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RESUMO 

 

Neste trabalho, as propriedades dielétricas das duplas perovskitas Sr3WO6 (SWO) e Sr3MoO6 

(SMO) na região de rádio frequência com variação de temperatura e na região de microondas 

para avaliar o material como um novo ressonador dielétrico, foram investigadas pela primeira 

vez na literatura, da qual podem ser encontradas no segundo e terceiro capítulo da tese, 

respectivamente. O processo de transferência de carga termo-ativada da cerâmica SWO foi 

observado com duas associações resistor-capacitor para os diagramas de Nyquist. SWO 

apresentou valores negativos de coeficiente de capacitância de temperatura (TCC) e a energia 

de ativação do processo de relaxação dielétrica possui valor em torno de 1,3eV. Para a região 

de microondas, o SWO mostra alta permissividade dielétrica (13,57) e perda dielétrica 

(0,0281). O coeficiente de temperatura da frequência de ressonância da cerâmica SWO foi 

obtido pela primeira vez nesta investigação dielétrica. A antena ressonante dielétrica (DRA) 

fabricada com a cerâmica SWO apresentou uma freqüência de operação de 4,1 GHz e perda 

de retorno abaixo de -40dB. Para a dupla perovskita SMO, foi proposto um circuito 

equivalente utilizando três associações de R-CPE em paralelo. A DRA baseada na cerâmica 

de SMO opera 3,71 GHz (frequência de antena de operação), com ganho razoável (5,00 dBi) 

e diretividade (5,70 dBi), onde esses valores são próximos aos apresentados pelas antenas 

comerciais. A partir desses resultados, as DRA baseadas nas cerâmicas de SWO e SMO 

mostram boas propriedades para serem usadas como um novo ressonador dielétrico na região 

de microondas. Uma vez concluída a primeira parte, envolvendo uma investigação dielétrica, 

da tese de doutorado, o próximo passo foi estudar as propriedades de fotoluminescência da 

matriz cerâmica de SMO com íons Eu3+ e Tb3+. A síntese satisfatória de materiais dopados 

com terras raras, o mecanismo de transferência de energia e as emissões dos íons Eu3+ e a 

contribuição energética dos íons Tb3+ estão no quarto capítulo dessa tese. Pode-se inferir que 

os espectros de emissão da cerâmica Sr3MoO6 dopada individualmente com Eu3+ consistem 

em transições eletrônica de 5D para 7F. Os espectros de emissão da cerâmica dopada com 

Tb3+ e Eu3+ dopado, indicam influência dos íons Tb3+ no mecanismo de transferência de 

energia para os íons Eu3+ na matriz cerâmica. A investigação indica que a matriz cerâmica 

com os íons Tb3+ e Eu3 podem ser um promissor candidato para aplicações em chips de LEDs. 

 

Palavras-chave: Materiais cerâmicos. SWO. SMO. Dielétricos. Fotoluminescentes.  



 

 

ABSTRACT 

 

In this work, the dielectric properties of Sr3WO6 (SWO) and Sr3MoO6 (SMO) double 

perovskite at radio frequencies as a function of the temperature and a study in microwaves 

range to evaluate the material as a novel dielectric resonator, those studies were first 

investigated when can be found in the second and third chapter of the thesis, respectively. 

Thermo-activated charge transfer process for SWO ceramic was observed and two resistor – 

capacitor associations were fitted for the Nyquist diagram. SWO presented negative values of 

temperature coefficient of capacitance (TCC) and the activation energies of dielectric 

relaxation processes was obtained the value around 1.3eV. For the microwave range, SWO 

shows high dielectric permittivity (13.57) and dielectric loss (0.0281). The temperature 

coefficient of resonant frequency value was first obtained in the literature. The dielectric 

resonator antenna (DRA) fabricated from SWO ceramic presented an operation frequency in 

4.1 GHz and return loss below -40dB. For the SMO double perovskite, it was proposed an 

equivalent circuit using three associations of R-CPE in parallel. The SMO-based DRA 

operated at 3.71 GHz (frequency of operation antenna), with reasonable gain (5.00 dBi) and 

directivity (5.70 dBi), where these values are close to the ones presented by commercial 

antennas. From these results, the SWO and SMO based DRA shows good properties to be 

used as a novel microwave dielectric resonator. Once the first part, involving a dielectric 

investigation, of the doctoral thesis was concluded, the next step was to study the 

photoluminescence properties of SMO phosphors with Eu3+ and Tb3+ ions. The satisfactory 

synthesis of phosphors, the energy transfer mechanism and band emission from Eu3+, and 

energetic contribution of Tb3+ are in the fourth chapter. It noticed that the emission spectra of 

singly Eu3+ doped Sr3MoO6 phosphors consist emission transitions of 5D to 7F. The emission 

spectra of co-doped Tb3+ and Eu3+ doped Sr3MoO6 phosphor, there is an influence of Tb3+ 

ions in the energy transfer mechanism of Eu3+ ions in the phosphor. The investigation 

indicates that the phosphors may be a promising candidate phosphor for applications in LED 

chips. 

 

Keywords: Ceramics materials. SWO. SMO. Dielectric. Photoluminescent. 
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1 INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

 

1.1.1 Double perovskite 

 

Ceramic oxides with structural formula A2B'B''O6 are called double perovskite. In 

this kind of structure, the A site generally is a large divalent cation twelve-coordinated and B' 

and B'' sites are octahedral-coordinated with varied oxidation state and commonly occupied 

by transition metal ions, as can be seen in Figure 1. The double perovskite presents a large 

number of different compositions, as a wide combination of ions in the B' and B'' sites, where 

the final combination must be a sum of charges equal to 8+ or the necessary charge for 

complete electroneutrality of the structure due to the charges of A site (Ca2+, Sr2+, Li+, La3+ 

etc) (VASALA; KARPPINEN, 2014). In this sense, different applications can be obtained by 

changing in these sites, such as photocatalyst, (A2ZnTiO6) (A = Pr, Gd) (ZHU et al., 2017), a 

thermoelectric device, (Sr2TiMoO6) (SAXENA et al., 2017), and an electrode for fuel cell, 

(SmBa1−xCaxCoCuO5+δ) (WANG et al., 2016). Dielectric properties of double perovskite 

ceramics ((A2HoSbO6 (A = Ba, Sr, Ca), Pr2CuTiO6 and Ba2BiNbO6) have been studied by 

Impedance Spectroscopy (IS) in Radiofrequency (RF) range (PANDA et al., 2015; 

MAHATO; SINHA, 2016; HALDER et al., 2017).  

Sr3WO6 (SWO) is another example of double perovskite that has been 

traditionally studied due to luminescence properties: the photoluminescence and 

thermoluminescence properties of Sr3WO6:Eu3+ was reported by Emen and Altinkaya (2013), 

while Zhigang Zou et al. (2013) obtained an efficient charge compensated red phosphor for 

Sr3WO6:K
+, Eu3+ for white Light emitting diodes (LED). The SWO perovskite structure are 

also an important oxide class for dielectric materials, but to our knowledge, the dielectric 

properties have not been reported. Due the similarly between molybdenum (Mo6+) and 

tungsten (W6+) ionic ratio and electrovalence allows an structural investigation Low 

temperature cofired ceramics (LTCC) based, the Sr3MoO6 double perovskite. In the literature 

have been many reports LTCC based molybdates materials (ZHOU. et al., 2011; TANG et al., 

2013; JOSEPH et al., 2016). The influence of Mo6+ in dielectric properties, sintering 

temperature and Dielectric resonator antenna (DRA) application have never been studied for 

the Sr3MoO6 (SMO) ceramic. Actually, few studies examine the properties of SMO double 

perovskite, such as the red phosphors Sr3MoO6:Eu3+ applied in the white light emitting diode 
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(JING et al., 2015). 

 

Figure 1 - Different B-site cation orderings found in A2B'B''O6 perovskites: (a) rock-salt, (b) 

layered and (c) columnar order.

 
Source: (VASALA; KARPPINEN, 2014) 

 

1.1.2 Dielectric resonator antenna 

 

The microwave region of the electromagnetic spectrum (see Figure 2) has been 

attracted attention due to the rapid development of technology for this frequency range in last 

decades. The demand for dielectric materials in the microelectronics industry has increased 

for different range communications. (PARIDA et al., 2012). The development in DRA 

application influenced in growing of the telecommunication field in the microwave range 

(PARIDA et al., 2012)(LUK; LEUNG, 2003), which are low loss ceramic pucks used mainly 

in wireless communication devices. Compared to other antenna devices, DRAs have lower 

weight and cost, high radiation efficiency, small size, different geometry (cylindrical, 

rectangular, half-hemispherical etc.) and feeding (slots, probes, waveguides etc.). This device 

converts a wave propagation on a transmission line to a plane wave propagation in free-space 

(transmission or reception).(PARIDA et al., 2012)(ALMEIDA et al., 2008).  

The use of dielectric oxide ceramics has changed the microwave wireless 

communication production due to decrease the size and cost of diverse components, like as 

filter, oscillator and antenna components in applications ranging from cellular phones to 

global positioning systems. The demand for miniaturization has been growing in the last years 

provides a continuing driving force for the discovery and advancement of increasingly 

sophisticated materials. (SEBASTIAN, 2008). 
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Figure 2 – Microwave spectrum and application. 

 

Source: (SEBASTIAN, 2008) 

 

1.2 Objectives 

 

1.2.1 General 

 

 To explore the dielectric properties at RF/microwave of Sr3MO6 (M = W or Mo) in 

order to apply in microwave application as dielectric resonator antenna and to 

investigate the photoluminescent of Sr3MoO6:Eu3+/Tb3+ phosphors. 

