,30	21,30	6,60	9,50	1,30	6,30	11,30	2,70
25.	98,26	97,96	98,44	97,84	99,26	97,48	98,83	98,31
26.	330,74	264,88	249,98	272,58	302,24	327,95	251,52	346,81
27.	0,51	0,54	0,53	0,52	0,46	0,57	0,55	0,46
28.	95,61	76,66	95,65	75,23	96,32	86,03	75,70	87,51
29.	80,80	64,77	57,54	53,51	75,57	74,48	67,56	84,31
30.	3,28	2,09	2,16	4,98	5,49	5,56	5,89	5,55

	Piquet Carneiro	Pires Ferreira	Poranga	Porteiras	Potengi	Potiretama	Quiterianópolis	Quixadá
1.	0,00	0,00	32,78	20,75	0,00	0,00	0,00	21,07
2.	54,86	34,79	42,67	44,12	57,28	55,25	34,41	69,87
3.	93,40	82,10	94,90	93,30	96,30	98,50	95,50	84,80
4.	99,55	97,63	99,05	99,29	99,53	99,32	94,46	98,60
5.	30,08	34,79	37,51	29,48	33,70	28,42	38,36	20,83
6.	0,19	0,27	-0,01	-0,06	0,06	0,07	0,03	0,09
7.	48,10	32,83	64,98	41,09	55,61	44,12	31,65	71,32
8.	1,00	1,00	2,00	2,00	2,00	1,00	1,00	3,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,00
10.	42,10	39,60	44,40	50,10	48,60	56,60	50,10	52,40
11.	9,20	1,90	6,50	6,30	12,50	6,50	14,50	5,20
12.	=	=	18,52	8,33	7,75	18,52	11,76	15,65
13.	0,61	0,47	0,74	0,80	1,02	0,95	0,82	0,42
14.	99,52	99,77	99,51	100,00	100,00	100,00	100,00	100,00
15.	0,91	0,47	0,65	0,93	0,74	1,11	0,77	1,20
16.	26,10	29,90	33,50	29,40	34,50	29,10	32,80	22,90
17.	5,95	7,15	5,15	5,75	4,20	5,25	5,40	4,85
18.	85,86	80,20	91,48	100,00	88,67	84,45	86,82	86,80
19.	42,73	40,70	54,11	76,15	42,95	49,07	62,43	43,48
20.	34,71	38,38	53,20	36,01	35,04	57,48	44,34	51,17
21.	83,40	84,50	87,20	76,90	83,30	91,60	83,90	79,20
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,00
23.	57,90	51,85	63,57	59,11	58,43	58,00	52,14	66,39
24.	0,60	0,00	2,60	9,50	0,20	0,00	1,90	10,30
25.	99,32	99,32	97,41	99,01	98,73	98,42	96,17	98,92
26.	270,47	231,47	248,23	264,95	262,55	274,06	247,39	377,25
27.	0,53	0,52	0,55	0,50	0,58	0,50	0,56	0,54
28.	84,43	81,77	76,25	90,78	78,46	87,02	81,33	82,31
29.	69,75	71,61	32,01	62,51	51,07	70,75	46,03	77,05
30.	2,97	4,16	5,42	3,83	3,87	3,81	2,41	12,52

	Quixelô	Quixeramobim	Quixeré	Redenção	Reriutaba	Russas	Saboeiro	Salitre
1.	94,99	49,00	0,00	9,48	0,00	42,01	4,42	29,28
2.	35,83	56,15	77,64	63,29	52,03	72,30	54,01	34,17
3.	96,70	84,10	96,30	91,40	97,90	95,00	97,00	84,70
4.	100,00	98,00	96,12	95,76	89,12	97,02	99,21	84,49
5.	30,91	23,75	18,25	22,07	36,40	10,47	33,09	36,88
6.	-0,04	0,23	0,04	0,01	-0,18	0,11	-0,06	0,06
7.	32,86	60,41	61,46	57,29	54,43	64,37	53,68	40,53
8.	3,00	5,00	4,00	3,00	1,00	3,00	1,00	2,00
9.	0,00	2,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	56,60	54,20	49,40	54,50	43,50	61,20	53,00	58,30
11.	13,80	7,40	8,70	8,50	6,60	6,50	16,20	16,80
12.	4,50	7,59	15,38	8,87	10,47	8,43	15,87	8,03
13.	1,00	0,53	0,46	0,99	0,47	0,52	0,63	0,99
14.	85,14	100,00	100,00	100,00	97,80	100,00	91,99	100,00
15.	1,20	0,84	0,70	0,99	0,63	0,99	1,02	0,56
16.	36,80	24,20	26,00	24,30	29,30	19,60	33,50	39,90
17.	4,80	5,55	5,25	5,20	6,05	5,90	5,45	4,70
18.	100,00	93,14	88,06	99,84	86,01	89,04	88,31	100,00
19.	50,74	53,25	49,11	53,41	55,96	53,44	46,70	53,17
20.	43,03	44,27	50,10	79,96	62,47	52,86	43,62	46,57
21.	73,20	85,80	87,30	81,60	91,50	83,80	91,90	81,20
22.	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	77,68	70,83	64,78	61,42	55,13	73,85	58,57	53,73
24.	14,30	5,40	1,10	0,60	8,40	2,00	0,20	3,00
25.	99,08	98,64	99,20	99,40	99,16	99,43	91,10	95,42
26.	289,56	370,97	301,89	328,69	315,09	427,26	264,11	219,68
27.	0,51	0,57	0,45	0,51	0,60	0,47	0,55	0,49
28.	95,64	81,19	94,86	83,08	74,17	86,25	79,90	81,59
29.	70,67	67,82	60,26	73,87	70,62	78,89	40,71	63,51
30.	3,68	8,07	6,41	3,04	9,25	10,15	2,62	1,76

	Santa Quitéria	Santana do Acaraú	Santana do Cariri	São Benedito	São Gonçalo do Amarante	São João do Jaguaribe	São Luís do Curu	Senador Pompeu
1.	0,00	0,00	0,00	47,94	53,51	42,60	0,00	0,00
2.	42,57	46,98	54,68	53,23	70,89	43,02	59,84	56,81
3.	80,50	88,10	69,00	72,50	54,60	97,40	90,20	90,80
4.	97,72	99,82	99,73	99,37	99,69	100,00	98,94	99,37
5.	33,91	43,57	39,54	24,90	17,52	16,37	23,96	23,10
6.	-0,02	0,06	-0,03	0,06	0,13	-0,13	0,03	-0,04
7.	52,05	51,33	51,38	55,58	65,02	40,11	64,56	59,34
8.	3,00	1,00	3,00	1,00	1,00	1,00	1,00	8,00
9.	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
10.	47,20	43,90	52,60	60,30	55,00	48,40	48,20	52,00
11.	7,60	5,90	11,20	13,10	2,60	1,90	3,60	7,10
12.	26,71	17,86	27,40	15,52	8,59	13,70	11,24	3,24
13.	0,30	0,35	0,92	0,45	0,51	0,65	0,86	0,83
14.	100,00	96,74	100,00	80,55	100,00	100,00	95,46	90,41
15.	0,46	0,82	0,63	0,97	1,30	0,78	1,10	0,87
16.	27,40	29,60	29,90	27,10	20,20	25,80	22,40	27,20
17.	5,20	4,65	5,00	4,80	5,70	5,55	4,40	4,65
18.	85,97	86,30	91,48	94,78	100,00	87,49	98,75	87,80
19.	47,91	40,02	54,59	53,84	63,44	47,19	51,01	45,47
20.	54,34	39,63	43,56	50,46	65,58	45,17	51,24	53,55
21.	92,20	84,00	80,00	94,40	92,60	86,20	75,90	89,70
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	54,67	53,99	55,46	70,41	74,98	68,14	58,65	59,59
24.	7,40	5,60	0,00	3,70	1,10	7,00	11,70	11,90
25.	97,27	98,34	97,58	99,63	98,48	99,11	98,32	98,99
26.	276,46	299,63	270,90	309,07	361,92	397,48	299,11	360,92
27.	0,57	0,69	0,57	0,52	0,52	0,51	0,52	0,52
28.	77,35	87,39	94,64	74,75	85,94	85,11	88,48	80,01
29.	56,41	63,07	65,51	63,88	84,62	83,32	77,26	63,30
30.	6,43	5,37	3,72	6,48	9,18	8,30	4,75	7,56

	Senador Sá	Sobral	Solonópole	Tabuleiro do Norte	Tamboril	Tarrafas	Tauá	Tejuçuoca
1.	0,00	68,58	0,00	14,31	0,00	16,71	21,27	0,00
2.	41,06	88,54	53,38	66,33	50,08	42,89	61,98	43,30
3.	91,50	92,20	96,10	92,80	97,40	94,40	90,80	91,60
4.	98,19	96,50	96,44	98,48	98,58	98,51	99,93	97,62
5.	34,02	11,84	26,10	17,09	36,80	35,33	26,06	33,43
6.	0,18	0,10	0,02	0,04	-0,01	0,03	0,07	0,17
7.	73,96	88,35	51,55	64,40	55,80	29,45	57,90	37,65
8.	1,00	6,00	1,00	1,00	2,00	1,00	3,00	2,00
9.	0,00	2,00	0,00	0,00	0,00	0,00	2,00	0,00
10.	63,20	59,00	52,30	47,00	44,80	46,10	54,30	46,90
11.	10,40	2,50	6,20	7,60	7,90	15,80	11,40	5,30
12.	-	8,66	15,31	15,04	15,29	12,66	12,42	4,10
13.	0,54	0,49	1,05	0,50	0,55	0,56	0,75	0,81
14.	84,96	89,52	100,00	100,00	100,00	93,44	100,00	93,61
15.	0,54	2,52	0,61	0,56	1,45	1,01	1,23	0,70
16.	33,20	17,00	26,20	22,60	33,00	35,50	27,50	27,80
17.	5,45	7,55	5,45	5,30	4,90	5,10	5,75	4,75
18.	91,92	91,83	79,87	83,91	91,38	88,36	88,95	83,06
19.	51,11	58,90	45,56	56,22	45,21	54,35	57,24	48,90
20.	59,83	83,82	45,91	58,75	46,22	33,73	61,00	36,85
21.	90,40	89,40	93,70	90,40	85,80	93,90	86,90	88,10
22.	0,00	9,00	0,00	1,00	0,00	0,00	1,00	0,00
23.	52,30	81,44	58,40	65,48	55,75	57,76	65,92	51,82
24.	2,70	11,90	2,60	2,40	4,80	0,00	11,60	45,00
25.	96,88	99,37	99,32	99,38	98,70	99,00	98,76	97,23
26.	273,60	530,98	326,88	431,38	253,87	259,18	354,53	246,45
27.	0,53	0,57	0,52	0,54	0,53	0,55	0,58	0,52
28.	90,67	91,82	80,78	84,28	78,91	82,94	78,03	95,66
29.	53,15	72,21	55,44	77,90	53,05	51,47	63,50	43,18
30.	5,32	18,54	5,40	11,29	3,91	2,05	6,66	1,89

	Tianguá	Trairi	Tururu	Ubajara	Umari	Umirim	Uruburetama	Uruoca
1.	54,46	29,27	0,00	0,00	0,00	0,00	0,00	27,44
2.	61,58	38,41	52,92	59,54	40,33	57,52	77,15	54,38
3.	75,30	70,10	89,20	75,80	95,90	94,80	92,30	93,60
4.	99,45	90,72	99,10	98,41	99,93	99,34	99,54	97,80
5.	18,01	35,70	35,85	16,56	31,09	33,41	24,26	39,98
6.	0,04	0,05	0,17	0,09	0,06	0,02	0,10	0,06
7.	66,51	36,53	36,70	48,29	51,93	58,99	74,32	59,54
8.	2,00	1,00	2,00	1,00	1,00	1,00	2,00	1,00
9.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10.	61,30	55,90	41,60	58,60	34,20	44,60	56,60	47,00
11.	8,40	10,00	3,80	3,50	1,10	6,00	5,10	10,60
12.	9,53	11,27	14,98	14,99	32,26	19,23	6,47	37,38
13.	0,61	0,35	0,71	0,65	0,52	0,56	0,85	0,67
14.	100,00	99,12	100,00	96,92	94,59	98,54	96,16	99,20
15.	1,14	0,62	0,90	1,01	0,52	0,67	0,99	0,74
16.	24,00	23,60	28,00	24,60	32,50	28,40	22,90	36,50
17.	5,50	4,90	5,85	5,75	4,60	4,75	5,05	5,80
18.	95,59	85,63	96,37	100,00	88,31	77,73	89,54	80,72
19.	59,51	44,80	53,84	48,29	41,53	45,25	47,94	52,38
20.	59,77	42,59	54,64	57,37	33,15	44,92	68,91	47,70
21.	90,80	89,80	92,00	87,70	94,50	87,20	92,00	74,90
22.	2,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00
23.	73,19	58,28	55,79	59,55	54,26	56,56	60,72	62,30
24.	4,20	3,20	6,70	10,20	3,00	8,20	22,00	5,10
25.	99,35	96,34	97,51	99,43	99,49	97,50	97,14	96,93
26.	532,01	257,02	233,35	378,58	298,90	239,66	315,76	228,65
27.	0,61	0,56	0,55	0,54	0,56	0,54	0,55	0,54
28.	94,82	82,36	89,12	93,85	81,91	82,60	87,67	81,95
29.	72,28	67,17	63,50	71,96	68,71	66,90	59,81	54,76
30.	8,16	2,74	2,62	7,19	4,68	2,61	4,51	2,93

