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RESUMO 

Uma abordagem comum na modelagem de séries temporais hidrológicas é a suposição de que 

a série é estacionária, embora essa hipótese tenha sido questionada devido aos impactos das 

mudanças climáticas e usos do solo motivados por ações antropogênicas. Desta forma, o 

presente trabalho pretende fazer um diagnóstico das séries temporais do Sistema Interligado 

Nacional (SIN) no Brasil, analisando a estacionariedade, tendência e modo de variação. Em 

seguida, foi realizada uma análise apenas da baixa frequência (16-32 anos), decomposta pela 

transformada de ondeleta, utilizando o índice padronizado de escoamento (SRI), o changepoint 

e o Modelo de Markov Escondido para identificar os diferentes estados das vazões do 

reservatório de Sobradinho, a fim de entender os impactos da baixa frequência na série temporal 

completa e desenvolver um modelo de previsão. Foi utilizado um modelo autorregressivo e um 

HMM para prever o próximo estado da série temporal de baixa frequência. Primeiro, a 

estacionariedade foi analisada por testes estatísticos e testes de raiz unitária. Para avaliar a 

presença de tendência, foram utilizados os testes de Mann-Kendall e inclinação de Sen. 

Posteriormente, as séries temporais foram decompostas pela Decomposição Completa em 

Modos Empíricos por Conjunto com Ruído Adaptativo e Transformada de Ondeleta. Os 

resultados entre os testes estatísticos e de raiz unitária classificaram mais da metade das séries 

como não estacionárias. Foi avaliado que os testes de raiz unitária são mais indicados ao 

modelar séries com a presença de uma tendência. A análise com o changepoint mostrou um 

melhor resultado na identificação de eventos extremos de baixa frequência em relação ao SRI. 

Foi avaliada a função de distribuição cumulativa utilizando a séries temporal original e foi 

observado que as distribuições são diferentes para os anos classificaram os anos secos/úmidos, 

assim, a proposta de identificar os estados e prever o próximo estado foi justificada. Um modelo 

para previsão foi desenvolvido ajustando um modelo autorregressivo para a série temporal de 

baixa frequência, mas apresentou bons resultados apenas para previsão de 1 ano à frente. No 

modelo HMM, os resultados mostraram uma redução do período úmido entre os anos 2010-

2016 e uma probabilidade crescente de um período normal foi verificada. A curto prazo, é 

possível identificar o próximo estado mais provável para o reservatório de Sobradinho usando 

o HMM, e este foi uma boa indicação em relação à série observada. Em conclusão, a maior 

parte das estações analisadas não são estacionária, embora ainda sejam modeladas desta forma, 

e a previsão HMM para as vazões do reservatório de Sobradinho provou ser uma ferramenta 

importante para auxiliar na previsão do próximo estado da variabilidade de baixa frequência, 

proporcionando um mecanismo para o gerenciamento e operação de reservatórios, 



 
 

 
 

especialmente para o deste estudo, devido à sua importância econômica para o setor 

hidrelétrico. 

 

Palavras-Chave: Análise de Séries Temporais. Estacionariedade. Modelo de Markov 

Escondido. 



 
 

 
 

ABSTRACT 

A common approach in the hydrological time series modeling is the assumption that the series 

is stationary, although this belief has been questioned due to the impacts of climatic changes 

and land use change motived by anthropogenic actions. Thus, the present work intends to make 

a diagnosis of streamflow time series of the National Interconnected System (NIS) in Brazil 

analysing the stationary, trend and mode of variation. Then, the analysis is performed for the 

low frequency only (16-32 years), decomposed by the wavelet transform, and use the Standard 

Runoff Index (SRI), changepoint and a Hidden Markov Model (HMM) to identify the different 

states of the Sobradinho’s reservoir inflow to understand the impacts of this frequency in the 

time series and develop a forecast model. It was used the Autoregressive model and a HMM to 

predict the next state in the low frequency time series. First, the stationarity was analyzed by 

statistical and unit root tests. In order to evaluate the presence of trend was used the Mann-

Kendall and Sen’s slope tests. Then, the time series were decomposed by Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise and Wavelet Transform. Results between 

the statistical and unit root tests classified more than a half of the series as nonstationary. It was 

evaluated that the unit root tests are more indicated when modeling series with the presence of 

a trend. The analysis with the changepoint showed a better result in the identification of extreme 

events of the low frequency in relation to SRI. It was evaluated the cumulative distribution 

function using the original time series and was observed that the they have different 

distributions for years classified as dry/wet years, thus, the proposal to identify the states and 

forecast the next state was justified. A forecasting model was developed adjusting an 

autoregressive model to the low frequency time series, however it presented good results for 1-

year ahead forecast only. Regarding the HMM model, the results shown a reduction of the wet 

period between the years 2010-2016 and an increasing probability of a normal period was 

verified. For a short-term, it is possible to identify the next most probable state for the 

Sobradinho’s reservoir and the next state was a good indication compared to the historical time 

series using the HMM.  In conclusion, most of the station gage analyzed are not stationary, 

although they are still model as such and the HMM forecast for Sobradinho’s reservoir inflow 

proved to be an important tool to assist in predicting the next state of the low frequency 

variability, thus, providing an mechanism to managing and operating reservoirs, especially for 

the one in this study due to its economic importance for the hydroelectric sector. 

 

Keywords: Time series analysis. Stationarity. Hidden Markov Model. 
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1 INTRODUCTION  

 

Time series analysis has been a central topic in many knowledge areas, especially 

in stochastic hydrology (Salas 1980; Garfias-Soliz et al., 2010; Sang, 2013). A time series is a 

set of measures or numerical values of any time-ordered variable. It can be either discrete (e.g. 

number of floods in a given period) or continuous (e.g. hydraulic conductivity in space or time 

flow), where the first can be obtained by a sampling interval of a continuous series. Among the 

main objectives of the time series analysis are forecasting long- or short-term future values; 

prediction of the frequency of extreme events; generate synthetic series; describe the behavior 

by verifying the existence of seasonal trends or variations; investigation of operating system 

rules in reservoirs (Morettin and Toloi, 2006). 

There are two main approaches when it comes to investigating natural phenomena, 

the deterministic approach, and the stochastic approach. The first is based on cause-and-effect 

relationships in which their variables are free from random variations, while the second will not 

necessarily be linked to those cause and effect relationships, being thought of as random 

variables that have probability distributions (Yevjevich, 1987; Salas et al., 1980). A time series 

is described as a random or stochastic process if it contains a stochastic component. Most 

hydrological time series are composed of a stochastic component superimposed on a 

deterministic component. 

The deterministic component can be classified as periodic, trend components or a 

combination of both. The trend component, in a time series, is the result of the gradual changes 

of nature or anthropogenic in the hydrological environment, which produce the time series. The 

trend analysis and its potential impacts are an important component in the planning and 

management of water resources, especially under temporal changes in hydrologic regimes. 

Therefore, a careful analysis of the flow regime and the identification of temporal changes in 

the hydrologic cycle is a significant topic in water resources studies (Alves et al., 2013; Sethi 

et al., 2015; Bayazit, 2015). 

 The periodic component is present in most continuous monthly series, where a 

cyclic pattern is observed. The stochastic component represents an irregular variation, in 

comparison to the others, but continuous during the time series. This can be caused by sample 

observation errors or by random fluctuations in natural physical processes (Morettin and Toloi, 

2006). 
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In the analysis of a time series model, the best procedure is to identify a model that 

fits a certain data sets properly, which may be a stochastic or deterministic model. Thus, Box 

and Jenkins (1970) constructed a model of identification, estimation and diagnosis to check the 

stages in the elaboration of the model (Hipel, McLeod, 1994). Salas (1980) also proposed a 

systematic approach to hydrologic time series modeling composed of six main phases, 

illustrated in Figure 1. 

 

Figure 1 – Systemic Approach for time series modeling constructed by Box and Jenkins (a) 
and Salas (b) 

 

 
Source: Adapted from Salas (1980) 

There are two main approaches in time series analysis, the parametric models and 

non-parametric. In the parametric models, it is made prior assumptions about the nature of the 

data and, generally, the parameters are fixed early in the process. For the nonparametric models, 

Selection of 

the type of 

model

Identification 

of the form of 

the model
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the model pa
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the structure of the model not defined a priori, and normally the parameters are determined by 

the data themselves (Morettin and Toloi, 2006; Sivakumar, 2017). Some examples of 

parametric models are autoregressive models (AR) or moving averages (MA), Markov Chain 

Process, and others. Whereas, among the non-parametric models, are Nearest Neighbors 

resampling, Kernel density estimator, and others. 

In many cases, the hydrological problems studied do not require detailed discussion 

about the physical process, but only a representation of these time series processes. Stochastic 

models can be used to represent, in a simplified way, these hydrological time series. Stochastic 

modeling places greater emphasis on the statistical characteristics of hydrological processes 

Thus, a stochastic process is a set of random variables, which are defined in a probability space. 

One of the main assumptions made when evaluating a time series is stationary, 

hence its statistical properties do not change over time, contemplating an equilibrium around a 

constant mean (Morettin and Toloi, 2006; Brockwell and Davis, 2016).  Mathematically the 

stationarity properties can be described as: 𝐸(𝑋𝑡) = 𝜇                                                                                                                  (Eq. 01) 𝑉𝑎𝑟(𝑋𝑡) = 𝜎2                                                                                                           (Eq. 02)  𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝐿) = 𝜆𝐿                                                                                                  (Eq. 03) 

A stochastic process is purely stationary when the distribution of 𝑋𝑡 is not time 

dependent and all simultaneous distributions of the random process variables depend only on 

the mutual interval time. 

The stationarity hypothesis is still used in many design and planning situations, 

although many authors assert that stationarity is dead (Milly et al., 2008) and do not have to be 

used in time series modelling. It is speculated that the responsibility of the high nonstationary 

of the hydrological series is related to the climatic changes and anthropogenic actions (Milly et 

al., 2008; Detzel et al., 2016; Serinaldi and Kilsby, 2015, Chen et al., 2017). The stationarity 

assumption in streamflow modeling may lead to the underestimation or overestimation of the 

hydrologic risk which can generate poor planning and functioning of the water resources 

systems. Many studies have been developed for the investigation of the stationarity of the 

Brazilian hydrological series (Müller et al., 1998; Batista et al. 2009; Detzel et al. 2011). 

Among the methods used in time series analysis which operate over multi-temporal 

scales and show nonstationary characteristics, it is the wavelet transform which has been widely 

applied in various geographic basins and regions worldwide to expose the complex 
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characteristics of hydrologic processes (Torrence and Compo, 1998; Labat, 2005; Silveira et 

al., 2011; Alves et al., 2013; Nourani, 2013; Sang, 2013). This multi-temporal analysis can 

capture the different time variabilities of the time series (interannual and interdecadal scale). 

Furthermore, the better understanding of the different frequencies presented in time series can 

improve water system modeling (Hoek and Bos, 2007). With the increasing length of historical 

hydrological time series, the presence of low frequency structures of climate and hydrologic 

time series has become an important feature in hydrological analysis (Kwon et al., 2007). 

The inspection of low frequency oscillations in hydrological process has driven 

many researches in this field of study, especially models coupled with the climate indexes 

which are known for modulating the variability of hydrological variables (Kwon et al., 2008; 

Grimm and Sabóia, 2015). The changes in the hydrological variability can greatly affect the 

operation of reservoirs, and the prediction of these shifts in the mean can assist in the decision-

making process and collaborate in the performance of water systems based on future forecasts. 

Thus, the analysis of historical time series in a country like Brazil, where the spatial-

temporal variability is very large and the its hydrological cycle is highly variable, the 

identification of these different behaviour as well as the influence of large-scale climatic forcing 

on the low frequency variability of the streamflow’s can improve water systems planning and 

management. 

The dissertation is organized on the following five parts: the mains and specific 

objectives, article one entitled as “Stationarity analysis and principal modes of interannual and 

decadal variability of the historical hydrological time series of the national system operator 

(NSO)”, article two entitled as: “Pluriannual streamflow forecasting using Hidden Markov 

Model”, the conclusions obtained in those studies and the reference used. 
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2 OBJECTIVE 

 

2.1 Main objective 

 

To analyze the time series of inflows identifying the presence of stationarity, trend 

and verifying the modes of variation present in these series in order to analyse the low frequency 

and develop a forecast model using the Hidden Markov Model (HMM). 

 

2.2 Specific objectives 

 

 Evaluate stationarity comparing different statistical and unit root tests; 

 Identify the presence of trend in the streamflow gage stations of the NSO 

 Evaluate which frequencies best represent the series using the explained variance; 

 Identify the wet and dry periods of the streamflow time series from the Sobradinho’s 

reservoir and compare the results from different methodologies such as Standard Runoff 

Index (SRI), changepoint detection and an HMM 

 Develop forecast models using an Autoregressive model and an HMM. 
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3 STATIONARITY ANALYSIS AND PRINCIPAL MODES OF INTERANNUAL AND 

DECADAL VARIABILITY OF THE HISTORICAL HYDROLOGICAL TIME 

SERIES OF THE NATIONAL SYSTEM OPERATOR (ONS)1 

 

3.1 Abstract 

 

Climatic changes and anthropogenic actions questioned the stationary model which is widely 

diffused in hydrological modeling. Thus, the present work intends to make a diagnosis of the 

time series of the National Interconnected System (SIN) in Brazil. First, the stationarity was 

analyzed by statistical and unit root tests. In order to evaluate the presence of trend in the series 

was used the Mann-Kendall and Sen’s slope tests. Then, the time series were decomposed by 

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and 

Wavelet Transform. Results between the statistical and unit root tests showed similar results 

for stationarity analysis, except for the south region, and for both types more than half of the 

series were classified as nonstationary. It was evaluated that the unit root tests are more 

indicated for modeling series with the presence of trend. When examining trend, it was noted 

that the south and southeast region both presented positive trends while the north and northeast 

region presented negative trends. Analysing the decomposed time series by the Morlet wavelet 

and the CEEMDAN method, most of the series have higher explained variance for the period 

of 2-8 years, ranging from 50-60%, while for the medium frequency (8-16 years) the explained 

variance is around 10-20% and for the low frequency (16-32 years) it represents 5-10% of the 

time series. Those decomposition methods have proved to be important tools for the 

identification of climatic variability of an important sector for the economy of the country, 

forming a diagnostic of the behaviour of the streamflow time series. In conclusion, most of the 

station gage analyzed are not stationary, although they are still model as such. The time series 

presented the trend component in 90% of the evaluated time series and the high frequency (2-8 

years) variability is responsible for most of the explained variance of the whole series. So, a 

complete diagnosis of the time series is paramount for the modelling of the water resource 

systems, especially one economically important as the hydroelectric sector. The methodologies 

presented in this work are useful for hydrological studies in regions affected by climatic 

variability and assist in modeling the behavior of hydrological series. 

                                                 
1 This paper was submitted to the Journal of Hydrology in January, 2019. 
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3.2 Introduction 

 

In most hydroclimatic time series can be detected the presence of periodicities and 

trends in variables such as precipitation, streamflow, temperature and others. Furthermore, the 

better understanding of the different frequencies present in those time series can improve 

hydrological system modeling (e.g., improve long-range forecast). Assessing river discharge 

records can be a resourceful alternative to precipitation record due to the large space-time 

variability of that hydrological variable, thus, needing less data from weather stations caused 

by the need to proper characterization of rainfall (Coulibaly and Burn, 2004; Nalley et al., 

2016). Coulibaly and Burn (2004) explain that river flows can serve as an appropriate index of 

interannual hydroclimatic variability at a local or regional scale. 