 

1.2.2 Specifics 

 

 To synthesize Sr3WO6 and Sr3MoO6 by solid state route; 

 To investigate the structure of Sr3WO6 and Sr3MoO6 synthesized at different 

temperatures by using powder X-ray diffraction (PXRD); 

 To analyze the microstructural of Sr3MoO6 ceramic by micrograph images from 

Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy 
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(EDS); 

 To analyze the dielectric properties of Sr3WO6 and Sr3MoO6 in radio-frequency as 

function of the temperature by IS; 

 To explore the dielectric measurements in the microwave range of Sr3WO6 and 

Sr3MoO6; 

 To investigate the temperature coefficient of resonant frequency of Sr3WO6 by 

dielectric measurements in the microwave range; 

 To evaluate the DRA parameters of Sr3WO6 and Sr3MoO6 by numerical simulation via 

the High Frequency Structure Simulator (HFSS); 

 To synthesize Tb3+-Eu3+ co-doped Sr3MoO6 by solid state reaction; 

 To investigate the structure of the Sr3MoO6:Eu3+/Tb3+ synthesized using PXRD and 

SEM; 

 To study the photoluminescent results using different excitation of Sr3MoO6:Eu3+/Tb3+ 

phosphors. 
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2 DIELECTRIC INVESTIGATION OF THE Sr3WO6 DOUBLE PEROVSKITE AT 

RF/MICROWAVE FREQUENCIES 

 

2.1 Introduction 

 

Double perovskite are ceramic oxides with structural formula A2B'B''O6, when A 

site generally is a large divalent cation and B' and B'' sites are commonly occupied transition 

metal ions. The double perovskite presents a large number of different compositions due to 

the different combination of ions in the B' and B'' sites, hence different applications can be 

obtained by changing in these sites (VASALA; KARPPINEN, 2014). For example, 

La2NiMnO6 nanoparticles (WU et al., 2013) have been studied for a potential carrier for large 

biomolecules, Sr2B'MoO6 (B' =  Mg, Mn, Fe, Co, Ni and Zn) (WANG et al., 2011; ZHANG et 

al., 2011; JIANG et al., 2014) has been found to be a promising compound as an anode 

material for solid-oxide fuel-cell (SOFCs) and Bi2NiMnO6 presents multiferroic properties at 

low temperature with potential as nonvolatile memories and sensors (SHIMAKAWA et al., 

2011). Pang and Zhou (2011) investigated Ca3WO6 phase, which presented good results for 

potential microwave applications (ZHOU et al., 2012; ZHOU et al., 2014), becoming 

important for development in wireless communication systems, miniaturization of 

components such as dielectric filters, and voltage-controlled oscillators. 

Sr3WO6 (SWO) is another example of double perovskite that has two Sr2+ ions in 

site A and one Sr+2 and W6+ ions distributed in the B’ and B” sites. SWO presents four 

polymorphs (α, β, γ and δ) from low to high temperature (KING et al., 2010). This material 

has been traditionally studied due to luminescence properties: the photoluminescence and 

thermoluminescence properties of Sr3WO6:Eu3+ was reported by Emen and Altinkaya (2013), 

while Zhigang Zou et al. (2013) obtained an efficient charge compensated red phosphor for 

Sr3WO6:K
+, Eu3+ for white LEDs. However, the SWO perovskite structure are also an 

important oxide class for dielectric materials with calcium, strontium and barium titanate, the 

most representative of perovskite structure for dielectric properties.  

In this work, the best set of parameters to synthesize the SWO phase by solid-state 

route was achieved by PXRD. The dielectric properties of the material were measured at radio 

frequency as a function of the temperature (298-718 K). For microwave applications, SWO 

was experimentally measured as a dielectric resonator and supported by numerical simulation. 

The results set can be used to suggest potential novel applications for SWO phase as a DRA 

or other devices that operate in the microwaves range (microwave filters, oscillators, radar 
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detectors etc.). 

 

2.2 Experimental methods 

 

The synthesis of the SWO phase was performed by a solid state route, where 

stoichiometric amounts of the precursors employed in the process were SrCO3 (97%, Vetec) 

and WO3 (99%, Aldrich). These starting materials were activated by milling in the planetary 

mill, on a Fritsch Pulverissette 6, for 2 h with zirconia balls and polyacetal vessels. The 

activated powder was calcined in air at 1323, 1423 and 1523 K for 6 h. The reactions 

occurring during calcination can be summarized as: 

 

3SrCO3(s) + WO3(s)   Sr3WO6(s) + 3CO2(g)                                                                           (1) 

3SrCO3(s) + WO3(s)  (Sr3WO6)1-x(s) + (SrWO4)x(s) + (SrO)2x(s) + 3CO2(g)                             (2) 

 

The second reaction shows a spurious phase (SrWO4) and SrO (from 

decomposition of strontium carbonate). This probable reaction was observed for sample 

calcined at 1323K. However, SrO phase was not detected due to the small concentration and 

weak diffraction peak compared to Sr3WO6 and SrWO4. Thus, it was not taken into account 

for crystal structure refinement (see XRD results). 

The preparation of the samples for dielectric measurements consisted of the 

fabrication of pellets and a cylindrical ceramic. Thus, SWO powder was molded into a steel 

die by uniaxial press and its green body sintered at two steps (773 K for 2 h and after at 1523 

K for 6 h), see Figure 3. The pellets and cylinders were polished after the sintering process. 

For analysis by IS, both faces of the ceramic pellet were covered with a silver conductive 

electrode to form a parallel face capacitor geometry. The dimensions of the pellets in 

dielectric were 14.04 mm of diameter and 7.34 mm of thickness for the microwave range, and 

14.30 mm of diameter and 1.56 mm of thickness for the radio frequency range. 

The diffractograms were obtained by PANalytical diffractometer (Xpert Pro 

MPD) operating at 40 kV and 45 mA in the geometry Bragg-Brentano, with a Cu tube (Kα1 = 

1.540562 Å, Kα2 = 1.54439 Å) at room temperature (~300 K), from crushed samples of SWO 

in three different temperatures (1323, 1423 and 1523 K). The diffraction patterns were 

obtained from 15° to 65° (2θ) with a step size of 0.013°, with the analysis time at each step 

(70 s), using a plane graphite monochromator for diffracted beam. The Rietveld method’s 



 

24 

(RIETVELD, 1967) was used for obtain the refinements through the DBWS Tools software 

(BLEICHER et al., 2000), where the refined parameters were the lattice parameters, scale 

factor, background, U and X parameters, and overall thermal factors. The Inorganic Crystal 

Structure Database (ICSD) was used to identify what phases were present in the samples. 

 

Figure 3 – The scheme used of the sintering process. 

 

Source: Author. 

 

The IS data (radiofrequency range) were collected in the Solartron 1260 

Impedance Analyzer at different temperatures (298-718 K). For this propose, the electric 

properties of the SWO was represented in terms of the: complex dielectric constant ε* (ω) = εʹ 

– jεʺ, complex impedance Z* (ω) = Zʹ – jZʺ,electric conductivity σ*(ω)=1/Z*=σʹ+jσʹʹ, electric 

modulus M* (ω) = 1/ ε* (ω) = Mʹ + j Mʺ and loss tangent tan δ = εʺ/εʹ, where (ʹ) and (ʺ) 

represents the real and imaginary part, respectively. Where j= ωC0Z* and the vacuum 

capacitance is represented C0 and j = √-1 (SOHN et al., 2010)(COSTA et al., 2010). Nyquist 

diagrams were obtained by fitting using the Eisanalyser software (BONDARENKO; 

RAGOISHA, 2005). 

The Hakki-Coleman method (HAKKI; COLEMAN, 1960; COURTNEY, 1970) 

was used for dielectric measurements in the microwave range. For antenna applications, the 

ceramic cylinder was placed in a ground plane (copper sheet). The device was fed by a 50 Ω 

coaxial cable and SMA connector, as shown in Figure 4. 
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Figure 4 - Physical layout of the DRA displaying various components. 

 

Source: Author. 

 

Both measurements, by Hakki-Coleman method and by antenna configuration, 

were undertaken with an Agilent Network Analyser, model N5230A, at room temperature. 

Using numerical simulations via the HFSS of Ansoft, the electromagnetic fields generated by 

DRA were obtained by simulation of a perfect cylinder model above a perfect ground plane. 

The air gaps were inserted in the model targeting for approximation of real case between 

numerical and experimental data from HE11δ mode. Thus, the cylindrical DRA can be 

approximately by the following equation: 

 

                                 (3) 
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where fHE11δ (GHz) is the measured resonance frequency and c is the velocity of light in the 

vacuum (299,792,458 m.s-1), and a (m) is the radius and h (m) is the height of the cylindrical 

DRA (see Figure 4). 

 

2.3 Results and discussion 

 

Structural characterization was performed by the PXRD technique, where it was 

analyzed the SWO phase formation and/or reagents and presence of spurious phase in the 

obtained products. The Rietveld refinement was performed for validation of the observed 

phases in the tested temperatures. The residuals indicators, RBragg, S (quality factor, “goodness 

of fit”) and Rwp (weighted residual error), showed a satisfactory refinement and that obtained 

values are adequate in the range of acceptable values (Rwp  < 20 and S < 1.6). For the RBragg, 

the values are closer to the acceptable limits due to the experimental conditions (PASCOAL 

et al., 2002)(SILVA et al., 2014). The results of the refinement are showed in the Figure 5, 

where the black dots and red lines are used for represent the experimental and calculated data, 

respectively. The blue line is the difference between the experimental and calculated intensity. 

For the sample obtained at 1323K (incomplete reaction), diffraction peaks for SWO (ICSD: 

24-7338, triclinic, C1) and an intermediate phase SrWO4 (ICSD: 15-5425, tetragonal, C4h
6) 

were observed. For samples synthesized at 1423 and 1523K, the diffractograms showed peaks 

only for SWO. The crystalline profile of the analyzed phases are also illustrated in Figure 5. 