	Varjota	Várzea Alegre	Viçosa do Ceará
1.	0,00	0,00	0,00
2.	75,64	57,91	31,94
3.	97,50	93,40	77,30
4.	99,25	98,73	99,89
5.	23,76	29,12	40,11
6.	-0,05	0,04	0,15
7.	81,94	62,17	32,44
8.	1,00	1,00	4,00
9.	0,00	1,00	2,00
10.	49,50	48,30	57,50
11.	6,10	8,50	12,90
12.	-	5,59	7,22
13.	0,50	0,47	0,37
14.	99,48	99,90	96,48
15.	0,44	1,20	0,63
16.	26,70	28,60	31,40
17.	5,80	4,65	5,25
18.	88,69	95,74	88,32
19.	74,07	50,71	44,08
20.	54,29	60,69	49,93
21.	89,20	90,40	87,10
22.	0,00	0,00	0,00
23.	62,99	58,82	51,17
24.	5,50	5,00	4,10
25.	99,36	99,38	98,56
26.	344,65	334,93	285,46
27.	0,53	0,54	0,60
28.	79,60	92,70	91,86
29.	69,45	74,45	52,47
30.	10,80	4,99	2,31

APÊNDICE C – VALORES DOS INDICADORES, NA ESCALA DA ESCADA DA SUSTENTABILIDADE, DOS MUNICÍPIOS DO CEARÁ

	Indicadores	Abaiara	Acarape	Acaraú	Acopiara	Aiuaba
1.	Taxa de cobertura de esgoto (%)	0,000	0,431	0,228	0,273	0,000
2.	Taxa de cobertura de coleta de lixo (%)	0,402	0,620	0,454	0,484	0,514
3.	Arborização de vias públicas (%)	0,223	0,692	0,939	0,906	0,932
4.	Taxa de cobertura de água (%)	0,924	0,986	0,980	0,995	0,965
5.	Extrema pobreza (%)	0,771	0,465	0,681	0,702	0,639
6.	Taxa de crescimento da população	0,270	0,492	0,387	0,406	0,474
7.	Taxa de urbanização (%)	0,434	0,520	0,491	0,493	0,244
8.	Bibliotecas públicas, teatros e museus	0,500	0,500	0,667	1,000	0,500
9.	Monumentos históricos tombados e preservados	0	0	0	0	0
10.	Nível de ocupação das pessoas (%)	0,461	0,478	0,524	0,505	0,545
11.	Trabalho infantil (%)	0,756	0,956	0,605	0,571	0,420
12.	Taxa de mortalidade infantil	0,728	-	0,831	0,974	0,343
13.	Unidades de saúde por 1000 hab.	0,282	0,559	0,236	0,250	0,214
14.	Imunização contra doenças infecciosas infantis (%)	1,000	0,986	1,000	1,000	0,950
15.	Número de médicos por 1000 hab.	0,143	0,180	0,197	0,111	0,096
16.	Analfabetismo (%)	0,703	0,782	0,712	0,67	0,659
17.	IDEB (Ensino Fundamental)	0,495	0,465	0,490	0,570	0,530
18.	Escolarização do ensino fundamental (%)	0,681	0,711	0,898	0,874	0,711
19.	Escolarização da educação infantil (%)	0,536	0,414	0,460	0,402	0,415
20.	Escolarização do ensino médio (%)	0,422	0,272	0,513	0,552	0,350
21.	Rendimento escolar do ensino médio (%)	0,842	0,767	0,883	0,831	0,88
22.	Estabelecimentos de ensino com educação profissional	0,00	0,00	1,00	0,00	0,00
23.	Densidade adequada de moradores por dormitório (%)	0,503	0,696	0,603	0,629	0,557
24.	Vias públicas com urbanização adequada (%)	0,434	0,520	0,491	0,493	0,244
25.	Acesso à energia elétrica (%)	0,991	0,987	0,958	0,983	0,949
26.	Renda domiciliar per capita	0,069	0,102	0,109	0,111	0,040
27.	Índice de Gini da distribuição do rendimento	0,512	0,567	0,391	0,420	0,470
28.	Participação nas eleições (%)	0,947	0,885	0,812	0,859	0,786
29.	Acesso a serviço de telefonia (%)	0,726	0,763	0,542	0,615	0,373
30.	Acesso a serviço de internet (%)	0,029	0,024	0,058	0,040	0,019

	Alcântaras	Altaneira	Alto Santo	Amontada	Antonina do Norte	Apuiarés	Aquiraz	Aracati
1.	0,756	0,268	0,000	0,076	0,000	0,000	0,496	0,461
2.	0,464	0,775	0,417	0,340	0,645	0,505	0,752	0,732
3.	0,984	0,38	0,836	0,829	0,881	0,962	0,811	0,829
4.	0,995	0,998	0,930	0,958	0,994	0,989	0,988	0,995
5.	0,771	0,674	0,763	0,597	0,707	0,679	0,892	0,826
6.	0,476	0,420	0,578	0,465	0,640	0,609	0,490	0,527
7.	0,320	0,723	0,492	0,406	0,716	0,415	0,924	0,637
8.	0,500	1,000	0,500	0,333	1,000	1,000	1,000	1,000
9.	0	0	0	0	0	0	1	1
10.	0,509	0,400	0,529	0,516	0,484	0,478	0,558	0,538
11.	0,756	0,907	0,805	0,488	0,780	0,785	0,985	0,824
12.	0,908	0,897	0,692	0,790	-	0,753	0,972	0,814
13.	0,359	0,495	0,268	0,141	0,314	0,314	0,223	0,205
14.	0,952	1,000	0,996	0,985	0,924	0,823	0,992	1,000
15.	0,086	0,154	0,096	0,070	0,068	0,133	0,257	0,192
16.	0,709	0,682	0,699	0,743	0,674	0,732	0,792	0,792
17.	0,590	0,610	0,535	0,515	0,555	0,510	0,480	0,500
18.	0,845	0,950	0,818	0,888	0,972	0,809	0,928	0,942
19.	0,512	0,548	0,334	0,375	0,531	0,511	0,422	0,450
20.	0,417	0,437	0,449	0,471	0,648	0,460	0,485	0,530
21.	0,824	0,776	0,757	0,828	0,904	0,905	0,763	0,828
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
23.	0,724	0,697	0,527	0,527	0,596	0,568	0,747	0,751
24.	0,320	0,723	0,492	0,406	0,716	0,415	0,924	0,637
25.	0,984	0,987	0,987	0,950	0,984	0,978	0,991	0,985
26.	0,100	0,101	0,124	0,012	0,097	0,087	0,248	0,245
27.	0,535	0,446	0,518	0,437	0,487	0,457	0,502	0,458
28.	0,900	0,967	0,833	0,939	0,805	0,853	0,919	0,843
29.	0,533	0,566	0,767	0,432	0,539	0,574	0,851	0,751
30.	0,025	0,038	0,048	0,029	0,065	0,047	0,089	0,105

	Aracoiaba	Ararendá	Araripe	Aratuba	Arneiroz	Assaré	Aurora	Baixio
1.	0,000	0,000	0,000	0,478	0,000	0,000	0,350	0,000
2.	0,520	0,455	0,604	0,351	0,586	0,549	0,482	0,575
3.	0,953	0,894	0,808	0,688	0,954	0,918	0,93	0,918
4.	0,990	1,000	0,958	0,993	0,997	0,997	0,989	0,995
5.	0,738	0,613	0,594	0,918	0,944	0,686	0,724	0,789
6.	0,547	0,560	0,585	0,771	0,567	0,518	0,631	0,542
7.	0,541	0,468	0,616	0,327	0,507	0,533	0,481	0,548
8.	1,000	0,500	1,000	1,000	1,000	0,667	0,667	1,000
9.	0	0	0	0	0	0	0	0
10.	0,512	0,417	0,476	0,574	0,536	0,488	0,445	0,518
11.	0,307	0,873	0,541	0,502	0,595	0,517	0,707	0,732
12.	0,842	0,476	1,000	0,874	-	0,892	0,909	0,284
13.	0,436	0,255	0,318	0,441	0,468	0,314	0,368	0,295
14.	0,890	1,000	1,000	0,995	1,000	0,997	0,993	0,870
15.	0,299	0,272	0,091	0,114	0,125	0,140	0,159	0,158
16.	0,699	0,663	0,665	0,746	0,697	0,683	0,724	0,762
17.	0,465	0,600	0,525	0,555	0,525	0,525	0,475	0,450
18.	0,928	1,000	0,951	1,000	0,890	0,848	0,855	1,000
19.	0,502	0,540	0,492	0,592	0,565	0,396	0,421	0,535
20.	0,600	0,491	0,506	0,754	0,410	0,541	0,446	0,332
21.	0,902	0,847	0,892	0,822	0,954	0,886	0,874	0,936
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,570	0,552	0,565	0,640	0,590	0,574	0,643	0,592
24.	0,541	0,468	0,616	0,327	0,507	0,533	0,481	0,548
25.	0,991	0,992	0,979	0,994	0,980	0,985	0,988	0,997
26.	0,091	0,040	0,045	0,078	0,213	0,164	0,104	0,132
27.	0,483	0,461	0,441	0,512	0,469	0,407	0,473	0,540
28.	0,884	0,783	0,773	0,956	0,841	0,787	0,817	0,840
29.	0,666	0,443	0,326	0,750	0,596	0,636	0,706	0,747
30.	0,044	0,044	0,046	0,024	0,017	0,046	0,056	0,113

	Banabuiú	Barbalha	Barreira	Barro	Barroquinha	Baturité	Beberibe	Bela Cruz
1.	0,000	0,540	0,525	0,995	0,317	0,042	0,464	0,567
2.	0,487	0,710	0,461	0,544	0,514	0,734	0,596	0,440
3.	0,88	0,947	0,874	0,92	0,39	0,93	0,84	0,91
4.	0,913	0,997	0,975	0,246	0,987	1,000	0,900	0,998
5.	0,674	0,870	0,767	0,734	0,605	0,801	0,746	0,651
6.	0,564	0,481	0,475	0,491	0,574	0,479	0,454	0,517
7.	0,506	0,687	0,415	0,612	0,675	0,733	0,438	0,421
8.	0,500	1,000	0,667	0,333	0,500	1,000	1,000	0,667
9.	0	1	0	0	0	0	0	0
10.	0,478	0,570	0,442	0,435	0,448	0,529	0,551	0,583
11.	0,839	0,702	0,971	0,985	0,995	0,785	0,785	0,493
12.	0,987	0,865	0,997	0,903	0,828	0,880	0,928	0,877
13.	0,255	0,432	0,350	0,327	0,305	0,364	0,164	0,268
14.	0,986	0,914	0,882	0,986	1,000	0,993	0,995	1,000
15.	0,154	1,000	0,141	0,132	0,088	0,270	0,106	0,112
16.	0,698	0,813	0,725	0,764	0,645	0,775	0,739	0,729
17.	0,515	0,535	0,505	0,475	0,495	0,415	0,515	0,530
18.	0,856	1,000	0,949	0,844	0,923	0,915	0,943	0,762
19.	0,364	0,490	0,547	0,412	0,545	0,426	0,433	0,432
20.	0,414	0,653	0,499	0,394	0,579	0,463	0,564	0,531
21.	0,863	0,885	0,733	0,855	0,833	0,829	0,954	0,901
22.	1,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00
23.	0,533	0,748	0,678	0,636	0,633	0,640	0,700	0,685
24.	0,506	0,687	0,415	0,612	0,675	0,733	0,438	0,421
25.	0,981	0,992	0,995	0,995	0,972	0,992	0,986	0,960
26.	0,095	0,280	0,077	0,109	0,025	0,156	0,190	0,059
27.	0,438	0,483	0,494	0,489	0,446	0,518	0,439	0,448
28.	0,947	0,922	0,871	0,769	0,845	0,928	0,850	0,943
29.	0,730	0,812	0,714	0,776	0,446	0,774	0,788	0,561
30.	0,059	0,123	0,027	0,052	0,047	0,081	0,061	0,077

