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Modeling of OFDM Systems With Memory
Polynomial Power Amplifiers
C. Alexandre R. Fernandes, João C. M. Mota, Gérard Favier

Abstract— Nonlinear power amplifiers (PA) are often modeled
as a memoryless polynomial. However, when the input signal
bandwidth is large, PA memory effects can not be ignored. The
memory polynomial model is a simple but efficient model that
captures both memory effects and nonlinear behavior of a PA.
In this work, a new theoretical result concerning orthogonal
frequency division multiplexing (OFDM) systems with a memory
polynomial PA is demonstrated. It states that such an OFDM
system can be expressed as a OFDM system with a memoryless
polynomial PA whose coefficients vary from one subcarrier to
another.

Keywords— OFDM, power amplifier, nonlinear, polynomial,
memory polynomial.

Resumo— Amplificadores de potência (PA) não-lineares são
freqüentemente modelados como polinômios sem-memória. En-
tretanto, quando a largura de banda do sinal é grande, os efeitos
de memória do PA não podem ser ignorados. O polinômio com
memória é um modelo simples e eficiente que consegue captar
de forma eficaz os efeitos não-lineares e de memória de um PA.
Neste trabalho, um novo resultado teórico sobre sistemas OFDM
com PA do tipo polinômio com memória é demonstrado. Este
resultado afirma que este tipo de sistema pode ser expresso como
um sistema OFDM com PA do tipo polinômio sem-memória com
coeficientes que variam de uma sub-portadora para outra.

Palavras-Chave— OFDM, amplificador de potência, não-linear,
polinômio, polinômio com memória.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been considered for a number of applications in the area of
wireless communications [1]. A major drawback of OFDM is
that the transmitted signals are characterized by a high peak-
to-average power ratio (PAPR) [1]–[3]. Due to the presence
of nonlinear power amplifiers (PAs), a high PAPR causes
the introduction of nonlinear inter-carrier interference (ICI)
in the received signals if a high input back-off (IBO) is not
used, which can significantly deteriorate the recovery of the
information symbols. However, a high IBO results in low-
power efficiency of the PA and a lower fade margin.

For bandlimited input signals, nonlinear PAs are often
modeled as (memoryless) polynomials with frequency-
independent coefficients [2]–[6]. However, when the
bandwidth of the input signal is large, PA memory effects
can not be ignored. Some models have been proposed for
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characterizing the behavior of nonlinear PAs with memory.
Among these models, one of the most attractive seems to
be the memory polynomial, used by a number of authors
[2]–[4], [6]–[10]. The memory polynomial, also called
Parallel Hammerstein model [3], is a simple but efficient
model with frequency-independent coefficients that captures
both memory effects and nonlinear behavior of a PA [8]. The
memory polynomial model can be viewed as a special case
of the Volterra model.

The main contribution of this paper is to develop a new
theoretical result concerning OFDM systems with a memory
polynomial PA. First, we prove an auxiliary theorem stating
that a memory polynomial PA in a OFDM system can be
expressed as a memoryless polynomial PA whose coefficients
vary from one subcarrier to another. Based on this result,
we demonstrate that the frequency domain received signals
have very similar expressions for polynomial and memory
polynomial PAs, the only difference being the fact that the PA
coefficients vary from one subcarrier to another in the case of
a memory polynomial PA.

Although theoretical analysis and signal processing techni-
ques for OFDM with nonlinear memoryless PAs have been
widely studied in the literature [11]–[14], there is a lack
of works on OFDM systems with memory PAs. Using the
theoretical result developed in the present paper, we can extend
some theoretical results and techniques for ICI canceling that
work with polynomial PAs to the case of memory polynomial
PAs. As an example of application of this result, we derive
new expressions for the theoretical symbol error rate (SER)
provided by an OFDM system with a memory polynomial PA,
these expressions being derived directly from the polynomial
PA case.