When evaluating variables such as streamflow, which presents key information 

regarding hydrological changes, an important part of the process is to decompose the original 

data and assess its variability modes. Many different methods have been used to accomplish 

this goal, such as the complete ensemble mode decomposition with adaptative noise 

(CEEMDAN) or wavelet transform. This climatic variability directly affects the 

hydroclimatological time series and, consequently, the water availability and the activities that 

depend on the water. There are also impacts that can affect sea level, agriculture and 

hydropower generation, which can produce great pressure on hydrosystems (Marengo and 

Valverde, 2007).  

One of the determinants of the modes of variation in hydrological time series are 

the atmospheric systems and their interactions in different time scales, being thus modulators 

of the climate and consequently of hydrological variables. According to Marengo and Valverde 

(2007), the presence of a variability in the interannual and interdecadal scales of precipitations 

and flows was observed in the Amazon basin and Northeast region of Brazil. Anjos (2015) 

evaluated the low frequency relation of historical inflows of the SIN with climatic indices using 

wavelet transforms. Alves et al. (2013) analyzed the modes of variation of the SIN stations 

using the wavelet transforms. 

Another key component in the time series analysis is the analysis of stationarity. In 

models that apply hydrologic time series is paramount the familiarity with its statistical 

properties, mainly due the fact that such series tend to vary with time and can be characterized 

as nonstationary if these variations are considered significant. The climate on the planet is 

changing due to anthropogenic actions and natural climatic processes. These changes can be 
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observed through changes in the hydrological cycle with a direct impact on the parameters of 

hydrological changes, such as precipitation, evapotranspiration and flows (IPCC, 2013). It is 

speculated that the responsibility of the high nonstationarity of the hydrological series is related 

to the climatic changes and anthropogenic actions (Milly et al., 2008; Detzel et al., 2016; 

Serinaldi and Kilsby, 2015; Chen et al., 2017). The stationarity hypothesis is still used in many 

design and planning situations and the violation of the hypothesis in the flow series may lead 

to the underestimation or overestimation of the statistics which can generate poor planning and 

management of the water resources system. 

Many studies have been developed for the investigation of the stationarity of the 

Brazilian hydrological series using, for the most of them, statistical tests. Müller et al. (1998) 

analyzed the series of precipitation and flow of the Itaipu basin through statistical tests and 

concluded that the fluviometric and pluviometric series are nonstationary. Batista et al. (2009) 

evaluated the hydrological series of the South-Southeastern Brazil, where the stationarity of 

the series of the Brazilian Southeast and the non-stationarity of the series of the South region 

were verified from 1970. Detzel et al. (2011) conducted a study to verify the stationarity of the 

series of affluence of Brazilian hydroelectric plants, concluding that the series of the South 

subsystem do not present any statistically stationary series, while for the series of the North 

and Northeast, the series were considered statistically stationary. Pedrosa and Souza (2009) 

conducted a study of the mean and minimum flows of the Paraíba river, where they evaluated 

that there is no statistical evidence to reject the hypothesis of stationarity in the region. 

Most studies, in order to evaluate stationarity using hydrological series apply 

statistical tests, such as the Mann-Kendall or Student's t-tests, however, unit root tests also have 

been used to evaluate stationarity in hydrological time series. In the study by Karamouz et al. 

(2015), the stationarity of a series of precipitation was verified using the Augmented Dickey-

Fuller (ADF) test. Zhao and Chen (2015) applied the ADF test to analyze stationarity of annual 

runoff series for four hydrological stations. Modarres and Ouarda (2014) used the Dickey-

Fuller unit root test and the Phillips-Perron test to verify the seasonality of climatic indexes 

and drought indexes. 

The trend component, in a time series, is the result of the gradual changes of nature 

in the hydrological environment or anthropogenic modifications such as land-use changes, 

urbanization and land-cover. The trend analysis and its potential impacts are important 

components in the planning and management of water resources, especially under temporal 

changes in hydrologic regimes. Therefore, a careful analysis of the flow regime and the 
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identification of temporal changes in the hydrologic cycle is an important topic in water 

resources studies (Alves et al., 2013; Sethi et al., 2015; Bayazit, 2015). 

For the identification of trend many parametric and nonparametric methods have 

been applied, where the nonparametric tests, such as Mann-Kendall, are the most used due to 

the need of fewer assumptions in its applications (Bayazit, 2015). Many authors have evaluated 

trends in hydrological time series in Brazil, such as Krusche et al. (1997), who performed a 

statistical analysis using the Mann-Kendall test to evaluate the presence of trend in the 

Piracicaba river basin that show increase in the evapotranspiration and precipitation, while there 

was a decrease in the streamflow. Silveira et al. (2016), carried out a trend and variability 

assessment in the São Francisco basin applying moving averages for a ten-year horizon, linear 

regression and Mann-Kendall-Sen method for precipitation and temperature variables. Silva et 

al. (2013) verified the presence of trend in the precipitation and flow series in the Upper São 

Francisco region using the Mann-Kendall test. The analysis or detection of trends is an 

important aspect in research and studies with hydrological variables when considering the 

impacts under climate change.  

Thus, to evaluate the behavior of such an extensive system as the National 

Interconnected System, the National System Operator (NSO), which is responsible for 

coordinating and controlling the operation of electricity generation and transmission facilities 

in the SIN, it adopts the forecasting of flows for a subset of hydroelectric stations considering 

88 representative stations from different basins in Brazil known as Base Posts (BP). Hence, 

this paper aims to make a diagnostic of the 88 base stations that compose the NIS applying 

monthly time series ranging from 1931-2016, totaling 86 years of records. This study proposes 

to use classical statistical test, such as Student’s t-test, Wilcoxon, Mann-Kendal and Cox-Stuart 

and tests widely used in macroeconomics like Augmented Dickey-Fuller, KPSS, Phillips-

Perron and Dickey Fuller-GLS to evaluate the stationarity/nonstationary in the studied time 

series. Also, it is applied trend tests to verify the presence of a positive or negative tendency in 

the time series. Complementarily, it is proposed a decomposition methodology using wavelet 

transform and CEEMDAN to identify patterns of variation of flow series that are not explained 

by simple stationarity models, allowing to make a diagnostic of streamflow time series in an 

important Brazilian system. 
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3.3 Studied Area: National Interconnected System (NIS) 

 

The world’s energy generation is mostly composed of combustible fuel (67,3%), 

hydropower generation responds to 16,6%, nuclear corresponds to 10,4% and 

solar/wind/geothermal/others represents 5,7% of the electricity production (International 

Energy Agency, 2016). However, in Brazil, most of its electricity is produced from hydropower 

plants (67,8%). 

The largest consumer of electricity in Brazil is the industry sector with 36% 

followed by residential (29%) and commercial (19%) uses. Energy usages, such as public, 

agricultural and transport sectors correspond to only 16% of the total according to the National 

Energy Balance of 2017 prepared by the Ministry of Mines and Energy (MME) with the Energy 

Research Company (EPE) (MME / EPE, 2018). 

The National Interconnected System (Figure 2) is responsible for the production 

and transmission of energy being characterized as a hydro-thermo-eolic system, with 

predominance of generation by hydroelectric plants. Most of the hydropower plants are located 

in the Southeast-South region of the country, mainly due to the large consumption centers. Only 

1.7% of the energy demanded by the country is outside the SIN, in small isolated systems 

located in the Amazon region (ONS, 2018). 

Hydroelectric power generation holds a fundamental importance in Brazil's 

electricity production. The four production subsystems (North, Northeast, South and Southeast) 

are interconnected by thousands of kilometers of distribution networks, allowing the 

optimization of distribution and avoiding possible regional restrictions in order to supply the 

country's electricity demand. 
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Figure 2 - National Interconnected System 

 
Source: ONS (2018) 

 

In order to exemplify production dynamics, load requirements and transmission 

between the different regions, values presented in Figure 3, which it corresponds to observed 

energy production in mega-watts (MW) for the year 2018 are described hereafter. The North 

region produces 18,2% of the national energy in MW and demand 8,4%, the Northeast region 

produces 15,5% and demand 16,4%, the South region produces 6,8% and demand 17,7%, the 

Southeast/Central West region produces 59,5% and demand 58,2%. 

Regarding interregional transfers, the North region transmits 645,0 MW of its 

production to the Northeast region and 4434, MW to the Southeast / Midwest region; the 

Southeast / Midwest region transmits 5517,5 MW of its production to the South region, in 

addition to receiving 254,4 MW of the production in the Northeast region. 
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Figure 3 - Interregional transfers of the National Interconnected System 

 

Source: ONS (2018) 

 

The forecast of flows and generation of scenarios of inflows defined by the National 

System Operator (NSO) establishes the processes for the forecasting of monthly, weekly and 

daily flows, and for the generation of scenarios of monthly average natural inflows used in the 

preparation of the Monthly Program of the Energy Operation (MPEO). In order to do so, it is 

generally adopted the performance of flow forecasts for a subset of gauge stations also know 

as Base Posts. The rest of the gauge stations are predicted through monthly linear regressions 

based on the data provided in the BP to complement the forecasts of flows for the whole SIN. 

NSO currently works with a total number of 88 BP representative of the various regional 

hydrographic regimes found in Brazil (Figure 4). The dataset was obtained through the NSO 

and it refers to the monthly averages of the naturalized historical streamflow series, in cubic 

meters per second, of the 88 posts of the National Interconnected System (NIS). The time series 

varies from January of 1931 to December of 2016. 
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Figure 4 - Spatial distribution of the Base Posts 

 
Source: Prepared by the author 

 

3.4 Methods 

 

Methods used in this study to analyze the hydrological data as regard to stationarity, 

trend and patterns of variability are described below. The methodology applied in this study is 

illustrated in Figure 5 and divided into three phases: (1) test application to evaluate stationarity; 

(2) test application for trend analysis and (3) time series decomposition and analysis of its 

variability patterns. 
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Figure 5 - Methodology used in this article 

 
Source: Prepared by the author 

 

3.4.1 Structural Analysis of Time Series 

 

Most hydrological time series are composed of a stochastic component 

superimposed on a deterministic component. The time series used in this study were 

decomposed by the different methods given below. 

 

3.4.1.1 Complete EEMD With Adaptative Noise 

 

The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) method is an adaptation to the empirical mode decomposition method (EMD) 

due to the presence of limitation for the decomposition of signals in non-linear and 

nonstationary processes. In the EMD method the first step is to identify the local extrema points 

and fitting the spline functions that connects them, next, computes the mean series and find the 

residue series in an iteratively process, until the resulting series became a zero-mean series. A 

complete description of the EMD method can be found in Huang et al. (1998). Huang et al. 

(1998) states that an Intrinsic Mode Function (IMF) shall complied two conditions: (i) have the 

number of extrema and the number of zero crossings equal or differ at most by one, and (ii) the 

mean value of the upper and lower envelopes is zero at any point. 

To overcome some limitation exhibited in the EMD process, Wu and Huang (2009) 

proposed an ensemble approach called EEMD, which forms the signs by adding randomly 

generated white noise series with the original series. It was noted that limitations, such as mode 
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mixing issues in the reconstructed series may still prevail, thus, a new method named 

CEEMDAN was proposed by Torres et al. (2011). In the CEEMDAN method, the first EMD 

mode is computed over an ensemble of residue plus different realizations of a given noise, and 𝐼𝑀𝐹2 is obtained by averaging. The procedure continues until a stopping criterion is attained 

(Antico et al., 2014). Let us define the operator 𝐸𝑗 (⋅) which, given a signal, produces the 𝑗−th 

mode obtained by EMD. Let 𝑤𝑖 be white noise with 𝒩 (0, 1).  

The CEEMDAN algorithm can be described as follows: obtain the first EMD mode 

of 𝐼 realizations and calculate: 𝐼𝑀�̃�1 = 1𝐼 ∑ 𝐼𝑀𝐹1𝑖 = 𝐼𝑀𝐹1̅̅ ̅̅ ̅̅ ̅𝐼𝑖=1                                                                               (Eq. 04) 

Then, calculate the first residue and obtain the first EMD mode for each realization, 

then, define the second mode as: 𝐼𝑀�̃�2 = 1𝐼 ∑ 𝐸1(𝑟1 + 𝛽1𝐸1(𝑤𝑖))𝐼𝑖=1                                                                    (Eq. 05) 

for 𝑘 = 2,...,𝐾 calculate the 𝑘-th residue: 𝑟𝑘 = 𝑟(𝑘−1) − 𝐼𝑀𝐹𝑘                                                                                                  (Eq. 06) 

Decompose the realizations until their first EMD mode and define the (k+1)-th 

mode as: 𝐼𝑀�̃�(𝑘+1) = 1𝐼 ∑ 𝐸1 (𝑟𝑘 +  𝛽𝑘𝐸𝑘(𝑤𝑖))                                                          (Eq. 07)𝐼𝑖=1  

Calculate the residue for the next k and decompose the next realization until the 

obtained residue can no longer be decomposed. The final residue satisfies the following: 𝑅 = 𝑥 − ∑ 𝐼𝑀𝐹�̃�                                                                                               (Eq. 08)𝑘𝑘=1  

In CEEMDAN, the level of added noise is determined by the parameter 𝛽𝑘. 

Although different values of 𝛽𝑘 can be set for different modes (see Equation 7), we use a fixed 

value of this parameter to obtain all modes. We set a noise level of 6.4e-07 and a maximum of 

100 shifting iterations in the CEEMDAN applications to time series of streamflow. The 

variability modes decomposition was performed using the package hht (Bowman and Lees, 

2013) in the software R. 

 

3.4.1.2 Wavelet Analysis 
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Wavelet analysis is a wildely used technique in periodic phenomenon in 

nonstationary time series, specially in time variant frequencies. The wavelet function 𝜓(𝑡) is 

defined mathematically by ∫ 𝜓(𝑡)𝑑𝑡 = 0+∞−∞  (Huo et al., 2016). This function oscillates during 

a certain time period and then decreases to zero. In the wavelet method the model input is 

divided into a subset of continuous or discrete wavelet methods, each subsignal plays a different 

role and has a unique behaviour.  In wavelet theory, the mother wavelet should represent the 

deterministic characteristics and its components (periodicity, trends, cycles, etc.) in an accurate 

manner for hydrological time series (Percival and Walden, 2000). 

The wavelet transform decomposes a time series into different resolutions by 

analyzing its frequency of a uni or bi-variate time series.  There are two different ways of 

modelling a time series with wavelet transform: discrete (DWT) and continuous (CWT) 

method. The DWT method decomposes a series into subsignals given proper wavelet and 

temporal scale, and the result can guide wavelet threshold denoising and wavelet 

decomposition. The CWT may be applied to find the scale contents of a signal and their variance 

in time (Pathak et al., 2016). 

The choice of the mother wavelet is a very important one, where the kind of wavelet 

transform chosen depends of the type of output information needed. There are many mother 

wavelet functions from which to choose, such as Haar wavelet, Daubechies wavelet, Mexican 

Hat wavelet, Morlet wavelet, and others. The Morlet wavelet is commonly used in hydrological 

time series because describes the time series well and has a better time–frequency localization 

when compared to the other commonly used wavelets, such as the Mexican Hat and the 

Daubechies wavelets (Huo et al., 2016; Nalley et al., 2016). Due to the advantages presented in 

this type of model this study used the Morlet wavelet as well. 

The mother Morlet wavelet can be implemented by the Equation 9: 𝜓(𝑡) = 𝜋−1/4𝑒𝑖𝜔𝑡𝑒−𝑡2/2                                                                                        (Eq. 09) 

Where ω is the angular frequency and is set to 6 because it makes the Morlet wavelet 

approximately analytic and 𝑡 is the time. 

