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Abstract— Strong relationships between joint-
diagonalization and tensor decompositions have been
established recently. In this paper we propose a
finite impulse response (FIR) channel identification
method based on the Parafac decomposition of
a 3rd-order tensor composed of the 4-th order
output cumulants. By avoiding the prewhitening
operation required by joint-diagonalization based
methods, our method is shown to improve the
estimation performance provided by the classic joint-
diagonalization algorithm.

Index Terms— Channel identification, Higher-
order statistics, Joint-diagonalization, Tensor decom-
position, Parafac.

I. INTRODUCTION

In data communications systems, the knowledge
of the transmission channel plays a very important
role. Blind channel equalization and identifica-
tion concern the retrieval of unknown information
about the transmission channel and source signals
from the knowledge of the received signal only.
For several years, higher-order statistics (HOS)
have been an important interesting topic in diverse
fields including data communication, speech and
image processing and geophysical data process-
ing. The higher-order spectra have the ability
to preserve both magnitude and (nonminimum-
) phase information. Moreover, it is well-known
that for Gaussian signals, all cumulant spectra of
order greater than 2 vanish. As a result, higher-
order cumulants automatically eliminate additive
Gaussian noise that corrupts non-Gaussian signals.

All over the last three decades, several re-
sults have been reported proposing many rela-
tionships connecting cumulant slices of different
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orders and the parameters of FIR models [1].
A number of other methods were proposed to
improve identification performance making use of
a larger set of output cumulants and solving an
overdetermined system [2]. In this context, the
optimal combination of the statistical data arises
as a challenging problem. Existing approaches
to exploit the sample output cumulants include
the joint-diagonalization of cumulant matrices [3].
However, to apply such joint-decomposition tech-
niques, a prewhitening transformation over the
cumulant matrices is necessary [4]. This operation
is required in most of HOS-based blind channel
identification methods and it is often a source of
increased complexity and estimation errors [5].

Nevertheless, strong relationships between
joint-diagonalization and tensor decompositions
have been established recently [6]. In blind chan-
nel identification, factorization of multi-way arrays
allows us to avoid the prewhitening operation
over the cumulant matrices. Moreover, we fully
exploit the three-dimensional nature of the 4th-
order cumulant tensor, thus improving parametric
estimation quality. Recently, some blind identifica-
tion methods have been introduced based on the
multi-way decomposition of a tensor containing
output bispectra and making use of Parallel Factor
Analysis (Parafac) [7], [8], [9]. However, there
are some limitations in that frequency-domain ap-
proach: besides being computationally very com-
plex, they use 3rd-order statistics, which are not
appropriate to treat digital communication systems
where input signals are often symmetrically dis-
tributed random variables.

In this paper, we propose a time-domain tensor-
based approach making use of Parafac to de-
compose a three-dimensional tensor of 4th-order
cumulants aiming to recover the parameters of
an FIR channel. We consider the baseband rep-
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resentation of a digital single-input single-output
(SISO) communication channel where the output
signal y(n) after sampling at the symbol rate is
written as follows

y(n) = x(n) + υ(n),

x(n) =
L
∑

l=0

hls(n − l), h0 = 1.
(1)

The following assumptions hold1:

A1 : The non-measurable, complex-valued, dis-
crete input sequence s(n) is non-Gaussian,
stationary, independent and identically dis-
tributed (i.i.d. ) with symmetric distribution
of zero-mean and variance σ2

s = 1.
A2 : The additive Gaussian noise sequence υ(n)

has zero-mean and is independent from s(n).
Its autocorrelation function is unknown.

A3 : The channel frequency-response is H(ω) =
∑

l hle
−jωl with complex coefficients hl rep-

resenting the equivalent discrete impulse re-
sponse, including the pulse shaping filter, the
channel itself and the receiving filters.

A4 : The system is causal with memory L,
i.e. hl = 0 ∀ l /∈ [0, L]. In addition, hL 6= 0
and L 6= 0.

The paper is organized as follows: in section II,
we briefly introduce some fundamentals of Parafac
decomposition; in section III, we build a 3rd-order
tensor using the 4th-order output cumulants and
then we decompose it using Parafac; Identifiabil-
ity and uniqueness issues are briefly addressed
and a relationship relating the tensor decompo-
sition with the joint-diagonalization approach is
established. in section IV, we propose our novel
Parafac-based blind channel identification (PBCI)
algorithm. In section V, performance results are
illustrated through computer simulations and we
finally draw our conclusions in section VI.