	Boa Viagem	Brejo Santo	Camocim	Campos Sales	Canindé	Capistrano	Caridade	Cariré
1.	0,000	0,830	0,321	0,241	0,366	0,927	0,000	0,000
2.	0,460	0,709	0,727	0,710	0,618	0,373	0,565	0,517
3.	0,893	0,869	0,783	0,918	0,973	0,593	0,78	0,888
4.	1,000	0,926	0,934	0,958	1,000	0,997	0,978	0,983
5.	0,636	0,846	0,715	0,710	0,694	0,642	0,703	0,691
6.	0,549	0,435	0,519	0,592	0,565	0,506	0,361	0,627
7.	0,507	0,621	0,742	0,720	0,629	0,364	0,576	0,452
8.	0,667	0,667	0,667	0,333	1,000	1,000	0,667	1,000
9.	0	0	1	0	1	0	0	0
10.	0,497	0,507	0,513	0,570	0,435	0,419	0,412	0,461
11.	0,395	0,941	0,854	0,302	0,863	0,707	0,824	0,737
12.	0,764	0,732	0,818	0,880	0,828	0,993	0,985	0,635
13.	0,150	0,405	0,245	0,368	0,205	0,386	0,186	0,464
14.	0,964	1,003	1,000	0,997	1,000	1,000	0,975	0,976
15.	0,085	0,369	0,114	0,167	0,182	0,241	0,202	0,158
16.	0,676	0,773	0,735	0,708	0,753	0,724	0,732	0,695
17.	0,475	0,700	0,520	0,495	0,470	0,480	0,440	0,615
18.	0,824	0,894	0,919	0,941	0,850	0,947	0,729	0,771
19.	0,285	0,623	0,465	0,484	0,461	0,470	0,435	0,386
20.	0,450	0,533	0,616	0,584	0,475	0,474	0,287	0,595
21.	0,923	0,9	0,853	0,871	0,913	0,835	0,957	0,877
22.	0,00	0,00	1,00	0,00	1,00	0,00	0,00	0,00
23.	0,557	0,793	0,679	0,680	0,682	0,762	0,575	0,563
24.	0,507	0,621	0,742	0,720	0,629	0,364	0,576	0,452
25.	0,975	0,996	0,983	0,985	0,986	0,990	0,989	0,986
26.	0,117	0,201	0,122	0,209	0,153	0,049	0,035	0,086
27.	0,407	0,465	0,429	0,410	0,404	0,437	0,476	0,458
28.	0,759	0,916	0,928	0,756	0,776	0,947	0,954	0,946
29.	0,579	0,754	0,637	0,625	0,670	0,730	0,782	0,613
30.	0,052	0,095	0,074	0,056	0,078	0,036	0,021	0,076

	Caririaçu	Cariús	Carnaubal	Cascavel	Catarina	Catunda	Caucaia	Cedro
1.	0,000	0,000	0,000	0,044	0,349	0,000	0,261	0,168
2.	0,542	0,533	0,564	0,662	0,520	0,517	0,825	0,575
3.	0,862	0,929	0,959	0,828	0,937	0,759	0,516	0,962
4.	1,000	0,908	0,990	0,963	0,966	0,997	0,945	0,994
5.	0,683	0,666	0,668	0,840	0,771	0,677	0,896	0,733
6.	0,668	0,601	0,520	0,494	0,483	0,508	0,453	0,582
7.	0,532	0,448	0,475	0,849	0,466	0,542	0,892	0,618
8.	0,667	0,500	1,000	0,333	0,333	1,000	1,000	0,333
9.	0	0	0	1	0	0	1	0
10.	0,583	0,442	0,568	0,547	0,429	0,441	0,586	0,487
11.	0,171	0,795	0,795	0,717	0,810	0,820	0,893	0,644
12.	0,753	0,973	0,979	0,905	0,857	0,567	0,881	0,769
13.	0,305	0,386	0,545	0,155	0,295	0,309	0,100	0,436
14.	1,000	0,910	0,988	0,998	1,000	0,967	0,809	1,000
15.	0,127	0,146	0,140	0,141	0,122	0,127	0,163	0,163
16.	0,683	0,682	0,703	0,771	0,706	0,7	0,871	0,722
17.	0,505	0,505	0,545	0,525	0,480	0,525	0,450	0,465
18.	0,890	0,811	0,833	0,937	0,600	0,896	0,818	0,935
19.	0,432	0,361	0,443	0,474	0,349	0,708	0,481	0,403
20.	0,511	0,322	0,442	0,525	0,377	0,399	0,445	0,605
21.	0,92	0,887	0,898	0,9	0,896	0,829	0,774	0,904
22.	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00
23.	0,562	0,554	0,597	0,617	0,652	0,563	0,686	0,633
24.	0,532	0,448	0,475	0,849	0,466	0,542	0,892	0,618
25.	0,990	0,987	0,990	0,986	0,940	0,977	0,994	0,994
26.	0,101	0,089	0,062	0,182	0,096	0,059	0,287	0,200
27.	0,483	0,472	0,465	0,511	0,483	0,457	0,507	0,432
28.	0,942	0,953	0,732	0,851	0,809	0,814	0,847	0,836
29.	0,698	0,642	0,588	0,820	0,754	0,498	0,853	0,731
30.	0,048	0,027	0,060	0,074	0,033	0,042	0,138	0,081

	Chaval	Choró	Chorozinho	Coreaú	Crateús	Crato	Croatá	Cruz
1.	0,000	0,000	0,000	0,479	0,754	0,330	0,383	0.000
2.	0,631	0,226	0,616	0,449	0,624	0,841	0,608	0,575
3.	0,604	0,85	0,959	0,901	0,976	0,583	0,981	0,953
4.	0,944	0,987	0,983	0,987	1,000	0,980	1,000	0,907
5.	0,660	0,542	0,798	0,647	0,775	0,890	0,543	0,698
6.	0,624	0,556	0,687	0,534	0,582	0,463	0,542	0,605
7.	0,727	0,295	0,604	0,648	0,723	0,831	0,529	0,426
8.	0,500	0,500	0,500	0,333	1,000	1,000	1,000	0,667
9.	0	0	0	0	0	1	0	0
10.	0,482	0,367	0,527	0,498	0,459	0,578	0,418	0,625
11.	0,966	0,702	0,966	0,707	0,859	0,785	0,820	0,151
12.	0,890	0,740	0,937	0,848	0,750	0,872	0,742	0,808
13.	0,318	0,514	0,427	0,377	0,227	0,250	0,332	0,309
14.	0,942	0,990	1,000	1,000	1,000	0,994	1,000	1,000
15.	0,125	0,159	0,111	0,072	0,172	0,259	0,128	0,158
16.	0,675	0,676	0,712	0,632	0,75	0,85	0,645	0,754
17.	0,470	0,465	0,485	0,670	0,515	0,465	0,510	0,660
18.	0,885	0,806	0,948	0,818	0,972	0,964	0,846	0,994
19.	0,607	0,470	0,527	0,448	0,418	0,524	0,414	0,531
20.	0,506	0,379	0,416	0,589	0,515	0,598	0,545	0,542
21.	0,801	0,889	0,856	0,801	0,879	0,841	0,881	0,861
22.	0,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00
23.	0,570	0,488	0,595	0,652	0,788	0,727	0,703	0,563
24.	0,727	0,295	0,604	0,648	0,723	0,831	0,529	0,426
25.	0,961	0,960	0,987	0,975	0,992	0,994	0,992	0,981
26.	0,020	0,005	0,137	0,053	0,323	0,439	0,014	0,194
27.	0,494	0,421	0,497	0,487	0,391	0,425	0,414	0,414
28.	0,809	0,806	0,883	0,858	0,864	0,940	0,706	0,818
29.	0,588	0,681	0,785	0,577	0,715	0,815	0,481	0,726
30.	0,035	0,024	0,039	0,047	0,097	0,178	0,038	0,134

	Deputado Irapuan Pinheiro	Ererê	Eusébio	Farias Brito	Forquilha	Fortaleza	Fortim	Frecheirinha
1.	0,000	0,000	0,137	0,000	0,547	0,577	0,000	0,209
2.	0,459	0,518	0,941	0,660	0,710	0,988	0,735	0,656
3.	0,955	0,87	0,585	0,884	0,979	0,748	0,953	0,985
4.	0,920	1,000	0,967	0,991	0,989	0,997	0,961	0,985
5.	0,654	0,741	0,918	0,656	0,874	0,945	0,774	0,725
6.	0,491	0,429	0,273	0,758	0,344	0,514	0,430	0,580
7.	0,454	0,506	1,000	0,467	0,710	1,000	0,648	0,588
8.	1,000	1,000	0,667	1,000	0,333	1,000	0,500	1,000
9.	0	0	0	0	0	1	0	0
10.	0,516	0,494	0,628	0,477	0,575	0,623	0,494	0,551
11.	0,000	0,732	0,902	0,615	0,980	0,902	0,756	0,771
12.	0,877	0,000	0,973	0,740	0,976	0,873	0,727	0,867
13.	0,527	0,318	0,259	0,605	0,245	0,050	0,227	0,268
14.	1,000	1,000	1,000	0,999	1,000	0,999	1,000	0,980
15.	0,154	0,114	0,546	0,154	0,096	0,315	0,122	0,216
16.	0,677	0,693	0,865	0,724	0,738	0,931	0,732	0,667
17.	0,680	0,490	0,555	0,555	0,575	0,480	0,530	0,675
18.	0,868	0,842	1,000	1,000	0,873	0,892	0,877	0,883
19.	0,379	0,484	0,531	0,540	0,483	0,424	0,387	0,520
20.	0,516	0,406	0,643	0,471	0,779	0,555	0,346	0,546
21.	0,932	0,915	0,734	0,867	0,907	0,833	0,833	0,871
22.	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
23.	0,542	0,567	0,695	0,598	0,730	0,836	0,633	0,652
24.	0,454	0,506	1,000	0,467	0,710	1,000	0,648	0,588
25.	0,980	0,988	0,993	0,992	0,996	0,997	0,988	0,985
26.	0,077	0,078	0,709	0,083	0,153	1,000	0,126	0,107
27.	0,491	0,530	0,339	0,447	0,529	0,373	0,488	0,472
28.	0,827	0,831	0,905	0,955	0,931	0,827	0,902	0,952
29.	0,521	0,690	0,899	0,680	0,685	0,907	0,780	0,582
30.	0,042	0,058	0,149	0,043	0,081	0,301	0,061	0,074

