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ABSTRACT

In this paper, a new receiver that jointly and blindly estimates
the channel parameters and the transmitted symbols in a multiuser
cooperative diversity scheme is proposed. The receiver is based on
the canonical polyadic (CP) decomposition of a tensor composed
of received signals with dimensions associated with space (receive
antennas), slot (cooperative channel) and time (symbol period).
The receiver fits the tensor model using the Levenberg-Marquardt
(LM) algorithm, assuming that channel state information (CSI)
is not available at the relays neither at the base station. The
performance of the proposed receiver is evaluated by means of
computer simulations.

1. INTRODUCTION

Owing to the continuous necessity for higher throughput and
increased data rates in wireless communication systems, in recent
years there has been an upsurge of interest for cooperative diversity
[1–5]. This technique has emerged as a promising wireless access
solution that draws from the ideas of using the broadcast nature
of the wireless channel to make communicating nodes help each
other, of implementing the communication process in a distributed
fashion and of gaining the same advantages as those found in
multiple-input multiple-output (MIMO) systems. The basic idea is
that mobile users relay signals for each other to emulate an antenna
array and exploit the benefits of spatial diversity. The ultimate
goal is to extend coverage without using high power levels at the
transmitter, hence increasing connectivity and capacity. Several
cooperative strategies have been proposed in the literature, such
as the amplify-and-forward (AF), decode-and-forward (DF), and
coded cooperation protocols. Among these, AF is one attractive
cooperative protocol where the relay simply amplifies the signal
received from the source and transmits the amplified signal to
the destination, which has very low complexity and requires no
decoding at relay nodes. Hence, AF relays are often preferable
when complexity and/or latency issues are of importance. This paper
primarily focuses on AF relaying systems.

On the other hand, the use of tensor decompositions has
gained increased attention in several signal processing applications
for wireless communication systems, specifically in situations
where the received signals can be viewed as multidimensional
variables [6–8]. The practical motivation for a tensor modeling
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comes from the fact that one can simultaneously benefit from
multiple (more than two) forms of diversity to perform multiuser
signal separation/equalization and channel estimation under model
uniqueness conditions more relaxed than with conventional
matrix-based approaches.

In this paper, we propose a receiver that jointly and
blindly estimates the channel gains, the antenna array responses
and the transmitted symbols in a uplink multiuser cooperative
communication system employing an antenna array at the
destination (base station). We show that the received signals can
be expressed as a tensor model called canonical polyadic (CP)
decomposition [9, 10], also known by parallel factor (or canonical)
decomposition. The underlying tensor model has a powerful
uniqueness property that allows the development of a blind receiver
exploiting both spatial and cooperative diversities, with a great
flexibility on the choice of some system parameters.

As far as the authors are aware, up to now there are only two
works in the literature dealing with cooperative communications
using a tensor-based approach [11, 12]. However, in these works,
there are no cooperative replicas of the transmitted signals that are
combined at the receiver. In contrast, our work explicitly exploits
cooperative diversity by incorporating the cooperative channels as
an additional diversity dimension of the received data tensor.

The remainder of this paper is organized as follows. In
Section 2, the system model is presented. Section 3 formulates
the tensor modeling of the received signals and Section 4 presents
the receiver algorithm. The performance of the proposed technique
is evaluated by means of computer simulations in Section 5, and
Section 6 draws some conclusions.

2. SYSTEM MODEL

Let us consider that M co-channel users transmit towards a base
station employing an uniform linear array of K half-wavelength
spaced omnidirectional antennas. We consider a cooperative
scenario where each user communicates with the base station
through a direct link and with the help of R relays. Each user and
relay are equipped with a single antenna. We assume that fading is
frequency-flat and that users are synchronized at the symbol level.
The discrete-time baseband signal x(SD)

k,n received through the direct
link (source-destination) at the kth base station antenna and nth
symbol period can be written as:

x
(SD)
k,n =

M∑
m=1

h
(SD)
k,m sn,m + v

(SD)
k,n , (1)

where h
(SD)
k,m is the channel linking the mth user and kth receive

antenna, sn,m is the nth data symbol of the mth user and v
(SD)
k,n is the
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additive white Gaussian noise (AWGN) component at kth antenna
and nth symbol period. The data symbols sn,m, 1 ≤ m ≤ M , are
assumed to be independent and identically distributed (i.i.d.), with a
uniform distribution over a quadrature amplitude modulation (QAM)
or phase-shift keying (PSK) alphabet.