II. PARAFAC REVISITED

Let us consider a 3rd-order tensor X of dimen-
sions I×J×K having the following F -component
decomposition:

xi,j,k =
F

∑

f=1

aif bjf ckf (2)

1 Imposing h0 = 1 in (1) is not a restrictive assumption
since it is equivalent to a simple unit-norm constraint.

where i ∈ [1, I ], j ∈ [1, J ] and k ∈ [1, K]. The
sum of F factors expressed in (2) is called the
Parafac decomposition of tensor X and it can be
represented as the outer product of three vectors,
i.e. three rank-one elements.

Three matrix representations of (2) can be ob-
tained by slicing tensor X along each of the three
possible directions. Taking the horizontal direc-
tion, the tensor slices define a set of I matrices
Xi.., i ∈ [1, I ], with dimensions J × K, which
are written as follows

Xi.. = BDi(A)CT, i ∈ [1, I ], (3)

where A ∈ CI×F , B ∈ CJ×F and C ∈ CK×F

are composed entrywise as [A]i,f = aif , [B]j,f =
bjf and [C]k,f = ckf , respectively, and Di(·) is
a diagonal matrix whose main diagonal contains
the elements in the ith row of the matrix argument.
Then, stacking the slices Xi.., i ∈ [1, I ], we get
an unfolded matrix representation of tensor X , as
follows

X[1] =
(

A �B

)

C
T ∈ C

IJ×K , (4)

where � stands for the Khatri-Rao product [10].
Similarly, slicing X along vertical direction, yields
J matrices X.j., j ∈ [1, J ], with dimensions K×I ,
which are written as

X.j. = CDj(B)AT, j ∈ [1, J ], (5)

and this gives rise to the following unfolded rep-
resentation

X[2] =
(

B �C

)

A
T ∈ C

KJ×I . (6)

Finally, by frontally slicing X we get K matrices
X..k, k ∈ [1, K], with dimensions I × J , which
are written as

X..k = ADk(C)BT, k ∈ [1, K], (7)

yielding an unfolded representation as follows

X[3] =
(

C �A

)

B
T ∈ C

KI×J . (8)

Any of the unfolded representations X[1], X[2] or
X[3] completely characterizes the Parafac decom-
position of tensor X .

The rank of a three-dimensional tensor is de-
fined as the minimum number F of (3-way) fac-
tors needed to decompose the tensor in the form
of (2). For F > 1 and under certain conditions,
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Fig. 1. Slicing tensor C(4,y) along the frontal direction (mode-3).

the Parafac decomposition is shown to be essen-
tially unique up to scaling factors. The uniqueness
condition of Parafac can be stated as follows

kA + kB + kC ≥ 2(F + 1), (9)

where kA, kB and kC are respectively the k-ranks
of the matrices A, B and C [11]. The k-rank of
a matrix is defined as follows: An n × m matrix
A is said to have k-rank equal to kA if every
set containing kA ≤ m columns of A is linearly
independent and, in addition, there is at least one
set composed of kA + 1 columns of A that is
linearly dependent. From this definition, note that
kA ≤ rank (A) ≤ min(n, m).

Satisfying (9) means that the Parafac decompo-
sition is unique up to scaling and column permu-
tation. This fact represents a great advantage of
Parafac over bilinear decompositions, where some
rotation is always possible without changing the
fit of the model.

III. A TENSOR OF 4TH-ORDER CUMULANTS

Let us denote the output 4th-
order cumulant as c4,y(τ1, τ2, τ3) ,

cum [y∗(n), y(n + τ1), y
∗(n + τ2), y(n + τ3)],

where ∗ stands for complex-conjugate. Using
the channel model (1), taking into account
assumption A1 and A2, and making use of the
multilinearity property of cumulants, we get [12]:

c4,y(τ1, τ2, τ3) = γ4,s

L
∑

l=0

h∗

l hl+τ1
h∗

l+τ2
hl+τ3

,

(10)
where γ4,s = C4,s(0, 0, 0) is the kurtosis of the in-
put signal s(n). Based on (10) and on assumption

A4, it is easy to verify that

c4,y(τ1, τ2, τ3) = 0, ∀ |τ1|, |τ2|, |τ3| > L. (11)

Hence, making the time-lags τ1, τ2 and τ3 vary
in the interval [−L, L] we can be sure to include
all the nonzero 4th-order cumulant information.
Such a choice allows us to construct a maximal
redundant information model, in which the 4th-
order cumulants are taken for time-lags τ1, τ2

and τ3 within the interval [−L, L], defining the
element in position (i, j, k) of the 3-way array
C(4,y), where i = τ1 + L + 1, j = τ2 + L + 1
and k = τ3 + L + 1 (fig. 1).