	General Sampaio	Graça	Granja	Granjeiro	Groaíras	Guaiúba	Guaraciaba do Norte	Guaramiranga
1.	0,000	0,241	0,500	0,520	0,000	0,451	0,338	0,804
2.	0,741	0,430	0,352	0,377	0,686	0,694	0,471	0,858
3.	0,974	0,942	0,845	0,958	0,89	0,588	0,857	0,823
4.	0,987	1,000	0,800	0,999	0,999	0,999	0,998	0,985
5.	0,740	0,574	0,525	0,683	0,814	0,785	0,735	0,875
6.	0,000	0,574	0,587	0,820	0,399	0,379	0,572	1,000
7.	0,587	0,386	0,492	0,296	0,692	0,784	0,461	0,599
8.	1,000	0,500	1,000	1,000	1,000	0,667	0,667	1,000
9.	0	0	0	0	0	0	0	0
10.	0,505	0,380	0,464	0,582	0,585	0,509	0,604	0,547
11.	0,756	0,741	0,454	0,449	0,620	0,829	0,337	-
12.	0,871	-	0,774	0,787	0,539	0,906	0,946	0,843
13.	0,536	0,386	0,209	0,709	0,377	0,282	0,255	0,609
14.	0,984	0,776	1,000	0,918	1,000	0,898	0,992	1,000
15.	0,120	0,085	0,063	0,145	0,106	0,125	0,120	0,525
16.	0,687	0,643	0,614	0,694	0,748	0,769	0,716	0,821
17.	0,525	0,545	0,600	0,495	0,665	0,435	0,535	0,535
18.	0,999	0,782	0,872	1,000	0,873	0,789	0,916	1,000
19.	0,604	0,438	0,452	0,600	0,535	0,491	0,364	1,000
20.	0,664	0,359	0,609	0,548	0,545	0,508	0,599	0,777
21.	0,892	0,802	0,844	0,887	0,926	0,813	0,841	0,84
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,601	0,602	0,579	0,633	0,609	0,719	0,653	0,843
24.	0,587	0,386	0,492	0,296	0,692	0,784	0,461	0,599
25.	0,974	0,982	0,928	0,991	0,995	0,984	0,995	0,994
26.	0,109	0,041	0,009	0,077	0,204	0,071	0,107	0,190
27.	0,485	0,441	0,374	0,494	0,530	0,517	0,480	0,528
28.	0,905	0,728	0,811	0,952	0,965	0,857	0,750	0,873
29.	0,481	0,591	0,344	0,748	0,688	0,667	0,594	0,887
30.	0,019	0,037	0,043	0,029	0,102	0,044	0,073	0,055

	Hidrolândia	Horizonte	Ibaretama	Ibiapina	Ibicuitinga	Icapuí	Icó	Iguatu
1.	0,000	0,138	0,000	0,000	0,000	0.000	0,504	0,197
2.	0,587	0,910	0,370	0,513	0,506	0,824	0,492	0,769
3.	0,944	0,698	0,876	0,821	0,861	0,832	0,966	0,92
4.	0,998	0,960	1,000	0,999	0,975	0,911	0,914	0,948
5.	0,713	0,909	0,651	0,775	0,648	0,802	0,729	0,869
6.	0,428	0,163	0,614	0,546	0,367	0,494	0,532	0,492
7.	0,572	0,925	0,344	0,451	0,507	0,315	0,465	0,773
8.	0,667	0,667	1,000	0,667	0,500	1,000	1,000	1,000
9.	0	0	0	0	0	0	1	1
10.	0,488	0,589	0,461	0,606	0,410	0,556	0,460	0,570
11.	0,883	0,932	0,639	0,698	0,951	0,800	0,576	0,785
12.	0,894	0,937	0,539	0,842	-	0,808	0,698	0,938
13.	0,182	0,209	0,377	0,386	0,564	0,305	0,264	0,218
14.	0,995	1,000	0,999	0,978	0,891	1,000	1,000	1,000
15.	0,098	0,270	0,148	0,164	0,215	0,151	0,158	0,220
16.	0,698	0,843	0,657	0,747	0,707	0,741	0,672	0,768
17.	0,510	0,610	0,410	0,470	0,490	1	0,410	0,500
18.	0,838	1,000	0,851	0,837	1,000	1,000	0,922	0,985
19.	0,448	0,446	0,477	0,415	0,551	0,481	0,329	0,372
20.	0,518	0,640	0,505	0,408	0,534	0,385	0,450	0,611
21.	0,934	0,809	0,913	0,883	0,836	0,803	0,894	0,881
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
23.	0,593	0,691	0,530	0,587	0,564	0,647	0,660	0,676
24.	0,572	0,925	0,344	0,451	0,507	0,315	0,465	0,773
25.	0,980	0,995	0,981	0,992	0,988	0,984	0,993	0,995
26.	0,100	0,194	0,037	0,109	0,027	0,148	0,133	0,374
27.	0,489	0,572	0,449	0,522	0,471	0,520	0,439	0,448
28.	0,805	0,944	0,895	0,895	0,916	0,872	0,766	0,936
29.	0,707	0,865	0,418	0,727	0,689	0,727	0,645	0,802
30.	0,079	0,064	0,021	0,052	0,042	0,056	0,058	0,115

	Independência	Ipaporanga	Ipaumirim	Ipu	Ipueiras	Iracema	Irauçuba	Itaiçaba
1.	0,376	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2.	0,441	0,327	0,646	0,604	0,430	0,721	0,660	0,727
3.	0,96	0,837	0,968	0,961	0,919	0,701	0,948	0,989
4.	0,998	1,000	0,989	1,000	0,950	0,992	0,994	0,888
5.	0,721	0,586	0,759	0,757	0,603	0,766	0,641	0,842
6.	0,594	0,588	0,532	0,596	0,650	0,450	0,478	0,526
7.	0,449	0,365	0,594	0,635	0,485	0,716	0,642	0,585
8.	0,667	0,500	0,500	0,333	0,333	0,500	0,333	1,000
9.	0	0	0	1	0	0	0	0
10.	0,481	0,372	0,450	0,515	0,482	0,532	0,362	0,564
11.	0,522	0,985	0,707	0,698	0,610	0,756	0,976	0,580
12.	0,835	0,858	0,695	0,888	0,796	0,962	0,839	0,858
13.	0,350	0,355	0,223	0,241	0,155	0,355	0,268	0,295
14.	0,992	1,000	0,988	0,995	1,000	1,000	0,993	1,010
15.	0,163	0,198	0,172	0,185	0,076	0,254	0,124	0,148
16.	0,711	0,662	0,727	0,719	0,68	0,728	0,72	0,772
17.	0,650	0,575	0,390	0,425	0,460	0,455	0,560	0,565
18.	0,863	0,894	0,905	0,845	0,832	0,934	0,901	0,966
19.	0,491	0,500	0,469	0,461	0,382	0,610	0,366	0,504
20.	0,652	0,502	0,345	0,471	0,406	0,656	0,585	0,622
21.	0,962	0,815	0,906	0,91	0,9	0,947	0,905	0,915
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,649	0,531	0,592	0,597	0,543	0,627	0,592	0,622
24.	0,449	0,365	0,594	0,635	0,485	0,716	0,642	0,585
25.	0,989	0,983	0,992	0,992	0,987	0,992	0,959	0,990
26.	0,141	0,018	0,332	0,182	0,090	0,195	0,056	0,167
27.	0,437	0,447	0,362	0,435	0,435	0,444	0,377	0,555
28.	0,800	0,858	0,843	0,756	0,684	0,809	0,955	0,909
29.	0,722	0,512	0,767	0,652	0,477	0,768	0,515	0,731
30.	0,035	0,023	0,080	0,067	0,057	0,082	0,039	0,061

	Itaitinga	Itapajé	Itapipoca	Itapiúna	Itarema	Itatira	Jaguaretama	Jaguaribara
1.	0,024	0,221	0,566	0,000	0,448	0,000	0,070	0,788
2.	0,942	0,760	0,546	0,478	0,449	0,420	0,482	0,752
3.	0,262	0,823	0,855	0,74	0,95	0,842	0,949	0,849
4.	0,975	0,900	0,989	0,988	0,952	0,991	0,980	0,998
5.	0,874	0,744	0,711	0,633	0,637	0,600	0,674	0,818
6.	0,447	0,480	0,411	0,527	0,385	0,366	0,604	0,406
7.	0,993	0,703	0,576	0,473	0,425	0,504	0,474	0,694
8.	0,667	0,333	1,000	0,500	1,000	0,667	1,000	1,000
9.	0	0	0	0	1	0	0	0
10.	0,461	0,536	0,551	0,459	0,590	0,424	0,456	0,535
11.	0,932	0,800	0,600	0,820	0,698	0,649	0,780	0,546
12.	0,940	0,850	0,804	0,834	0,912	0,953	0,745	0,859
13.	0,273	0,259	0,218	0,209	0,227	0,336	0,277	0,286
14.	0,989	0,999	0,995	1,000	1,000	1,000	1,000	1,000
15.	0,359	0,130	0,156	0,247	0,164	0,096	0,145	0,161
16.	0,827	0,766	0,774	0,696	0,731	0,674	0,715	0,739
17.	0,485	0,510	0,510	0,450	0,555	0,495	0,520	0,430
18.	0,941	0,868	0,915	0,824	0,938	0,960	0,803	0,975
19.	0,520	0,405	0,455	0,440	0,477	0,402	0,390	0,527
20.	0,578	0,593	0,603	0,440	0,618	0,545	0,467	0,506
21.	0,823	0,882	0,931	0,902	0,896	0,865	0,898	0,932
22.	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00
23.	0,659	0,643	0,710	0,554	0,635	0,523	0,587	0,836
24.	0,993	0,703	0,576	0,473	0,425	0,504	0,474	0,694
25.	0,990	0,978	0,974	0,990	0,956	0,978	0,985	0,979
26.	0,157	0,111	0,124	0,051	0,053	0,036	0,113	0,146
27.	0,490	0,459	0,438	0,499	0,469	0,459	0,431	0,541
28.	0,952	0,944	0,950	0,950	0,943	0,819	0,817	0,860
29.	0,824	0,677	0,658	0,602	0,518	0,240	0,728	0,842
30.	0,056	0,070	0,075	0,033	0,024	0,037	0,061	0,096

	Jaguaribe	Jaguaruana	Jardim	Jati	Jijoca de Jericoacoara	Juazeiro do Norte	Jucás	Lavras da Mangabeira
1.	0,198	0,000	0,100	0,000	0,498	0,372	0,650	0,000
2.	0,662	0,749	0,401	0,546	0,562	0,942	0,566	0,586
3.	0,951	0,94	0,741	0,934	0,885	0,896	0,951	0,957
4.	1,000	0,987	0,997	0,992	0,990	0,991	0,850	0,989
5.	0,797	0,811	0,700	0,754	0,782	0,904	0,723	0,686
6.	0,657	0,559	0,631	0,541	0,453	0,478	0,554	0,589
7.	0,676	0,594	0,337	0,586	0,327	0,961	0,594	0,583
8.	0,333	0,333	1,000	1,000	1,000	1,000	0,667	0,333
9.	0	0	0	0	0	0	0	0
10.	0,540	0,578	0,504	0,600	0,636	0,579	0,404	0,414
11.	0,498	0,371	0,678	0,234	0,780	0,849	0,849	0,756
12.	0,921	0,972	0,804	0,706	0,725	0,831	0,701	0,929
13.	0,264	0,505	0,386	0,700	0,241	0,218	0,295	0,218
14.	1,000	1,000	1,000	1,000	0,991	0,973	1,000	1,000
15.	0,094	0,107	0,120	0,166	0,068	0,255	0,133	0,119
16.	0,744	0,728	0,737	0,738	0,765	0,838	0,688	0,711
17.	0,510	0,560	0,530	0,530	0,705	0,460	0,505	0,435
18.	0,974	0,810	1,000	0,930	0,975	0,881	0,939	0,862
19.	0,499	0,485	0,558	0,596	0,501	0,442	0,341	0,412
20.	0,548	0,506	0,550	0,490	0,487	0,605	0,543	0,362
21.	0,927	0,884	0,85	0,901	0,801	0,881	0,838	0,89
22.	1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
23.	0,662	0,640	0,554	0,575	0,712	0,756	0,700	0,577
24.	0,676	0,594	0,337	0,586	0,327	0,961	0,594	0,583
25.	0,995	0,984	0,988	0,983	0,982	0,995	0,969	0,993
26.	0,180	0,136	0,108	0,143	0,348	0,374	0,089	0,149
27.	0,457	0,528	0,470	0,501	0,407	0,451	0,504	0,413
28.	0,786	0,864	0,878	0,915	0,840	0,895	0,940	0,764
29.	0,720	0,706	0,507	0,701	0,746	0,830	0,670	0,640
30.	0,085	0,046	0,057	0,040	0,112	0,149	0,045	0,072