The Morlet wavelet transform (𝑥𝑡) was defined as the convolution of the series with 

a set of (𝑥𝑡) generated by the mother wavelet by translation in time by τ and scaling by s: 𝑊𝑎𝑣𝑒 (𝜏, 𝑠) = ∑ 𝑥𝑡 1√𝑠 𝜓∗ (𝑡 − 𝜏𝑠 )𝑡                                                                      (Eq. 10) 

With * denoting the complex conjugate. The position of the particular daughter 

wavelet in the time domain is determined by the localizing time parameter 𝜏 being shifted by a 
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time increment of 𝑑𝑡. The choice of the set of scales 𝑠 determines the wavelet coverage of the 

series in the frequency domain. 

The local amplitude of a periodic component in a time series can be obtained by the 

modulus of its wavelet transform. It is adopted the rectified version (Liu et al., 2007), since the 

modulus can produce biased wavelet amplitude. 𝐴𝑚𝑝𝑙(𝜏, 𝑠) = 1𝑠12 |𝑊𝑎𝑣𝑒(𝜏, 𝑠)|2                                                                            (Eq. 11) 

The wavelet power spectrum is the interpretation of the wavelet energy density in 

the time-frequency domain and can be written as: 𝑃𝑜𝑤𝑒𝑟(𝜏, 𝑠) = 1𝑠 . |𝑊𝑎𝑣𝑒(𝜏, 𝑠)|2                                                                          (Eq. 12) 

In this work, it was used the package WaveletComp in R (Rosch and Schmidbauer, 

2014). 

 

3.4.2 Stationarity Assessment 

 

The stationary concept revolves around the idea that a natural system oscillates 

randomly within an unchanging envelope of variability. The variables of this system have time-

invariant probability density functions (PDF) and those variables can be estimated through 

historical data available. Due to climate change, many authors are using models to that account 

for a nonstationary framework. Thus, this study proposed to verify the streamflow in Brazil and 

evaluate it using four unit root tests and four statistical tests to determine whether those time 

series variables are nonstationary (Milly et al., 2008; Serinaldi and Kilsby, 2015; Bayazit, 

2015). 

 

3.4.2.1 Augmented Dickey-Fuller (ADF) 

 

The Augmented Dickey Fuller test aims to determine whether 𝛽 = 1 in a model 𝑦𝑡 = 𝑎 + 𝛽𝑦𝑡−1 + 𝜀𝑡. Dickey and Fuller (1979) consider three differential form of 

autoregressive equations to test for the occurrence of a unit root, where it is used penalty criteria 

like AIC and BIC/SBC (Barros, 2017). 

∆𝑦𝑡 = 𝛾𝑦𝑡−1 + ∑ 𝛽∆𝑦𝑡−1𝑝
𝑡=1 + 𝜀𝑡                                                                          (Eq. 13) 
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∆𝑦𝑡 = 𝑎 + 𝛾𝑦𝑡−1 + ∑ 𝛽∆𝑦𝑡−1𝑝
𝑡=1 + 𝜀𝑡                                                                  (Eq. 14) 

∆𝑦𝑡 = 𝑎 + 𝛾𝑦𝑡−1 + 𝛽𝑡 + ∑ 𝛽∆𝑦𝑡−1𝑝
𝑡=1 + 𝜀𝑡                                                       (Eq. 15) 

The three different equations are related to the presence of the deterministic 

components. Equation 13 is a pure random walk model, Equation 14 adds an intercept or drift 

term, and Equation 15 includes both a drift and a linear trend (Enders, 2008). After performing 

the test, the results are compared with the statistics presented in Dickey-Fuller table allowing 

to determine if the null hypothesis is rejected or accepted. 

 

3.4.2.2 KPSS 

 

Due to the reduced statistical power of the ADF test, which might have created a 

bias in verifying the existence of the unit root. Another recommended test is the KPSS test 

(Kwiatkowski et al. 1992). It is used to measure the null hypothesis that a time series is 

stationary around a deterministic trend (Um et al 2018; Barros, 2017). 𝑦𝑡 = 𝑑𝑡 + 𝑟𝑡 + 𝜀𝑡                                                                                                    (Eq. 16) 

Where 𝑑𝑡 is the deterministic trend, 𝑟𝑡 is the random walk and 𝜀𝑡 is the stationary error. 

 

3.4.2.3 Phillips-Perron 

 

Phillips and Perron (1988) unit root test refers to the same null hypothesis as the 

ADF test without the moving average term, however the main different is that it addresses the 

serial correlations and heteroscedasticity in the error (Um et al 2018; Barros, 2017). The test 

regression can be described as: ∆𝑦𝑡 = 𝛽𝐷𝑡 + 𝜋𝑦𝑡−1 + 𝑢𝑡                                                                                          (Eq. 14) 

Where 𝜋 is a least-squared estimate. 

 

3.4.2.4 Dickey Fuller-GLS (ERS) 

 

The ADF stationarity test is pointed out as having a low statistical power and 

sensibility to deterministic components. The DF-GLS (Elliot et al. 1996) test is computed by 

least square regression and locally de-trends the series to properly estimate the deterministic 
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parameters of the series, then uses the altered data to perform a typical ADF unit root test. The 

test is considered optimal among tests that use OLS to estimate parameters and increases the 

test’s statistical power (Choi, 2001; Barros, 2017). 

 

3.4.2.5 Mann-Kendall 

 

The Mann-Kendall (Mann, 1945; Kendall, 1975) is a non-parametric test which is 

widely used in environmental and hydrological time series to detect the presence of monotonic 

trends. The null hypothesis employed in the test assumes that the data came from a population 

with independent and identically distributed realizations (IID), which is the premise to a 

stationary process. The Mann-Kendall test is calculated according to: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1                                                                                 (Eq. 15) 

With 

𝑠𝑔𝑛(𝑥) = {1         𝑖𝑓 𝑥 > 00         𝑖𝑓 𝑥 = 0−1      𝑖𝑓 𝑥 < 0                                                                                   (Eq. 16) 

𝑛 is the sample size. In the test, positive statistics indicates an increasing trend, 

while a negative statistic indicates a decreasing trend. 

 

3.4.2.6 Wilcoxon test 

 

The Wilcoxon test (Gehan, 1965) is a classic non-parametric test used to test the 

equality between population averages, which can follow any statistical distribution. Thus, the 

null hypothesis of the test is 𝐻0: 𝜇1 = 𝜇2. 

The series is divided into sets of sub-samples, so the series are sorted and it is 

assigned indices of same length. For long samples the distribution is approximated from a 

normal distribution by the equation below, and then the value is compared with the test statistic 

according to the level of significance determined. 𝑧 = 𝑊 − 𝑛1(𝑛1 + 𝑛2 + 1)/2√𝑛1. 𝑛2(𝑛1 + 𝑛2 + 1)/12                                                                             (Eq. 17) 
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 3.4.2.7 Student’s t-test 

 

The Student’s t-test stands out for its popularity and simplicity. This is a parametric 

test on means that computes the statistic for a t-distribution, and then the confidence interval is 

defined for the acceptance or rejection of the null hypothesis of the test, comparing the value 

obtained with the test statistic to the said level of significance. The test verifies the equality of 

two population means, assuming the normality of the samples, so it is necessary the 

normalization using the log-normal model, which is the most indicated distribution because it 

does not allow negative flows (Detzel et al., 2011). 

The test is performed by two sub-samples in which the null hypothesis requires that 

the sub-samples have statistically similar averages. The test statistic can be calculated by: 𝑡 = (𝑥1̅̅̅ − 𝑥2̅̅ ̅)𝑠𝑝√ 1𝑛1 + 1𝑛2
                                                                                                      (Eq. 18) 

Where 𝑥1̅̅̅ 𝑎𝑛𝑑 𝑥2̅̅ ̅ represent the means of each sub-sample; 𝑛1 and 𝑛2represent the 

number of elements of the sub-samples and 𝑠𝑝is the combined variance estimator. 

 

3.4.2.8 Cox-Stuart test 

 

The Cox-Stuart test, or signal test, is a non-parametric test used to verify the contrast 

between the position of the mean and identify the presence of monotonous trends, whether they 

are increasing or decreasing. The null hypothesis of the test is that the number of positive and 

negative signals are equal, that is, there is no trend. The test calculates the difference between 

pairs formed from sub-samples, extracted from the original sample. Positive or negative signs 

may be associated with pairs, with ties eliminated. 

For samples with a number of elements equal or greater than 35 (n≥35), the statistic 

is approximated to a normal distribution, calculating the standard variable according to: 𝑧 = 2𝑥 ∓ 1 − 𝑛√𝑛                                                                                                         (Eq. 19) 

The calculated variable is compared with the tabulated values and, thus, the null 

hypothesis is rejected or accepted. 

The tests were performed using the packages randtests (Caeiro and Mateus, 2014), 

trend (Pohlert, 2018) and urca (Pfaff, 2008) in the software R. 
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3.4.3 Trend Analysis 

 

The Mann-Kendall test was also used to verify the presence of trend in the time 

series and the Sen’s slope test was applied to analyse the magnitude of such trends. 

 

3.4.3.1 Sen’s Slope 

 

The Sen’s Slope test calculates the slope and its intercept according to Sen’s method 

(Sen, 1968). The linear slopes are determined by: 𝑑𝑘 = 𝑋𝑗 − 𝑋𝑖𝑗 − 𝑖                                                                                                             (Eq. 20) 

for (1 ≤ i < j ≤ n), where 𝑑 is the slope, 𝑋 denotes the variable, 𝑛 is the number of data, while i 

and j are the indices. 

Then, the median from all slope is calculated and the intercepts are computed for 

each time step 𝑡 according to the following equation: 𝑎𝑡 = 𝑋𝑡 − 𝑏𝑡                                                                                                            (Eq. 21) 

 

3.5 Results and Discussion 

 

In this section, results were obtained when analysing the series of streamflows by 

applying (1) statistical and unit root test for evaluate the presence of stationarity in the studied 

data, (2) trend analysis and (3) modes of variation of the described data using decomposition 

methods described above. 

 

3.5.1 Statistical tests for stationarity analysis 

 

The time series of the base posts were evaluated using four statistical tests, which 

were: Student’s t-test, Wilcoxon, Mann-Kendal and Cox-Stuart, the p-value of such tests are 

described in the Table 1. The p-values for the bilateral tests are interpreted as the probability of 

observing, in another withdrawn sample from the same population, a higher (or lower) statistic 

than that observed with the sample tested. Thus, smaller the p-values means evidence of 

nonstationarity. Results are displayed in terms of p-values since all tests were performed with 

the same level of significance (α = 5%) and the values that rejected the null hypothesis (p-value 
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> 0.05) are highlighted in Table 1. The time series classification criteria was based on the 

rejection of the null hypothesis in most of the statistical tests (3 or higher), and when it was a 

tie, it was given a greater importance to the non-parametric tests, like Mann-Kendal, deciding 

if the series was classified as stationary/nonstationary. The spatial representation of the 

stationary and nonstationary stations is illustrated in Figure 6. 

 

Table 1 – P-value results of the statistical tests applied to the Base Posts. The results that rejected 
the null hypothesis (p-value>0,05) are highlighted, thus defining if the series was classified as 
stationary/nonstationary. 

Code Station Region 
Student's² 

t 
Wilcoxon² 

Cox-
Stuart² 

Mann-
Kendall2 

145 RONDON II NORTE 5.1E-01 1.2E-01 4.5E-01 9.9E-01 

275 TUCURUI NORTE 3.2E-01 7.7E-01 2.5E-01 3.2E-02 
277 CURUA-UNA NORTE 4.1E-01 9.5E-01 7.2E-01 1.8E-01 

279 SAMUEL NORTE 7.4E-01 1.2E-01 1.1E-02 2.0E-02 
287 STO ANTONIO NORTE 2.1E-01 2.8E-01 3.6E-01 2.9E-01 

291 DARDANELOS NORTE 2.1E-01 2.6E-01 2.0E-03 7.5E-01 

168 SOBRADINHO NORDESTE 4.7E-04 9.1E-07 8.4E-17 3.6E-14 
188 ITAPEBI NORDESTE 1.0E-01 1.4E-03 4.8E-05 7.0E-08 
190 B. ESPERANCA NORDESTE 9.9E-01 6.9E-01 2.0E-01 7.4E-03 
254 P.CAVALO NORDESTE 5.2E-02 1.6E-06 9.5E-05 3.8E-09 
271 ESTREITO NORDESTE 4.1E-01 4.4E-01 1.1E-02 2.3E-03 

1 CAMARGOS SUDESTE 1.8E-01 7.5E-02 3.5E-03 6.1E-05 
6 FURNAS SUDESTE 8.0E-01 9.6E-01 7.6E-01 3.7E-02 
14 CACONDE SUDESTE 1.8E-01 2.5E-02 8.7E-03 7.2E-01 

17 MARIMBONDO SUDESTE 1.3E-02 1.2E-03 1.2E-04 3.0E-01 

18 A. VERMELHA SUDESTE 1.5E-02 4.9E-04 1.9E-05 2.8E-01 

24 EMBORCACAO SUDESTE 3.3E-01 1.8E-01 5.2E-02 8.0E-03 
25 NOVA PONTE SUDESTE 2.1E-02 4.6E-02 2.1E-04 1.2E-03 
31 ITUMBIARA SUDESTE 1.2E-01 1.8E-01 9.3E-03 7.1E-03 
32 CACH.DOURADA SUDESTE 1.9E-01 3.4E-01 7.1E-02 2.2E-02 
33 SAO SIMAO SUDESTE 2.2E-03 1.4E-04 1.4E-07 1.5E-02 
34 I.SOLTEIRA SUDESTE 3.2E-04 2.2E-05 7.5E-10 3.0E-02 

47 
A.A.LAYDNER 
(JURUMIRIM) 

SUDESTE 1.4E-14 2.0E-17 9.8E-15 6.6E-19 

61 CAPIVARA SUDESTE 4.5E-18 1.8E-24 0.0E+00 2.0E-25 
63 ROSANA SUDESTE 4.5E-17 1.7E-25 0.0E+00 2.2E-24 

117 GUARAPIRANGA SUDESTE 4.1E-07 1.7E-05 2.6E-03 4.8E-06 
119 BILLINGS_PED SUDESTE 1.0E-01 3.7E-01 7.5E-01 6.8E-02 

120 JAGUARI SUDESTE 4.7E-10 2.0E-11 4.2E-24 2.6E-16 
121 PARAIBUNA SUDESTE 9.6E-01 8.0E-01 3.8E-01 1.6E-01 

125 STA CECILIA SUDESTE 5.7E-01 8.3E-01 5.1E-01 2.1E-02 
                                                 
2 The results that rejected the null hypothesis (p-value>0,05) are highlighted in Table 1, thus defining if the 
series was classified as stationary/nonstationary. 
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Code Station Region 
Student's² 

t 
Wilcoxon² 

Cox-
Stuart² 

Mann-
Kendall2 

130 I. POMBOS SUDESTE 1.2E-01 4.2E-01 2.7E-01 2.9E-02 
134 SALTO GRANDE SUDESTE 2.1E-02 3.6E-05 3.7E-09 2.5E-13 
144 MASCARENHAS SUDESTE 8.9E-03 7.3E-05 3.5E-06 8.7E-15 
149 CANDONGA SUDESTE 8.5E-02 3.0E-02 3.1E-03 2.5E-07 
155 RETIRO BAIXO SUDESTE 1.2E-01 5.7E-01 8.6E-01 1.1E-02 
156 TRES MARIAS SUDESTE 8.8E-01 1.9E-01 1.0E-01 1.4E-03 
158 QUEIMADO SUDESTE 1.2E-02 3.3E-03 1.9E-03 2.7E-08 
160 ALTO TIETÊ SUDESTE 3.7E-01 2.9E-01 1.1E-01 3.3E-02 
191 CANA BRAVA SUDESTE 5.0E-01 1.0E+00 8.9E-01 8.6E-03 
196 ROSAL SUDESTE 1.1E-01 2.5E-01 1.3E-03 5.5E-01 