Therefore, C(4,y) is clearly 3rd-order tensor
represented as a cube of dimensions (2L + 1) ×
(2L + 1) × (2L + 1). Slicing this cube along
the frontal direction, as shown in fig. 1, yields
2L + 1 matrices C

(4,y)
..k ∈ C(2L+1)×(2L+1), k ∈

[1, 2L + 1]. These frontal slices can be easily
shown to be written as

C
(4,y)
..k = γ4,sHDk

(

Σ
)

H
H, (12)

for all k ∈ [1, 2L + 1], where Dk

(

Σ
)

∈
C(L+1)×(L+1), with

Σ = HDiag
(

h
H
)

(13)

where the operator Diag (·) builds a diagonal
matrix in which the main diagonal contains the
elements of the vector argument and we have
defined the channel coefficients matrix H ∈
C(2L+1)×(L+1) as follows

H , H
(

h
)

=
[

h.0 h.1 . . . h.L

]

(14)

with

h.p ,

[

hp−L . . . hp . . . hp+L

]T
, p ∈ [0, L],
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where H
(

·
)

is an operator that builds a spe-
cial Hankel matrix from the vector argument as
shown above and the channel coefficients vector
is h =

[

h0 . . . hL

]T
∈ C(L+1).

Equation (12) establishes a direct link between
the tensor decomposition presented here and the
joint-diagonalization approach [3]. Details of the
demonstration that yields (12) are omitted here
due to the lack of space. However, since H is not
unitary, diagonalization-based approaches need a
prewhitening step in order to make its columns
orthonormal. This additional non-optimal process-
ing is common in most HOS-based methods and is
often responsible for increased estimation errors.

Note moreover that the full-rank (Hankel) struc-
ture of the channel matrix H ensures that kH =
rank (H) = L+1. The rank of Σ, however, equals
the number of non-zero channel parameters in h.
Due to assumption A4, we have rank (Σ) ≥ 2.
Thus, according to (9), the identifiability condition
of our Parafac decomposition with F = L +
1 components is satisfied. Stacking up matrices
C

(4,y)
..k for k ∈ [1, 2L+ 1], it is not difficult to get

from (12) an unfolded representation of C(4,y) as
follows

C[3] = γ4,s

(

Σ �H

)

H
H. (15)

From analogy with (8), we can easily deduce that
A = H, B = H

∗ and C = Σ. Then, from (4) we
get

C[1] = γ4,s

(

H �H
∗

)

Σ
T

= γ4,s

(

H �H
∗

)

Diag (h∗)HT (16)

IV. PARAFAC-BASED BLIND CHANNEL

IDENTIFICATION

Based on the knowledge of C[1], we propose an
iterative Least Squares (LS) procedure to estimate
the channel coefficients vector h. Recall that if
X = ADiag (d)B, then the following property
of the Khatri-Rao product holds [10]

vec

(

X
)

=
(

B
T �A

)

d (17)

Therefore, it is straightforward to rewrite (16) as

vec

(

C[1]

)

= γ4,sH �
(

H �H
∗
)

h
∗ (18)

where vec

(

·
)

stands for the vectorizing operator.
At this point, it is crucial to take into account the

Hankel structure of H to initialize the algorithm.
This is the key to ensure the full-rank property
that makes our Parafac decomposition essentially
unique and free from permutation ambiguities.
Also, the constraint h0 = 1 is essential to avoid
any kind of scaling ambiguities. For that reason,
we initialize the algorithm with a Hankel ma-
trix Ĥ

(r), r = 0, in which the first column is
[0T

(L) ĥ
(0)T]T and the last row is [ĥ

(0)
L 0

T
(L)], where

ĥ
(0) = [1 v

T]T and v ∈ C(L) is a Gaussian
random vector.

Thus, after that initialization step, we compute
the vector ĥ

∗ by using the least squares (LS)
algorithm to minimize the cost function

J

(

ĥ
∗
)

,

∥

∥

∥
vec

(

C[1]

)

− Ĝ ĥ
∗

∥

∥

∥

2

F
(19)

where
Ĝ = γ4,sĤ �

(

Ĥ � Ĥ
∗
)

. (20)

The algorithm is iterated until convergence
of the parametric estimator, i.e. until
‖ĥ(r) − ĥ

(r−1)‖/‖ĥ(r)‖ ≤ ε, where r is the
iteration number and ε is an arbitrary small
positive constant. For each iteration r, we use the
new estimate ĥ

(r) to update Ĥ
(r). The algorithm

to estimate h is as follows:

1) For iteration r = 0, initialize ĥ
(0) as a

Gaussian random vector;
2) Build the channel matrix Ĥ

(0) as in (14);
3) For r ≥ 1, estimate ĥ

(r)∗ by minimizing the
cost function (19). This yields

ĥ
(r)∗ = Ĝ

#
r−1vec

(

C[1]

)

, (21)

where (·)# stands for the pseudoinverse.
4) Update Ĥ

(r) from ĥ
(r) using (14);

5) Reiterate until convergence of the paramet-
ric error, i.e. ‖ĥ(r) − ĥ

(r−1)‖/‖ĥ(r)‖ < ε.