All refinements match with the experimental diffraction profile and there is not 

significant noise intense in the blue line (Figure 5). Thus, the refinements were satisfactory, as 

demonstrate parameters derived from the Reitveld refinement (Table 1 and Table 2), where 

the lattice parameters, cell volume and density showed no significant changes. One can also 

observe a small concentration of SrWO4 (6.62 %wt) for the sample synthesized at 1323 K. 

Thus, the phase obtained at 1423K was chosen for the course of the work due to lower energy 

involved in the process. 
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Figure 5 - XRD partner and Rietveld refinement of the SWO samples obtained in different 

calcination temperatures, where black dots and red line are the experimental and calculated 

intensity, respectively. The difference between experimental and calculated is represented by 

blue line. 

 

Source: Author. 
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Table 1 – Part 1 of the parameters obtained from Rietveld refinement of the samples SWO 

synthesized at 1323, 1423 and 1523K. 

Sample Phase 
Lattice Parameters 

Rwp (%) RBragg S 
a (Å) b (Å) c (Å) 

SWO (1323K) 
Sr3WO6 10.093290 17.646570 11.813420 

10.23 
7.14 

1.55 
SrWO4 5.414999 5.414999 12.052610 8.17 

SWO (1423K) Sr3WO6 10.092880 17.642370 11.814300 12.60 9.64 1.11 

SWO (1523K) Sr3WO6 10.097800 17.649710 11.815720 12.59 8.81 1.07 
Source: Author. 

 

Table 2 – Part 2 of the parameters obtained from Rietveld refinement of the samples SWO 

synthesized at 1323, 1423 and 1523K. 

Sample Phase Vcell 
Quantitative phase 

analysis (%wt) 

Density 

(g.cm-3) 

SWO (1323K) 
Sr3WO6 1714.028 93.38 6.311 

SrWO4 353.409 6.62 6.306 

SWO (1423K) Sr3WO6 1713.669 100.0 6.312 

SWO (1523K) Sr3WO6 1715.148 100.0 6.307 
Source: Author. 

 

IS technique was used for analyzing the electric response of SWO ceramic under 

influence of the variation of frequency as a function of the temperature, and investigate the 

dielectric behavior. By measurements of IS is possible to find the phase transitions of the 

materials. In this sense, ɛ' was measured at 1 MHz and plotted as a function of the temperature 

(Figure 6). It can be seen a maximum value for ε' at 445K, corresponding to the transition 

temperature observed in literature (DRACHE et al., 1981)(CHANG; PHILLIPS, 1967), where 

the SWO transits from triclinic to monoclinic symmetry, i. e., the γ↔β phase transition. King 

and coworkers (KING et al., 2010) observed the same phenomena by using electron 

diffraction, synchrotron X-ray powder diffraction and neutron powder diffraction. 
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Figure 6 - ε' measured at 1MHz as a function of the temperature and the representative picture 

of phase transition (inset). 

 

Source: Author. 

 

The dielectric characterization in the radiofrequency region as a function of the 

temperature (298-718 K) was used to investigate the changes in the dielectric behavior of the 

material. Figures 7 (a) and (c) present the ɛ' profile and show two behavior before and after 

the transition temperature (445 K). Before the phase transition, ɛ' values presented a decrease 

behavior when the temperature increases, as demonstrated by values of Temperature 

coefficient of capacitance (TCC).  
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Figure 7 - Dielectric spectra at 298-718 K: (a) and (c) for ε'; and (b) and (d) for tan δ. 

 

Source: Author. 

 

This behavior is probably due to the triclinic SWO, where negatives values were 

obtained (Table 3). After transition temperature, the dielectric permittivity increases 

proportionally with the temperature. In this case, positive values of TCC can be obtained and 

shows the characteristics of monoclinic SWO. These values can be explained by increasing of 

polarization with the change of symmetry of SWO with increasing of temperature, where the 

highest temperature promotes a higher polarization (KOOPS, 1951) or increasing of 

conductivity due to the mechanism of conduction activated by temperature. The tan δ profile 

(Figures 7 (b) and (d)) presents similar behavior when compared to ɛ' values. 

 

Table 3 – Temperature coefficient of capacitance (TCC) of the SWO at 100, 1k, 100k and 

1MHz. 

Frequency (Hz) TCC (ppm.°C-1) 

100 -6156.52 

1 k -4474.66 

100 k -1539.27 

1 M -471.73 
Source: Author. 
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Some process activated by temperature are analyzed by shift of maximum 

frequency in the M'' (f), ε'' (f), Z''(f) diagrams or by conductivity with temperature variation. 

Figures 8 (a), (b) and (c) show measurements of alternating current electric conductivity real 

part (σ'ac), M'' and Z'' as a function of the temperature (after phase transition, 608-718K). The 

Activation energy (Ea) for this thermo-activated process was calculated by shifting frequency 

of maximum frequency and the values for this thermo-active process were about 1.3 eV. 

Some double perovskites present smaller values than SWO, as ( La2Co1+x(MgyTi1−y)1−xO6 (Ea 

= 0.77-0.81eV) (SHAFEIE et al., 2015), BaPrCoTaO6 (Ea = 0.35-0.38eV) (BHARTI et al., 

2014b), BaLaMnSbO6 (Ea = 0.49-0.51eV) (BHARTI et al., 2014), Sr2CeTaO6 (Ea = 0.78eV) 

(BHARTI; CHANDA; SINHA, 2013), BaPrCoNbO6 (Ea = 0.4eV) (BHARTI et al., 2014a) 

and Sr2MgMoO6−δ (Ea = 0.52 and 1.43 eV) (MARRERO-LÓPEZ et al., 2009). Therefore, the 

thermo-active process requires more energy for SWO. The analysis of the Ea by three 

different methods showed values very close to each other and they are indicative of the same 

phenomenon.  
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Figure 8 - Ea obtained by temperature shift: (a) σ'ac, (b) M'' and (c) Z''. 

 

Source: Author. 

 

The global dielectric and electric properties in the ceramic may be sum of 

contributions as electric and/or dielectric response provide by grain, grain boundary or 

electrode. The analysis of Nyquist diagram enables the visualization of this contribution. This 
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model can be seen by fitting with equivalent circuit method or by models (Cole-Cole, Cole-

Davidson etc). The impedance measurements showed the presence of semicircle, where these 

results were fitted by equivalent circuit model. Although of this results show only one 

semicircle, it was necessary to use two associated RC for best fitting. Figure 9 (a) 

demonstrates the experimental and obtained Nyquist diagram following this methodology. 

The fittings presents good correlation with experimental data. Figure 9 (b) shows the 

equivalent circuit for SWO, where it can be seen two resistor–capacitor (RC) circuit. They are 

associated with the grain (Cg and Rg) and grain boundary (Cgb and Rgb) of the ceramics. In 

these associations were utilized Constant Phase Element (CPE) instead of Capacitance and it 

is well justified by increasing of conductivity of ceramic with temperature and the impedance 

values decreasing with temperature. 

Table 4 summarizes the fitting value of parameters used in equivalent circuit. The 

R, P and N parameters were obtained by fitting and presents different values, dependent on 

the temperature. For example, the resistances R1 and R2 decrease when the temperature 

increase due to the increased conductivity. However, the N parameter decreased with 

temperature, since the material becomes more conductive and the capacitive characteristic 

ceases. The parameter are marked by subscript numbers 1 and 2. They are assigned to grain 

and grain boundary parameters, respectively. 

 



 

34 

 

Figure 9 - (a) Nyquist diagram at 608-718 K and fits obtained and (b) equivalent circuit based 

in the experimental data. 

 

Source: Author. 
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Table 4 – Fitting of equivalent circuit parameters for SWO. 

T(K) 
Grain Grain Boundary 

R1 (Ω) P1 N1 R2 (Ω) P2 N2 

608 2.71x106 9.32 x10-8 0.692 2.50 x107 8.26 x10-11 0.883 

618 2.26 x106 7.61 x10-8 0.563 1.59 x107 8.39 x10-11 0.888 

628 1.30 x106 9.56 x10-8 0.645 1.05 x107 8.13 x10-11 0.896 

638 1.17 x106 2.64 x10-7 0.453 6.97 x106 8.41 x10-11 0.897 

648 5.57 x105 1.80 x10-7 0.620 4.73 x106 1.00 x10-10 0.884 

658 3.49 x105 3.30 x10-7 0.579 3.08 x106 1.07 x10-10 0.882 

668 2.07 x105 5.02 x10-7 0.602 2.07 x106 1.17 x10-10 0.877 

678 1.42 x105 6.60 x10-7 0.569 1.45 x106 1.20 x10-10 0.878 

688 9.96 x104 1.12 x10-6 0.514 1.07 x106 1.32 x10-10 0.875 

698 6.83 x104 1.45 x10-6 0.534 8.10 x105 1.53 x10-10 0.867 

708 4.83 x104 2.68 x10-6 0.524 6.54 x105 1.33 x10-10 0.877 

718 3.85 x104 3.35 x10-6 0.498 5.62 x105 1.00 x10-10 0.895 
Source: Author. 

 

In microwaves range (7.84 GHz), the SWO shows high ε' = 13.57 and tan δ = 

0.0281. This dielectric characterization was performed by Hakki-Coleman method, where was 

analyzed the TE011 mode of the cylindrical resonator. The dielectric properties demonstrated 

good agreement with results obtained in IS. 