We consider that each user communicates with R other users
that work as amplify-and-forward relays multiplexed in time. This
means that each relay amplifies the signal received from a user
and forwards it to the base station (two-hop relaying) using a
different time-slot. Moreover, it is assumed that a user and its R
relays are located in a cluster. This assumption implies that the
signal received at a relay located within the cluster of the mth user
contains no significant contribution from the other users. Under
these assumptions, the received signal ur,m,n at the rth relay of the
mth user is then given by:

ur,m,n = h(SR)
r,m sn,m + v(SR)

r,m,n, (2)

where h
(SR)
r,m is the channel gain between the mth user and

its associated relay (source-relay link) and v
(SR)
r,m,n is the noise

component.
Denoting gr,m as the amplification factor of the rth relay of the

mth user, the signal x(RD)
k,r,n received at the kth base station antenna

during the rth time-slot (relay-destination link) can be expressed as:

x
(RD)
k,r,n =

M∑
m=1

h
(RD)
k,r,m gr,m ur,m,n + v

(RD)
k,r,n , (3)

where h
(RD)
k,r,m is the channel gain between kth receive antenna

and the rth relay associated with the mth user, and v
(RD)
k,r,n is the

corresponding noise component. Substituting (2) into (3), we get:

x
(RD)
k,r,n =

M∑
m=1

h
(RD)
k,r,m h(SR)

r,m gr,m sn,m + v
(SD)
k,r,n (4)

where

v
(SD)
k,r,n =

M∑
m=1

h
(RD)
k,r,m gr,m v(SR)

r,m,n + v
(RD)
k,r,n , (5)

denotes the overall additive noise contribution at the receiver,
including the amplified noise at the relay.

In the following, we further work on the expressions (1) and (4)
of the received signals x(SD)

k,n and x
(RD)
k,r,n , respectively, by including

into the signal model some specifics of the propagation scenario.
Let us assume that all the wireless links are subject to multipath
propagation and that all the clusters of scatterers are close to the
transmitters so that the scatters can be divided in M clusters, each
one being associated with a given user and its relay. Each cluster of
scatterers has a mean angle of arrival and the cluster angle spread is
assumed to be small compared to the spatial resolution of the antenna
array. This assumption is valid in practice when the user and its
relays are close to each other and no local scattering occurs around
the base station antenna array. This assumption is typical in suburban
environments [13], where the base transceiver station is on a tower
or on the roof of a building. With these assumptions, the multipath
propagation channels h(SD)

k,m can then be parameterized as [14]:

h
(SD)
k,m =

L
(SD)
m∑
l=1

ak(θm)β
(SD)
l,m ≈ ak(θm) γ(SD)

m , (6)

where θm is the mean angle of arrival of the mth cluster, ak(θm) =
exp(−ȷπ(k − 1) sin θm) is the response of the kth antenna to the
paths of the mth cluster, β(SD)

l,m is the fading envelope of the lth direct

path between the mth user and the base station, L(SD)
m being the

corresponding number of multipaths, and γ
(SD)
m =

∑L
(SD)
m

l=1 β
(SD)
l,m .

Similarly, the channel h(RD)
k,r,m can be expanded as:

h
(RD)
k,r,m =

L
(RD)
r,m∑
l=1

ak(θm)β
(RD)
l,r,m ≈ ak(θm) γ(RD)

r,m , (7)

where β
(RD)
l,m is the fading envelope of the lth path between the

rth relay of mth user and the base station, L
(RD)
r,m being the

corresponding number of multipaths, and γ
(RD)
r,m =

∑L
(RD)
r,m

l=1 β
(RD)
l,r,m .

Substituting (6) into (1), we get:

x
(SD)
k,n =

M∑
m=1

ak(θm) γ(SD)
m sn,m + v

(SD)
k,n . (8)

Likewise, substituting (7) into (4), respectively, yields:

x
(RD)
k,r,n =

M∑
m=1

ak(θm) γ(RD)
r,m h(SR)

r,m gr,m sn,m + v
(SD)
k,r,n

(9)

3. TENSOR MODELING

Using the system model described in the last section, the received
signal can be viewed as a three-way (tridimensional) array,
with dimensions associated with space (receive antennas), slot
(cooperative channel) and time (symbol period). In this section,
we resort to the CP decomposition to model the received data in
tensor form. As we will see later, the underlying tensor model has a
powerful uniqueness property that allows the development of a blind
receiver for joint channel estimation and symbol detection jointly
exploiting spatial and cooperative diversities.