This strategy ensures an improved solution at
each iteration [13]. Another advantage is that none
permutation or scaling ambiguities remain since
we explicitly exploit the Hankel structure of H as
well as the constraint h0 = 1.

V. SIMULATION RESULTS

In this section, we present some computer sim-
ulations illustrating the applicability of the pro-
posed Parafac-based Blind Channel Identification
(PBCI) method. We compare our results with
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Fig. 2. Identification performances of Parafac (PBCI), joint-diagonalization (FOSI) and TLS methods with BPSK modulation.

those obtained from a joint diagonalization based
approach, which will be referred to as the Fourth
Order System Identification (FOSI) algorithm [3].
As suggested by the authors, the results obtained
with the FOSI algorithm are the average of the
two solutions proposed in [3] because we do
not make any further assumptions allowing us to
choose between one of them. In addition, we also
compare our results with the total least squares
(TLS) solution proposed in [2].

Parametric channel estimation performance is
evaluated by means of the normalized mean
squared error (NMSE) of the estimator, which is
computed through the following formula:

NMSE =
1

M

M
∑

m=1

‖ĥ(m) − h‖2

‖h‖2
, (22)

where M is the number of Monte Carlo runs
and ĥ

(m) is the channel estimate obtained at
simulation m ∈ [1, M ]. To obtain the following
results we have used two particular nonminimum-
phase channels, the coefficients of which being re-
spectively given by h = [1, −1.4−1.21i, 0.49+
0.85i]T (L = 2) and h =

[

1, 0.7−1.44i, −0.35−

0.44i, −0.87 + 0.2i
]T

(L = 3). We estimate 4th-
order cumulants from N = 10000 output data
samples assuming perfect knowledge of the chan-
nel memory L. The following curves were aver-
aged from M = 50 Monte Carlo runs where input
and noise signal samples have been varied for each
SNR value.

Figure 2 illustrates the estimation performance

of PBCI against FOSI and TLS solutions for the
case of a BPSK modulated input signal. These
plots clearly show that our approach over-perform
both the joint-diagonalization (FOSI) algorithm
and the TLS solution. In fig. 3 we observe the
results concerning the case of a 8-PSK modu-
lated input signal. Here again, PBCI presents the
best results and, as expected, all techniques have
superior performance than in the previous case,
due to a simple information diversity principle.
Finally, observe that the robustness of the HOS-
based algorithms with respect to the additive noise
is confirmed by the flatness of the curves.

VI. CONCLUSIONS AND PERSPECTIVES

We have introduced a new blind FIR chan-
nel identification method based on the Parafac
decomposition of a 3rd-order tensor composed
from the output 4th-order cumulants. Our method
fully exploits the three-dimensional nature of the
cumulant tensor and has the advantage of avoid-
ing any kind of pre-processing. Computer sim-
ulations show that the Parafac-based approach
provides better estimation performance than the
classic joint-diagonalization algorithm. Conver-
gence issues should be further investigated soon.
Moreover, as tensor decomposition techniques are
suitable for treating multidimensional problems,
an extension to the multiple-input multiple-output
(MIMO) case is straightforward. Such an exten-
sion of PBCI is presently under work.
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Fig. 3. Identification performances of Parafac (PBCI), joint-diagonalization (FOSI) and TLS methods with 8-PSK modulation.

REFERENCES

[1] C. L. Nikias and J. M. Mendel, “Signal processing with
higher-order spectra,” IEEE Signal Processing Magazine,
pp. 10–37, jul 1993.

[2] P. Comon, “MA identification using fourth order cumu-
lants,” Signal Processing, vol. 26, no. 3, pp. 381–388,
mar 1992.

[3] A. Belouchrani and B. Derras, “An efficient fourth-order
system identification FOSI algorithm utilizing the joint
diagonalization procedure,” in Proc. of the 10-th IEEE
Workshop on Statistical Signal and Array Processing,
Pennsylvania, USA, aug 2000, pp. 621–625.

[4] J.-F. Cardoso and A. Souloumiac, “Blind beamforming
for non gaussian signals,” IEE Proceedings-F, vol. 140,
no. 6, pp. 362–370, dec 1993.

[5] E. Moreau and J.-C. Pesquet, “Generalized contrasts
for multichannel blind deconvolution of linear systems,”
IEEE Signal Processing Letters, vol. 4, no. 6, pp. 182–
183, jun 1997.

[6] J. Castaing and L. De Lathauwer, “Séparation aveugle de
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