In [9], SER expressions for OFDM systems with memory
polynomial PAs are developed by expressing the received
signal as a scaled version of the data symbol plus uncorrelated
Gaussian noise. However, in this paper, the coefficients that
multiply the data symbols are not deterministic; they depend
on the (stochastic) transmitted signals. Thus, this approach can
not be used by signal processing techniques that work with
polynomial PAs, such as [14], [15], contrarily to our approach.
Moreover, the development of the SER expressions presented
in the present paper is much more simple than the one of [9].

The rest of the paper is organized as follows. Section
II describes the OFDM system model with polynomial PA.
Section III describes the OFDM system model with memory
polynomial PA and develops the new theoretical result. In
Section IV, the result presented in Section III is used to
develop new SER expressions for OFDM systems with a
memory polynomial PA. In Section V, we evaluate the validity
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of the SER expressions presented in Section IV by means of
simulations and the conclusions are drawn in Section VI.

The following notation is used in the paper. Lower-case
letters (x) are scalar variables, boldface lower-case letters (x)
are vectors and boldface capital letters (X) are matrices. All
variables with an overline correspond to frequency-domain va-
riables. Besides, [x]i represents the ith element of the vector x,
[X]i,j the (i, j)th element of the matrix X, diag [x] the diagonal
matrix built from the vector x, diagi[X] is the diagonal matrix
formed from the ith row of X and [X]i,· the ith row of the
matrix X. Moreover, X∗ denotes the complex conjugate of X
and the function cir(x,N), for −N+1 ≤ x ≤ N is defined as
follows: cir(x,N) = x if 1 ≤ x ≤ N and cir(x,N) = x+N
if −N + 1 ≤ x ≤ 0.

II. OFDM SYSTEM MODEL WITH A POLYNOMIAL PA

A simplified scheme of the discrete-time equivalent base-
band OFDM system used in this work is described in the
sequel. Let us denote by N the number of subcarriers, s̄n
the frequency-domain data symbol at the nth subcarrier and
s̄ = [s̄1 · · · s̄N ]T ∈ CN×1 the vector containing all the N data
symbols of a given symbol period. The frequency-domain data
symbols s̄n, for 1 ≤ n ≤ N , are assumed to be independent
and identically distributed (i.i.d.), with a uniform distribution
over a quadrature amplitude modulation (QAM) or a phase-
shift keying (PSK) alphabet.

The corresponding time-domain OFDM symbol is obtai-
ned by taking the Inverse Fast Fourier Transform (IFFT) of
frequency-domain data symbols, that is: s = V s̄, where the
vector s = [s1 · · · sN ]T ∈ CN×1 contains the time-domain
OFDM symbol and V ∈ CN×N is the IFFT matrix of
dimension N × N , with [V]p,q = 1√

N
eȷ2π(p−1)(q−1)/N , for

1 ≤ p, q ≤ N . After the IFFT block, a cyclic prefix (CP) of
length Mcp is inserted in the time-domain symbol in order to
avoid intersymbol interference (ISI) at all the subcarriers, in
the following way:

s(cp) = [s(N−Mcp+1) · · · sN sT ]T ∈ C(N+Mcp)×1. (1)

The time-domain symbol with the CP is then amplified by
a PA that is modeled as a nonlinear function. In this section,
we consider that the PA is memoryless and modeled by a
polynomial of order 2K + 1 [2]–[4] and, in Section III, we
will consider the case of a memory polynomial PA [2]–[4],
[6]–[10]. Denoting by u

(cp)
n the output of the PA, we then

have:

u(cp)n =
K∑

k=0

f2k+1ψ2k+1(s
(cp)
n ), (2)

for 1 ≤ n ≤ N +Mcp, where s(cp)n = [s(cp)]n, f2k+1 (0 ≤
k ≤ K) are the polynomial equivalent baseband coefficients
and the operator ψ2k+1(·) is defined as ψ2k+1(a) = |a|2ka.
Note that the signal u(cp)n also have a cyclic prefix, that is, the
sequences {u(cp)1 , · · · , u(cp)Mcp

} and {u(cp)(N−Mcp+1), · · · , u
(cp)
N }

have the same elements.
The equivalent baseband polynomial model (2) includes

only the odd-order power terms with one more non-conjugated

term than conjugated terms because the other nonlinear pro-
ducts of input signals correspond to spectral components lying
outside the channel bandwidth, and can therefore be eliminated
by bandpass filtering [16].