The Temperature coefficient of resonant frequency (τf) for SWO, i.e., the 

dielectric properties variation with increasing temperature was measured by the SFS method 

(SILVA et al., 2012). The τf was measured by monitoring of displacement mode HE11δ 

frequency with increasing of temperature (Figure 10 (a)) and the linear correlation of 

temperature and HE11δ frequency was observed (Figure 10 (b)). It is possible to observe that 

with the increase of temperature the mode fHE11δ shifts to smaller frequency. The linear fit 

with the experimental points were used to calculate τf  (-207.60 ppm.K-1). SWO shows an 

improbable τf values when compared to the results from other materials, where in the 

literature other double perovskites presented values below 25 ppm.K-1 (BIAN et al., 2008, 

2015; WU; BIAN, 2012; VASALA; KARPPINEN, 2014; GANDHI; KESHRI, 2015; BIAN; 

WU, 2016). 
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Figure 10 - (a) Displacement of mode fHE11δ with variation of temperature and (b) τf of SWO. 

 

Source: Author. 



 

37 

 

For the microwave applications, SWO dielectric resonator was analyzed in the 

antenna setup (Figure 4). From this experiment was possible to obtain the main parameter for 

evaluating the antenna device: return loss (S11), bandwidth and by numerical simulation in 

HFSS software. The far field parameters were also obtained as radiation patterns, gain and 

efficiency of antenna. For the first analysis, the return loss (Figure 11 (a)) presented by SWO–

based DRA shows fHE11δ in 4.12 GHz and S11 (-43.96 dB) below -10dB, and presents a good 

coupling and operating as an antenna (Error = 0.75%), as shown in Table 5. Figure 11 (a) also 

shows a good agreement between experimental and simulated return loss obtained by 

numerical simulation and collected data. This condition is necessary for acquisition of 

accurate far field’s parameters. 

 

Table 5 – Antenna parameters of the SWO dielectric resonator. 

 SWO–based DRA  

 Experimental Simulated Error (%) 

fHE11δ   4.1256 4.1260 0.010 

S11 (dB) -43.97 -43.64 0.753 

BW (%) 7.268 7.053 2.958 

Efficiency (%)  57.90  

Peak resonant resistance (Ω) 108.125 107.155 0.896 

Resistance (Ω) 49.702 50.280 1.163 

Directivity (dBi)  3.41  

Gain (dBi)  1.98  
Source: Author. 

 

For validation of the numerical simulation, it is necessary a good agreement of 

return loss and impedances or Smith chart with experimental data. Figure 11 (b) shows 

experimental and simulated Smith chart. Both presents inductive characteristics and the 

simulated results presents minor deviations from experimental data. Table 5 summarizes the 

results obtained by simulations and experimental data, where the DRA presents a bandwidth 

of 7 % or 287 MHz. These results are consistent for DRA characteristics. The gain (1.98 dBi) 

and efficiency (57.90 %) obtained in simulation shows small values compared with another 

DRAs in the literature (ALMEIDA et al., 2008; PEREIRA et al., 2010; ROCHA et al., 2012; 

SILVA et al., 2014; OLIVEIRA et al., 2015). However, these parameters can be improved by 

a better coupling between DRA and SMA probe in the antenna device. 
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Figure 11 - (a) Experimental and simulated S11 and (b) Smith Chart of the SWO-–based DRA; 

 

Source: Author. 

 

The radiation profile of DRA is showed in the Figure 12. One can observed the 

cylindrical dielectric resonator involved by a simulated radiation patterns. The inset of the 
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Figure 12 shows that the radiation pattern profile is consistent with a cylindrical DRA, with 

maximum radiation for ϴ = 0° when analyzed by φ = 90° and φ = 0°. 

 

Figure 12 - Radiation profile for DRA. Diagram inset shows radiations in function of ϴ and φ. 

 

Source: Author. 

 

These results shows an antenna device with a good gain and an appreciable 

efficiency operating at 4.12 GHz. In this sense, to create a device available for Wi-Fi devices 

(5.15-5.875 GHz)(BT. ISMAIL et al., 2012) using SWO-based DRA, for example, requires a 

miniaturization process of this antenna, once the fHE11δ is a function of dimensions and 

dielectric properties (see equation 3). The better coupling of this novel resonator with the 

coaxial feed presents gain values closer of commercial antennas (2-3dBi for residential users). 

In addition, due to isolating characteristics (higher Ea and impedance (Z > 1 GΩ), higher 

stable dielectric (200 < TCC -5600 ppm °C-1) and low dielectric permittivity, the SWO 

ceramic also can be applied in devices than needs of dielectric Class 1 (HIPPEL, 1954; 

MOULSON, A J; HERBERT, 2003). 

 

2.4 Conclusion 

 

The SWO phase was obtained by solid state route and the temperature of 

synthesis was below that of other works (KING et al., 2010)(DRACHE et al., 1981) due to 
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the previous grinding treatment (activating powder). Dielectric studies showed that SWO 

presents a transition temperature in 445 K in agreement with previous studies. SWO presented 

a thermo-activated process with Ea value around 1.35 eV, while showed negative values of 

TCC. The Nyquist diagrams were well fitted by two associations of R-CPE and the SWO-

based DRA presented applicable as microwave antenna. τf value for SWO resonator was -

207.60 ppm.K-1 and it is a novel option to be used in association with another phase with 

positive τf values for composite materials to achieve zero τf values. The results are important 

for development of devices that operate in microwaves range, although dielectric properties 

are frequency-dependent. For example, devices for telecommunications operates in 

microwaves range as wireless antenna, Bluetooth and mobile system. The SWO phase can be 

also used as dielectric substrates to fabricate microstrip patch antennas. The dielectric ceramic 

enables miniaturization of this antennas possibility miniaturization of this device and weight 

reduction. 
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3 PROPERTIES OF THE Sr3MoO6 ELECTROCERAMIC FOR RF/MICROWAVE 

DEVICES 

 

3.1 Introduction 

 

Ceramic materials based on double perovskite-type structure have been studied 

due to their magnetocaloric (CHAKRABORTY et al., 2017; HUSSAIN et al., 2017), 

magnetic (KOBAYASHI et al., 1998; KAYSER et al., 2017; AHMED et al., 2017; 

TIITTANEN; KARPPINEN, 2018; HOSSAIN et al., 2018), photoluminescent (LI, L. et al., 

2017; WANG et al., 2017; LI et al., 2018; ZHANG et al., 2018), photovoltaic (SLAVNEY et 

al., 2016; ZHOU et al., 2018), and multiferroic (NECHACHE et al., 2011; SHARMA et al., 

2013; WU et al., 2018) properties. Double perovskites have an A2B'B''O6 type structure in 

which the twelve-coordinated A sites are generally occupied by divalent cations, most 

commonly an alkaline earth element. However, the octahedrally-coordinated B' and B'' sites 

can be occupied by various ion combinations, due to the different oxidation states, thus 

maintaining electroneutrality in the oxide (VASALA; KARPPINEN, 2014). Some of the 

many diverse applications of these ceramics include photocatalysts (ZHU et al., 2017), 

thermoelectric devices (SAXENA et al., 2017), and electrodes for fuel cells (WANG et al., 

2016). 

Many double perovskite electroceramics have been studied with IS (PANDA et 

al., 2015; MAHATO; SINHA, 2016; HALDER et al., 2017; DEHURY et al., 2018) to analyze 

their electrical response to different frequencies. Dielectric studies of electroceramics in 

microwave and RF have been of great interest due to the innumerous applications in 

telecommunications and electronic devices.  

However, most electroceramics synthesize at a high temperature in a densification 

process, generating an energy-consuming pathway. Therefore, a variety of materials have 

been developed based on the well-known LTCC technology, which has found application in 

the fabrication of integrated microwave devices such as resistors, inductors, and capacitors 

(ZHOU et al., 2014; ZHU et al., 2014). Sintering aids, such as MoO3 and TeO2, are used to 

lower the sintering temperature of microwave electroceramics. Considering the cost and 

toxicity, MoO3 has more advantage to be used in an LTCC (ZHOU et al., 2014; LIAO et al., 

2014).  
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There have been many reports about LTCC based molybdates (ZHOU et al., 2011; 

TANG et al., 2013; JOSEPH et al., 2016). For example, the standard LTCC process for 

(Ag0.5Bi0.5)MoO4 (ZHOU et al., 2011) and (Ag0.5Bi0.5)WO4 (ZHOU et al., 2014) phases were 

studied, which showed different dielectric properties and sintering temperatures (ZHOU et al., 

2014). It is reported that Mo (sheelite structure) (ZHOU, DI et al., 2011) and W (wolfranite 

structure) (ZHOU et al., 2014) show εʹ of ~30.4 and ~35.9, τf of +57 ppm.°C-1 and -69 

ppm.°C-1, and sintering temperature of 690 °C and 580 °C, respectively. It is noted that the 

change of W for Mo provided different structures and opposite τf values. In our previous work 

(PAIVA et al., 2016), we investigated SWO double perovskite as a potential DRA. The 

similarly between Mo6+ and W6+ ionic ratio and oxidation state allows the formulation of new 

LTCCs based structures mixing Mo6+ and W6+ ions (ZHOU et al., 2014). However, to our 

knowledge, the influence of Mo6+ on dielectric properties, sintering temperature and DRA 

application have never been reported for SMO electroceramics. Actually, few studies examine 

the properties of SMO double perovskite, such as the red phosphors Sr3MoO6:Eu3+ applied in 

the white light emitting diode (JING et al., 2015). 

Compared to other antenna devices, DRAs have lower weight, cost and size, 

higher radiation efficiency, and easier manufacturing, including with different geometries 

(cylindrical, rectangular, half-hemispherical etc.) and feedings (slots, probes, waveguides 

etc.). A DRA converts a wave propagation on a transmission line to a plane wave propagation 

in free-space (transmission or reception) (BONDARENKO; RAGOISHA, 2005). The 

development in DRA technology has been influenced by growing use of the microwave range 

in the telecommunication field (PARIDA et al., 2012). Dielectric resonators are also used in 

microwave circuits (oscillators and filters) and satellite communication. 