Let X ∈ CK×(R+1)×N be the third-order data tensor collecting
the received signal at the base station organized in the following way:

[X ]k,1,n = x
(SD)
k,n , and [X ]k,r,n = x

(RD)
k,r−1,n, (10)

where k = 1, 2, . . . ,K, r = 2, 3, . . . , R + 1, n = 1, 2, . . . , N .
In order to simplify the presentation of the tensor model, we omit
the AWGN terms from the received signal equations throughout this
section. Assuming that the channel is constant during N symbol
periods, a typical element of X , denoted by xk,r,n = [X ]k,r,n, can
be decomposed as:

xk,n,r =
M∑

m=1

ak(θm)hr,m sn,m, (11)

where

hr,m =

{
γ
(SD)
m if r = 1

γ
(RD)
r−1,m h

(SR)
r−1,m gr−1,m, if r > 1

(12)

The data tensor X can also be expressed as:

X =
M∑

m=1

A·,m ◦ H·,m ◦ S·,m, (13)
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where ◦ denotes the outer product, A ∈ CK×M contains the array
response vectors, with [A]k,m = ak(θm), H ∈ C(R+1)×M contains
the channel vectors, with [H]r,m = hr,m, and S ∈ CN×M contains
the symbol vectors, with [S]n,m = sn,m. Equation (11) represent
the CP decomposition [9, 10] of the received data tensor X , with A,
H and S being the matrix factors of the decomposition. As shown
in (13), the CP decomposition expresses a rank-M data tensor as
a sum of rank-1 component tensors, each one being given by the
outer product of three vectors. The key property of model (11) is its
essential uniqueness. In contrast to matrix (bilinear) decompositions
the CP decomposition of higher-order tensors is unique of to trivial
(scaling and permutation) indeterminacies under some conditions
[15].

3.1. Matrix representations

We can also rewrite (11) in a matrix form. Define Xk . . ∈
C(R+1)×N the kth first-mode slice, X. r . ∈ CN×K the rth
second-mode slice and X. . n ∈ CK×(R+1) the mj-th third-mode
slice. We have:

Xk . . = H diagk[A] ST , (14)

X. r . = S diagn[H] AT , (15)

X. . n = A diagr[S] HT , (16)

where diagi[·] denotes the diagonal matrix formed with the ith
row of its matrix argument. The received data tensor X ∈
CK×(R+1)×N can be “unfolded” into the form of three matrices
X[1] ∈ CN(R+1)×K , X[2] ∈ CKN×(R+1) and X[3] ∈ C(R+1)K×N

by stacking columnwise the matrix slices as follows:

X[1] =

 X. 1 .

...
X. (R+1) .

 , X[2] =

 X. . 1

...
X. . N

 , (17)

X[3] =

 X1 . .

...
XK . .

 . (18)

These matrices admit, respectively, the following factorizations:

X[1] = (H ⋄ S)AT , (19)

X[2] = (S ⋄A)HT , (20)

X[3] = (A ⋄H)ST , (21)

where ⋄ denotes the Khatri-Rao (column-wise Kronecker) product.

3.2. Uniqueness and its implications

For M ≥ 2, the essential uniqueness of the CP decomposition of X
is assured when the Kruskal’s condition is satisfied [6, 15]:

kA + kH + kS ≤ 2M + 2, (22)

where kA denotes the k-rank of matrix A, which corresponds
to the greatest integer kA such that every set of kA columns of
A is linearly independent. The essential uniqueness of the CP
decomposition means that any alternative matrix set {A

′
,H

′
,S

′
}

satisfying (11) is related with the true matrix set by A
′
= AΠΛ1,

H
′

= HΠΛ2 and S
′

= SΠΛ3, where Π ∈ CM×M is
a column-permutation matrix and Λ1, Λ2 and Λ3 are diagonal
matrices such that Λ1Λ2Λ3 = IM .