The signal u(cp)n is transmitted through a frequency-selective
fading wireless channel with impulse response denoted by
wm, for m = 0, 1, ...,M , where M is the wireless channel
delay spread, and additive white Gaussian noise (AWGN) of
variance σ2. At the receiver, the CP is removed from the time-
domain received signal x(cp)n (1 ≤ n ≤ N + Mcp). Thus,
assuming that length of the cyclic prefix is greater than or
equal to the channel delay spread (Mcp ≥ M ), the wireless
channel can be represented by a circular convolution:

xn =
M∑

m=0

wmucir(n−m,N) + vn, (3)

for 1 ≤ n ≤ N , where xn and un denote respectively the
time domain received signal and PA output without cyclic
prefix, with xn = x

(cp)
(n+Mcp)

and un = u
(cp)
(n+Mcp)

, vn is the
corresponding AWGN.

Eq.(3) can also be expressed in a vector form as:

x = Wu + v, (4)

where x = [x1 · · ·xN ]T ∈ CN×1, u = [u1 · · ·uN ]T ∈ CN×1,
v = [v1 · · · vN ]T ∈ CN×1 and W ∈ CN×N is the circulant
channel matrix. The FFT of the received signals is then
calculated as:

x̄ = V∗x + v̄ = V∗WVū + v̄. (5)

where x̄ ∈ CN×1 is the vector of frequency-domain received
signals, ū = V∗u is the frequency-domain version of u and
v̄ = V∗v ∈ CN×1 is the frequency-domain noise vector, which
is also white and Gaussian with the same covariance σ2IN of
v(i), IN being the identity matrix of size N .

It can be shown that a circulant matrix is diagonalized by
a IFFT matrix, i.e. Λ = V∗WV, where Λ ∈ CN×N is a
diagonal matrix containing the eigenvalues of W [17]. The nth

eigenvalue of W, denoted by λn = [Λ]n,n, represents the chan-
nel frequency response (CFR) at the nth subcarrier. Thus, by
defining: Ψ2k+1(a) = [ψ2k+1(a1) · · ·ψ2k+1(aN )]T ∈ CN×1,
for a = [a1 · · · aN ] ∈ CN×1, and using (2), we can rewrite (5)
as:

x̄ = Λ
K∑

k=0

f2k+1V∗Ψ2k+1(s) + v̄. (6)

Defining Ψ̄2k+1(s) = V∗Ψ2k+1(s) ∈ CN×1 as the frequency-
domain version of Ψ2k+1(s), ξ̄2k+1(n) = [Ψ̄2k+1(s)]n and
ϕ̄n = [s̄n ξ̄3(n) · · · ξ̄2K+1(n)]

T ∈ C(K+1)×1, the frequency-
domain PA output ūn = [ū]n and received signal x̄n = [x̄]n
can be expressed respectively as:

ūn = f1 s̄n +
K∑

k=1

f2k+1 ξ̄2k+1(n), (7)

and

x̄n = λnf1 s̄n + λn

K∑
k=1

f2k+1 ξ̄2k+1(n) + v̄n, (8)
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where v̄n is the corresponding noise component in the fre-
quency domain.

Equation (8) shows that the frequency-domain received
signal x̄n equals a scaled version of the frequency-domain
data symbol λnf1s̄n plus weighted nonlinear ICI terms∑K

k=1 λnf2k+1ξ̄2k+1(n), plus a noise term, with ξ̄2k+1(n)
representing the (2k + 1)th-order ICI at the nth subcarrier.
Note also that ξ̄1(n) = s̄n.