197 PICADA SUDESTE 3.9E-03 4.5E-03 9.4E-07 5.4E-06 
201 TOCOS SUDESTE 5.8E-01 2.5E-01 3.4E-01 3.6E-02 
205 CORUMBA IV SUDESTE 9.7E-02 2.7E-01 2.1E-02 1.5E-01 

206 MIRANDA SUDESTE 6.7E-02 2.5E-01 1.5E-03 1.5E-02 
209 CORUMBA I SUDESTE 1.9E-01 3.7E-01 3.8E-02 2.6E-01 

220 MONJOLINHO SUDESTE 4.2E-06 1.3E-05 1.4E-05 5.3E-09 
237 BARRA BONITA SUDESTE 5.6E-07 5.9E-10 6.7E-09 7.3E-06 
240 PROMISSAO SUDESTE 1.7E-10 3.2E-17 0.0E+00 2.6E-10 
242 NAVANHANDAVA SUDESTE 5.3E-11 6.0E-18 0.0E+00 1.8E-10 
243 T.IRMAOS SUDESTE 6.2E-11 3.0E-18 0.0E+00 2.0E-10 
245 JUPIA SUDESTE 3.1E-07 2.9E-10 0.0E+00 2.8E-05 
246 P.PRIMAVERA SUDESTE 1.1E-10 7.9E-14 0.0E+00 3.7E-07 
247 CACU SUDESTE 4.5E-06 1.0E-05 8.9E-16 7.3E-02 

251 SERRA FACAO SUDESTE 5.6E-01 2.9E-01 9.2E-03 2.6E-02 
253 SAO SALVADOR SUDESTE 5.3E-01 9.1E-01 1.0E+00 1.1E-02 
255 IRAPE SUDESTE 1.0E-01 3.9E-04 1.3E-08 5.2E-07 
257 PEIXE ANGIC SUDESTE 2.7E-01 6.1E-01 1.2E-01 9.3E-04 
259 ITIQUIRA I SUDESTE 1.2E-14 1.0E-20 0.0E+00 4.3E-09 
270 SERRA MESA SUDESTE 2.3E-01 4.2E-01 1.5E-02 1.1E-03 
273 LAJEADO SUDESTE 2.8E-01 3.9E-01 3.4E-02 6.4E-04 
278 MANSO SUDESTE 4.3E-03 1.1E-01 8.9E-03 5.4E-01 

281 PONTE PEDRA SUDESTE 1.5E-51 1.4E-46 0.0E+00 1.3E-20 
283 STA CLARA MG SUDESTE 2.2E-01 8.4E-04 1.9E-02 1.3E-08 
294 SALTO SUDESTE 1.9E-07 8.8E-08 0.0E+00 1.4E-02 
295 JAURU SUDESTE 1.3E-12 4.3E-13 3.2E-22 1.2E-29 
296 GUAPORE SUDESTE 1.3E-04 4.5E-07 5.0E-10 2.4E-02 
71 STA CLARA PR SUL 6.1E-06 1.2E-06 2.9E-04 2.7E-10 
72 FUNDAO SUL 4.0E-06 6.4E-07 1.3E-04 8.4E-11 
73 JORDAO SUL 4.1E-08 2.6E-09 1.6E-06 6.4E-14 
74 G.B.MUNHOZ SUL 1.7E-06 2.5E-06 2.7E-05 5.8E-09 
76 SEGREDO SUL 2.2E-09 4.5E-10 9.3E-07 6.1E-14 
77 SLT.SANTIAGO SUL 8.0E-10 2.0E-10 9.3E-07 3.2E-14 
78 SALTO OSORIO SUL 8.4E-10 2.8E-10 9.3E-07 3.1E-14 
92 ITA SUL 7.2E-06 9.0E-08 8.8E-08 5.0E-10 
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Code Station Region 
Student's² 

t 
Wilcoxon² 

Cox-
Stuart² 

Mann-
Kendall2 

93 PASSO FUNDO SUL 2.9E-04 1.2E-04 1.6E-04 1.2E-07 
94 FOZ CHAPECO SUL 1.4E-06 3.0E-08 2.3E-09 3.8E-11 
98 CASTRO ALVES SUL 2.2E-10 8.5E-12 1.2E-11 4.9E-13 
99 ESPORA SUL 1.3E-54 4.5E-54 0.0E+00 9.1E-34 

101 SALTO PILAO SUL 3.1E-15 9.7E-19 7.5E-15 1.5E-21 
102 SAO JOSE SUL 2.5E-10 2.6E-12 9.5E-10 5.7E-14 
111 PASSO REAL SUL 1.7E-03 3.4E-06 1.2E-04 2.2E-07 
115 G.P.SOUZA SUL 1.3E-07 2.4E-08 1.7E-07 5.4E-15 
164 E.SOUZA SUL 1.0E-25 3.9E-28 0.0E+00 2.7E-25 
211 FUNIL-GRANDE SUL 6.5E-01 5.7E-01 3.8E-02 1.3E-02 
215 BARRA GRANDE SUL 2.5E-05 1.6E-07 1.7E-09 3.9E-09 
216 CAMPOS NOVOS SUL 8.1E-07 3.1E-07 3.7E-09 5.0E-11 
266 ITAIPU SUL 1.1E-29 1.4E-32 0.0E+00 2.1E-26 
286 QUEBRA QUEIX SUL 1.4E-08 4.1E-12 2.7E-09 4.8E-15 

Source: Prepared by the author 

Figure 6 - Results of statistical tests for stationarity analysis 

 

Source: Prepared by the author 
 

3.5.2 Unit-root tests for stationarity analysis 

 

It was applied four different unit root test widely used in macroeconomics to verify 

if the streamflow analyzed are stationary or not. Interpreting the value of the statistics given for 
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the test (Table 2) and comparing to the critical values of each test, the time series were evaluated 

and classified as stationary or nonstationary. The values highlighted in Table 2 represent the 

station classified as stationary in each test. The criterion of stationarity analysis of the series 

was based on the rejection of the null hypothesis of the DF-GLS and the acceptance of the null 

hypothesis of the KPSS tests, simultaneously, thus, if both tests accepted the conditions, the 

series would be stationary. This criterion was chosen because the ADF test has a low statistical 

power and the PP test needs other tests to corroborate your result, depending on the size of 

available data (Barros, 2017). The spatial representation of the results is presented in the Figure 

7. 

 

Table 2 – Results of the unit-root tests applied to the Base Posts time series 

Cod Station Region ADF KPSS PP 
DF-
GLS 

145 RONDON II NORTE -3.8 0.2 -13.0 -2.3 

275 TUCURUI NORTE -5.4 0.1 -10.4 -3.7 

277 CURUA-UNA NORTE -5.3 0.1 -10.9 -4.3 

279 SAMUEL NORTE -6.7 0.0 -10.5 -6.1 

287 STO ANTONIO NORTE -4.9 0.2 -9.9 -2.5 
291 DARDANELOS NORTE -6.4 0.0 -10.4 -6.4 

168 SOBRADINHO F NORDESTE -4.6 0.2 -12.1 -3.2 

188 ITAPEBI NORDESTE -5.0 0.4 -16.3 -4.7 

190 B. ESPERANCA NORDESTE -4.2 0.3 -11.9 -3.9 

254 P.CAVALO NORDESTE -7.7 0.2 -20.9 -5.7 

271 ESTREITO TOC NORDESTE -5.5 0.1 -11.2 -4.7 

1 CAMARGOS SUDESTE -5.5 0.1 -12.5 -4.4 

6 FURNAS SUDESTE -4.4 0.2 -12.2 -3.1 

14 CACONDE SUDESTE -5.0 0.1 -12.5 -1.7 

17 MARIMBONDO SUDESTE -4.7 0.2 -11.4 -2.4 

18 A. VERMELHA SUDESTE -4.8 0.2 -11.4 -2.2 

24 EMBORCACAO SUDESTE -5.0 0.1 -12.1 -2.8 

25 NOVA PONTE SUDESTE -4.8 0.1 -11.5 -2.4 

31 ITUMBIARA SUDESTE -5.0 0.1 -11.5 -2.4 

32 CACH.DOURADA SUDESTE -5.1 0.1 -11.5 -2.4 

33 SAO SIMAO SUDESTE -4.8 0.1 -11.3 -2.4 

34 I.SOLTEIRA SUDESTE -4.7 0.2 -11.1 -2.2 

47 
A.A.LAYDNER 
(JURUMIRIM) 

SUDESTE 
-6.3 0.1 -15.5 -4.0 

61 CAPIVARA SUDESTE -7.1 0.1 -17.1 -4.8 

63 ROSANA SUDESTE -7.0 0.1 -17.4 -4.7 

117 GUARAPIRANGA SUDESTE -5.5 0.2 -16.4 -2.2 
119 BILLINGS_PED SUDESTE -6.6 0.1 -17.8 -4.9 

120 JAGUARI SUDESTE -5.1 0.0 -12.3 -3.3 
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Cod Station Region ADF KPSS PP 
DF-
GLS 

121 PARAIBUNA SUDESTE -5.2 0.2 -12.6 -3.2 

125 STA CECILIA SUDESTE -5.2 0.1 -12.3 -2.4 

130 I. POMBOS SUDESTE -4.9 0.0 -11.9 -2.7 
134 SALTO GRANDE SUDESTE -5.5 0.1 -13.9 -3.9 

144 MASCARENHAS SUDESTE -5.3 0.1 -13.4 -4.0 

149 CANDONGA SUDESTE -5.3 0.1 -13.1 -3.8 

155 RETIRO BAIXO SUDESTE -4.6 0.3 -13.3 -4.6 

156 TRES MARIAS SUDESTE -4.9 0.1 -12.7 -4.4 

158 QUEIMADO SUDESTE -4.3 0.2 -13.3 -3.9 

160 ALTO TIETÊ SUDESTE -7.0 0.0 -16.1 -3.6 

191 CANA BRAVA SUDESTE -5.0 0.1 -12.5 -4.6 

196 ROSAL SUDESTE -5.6 0.1 -14.0 -4.8 

197 PICADA SUDESTE -4.5 0.0 -12.6 -4.4 

201 TOCOS SUDESTE -6.0 0.0 -12.7 -3.5 

205 CORUMBA IV SUDESTE -4.9 0.3 -11.5 -3.0 

206 MIRANDA SUDESTE -4.7 0.1 -11.5 -2.4 

209 CORUMBA I SUDESTE -4.8 0.2 -11.5 -2.9 

220 MONJOLINHO SUDESTE -7.1 0.1 -17.3 -6.8 

237 BARRA BONITA SUDESTE -6.0 0.1 -13.8 -2.3 

240 PROMISSAO SUDESTE -5.8 0.1 -13.5 -2.0 

242 NAVANHANDAVA SUDESTE -5.7 0.2 -13.4 -2.0 

243 T.IRMAOS SUDESTE -5.7 0.2 -13.4 -2.0 

245 JUPIA SUDESTE -4.8 0.2 -11.1 -2.0 

246 P.PRIMAVERA SUDESTE -4.5 0.2 -10.9 -2.0 

247 CACU SUDESTE -4.7 0.2 -11.0 -2.6 

251 SERRA FACAO SUDESTE -4.9 0.1 -12.2 -2.8 
253 SAO SALVADOR SUDESTE -5.0 0.1 -12.3 -4.5 

255 IRAPE SUDESTE -5.2 0.3 -16.1 -4.7 

257 PEIXE ANGIC SUDESTE -5.4 0.1 -12.5 -4.5 

259 ITIQUIRA I SUDESTE -3.1 0.3 -11.5 -3.0 

270 SERRA MESA SUDESTE -5.0 0.1 -12.5 -4.8 

273 LAJEADO SUDESTE -5.6 0.1 -11.8 -4.4 

278 MANSO SUDESTE -5.2 0.1 -12.7 -4.8 

281 PONTE PEDRA SUDESTE -2.5 0.8 -7.4 -2.1 
283 STA CLARA MG SUDESTE -5.2 0.2 -17.5 -4.6 

294 SALTO SUDESTE -4.5 0.3 -11.1 -2.8 
295 JAURU SUDESTE -3.8 0.4 -11.8 -3.2 

296 GUAPORE SUDESTE -4.2 0.2 -11.5 -2.1 
71 STA CLARA PR SUL -7.4 0.0 -20.5 -7.0 

72 FUNDAO SUL -7.4 0.0 -20.5 -7.0 

73 JORDAO SUL -7.4 0.0 -20.1 -7.0 

74 G.B.MUNHOZ SUL -7.8 0.0 -18.6 -7.1 

76 SEGREDO SUL -7.8 0.0 -18.6 -7.0 

77 SLT.SANTIAGO SUL -7.7 0.0 -18.7 -7.0 
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Cod Station Region ADF KPSS PP 
DF-
GLS 

78 SALTO OSORIO SUL -7.7 0.0 -18.7 -7.0 

92 ITA SUL -7.3 0.0 -18.6 -6.8 

93 PASSO FUNDO SUL -7.0 0.1 -17.0 -6.6 

94 FOZ CHAPECO SUL -7.3 0.0 -18.3 -6.8 

98 CASTRO ALVES SUL -6.7 0.1 -19.9 -5.5 

99 ESPORA SUL -3.5 0.6 -10.6 -2.3 

101 SALTO PILAO SUL -17.4 0.1 -20.0 -7.0 

102 SAO JOSE SUL -7.4 0.1 -17.6 -7.1 

111 PASSO REAL SUL -6.5 0.0 -16.2 -5.8 

115 G.P.SOUZA SUL -6.4 0.0 -17.6 -4.3 

164 E.SOUZA SUL -5.2 0.3 -13.3 -2.2 

211 FUNIL-GRANDE SUL -4.5 0.1 -12.5 -3.1 

215 BARRA GRANDE SUL -7.6 0.0 -20.0 -7.1 

216 CAMPOS NOVOS SUL -17.2 0.0 -18.3 -7.3 

266 ITAIPU SUL -5.4 0.2 -11.1 -2.2 
286 QUEBRA QUEIX SUL -7.0 0.1 -20.0 -6.7 

Source: Prepared by the author 

 

Figure 7 - Results of unit root tests for stationary analysis 

 

Source: Prepared by the author 
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3.5.3 Mann-Kendall and Sen’s Slope 

 

The Mann-Kendall test was also used to identify the presence of trend and the Sen’s 

slope was applied to verify their magnitude in the studied region. Its spatial results are shown 

in Figure 8.  

 

Figure 8 - Results of trend analysis 

 

Source: Prepared by the author 

 

All the northeast station presented a significant trend with negative pattern. 

Marengo and Valverde (2007) observed that Sobradinho, a reservoir located in the northeast 

region, presented a positive trend from 1931 until approximately 1979, when the trend became 

negative. That shift may be associated with the rainfall pattern or the multiple uses of water 

from that reservoir. 

When evaluating the trend in South region streamflow almost all station presented 

the p-value lower then the significance level adopted, which it was 95% (α=0,05), indicating 

the presence of a trend in the time series, also, most of the time series presented a positive trend. 
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These results agree with many previous studies (Pasquini and Depetris, 2007; Antico et al., 

2014; Castino et al., 2017) in which the presence of an upward trend was verify. 

 

3.5.4 Wavelet Analysis and Complete EEMD With Adaptative Noise 

 

The time series were decompose applying the wavelet transform and the Figure 9 

shows the spatial distribution of the explained variance in the high (2-4 years and 4-8 years), 

medium (8-16 years), low (16-32 years) frequency and the residue, which is represented with 

the frequency higher than 32 years. 