In this chapter, the synthesis of the SMO electroceramic by solid-state reaction is 

reported. The crystalline phase and microstructure were studied by PXRD, SEM and EDS. 

For dielectric characterization at RF, IS was performed as a function of temperature. 

Impedance and radiation properties of the SMO dielectric resonator were studied as a DRA 

(SMO-based DRA) through experimental measurements and numerical simulation. The 

present study allows the possibility of application of the SMO electroceramic in microwave 

and RF devices. 
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3.2 Experimental methods 

 

SMO electroceramic was synthesized by a solid-state reaction between SrCO3 

(97%, Vetec) and MoO3 (99.9%, Vetec). These starting materials were mixed using a mortar 

and pestle in stoichiometric amounts, and then the powder was milled for 2h at 370 rpm in a 

Fritsch Pulverissette 6 planetary mill. The obtained products from the milling process were 

calcined in air for 6 h, isothermally between 973 K and 1523 K, in order to determine the best 

calcination temperature for the synthesis. The chemical reaction occurring during calcination 

can be summarized as: 

 

3SrCO3(s) + MoO3(s)   Sr3MoO6(s) + 3CO2(g)                                                                   (4) 

 

For dielectric measurements, the SMO powder was uniaxially pressed into a steel 

die to form pellets and cylinders of the electroceramic. The ceramics were sintered in two 

steps: 773 K for 2h and then 1523 K for 6h, in air. After this process, both sides of the sintered 

disk were polished, and a silver paste was applied to ensure electrical contact. The dimensions 

of the samples for dielectric measurements were: 15.94 mm diameter, 9.61 mm thickness, for 

microwave range (dielectric resonator); and 15.76 mm diameter, 1.79 mm thickness, for the 

RF ranges. 

PXRD profiles were obtained by using a PANalytical diffractometer (Xpert Pro 

MPD) operating at 40 kV and 45 mA in the geometry Bragg-Brentano, with a Cu tube (Kα1 = 

1.540562 Å, Kα2 = 1.54439 Å). The diffraction patterns were collected at room temperature 

(~300 K) from crushed SMO samples. They were obtained from 15° to 65° (2θ) with a step 

size of 0.013°, with an analysis time at each step of 70 s, using graphite monochromator for 

diffracted beam. 

Micrograph images were obtained by SEM FEG Quanta 450 with EDS, in order 

to observe the microstructure of the sintered electroceramics. The sample was metalized with 

gold by the Metalizator Quorum QT150ES. 10 Pa of pressure was applied in the SEM 

chamber, with an incident electron beam of 20 kV. 

For dielectric measurements at the RF range, the sample was evaluated using a 

Solartron 1260 computer-controlled impedance analyzer as a function of frequency (1 Hz to 1 

MHz) at different temperatures (298 K–708 K). On the other hand, the dielectric 

measurements for the microwave range were evaluated by the impedance analyzer of Agilent 
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Model PNA N5230A with the Hakki-Coleman method (HAKKI; COLEMAN, 1960). Agilent 

PNA N5230A was also used to measure the S11 and impedance of the SMO-based DRA at 

room temperature.  

Further, the setup of antenna measurements consisted of the electroceramic 

cylinder under a ground plane (copper plate) and the SMO-based DRA was fed by an SMA 

probe. The investigation of SMO-based DRA was performed by numerical simulation, using 

the HFSS of Ansoft, in order to validate the experimental results. 

 

3.3 Results and discussion 

 

To ensure complete calcination and thus the crystalline phase, the PXRD patterns 

of the samples were compared to that of the SMO crystalline phase (JCPDS nº 027-1441) 

(JING et al., 2015). SMO double perovskite has a cubic structure (α = β = γ = 90°) and 

belongs to the space group Fm-3m (225), with lattice constant (a = b = c) equal to 16.39 Å 

(see Figure 13) (MCCARTHY; GOODEN, 1973; JING et al., 2015). The PXRD patterns for 

the samples obtained by a solid-state reaction at a low temperature (973 K, 1073 K and 1223 

K) presented peaks of the starting materials and other phases (see Figure 14), which 

corresponds to a lack of calcination from the low synthesizing temperature. Figure 15 (a) 

shows the PXRD patterns of SMO calcinated at 1323 K, 1423 K and 1523 K; at 1323 K, there 

are weak peaks from the SrMoO4 secondary phase (2θ = 27.53°, 38.24° and 43.57°), thus, this 

temperature is not high enough to obtain the single SMO phase. Samples synthesized at 1423 

K and 1523 K have diffraction planes which show a good match to the SMO database phase 

(JING et al., 2015), demonstrating good calcination. Therefore, as the sample obtained at 

1423 K requires less energy to form the pure phase, this was chosen for further experiments. 

This temperature is lower than for the solid-state reaction in which SMO usually is formed 

(1533 K) (JING et al., 2015), due to the high-energy involved in the ball milling process; the 

temperature of the calcination reaction decreases as a function of mechanical activation 

(GOMEZ-YAÑEZ et al., 2000; OZER; KILIC, 2017). 
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Figure 13 – Crystal structure of Sr3MoO6. 

 

Source: (JING et al., 2015). 

 

The superficial morphology and the elemental composition of the SMO 

electroceramic (calcined at 1423 K) were assessed using SEM and EDS (Figures. 15 (b) and 

(c), respectively). Figure 15 (b) shows a Secondary electron (SE) image at an amplification of 

10,000x, in which homogeneous grains with a globular shape can be clearly observed. The 

inset in Figure 15 (c) shows the elemental X-ray map of the same region. Additionally, X-ray 

energies of the selected elements (Sr, Mo and O) show the expected composition of the 

sample; there are no impurities. 
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Figure 14 (a) Comparison of the diffraction pattern database (PDF#00-027-1441) with the 

experimental diffractograms obtained from different calcination temperatures (973K, 1073K, 

1223K); (▲) and (▲) represents SrMoO4 and SrCO3 impurities, respectively. 

 

Source: Author. 
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Figure 15 - (a) Comparison of the diffraction pattern database (JCPDS nº 027-1441) with the 

experimental diffractograms obtained from different calcination temperatures (1323 K ((▲) 

represents SrMoO4 impurities), 1423 K and 1523 K), (b) SEM micrograph of SMO 

synthesized at 1423 K an amplification of 10,000x, and (c) EDS spectrum and elemental X-

ray map (inset) of SMO obtained at 1423 K; (*) represents (Au) gold from the metalization. 

 

Source: Author. 

 

Dielectric characterization in the RF range is the best way to explore the 

possibility of application in electronic devices, such as capacitors and filters (MOULSON, 

ANTHONY J; HERBERT, 2003). For this purpose, IS was used to investigate two important 

characteristics: the relaxation process and the thermal activation process. Figures 16 (a) and 

(b) show the ε' and tan δ as a function of temperature (298–708 K) in the range of 100 Hz to 1 

MHz. For a better understanding of the parameters, Figures 17–20 shows ε' and tan δ values 

up to 5 MHz. Both ε' and tan δ values decrease as a function of frequency, due to dielectric 

relaxation and the electrode effect, but they also tend to increase when the temperature of the 

system rises. ε' values for SMO are smaller than those previously found for SWO (PAIVA et 

al., 2016). This occurs due to replacement of W6+ with Mo6+, which promotes a minor 

polarization, likely due to the change of symmetry of the double perovskite unit cell: from 

monoclinic (SWO) to cubic (SMO) symmetry. 
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Figure 16 - (a) ε' and (b) tan δ in the RF range (100 Hz–1 MHz), as a function of temperature 

(298 to 518 K (inset: 528–708 K)). 

 

Source: Author.  
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Figure 17 - ε' in the RF range (100Hz – 5MHz) as a function of the temperature (298 – 518K). 

 

Source: Author. 

 

Figure 18 - ε' in the RF range (100Hz – 5MHz) as a function of the temperature (528 – 708K). 

 

Source: Author. 
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Figure 19 – tan δ in the RF range (100Hz – 5MHz) as a function of the temperature (298 – 

518K). 

 

Source: Author. 

 

Figure 20 – tan δ in the RF range (100Hz – 5MHz) as a function of the temperature (528 – 

708K). 

 

Source: Author.  
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As shown in Figures. 21 (a) and (b), the Z'', and the M'' spectra show a relaxation 

process occasioned by hopping of charge carriers (HALDER et al., 2017). The peak of the 

spectrum shifts to a higher frequency when the temperature increases, suggesting a thermo-

activated process occurring in the SMO electroceramic. In order to complement the study, the 

alternating current conductivity σ'ac was assessed as a function of the temperature (Figure 21 

(c)). σ'ac values increase as a function of temperature due to the thermo-activated conduction 

in the sample. This is usually evaluated by Arrhenius’ equation (ZHANG; MAK, 2012): 

 

0

aE
kTA A e



                                                                                                                              (5) 

 

Where A can be the σ'ac, or the frequency of the peak (𝑓𝑚𝑎𝑥) as found in the Z'' or 

M'' spectra. A0 is the pre-exponential factor, k is Boltzmann’s constant (in electron-volts, eV), 

T is absolute temperature and Ea is activation energy. Figure 21 (d) illustrates the strong linear 

correlation between ln 𝑓𝑚𝑎𝑥  and 1/T. From these plots, the Ea for SMO was calculated in three 

different ways: M'' (1.10 eV), Z'' (1.27 eV) and σ'ac (1.18 eV). These values are lower than for 

SWO electroceramics (~1.37 eV) (PAIVA et al., 2016), i.e., the conduction process occurs 

easier in SMO than in SWO. This temperature dependency is observed in other electric 

parameters, such as the imaginary parts of the ε'' and the C'' Figures 22 and 23; both rise with 

temperature as the conduction process is thermally activated.  
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Figure 21 - (a) Z'', (b) M'', and (c) σ'ac, as a function of the temperature from 528 K to 708 K 

between 100 Hz and 1 MHz. (d) shows a graphical determination of Ea (Arrhenius plot). 