Assuming that A, H and S are full k-rank, condition (22)
becomes:

min(K,M)+min(R+ 1,M)+min(N,M)≤2M + 2. (23)

If the elements of the channel matrix H are statistically
independent and drawn from an absolutely continuous distribution,
then H is full k-rank with probability one, that is, kH = min(R +
1,M) [7]. In our model, such an assumption is valid when the
user signals undergo independent fading channels. Moreover, in our
model A is a Vandermonde matrix, which is full k-rank if it has
distinct generators [8]. This assumption is true if the user signals
arrive at the base station array with distinct directions of arrival. Note
also that the symbol matrix S is full k-rank with high probability
provided that N is sufficiently large with respect to the modulation
cardinality.

Under these assumptions, the uniqueness condition (23) can be
used to easily determine, for fixed system design parameters, an
upper bound on the number of active users to be jointly handled
at the receiver. Similarly, condition (23) also help to choose
“minimum” values for the system parameters (i.e. number M
of receive antennas, number R of relays and data block length
N ) that cope with a target number of user channels (signals) to
be estimated (detected). The flexibility on the choice of K, N
and R provided by Kruskal’s condition (23) is one of the main
advantages of the proposed tensor modeling approach, since it leads
to different tradeoffs involving the system parameters. For instance,
it is reasonable to assume N ≥ M . Under this assumption, the
following can be deduced from (23):

• If K ≥ M , then a single cooperative relay is enough to
handle M users;

• If R ≥ M − 1, then two base station receive antennas are
enough to handle M users.

On the other hand, if we assume that K ≥ M and R ≥ M − 1, then
channel estimation and symbol detection can be accomplished with a
very short data block of at least N = 2 symbol periods. We can then
conclude that the proposed tensor modeling approach covers a range
of practical scenarios including: (a) the case where there is only one
relay per user; (b) the case where we have less receive antennas than
users, and (c) the case where very short data block are available for
channel estimation.

4. RECEIVER ALGORITHM

We present a receiver algorithm for jointly and blindly estimate the
channel parameters and the transmitted symbols in the considered
cooperative diversity scheme. Specifically, we assume that channel
state information is not available at the relays neither at the base
station. The proposed receiver consists in fitting a CP tensor
model to the received signal using the Levenberg-Marquardt (LM)
algorithm [16].

The cost function to be minimized is given by:

J(A,H,S) =
K∑

k=1

R+1∑
r=1

N∑
n=1

∣∣∣∣∣xk,r,n −
M∑

m=1

ak(θm)hr,m sn,m

∣∣∣∣∣
2

=
K∑

k=1

R+1∑
r=1

N∑
n=1

|rk,r,n(A,H,S)|2 , (24)

where rk,r,n(A,H,S) are the residuals. Define the global
parameter vector concatenating all the unknowns as:

p = [vec(AT ), vec(HT ), vec(ST )]T ∈ CF×1, (25)
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where F = M(K +R+N + 1). We can rewrite (24) as:

Jp =

Q∑
q=1

|rq(p)|2 = rH(p)r(p), (26)

where q = K(R+1)(n−1)+K(r−1)+k, Q = K(R+1)N , and
r(p) = [r1(p), . . . , rQ(p)]

T ∈ CQ×1 is the vector or residuals. An
approximation of the parameter vector p at the (i + 1)-th iteration
can be calculated from its approximation at the i-th iteration by p(i+
1) = p(i)+∆p, where the correction term ∆p is a first-order linear
approximation of the vector of residuals in the neighborhood of p(i)
by a Taylor expansion. By minimizing J(∆p), ∆p is found by:

∆p = −(JHJ+ λIF )
−1g, (27)

where J
.
= J(p(i)) ∈ CQ×F is the Jacobian of p(i), g ∈ CF×1 is

the gradient of J∆p, and λ is a regularization term (damping factor)1.
The update of the parameter vector is given by:

p(i+ 1) = p(i) + ∆p. (28)

Due to the partitioned structure of the parameter vector p defined
in (25), we can write the Jacobian and gradient as a concatenation
of three blocks J = [JA,JH,JS] and g = [gT

A,gT
H,gT

S ]
T , where

the individual blocks are found using the compact expressions given
in [16]. These expressions are not provided here due to lack of space.

5. SIMULATION RESULTS

In this section, some computer simulation results are provided
for evaluating the performance of the proposed receiver under the
following scenario. The wireless links are characterized by a
frequency-flat Rayleigh fading with a path loss exponent equal to
3. The ratio of the distance between a user and its relays and the
distance between the source and the destination being equal to 0.1.
The base station antenna array is composed of K half-wavelength
spaced antenna elements and BPSK modulation is assumed. The
results represent an average over at least 100 independent channel
and noise realizations. The noise variance is assumed to be the same
at the base station and at all the relays.