 

Figure 9 - Percentage of explained variance for the analyzed stations using wavelet transform. 
(a) Explained variance for the 2-4 years period; (b) Explained variance for the 4-8 years 
period; (c) Explained variance for the 8-16 years period; (d) Explained variance for the 16-32 
years period and (e) Explained variance for the residue (higher than 32 years) 

 

(a) 
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(c) 
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Source: Prepared by the author 

 

It was evaluated each frequency separately. For more than half of the stations 

analyzed (47 stations), the 2-4 years period represents approximately 25-35% of the entirely 

time series. In the 4-8 years band, the majority of the stations (31 stations) have an explained 

variance of 20-25%. For the 8-16 years band, most of the stations (30 stations) were between 

(d) 

(e) 
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10-15%. For the low frequency band, the explained variance for most of the stations range from 

5-10%, and the percentage explained by the residue is under 2.5% in 76 stations. 

Using the wavelet transform was evaluated the wavelet power spectrum and 

verified the years that presented significance (p-value < 0.05) in the analyzed frequencies. The 

results are summarized in Figure 10 and are organized by regions from South (Top), then 

Southeast, Northeast and North (Bottom). For the 2-4 years frequency, there is a great 

significance in the 1980’s for almost all the posts. In the 4-8 years frequency, the majority of 

the posts presented significance between the years of 1960 and 1990, and, for the 8-16 years 

frequency, there were large periods of years presenting significance. In the low frequency (16-

32 years), many reservoirs presented periods with significance, which indicates that this 

frequency was important, especially for reservoirs in the southeast until the 1980s. 

 

Figure 10 - (a) Years with significance in the 2-4 years frequency, (b) Years with significance 
in the 4-8 years frequency, (c) Years with significance in the 8-16 years frequency, (d) Years 
with significance in the 16-32 years frequency. The figure is organized by region from South 
(Top), then Southeast, Northeast and North (Bottom) 

 

(a) 
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Source: Prepared by the author 

 

(b) 

(c) 

(d) 
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Figure 11 - Percentage of explained variance using CEEMDAN decomposition. (a) Explained 
variance for IMF1 (2-4 years); (b) Explained variance for the IMF2 (5-13 years); (c) 
Explained variance for IMF3 (13-20 years); (d) Explained variance for IMF4 (16-25 years) 
and (e) Explained variance for IMF5 (higher than 25 years) 

 

 

(a) 

(b) 
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(c) 
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Source: Prepared by the author 

 

In the CEEMDAN decomposition, most stations resulted in 4 IMFs and the 

percentage of each explained variance is spatially shown in Figure 11. The IMF are not 

necessary linked to a specific period, however it was used the wavelet transform through the 

power spectrum, verifying the most significant period, thus the periodicity of the series is the 

result of the wavelet analysis and each IMF range from similar periodicity in this analysis.  IMF 

1 corresponds to a period of 2-4 years, IMF 2 ranges from 5-13 years, IMF 3 ranges from 13-

20 years, IMF 4 ranges from 16-25 years and IMF 5 has 25 years as the most dominant period.  

In the IMF1 analysis, the majority of the stations (57 stations) have an explained 

variance ranging from 25-50%. For 46 of the stations, the IMF2 explains 10-20% of the time 

series. In the IMF3, 31 of the stations have an explained variance between 10-20% and in the 

IMF4, for 46 stations, this period explains about less than 10% of the series. Only 25 stations 

generated a fifth IMF and for most of them the variance explained less than 10% of the series. 

  

3.6 Analysis of the Results 

 

Each station was analyzed individually and then a more general analysis was made 

in order to make a diagnosis by geographic regions. The south region of Brazil did not present 

any stationarity series in the statistical tests. Similar results were found using statistical tests by 

(d) 

(e) 
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Detzel et al. (2011). The southeast region presented most of its series nonstationary. Northeast 

region presented mainly stationary time series. Using the unit root tests, the results were similar 

to the statistical tests except for the south region, which present almost all station stationary. 

When evaluating trend, it was noted that the south and southeast region both presented positive 

trends, while the north and the northeast region presented negative trends. 

The different results in the stationary analysis of the two types of tests in the south 

sector might be related to the form that unit root tests treat trends. In the unit root regression of 

the DF-GLS test, the time series was de-trended, so the lower p-value in the other tests might 

just be an indicative of the presence of strong positive trend in the south of the country. 

 

Table 3 - Summary of the results from the stationarity and trend tests 

Region 
Statistical tests Unit root tests Trend Test 

Non-
Stationary Stationary 

Non-
Stationary Stationary 

No 
trend 

Positive 
Trend 

Negative 
Trend 

SOUTHEAST 37 18 36 19 7 18 30 
NORTHEAST 4 1 4 1 0 0 5 
NORTH 1 5 2 4 3 0 3 
SOUTH 22 0 3 19 0 21 1 

Source: Prepared by the author 

 

Many authors (Marengo et al, 2007; Alves et al. 2013) observed a systematically 

change in hydrological time series in the late 70s and early 80’s which may be more associated 

with the natural fluctuations like decennial variability than with the linear trend in time series, 

thus, the need to decompose the time series and analysis more closely its variations patterns. 

Figure 9 and 11 shows that through the wavelet analysis and CEEMDAN 

decomposition the high frequency component, which ranges from 2-8 years, is responsible for 

more than 50% of the explained variance in all analyzed regions. Similar results were found by 

Alves et al (2013). In the CEEMDAN analysis, this percentage can reach even higher values 

such as 60 or 70% of the explained variance. Analysing the low frequency, the south region has 

the lowest values of explained variance and the southeast has the highest values in both types 

of decomposition. 

 

 3.7 Conclusion 
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Understanding the extent to which natural streamflow patterns have been modified 

is an important consideration for water resources studies of streams. Assessing hydrological 

time series requires that we quantify and analyse the attributes of the series for a deeply 

understating of its past behaviour and the causes that might be related to the changes in its 

patterns, such as climate fluctuations and anthropogenic modifications. 

In this study were used monthly time series to evaluate the performance of statistical 

test (Mann-Kendal, Wilcoxon, Student's t, Cox-Stuart tests) and unit root test (DF, KPSS, PP 

and DF-GLS tests) to verify the presence of stationarity and trend analysis (Mann-Kendall and 

Sen's Slope test). Furthermore, the time series were decomposed into different band of 

frequency (2-4, 4-8, 8-16, 16-32 years and residue) using wavelet transform and using 

CEEMDAN method into 5 IMFs and evaluated the explained variance using both methods. 

In general, the series located in the South and Southeast regions shown indications 

of nonstationary using the statistical tests. Using the unit root tests, the results were similar to 

the statistical tests except for the south region, which it presented almost all station stationary, 

which may be associated with the form that the unit root test treat the trend component of the 

time series, thus, indicating that unit root test are more appropriated to be used in the analysis 

of stationarity for hydrological time series. When evaluating trend by the Mann-Kendall test, it 

was noted that the south and southeast region both presented positive trends, while the north 

and northeast presented negative trends. 

Analysing the decomposed time series by the Morlet wavelet and the CEEMDAN 

method, most of the series have higher explained variance for the period of 2-8 years, ranging 

from 50-60%, while for the medium frequency (8-16) the explained variance is around 10-20% 

and for the low frequency (16-32 years) it represents 5-10% of the time series. Those 

decomposition methods have proved to be important tools for the identification of climatic 

variability of an important sector for the country's economy, forming a diagnostic of the 

behaviour of the streamflow time series. The methodologies presented are useful for 

hydrological studies in regions affected by climatic variability and assist in modeling the 

comportment of hydrological series. 
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4 PLURIANNUAL STREAMFLOW FORECASTING USING HIDDEN MARKOV 

MODEL 

 

4.1 Abstract 

 

An improved water resources managing must rely on an accurate identification and analysis of 

the past dynamic of the hydrological time series. As records of time series lengths increased, 

the presence of low frequency structures of climate and hydrologic time series became an 

important feature in hydrological analysis. An ensemble of techniques was applied to identify 

extreme events in the low frequency (16-32 years), it was decomposed by the wavelet 

transform. It was used the Standard Runoff Index (SRI), changepoint detection and a Hidden 

Markov Model (HMM) in order to identify the different states of the Sobradinho’s reservoir. 

Then, an Autoregressive model and a HMM were applied to develop a forecast model. The 

analysis with the changepoint showed a better methodology in the identification of extreme 

events in relation to SRI, because it can identify significant changes in the series statistics. It 

was evaluated the cumulative distribution function using the original time series and it was 

observed that they have different distributions, hence the proposes of identifying the states and 

forecast the next state was justified. A model for forecasting was developed adjusting an 

autoregressive model to the low frequency time series. It demonstrated good results for the next 

state forecast, however it worked poorly for longer periods, with a relative error higher than 

50%. In the HMM model the future state were calculated based on the posterior probability. 

The results shown a reduction of the wet period between the years 2010-2016 and a greater 

probability of a normal period was verified. It is possible to identify the next most probable 

state for the Sobradinho’s reservoir and the next state was a good indication for the streamflow 

distribution compared to the historical time series. Thus, HMM forecast proved to be an 

important tool to assist in the management and operation of the reservoir, especially for the one 

in this study due to its importance of generating energy for the region. 

 

4.2 Introduction 

 

In the face of a changing environment, many water resources studies applied 

stochastic methods where temporal uncertainties require to be quantified (Kwon et al., 2007). 

The early time series models assumed (Thomas and Fiering, 1962; Yevjevich, 1987; Salas, 
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1980), as a simplification, that the time series were stationary, therefore the stochastic 

hydrology revolved around the families of autoregressive and moving average models. 

However, many recent papers questions that assumption and comment that the past will no 

longer resemble the future, thus the use of models that account for nonstationary analysis are 

necessary (Milly et al., 2008; Salas and Obeysekera, 2013; Cheng and Aghakouchak; 2014). 

One important characteristic in historical hydroclimatic time series analysis is to 

identify the past dynamics aiming to understand the behaviour of the series and make future 

predictions. An approach that can be used is to verify the presences of periodicity and cycles 

that can be reflected throughout the historical series (Hoek and Bos 2007), so if an event has a 

high probability of occurring one can better understand its dynamical background and find a 

deterministic behavior that can describe its future value. As records lengths increased, the 

presence of low frequency structures of climate and hydrologic time series became an important 

feature in hydrological analysis (Kwon et al., 2007). Especially in streamflow analysis, due to 

the extremely nonuniform temporal distribution of global runoff. 

The investigation of hydrological process such as low frequency oscillations and 

their direct impacts around the globe have motivated several studies showing that these 

oscillations are driven primarily by the climate (Kalra et al., 2013). Climate variations in this 

time frame have increase the occurrence of extreme events, such as droughts and floods, also, 

these variations control water availability, affect ecosystems and modulate higher frequency 

variability, thus it have a major social and economical impact (Jain and Lall, 2000; Milly et al., 

2002; Kwon et al., 2008; Grimm and Sabóia, 2015). 

Drought is an extreme event of considerable importance, especially in the Brazilian 

Northeast, where precipitations are scarce and it can lead to diminishing in water supply, water 

quality deterioration and reduced power generation (Mishra and Singh, 2010). Thus, the 

evaluation of droughts is an important part in planning and operating a water resources system. 

Drought indices are a key component for monitoring extreme events. There is a large number 

of drought indicators that have been developed in the past decades (Mishra and Singh, 2010; 

Liu et al.,2012; Hao et al, 2016), such as Standardized Precipitation Index (SPI) (McKee et al., 

1993), which is commonly used for meteorological drought monitoring, and its derivation 

Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index 

(SSI), Standardized Runoff Index (SRI) (Hao et al., 2014, Mo, 2011, Shukla and Wood, 2008, 

Vicente-Serrano et al., 2010), based on the distribution of various hydro-climatic variables. The 

SRI index is a variation of the SPI index, using as an input variable the monthly flows, aiming 
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to define and classify events of hydrological droughts, and can be used in a complementary way 

to SPI, which contemplates only meteorological aspects (Shukla and Wood, 2008). 

Besides drought indexes, another methodology may be applied to identify extreme 

events, that consist in estimating the points where the statistical properties of a series of 

observations change, also known as changepoint detection (Kickick and Eckley, 2014). 

Hydrological time series are in constant change and there is a necessity in efficiently identifying 

and accurately estimate the location of multiple change point along historical time series. Fritier 

et al. (2012) applied the changepoint detection using the PELT segmentation method to evaluate 

long-term changes in the North Atlantic Oscillation (NAO) index and in a precipitation series. 

Li et al. (2017) analyzed a streamflow series using changepoint detection method to evaluate 

significant changes in the series. 

Applications of methods that reproduce the spectral signature of time series and can 

assimilate those low frequencies, such as wavelet analysis, which are paramount for 

hydrological time series studies. Many papers applied continuous wavelet analysis for 

understanding multi-temporal scale characteristics of hydrological time series (Torrence and 

Compo, 1998; Coulibaly and Burn, 2004; Massei et al., 2010) and coupled those models with 

climate indices to better their analysis and forecast of future time series (Anctil and Coulibaly, 

2004; Massei et al., 2010; Erkyihun et al., 2016). Studies showed that the inclusion of such 

indices can improve the ability of explain the different variability regimes (Souza Filho and 

Lall, 2003; Silveira et al., 2017). It is well known that climate indices, such as El Niño-Southern 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal 

Oscillation (AMO) are linked to rainfall pattern in Northeast Brazil (Kayano and Andreoli, 

2004; Knight et al., 2006; Kayano and Andreoli, 2009). 

In this paper, it was proposed to investigate the low frequency of a streamflow time 

series, which was decompose using a continuous wavelet analysis. The approach of this paper 

is separated into two phases: (1) exploratory analysis of the low frequency variability and 

classification of dry/wet periods using SRI, the changepoint detection and a Hidden Markov 

Model and (2) the development of a forecast model using an Autoregressive model and a 

Hidden Markov Model. 

 

4.2 Data and methods 

 



56 
 

 
 

The Sobradinho reservoir is located at the São Francisco hydrographic basin 

(BHSF). The basin has an area of approximately 639.219 km², which is equivalent to about 8% 

of the country. The São Francisco River has a length of 2,863 km, stretching across six Brazilian 

states (Minas Gerais, Goiás, Bahia, Pernambuco, Alagoas e Sergipe) and the Federal District. 

The São Francisco River originates in Minas Gerais and runs 2,863 km to the mouth of the 

Atlantic Ocean, where its flow is greater than 854 m³/s 95% of the time (ANA, 2016). For 

planning purposes, the basin was divided into four physiographic regions: high (16% of the 

basin area), medium (63%), sub-medium (17%), where Sobradinho is located, and low (4%).  

The water and climate characteristics of the basin are highly variable. The 

Sobradinho reservoir presents critical periods of prolonged droughts, as a result of low rainfall 

and high evapotranspiration. The rainfall season starts approximately in November and ends in 

April. Due to the high intra- and interannual rainfall variations in the basin, reservoirs with large 

storage capacity were built to accumulate water and generate energy. The three largest 

reservoirs are Três Marias, Sobradinho e Itaparica (Mendes et al., 2015; ANA, 2018). 

Regarding uses, there is a predominance of withdrawal for irrigation (213.7 m³/s), 

which represents 77% of total demands in the Region. Irrigation is followed by urban demand, 

with 31.3 m³/s (11%), concentrated mainly in the Metropolitan Region of Belo Horizonte, and 

industrial with 19.8 m³/s (7%). Animal demand in the region is 10.2 m³/s (4%) and rural demand 

is 3.7 m³/s (1%) (ANA, 2016).  