 

 

Source: Author. 
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Figure 22 - ε'' in the RF range (100Hz – 5MHz) as a function of the temperature (528 – 

708K). 

 

Source: Author. 

 

Figure 23 - C' in the RF range (100Hz – 5MHz) as a function of the temperature (528 – 

708K). 

 

Source: Author. 

 

The proposed methodology by using IS allows identification of each of the 

electrical contributions (grain, grain boundary and electrode) of the material by equivalent 

circuits (ZHANG; MAK, 2012). Therefore, it can be correlated to the microstructure, defects 
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and composition of the sample. From the Nyquist plots (Z' x Z'') in Figure 24 (a), each distinct 

electrical contribution for SMO can be identified. A single semicircular arc can be observed at 

each temperature from 528 K to 708 K. There is a direct relation between temperature and the 

Z* magnitude; the increase in temperature makes the semicircular arc’s radii decrease, due to 

an increase in the conductivity (Figure 21 (c)). Through eisanalyser software 

(BONDARENKO; RAGOISHA, 2005)(PAIVA et al., 2016), an equivalent circuit was 

proposed (Figure 24 (b)) for the fitting of the impedance data. The electric profile, obtained 

through Nyquist plots, was adjusted by the equivalent circuit with three parallel associations 

of constant phase elements (R-CPE), relative to the three traditional electrical contributions in 

electroceramics (grain, grain-boundary and electrode-interface). Thus, Z(ω) can be expressed 

by the sum of impedances of electric response to grain, grain boundary and electrode: 

 

( ) ( ) ( ) ( )g gb eZ Z Z Z                                                                                           (6) 

 

Where each impedance (Zn(ω)) is described by Equation 7, which is the electrical 

contribution of a capacitor (CPE), in parallel with a resistor (Rn): 

 

2 2 2 2
( )

1 1

n n n
n

n n

R R
Z i

 


   
 

 
                                                                                          (7) 

 

Where the time constant is defined by τn= Rn.CPEn, sub index 𝑛 in equations 

corresponds to Rg, CPEg (grain), Rgb, CPEgb (grain-boundary) and Re, CPEe (electrode), 

representing the circuit elements. It is clear that increasing temperature causes decreasing 

resistance (Rg, Rgb and Re) due to the thermo-activated conduction process, as shown in Table 

6 and Table 7. 
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Table 6 – Part 1 of the values obtained from fitting of the equivalent circuit for SMO 

electroceramic, where R = resistance, P = equivalent of capacitance and n = deviation of ideal 

capacitance. 

 Grain Grain boundary 

T (K) R1 (Ω) P1 N1 R2 (Ω) P2 N2 

528 1.59 x 106 1.98 x 10-10 0.868 3.00 x 106 7.94 x 10-10 0.785 

538 1.48 x 106 2.24 x 10-10 0.845 1.70 x 106 1.73 x 10-9 0.752 

548 1.10 x 106 2.38 x 10-10 0.843 1.19 x 106 2.18 x 10-9 0.741 

558 7.12 x 105 2.35 x 10-10 0.854 8.63 x 105 2.19 x 10-9 0.738 

568 5.15 x 105 2.46 x 10-10 0.849 5.67 x 105 2.64 x 10-9 0.738 

578 3.59 x 105 2.58 x 10-10 0.848 3.78 x 105 3.45 x 10-9 0.726 

588 2.58 x 105 2.83 x 10-10 0.842 2.46 x 105 4.63 x 10-9 0.715 

598 2.24 x 105 4.16 x 10-10 0.807 1.29 x 105 1.25 x 10-8 0.679 

608 1.17 x 105 2.68 x 10-10 0.853 1.14 x 105 5.38 x 10-9 0.715 

618 7.25 x 104 2.29 x 10-10 0.871 8.42 x 104 4.46 x 10-9 0.723 

628 4.27 x 104 1.76 x 10-10 0.897 6.17 x 104 3.36 x 10-9 0.738 

638 3.43 x 104 2.06 x 10-10 0.884 3.99 x 104 5.36 x 10-9 0.722 

648 2.16 x 104 1.63 x 10-10 0.908 3.02 x 104 3.90 x 10-9 0.739 

658 1.64 x 104 1.83 x 10-10 0.900 2.09 x 104 4.71 x 10-9 0.736 

668 9.28 x 103 1.26 x 10-10 0.937 1.72 x 104 2.75 x 10-9 0.761 

678 7.18 x 103 1.45 x 10-10 0.928 1.18 x 104 3.67 x 10-9 0.754 

688 5.53 x 103 1.82 x 10-10 0.917 7.48 x 103 5.58 x 10-9 0.743 

698 4.39 x 103 1.87 x 10-10 0.918 4.76 x 103 9.75 x 10-9 0.726 

708 4.06 x 103 2.31 x 10-10 0.902 2.89 x 103 2.56 x 10-8 0.691 
Source: Author. 
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Table 7 – Part 2 of the values obtained from fitting of the equivalent circuit for SMO 

electroceramic, where R = resistance, P = equivalent of capacitance and n = deviation of ideal 

capacitance. 

 Electrode 

T (K) R3 (Ω) P3 N3 

528 1.57 x 106 5.59 x 10-8 0.582 

538 8.40 x 105 1.70 x 10-7 0.536 

548 5.99 x 105 2.55 x 10-7 0.530 

558 4.61 x 105 3.48 x 10-7 0.484 

568 3.24 x 105 4.63 x 10-7 0.492 

578 2.16 x 105 8.69 x 10-7 0.463 

588 1.49 x 105 1.39 x 10-6 0.450 

598 9.09 x 104 1.92 x 10-6 0.513 

608 7.55 x 104 3.06 x 10-6 0.416 

618 5.51 x 104 4.41 x 10-6 0.387 

628 3.81 x 104 6.44 x 10-6 0.368 

638 2.78 x 104 1.03 x 10-5 0.362 

648 2.03 x 104 1.39 x 10-5 0.339 

658 1.57 x 104 2.14 x 10-5 0.330 

668 1.20 x 104 2.53 x 10-5 0.313 

678 8.76 x 103 3.51 x 10-5 0.309 

688 6.74 x 103 4.94 x 10-5 0.290 

698 5.46 x 103 1.01 x 10-4 0.266 

708 5.10 x 103 1.99 x 10-4 0.235 
Source: Author. 

 

Therefore, the three contributions are convoluted in the same arc. However, the 

increase in temperature makes the electric response of the electrode-interface start to 

distinguish between other processes (grain and grain boundary), with one arc present in lower 

frequencies. Moreover, the parameter fitted for this event demonstrates a conduction process; 

see lower values of n (deviation of ideal capacitance) for CPE in Table 6 and Table 7. It is 

also possible to see that the Rg and Rgb decrease with the temperature. However, the 

conduction of the grain boundary (CPEgb) is more pronounced than that of the grain (CPEg), 

due to the values of n being smaller than for the grain. For the grain, the fitting demonstrates 

no conduction, since n values remain almost constant throughout the temperature range. The 

deviation of n values of unity or to use of CPE instead to capacitance is due the 

inhomogeneity as roughness. 

The TCC was also calculated for frequencies 100 Hz (23.47 ppm.°C-1), 1 kHz 

(19.97 ppm.°C-1), 100 kHz (8.59 ppm.°C-1) and 1 MHz (6.35 ppm.°C-1). According to the 

proposal suggested by the International Electrotechnical Commission (IEC) and the 

Electronic Industries Alliance (EIA) (IEC/EN 60384-1, IEC/EN 60384-8/9/21/22, and EIA 
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RS-198), SMO can be classified as a capacitor class 3 (IEC) for 100 Hz and 1 kHz or class 4 

(EIA) for 100 kHz and 1 MHz. Herein, the SMO is adequate for application in barrier layer 

capacitors at frequencies of 100 Hz and 1 kHz, where the TCC presents high values. The 

SMO is also suited to use in resonant circuits, at frequencies of 100 kHz and 1 MHz. 

The dielectric properties at microwave frequencies were measured using the 

Hakki-Coleman dielectric resonant method (Table 8). From the TE011 mode, the obtained 

frequency was 5.685 GHz (ε' = 17.21 and tan δ = 0.0145). The SMO shows equivalent 

dielectric properties when compared to other electroceramics, such as Mg5Ta4O15 

(JAWAHAR et al., 2003), LaVO4 (LI, W. et al., 2017) and BiCu2PO6 (HAO et al., 2017), but 

it has higher tan δ values. More recently, the relationship between the dielectric properties of 

an electroceramic and its application in antenna devices has been investigated (AUZEL, 2004; 

RODRIGUES et al., 2013; SILVA et al., 2014; CAMPOS et al., 2015; PAIVA et al., 2016). 

Therefore, there are important factors available to evaluate this material in dielectric 

resonators. One of them is the S11, which shows the relationship between the reflected and 

irradiated energy from the resonator (SILVA, DA et al., 2017).  
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Figure 24 - (a) Complex impedance plots of SMO at different temperatures (528–708 K) with 

respectively fitted spectrum and (b) equivalent circuit employed in the simulation of the 

complex impedance plots. 

 

Source: Author. 
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Table 8 - Measurements in microwave range by Hakki-Coleman method (Q x f is quality 

factor). 

Sr3MoO6 

Diameter (mm) 15.942 

Length (mm) 9.614 

f (GHz) 5.685 

ε' 17.210 

tanδ 1.45 x 10-2 

Q x f 395.37 

Source: Author. 

 

Figures 25 (a)–(c) illustrates a schematic of the setup used in the antenna 

measurement, with the radiation pattern simulated for a SMO-based DRA. The setup consists 

of a coaxial probe inserted into the ground plane (copper plate). This coaxial probe feeds the 

DRA and is positioned laterally on the antenna. In this experimental setup, the main or 

dominant mode is HE11δ; the frequency of the operation antenna (fo), is given by Equation 3 

(PETOSA, 2007). 