	Limoeiro do Norte	Madalena	Maracanaú	Maranguape	Marco	Martinópole	Massapê	Mauriti
1.	0,900	0,000	0,417	0,112	0,000	0,000	0,423	0,379
2.	0,818	0,538	0,960	0,841	0,579	0,718	0,711	0,542
3.	0,964	0,802	0,702	0,553	0,832	0,913	0,952	0,915
4.	0,950	0,977	0,995	0,990	0,992	0,984	0,990	0,897
5.	0,895	0,679	0,930	0,881	0,762	0,625	0,769	0,671
6.	0,518	0,400	0,452	0,340	0,256	0,520	0,477	0,537
7.	0,577	0,493	0,993	0,760	0,625	0,784	0,682	0,526
8.	1,000	0,500	0,500	1,000	0,333	0,500	0,333	0,333
9.	0	0	0	0	0	0	0	0
10.	0,552	0,413	0,574	0,530	0,578	0,521	0,522	0,499
11.	0,834	0,829	0,912	0,863	0,698	0,785	0,546	0,507
12.	0,888	0,973	0,886	0,879	0,716	0,739	0,811	0,666
13.	0,218	0,259	0,127	0,159	0,223	0,541	0,195	0,364
14.	0,950	0,857	1,000	0,965	1,000	0,994	1,000	1,000
15.	0,229	0,075	0,304	0,138	0,098	0,119	0,096	0,138
16.	0,808	0,736	0,903	0,846	0,714	0,701	0,715	0,705
17.	0,500	0,460	0,520	0,495	0,520	0,570	0,630	0,490
18.	0,945	0,744	1,000	0,722	1,000	0,928	0,868	0,862
19.	0,412	0,362	0,568	0,338	0,476	0,464	0,483	0,556
20.	0,626	0,392	0,643	0,478	0,624	0,556	0,635	0,527
21.	0,9	0,864	0,784	0,805	0,906	0,863	0,895	0,893
22.	1,00	0,00	1,00	0,00	0,00	0,00	0,00	1,00
23.	0,882	0,565	0,771	0,665	0,560	0,598	0,710	0,631
24.	0,577	0,493	0,993	0,760	0,625	0,784	0,682	0,526
25.	0,994	0,985	0,994	0,991	0,966	0,973	0,982	0,984
26.	0,322	0,081	0,246	0,151	0,131	0,059	0,066	0,086
27.	0,495	0,421	0,558	0,533	0,459	0,400	0,527	0,438
28.	0,933	0,815	0,952	0,866	0,963	0,896	0,840	0,803
29.	0,840	0,627	0,878	0,776	0,552	0,635	0,593	0,654
30.	0,149	0,053	0,124	0,085	0,066	0,054	0,079	0,046

	Meruoca	Milagres	Milhã	Miraíma	Missão Velha	Mombaça	Monsenhor Tabosa	Morada Nova
1.	0,000	0,000	0,037	0,000	0,096	0,000	0,000	0,050
2.	0,536	0,455	0,500	0,509	0,476	0,398	0,096	0,560
3.	0,746	0,855	0,879	0,962	0,856	0,715	0,925	0,811
4.	0,921	0,875	0,850	0,992	0,995	0,967	0,996	0,980
5.	0,806	0,769	0,743	0,551	0,773	0,671	0,660	0,764
6.	0,350	0,688	0,649	0,502	0,582	0,528	0,581	0,689
7.	0,542	0,479	0,456	0,535	0,450	0,441	0,560	0,570
8.	0,500	0,333	0,500	0,500	0,667	1,000	1,000	1,000
9.	0	0	0	0	0	0	0	0
10.	0,564	0,467	0,399	0,373	0,585	0,502	0,493	0,461
11.	0,629	0,678	0,766	0,854	0,444	0,522	0,600	0,859
12.	0,743	0,782	0,442	0,879	0,863	0,800	0,582	0,985
13.	0,405	0,305	0,345	0,305	0,295	0,168	0,373	0,273
14.	1,000	1,000	1,000	1,000	0,977	1,000	1,000	0,995
15.	0,154	0,127	0,137	0,073	0,161	0,075	0,172	0,179
16.	0,813	0,711	0,712	0,677	0,721	0,662	0,704	0,718
17.	0,625	0,480	0,655	0,435	0,525	0,505	0,485	0,465
18.	0,913	0,933	0,929	0,838	0,905	0,851	0,912	0,882
19.	0,439	0,523	0,504	0,400	0,510	0,372	0,441	0,491
20.	0,529	0,476	0,505	0,503	0,452	0,427	0,429	0,477
21.	0,877	0,907	0,95	0,944	0,872	0,902	0,936	0,878
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
23.	0,539	0,514	0,541	0,552	0,577	0,527	0,466	0,599
24.	0,542	0,479	0,456	0,535	0,450	0,441	0,560	0,570
25.	0,990	0,993	0,987	0,963	0,989	0,985	0,966	0,991
26.	0,127	0,113	0,119	0,029	0,164	0,112	0,087	0,139
27.	0,527	0,527	0,459	0,355	0,424	0,459	0,442	0,474
28.	0,945	0,926	0,826	0,958	0,935	0,775	0,777	0,832
29.	0,664	0,780	0,596	0,423	0,650	0,609	0,320	0,700
30.	0,072	0,071	0,084	0,038	0,052	0,043	0,038	0,068

	Moraújo	Morrinhos	Mucambo	Mulungu	Nova Olinda	Nova Russas	Novo Oriente	Ocara
1.	0,000	0,000	0,290	0,187	0,000	0,235	0,466	0,317
2.	0,534	0,562	0,657	0,618	0,684	0,696	0,447	0,431
3.	0,902	0,924	0,96	0,046	0,647	0,947	0,951	0,958
4.	0,988	0,976	0,977	0,959	0,998	1,000	1,000	0,971
5.	0,598	0,620	0,643	0,702	0,722	0,760	0,587	0,669
6.	0,462	0,515	0,647	0,274	0,370	0,517	0,469	0,483
7.	0,447	0,464	0,643	0,366	0,680	0,751	0,518	0,317
8.	1,000	0,667	1,000	0,500	1,000	0,333	0,333	0,333
9.	0	0	0	0	0	0	0	0
10.	0,509	0,496	0,449	0,523	0,545	0,559	0,427	0,419
11.	0,580	0,659	0,741	0,854	0,502	0,590	0,420	0,629
12.	0,879	0,912	0,718	-	0,878	0,775	0,921	0,775
13.	0,427	0,268	0,223	0,327	0,391	0,214	0,291	0,382
14.	0,996	0,984	0,979	1,000	0,957	0,957	1,000	1,000
15.	0,133	0,127	0,137	0,234	0,140	0,158	0,063	0,174
16.	0,68	0,716	0,684	0,77	0,767	0,716	0,66	0,699
17.	0,525	0,605	0,550	0,480	0,615	0,470	0,675	0,550
18.	0,822	0,834	0,847	0,655	0,944	0,861	0,854	0,895
19.	0,452	0,441	0,583	0,332	0,498	0,398	0,533	0,409
20.	0,466	0,572	0,473	0,385	0,716	0,512	0,502	0,480
21.	0,947	0,919	0,854	0,927	0,879	0,893	0,949	0,784
22.	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00
23.	0,555	0,570	0,667	0,625	0,604	0,685	0,655	0,627
24.	0,447	0,464	0,643	0,366	0,680	0,751	0,518	0,317
25.	0,962	0,980	0,994	0,989	0,991	0,994	0,988	0,986
26.	0,000	0,043	0,156	0,114	0,139	0,191	0,065	0,042
27.	0,479	0,454	0,404	0,435	0,422	0,490	0,390	0,467
28.	0,875	0,912	0,779	0,951	0,947	0,745	0,796	0,970
29.	0,522	0,533	0,616	0,739	0,729	0,732	0,740	0,637
30.	0,022	0,070	0,067	0,028	0,044	0,097	0,039	0,019

	Orós	Pacajus	Pacatuba	Pacoti	Pacujá	Palhano	Palmácia	Paracuru
1.	0,000	0,044	0,633	0,910	0,000	0,000	0,303	0,362
2.	0,741	0,822	0,937	0,679	0,690	0,541	0,533	0,765
3.	0,942	0,809	0,457	0,832	0,975	0,897	0,915	0,748
4.	0,997	0,953	0,985	0,975	1,000	0,972	0,988	0,854
5.	0,791	0,874	0,920	0,806	0,781	0,804	0,743	0,802
6.	0,613	0,276	0,282	0,548	0,582	0,472	0,218	0,560
7.	0,749	0,819	0,859	0,409	0,622	0,509	0,413	0,651
8.	0,667	0,333	1,000	1,000	1,000	1,000	0,500	0,667
9.	0	0	0	0	0	0	0	0
10.	0,521	0,602	0,554	0,559	0,550	0,570	0,403	0,573
11.	0,780	0,844	0,849	0,668	0,590	0,600	0,980	0,873
12.	0,715	0,882	0,843	0,958	0,828	-	0,770	0,891
13.	0,555	0,173	0,118	0,495	0,295	0,591	0,214	0,245
14.	0,988	0,981	1,000	1,000	1,000	1,000	0,920	0,904
15.	0,182	0,198	0,102	0,164	0,132	0,141	0,050	0,161
16.	0,703	0,817	0,906	0,796	0,718	0,716	0,759	0,798
17.	0,465	0,485	0,495	0,480	0,535	0,555	0,485	0,535
18.	1,000	0,931	0,621	0,903	0,900	1,000	0,682	0,979
19.	0,513	0,445	0,320	0,553	0,482	0,537	0,368	0,572
20.	0,396	0,567	0,346	0,582	1,000	0,451	0,490	0,727
21.	0,887	0,861	0,837	0,839	0,947	0,822	0,848	0,909
22.	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,631	0,651	0,810	0,826	0,627	0,602	0,617	0,680
24.	0,749	0,819	0,859	0,409	0,622	0,509	0,413	0,651
25.	0,992	0,994	0,992	0,990	0,993	0,989	0,983	0,981
26.	0,162	0,253	0,213	0,140	0,109	0,139	0,210	0,204
27.	0,506	0,521	0,535	0,490	0,498	0,530	0,364	0,448
28.	0,794	0,868	0,861	0,860	0,856	0,915	0,884	0,855
29.	0,739	0,862	0,878	0,688	0,569	0,716	0,626	0,826
30.	0,038	0,077	0,100	0,046	0,067	0,039	0,038	0,065

Γ	Paraipaba	Parambu	Paramoti	Pedra Branca	Penaforte	Pentecoste	Pereiro	Pindoretama
1.	0,822	0,000	0,247	0,600	0,000	0,000	0,000	0,001
2.	0,540	0,482	0,522	0,598	0,711	0,623	0,399	0,696
3.	0,799	0,969	0,997	0,956	0,95	0,933	0,904	0,781
4.	0,995	1,000	0,997	0,980	0,992	0,998	1,000	0,908
5.	0,799	0,682	0,655	0,698	0,779	0,736	0,618	0,860
6.	0,508	0,669	0,567	0,571	0,402	0,458	0,545	0,429
7.	0,447	0,451	0,490	0,585	0,778	0,604	0,345	0,604
8.	0,667	0,333	0,500	0,667	1,000	0,667	0,500	0,667
9.	0	0	0	0	0	0	0	0
10.	0,592	0,480	0,422	0,440	0,611	0,483	0,501	0,551
11.	0,551	0,420	0,771	0,820	0,420	0,824	0,244	0,824
12.	0,890	0,830	0,939	0,782	0,956	0,839	0,572	0,845
13.	0,241	0,305	0,277	0,223	0,568	0,259	0,282	0,291
14.	1,000	0,999	0,976	0,954	1,000	0,916	1,023	0,996
15.	0,102	0,145	0,070	0,119	0,259	0,172	0,101	0,226
16.	0,8	0,649	0,703	0,667	0,78	0,752	0,704	0,783
17.	0,640	0,530	0,485	0,530	0,540	0,520	0,505	0,520
18.	0,883	0,868	0,877	0,883	0,994	0,867	0,914	1,000
19.	0,524	0,445	0,455	0,498	0,640	0,471	0,455	0,557
20.	0,679	0,561	0,422	0,629	0,690	0,723	0,750	0,536
21.	0,891	0,924	0,799	0,916	0,805	0,923	0,76	0,821
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,770	0,562	0,625	0,727	0,617	0,586	0,528	0,597
24.	0,447	0,451	0,490	0,585	0,778	0,604	0,345	0,604
25.	0,983	0,980	0,984	0,978	0,993	0,975	0,988	0,983
26.	0,145	0,060	0,041	0,070	0,108	0,141	0,043	0,165
27.	0,488	0,465	0,471	0,485	0,542	0,426	0,453	0,541
28.	0,956	0,767	0,957	0,752	0,963	0,860	0,757	0,875
29.	0,808	0,648	0,575	0,535	0,756	0,745	0,676	0,843
30.	0,033	0,021	0,022	0,050	0,055	0,056	0,059	0,055