The São Francisco Region plays an important role in generating electricity, with a 

potential installed in 2013 of 10,708 MW (12% of the country's total). The hydroelectric 

exploitation of the São Francisco River represents the energy supply base of the Northeast 

region (ANA, 2016). 
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Figure 12 - Location of the Sobradinho Reservoir 

 
Source: Prepared by the author 

 

Monthly mean discharges, ranging from January 1931 to December 2016, measured 

at a gauging station located along the São Francisco River was acquired from the National 

System Operator (NSO). Time series of climate oscillation indices used, such as Pacific 

Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), were acquired in the 

National Oceanic and Atmospheric Administration website (https://www.esrl. 

noaa.gov/psd/gcos_wgsp/ Timeseries/). The definitions of climate indices are briefly presented 

below, and detailed definition can be found in the references. 

The phenomenon detected at the Pacific Ocean at the interdecadal scale is known 

as the Pacific Decadal Oscillation (PDO), when SST of the North Pacific Ocean is used to detect 

it (Mantua et.al, 1997). This index is the principal component of the North Pacific SST. Alves 

et al. (2013) analysed historical series of NSO inflows, El Niño events, La Niña and the PDO 

index, concluded that there is evidence of a correlation between the index and the flows of the 

National Interconnected System (NIS), significantly affecting the flows of the main 

hydroelectric system of the Brazil. 

The Atlantic Multi-Decadal Oscillation (AMO) is based on the average Atlantic 

North SST anomaly. The index is usually calculated by removing the SST trend in order to 
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remove the signals resulting from the changes. The AMO is the main low frequency climate 

change mechanism in the Atlantic Ocean (Enfield et al., 2001).  

The methodology of the paper is divided into: (1) identification of the change in 

state in the low frequency of the time series by using the SRI, changepoint detection and HMM 

and (2) the prediction of the next state by using an autoregressive model and a hidden Markov 

model. 

 

Figure 13 - Methodology applied in the paper. 

 
Source: Prepared by the author 

 

4.2.1 Wavelet transforms 

 

A widely used method in extracting the low frequency portion of a time series and 

a better understanding of its fluctuations is the wavelet transform (Torrence and Compo, 1998; 

Labat 2005; Nourani, 2013), which decompose the series in the time-frequency domain and 

identify the dominant modes of variability.  
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A wavelet transform decomposes a time series into a set of functions 𝜓 (𝑡, 𝑠), also 

known as the “daughter wavelet”, derived from the translation in time (t) and scaling by (s) of 

the “mother wavelet” 𝜓0(𝑡): 𝜓 (𝑡, 𝑠) = 1𝑠12 𝜓0 (𝑡′ − 𝑡𝑠 )                                                                                         (Eq. 25) 

where the dilation parameter 𝑠 (> 0) corresponds to scale or temporal period and, hence, 

connects the wavelet size to the resolutions of particular frequencies; and the translation 

parameter 𝑡 controls the locations of wavelet in the time domain. The term 𝑠12 is the energy 

normalization factor to keep the energy of daughter wavelets similar to the energy of the mother 

wavelet (Sivakumar, 2017). 

In this study, it is applied the Morlet wavelet, which is commonly used in 

hydrological time series because describes the time series well and has a better time–frequency 

localization (Huo et al., 2016; Nalley et al., 2016). 

Figure 14 - Morlet wavelet 

 
Source: Rosch and Schmidbauer (2014) 

The mother Morlet wavelet can be implemented by the equation: 𝜓(𝑡) = 𝜋−1/4𝑒𝑖𝜔𝑡𝑒−𝑡2/2                                                                                        (Eq. 26) 

Where ω is the angular frequency is set to 6 because it makes the Morlet wavelet approximately 

analytic and 𝑡 is the time. 

The Morlet wavelet transform (𝑥𝑡) was defined as the convolution of the series with 

a set of (𝑥𝑡) generated by the mother wavelet by translation in time by τ and scaling by s: 𝑊𝑎𝑣𝑒 (𝜏, 𝑠) = ∑ 𝑥𝑡 1√𝑠 𝜓∗(𝑡 − 𝜏𝑠 )                                                                    (Eq. 27)𝑡  
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With * denoting the complex conjugate. The position of the particular daughter wavelet in the 

time domain is determined by the localizing time parameter 𝜏 being shifted by a time increment 

of 𝑑𝑡. The choice of the set of scales 𝑠 determines the wavelet coverage of the series in the 

frequency domain. 

In this work, it was used the package WaveletComp in R (Rosch and Schmidbauer, 

2014). 

 

4.2.2 Standard Runoff index 

 

When applying a drought index, such as SPI a long-term record is fitted to a 

probability distribution, which is then transformed to a normal distribution so that the mean SPI 

for the location and desired period is zero. A variety of probability distributions (e.g., gamma, 

generalized extreme value (GEV), generalized logistic distribution, and beta distributions) have 

been used to fit monthly observations of different hydroclimatic variables for the propose of 

calculating drought indices (McKee et al., 1993; Stagge et al., 2015; Vicente-Serrano et al., 

2010). 

The SRI is based on the concept of standardized precipitation index (SPI) (McKee 

et al., 1993), discussed by Shukla and Wood (2008). Although the indexes show similarities, 

SRI incorporates hydrological processes that determine the seasonal loss in streamflow due to 

the influence of the climate, which can be used to describe hydrological aspects of droughts. 

The series was set to a Gamma distribution. McKee et al. (1993) used this distribution for 

precipitation data, however it can be applied to other variables relevant to drought, for example, 

reservoir flow or volume.  

Due to the existence of any null values, a function of accumulated probability is 

applied to includes these events: 𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥)                                                                                      (Eq. 28) 

Where 𝑞 is the probability of a zero value. 

The series was fitted to the Gamma distribution, then the cumulative probability 

calculated was transformed into a standardized variable (SRI).  

After standardized variables, their values are classified according to the categories 

in Table 4. It was used the package SCI in R (Gudmundsson and Stagge, 2016) for the 

calculation of the SRI. 
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Table 4 - SPI values 

SPI Values (McKee et al, 1993) 
≥2,00 Extremely wet 

1,5 a 1,99 Very wet 
1,00 a 1,49 Moderately wet 

-0,99 a +0,99 Near normal 
-1,00 a -1,49 Moderately dry 
-1,50 a -1,99 Severely dry 

≤-2,00 
Extremely dry 

 
Source: McKee et al. (1993) 
 

4.2.3 Changepoint detection 

 

A widely used approach to identify changes in the statistical properties of a time 

series is known as changepoint. More formally, a dataset is defined as being 𝑦1:𝑛 = (𝑦1, . . . , 𝑦𝑛). In a model with 𝑚 changepoints and their positions 𝜏1:𝑚 =  (𝜏1, . . . , 𝜏𝑚), each 

changepoint is an integer between 1 and 𝑛 − 1. It is defined that 𝜏0 = 0 and 𝜏𝑚+1 = 𝑛. 

Consequently, the 𝑚 changepoints will split the data into 𝑚 + 1 segments. It is considered a 

common approach in the methodology to detect multiple changepoints the minimization of a 

cost function. 

∑ [𝐶(𝑦𝜏𝑖−1+1):𝜏𝑖)] + 𝛽𝑓(𝑚)𝑚+1
𝑖=1                                                                                (Eq. 29) 

where 𝐶 is a cost function for a segment e.g., negative log-likelihood and 𝛽𝑓(𝑚) is a penalty 

to guard against over fitting (a multiple changepoint version of the threshold 𝑐). 

In the penalty parameter, the most common approach is one which is linear in the 

number of changepoints, that is, 𝛽𝑓 (𝑚)  =  𝛽𝑚, such as Akaike’s information criterion (AIC; 

Akaike 1974) (β = 2p) and Schwarz information criterion (SIC, also known as BIC; Schwarz 

1978). 

Many changepoint algorithm have been proposed to accomplish this objective, such 

as the binary segmentation algorithm (Scott and Knott, 1974; Sen and Srivastava; 1975), that 

performs a single changepoint search for the entire dataset, and if a point is detected, the data 

set is divided into two segments, if false, then no change point is detected, and the method stops. 

This procedure is repeated until there are no more changepoints in the data. The binary segment 

is computationally efficient, but it does not guarantee to find the global minimum. 
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The segmentation neighborhood (SN) proposed by Auger and Lawrence (1989) 

searches the entire segmentation space using dynamic programming. The method set a 

maximum number of changepoints that is required and then computes the cost function for all 

possible segments.  One of the drawbacks in using the segmentation neighborhood is that the 

method has significant computational cost. 

The optimal partitioning method (OP) (Jackson et al., 2005) also based on dynamic 

programming, consists of a process which compares the costs of segmentation to each iteration, 

which has managed to reduce the computational cost. The OP method improves the 

computational efficiency on the SN method, but it is not computational competitive with the 

BS method. 

More recently, the PELT algorithm (Killick, Fearnhead, and Eckley 2012), which 

shows speed gains and increased accuracy over methods, such as binary segmentation. The 

method is an adaptation of the optimal partitioning and applies pruning for computational 

efficiency by removing points that can never be minima from the minimization performed at 

each iteration by the cost function (Killick and Eckley, 2014). 

The function used in this study was Pruned Exact Linear Time (PELT), which 

reduces the computational cost of the method, but does not affect the cost applied to the portion 

of the segmented series. The changepoint analysis was performed using the package 

changepoint in R (Killick and Eckley, 2014). 

 

4.2.4 Autoregressive model 

 

Autoregressive (AR) models have been extensively used in hydrology and waters 

resources applications (Box and Jenkins, 1970; Thomas and Fiering, 1962; Salas, 1980). AR 

models describe how an observed variable depends directly on one or more previous 

measurements plus white noise. When an observation 𝑍𝑡, measured at time 𝑡 depends only on 

the previous observation plus a white noise, this process is known as first-order or AR (1) 

autoregressive or even Markov process, being mathematically represented as: 𝑍𝑡 − 𝜇 = 𝜙1(𝑍𝑡−1 − 𝜇) + 𝑎𝑡                                                                                (Eq. 30) 

Where 𝜇 is the average of the process, 𝜙1is the autoregressive parameter and 𝑎𝑡 is the white 

noise at time 𝑡 is identically independently distributes (iid) which has mean zero and a variance 

of 𝜎𝑎2. One important characteristic of AR model is its short-term memory; hence, future 

behaviour is related to previous information. 
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The general form of an autoregressive model is called AR(p). The Markovian 

process is a special case of the autoregressive model of order p. This can be expressed as: 𝑍𝑡 − 𝜇 = 𝜙1(𝑍𝑡−1 − 𝜇) + 𝜙2(𝑍𝑡−2 − 𝜇) + ⋯ 𝜙𝑝(𝑍𝑡−𝑝 − 𝜇) + 𝑎𝑡              (Eq. 31) 

Manipulating the theoretical autocorrelation function and replacing the values of 𝑘 = 1,2,3. . . , 𝑝 it is obtained the Yule-Walker equations written as: 𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 + ⋯ + 𝜙𝑝𝜌𝑘−𝑝,        𝑘 > 0 𝜌1 = 𝜙1 + 𝜙2𝜌1 + ⋯ + 𝜙𝑝𝜌𝑝−1 𝜌2 = 𝜙1𝜌1 + 𝜙2 + ⋯ + 𝜙𝑝𝜌𝑝−2 .         .             .        ….           .                                               (Eq. 32) .         .             .        ….           .     .         .             .        ….           .     𝜌𝑝 = 𝜙1𝜌𝑝−1 + 𝜙2𝜌𝑝−2 + ⋯ + 𝜙𝑝 

Describing the equations in matrix form, we have the relation between the 

autoregressive parameters. This method is used for estimating the parameters of the AR(p) 

model by the method of moments as well as for determining the correlogram (𝜌𝑘) for a given 

set of parameters: 𝜙 = 𝑃𝑃−1𝜌𝑝                                                                                                                 (Eq. 33) 

𝜙 = [𝜙1𝜙2⋮𝜙𝑃] , 𝜌𝑝 = [𝜌1𝜌2⋮𝜌𝑝] , 𝑃𝑝 = [ 1 𝜌1 𝜌2 𝜌𝑝−1𝜌1 1 𝜌1 𝜌𝑝−2⋮𝜌𝑝−1 ⋮𝜌𝑝−1 ⋮ ⋮𝜌𝑝−3 1 ]                                (Eq. 34) 

 

4.2.5 Hidden Markov Models 

 

Hidden Markov models (HMMs) (Rabiner, 1989) is a statistical model in which the 

distribution that generates an observation are assumed to be conditioned on the state of an 

underlying and unobserved Markov process (Mallya et al., 2012; Zucchini et al., 2016). The 

HMM was developed for speech recognition and since then has been successfully used in many 

knowledge areas, including hydrology (Robertson et al., 2003; Mallya et al., 2012; Bracken et 

al., 2014; Liu et al., 2018) 
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Figure 15 - Example of a basic Hidden Markov Model 

 
Source: Adapted from Zucchini et al. (2016)  

A hidden Markov Model is comprised of state variables 𝑺1:𝑇 = (𝑆1, … , 𝑆𝑇), 

observation variables 𝑶1:𝑇 = (𝑂11, … , 𝑂1𝑚, 𝑂21, … , 𝑂2𝑚, … , 𝑂𝑇1 , … , 𝑂𝑇𝑚), which are dependent 

on the state variables. Thus, the distribution of 𝑶𝑡 can be written as 𝑓𝑖(𝑶𝑡) = 𝑓(𝑶𝑡|𝑆𝑡 = 𝑖) and 

the marginal distribution, for a discrete number of states, can be described as mixture 

distribution with 𝑛 components (Visser, 2011; Zucchini et al., 2016)  and it is written as: 

𝑓(𝑶𝑡) = ∑ 𝑝𝑖𝑓𝑖(𝑶𝑡)𝒏
𝒊=𝟏                                                                                             (Eq.  35) 

Where  ∑ 𝑝𝑖 = 1𝒏𝒊=𝟏 , 𝑝𝑖 ≥ 0 and 𝑓𝑖() is the conditional distribution of the data. 

Another important characteristic in HMM are their dependence of the data over 

time. Thus, there is a dependence between consecutive sates 𝑆𝑡 and the current state depends 

only on the previous states.  𝑃(𝑆𝑡|𝑆1, … , 𝑆𝑡−1) = 𝑃(𝑆𝑡|𝑆𝑡−1)                                                                          (Eq.  36) 

The transition between states are governed by probabilities described by transition 

probabilities and are denoted by the matrix 𝐀(𝑡), where the first row (𝑎1𝑗) contains the 

probabilities from moving from state 𝑆𝑡 = 1 to 𝑆𝑡+1. When dealing with the transition’s 

parameters in 𝐀 one must define the initial state or the prior probabilities 𝝅 which define where 

the process begins. 𝑃(𝑆𝑡 = 1, 𝑆𝑡 = 2, … , 𝑆𝑡 =  𝝅𝐀𝑡−1                                                                       (Eq.  37) 

The HMMs have their evolution of states over time governed by a Markov process. 

So, to generate their response distribution one must follow this sequence: (1) choose the initial 

state of the hidden Markov process by drawing from the initial state probability vector 𝝅; (2) 

draw an observation from the state-dependent distribution 𝑓𝑆𝑡(); (3) generate a transition from 

the appropriate row of the transition matrix 𝐀(𝑡), which provides the next value of the state 

variable 𝑆𝑡+1; and (4) repeat steps 2 and 3 until 𝑡 = 𝑇 − 1 (Visser, 2011). 

The greatest distinction between Markov Models and hidden Markov Models is that 

its distributions function from the states are not deterministic, but rather a probabilistic density 
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function, due to the fact that the states are hidden and cannot be observed directly. So, the 

observed sequence of states is probabilistically related to the hidden process (Visser, 2011). 