Due to the imperfection of electroceramics, air gaps were introduced to the model, 

separating the SMO-based DRA from the coaxial probe and the ground plane, to allow better 

adjustment. For this purpose, fo (3.653 GHz) was calculated by Equation 3 and using the data 

obtained by Hakki-Coleman method (Table 8). The use of air gaps are due to the frequency 

shift obtained by Equation. 3 (3.653 GHz (no air gap)) and experimental data (3.719 GHz). 

Therefore, the lateral air gap is used to match experimental data with numerical results. This 

model compares numerical simulations to experimental data (JUNKER et al., 1994, 1995). 

Figure 26 (a) shows the experimental and simulated data of S11 from the SMO-

based DRA. It can be seen that the DRA is operating with fo at 3.72 GHz and its experimental 

S11 value is -28.75 dB (Table 9). The experimental and simulated data show good agreement, 

which denotes a successful simulation. As seen in Table 9, the correlation between the 

experimental and simulated data is clearly shown for the S11 values. For commercial antenna, 

the S11 values must be ≤ -10 dB (BALANIS, 2007); the SMO-based DRA shows -28.756 dB. 
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Table 9 - Experimental and simulated data from DRA simulation for SMO. 

 SMO-based DRA 

 Experimental Simulated Error (%) 

fo (GHz) 3.71965 3.72057 0.03 

S11 (dB) -28.756 -28.769 0.05 

Bandwidth (%) 5.44 5.77 6.16 

Efficiency (%)  85.37  

Peak resonant impedance (Ω) 81.44 70.85 13.00 

Impedance (Ω) 50.84 51.43 1.16 

Directivity (dBi)  5.70  

Gain (dBi)  5.00  
Source: Author. 

 

Figure 25 - (a) Schematic of the setup used for SMO-based DRA with the simulated radiation 

diagram, (b) top and side (c) view of prototype of the proposed SMO-based DRA. 

 

Source: Author. 

 

The inspection of the simulated and experimental impedances (Figure 26 (b)) was 

performed to reinforce the good agreement between the SMO-based DRA; the simulated 
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impedance of the S11 follows the experimental values. Figure 27 shows this same information 

in the Smith chart, which is another way to evaluate this impedance matching. The impedance 

spectra (experimental and simulated) in the frequency range 3.2–4.4 GHz show a good 

agreement with each other. The deviations observed are due to the impossibility to replicate, 

in a numerical model, all of the details of the ceramic cylinder and ground plane (roughness, 

pores etc.), but good approximation in the results suggests good reliability of the simulated 

results. 

The main deviation is in the operating frequency of the antenna (3.72 GHz), 

which has 50 Ω of feed impedance. The experimental (50.84 Ω) and simulated (51.43 Ω) 

values for this system demonstrate acceptable impedance matching between the feeder and 

the DRA (Table 9). The error is small (1.16 %) and can be neglected. This impedance 

matching is due to the modeled separation of the feeder and the DRA, as for better matching, 

micrometric shifts between the feeder and the DRA are necessary, to account for the 

imperfections in the sample. 

Figures. 26 (c) and (d) show the simulated polar and Cartesian diagram of 

radiation, respectively. These results describe how the DRA is radiating into free-space below 

θ and ϕ angles, as shown in Figure 26 (c). It can be seen that the simulated radiation pattern 

(E-plane (ϕ = 0º) and H-plane (ϕ = 90º)) presents a radiate profile consistent with a typical 

cylinder DRA, i.e., this antenna presents a maximum radiation at the top of the cylinder, as a 

preferred direction (LUK; LEUNG, 2003; PETOSA, 2007). 
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Figure 26 - (a) Experimental and simulated plots of the S11, (b) experimental and simulated 

impedance input Z' and Z'', (c) simulated radiation pattern of Eθ (ϕ = 0°, 90°), d) gain of Eθ (ϕ 

= 0°, 90°) for SMO-based DRA. 

 

Source: Author. 
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Figure 27 - Experimental and simulated Smith chart of the SMO-based DRA. 

 

 

Source: Author. 

 

In dielectric resonators, the Bandwidth (BW) of the analyzed mode is a function 

of the dielectric properties (PETOSA, 2007). In this sense, for higher ε' values, there is a 

narrower BW. For SMO-based DRA, the BW measured at -10 dB (5.44 %), was consistent 

with values seen in other DRAs (KAJFEZ; GUILLON, 1998; PETOSA, 2007). From the 

numerical simulation, the values of directivity (5.70 dBi, Figure 28 (a)), gain (5.00 dBi. Fig. 

28 (b)) and efficiency (85.37 %, Fig. 28 (c)) for the SMO-based DRA (Table 9) are higher 

than SWO-based DRAs (PAIVA et al., 2016) and other systems (AUZEL, 2004; 

RODRIGUES et al., 2013; SILVA et al., 2014; CAMPOS et al., 2015; PAIVA et al., 2016). 

Compared to alumina (Al2O3), which is mostly used to design DRAs, SMO-based DRA 

shows an attractive advantages, such as smaller dimensions, besides presenting a narrower 

BW. 

Figure 29 (a-b) shows the numerical simulations used to compare both DRAs. For 

equal fo values, considering SMO-based DRA ceramic, Al2O3 ceramic geometry needs to be 
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adjusted for higher dimensions (diameter= 19.6 mm and thickness = 12.25 mm) than SMO 

(Table 8). Moreover, due to Al2O3-based DRA presents lower ε' (9.80) and tanδ (2.0x10-4) 

values (SEBASTIAN; JANTUNEN; UBIC et al., 2017), the gain (5.95 dBi) and efficiency 

(99.71 %) are higher than SMO-based DRA (Figure 28). 

From the obtained results, it is possible to demonstrate that SMO-based DRA is 

operating as an antenna, with good results in the far fields parameter for the dimensions and 

dielectric properties used in this DRA. From the operation frequency and gain, and the 

efficiency achieved by this antenna, there are some interesting suggested applications in 

different devices operating in the S-band (from 2 to 4 GHz) such as weather radars, surface 

ship radars, and some communications satellites (BALANIS, 2012).  
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Figure 28 - (a) Directivity, (b) gain and (c) efficiency from numerical simulation as a function 

of the frequency for θ = 0°. 

 

Source: Author. 
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Figure 29 - (a) S11 and SMO-based DRA; Al2O3-based DRA in the same geometry (●) and fo 

(■) observed for SMO-based DRA (▲), and (b) radiation pattern for Al2O3-based DRA. 

 

(a) 

 

(b) 

Source: Author.  
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3.4 Conclusions 

 

In this work, the crystalline phase of the SMO double perovskite electroceramic 

was successfully synthesized and characterized. The IS studies show three relaxation 

processes suitable for electroceramics: grain, grain boundary and electrode interface. A 

thermo-activated process with activation energy equal to 1.1 eV was observed. SMO 

electroceramics can be used for barrier layer capacitors for small frequencies (100 Hz and 1 

kHz) and resonant circuits for higher frequencies (100 kHz and 1 MHz). In addition, for the 

microwave range, SMO-based DRA is also available to be used as an antenna device 

operating in the S-band range. 
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4 INVESTIGATION OF THE PHOTOLUMINESCENCE PROPERTIES OF Tb3+ AND 

Eu3+ IONS CO-DOPED Sr3MoO6 DOUBLE PEROVSKITE PHOSPHORS  

 

4.1. Introduction 

 

The electronic devices with photoluminescent main feature such as ultraviolet 

(UV) light emitting diodes (LED) and solid state lightening materials have been studied in the 

last years. Actually, there are many investigations of news inorganic luminescence materials 

for practical applications in the devices for artificial light production (PAVANI et al., 2014). 

Lanthanide ions are excellent candidates for spectral conversion and have used to explore the 

luminescence properties, including the upconversion and downconversion process. Also, in 

the diverse investigations to obtain emission in the visible region have been used one type of 

lanthanide ion or a pair of lanthanide ions. (AARTS et al., 2011). Among the rare earth 

(RE3+) ions, Eu3+ and Tb3+ have been studied due to their excellent electronic properties under 

excitation in the UV range. In white light emitting diodes (wLED) devices, the red emission 

can be obtained by using the Eu3+ doped materials. On the other hand, the Tb3+ ion have used 

in wLED application due to be a good luminescent activator and also to its attractive 

reproducible optical properties in the green spectral region (PAVANI et al., 2014). 

As shown, the materials obtained with vanadates, molybdates and tungstates 

groups doped with RE3+ ions have significantly grown in the field of wLEDs due to shows 

shorter wavelength excitation properties and excellent chemical stabilities. Recently, much 

attention has been paid to the investigation on molybdate-based inorganic host materials by 

exhibits of a great chemical stability and potential applications in photoluminescence area. 

There have been many reports about the photoluminescent properties of the double perovskite 

based-molybdate phosphors, such as Sr2MgMoxW1-xO6:Eu3+ (LI et al., 2013), Sr2ZnW1-

xMoxO6:Eu3+,Li+.(LI et al., 2016) and Sr3MoO6:Eu3+ (JING et al., 2015). But to our 

knowledge, the photoluminescence properties of Eu3+ and Tb3+ co-doped SMO phosphor have 

not been reported. Based on the above considerations, this research focused on the synthesis 

and studies photoluminescence properties of Eu3+ separately, and Eu3+ and Tb3+ ions co-

doped SMO double perovskite phosphors. For structural characterization was used PXRD and 

SEM. The photoluminescence properties of the phosphors and the influence of concentration 

of the rare earth was examined under UV excitation. 
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4.2. Experimental Methods 

 

Sr3MoO6 (SMO) co-doped with Eu3+ and Tb3+ ions ceramics were synthesized by 

a solid-state reaction. The starting materials powders SrCO3 (Aldrich, 98%), MoO3 (MaTeck, 

99%), Eu2O3 (MaTeck, 3N), Tb4O7 (Aldrich, 99.9%) and Li2CO3 (Panreac, 99%) were 

weighted stoichiometric amounts for each sample, and then the respective powders for each 

sample was milled for 2h at 370 rpm in a Fritsch Pulverissette 6 planetary mill. After milling 

process, each powder milled were calcined in corundum crucible in air for 6 h at 1100 °C. 