	Piquet Carneiro	Pires Ferreira	Poranga	Porteiras	Potengi	Potiretama	Quiterianópolis	Quixadá
1.	0,000	0,000	0,328	0,208	0,000	0,000	0,000	0,211
2.	0,549	0,348	0,427	0,441	0,573	0,553	0,344	0,699
3.	0,934	0,821	0,949	0,933	0,963	0,985	0,955	0,848
4.	0,996	0,976	0,991	0,993	0,995	0,993	0,945	0,986
5.	0,699	0,652	0,625	0,705	0,663	0,716	0,616	0,792
6.	0,318	0,215	0,587	0,658	0,489	0,480	0,526	0,453
7.	0,481	0,328	0,650	0,411	0,556	0,441	0,317	0,713
8.	0,500	0,500	1,000	1,000	1,000	1,000	0,333	1,000
9.	0	0	0	0	0	0	0	1
10.	0,421	0,396	0,444	0,501	0,486	0,566	0,501	0,524
11.	0,605	0,961	0,737	0,746	0,444	0,737	0,346	0,800
12.	=	=	0,772	0,921	0,930	0,772	0,871	0,814
13.	0,277	0,214	0,336	0,364	0,464	0,432	0,373	0,191
14.	0,995	0,998	0,995	1,000	1,000	1,000	1,000	1,000
15.	0,148	0,076	0,106	0,151	0,120	0,180	0,125	0,195
16.	0,739	0,701	0,665	0,706	0,655	0,709	0,672	0,771
17.	0,595	0,715	0,515	0,575	0,420	0,525	0,540	0,485
18.	0,859	0,802	0,915	1,000	0,887	0,845	0,868	0,868
19.	0,388	0,369	0,491	0,691	0,390	0,445	0,567	0,395
20.	0,347	0,384	0,532	0,360	0,350	0,575	0,443	0,512
21.	0,834	0,845	0,872	0,769	0,833	0,916	0,839	0,792
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
23.	0,579	0,519	0,636	0,591	0,584	0,580	0,521	0,664
24.	0,481	0,328	0,650	0,411	0,556	0,441	0,317	0,713
25.	0,993	0,993	0,974	0,990	0,987	0,984	0,962	0,989
26.	0,067	0,017	0,038	0,060	0,057	0,072	0,037	0,205
27.	0,474	0,480	0,450	0,501	0,416	0,503	0,443	0,457
28.	0,844	0,818	0,763	0,908	0,785	0,870	0,813	0,823
29.	0,698	0,716	0,320	0,625	0,511	0,708	0,460	0,770
30.	0,030	0,042	0,054	0,038	0,039	0,038	0,024	0,125

	Quixelô	Quixeramobim	Quixeré	Redenção	Reriutaba	Russas	Saboeiro	Salitre
1.	0,950	0,490	0,000	0,095	0,000	0,420	0,044	0,293
2.	0,358	0,562	0,776	0,633	0,520	0,723	0,540	0,342
3.	0,967	0,841	0,963	0,914	0,979	0,95	0,97	0,847
4.	1,000	0,980	0,961	0,958	0,891	0,970	0,992	0,845
5.	0,691	0,763	0,818	0,779	0,636	0,895	0,669	0,631
6.	0,622	0,264	0,513	0,564	0,817	0,431	0,650	0,495
7.	0,329	0,604	0,615	0,573	0,544	0,644	0,537	0,405
8.	1,000	1,000	1,000	1,000	0,500	1,000	0,500	1,000
9.	0	1	0	0	0	0	0	0
10.	0,566	0,542	0,494	0,545	0,435	0,612	0,530	0,583
11.	0,380	0,693	0,629	0,639	0,732	0,737	0,263	0,234
12.	0,977	0,932	0,818	0,913	0,890	0,920	0,811	0,925
13.	0,455	0,241	0,209	0,450	0,214	0,236	0,286	0,450
14.	0,851	1,000	1,000	1,000	0,978	1,000	0,920	1,000
15.	0,195	0,137	0,114	0,161	0,102	0,161	0,166	0,091
16.	0,632	0,758	0,74	0,757	0,707	0,804	0,665	0,601
17.	0,480	0,555	0,525	0,520	0,605	0,590	0,545	0,470
18.	1,000	0,931	0,881	0,998	0,860	0,890	0,883	1,000
19.	0,460	0,483	0,446	0,485	0,508	0,485	0,424	0,482
20.	0,430	0,443	0,501	0,800	0,625	0,529	0,436	0,466
21.	0,732	0,858	0,873	0,816	0,915	0,838	0,919	0,812
22.	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,777	0,708	0,648	0,614	0,551	0,738	0,586	0,537
24.	0,329	0,604	0,615	0,573	0,544	0,644	0,537	0,405
25.	0,991	0,986	0,992	0,994	0,992	0,994	0,911	0,954
26.	0,092	0,196	0,107	0,142	0,124	0,269	0,059	0,001
27.	0,486	0,434	0,551	0,491	0,398	0,530	0,449	0,510
28.	0,956	0,812	0,949	0,831	0,742	0,863	0,799	0,816
29.	0,707	0,678	0,603	0,739	0,706	0,789	0,407	0,635
30.	0,037	0,081	0,064	0,030	0,093	0,102	0,026	0,018

	Santa Quitéria	Santana do Acaraú	Santana do Cariri	São Benedito	São Gonçalo do Amarante	São João do Jaguaribe	São Luís do Curu	Senador Pompeu
1.	0,000	0,000	0,000	0,479	0,535	0,426	0,000	0,000
2.	0,426	0,470	0,547	0,532	0,709	0,430	0,598	0,568
3.	0,805	0,881	0,69	0,725	0,546	0,974	0,902	0,908
4.	0,977	0,998	0,997	0,994	0,997	1,000	0,989	0,994
5.	0,661	0,564	0,605	0,751	0,825	0,836	0,760	0,769
6.	0,595	0,493	0,613	0,488	0,404	0,749	0,533	0,621
7.	0,521	0,513	0,514	0,556	0,650	0,401	0,646	0,593
8.	1,000	0,333	1,000	0,333	0,333	1,000	0,500	1,000
9.	0	0	0	0	1	0	0	0
10.	0,472	0,439	0,526	0,603	0,550	0,484	0,482	0,520
11.	0,683	0,766	0,507	0,415	0,927	0,961	0,878	0,707
12.	0,653	0,782	0,643	0,816	0,917	0,843	0,879	0,995
13.	0,136	0,159	0,418	0,205	0,232	0,295	0,391	0,377
14.	1,000	0,967	1,000	0,805	1,000	1,000	0,955	0,904
15.	0,075	0,133	0,102	0,158	0,211	0,127	0,179	0,141
16.	0,726	0,704	0,701	0,729	0,798	0,742	0,776	0,728
17.	0,520	0,465	0,500	0,480	0,570	0,555	0,440	0,465
18.	0,860	0,863	0,915	0,948	1,000	0,875	0,988	0,878
19.	0,435	0,363	0,495	0,489	0,576	0,428	0,463	0,413
20.	0,543	0,396	0,436	0,505	0,656	0,452	0,512	0,535
21.	0,922	0,84	0,8	0,944	0,926	0,862	0,759	0,897
22.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23.	0,547	0,540	0,555	0,704	0,750	0,681	0,586	0,596
24.	0,521	0,513	0,514	0,556	0,650	0,401	0,646	0,593
25.	0,973	0,983	0,976	0,996	0,985	0,991	0,983	0,990
26.	0,075	0,105	0,067	0,117	0,185	0,231	0,104	0,184
27.	0,432	0,311	0,433	0,482	0,480	0,489	0,477	0,482
28.	0,774	0,874	0,946	0,748	0,859	0,851	0,885	0,800
29.	0,564	0,631	0,655	0,639	0,846	0,833	0,773	0,633
30.	0,064	0,054	0,037	0,065	0,092	0,083	0,047	0,076

	Senador Sá	Sobral	Solonópole	Tabuleiro do Norte	Tamboril	Tarrafas	Tauá	Tejuçuoca
1.	0,000	0,686	0,000	0,143	0,000	0,167	0,213	0,000
2.	0,411	0,885	0,534	0,663	0,501	0,429	0,620	0,433
3.	0,915	0,922	0,961	0,928	0,974	0,944	0,908	0,916
4.	0,982	0,965	0,964	0,985	0,986	0,985	0,999	0,976
5.	0,660	0,882	0,739	0,829	0,632	0,647	0,739	0,666
6.	0,327	0,432	0,546	0,523	0,591	0,535	0,477	0,344
7.	0,740	0,884	0,515	0,644	0,558	0,295	0,579	0,376
8.	1,000	1,000	0,500	0,333	0,667	1,000	1,000	1,000
9.	0	1	0	0	0	0	1	0
10.	0,632	0,590	0,523	0,470	0,448	0,461	0,543	0,469
11.	0,546	0,932	0,751	0,683	0,668	0,283	0,498	0,795
12.	-	0,916	0,819	0,823	0,819	0,858	0,861	0,983
13.	0,245	0,223	0,477	0,227	0,250	0,255	0,341	0,368
14.	0,850	0,895	1,000	1,000	1,000	0,934	1,000	0,936
15.	0,088	0,410	0,099	0,091	0,236	0,164	0,200	0,114
16.	0,668	0,83	0,738	0,774	0,67	0,645	0,725	0,722
17.	0,545	0,755	0,545	0,530	0,490	0,510	0,575	0,475
18.	0,919	0,918	0,799	0,839	0,914	0,884	0,890	0,831
19.	0,464	0,534	0,413	0,510	0,410	0,493	0,519	0,444
20.	0,598	0,838	0,459	0,587	0,462	0,337	0,610	0,369
21.	0,904	0,894	0,937	0,904	0,858	0,939	0,869	0,881
22.	0,00	1,00	0,00	1,00	0,00	0,00	1,00	0,00
23.	0,523	0,814	0,584	0,655	0,558	0,578	0,659	0,518
24.	0,740	0,884	0,515	0,644	0,558	0,295	0,579	0,376
25.	0,969	0,994	0,993	0,994	0,987	0,990	0,988	0,972
26.	0,071	0,403	0,140	0,274	0,046	0,052	0,175	0,036
27.	0,474	0,430	0,483	0,459	0,471	0,454	0,422	0,480
28.	0,907	0,918	0,808	0,843	0,789	0,829	0,780	0,957
29.	0,532	0,722	0,554	0,779	0,530	0,515	0,635	0,432
30.	0,053	0,185	0,054	0,113	0,039	0,020	0,067	0,019

	Tianguá	Trairi	Tururu	Ubajara	Umari	Umirim	Uruburetama	Uruoca
1.	0,545	0,293	0,000	0,000	0,000	0,000	0,000	0,274
2.	0,616	0,384	0,529	0,595	0,403	0,575	0,772	0,544
3.	0,753	0,701	0,892	0,758	0,959	0,948	0,923	0,936
4.	0,995	0,907	0,991	0,984	0,999	0,993	0,995	0,978
5.	0,820	0,643	0,642	0,834	0,689	0,666	0,757	0,600
6.	0,515	0,510	0,342	0,448	0,495	0,549	0,443	0,493
7.	0,665	0,365	0,367	0,483	0,519	0,590	0,743	0,595
8.	0,667	0,333	1,000	0,333	1,000	0,500	0,667	0,500
9.	0	0	0	0	0	0	0	0
10.	0,613	0,559	0,416	0,586	0,342	0,446	0,566	0,470
11.	0,644	0,566	0,868	0,883	1,000	0,761	0,805	0,537
12.	0,904	0,878	0,824	0,824	0,572	0,762	0,948	0,497
13.	0,277	0,159	0,323	0,295	0,236	0,255	0,386	0,305
14.	1,000	0,991	1,000	0,969	0,946	0,985	0,962	0,992
15.	0,185	0,101	0,146	0,164	0,085	0,109	0,161	0,120
16.	0,76	0,764	0,72	0,754	0,675	0,716	0,771	0,635
17.	0,550	0,490	0,585	0,575	0,460	0,475	0,505	0,580
18.	0,956	0,856	0,964	1,000	0,883	0,777	0,895	0,807
19.	0,540	0,407	0,489	0,438	0,377	0,411	0,435	0,475
20.	0,598	0,426	0,546	0,574	0,331	0,449	0,689	0,477
21.	0,908	0,898	0,92	0,877	0,945	0,872	0,92	0,749
22.	1,00	0,00	0,00	1,00	0,00	1,00	0,00	0,00
23.	0,732	0,583	0,558	0,595	0,543	0,566	0,607	0,623
24.	0,665	0,365	0,367	0,483	0,519	0,590	0,743	0,595
25.	0,994	0,963	0,975	0,994	0,995	0,975	0,971	0,969
26.	0,404	0,050	0,019	0,206	0,104	0,027	0,125	0,013
27.	0,388	0,444	0,453	0,456	0,444	0,462	0,450	0,462
28.	0,948	0,824	0,891	0,939	0,819	0,826	0,877	0,820
29.	0,723	0,672	0,635	0,720	0,687	0,669	0,598	0,548
30.	0,082	0,027	0,026	0,072	0,047	0,026	0,045	0,029