To compute how likely is a given sequence in an HMM, the joint likelihood of 

observations 𝑶1:𝑇 and the latent states 𝑺1:𝑇 = (𝑆1, … , 𝑆𝑇) can be written as: 

𝐿(𝑶1:𝑇 , 𝑺1:𝑇|𝝀) =  𝜋𝑠1𝑓𝑆1(𝑶1) ∏ 𝑎𝑺𝑡𝑺𝑡+1𝑓𝑺𝑡+1( 𝑶𝑡+1)𝑇−1
𝑡=1                                  (Eq.  38) 

Where 𝝀 is called the parameter vector of the HMM and it consist of three submodels, which 

are parameters for the prior model (initial state 𝜋), for the transition model (𝑨) and for the 

response model (𝑓𝑖(𝑶𝑡)). For the joint likelihood of the data independent of a specific state one 

must sum possible states sequences: 

 𝐿(𝑶1:𝑇|𝝀) = ∑ 𝜋𝑠1𝑓𝑆1(𝑶1)all 𝑺1:𝑇  ∏ 𝑎𝑺𝑡𝑺𝑡+1𝑓𝑺𝑡+1( 𝑶𝑡+1)𝑇−1
𝑡=1                         (Eq.  39) 

Due to the impracticality of calculating the likelihood by the above equation, it is 

used the forward algorithm (Lystig and Hughes, 2002) 𝜙1(𝑗) ≔ 𝑃(𝑶1|𝑆1 = 𝑗) = 𝜋𝑗𝑓𝑗(𝑶𝑗)                                                                    (Eq.  40) 

𝜙𝑡(𝑗) ≔ 𝑃(𝑶𝑡 , 𝑆𝑡 = 𝑗|𝑶1:(𝑡−1)) = ∑[𝜙𝑡−1(𝑖)𝑛
𝑖=1 𝑎𝑖𝑗𝑓𝑗(𝑶𝑡)] × (Φ𝑡−1)−1    (Eq.  41) 

Where Φ𝑡 = ∑ 𝜙𝑡(𝑖)𝑛𝑖=1 . We get the following expression for the log-likelihood: 

𝑙𝑇 = ∑ log Φ𝑡𝑇
𝑡=1                                                                                                         (Eq.  42) 

Another important part in HMM is knowing which sequence of states might have 

generated a given time series and at which point there is a switching between of states. This 

process is also called the decoding process. In the decoding process it is computed by the Viterbi 

algorithm (Viterbi, 1967) the hidden state sequence 𝑆1:𝑇, so that the sequence has maximum 

probability 𝑃(𝑆1:𝑇|𝑶1:𝑇, 𝝀). Then, it is obtained the posterior state sequence. The probabilities 

calculated by the Viterbi algorithm differ from those calculated in the forward algorithm since 

they represent the probability of the most probable path to a state at a time 𝑡, and not a total. 

One of the drawbacks when using this algorithm is that it does not provide information of 

similar sequence, thus offering only one sequence. 

To estimate the parameters of HMM it is used the expectation-maximization (EM) 

algorithm. In this algorithm the parameters are obtained with the maximization of the expected 

joint log-likelihood given the observations and states thought an iteratively process. So first, it 



66 
 

 
 

is computed the expected hidden state based on the current parameters values and then re-

calculate the parameters conditional on the current estimate of the hidden state sequence 

repeating this interactively process until convergence. Further detail may be found in Baum and 

Petrie (1966) and Zucchini et al. (2016). 

 

4.3 Results 

In this section are presented the results organized according to the topics of the 

methodology used. 

 

4.3.1 Time series decomposition 

 

The time series from Sobradinho’s reservoir inflow was decomposed and the low 

frequency was extracted from the original series using a wavelet transform. This frequency was 

chosen since it presented significance in its power spectrum and average wavelet power (Figure 

16). 

Figure 16 - Average wavelet power 

  

Source: Prepared by the author 

 

Figure 17 - (a) Standardized Time Series; (b) Low frequency time series (16-32 years) 

 

 

Source: Prepared by the author 



67 
 

 
 

4.3.2 State detection  

 

Proceeding to an analyse of the low frequency time series using the changepoint 

detection, SRI classification and the HMM aiming to identify and characterize the “states” 

present in the time series. In the SRI analysis, it was evaluated the streamflow time series and 

its low frequency to identify wet/drought periods. 

 

Figure 18 - SRI 12 of the streamflow time series 

 
Source: Prepared by the author 

 

For SRI 12 of the streamflow time series, the years of 2015 and 2016 were classified 

as extremely dry years; 2001 and 2014 were classified as severely dry and all the moderately 

dry years occur after the 1984 year. As the low frequency series decompose by the wavelet 

transform is already standardized, it was compared the values of the series to thresholds of the 

SRI and all the years were classified as near normal.  

As the low frequency plot showed a clear separation of high and low states, it was 

proceeded with the changepoint analysis to look for any significant statistical changes in the 

time series. The changepoint was applied to the low frequency time series using the penalty 

values of 1 (Figure 19) and 0.1 (Figure 20). 
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Figure 19 - Changepoint detection using the penalty value of 1 

 
Source: Prepared by the author 

 

Table 5 - Changepoint segmentation with penalty value of 1 

Period Mean 
Duration 
(years) 

1931 - 1941 -0.355 11 
1942 - 1950 0.575 9 
1951 - 1959 -0.429 9 
1960 - 1967 0.410 8 
1968 - 1976 -0.354 9 
1977 - 1984 0.430 8 
1985 - 2016 -0.002 32 

Source: Prepared by the author 

 

Figure 20 - Changepoint detection using the penalty value of 0.1 

 
Source: Prepared by the author 
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Table 6 - Changepoint segmentation with penalty value of 0.1 

Period Mean 
Duration 
(years) 

Period Mean 
Duration 
(years) 

1931 - 1933 -0.077 3 1967 - 1968 0.063 2 
1934 - 1940 -0.522 7 1969 - 1975 -0.439 7 
1941 - 1942 0.120 2 1976 - 1977 0.037 2 
1943 - 1949 0.680 7 1978 - 1985 0.433 9 
1950 - 1951 0.034 2 1986 - 2002 -0.141 15 
1952 - 1958 -0.527 7 2003 - 2012 0.272 10 
1959 - 1960 0.043 2 2012 - 2016 -0.142 5 
1961 - 1966 0.491 6    

 

Source: Prepared by the author 

 

With the identified periods by the changepoint algorithm and a visual inspection, 

the periods were separated into three states: high, normal and low period. For the first analysis, 

it was noted a clear variation patter between the years of 1931 and 1984: the series starts with 

a value close to the low state (-0.355) and it is succeeded with variation of high (0.48) and low 

(-0.38) states in an approximately 10-year period. The first analyse did not capture the observed 

cycle in Figure 19 after 1984, then the penalty value was reduced, aiming to a better 

characterization of that period. It was observed that the cycles before 1984 were reduce to an 

approximately 7 years period and after that year there was a 15-year period in the normal state 

(-0.14) and another high point in the series for another 10-year period.  

Although there were several changepoints detected in the series, the SRI 

classification was not able to capture the changes in the statistical properties of the low 

frequency series. Thus, being the changepoint a better classification for abrupt changes and 

classification between wet/dry periods, due to its powers to identify statistical changes in the 

series. Then, for the years that fall into the same category, the cumulative probability 

distribution was plotted using the data of the original series to identify if those periods follow 

a similar statistical distribution. 
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Figure 21 - Cumulative distribution function of the streamflow time series using the three-
state classification based on the changepoint detection 

 
Source: Prepared by the author 

 

Figure 22 - Cumulative distribution function of the streamflow time series using the two-state 
classification based on the changepoint detection 

 
Source: Prepared by the author 

 

The curves for the medium and low state were very similar, so it was decided to 

plot only the low and high state of the original series. The Figure 22 demonstrates that the dry 

and wet years do not follow the same distribution and that in the high state the probability for 

wet periods is larger than in the low state. 

It was observed that the low frequency shows a clear effect in the pattern of the 

whole time series, which justifies its study as one of the influencing components of the time 

series behavior. It was also applied a Hidden Markov Model to evaluate the states of the low 

frequency and try to correlate its states with dry and wet periods.  
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The HMM was fitted for 2, 3, 4 and 5 states and the statistics of the model are 

represented in Table 7. The selection of number of hidden states is an important aspect of the 

HMM. Information criterion, such as BIC (or AIC), can be used to select the number of states 

in the model and the model with the lowest parameter is chosen. It was used BIC as the model 

selection criterion (Bellone et al., 2000). 

 

Table 7 - Performance of HMM with different number of states K 

K (states) Log Likelihood AIC BIC 
2 -11.002 36.003 53.184 
3 12.875 2.250 36.611 
4 27.137 -8.274 48.176 
5 35.140 -2.279 81.169 

Source: Prepared by the author 

 

The two-state model of the low frequency data has the following parameters. The 

initial state probability vector has values 0 and 1, indicating the process starts in state 2. The 

state dependent mean response times are 𝜇1 = 0.418 (𝜎1= 0.209) and 𝜇2 = -0.263 (𝜎2= 0.230). 

State 1 represents the wet periods and State 2 represents the dry periods with mean values 

similar to those found by the changepoint detection. The dynamic part of the model which 

captures the switching between states is represented in matrix A and was estimated by the model 

as: 𝐴 = (0.883 0.1170.080 0.920) 

The probabilities of the diagonal matrix indicated that the states are stable, that is, 

the probability in continuing in the same state is higher, thus, the low frequency presents a 

stable behaviour. And the probability of transition of the state 1 to 2 is higher than transitioning 

from state 2 to 1, hence the probability of having a dry period after a wet period is higher. The 

Figure 23 illustrates the probability regime of the wet state (Regime 1) and dry state (Regime 

2). The Viterbi algorithm was used to present the most probable path to generate the given time 

series of observations (Figure 24). 
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Figure 23 - Regime posterior probabilities of a two-state model 

 

Source: Prepared by the author 

 

Figure 24 - Most probable path given by the Viterbi algorithm for the two-state model 

 
Source: Prepared by the author 

 

From the results of the path given by Viterbi algorithm, it was adjusted the 

cumulative distribution function Figure 25 and it showed similar results with the CDF of the 

changepoint detection, using a two-state classification. 
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Figure 25 - Cumulative distribution function of the streamflow time series using the two-state 
HMM 

 
Source: Prepared by the author 

For the 3-state model, the initial state probabilities were 0, 0 and 1 for the states 1,2 

and 3, respectively. The state dependent mean response times are 𝜇1 = 0.407 (𝜎1= 0.210),  𝜇2 = 

-0.553 (𝜎2= 0.097) and 𝜇3 =  -0.140 (𝜎3= 0.104). State 1 represents the wet periods, while State 

2 represents the dry periods and State 3 represents a near normal state period with a mean close 

to 0. The transition matrix A was estimated by the model as: 

𝐴 = ( 0.889 0.000 0.1110.000 0.819 0.181 0.124 0.093 0.783) 

The probabilities were higher in the diagonal of the matrix indicated that the 

probability in remaining in the same state is elevated, thus the low frequency presents a stable 

behaviour for a 3-state model as well. The probability of transition of the state 1 and 2 to state 

3 is about 11% and 18%, respectively. There is also a 12,4% from transitioning from state 3 to 

state 1. We can draw from the transition matrix that the model presents a higher probability of 

switching from dry and wet periods to a near normal state, and switching from a near normal 

state to a wet state. 

The Figure 26 illustrates the probability regime of the wet state (State 1), dry state 

(State 2) and near normal (State 3). The Viterbi algorithm was used to present (Figure 27) the 

most probable path to generate the given time series of observations, while the cumulative 

density function was calculate with the original data (Figure 28). 
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Figure 26 - Regime Posterior Probabilities of a three-state HMM 

 

 

 
Source: Prepared by the author 

 

Figure 27 - Most probable path given by the Viterbi algorithm for the three-state model 

 
Source: Prepared by the author 
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The distribution shows a very similar behaviour between dry and the near normal 

state, although the near normal state (State 3) presents drier events than the dry state (State 2) 

these results are also similar to the changepoint detection when divided into three classes. 

Figure 28 - Cumulative distribution function of the streamflow time series using the three-
state HMM 

 
Source: Prepared by the author 

 

Due to the results of the CDF plot, it was evaluated the statistics of the whole series 

and the low frequency (Table 8) with a box-plot. The box-plot of the data is shown in Figure 

29. For the complete time series (left) the State 3, which was classified as nears normal using 

the mean value, has lower values and high variability than the State 2 (dry state). In the box-

plot for the low frequency, the State 2 is the one with lower values and a low variability. 

 

Figure 29 - State variation of the streamflow series (left) and the low frequency series (right) 

 

 

Source: Prepared by the author 



76 
 

 
 

 

Table 8 - Statistical properties of the low frequency series 

 State 1 State 2 State 3 
Minimum -0.4986 -0.6944 -0.34946 

First quartile 0.1700 -0.6407 -0.22233 
Median 0.3415 -0.5588 -0.14964 
Mean 0.3374 -0.5613 -0.14514 

Third quartile 0.5111 -0.4908 -0.07514 
Maximum 0.8585 -0.4273 0.09557 

Source: Prepared by the author 

 

Due to the different behaviour in the two time series (original series and low 

frequency), it was investigated a period higher than 32 years and introduced a multivariate 

model to evaluate, if this coupling would improve the model to characterize the states, also it 

was used a multivariate HMM to introduce the PDO and AMO as well.  

The multivariate HMM using the frequencies of 16-32 and higher than 32 years was 

fitted for 2, 3, 4 and 5 states and the statistics of the model are represented in Table 9. The 

model that presented the lowest BIC was the 3-state model. 

 

Table 9 - Performance of multivariate HMM with different number of states K 

K (states) Log Likelihood AIC BIC 
2 -92.913 207.826 234.824 
3 -49.048 138.097 187.184 
4 -29.023 120.046 196.131 
5 -4.923 97.847 205.838 

Source: Prepared by the author 

 

For the 3-state multivariate model, the initial state probabilities were 1, 0 and 0 for 

the states 1, 2 and 3, respectively. The state dependent mean response times for the first variable 

(16-32 years) was 𝜇1 = 0.433 (𝜎1= 0.368),  𝜇2 = -0.451 (𝜎2= 0.269) and 𝜇3 =  0.453 (𝜎3= 

0.359), for the second variable (higher than 32 years) were 𝜇1 = -0.895  (𝜎1= 0.121),  𝜇2 = -

0.168 (𝜎2= 0.303) and 𝜇3 = 0.544 (𝜎3= 0.257). For the State 1, there is a high range between 

the mean of the two used variables. In the State 2 both variable present negative mean, which 

can indicate the dry period, while in State 3 both means are positive indicating a wet period. 

The transition matrix A was estimated by the model as: 𝐴 = ( 0.820 0.180 0.0000.025 0.900 0.075 0.000 0.088 0.912) 
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The probabilities were higher in the diagonal of the matrix indicated that the 

probability in remaining in the same state is higher. The probability of transition of the state 1 

to state 2 is about 18%. The Figure 30 illustrates the probability regime of the three regimes 

influenced by the period higher than 32 years. The Viterbi algorithm was used to illustrate the 

most probable path to generate the given time series of observations. 

Figure 30 - Regime posterior probabilities of a multivariate three-state HMM 

 

 

 
Source: Prepared by the author 
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Figure 31 - Most probable path given by the Viterbi algorithm for a multivariate three-state 
model 

 

Source: Prepared by the author 

 

The cumulative distribution of the three-state model using both frequencies of the 

streamflow (Figure 32) identify that we may have a dry state, a wet state and a state that can be 

either dry or wet. 