III. OFDM SYSTEM MODEL WITH A MEMORY
POLYNOMIAL PA

In this section, we present a OFDM system model con-
sidering a memory polynomial PA. It is demonstrated that
the received signals can be expressed as in (8), with PA
coefficients depending on the subcarrier.

Assuming that the length Mcp of the cyclic prefix satisfies:
Mcp ≥ M +Mpa, where Mpa is the PA memory, the output
u
(cp)
n of the memory polynomial PA is expressed as:

u(cp)n =

Mpa∑
m=0

K∑
k=0

f2k+1,m ψ2k+1

(
s
(cp)
(n−m)

)
, (9)

for 1 + Mpa ≤ n ≤ N + Mcp, where f2k+1,m are the PA
coefficients. Note that the signal u(cp)n have a cyclic block
of (Mcp − Mpa) > M symbols, that is, the sequences
{u(cp)(Mpa+1), · · · , u

(cp)
Mcp

} and {u(cp)(N+Mpa+1), · · · , u
(cp)
(N+Mcp)

}
have the same elements. As a consequence, eqs. (3), (4) and (5)
still hold for a memory polynomial PA, with all the variables
being defined in the same way as in Section II.

From (5), it can be concluded that the noiseless part of the
frequency domain received signal x̄n depends on the CFR λn
and the frequency domain output of the PA ūn = [ū]n. The
next theorem demonstrates that, when the PA is represented by
a memory polynomial model, the signal ūn can be written as
the frequency domain output of a memoryless polynomial PA,
the coefficients of which vary from one subcarrier to another.

Theorem 1: Let ūn (1 ≤ n ≤ N ) be the frequency domain
output of a memory polynomial PA with coefficients denoted
by f2k+1,m, for 0 ≤ k ≤ K and 0 ≤ m ≤Mpa. Then, ūn can
be expressed as the frequency domain output of a memoryless
polynomial PA:

ūn =

K∑
k=0

f̃2k+1(n) ξ̄2k+1(n), (10)

with subcarrier dependent coefficients given by:

f̃2k+1(n) =

Mpa∑
m=0

f2k+1,m e−ȷ2πm(n−1)/N . (11)

Proof:
From (9), we can write:

u =

Mpa∑
m=0

K∑
k=0

f2k+1,m Ψ2k+1

(
s(cir)(m)

)
, (12)

with

s(cir)(m) = [s
(cir)
cir(1−m,N) · · · s

(cir)
cir(N−m,N)]

T ∈ CN×1. (13)

Note that the vector s(cir)(m) can be expressed as:

s(cir)(m) = Us(cir)(m− 1)

= Ums(cir)(0) = Ums, (14)

where U ∈ CN×N is the circulant lower shift matrix of order
N defined as:

U =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 0


. (15)

Thus, substituting (14) into (12), we get:

u =

Mpa∑
m=0

K∑
k=0

f2k+1,m Ψ2k+1(Ums)

=

Mpa∑
m=0

K∑
k=0

f2k+1,m UmΨ2k+1(s) (16)

Calculating the FFT of both sides of (16), we obtain:

ū =

Mpa∑
m=0

K∑
k=0

f2k+1,mV∗UmΨ2k+1(s). (17)

Using the Lemma in Appendix I, we can rewrite (17) as:

ū =

Mpa∑
m=0

K∑
k=0

f2k+1,m

√
N diag(m+1)[V

∗ ]V∗Ψ2k+1(s). (18)

On the other hand, by defining f̃2k+1 =
[f̃2k+1(1) · · · f̃2k+1(N)]T ∈ CN×1, we can write from
(11):

diag[̃f2k+1] =
√
N

Mpa∑
m=0

f2k+1,m diag(m+1)[V
∗ ]. (19)

Substituting (19) into (18), we get:

ū =
K∑

k=0

diag[̃f2k+1]Ψ̄2k+1(s), (20)

which corresponds to the desired result.
�

By comparing the expressions for the PA frequency domain
output in (7) and (10), it can be concluded that, with respect
to the signal ūn, the memory polynomial model is equivalent
to a subcarrier dependent memoryless polynomial model, the
relationship between the parameters of these two models being
given by (11). Moreover, substituting (20) into (5), we get:

x̄ = Λ
K∑

k=0

diag[̃f2k+1]Ψ̄2k+1(s) + v̄, (21)

or, equivalently,

x̄n = λn

K∑
k=0

f̃2k+1(n) ξ̄2k+1(n) + v̄n, (22)

Comparing (8) and (22), it can be viewed that the frequency
domain received signals x̄n have very similar expressions for
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polynomial and memory polynomial PAs, the only difference
being the fact that the PA coefficients f2k+1 in (8) are the same
for all the subcarriers, while the PA coefficients f̃2k+1(n) in
(22) are dependent on the subcarrier.

An important consequence of the above developments is that
some theoretical results and signal processing techniques that
work with polynomial PAs can be extended straightforwardly
to the case of a memory polynomial PA. In the sequel, we show
how an important theoretical result developed for a polynomial
PA can be easily extended to a memory polynomial PA using
the above results.

IV. THEORETICAL ERROR PROBABILITY FOR NONLINEAR
OFDM SYSTEMS

In this section, we develop new expressions for theoretical
symbol error rate (SER) provided by an OFDM system with
a third-order memory polynomial PA and circular M-QAM or
M-PSK modulations. These expressions are developed directly
from the theoretical SER obtained for the case of an OFDM
system with a polynomial PA.

A. Third-Order Polynomial PA Case

Using the extension of Bussgang’s theorem to bandpass
memoryless nonlinearities with complex Gaussian inputs, one
can derive theoretical SER expressions for an OFDM system
with a memoryless PA [12]. In the sequel we derive such
expressions for the particular case of a third-order polynomial
PA and circular circular M-QAM or M-PSK information
signals, based on the results of [12]. Thus, assuming that the
transmitted signals sn are complex Gaussian distributed, eq.
(8) can be rewritten as:

x̄n = λn
[
αns̄n + f3ζ̄3(n)

]
+ v̄n. (23)

with

αn = f1 + f3
rs̄ξ̄
σ2
s̄

= f1

(
1 + 2σ2

s̄

f3
f1

)
, (24)

where σ2
s̄ is the variance of s̄n and rs̄ξ̄ = E[s̄nξ̄∗3(n)] = 2σ4

s̄

the correlation between s̄n and ξ̄3(n), and:

ζ̄3(n) = ξ̄3(n)− 2σ2
s̄ s̄n (25)

has a complex Gaussian distribution and is uncorrelated with
s̄i,n. Thus, x̄i,n can be viewed a scaled version of the data
symbol s̄n plus an additive uncorrelated noise of variance:

σ2
T (n) = |λn|2|f3|2σ2

ζ̄ (n) + σ2
v̄ , (26)

where σ2
v̄ is the AWGN variance and σ2

ζ̄
(n) is given by:

σ2
ζ̄ (n) = σ2

ξ̄ −
r2
s̄ξ̄

σ2
s̄

= σ2
ξ̄ − 6σ4

s̄ , (27)

σ2
ξ̄
= 6σ6

s̄ being the variance of ξ̄3(n).
Thus, considering ζ̄3(i, n) as a noise component, the signal

to noise ratio (SNR) on the nth subcarrier is given by:

SNRn =
|λnαn|2σ2

s̄

σ2
T (n)

, (28)
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Fig. 1. Theoretical and Simulated SER versus mean SNR.

On the other hand, the theoretical SERs for uniform circular
i.i.d. M-PSK and M-QAM signals, for M ≥ 4, are respectively
given by:

SERn = erfc
(√

SNRn sin
( π
M

))
, (29)

and

SERn = 2

(
1− 1√

M

)
erfc

(√
3SNRn

2(M − 1)

)
, (30)

where erfc (·) is the Gauss error function. The theoretical SER
at the nth subcarrier provided by an OFDM system with a
third-order polynomial PA can then be computed from (28)-
(30).