And then the calcined products were ground and mixed with mortar and pestle. Finally, the 

powders calcined from each sample were uniaxially pressed into a steel die to form pellets. 

The pellets ceramics were sintered at 1100°C for 6 h in air. The nomenclatures of all prepared 

samples are exhibited in Table 10. 

XRD measurements were carried out using a PANalytical diffractometer 

(Empyrean Model) operating at 40 kV and 45 mA in the geometry of Bragg-Brentano, with a 

Cu tube (Kα1 = 1.54059 Å, Kα2 = 1.54443 Å). The diffraction patterns were obtained at room 

temperature (~25 °C). Each measurement was collected from 10° to 70° (2θ) at a step size of 

0.026° with an analysis time at each step of 56.7 s. Micrograph images and microstructure 

analyze from sintered samples were obtained at room temperature by SEM using TESCAN 

VEGA3 microscope with EDS linked. For this, each sample was previously metalized with 

thin layer of graphite by the Metalizator Quorum QT150ES. Photoluminescence 

measurements (PL) was obtained on a spectrofluorimeter (JOBIN YVON Fluorolog-3) 

equipped with a 450 W Xenon lamp as the excitation source. 

 

Table 10 - Nomenclature of Eu3+–Tb3+ co-doped Sr3MoO6 phosphors. 

Concentration of dopants (molar fraction) 
Nomenclature 

Tb4O7 Eu2O3 Li2CO3 

0.00 0.00 0.00 SMO 

0.00 0.02 0.02 SMO:Eu2Li2 

0.01 0.02 0.03 SMO:Eu2Tb1Li3 

0.02 0.02 0.04 SMO:Eu2Tb2Li4 

0.04 0.02 0.06 SMO:Eu2Tb4Li6 
Source: Author. 
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4.3. Results and discussion 

 

In order to analyze the synthesis and the crystalline structure of double perovskite 

SMO undoped and doped was obtained the diffractograms using PXRD. Figure 30 shows the 

PXRD patterns of all synthesized phosphors obtained by a solid-state reaction at 1100°C, 

were correlated with Sr3MoO6 JCPDS nº 027-1441 (JING et al., 2015)(PAIVA et al., 2018) 

pattern that belongs to the cubic crystal system with space group Fm-3m. As can be seen all 

phosphors showed similar crystallographic plans when compared with the pattern and absence 

of other peaks from secondary phase, those confirm that addition of rare earth in 

crystallographic structure was obtained correctly. Therefore, the structure of SMO does not 

change with the addition (Eu3+, Tb3+, and Li+) in these composition studied. 

 

Figure 30 - XRD calcined obtained from SMO doped and co-doped. 

 

Source: Author. 
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The photomicrograph of all sintered phosphors (at 1100°C) at an amplification of 

1.000x was assessed using SEM (Figure 31 (a-e)). As can be seen that all micrographs exhibit 

homogeneous grains with a globular shape. In addition, it reported a decrease of empty spaces 

with the increase of Tb3+ ions in the phosphors; it can suggest an increase of densification of 

material. These results show a different morphology when compared with to literature (JING 

et al., 2015) due to the different parameters of the synthesis process (calcination and sintering 

temperature and/or measurements) in this work. 

 

Figure 31 - Scanning electron photomicrograph of SMO (a), SMO:Eu2Li2 (b), 

SMO:Eu2Tb1Li3 (c) SMO:Eu2Tb2Li4 (d) SMO:Eu2Tb4Li6 at an amplification of 1.000x. 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 

 

Source: Author.  
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The photoluminescence spectrum of SMO:Eu2Li2 phosphor upon excitation at (a) 

325 nm and (b) 532 nm are shown in Figure 32. In figure 32 (a) the spectrum is composed of 

main bands assigned to 5D1  7F2 (555 nm), 5D0  7F0 (580nm), 5D0  7F1 (593 nm), 5D0  

7F2 (613nm) and 5D0  7F3 (656 nm) transitions of Eu3+ ion. Hence, the results obtained by 

PL indicated that the host (Sr3MoO6) was effectively doped with Eu3+ and the calcination 

process was satisfactory.  

 

Figure 32 - Photoluminescence spectra of SMO:Eu2Li2 phosphor (a) 325 nm and (b) 532 nm 

excitations, respectively. 

 

Source: Author. 

 

Figure 33 (a) shows the photoluminescent spectra of SMO:Eu2Li2, 

SMO:Eu2Tb1Li3, SMO:Eu2Tb2Li4 and SMO:Eu2Tb4Li6 phosphors excited at 325 nm. The 
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spectra consist of emission peaks from Eu3+ ions with prominent emission at 617 nm, but it 

does not possible to identify any emission from Tb3+ in different compositions. Moreover, the 

sample with the lowest concentration of Tb3+ (SMO:Eu2Tb1Li3) shows the spectra with 

higher intensity, it can suggest the possible influence of Tb3+ ions in the energy transfer 

mechanism of Eu3+ ions in the phosphor. Through of energy level diagram for Eu3+ ions (see 

Figure 34) is possible to understand the optical transition of Eu3+ ions and the influence of 

Tb3+ ions in electronic transitions process. It is noticed that all the Eu3+ peaks in Figure 33 

resembles those observed in Figure 32 (a). It is well known that the luminescence properties 

strongly depend on the concentration of dopant ions, composition and excitation wavelength 

(PAVANI et al., 2014)(SHINDE et al., 2013). Therefore, SMO phosphors with different 

concentration of co-dopants (Tb3+ and Eu3+) were investigated to confirm the dopant 

concentration effect on the luminescence properties. 

 

Figure 33 - Photoluminescence spectrum of Eu3+ and Tb3+ with different compositions co-

doped SMO phosphors excited at 325 nm.  

 

Source: Author. 
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Figure 34 - Energy level diagram and the related optical transition for Tb3+ and Eu3+ ions. 

 

Source: (BACK et al., 2016) 

 

The emission spectra of SMO:Eu2Tb1Li3 phosphors under 325 nm excitation at 

temperature range between 15 and 300 K are shown in Figure 35. It is reported the 

temperature dependence on the emission intensity of the phosphor, and the emission intensity 

of the phosphor increases gradually with the decreased temperature. This process take place 

due to the thermal excitation to the Charge transfer state (CTS) band (LI et al., 2016). 
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Figure 35 - Temperature-dependent (from 15 to 300K) emission spectra of SMO:Eu2Tb1Li3 

excited at 367 nm. 

 

Source: Author. 

 

4.4. Conclusion 

 

The Eu3+-Tb3+ co-doped Sr3MoO6 phosphors were successfully synthesized by 

solid-state reaction method. The emission spectra of Eu3+-Tb3+ singly and co-doped double 

perovskite phosphors have been measured. The photoluminescent properties of Sr3MoO6:Eu3+ 

indicate that these phosphors exhibit red emission of Eu3+ (617 nm) under the excitation of 

near-UV or 532 nm. The lowest concentration of Tb3+ improved the luminescence intensity. 

The investigation indicates that the phosphors may be a promising candidate phosphor for 

near-UV and blue LED chips. 
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5. CONCLUSION AND PERSPECTIVES 

 

5.1 General conclusion 

 

The SWO and SMO double perovskite were obtained by solid state route and it 

was confirmed through PXRD. SWO and SMO presented a thermo-activated process with Ea 

value around 1.35 and 1.1 eV, respectively. The Nyquist diagrams were well fitted by two 

associations of R-CPE for SWO, while the SMO was necessary three associations of R-CPE 

and SMO. SWO-based DRA presented applicable as microwave antenna. τf value for SWO 

resonator was -207.60 ppm.K-1 and it is a novel option to be used in association with another 

phase with positive τf values for composite materials to achieve zero τf values. The results are 

important for development of devices that operate in microwaves range, for example, devices 

for telecommunications operates in microwaves range as wireless antenna, Bluetooth and 

mobile system. By reflection coefficient measurements and from numerical simulation was 

identified a possible application of the SMO ceramic as an antenna device operating in the S-

Band range (from 2 to 4 GHz), it comprises a frequency band adequated for weather radar, 

surface ship radar, and some communications satellites. The SWO and SMO phases can be 

also used as dielectric substrates to fabricate microstrip patch antennas. The dielectric ceramic 

enables miniaturization of this antennas possibility miniaturization of this device and weight 

reduction. These two investigations were reported in the international scientific journal in the 

literature (see attachment) The photoluminescent properties of Sr3MoO6:Eu3+ indicate that 

these phosphors exhibit red emission of Eu3+ (617 nm) under the excitation of near-UV or 532 

nm. The lowest concentration of Tb3+ improved the luminescence intensity. The investigation 

indicates that the phosphors may be a promising candidate phosphor for near-UV and blue 

LED chips. 
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5.2 Perspectives 

 

This work can be an extensive study optical, electrical for these double perovskite, for 

must completed study of this electroceramic the follows stage still achieved: 

 

 Synthesis and luminescent studies: up-conversion emission of Eu3+/Tb3+ co-doped 

Sr3WO6 double perovskite phosphors; 

 Synthesis and luminescent studies: up-conversion emission of Er3+/Yb3+ co-doped and 

Sr3MoO6 and Sr3WO6 double perovskite phosphors; 
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