 

Figure 32 - Cumulative distribution function of the streamflow time series using a 
multivariate three-state HMM 

 

Source: Prepared by the author 
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The multivariate HMM using the low frequency of the streamflow and PDO time 

series was fitted for 2, 3, 4 and 5 states and the statistics of the model are represented in Table 

10. The model that presented the lowest BIC was the 3-state model. 

 

Table 10 - Performance of multivariate HMM (streamflow and PDO) with different number 
of states K 

K (states) Log Likelihood AIC BIC 
2 -120.79 263.57 290.57 
3 -94.59 229.18 278.26 
4 -90.65 243.29 319.38 
5 -72.30 232.60 340.59 

Source: Prepared by the author 

 

For the 3-state multivariate model, the initial state probabilities were 0, 0 and 1 for 

the states 1, 2 and 3, respectively. The state dependent mean response times for the first variable 

(streamflow) was 𝜇1 = -0.548 (𝜎1= 0.101),  𝜇2 = 0.412 (𝜎2= 0.208) and 𝜇3 =  -0.136 (𝜎3= 

0.104), for the second variable (PDO) were 𝜇1 = -0.250  (𝜎1= 0.956),  𝜇2 = -0.185 (𝜎2= 0.746) 

and 𝜇3 =    0.360 (𝜎3= 0.891). For the streamflow State 1 represents the dry periods, State 2 

represents the wet periods and State 3 represents a near normal state period with a mean close 

to 0. For the PDO the mean of states 1 and 2 were very close, so both states are taken as dry 

periods and state 3 is the wet period. 

The transition matrix A was estimated by the model as: 𝐴 = ( 0.822 0.000 0.1780.000 0.888 0.112 0.093 0.124 0.784) 

The probabilities were higher in the diagonal of the matrix indicated that the 

probability in remaining in the same state is higher, thus the low frequency influence by the 

PDO presents a stable behaviour for a multivariate 3-state model as well. The probability of 

transition of the state 1 to 3 and 2 to 3 is about 17,8% and 11,2%, respectively. There is also a 

12,4% from transitioning from state 3 to state 2. 

The Figure 33 illustrates the probability regime of the three regimes influenced by 

the PDO. The Viterbi algorithm was used to illustrate the most probable path to generate the 

given time series of observations. 
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Figure 33 - Regime posterior probabilities of a multivariate three-state HMM using 
streamflow and PDO 

 

 

 
Source: Prepared by the author 

 

Figure 34 - Most probable path given by the Viterbi algorithm for a multivariate three-state 
model using streamflow and PDO 

 
Source: Prepared by the author 
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Comparing the most likely path for the univariate and the multivariate model the 

results are almost the same except for the years of 1952 and 2003. 

 

Figure 35 - Comparison between Viterbi results of univariate three-state model and the 
multivariate three-state model using PDO 

 

Source: Prepared by the author 

 

For the multivariate HMM with AMO was fitted for 2, 3, 4 and 5 states and the 

statistics of the model are represented in Table 11. The model that presented the lowest BIC 

was the 3-state model. 

 

Table 11 - Performance of multivariate HMM (streamflow and AMO) with different number 
of states K 

K (states) Log Likelihood AIC BIC 
2 12.635 -3.271 23.727 
3 36.969 -33.938 15.149 
4 53.213 -44.426 31.659 
5 67.684 -47.368 60.624 

Source: Prepared by the author 

 

For the 3-state multivariate model, the initial state probabilities were 0, 0 and 1 for 

the states 1,2 and 3, respectively. The state dependent mean response times for the first variable 

(streamflow) was 𝜇1 = 0.408 (𝜎1= 0.210),  𝜇2 = -0.553 (𝜎2= 0.097) and 𝜇3 =  -0.139 (𝜎3= 

0.104), for the second variable (AMO) were 𝜇1 =  0.028 (𝜎1= 0.168),  𝜇2 = -0.003 (𝜎2= 0.222) 

and 𝜇3 = 0.022 (𝜎3=  0.182). For the streamflow State 1 represents the wet periods, State 2 

represents the dry periods and State 3 represents a near normal state period with a mean close 
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to 0. For the AMO the mean of states 1,2 and 3 were very close so all states are taken as near 

normal periods. 

The transition matrix A was estimated by the model as: 𝐴 = ( 0.889 0.000 0.1110.000 0.819 0.181 0.124 0.093 0.784) 

The probabilities were higher in the diagonal of the matrix, indicating that the 

probability in remaining in the same state is higher, thus, the low frequency influence by the 

AMO also presents a stable behaviour for a multivariate 3-state model. The probability of 

transition of the state 1 to 3 and 2 to 3 is about 11,1% and 18,1%, respectively. There is also a 

12,4% from transitioning from state 3 to state 1. Although the 3-state multivariate model has 

presented a higher likelihood than the univariate model, the results of the transition matrix of 

the univariate and multivariate with AMO 3-state model is equal, presenting that the influence 

of the AMO in this low frequency time series is very low. 

The Figure 36 illustrates the probability regime of the three regimes influenced by 

the AMO. The Viterbi algorithm was used to illustrate the most probable path to generate the 

given time series of observations. 

 

Figure 36 - Regime posterior probabilities of a multivariate three-state HMM using 

streamflow and AMO 
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Source: Prepared by the author 

 

Figure 37 - Most probable path given by the Viterbi algorithm for a multivariate three-state 
model using streamflow and AMO 

 

Source: Prepared by the author 

 

4.3.3 Low frequency forecast model 

 

We applied and AR and an HMM model to predict the next observation of the time 
series. For the AR model it was adjusted a model with order one, aiming to identify the next 1, 
3 and 5 states ahead. 

 

Figure 38 - Forecast of streamflow time series using an AR model of order 1. (a) Next state 
forecast, (b) the next three states and (c) the next five states 

 

(a) 
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Source: Prepared by the author 

 

Table 12 - Results of the prediction using an AR model of order 1 

Year 
Observed 

Values 
1-year 
ahead 

Relative 
Error 

3-year 
ahead 

Relative 
Error 

5-
year 

ahead 

Relative 
Error 

2012 0.113 - - - - 0.218 94% 

2013 -0.003 - - - - 0.213 -6303% 

2014 -0.111 - - -0.045 -59% 0.210 -289% 

2015 -0.197 - - -0.078 -60% 0.206 -205% 

2016 -0.255 -0.245 -4% -0.105 -59% 0.204 -180% 
Source: Prepared by the author 

 

Only the 1-year ahead forecast presented good results, the other models showed 

more than 50% of relative error, proving that they were not a good fit. 

For the HMM model it was used the 3-state model to predict the next state. In the 

next state forecast, it was multiplied the last posterior probabilities and the transition matrix 

given by the model. The results are presented in Table 13. 

(b) 

(c) 
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Table 13 - Probability of the next state of the univariate HMM model 

Year State 1 State 2  State 3 
2010 0.99E-01 1.60E-05 6.46E-25 
2011 9.09E-01 9.10E-02 1.63E-06 
2012 8.39E-01 1.52E-01 9.28E-03 
2013 7.83E-01 1.94E-01 2.31E-02 
2014 7.38E-01 2.24E-01 3.87E-02 
2015 7.01E-01 2.45E-01 5.45E-02 
2016 6.71E-01 2.60E-01 6.96E-02 

Source: Prepared by the author 

 

Figure 39 - Probability of the next state of the univariate HMM model 

 

Source: Prepared by the author 

 

The last state of trained model is state 1 and there is a decrease in the probability in 

being in State 1 (wet period). It was observed an increase in the probability in being in state 2 

(near normal state). It was also verified that after a period the next state probability tends to 

become constant. Concluding that this approach of forecast would only be a good fit for a short-

term prediction and for a long-term (approximately 30 years) the probability would be an 

average probability for each state. The State 1 would have an average probability of 50%, State 

2 would be 32%, leaving State 3 with 18%. 

 

 4.4 Conclusion 
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In this paper we illustrated an ensemble of techniques to evaluate the low frequency 

of a streamflow time series. The series was decomposed using a wavelet transform and the low 

frequency was considered the period between 16 and 32 years. This time series was then 

analyzed using SRI, changepoint and a Hidden Markov model to try to identify the dry and wet 

periods. 

The analysis with the changepoint showed a better result in the identification of 

extreme events in relation to SRI, because it can identify significant changes in the series 

statistics, while SRI provided thresholds that were not adequate to characterize only a partial 

variability of the whole time series. 

From the years with significant changes found in the low frequency by the 

changepoint, it was used the complete series to calculate the cumulative distribution of dry 

years and wet years, and it was verified that they have different distributions, thus the initial 

idea to identify the states and forecast the next state was justified.  

The HMM was able to identify the periods of extremes for two states well, 

presenting similar results to the changepoint. However, for a three-state analysis, the model 

presented a state that was classified as normal because it had a mean close to zero (-0.14964), 

but it had drier events than the state classified as dry by the mean. Then, it was proceeded to 

analyze the period superior to the low frequency, and it was verified that it presented a signal 

opposite to the one in the low frequency band and may have affected the distribution of these 

states. 

It was introduced a multivariate model using the frequency higher than 32-years, 

PDO and AMO to analyze if these series would improve the model. The cumulative distribution 

of the three-state model using both frequencies of the streamflow presented a dry state, a wet 

state and a state that can be either dry or wet, thus this model may not exhibit an accurate base 

for the next state forecast. The PDO model showed a change in the most likely path in the years 

1952 and 2003. The model with the AMO presented a higher likelihood than the model with 

the PDO, however it showed the same probability of the states over time of the univariate model 

using the Viterbi algorithm. 

The low-frequency variability showed relevance in the example studied and its 

probability distribution conditions the flows of a given year. The recognition of the current state 

of the low frequency allows a risk assessment of extreme events, such as droughts and floods, 

as well as the generation of time series with greater adherence to the forecast data. 
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A model for forecasting was developed adjusting an autoregressive model to the 

low frequency time series, but it only presented good results for 1-year ahead forecast, however 

it worked poorly for a 3-year and 5-year ahead with a relative error higher than 50%. In the 

HMM model the future states were calculated based on the posterior probability. The results 

shown a reduction of the wet period between the years 2010-2016 and a greater probability of 

a normal period was verified. The observed series presented high mean values for the 2010 

year, however from 2013 there was a transition from the normal state to the dry state. Due to 

the dominant diagonal of the matrix having high values of transition probability, all models 

presented a stable structure, presenting a greater probability of remaining in the same state. In 

this way, it was concluded that the forecast probability of next state to many years ahead would 

present an equilibrium, not providing a good model. However, for a short period it is possible 

to identify the next most probable state for the Sobradinho’s reservoir and the next state was a 

good indication compared to the historical time series. The Autoregressive model of order 1, 

similar to the one applied by Kwon et al. (2007), could not represent the low frequency as well 

as the HMM did for the studied reservoir. Thus, HMM forecast model may be an important tool 

to assist in the management and operation of the reservoir, especially for the one in this study 

due to its importance of generating energy for the region. A recommendation of this paper is 

that future research try to identify how to combine the information contained in the various 

spectrum bands in an HMM. 

 

 

 

 

 



88 
 

 
 

5 CONCLUSIONS 

 

Comprehending the modification that occurred in the streamflow patterns has been 

an important approach in water resources studies of streams. Assessing hydrologic time series 

requires that we understand its past dynamics and possible impacts that might be related to the 

changes in its patterns, such as climate fluctuations and anthropogenic modifications. 

In this study were used monthly time series from January of 1931 to December of 

2016 of the 88 base posts operated by the NSO to evaluate the performance of statistical test 

(Mann-Kendal, Wilcoxon, Student's t, Cox-Stuart tests) and unit root test (DF, KPSS, PP and 

DF-GLS tests) aiming to verify the presence of stationarity and trend analysis (Mann-Kendall 

and Sen's Slope test) in the studied time series.  

It was made a spatial analysis of the results and the series located in the South and 

Southeast regions shown indications of nonstationary using the statistical tests. Using the unit 

root tests, the results were similar to the statistical tests except for the south region, which 

presented almost all station stationary, that may be associated with the form that the unit root 

test treat the trend component of the time series, indicating that unit root test are more 

appropriated to be used in the analysis of stationarity for hydrological time series. When 

evaluating trend by the Mann-Kendall test, it was noted that the south and southeast region both 

presented positive trends while the north and northeast region presented negative trends. 

Furthermore, the series were decomposed into different frequency’s (2-4, 4-8, 8-

16, 16-32 years and residue) using wavelet transform and using CEEMDAN method into 5 

IMFs and assessed the percentage of explained variance using both methods, intending to 

identify which frequency would represent better each station gauge. Analysing the decomposed 

time series by the Morlet wavelet and the CEEMDAN method, most of the series have higher 

explained variance for the period of 2-8 years, ranging from 50-60%, while for the medium 

frequency (8-16) the explained variance is around 10-20% and for the low frequency (16-32 

years) it represents 5-10% of the time series. Those decomposition methods have proved to be 

important tools for the identification of climatic variability in an important sector, such as the 

hydropower sector.  

Then, it was applied a wavelet transform to decompose the time series of 

Sobradinho’s reservoir into different frequencies, focusing in identifying the low frequency, 

and it presented a significant result for the period of 16-32 years in its power spectrum. It was 

applied an ensemble of techniques to evaluate the low frequency of one streamflow time series 



89 
 

 
 

managed by the NSO, such as SRI, changepoint and a Hidden Markov model to try to identify 

the extreme events. 

The analysis with the changepoint showed better results in the identification of wet 

and dry periods in relation to SRI because it can identify significant changes in the series 

statistics, while SRI provided thresholds that were not adequate to characterize only a partial 

variability of the whole time series. 

From the years with significant changes found in the low frequency by the 

changepoint, it was used the complete series to calculate the cumulative distribution of dry 

years and wet years and verified that they have different distributions, thus, the initial proposal 

to recognise the states and predict the next state was reasonable.  

The HMM was able to identify the periods of extremes for two states well, 

presenting similar results to the changepoint. However, for a three-state analysis, the model 

presented a state that was classified as normal because it had an average near zero (-0.14964) 

but had drier events than the state classified as dry by the mean. Then, we proceeded to analyze 

the period superior to the low frequency, and it was verified that it presented a signal opposite 

to the one in the low frequency band and may have affected the distribution of these states. 

It was introduced a multivariate model using the frequency higher than 32-years, 

PDO and AMO to analyze if these series would improve the model. The cumulative distribution 

of the three-state model using both frequencies of the streamflow presented a dry state, a wet 

state and a state that can be either dry or wet, thus this model may perform an accurate base for 

the next state forecast. The PDO model showed a change in the most likely path in the years 

1952 and 2003. The model with the AMO presented a higher likelihood than the model with 

the PDO, however, it showed the same probability of the states over time of the univariate 

model using the Viterbi algorithm. 

A model for forecasting was developed adjusting an autoregressive model and an 

HMM to the low frequency time series to address the prediction of the next probable state of 

the system. For the AR model, it only presented good results for the next state, however it 

worked poorly in identifying longer periods, with a relative error higher than 50%. In the HMM 

model the future state were calculated based on the posterior probability. The results shown a 

reduction of the wet period between the years 2010-2016 and a greater probability of a normal 

period was verified. The observed series presented a high mean value for the 2010 year, 

however from 2013 there was a transition from the normal state to the dry state. For a short 

period, it is possible to identify the next most probable state for the Sobradinho’s reservoir. 
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Thus, HMM forecast model may be an important implement to assist in the management and 

operation of the reservoir, especially for the one in this study due to its importance of generating 

energy for the region. 

It is recommended that future studies try to identify how to combine the information 

contained in the various spectrum bands in an HMM, allowing to implement a forecast model 

of all frequencies that compose the time series. Also, it is recommended the application of other 

contemporary forecasting methods, such as chaos theory, as well as classical methods, such as 

the Kalman Filter that can capture the nonstationary behaviour of the streamflow time series. 
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