	Varjota	Várzea Alegre	Viçosa do Ceará
1.	0,000	0,000	0,000
2.	0,756	0,579	0,319
3.	0,975	0,934	0,773
4.	0,993	0,987	0,999
5.	0,762	0,709	0,599
6.	0,635	0,512	0,367
7.	0,819	0,622	0,324
8.	0,500	0,333	1,000
9.	0	1	1
10.	0,495	0,483	0,575
11.	0,756	0,639	0,424
12.	-	0,961	0,937
13.	0,227	0,214	0,168
14.	0,995	0,999	0,965
15.	0,072	0,195	0,102
16.	0,733	0,714	0,686
17.	0,580	0,465	0,525
18.	0,887	0,957	0,883
19.	0,672	0,460	0,400
20.	0,543	0,607	0,499
21.	0,892	0,904	0,871
22.	0,00	0,00	0,00
23.	0,630	0,588	0,512
24.	0,819	0,622	0,324
25.	0,994	0,994	0,986
26.	0,163	0,150	0,086
27.	0,465	0,457	0,398
28.	0,796	0,927	0,919
29.	0,695	0,744	0,525
30.	0,108	0,050	0,023

APÊNDICE D – CÁLCULO DOS PESOS CORRESPONDENTES AOS INDICADORES SELECIONADOS DE CADA ÍNDICE TEMÁTICO

	DIMENSÃO AMBIENTAL								
Tema	Indicadores	Média inicial	Média recalculada						
	Taxa de cobertura de esgoto	0,3	0,3/0,95= 0,3158						
Saneamento e	Taxa de cobertura de coleta de lixo	0,25	0,25/0,95= 0,2632						
Arborização	Arborização de vias públicas	0,2	0,2/0,95= 0,2105						
	Taxa de cobertura de água	0,2	0,2/0,95= 0,2105						

DIMENSÃO SOCIAL							
Tema Indicadores Média inicial Média recalculada							
	Extrema pobreza	0,35	0,35/0,9= 0,3889				
População	Taxa de crescimento da população	0,3	0,3/0,9= 0,3333				
	Taxa de urbanização	0,25	0,25/0,9= 0,2778				

DIMENSÃO SOCIAL						
Tema Indicadores Média inicial Média recalculada						
	Bibliotecas públicas, teatros e museus	0,5	0,5/0,9= 0,5556			
Cultura	Monumentos históricos tombados e preservados	0,4	0,4/0,9= 0,4444			

DIMENSÃO SOCIAL					
Tema Indicadores Média inicial Média recalculad					
Tuelsellse	Nível de ocupação das pessoas	0,5	0,5/0,85= 0,5882		
Trabalho	Trabalho infantil	0,35	0,35/0,85= 0,4118		

DIMENSÃO SOCIAL							
Tema	Indicadores Média inicial Média recalcul						
	Taxa de mortalidade infantil	0,3	0,3/0,9= 0,3333				
	Unidades de saúde por 1000 hab.	0,2	0,2/0,9= 0,2222				
Saúde	Imunização contra doenças infecciosas infantis	0,2	0,2/0,9= 0,2222				
	Número de médicos por 1000 hab.	0,2	0,2/0,9= 0,2222				

DIMENSÃO SOCIAL					
Tema	Indicadores	Média inicial	Média recalculada		
	Analfabetismo	0,2	0,2/0,9= 0,2222		
	IDEB (Ensino Fundamental)	0,15	0,15/0,9= 0,1667		
	Escolarização do ensino fundamental	0,15	0,15/0,9= 0,1667		
Educação	Escolarização da educação infantil	0,1	0,1/0,9= 0,1111		
Daucação	Escolarização do ensino médio	0,1	0,1/0,9= 0,1111		
	Rendimento escolar do ensino médio	0,1	0,1/0,9= 0,1111		
	Estabelecimentos de ensino com educação profissional	0,1	0,1/0,9= 0,1111		

DIMENSÃO SOCIAL							
Tema Indicadores Média inicial Média reca							
	Densidade adequada de moradores por dormitório	0,35	0,35/0,9= 0,3889				
Habitação	Vias públicas com urbanização adequada	0,3	0,3/0,9= 0,3333				
	Acesso à energia elétrica	0,25	0,25/0,9= 0,2778				

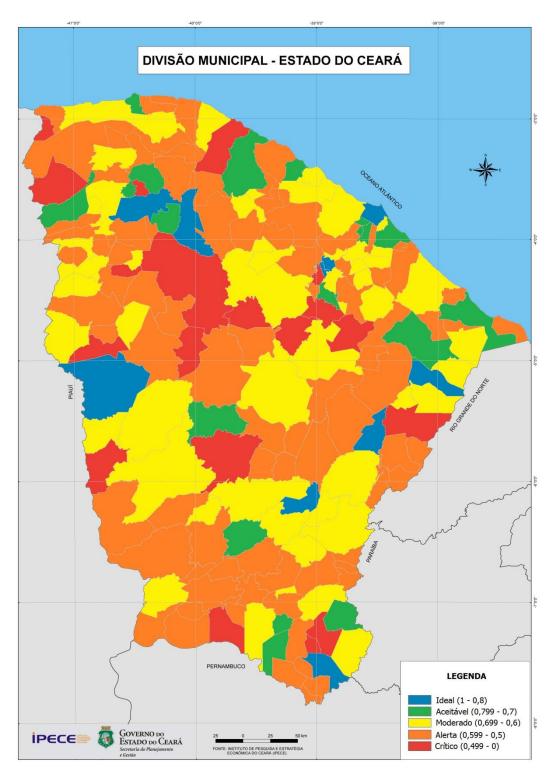
DIMENSÃO ECONÔMICA							
Tema	Tema Indicadores Média inicial Média recalculada						
Quadro	Renda domiciliar per capita	0,55	0,55/0,8= 0,6875				
econômico	Índice de Gini da distribuição do rendimento	0,25	0,25/0,8= 0,3125				

DIMENSÃO INSTITUCIONAL							
Tema Indicadores Média inicial Média recalculada							
Participação popular e informação	Participação nas eleições	0,35	0,35/0,85= 0,4118				
	Acesso a serviço de telefonia	0,3	0,3/0,85= 0,3529				
	Acesso a serviço de internet	0,2	0,2/0,85= 0,2353				

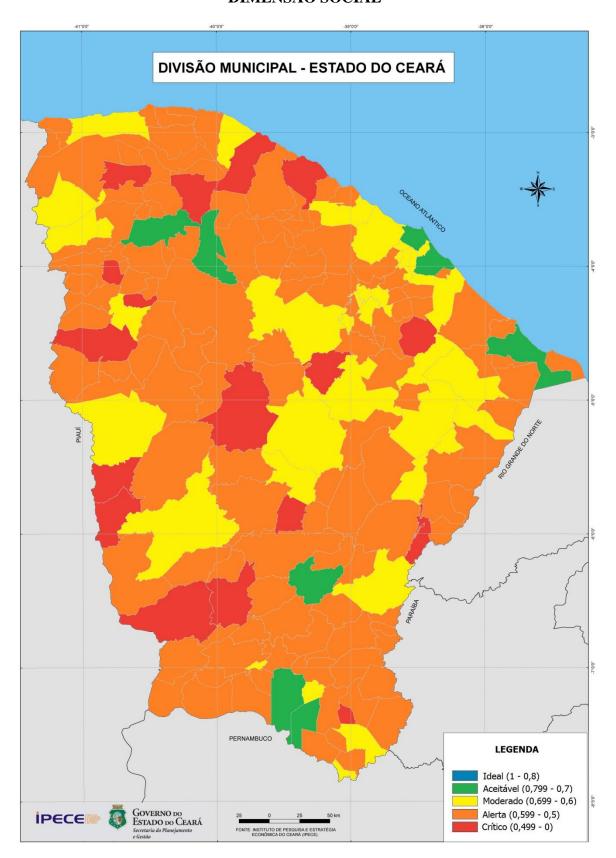
APÊNDICE E – VALORES DE CADA ÍNDICE TEMÁTICO E DA ESCADA DA SUSTENTABILIDADE DOS MUNICÍPIOS DO CEARÁ

Índices Temáticos	Índice Ambiental	Índice Social	Índice Econômico	Índice Institucional	Escada da Sustentabilidade
Abaiara	0,347	0,492	0,208	0,653	0,379
Acarape	0,652	0,516	0,247	0,640	0,516
Acaraú	0,595	0,544	0,197	0,539	0,477
Acopiara	0,614	0,564	0,207	0,580	0,496
Aiuaba	0,535	0,444	0,174	0,460	0,414
Alcântaras	0,777	0,534	0,236	0,564	0,560
Altaneira	0,579	0,606	0,209	0,607	0,496
Alto Santo	0,482	0,518	0,247	0,625	0,447
Amontada	0,490	0,462	0,145	0,546	0,402
Antonina do Norte	0,564	0,572	0,219	0,537	0,477
Apuiarés	0,544	0,568	0,202	0,565	0,467
Aquiraz	0,733	0,720	0,328	0,700	0,625
Aracati	0,722	0,702	0,312	0,637	0,606
Aracoiaba	0,546	0,561	0,213	0,609	0,473
Ararendá	0,518	0,511	0,172	0,489	0,427
Araripe	0,531	0,569	0,169	0,444	0,441
Aratuba	0,597	0,605	0,214	0,664	0,510
Arneiroz	0,565	0,577	0,293	0,561	0,499
Assaré	0,548	0,529	0,240	0,559	0,467
Aurora	0,642	0,556	0,219	0,599	0,510
Baixio	0,554	0,555	0,260	0,636	0,489
Banabuiú	0,506	0,549	0,202	0,661	0,456
Barbalha	0,766	0,749	0,343	0,695	0,649
Barreira	0,677	0,567	0,207	0,617	0,526
Barro	0,703	0,531	0,228	0,603	0,531
Barroquinha	0,525	0,545	0,157	0,516	0,437
Baturité	0,613	0,626	0,269	0,675	0,536
Beberibe	0,670	0,588	0,268	0,642	0,546
Bela Cruz	0,697	0,530	0,181	0,604	0,517
Boa Viagem	0,520	0,495	0,208	0,529	0,436
Brejo Santo	0,827	0,602	0,283	0,665	0,619
Camocim	0,654	0,662	0,218	0,624	0,544
Campos Sales	0,658	0,518	0,272	0,545	0,515
Canindé	0,694	0,682	0,232	0,574	0,563
Capistrano	0,725	0,581	0,170	0,656	0,544
Caridade	0,519	0,530	0,173	0,674	0,451
Cariré	0,530	0,564	0,202	0,624	0,466
Caririaçu	0,535	0,514	0,221	0,645	0,462
Cariús	0,527	0,523	0,208	0,625	0,456

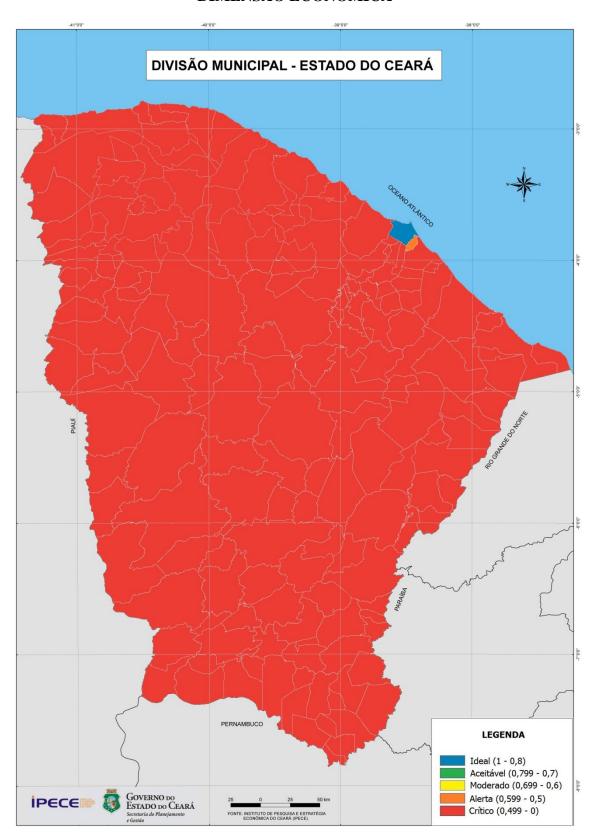
Carnaubal	0,559	0,595	0,188	0,523	0,472
Cascavel	0,565	0,637	0,285	0,657	0,522
Catarina	0,647	0,503	0,216	0,607	0,500
Catunda	0,506	0,556	0,183	0,521	0,439
Caucaia	0,607	0,691	0,356	0,682	0,573
Cedro	0,616	0,546	0,272	0,621	0,513
Chaval	0,492	0,553	0,168	0,549	0,432
Choró	0,446	0,485	0,135	0,578	0,391
Chorozinho	0,571	0,576	0,133	0,650	0,500
Coreaú	0,667	0,518	0,189	0,568	0,500
Crateús	0,818	0,626	0,344	0,631	0,633
Crato	0,655	0,724	0,435	0,717	0,623
Croatá	0,698	0,724	0,139	0,469	0,501
Cruz	0,543	0,525	0,139	0,624	0,476
Deputado Irapuan	0,343	0,323	0,203	0,024	0,470
Pinheiro	0,515	0,528	0,206	0,534	0,443
Ererê	0,530	0,544	0,220	0,599	0,463
Eusébio	0,617	0,629	0,593	0,725	0,625
Farias Brito	0,568	0,585	0,197	0,644	0,487
Forquilha	0,774	0,578	0,270	0,644	0,586
Fortaleza	0,810	0,757	0,804	0,732	0,787
Fortim	0,596	0,523	0,239	0,661	0,495
Frecheirinha	0,653	0,603	0,221	0,615	0,529
General Sampaio	0,608	0,572	0,226	0,547	0,497
Graça	0,598	0,466	0,166	0,517	0,449
Granja	0,597	0,529	0,123	0,466	0,448
Granjeiro	0,675	0,592	0,207	0,663	0,536
Groaíras	0,578	0,577	0,306	0,664	0,518
Guaiúba	0,659	0,566	0,210	0,599	0,518
Guaraciaba do Norte	0,621	0,540	0,224	0,535	0,493
Guaramiranga	0,860	0,638	0,296	0,685	0,646
Hidrolândia	0,563	0,550	0,222	0,600	0,478
Horizonte	0,632	0,603	0,312	0,709	0,553
Ibaretama	0,492	0,537	0,165	0,521	0,425
Ibiapina	0,518	0,554	0,238	0,637	0,469
Ibicuitinga	0,520	0,520	0,166	0,630	0,442
Icapuí	0,584	0,585	0,264	0,629	0,509
Icó	0,684	0,625	0,229	0,557	0,543
Iguatu	0,658	0,721	0,397	0,696	0,612
Independência	0,647	0,544	0,234	0,592	0,512
Ipaporanga	0,473	0,522	0,152	0,540	0,412
Ipaumirim	0,582	0,515	0,342	0,637	0,511
Ipu	0,572	0,600	0,261	0,557	0,500
Ipueiras	0,507	0,482	0,198	0,463	0,419
	<u> </u>	<u> </u>		1	<u> </u>

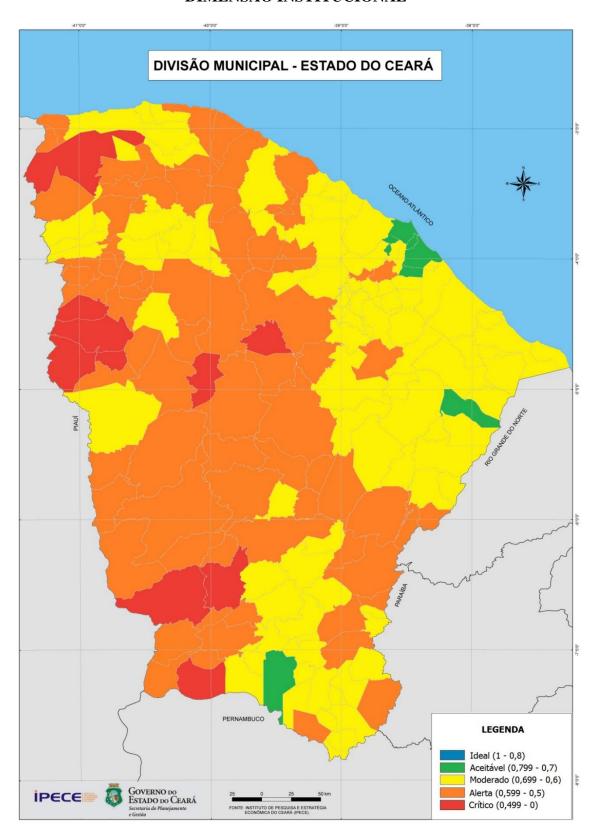

Iracema	0,546	0,564	0,273	0,623	0,490
Irauçuba	0,582	0,521	0,156	0,584	0,461
Itaiçaba	0,587	0,596	0,288	0,647	0,520
Itaitinga	0,516	0,605	0,261	0,696	0,492
Itapajé	0,633	0,536	0,220	0,644	0,506
Itapipoca	0,710	0,596	0,222	0,641	0,553
Itapiúna	0,489	0,521	0,191	0,611	0,435
Itarema	0,660	0,649	0,183	0,577	0,530
Itatira	0,496	0,514	0,168	0,430	0,412
Jaguaretama	0,555	0,573	0,212	0,608	0,479
Jaguaribara	0,835	0,637	0,270	0,674	0,628
Jaguaribe	0,647	0,552	0,266	0,597	0,523
Jaguaruana	0,603	0,524	0,259	0,616	0,498
Jardim	0,503	0,578	0,221	0,554	0,456
Jati	0,549	0,576	0,255	0,634	0,491
Jijoca de Jericoacoara	0,700	0,588	0,366	0,635	0,582
Juazeiro do Norte	0,763	0,661	0,398	0,696	0,640
Jucás	0,733	0,547	0,219	0,634	0,548
Lavras da Mangabeira	0,564	0,510	0,232	0,557	0,467
Limoeiro do Norte	0,903	0,647	0,376	0,716	0,688
Madalena	0,516	0,505	0,187	0,569	0,436
Maracanaú	0,741	0,630	0,343	0,731	0,613
Maranguape	0,581	0,597	0,270	0,650	0,514
Marco	0,536	0,507	0,233	0,607	0,460
Martinópole	0,588	0,547	0,165	0,606	0,474
Massapê	0,729	0,518	0,210	0,574	0,531
Mauriti	0,644	0,512	0,196	0,572	0,492
Meruoca	0,492	0,541	0,252	0,640	0,459
Milagres	0,484	0,516	0,243	0,673	0,451
Milhã	0,507	0,510	0,225	0,570	0,444
Miraíma	0,545	0,507	0,131	0,553	0,433
Missão Velha	0,545	0,539	0,245	0,626	0,477
Mombaça	0,459	0,540	0,220	0,544	0,428
Monsenhor Tabosa	0,430	0,550	0,198	0,442	0,403
Morada Nova	0,540	0,624	0,244	0,606	0,493
Moraújo	0,538	0,553	0,150	0,550	0,446
Morrinhos	0,548	0,532	0,171	0,580	0,453
Mucambo	0,672	0,573	0,233	0,554	0,526
Mulungu	0,433	0,500	0,214	0,659	0,418
Nova Olinda	0,526	0,580	0,227	0,657	0,478
Nova Russas	0,667	0,540	0,284	0,588	0,532
Novo Oriente	0,675	0,485	0,167	0,598	0,493

Ocara	0,619	0,485	0,175	0,629	0,476
Orós	0,603	0,580	0,269	0,597	0,513
Pacajus	0,601	0,568	0,337	0,680	0,535
Pacatuba	0,750	0,608	0,314	0,688	0,599
Pacoti	0,846	0,619	0,249	0,608	0,616
Pacujá	0,597	0,598	0,231	0,569	0,503
Palhano	0,536	0,577	0,261	0,639	0,488
Palmácia	0,637	0,502	0,258	0,594	0,504
Paracuru	0,653	0,593	0,280	0,659	0,545
Paraipaba	0,779	0,567	0,252	0,687	0,585
Parambu	0,541	0,501	0,186	0,549	0,443
Paramoti	0,635	0,523	0,175	0,602	0,489
Pedra Branca	0,754	0,556	0,199	0,510	0,542
Penaforte	0,596	0,609	0,244	0,676	0,519
Pentecoste	0,570	0,555	0,230	0,630	0,487
Pereiro	0,506	0,470	0,171	0,564	0,419
Pindoretama	0,539	0,575	0,283	0,671	0,497
Piquet Carneiro	0,551	0,474	0,194	0,601	0,447
Pires Ferreira	0,470	0,469	0,162	0,599	0,406
Poranga	0,624	0,573	0,167	0,440	0,479
Porteiras	0,587	0,594	0,198	0,603	0,493
Potengi	0,563	0,550	0,169	0,512	0,456
Potiretama	0,562	0,578	0,206	0,617	0,482
Quiterianópolis	0,490	0,469	0,164	0,503	0,405
Quixadá	0,636	0,690	0,283	0,640	0,562
Quixelô	0,808	0,577	0,215	0,652	0,587
Quixeramobim	0,686	0,678	0,271	0,593	0,571
Quixeré	0,609	0,577	0,246	0,618	0,511
Redenção	0,590	0,604	0,251	0,610	0,511
Reriutaba	0,531	0,539	0,210	0,576	0,457
Russas	0,727	0,618	0,351	0,657	0,599
Saboeiro	0,569	0,494	0,181	0,479	0,444
Salitre	0,539	0,538	0,161	0,564	0,446
Santa Quitéria	0,487	0,552	0,186	0,533	0,433
Santana do Acaraú	0,519	0,480	0,169	0,595	0,430
Santana do Cariri	0,499	0,546	0,182	0,630	0,445
São Benedito	0,653	0,505	0,231	0,549	0,500
São Gonçalo do Amarante	0,680	0,641	0,277	0,674	0,569
São João do Jaguaribe	0,663	0,613	0,311	0,664	0,563
São Luís do Curu	0,556	0,558	0,220	0,648	0,482
Senador Pompeu	0,550	0,601	0,277	0,571	0,497
Senador Sá	0,507	0,535	0,197	0,573	0,443
Sobral	0,847	0,761	0,411	0,677	0,699


Solonópole	0,546	0,538	0,247	0,541	0,469
Tabuleiro do Norte	0,622	0,543	0,332	0,649	0,533
Tamboril	0,544	0,532	0,179	0,521	0,448
Tarrafas	0,572	0,519	0,178	0,528	0,456
Tauá	0,632	0,678	0,253	0,561	0,541
Tejuçuoca	0,512	0,578	0,175	0,551	0,448
Tianguá	0,702	0,605	0,399	0,665	0,598
Trairi	0,532	0,488	0,173	0,583	0,436
Tururu	0,536	0,562	0,155	0,597	0,453
Ubajara	0,523	0,564	0,284	0,657	0,487
Umari	0,518	0,545	0,210	0,591	0,455
Umirim	0,560	0,534	0,163	0,582	0,456
Uruburetama	0,607	0,591	0,227	0,583	0,505
Uruoca	0,633	0,485	0,153	0,538	0,466
Varjota	0,613	0,538	0,257	0,598	0,504
Várzea Alegre	0,557	0,594	0,246	0,656	0,498
Viçosa do Ceará	0,457	0,603	0,184	0,569	0,436

APÊNDICE F – MAPAS DE DESEMPENHO DOS MUNICÍPIOS DO CEARÁ NA ESCADA DA SUSTENTABILIDADE, POR DIMENSÕES


DIMENSÃO AMBIENTAL


DIMENSÃO SOCIAL

DIMENSÃO ECONÔMICA

DIMENSÃO INSTITUCIONAL