Figure 1 shows the bit-error-rate (BER) versus the
signal-to-noise-ratio (SNR) on the second hop (base station)
provided by the proposed LM-based receiver with M = 2 users,
N = 16 symbols, K = 2 and 3 receive antennas, and R = 1 and 2
relays per user. For comparison, it is also shown the BER provided
by the ALS algorithm, as well as by the zero forcing (ZF) receiver:

Ŝ =
[
(H ⋄ A)† X[3]

]T
, (29)

assuming an instantaneous channel state information (CSI), that
is, the matrices H and A are known perfectly. This figure
shows that an increase on the number of receive antenna or relays
decreases the BER. However, an increase of the number of relays
provides higher gains than than an increase of the number of receive
antenna, which means that the proposed receiver exploits both
spatial and cooperative diversities, with the cooperative diversity
providing further gains. Moreover, the LM algorithm provides
BERs significantly smaller than the ones of the ALS algorithm and
significantly higher than the ones of ZF-CSI method.

Fig. 2 shows the influence of the number K of receive antennas
on the BER. The results were obtained with the proposed LM-based

1In this work, the updating strategy of λ follows that of [16]

Fig. 1. BER versus SNR provided by the proposed LM-based
receiver, the ALS algorithm and the ZF-CSI method.

Fig. 2. BER versus SNR provided by the proposed LM-based
method, for several values of the number K of receive antennas.

receiver with M = 3 and 4 users, N = 16, R = 2, and several
values of K. It can be viewed that the BER is significantly decreased
when K is augmented. For instance, for M = 3 and BER = 10−2,
making K = 4 provides a SNR gain of approximately 18dB with
respect to the case K = 2. Moreover, it should be highlighted that,
for high SNRs, the proposed receiver provides BERs less than 10−2

for all the cases shown in Fig. 2.
The estimation of the array response matrix A is evaluated by

means of the mean square error (MSE) of the estimated channel
parameters, defined as:

MSE =
1

NRKM

NR∑
l=1

∥ A − Âl ∥2F , (30)

where NR is the number of Monte Carlo simulations, Âl represents
the matrix A estimated at the lth Monte Carlo simulation and ∥ · ∥2F
denotes the Frobenius norm. Fig. 3 shows the NMSE versus
SNR provided by the proposed LM-based receiver and by the ALS
algorithm with M = 3 users, N = 16 symbols, K = 3 receive
antennas and R = 2 relays per user. For comparison, it is also
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Fig. 3. MSE of A versus SNR provided by the proposed LM-based
method, the ALS algorithm and the LS-KRF method.

shown the MSE provided by a supervised technique, denoted by
least squares - Khatri-Rao factorization (LS-KRF) [11, 17], that
computes a LS estimation of the matrix (H ⋄ A) and, then, it uses
this estimate to compute Ĥ and Â by means of several singular value
decompositions (SVD). It should be mentioned that, in Fig.3, the
LS-KRF technique assumes that M pilot symbols per user are used.
From this figure, it can be concluded that the MSE provided by the
proposed receiver is significantly smaller than the one obtained with
the ALS algorithm and a bit smaller than the one obtained with
the LS-KRF technique. It should also be remarked that proposed
receiver is able to provide good channel estimates using the channel
outputs measured during only 16 symbol periods and using only one
known pilot symbol per user to remove the scaling ambiguity. The
results concerning the estimation of the channel matrix are omitted
due to lack of space.

6. CONCLUSION

In this work we have proposed a receiver that jointly and
blindly estimate the channel gains, antenna array responses and
transmitted symbols in a multiuser cooperative communication
system. The proposed receiver exploits both the spatial and
cooperative diversities to recover the transmitted symbols and
consists in fitting a tensor model to the received signal using the LM
algorithm. The underlying tensor model has a powerful uniqueness
property that allows a great the flexibility on the choice of some
system parameters, covering a range of practical scenarios including:
the case where there is only one relay per user, the case where
we have less receive antennas than users and the case where very
short data blocks are available for channel estimation. Perspectives
of this work include the extension of the proposed approach to
multiple-input multiple-output (MIMO) cooperative systems with
space-time coding.
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