B. Third-Order Memory Polynomial PA Case

From (22), the frequency-domain received-signal x̄i,n in an
OFDM system with a third-order memory polynomial PA can
be expressed as:

x̄n = λn

[
α̃ns̄n + f̃3(n)ζ̄3(n)

]
+ v̄n. (31)

where

α̃n = f̃1(n)

(
1 + 2σ2

s̄

f̃3(n)

f̃1(n)

)
. (32)

As ζ̄3(n) is uncorrelated with s̄i,n, the SNR on the nth

subcarrier is given by:

SNRn =
|λnα̃n|2σ2

s̄

σ̃2
T (n)

, (33)

where
σ̃2
T (n) = |λn|2|f̃3(n)|2σ2

ζ̄ (n) + σ2
v̄ , (34)

The theoretical SER at the nth subcarrier follows from (33)
and (29)-(30).
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V. SIMULATION RESULTS

In this section, the validity of the SER expressions deve-
loped in Section IV-B is evaluated by means of simulations.
An OFDM system with a third-order memory polynomial PA
with coefficients equal to f1,0 = 1.9702 + 0.1931ȷ; f1,1 =
−0.9606 + 0.0036ȷ; f1,2 = 0; f1,3 = 0.1591 − 0.0132ȷ;
f3,0 = −0.5934−0.1174ȷ; f3,1 = 0.2300+0.0560ȷ; f3,2 = 0
and f3,3 = −0.0112− 0.0094ȷ [10] , and a wireless link with
frequency selective fading due to multipath propagation has
been considered for the simulations. The length of the wireless
channel impulse response is 3 and the length of the cyclic
prefix is 6. The results were obtained with N = 64 subcarriers
and QPSK (quadrature PSK) or 16-QAM transmitted signals,
via Monte Carlo simulations using 2000 independent data
realizations.

Fig. 1 shows the BER versus mean SNR at the channel out-
put obtained by means of simulations and using the theoretical
expressions of Section IV-B, with QPSK and 16-QAM signals,
and input back-off (IBO) values of 5dB and 10dB. The IBO is
defined as the ratio between the input power corresponding to
the maximum output power and the mean power of the signal
at the input of the PA. It can be viewed that the theoretical
and simulated curves are very close. The small differences
between the simulated and theoretical SERs are due to the
Gaussian approximation of the transmitted signals.

VI. CONCLUSION

In this work, a new theoretical result concerning OFDM
systems with memory polynomial PAs has been demonstrated.
It states that a OFDM system with a memory polynomial
PA can be expressed as a OFDM system with memoryless
polynomial PA with coefficients that vary from one subcarrier
to another. Consequently, some theoretical results and signal
processing techniques that work for a memoryless polynomial
PA can be extended to the case of a memory polynomial PA.
As an example of application of this result, new expressions
for theoretical SER provided by an OFDM system with a
memory polynomial PA have been derived directly from the
polynomial PA case.

In a future work, we will use this theoretical result to
develop signal processing techniques for ICI canceling in
OFDM systems with memory polynomial PAs.
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APPENDIX I
LEMMA

Let V ∈ CN×N be the FFT matrix of order N and U ∈
CN×N be a circulant lower shift matrix of order N defined in
(15). Then, for 0 ≤ i ≤ N − 1, we have:

V∗Ui =
√
N diag(i+1)[V∗ ]V∗. (35)

Proof:
Post-multiplying a matrix by Ui is equivalent to circularly

shifting its columns to the left i times. Thus, by defining
V̄(i) = V∗Ui, we can write:

V̄(i) =
1

√
N

1 1 · · · 1

ω−i ω−(i+1) · · · ω−(i+N−1)

ω−2i ω−2(i+1) · · · ω−2(i+N−1)

...
...

. . .
...

ω−(N−1)i ω−(N−1)(i+1) · · · ω−(N−1)(i+N−1)


. (36)

Eq. (36) can be expressed as:

V̄(i) =
1√
N

diag


1

ω−i

...

ω−(N−1)i

V∗. (37)

That completes the proof. �


