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Federal do Ceará, como requisito parcial para
a obtenção do T́ıtulo de Doutor em F́ısica.
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Dr. José Soares de Andrade Jr. (Supervisor)
Universidade Federal do Ceará (UFC)
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Marciel, Thiago, Heitor, Wagner, Nicolò, Simone, Alessandro P, Alessandro R, Davide,
Marco, Maurizio, and many others.



ABSTRACT

In this thesis we show three projects in the field of the physics of complex systems. All of
them are based in the statistical analysis of real data, subfield nowadays commonly known
as Data Science. Indeed, the last years have been characterized by a rapid growth of the
amount of data. These data range from economy to biology, from finance to astrophysics,
and many others. Generally the extraction of the information from them is a complex
problem and it requires advanced statistical and mathematical frameworks. Here, we show
three projects which are based in the statistical analysis of real data. In the first, entitled
The light pollution as a surrogate for urban population of the US cities, we approached
the problem of the light pollution analyzing the scaling of the population of the US cities
with the night-time light. In the second project, entitled Dynamics in the Fitness-Income
plane: Brazilian States VS World Countries we provide a variant of the Fitness algorithm
(a novel method to compare the economic development of world countries) to measure
the development of the Brazilian states. In the third and last project, entitled Dynamics
of racial segregation and gentrification in New York City we focused in the analysis of
the racial residential segregation. In that project we introduce a new index of segregation
and we compare the racial residential segregation with several other factors such as the
per capita income, the properties values, and flux of people, finding connections with the
gentrification of some neighbors of New York City. We conclude the thesis providing the
main results of each project and emphasizing the importance of the interaction among
scientists of different areas in the study of socio-economic sciences.

Keywords:Complex Systems, Data mining, Night-time light, Light Pollution, Allometry,
Fitness, Complexity, Economic Complexity, Racial Residential Segregation, Gentrifica-
tion, Inequalities.
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1 INTRODUCTION

The amount of open data is growing exponentially in the last twenty years.

Indeed, according with Barnard Marr of Forbes [1] during the last year alone, it was

generated the 90 percent of the data in the world. These data regards different areas,

from finance and economics, to astrophysics, social networks, biology and many others

fields. The analysis and the extraction of information from them could be a very complex

problem and it begun source of interest for scientists in different areas. In this context,

the physicist of complex systems has found a fertile soil.

In this thesis we show three different research projects, two of them are already

published in international journals, while one is currently submitted. The field of study

differs from project to project, indeed they vary from the economy to the study of the racial

residential segregation and to the allometric analysis of the night-time light. However,

these different fields of study are brought together by the methodologies used to analyze

the large amount of real data of which they are supplied. In fact, the aim of the data

scientist is to analyze the real data using mathematical frameworks such as, for example,

stochastic processes, statistics, or, latest methods such as machine learning, deep learning,

and neural networks.

The aim of this thesis is to show three research projects in the area of the

complex systems. The thesis is structured as follows: in the Chapter two entitled Basic

notions of Data Science, first we introduce the process of data mining. This part is the

ground for all the projects, and show the types of data used in this thesis. Second, we

provide a brief review about the Science of Cities, emphasizing the meaning of allometric

scaling and the City Clustering Algorithm (an algorithm to define the limit of the urban

centers). Third we introduce a new branch of the econophysics called Economic Comple-

xity. The aim of this chapter is to provide a first approach to the statistical analysis of

real data focused in the projects discussed in the next chapters. However, each successive

chapter is provided of a more detailed introduction for the specific field covered.

In the Chapter three, entitled The light pollution as a surrogate for urban po-

pulation of the US cities, we show that the definition of the city boundaries can have a

dramatic influence on the scaling behavior of the night-time light (NTL) as a function

of population (POP) in the US. Precisely, our results show that the arbitrary geopoli-

tical definition based on the Metropolitan/Consolidated Metropolitan Statistical Areas

(MSA/CMSA) leads to a sublinear power-law growth of NTL with POP. On the other

hand, when cities are defined according to a more natural agglomeration criteria, na-
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mely, the City Clustering Algorithm (CCA), an isometric relation emerges between NTL

and population. This discrepancy is compatible with results from previous works showing

that the scaling behaviors of various urban indicators with population can be substantially

different for distinct definitions of city boundaries. Moreover, considering the CCA defi-

nition as more adequate than the MSA/CMSA one because the former does not violate

the expected extensivity between land population and area of their generated clusters,

we conclude that, without loss of generality, the CCA measures of light pollution and

population could be interchangeably utilized in future studies.

In the Chapter four called Dynamics in the Fitness-Income plane: Brazilian

states vs World countries, we introduce a novel algorithm, called Exogenous Fitness, to

calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the

last decade, several indices were introduced to measure the competitiveness of countries by

looking at the complexity of their export basket. Tacchella et al (2012) developed a non-

monetary metric called Fitness. In this project, after an overview about Brazil as a whole

and the comparison with the other BRIC countries, we introduce a new methodology based

on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross

Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in

the Fitness-Income plane. Two regimes are distinguishable: one with high predictability

and the other with low predictability, showing a deep analogy with the heterogeneous

dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian

states according to the Exogenous Fitness with the ranking obtained through two other

techniques, namely Endogenous Fitness and Economic Complexity Index.

In the Chapter five entitled Dynamics of racial segregation and gentrification

in New York City, we developed a new method in order to measure and to define the to-

pography of racial residential segregation. Racial residential segregation is interconnected

with several other phenomena such as income inequalities, property values inequalities,

and racial disparities in health and in education. Furthermore, recent literature suggests

the phenomena of gentrification as a cause of perpetuation or increase of racial residential

segregation in some American cities. In this project, we analyze the dynamics of racial

residential segregation for white, black, Asian, and Hispanic citizens in New York City in

the years of 1990, 2000, and 2010. It was possible to observe that segregation between

white and Hispanic citizens, and discrimination between white and Asian ones has grown,

while segregation between white and black is quite stable. Furthermore, we analyzed

the per capita income and the Gini coefficient in each segregated zone, showing that the

highest inequalities occur in the zones where there is overlap of high-density zones of pair

of races. Focusing on census tracts that have changed density of population during these
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twenty years, and, particularly, by analyzing white and black people’s segregation, our

analysis reveals that a positive flux of white (black) people is associated to a substantial

increase (decrease) of the property values, as compared with the city mean. Furthermore,

by clustering the region of high density of black citizens, we measured the variation of area

and displacement of the four biggest clusters in the period from 1990 to 2010. The large

displacements (≈ 1.6 km) observed for two of these clusters, namely, one in the neigh-

borhood of Harlem and the other inside the borough of Brooklyn, led to the emergence

of typically gentrified regions.

Finally, in the Chapter six, we provide the General conclusions. Furthermore,

in the appendix (Appendix A) we attached the copies of the international publications of

the first two projects.
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2 BASIC NOTIONS OF DATA SCIENCE

To make clear the results showed in this thesis some theoretical frameworks

are necessary and they are partly shown in this Chapter and partly shown in the section

Introduction of each chapter. As it was introduced in the previous Chapter the common

ground among these projects is the methodology to analyze the data. In this context, the

first section is focused on the data mining process.

2.1 Data mining

The process starts with the acquisition of the data. There are many types of

data and formats, each one with a specific function. In this thesis we used two types

of data: text data (where the information of interest are enclosed), and shapefile data

(where the geometric and geospatial information are enclosed). However, text data could

be provided in different formats such as csv, json, txt, ascii, xml, graphml, etc. More

information about the data acquisition is attached in each chapter.

The amount of data are often very big and, sometimes, a powerful hardware

are needed to processing of them. Moreover, the software tools are extremely important

to lead with the major part of the data. The most part of the results showed in thesis

are obtained using R and Python as programming language combined with the libraries

Pandas, Numpy, Sci-Kit learn, Matplotlib, and Seaborn. Furthermore, to the visualization

of georeferenced data we used the software QGis.

Data mining is the process of learning from data using mathematical fra-

meworks such as statistics, artificial intelligence, machine learning, deep learning, and

neural networks [2]. In recent years, the use of machine learning algorithms has spread

among the scientists. Actually some techniques have become famous as machine lear-

ning algorithms were already known and commonly used by statistical and mathematical

physicists [2]. Among them, probably the most widespread is the linear regression.

Machine learning is divided in two big categories: supervised learning and

unsupervised learning [2]. In supervised learning are enclosed all the algorithms that use

input data as well output data. To be more clear, the aim of the supervised algorithms is

to find the rules and laws that exist (if they exists) from an input data to an output data.

While the aim the unsupervised algorithms is to find possible relations inside a group of

data [2]. In this thesis we use both supervised and unsupervised algorithms.

In the next sections, we introduce two fields main topics of the next chapters,
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respectively called The Science of Cities and the Economic Complexity.

2.2 The Science of Cities

The book The new science of cities written in 2013 by Michael Batty [4] is

the first book focused in the scientific study of the growing of the cities. In that book,

M Batty [4] lists the foundations of this new science. The aim of the science of cities is

the study and the analysis of the correlation between the growth of the urban centers

(population or area) and other variables such as, for example number of crimes, income,

jobs, number of suicides, gas emissions, light pollution, etc.

The study of the scaling of the cities with other socio-economic indicators is

many times compared with the biological allometric study [5]. In the next subsection we

deepen the history and the meaning of the allometry study of urban centers. However,

not less important, is the definition of the limit of cities. In fact, several studies show the

scaling of the cities with other variables deeply depends by the definition of the limit of

the urban centers [6,7]. In this context, in this chapter we explain an algorithm developed

with this goal, the City Clustering Algorithm [5–12].

2.2.1 Allometry

Allometry is a term introduced in biology between the end of the nineteenth

century and the begging of the twenty century [13]. The term is first used to define the

study of the relationship between the body size and shape/anatomy/physiology/behavior

of the living organisms. This relationship is often expressed as a power law:

y = kxa, (2.1)

where x is the body size and y is another feature such as shape/anatomy/physiology/behavior.

While a is called allometric exponent. The information of the scaling between the two

quantities is totally incorporated in the allometric exponent a. Furthermore, the same

expression can be visualized in logarithmic form:

log(y) = alog(x) + log(k). (2.2)

Therefore re-defining y′ = log(y), x′ = log(x), and k′ = log(k), the power law

showed in eq. 2.1 can be expressed as linear expression as:

y′ = ax′ + k′. (2.3)

In this case the allometric exponent is the linear coefficient of the relation showed in eq.
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2.3. While when the allometric exponent a ≈ 1 the relation is called isometric. In fact in

this case the eq. 2.1 is not a power law, but it is linear.

Bettecourt and his collaborators in 2007 [5] showed deep analogies between

living organisms and cities. In this context they found the cities in the US exhibit three

different types of allometric laws for urban indicators with population size [5]: (i) Superli-

near . The superlinear urban indicators increase proportionally more than the population

of the cities. Such behavior is intrinsically associated with the social currency of a city,

indicating that larger cities are associated with optimal levels of human productivity and

quality of life. Doubling the city size leads to a larger-than-double increment in producti-

vity and life standards [5, 36, 37]. For example, wages, income, growth domestic product

(GDP), bank deposits, as well as rates of invention measured by the number of patents and

employment in creative sectors show a superlinear behavior [5]. (ii) Linear or isometric

relation. The increasing of the linear urban indicators is proportional to the increasing of

the population reflecting the common individual human needs, like the number of jobs,

houses, and water consumption [5]. (iii) Sublinear. The sublinear urban indicators incre-

ase proportionally less than the population of the cities. This case is a manifestation of

the economy of scale. The sublinearity is found in the number of gasoline stations, length

of electrical cables, and road surfaces (material and infrastructure) cases [5].

Moreover, an allometric study published by Oliveira et al in 2014 showed as

the definition of the limits of the cities affects the analysis [7]. In their papers they studied

the scaling of the CO2 emission in function of the population of the US cities. Although

they used two methods to define the limits of the cities. In the next section we deepen

one of these methods called City Clustering Algorithm (CCA). The same algorithm will

be used in the next chapters of this thesis.

2.2.2 City Clustering Algorithm (CCA)

The CCA is an algorithm introduced to define boundaries of metropolitan areas

[5–12]. Its result depends on two parameters, namely, a population density threshold, D∗

and a cutoff length, ` [11]. For the i-th grid cell, the population density Di is geo-

referenced in its geometric center (shown as small black circles in Fig. 1). If Di > D∗,

the i-th grid cell is populated. In Fig. 1 the populated cells are shown in grey and red.

Next, the algorithm selects a populated cell (red cell in Fig. 1a) and aggregates in the

same cluster all nearest populated cells which are within a distance ` from each (red cells

in Figs. 1b, 1c and 1d). The Fig. 1 shows the four steps to determine the red cluster.
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Figura 1: The CCA steps (on colors). The grey and the red cells are populated
(Di > D∗). The small black circles are the geometric centers of each populated cell. The
red cells belong the same analyzed cluster. (a) First step: the algorithm select a
populated cell and draw a circle of radius `. (b) Second step: the cells with the
geometric centers inside the circles of radius ` become a part of the red cluster and from
their geometric center are drawn others two circles of radius `. The circle of the first
step is showed in opaque black. (c) Third step: two more cells became part of the red
cluster and two more circles are drawn. (d) Fourth step: the last cell became part of the
red cluster. The entire cluster is determined and the algorithm will start to analyze
another cluster.

2.3 Economic Complexity

There is a tendency of the economists to focus on monetary indexes to analyze

the world economy. Among them, the most used is the Gross Domestic Product (GDP).

However, GDP alone, as shown by different studies [14–17], does not provide all the

information about the perspective of growth and development of world countries, because

it is strongly sensible by the inflation and the national currencies. This fact makes difficult

to compare the economies of different countries and their evolution during the years. In

this context, economists and more in general scientists, developed non-monetary indexes
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Figura 2: From tripartite to bipartite. The figure shows the tripartite network
where countries (C1 and C2) are connected with the capabilities (K1, K2, K3, K4, and
K5) that are connected with the products (P1, P2, P3, and P4). The tripartite network
can be reduced in a bipartite network countries/products.

with the aim to quantify and compare the development of the world countries overcoming

the faults of the monetary indexes [14–18].

With this aim, Ricardo Hausmann and Cesar Hidalgo [14] studied the economy

as a tripartite network as showed in the Fig 2. The figure shows the world economy

as a tripartite network where the countries are first connected to several “capabilities”.

The capabilities are the ensemble of features such as, for example, infrastructures or

education, that a country needs to produce and to export a product. These features are

hardly quantifiable, however in the tripartite network the capabilities are connected with

the products. Indeed capabilities allow the production of each product and moreover

their exportation. Nonetheless, capabilities are not quantifiable, therefore the tripartite

network is reduced in a bipartite network countries/products where only the exported

products are analyzed [14].

The bipartite network showed in Fig 2, inspired different authors in the formu-

lation of new non-monetary indexes able to describe the development of world countries.

The first, formulated in 2009 by R Hausmann and C Hidalgo [14] is called Economic

Complexity Index (ECI). After that, the same concept has been improved and enriched
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by Cristelli and his collaborators in 2012 and called Economic Fitness [15]. In this thesis,

we deepen the Fitness and we extend it to subnational entities [18].
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3 THE LIGHT POLLUTION AS A SURROGATE FOR URBAN
POPULATION OF THE US CITIES

3.1 Introduction

More than 80% of the world and more than 90% of the US and European

populations live under light-polluted skies (exposition to light at night) [26]. Since the first

electric-powered illumination in the second half of the 19th century, the world has become

covered by artificial electric light, changing drastically the night view of the Earth from

space. The spreading of artificial electric light plays an important role on the duration of

the productive day, not only for working but also for recreational activities. If in one hand

the benefits of artificial light are quite evident, on the other hand, scientific researches

suggest that the exposition to light at night could have adverse effects on both human and

wildlife health [27–34]. For example, in humans, the pineal and blood melatonin rhythms

are quickly disturbed by light pollution. Such studies argue that the night light exposure

have two major physiological effects: they disrupt the circadian rhythms and suppress the

production of melatonin [33]. This repeated suppression may have large consequences for

the mammals health. For instance, it was shown that the suppression of the melatonin

at night accelerates the metabolic activity and growth of rat hepatoma [30] and human

breast cancer [28]. Moreover, the disruption of circadian rhythms made by the exposure

of light at night might plays a crucial role in the etiology of depression [33].

The significant consequences of the exposure to night-time light (NTL) with

the fact that 54% of world’s population lives in urban areas stimulates the interest in

understanding how the light pollution evolves with the size of the US cities [35]. Betten-

court et al., as introduced in the previous chapter, found the cities in the US exhibit three

different types of allometric laws for urban indicators with population size [5]. From the

results shown by Bettencourt et al., several studies have been carried out on the allometry

of urban indicators in different levels of human aggregation [7, 10, 38, 39]. Following this

aim, we analyze and classify the allometric law between the NTL and the population of

the US cities.

Here, we use three geo-referenced dataset: the population dataset, the NTL

dataset and the Metropolitan/Consolidated Metropolitan Statistical Area (MSA/CMSA).

In order to define the boundaries of each US city, we use two methods: the City Clustering

Algorithm (CCA) [8, 9, 11] and the MSA/CMSA [40]. Finally, we find the allometric

scaling between the NTL and the population for the two applied methods. Furthermore,

to compare them, we analyze the allometric scaling between area and population.
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3.2 Database and methods

Population dataset (GPWv4): The population dataset is extracted from

the fourth version of the Gridded Population of the World (GPWv4) [41, 42] from the

Center for International Earth Science Information Network (CIESIN) at the Columbia

University. The GPWv4 models the human population distribution on a continuous

surface at high resolution. Population input data is collected through several censuses

around the US, between 2005 and 2014. Data are provided in grid form, where each cell

is formed by 30 arc-second angles (approximately 1 km × 1 km at the Equator line). We

use the US population count data, measured in number of people, for the year 2015, as

depicted in Fig. 3a.

POP

(a)

NTL

(b)

100

101

102

103

104

100

101

102

103

Figura 3: Datasets (on colors). (a) The population dataset is defined as a 30
arc-second geolocated grid. It is obtained from the GPWv4 in logarithmic scale for the
year 2015 [41,42]. (b) The NTL dataset is obtained through the night-time light
radiance emission data from the VIIRS DNB in nW/cm2/sr [43–45]. It is defined at the
resolution of 15 arc-second grid in logarithmic scale for the year 2015 (April).

The method successively introduced requires the population density of each grid cell. The-
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refore, we calculated the area of each grid cell dividing them into two spherical triangles.

The area of a spherical triangle with edges a, b and c is given by,

A = R2E, (3.1)

where R = 6, 378.137 km is the Earth’s radius and the spherical excess E is defined by

the following expression:

E = 4 tan−1
[
tan
(s

2

)
tan
(sa

2

)
tan
(sb

2

)
tan
(sc

2

)]1/2
. (3.2)

with s = (a/R + b/R + c/R)/2, sa = s − a/R, sb = s − b/R, and sc = s − c/R. In this

context, the distance between two points, i and j, on the Earth’s surface is calculated by,

dij = Rθ, (3.3)

with

θ = cos−1[sin(yi) sin(yj) + cos(yi) cos(yj) cos(xj − xi)]. (3.4)

In this formalism, the values of xi (xj) and yi (yj) are the longitude and latitude, respec-

tively, of the point i (j), measured in radians.

Night-time light dataset (NTL): The NTL dataset is given by the night-

time light radiance emission data from the National Centers for Environmental Infor-

mation (NCEI) [44]. The NTL dataset is defined by the monthly average of radiance,

measured in nW/cm2/sr, using the night-time data from the scanning radiometer Visible

Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) [43–45]. The VIIRS

DNB data are processed and filtered in order to exclude data impacted by the lunar il-

lumination, lightning and cloud-cover, but they are susceptible to other temporal lights,

e.g. aurora, fires, and boats [43, 44]. Such data span through the entire globe with a

resolution of 15 arc-second (approximately 500 m × 500 m at the Equator line) between

the latitudes 75◦ North and 65◦ South. We use the US data for the year 2015 (April), as

shown in Fig. 3b.

Metropolitan Statistical Area (MSA), Primary Metropolitan Statis-

tical Area (PMSA) and Consolidated Metropolitan Statistical Area (CMSA):

The MSA are geographic entities with high degree of socioeconomic integration and po-

pulation over 50,000 people. The PMSA are quite similar to MSA, however they present

population over 1,000,000 people. The CMSA are metropolitan regions defined by the

agglomeration of some PMSA. They are all delineated by the Office of Management and

Budget (OMB) and provided by the US Census Bureau [40].

Data processing: In order to superimpose the datasets, we perform two
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processes: (i) As the NTL grid has a higher resolution than the GPWv4 grid, we sum the

values of all NTL grid cells, which their geolocated centers are within the same geolocated

GPWv4 grid cell. Therefore, we produce a new NTL grid with the same positioning

and resolution of the GPWv4 dataset; (ii) For the MSA/CMSA case, we use the same

approach of (i), even though the MSA/CMSA are complex polygons. To deal with this

problem, we use the even-odd rule algorithm [46]. Thus, we define the NTL value for each

MSA/CMSA.

City Clustering Algorithm (CCA): We define the boundaries of each US

city by applying the CCA to the population grid [8,9,11]. We use the CCA explained in

the previous chapter.

3.3 Results

We apply the CCA to the population grid varying D∗ (in people/km2), from

0 to 10000, and ` (in km), from 1 to 20. For all pairs of parameters, we find that it is

possible to statistically correlate through power-law relations the area and the population

as well as the NTL and the population of the US cities,

log(AREA) = a+ αCCA log(POP), (3.5)

log(NTL) = b+ βCCA log(POP). (3.6)

The exponents αCCA and βCCA are obtained through Ordinary Least Square

(OLS) [47] fitting to the data for different values of the parameters D∗ and `. The ranges

of compatibility and the consistency of the CCA technique are investigated in Figs. 4a-d.

Indeed, the definition of the parameters D∗ and ` of the CCA affects the

dimension and the geometry of the cities, but from the Figs. 4c and 4d, it can be seen

that it does not affect the allometric exponent βCCA. Here, our starting strategy is

to determine a range of parameters D∗ and ` for which the relation between area and

population is isometric [7, 9–11]. We find that for D∗ > 4000 and ` = 3 the allometric

exponent αCCA is between 0.93 and 0.95 and we consider this relation approximately

linear. Inside this range, we analyze the result of the CCA using D∗ = 4560 and ` = 3,

where the five larger cities in the US Northeast Coast naturally emerge, as depicted in

Fig. 5. We believe that, the lack of an exactly linearity, also inside this range, is due to

the high density of some downtowns, specifically, of the most populated urban centers of

the US Northeast Coast.

For the pair of parameters, D∗ = 4560 and ` = 3, we find a allometric exponent

αCCA = 0.93± 0.01 (Figs. 6a) and a linear scaling between NTL and the population with
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Figura 4: Allometric exponent αCCA and βCCA as a function of the parameter
D∗ and ` (on colors). (a) The exponent αCCA as a function of D∗ for ` = 3 km. The
parameter D∗ varies from 0 to 10000 people/km2. For D∗ > 4000 and ` = 3 the
allometric exponent αCCA is between 0.93 (dashed blue line) and 0.95. For D∗ = 4560
people/km2 (dashed red line) we observe the arising of five large cities in US Northeast
Coast. (b) The exponent αCCA as a function of the CCA parameter ` for D∗ =1000,
2000, 3000, 4000, and 5000 people/km2. We find a plateau region after ` = 3 km, where
αCCA ≈ 0.93 (dashed blue line). (c) The figure shows the allometric exponent βCCA as a
function of D∗ for ` = 3 km. The parameter D∗ varies from 0 to 10000 people/km2. The
dashed red line corresponds to β = 1. (d) The figure shows the allometric exponent
βCCA as a function of the CCA parameter ` for D∗ =1000, 2000, 3000, 4000, and 5000
people/km2. The dashed brown line corresponds to β = 1.

exponent βCCA = 1.01 ± 0.02 (Figure 7a). Alternatively, others parameters inside this

range could be analyzed without affecting the allometric exponent βCCA (as shown in

Figs. 4c and 4d).

By analyzing the allometric scaling of the NTL with the population of the US

cities using the MSA/CMSA (Fig. 7b), we obtain the allometric exponent βMSA/CMSA =

0.89 ± 0.02. Such an exponent characterizes a sublinear relation between the NTL and

the population, in contrast with the CCA result.

As shown in Fig. 6b, the sublinear scaling behavior of the MSA/CMSA areas as
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US Northeast
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New York
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Washington

D∗ = 4560 people/km2

` = 3 km

Figura 5: Application of CCA to the US Northeast region (on colors). We use
the CCA parameters D∗ =4560 people/km2 and ` = 3 km. The clusters of different
colors identify different urban agglomerations. Essentially, we distinguish five famous
cities such as Boston (light blue), New York (purple), Philadelphia (pink), Baltimore
(blue), and Washington D.C. (light green).
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Figura 6: Allometric exponent α applying the CCA and using the
MSA/CMSA definitions (on colors). (a) The figure shows the allometric scaling
law in Eq. 3.5 and its allometric scaling exponent αCCA = 0.93± 0.01 using CCA
parameters D∗ =4560 people/km2 and l = 3 km. The red line is the OLS result, and the
solid black line is the N-W estimator. The dashed black lines show the 95% confidence
bands of the N-W. The dashed blue line corresponds to α = 1. (b) The figure shows the
allometric scaling exponent αMSA/CMSA = 0.49± 0.03 using the MSA/CMSA
definitions. The red line is the OLS result, and the solid black line is the N-W
estimator. The dashed black lines show the 95% confidence bands of the N-W. The
dashed blue line corresponds to α = 1.
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a function of their corresponding populations, αMSA/CMSA = 0.49± 0.03, clearly suggests

that this might not be the most adequate definition of a city agglomerate to be adopted

in our study.

Figura 7: NTL versus population using the CCA and the MSA/CMSA
definitions (on colors). (a) NTL versus population using CCA parameters D∗ =4560
people/km2 and l = 3 km. The graph shows a linear relation between the NTL
measured in nW/cm2/sr and the population with allometric scaling exponent
βCCA = 1.01± 0.02 (R2 = 0.88). The solid red line is the linear regression obtained
using the OLS method. The solid black line is the N-W estimator and the dashed black
lines show the lower and the upper confidence interval (95%) [3, 48]. The dashed blue
line corresponds to β = 1. (b) NTL versus population using MSA/CMSA. The graph
shows a sublinear relation between the NTL, measured in nW/cm2/sr, and the
population with allometric scaling exponent β = 0.89± 0.02 (R2 = 0.89). The red line is
the linear regression and the black line is the N-W estimator. The dashed black lines
show the 95% confidence band of the N-W.

As indicated by Oliveira et al. [7], the arbitrary geopolitical concept behind

the MSA/CMSA seems to overestimate the natural limits of urban areas. In order

to illustrate this fact, we show in Fig. 8 the MSA/CMSA of the five most popula-

ted US regions, namely, New York-Northern New Jersey-Long Island (NY, NJ, CT,

PA), Los Angeles-Riverside-Orange County (CA), Chicago-Gary-Kenosha (IL,IN,WI) and

Houston-Galveston-Brazoria (TX). The first and second columns show respectively the

detailed maps of the population and the NTL datasets. The third column exhibits the

cities defined by the CCA with D∗=4560 and `=3, as well as the discrepancy between the

urban areas belonging to MSA/CMSA and CCA.

3.4 Discussion

We analyzed the allometric scaling behavior of the NTL as a function of the

population of the US cities. Our results corroborate previous works showing that the
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Figura 8: Comparison between the CCA and MSA/CMSA (on colors). Figures
(a), (d), (g) and (j) are the human population grid in logarithmic scale obtained from
the GPWv4 for the year 2015 [41,42]. Figures (b), (e), (h) and (k) are the NTL
measured in logarithmic scale with units nW/cm2/sr obtained through the night-time
light radiance emission data from the VIIRS DNB [43–45]. In figures (c), (f), (i) and (l)
we show the CCA clusters obtained using the CCA parameters D∗ =4560 people/km2

and l = 3 km of the CMSA of: New York-Northern New Jersey-Long Island (NY, NJ,
CT, PA), Los Angeles-Riverside-Orange County (CA), Chicago-Gary-Kenosha
(IL,IN,WI) and Houston-Galveston-Brazoria (TX). The figures show the discrepancy
between the area estimated by the MSA/CMSA and the area delimited by the CCA.

scaling behaviors of urban indicators with population can be substantially different for

distinct definitions of city boundaries. Precisely, using the MSA/CMSA definition, we

found a sublinear allometric scaling exponent βMSA/CMSA = 0.89 ± 002. Applying the

CCA, we found an exponent βCCA = 1.01 ± 0.02 which indicates an isometric relation

between the light pollution and the population of the US urban agglomerations, in clear
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contrast with the exponent obtained using the MSA/CMSA. Considering the consistency

of the CCA definition in terms of the extensivity between land population and area of their

generated clusters, as demonstrated in previous studies for other urban indicators [7], we

come to the conclusion that the proportionality between light pollution and population

is indeed correct, as intuitively expected [49]. Under this framework and without loss of

generality, it is therefore plausible to utilize NTL as a surrogate for city population in

future studies.

The isometric relation between NTL and population of the US urban agglome-

ration, obtained applying the CCA, imply that small and large cities are proportionally

indistinguishable in terms of light pollution. In other words, there is no economy of scale

or sublinearity concerning the NTL in US cities. Our result shows that a growth of the

US cities will aggravate the light pollution and therefore the possible negative effects of

the light pollution for the humans and the wildlife health.
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4 DYNAMICS IN THE FITNESS-INCOME PLANE: BRAZILIAN
STATES VS WORLD COUNTRIES

4.1 Introduction

Previous analysis in Economic Complexity focused in the world coutries, howe-

ver large countries are often characterized by a strong internal heterogeneity. Normally

they are made by richer and poorer regions. For example the GDP per capita (GDPp)

of the states of New York is higher than the GDPp of Mississippi in the US [50], or the

difference between Kerala and Bihar in India [51], or between the unexplored forest of

Amazon and the modern state of São Paulo in Brazil [52]. While the previous literature on

Economic Complexity focused on countries [14–17], in this thesis we extend the analysis

to the subnational level.

The reasons to extend the analysis to subnational regions are many. First, at

pure academic level, we are interested in understand if the relations and the competition

among world countries are similar to the relations among entities inside a single country,

and, if yes, until wich level (states or municipalities). Furthermore, a deeper knowing

of the economic relations among the subnational entities inside a country could help the

economists to improve the internal politics of country in order to reduce the inequalities.

In this thesis, we focused on Brazil.

The Federative Republic of Brazil in the GDP ranking of the year 2015 is the

ninth world economy [54]. Its population is 2.81% of the total World population [56] and

its area (8.515.767,049 km2), divided by its twenty-seven Federative Units [55], make it

the fifth largest country of the World [56]. Its administrative organization is organized

in a sequence of geopolitical structures: Union, states, Federal District and Counties.

Each one is autonomous and organized according with the division of powers: legislative,

executive, and judiciary. Due to the deep inequalities, but also for the good perspectives

of growth, Brazil and the others Latin American countries were often a focus of economic

development analysis during the last century [57–61].

In the next session, we intruduce the theoretical basic of economic complexity

and its results for the world countries. Then we show our contribution for the analysis

of the subnational entities. We also provide an overview of Brazil from the point of view

of the Economic Complexity approach and, in this context, we compare its export basket

and its Fitness with the ones of the BRIC group of countries (Brazil, Russia, India, and

China) [63].

Then, we focus on the comparative study of the economies of the single Brazi-
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lian states. Based on the “classical” Fitness algorithm, we introduce a new methodology,

called Exogenous Fitness, able to measure the Fitness of subnational entities, and we

apply it to the states of Brazil. In analogy with what was proposed in [17], we show the

coevolution of GDPp and Fitness studying the predictability of the economic growth of

the Brazilian states.

Furthermore, we compare the Exogenous Fitness with: (i) the (Endogenous)

Fitness -i.e, the natural application of the “classical” Fitness algorithm to the subnational

entities of a country- ; (ii) the results published by the Dataviva platform (an application

of the ECI algorithm) [64].

4.2 Database

The vast majority of data used in this project is published by DataViva [64].

It is an open access platform that easily allows the access to a large amount of Brazilian

socioeconomic data. The database is provided by the Brazilian Ministries : of Employment

(MTPS), Development, Industry and International Trade (MDIC) and Education (MEC).

The project is an initiative of the Government of the state of Minas Gerais, Minas Gerais

Investment, Trade Promotion Agency (INDI) and the Fundação de Amparo à Pesquisa do

Estado de Minas Gerais (FAPEMIG) [64, 75] in collaboration with the Sistema Mineiro

de Inovaçao (SIMI) [76], Big Data Corp [77] and the MIT Media Lab [78] . The first

version was published in November 2013 and the last one, the 3.0 version, in May 2015.

The platform includes data about imports/exports products, trade partners,

occupation, economic activities, basic education, higher education and universities. All

data are available in several levels of aggregation: region, state, mesoregion, microregion

and municipality. The crossover among data and level of aggregations allows users to

access more than 1 billion visualizations.

The visualization is made through some graph types, such as: Tree Map,

Stacked, Geo Map, Network, Rings, Scatter, Compare, Occugrid, Line, Box Plot and Bar

Chart. Furthermore, each data and aggregations is downloadable, and easily accessible

through the API architecture [79].

Here, we use the export data of each Brazilian state for the entire time interval

from 2000 to 2015. Furthermore, DataViva provides the data of total GDP and the total

population for each state for the same time interval. Combining these with the GDP

deflator GDPdefl, published by the World Bank [80], we find the real GDP per capita of

each state as:

GDP real
p =

1

N

GDP

GDPdefl

100, (4.1)



37

where N is the total population of each state.

Concerning World export data, used to define the matrix Mcp of the World

countries and to calculate the products complexity, we use data from BACI dataset [66]

that is grounded on the COMTRADE dataset [67]. The database, in its extension, con-

tains data about more than 200 countries and 5000 products classified according to a 4

digit code with categorization Harmonized System 2007 [81]. Data are extracted from the

year 2000 to 2015. The time evolution of the GDP per capita of each country is published

by World Bank [80].

4.3 Method

In this section we introduce the algorithm to quantify the development of an

economy called Fitness. Furthermore, we shows all the technical tools to deeply unders-

tand the algorithm and our contribution to the calculation of the Fitness for subnational

entities.

First, we introduce the Revealed Comparative Advantage, that is a quantita-

vive criterion that togheter with the application of a threshold and the formulation of the

matrix country-products makes the index non-monetary.

4.3.1 Revealed Comparative Advantage (RCA)

The Revealed Comparative Advantage (RCA) [65] is a quantitative criterion

to assess the relative advantages of a country (or of a subnational entitess) in the export

of certain products compared to the average export of those products. Defining qcp as the

flow of the export (in US dollars) of the product p by the country c, the RCA is defined

as:

RCAcp =

qcp∑
p′ qcp′∑
c′ qc′p∑

c′p′ qc′p′

. (4.2)

Therefore, it is the ratio between the export of product p of a country c with respect to

the export of that product in the world export.

From the calculation of the RCA for each country-product pair, we build the

country-product matrix Mcp considering the country c an exporter of a product p only if

RCAcp ≥ 1. As a consequence we set Mcp = 1. Conversaly, if RCAcp < 1, we set Mcp = 0.

In this way the matrix is binary and non-monetary.

An analogous criterion is used to define the state-products matrix Msp.
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4.3.2 (Endogenous) Fitness

Different studies have shown the economic relevance of the diversification of

the export basket for the competitiveness of a country [14, 16]. The matrix M shows a

substantial nested structure highlighted by a strong triangularity, which can be interpreted

in the following way: each country approximately exports all the possible products it has

the capabilities to produce [15].

In this framework, the Fitness of the country c is defined as [15]:

Fc =
∑
p

McpQp, (4.3)

where Qp is the complexity of the product p. In this way the Fitness is proportional to the

sum of its exported products weighted by their Complexity stressing the importance of

having at the same time both a diversified export basket and the most complex possible

products in it.

At the same time the Complexity of product p is defined as:

Qp =
1

∑
cMcp

1

Fc

, (4.4)

where Fc is the Fitness of the country c. This formula is motivated by the following

argument: the more the exporters of a product and the smaller their Fitness, the less

its expected from the Complexity. In this manner, a state with low Fitness abruptly

influences the Complexity of all the products it exports [16]. Therefore, an high Complex

product is made only by few countries/states with high Fitness, while a little Complex

product can be made by all the countries/states, both with high and low Fitness.

This is a system of coupled equations and there are several numericals ways

to solve it. One of these is using iterations (similar to the Google PageRank algorithm).

Therefore, the final algorithm is [15]:



F̃
(n)
c =

∑
pMcpQ

(n−1)
p

Q̃
(n)
p =

1

∑
sMcp

1

F
(n−1)
c

→



F
(n)
c =

F̃
(n)
c〈

F̃
(n)
c

〉
c

Q
(n)
p =

Q̃
(n)
p〈

Q̃
(n)
p

〉
p

.

(4.5)

The elements Mcp are the elements of the previously discussed binary country-products
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Figura 9: The binary matrix Mcp of the year 2015. The rows of the matrix
represent the World countries ordered according to their Fitness with row 0 for the
country with the lowest Fitness and row 147 for the one with the highest Fitness.
Analogously columns represent Products ordered in terms of their Complexity from the
lowest one at column 0 to the highest one at column 1174. The elements Mcp = 1 are
represented as blue dots.

matrix. F̃
(n)
c and Q̃

(n)
s are intermediate variables which are subsequently normalized at

each iteration. The initial conditions satisfy the relations: F̃
(0)
c = C and Q̃

(0)
p = C, where

we assume C = 1 for each country c and for each product p [16]. The stability and

robustness of this algorithm has been studied in [16, 68] and the Fitness ranking of the

states and the Complexity ranking of the products is unambiguously defined after the

condition of convergence: ∑
c

|F (n)
c − F (n−1)

c | < ε (4.6)

Fig 9 shows the matrix Mcp of the World countries of year 2015 obtained

by ordering the countries according to the Fitness and the products according to the

Complexity. In that year, Brazil is ranked in the 44th/147 position (equivalent to the raw

103 in Fig 9).

While Fig 10 shows the matrix Brazilian states-products Msp of the year 2015,

by ordering the states according to the Fitness (the upper the higher complexity), and

the products according to the Complexity (the more right the higher the complexity).

Furthermore, in Fig 11 we show the products spectroscopy [69] of the years

2005 (dashed lines) and 2015 (filled colors) for few Brazilian states such as: São Paulo,

Paraná, Ceará, and Roraima. The spectroscopy is a graphic representation of the export

volume (in US Dollars) of a state for each product with Msp = 1 ordered at increasing

Complexity from left to right [69]. We subsequently group the products (10 for bin) and

we summed the export volumes of each product inside each bin. The spectroscopy allows
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Figura 10: The binary matrix Msp of the year 2015. Each row of the matrix
represents a Brazilian state. States are ordered in terms of their Fitness from the
smallest value (row 0) to the largest one (row 26). Analogously columns represent
Products ordered in terms of their Complexity from the smallest value (column 0) to the
largest one (column 1172). The matrix elements Msp are drawn in dark green and the
others in white. In the figure we highlight high Fitness states such as São Paulo and
Paraná, a middle rank State such as Ceará and a low Fitness state such as Roraima.
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Figura 11: Products spectroscopy of the years 2005 (dotted lines) and 2015
(filled colors) of the states: a) São Paulo, b) Paraná, c) Ceará, and d) Roraima. The
figures show the export volume (in US Dollars) of those states for each product with
Mcp = 1 ordered according to their Complexity. Products are grouped in bins of 10 and
the export volume in each bin are summed up.

to compare the diversification and the Complexity of the exportation of the states. The

figure shows the spectroscopy of high Fitness states such as São Paulo (diversified all along

the Complexity spectrum) and Paraná (with a clear peak on medium-high Complexity

products), a middle rank state such as Ceará and a low Fitness state such as Roraima

(with few low Complexity exports). From the figure, it emerges that a very developed

state such as São Paulo has a high flow of exports for a very diversified number of products

with a bias towards the high Complexity ones. Paraná has a high peak in several complex

products, while Roraima has only one peak in the less complex products. Ceará is a

middle ground between the two.

4.3.3 Exogenous Fitness

Here, we define the new Exogenous Fitness algorithm, an innovative method

to calculate the Fitness of subnational entities of a country grounded on the measure of

the products Complexity from the World-wide trade network. Exogenous Fitness is a

coherent extension of the “classical” Fitness algorithm [16], with the assumption of an

obvious concept: products have an intrinsic Complexity, reflected by the trade on the

global World scale by all countries, while the trade from the regions of a single country
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may not represent well such intrinsic Complexity as it can be affected by local biases. In

particular if we consider only Brazil to define the Complexity of the exported products,

we can introduce local economic biases in its measure related to the peculiar features of

Brazil economy. Indeed, as shown in Fig 10, there is a big range of products made only by

few states that make the measure of Complexity very inaccurate. From this observation,

it is natural to use as the best measure of Complexity of products the ones QW
p extracted

from the Fitness algorithm applied to the trade of goods of all World countries, i.e. we

take:

QW
p ≡ QB

p ≡ Qp. (4.7)

Indeed, the Complexities of the products obtained applying the Endogenous Fitness to

the World countries (QW
P ) can be considered the same of the Complexities of the products

inside Brazil (QB
P ) and, therefore, we simply define them as Qp.

Therefore, the algorithm consists of two steps:

1. We apply the (Endogenous) Fitness (eq. 4.5) to the World countries, as previously

done in [15–17]. The criterion adopted to determine if a country c is a “good”

exporter of a given product p is again based on the RCA extended to all World

countries: we set Mcp = 1 if RCAcp ≥ 1 and Mcp = 0 otherwise (see the section

Database for the source of the data). Applying the (Endogenous) Fitness algorithm

to the matrix Mcp, after a sufficiently large number of iterations the algorithm

converges to the fixed point so that, we obtain the respective Fitness Fc for each

country and the Complexity QW
p for each product.

2. From the assumption eq. 4.7, we use as Complexity of the products exported by

Brazilian states Qp the values obtained by the Fitness algorithm applied to the

export of all World countries. Therefore, we use the information in the matrix

Msp and the product Complexity Qp to calculate the Fitness of the Brazilian states

through the following formula: 

F̃s =
∑

pMspQp

Fs =
F̃s〈
F̃s

〉
s

.

(4.8)

The relevance of developing the Exogenous Fitness measure is two folds. First

of all, using world wide data we extract all the information to compute the Complexity of

products to better compute the Fitness of states. Since the algorithm works by exploiting
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differences of capabilities, using world wide data we gain additional information related

to the export baskets of countries with a wider range of Fitness and capabilities. Of

course we still expect the two measures to be highly correlated in rank, in particular

for a country like Brazil that contains such a vast array of development levels. As we

will see in section Comparison with other techniques, this is indeed the case. The second

reason is that the Exogenous Fitness allows to have for states Fitness values comparable

with those of countries. Indeed, while the ranking between Exogenous and Endogenous

Fitness are highly correlated, their actual values and distributions are vastly different. As

detailed explained in the paper [70], while the ranking for the Fitness measure is always

well defined, the shape of the matrix directly affects the convergence properties of the

algorithm to a polarized distribution. Employing the Exogenous Fitness method we have

smoothly changed values that allows for the forecasting exercises of Section Results.

4.4 Overview of Brazil

First, we analyze Brazil as a whole applying the (Endogenous) Fitness to World

countries in the time interval from 1995 to 2015.

In Fig 12, we show the dynamics of the World countries in the Fitness-Income

plane emphasizing the BRIC countries (Brazil in green, Russia in blue, India in orange,

and China in red). The figure shows that India and China have in 1995 lower values of

GDPp than Brazil and Russia, but higher values of Fitness. According with [17], this

difference justifies the dynamics in the plane of the four countries for the next years.

Indeed, India and China continued their economic growth during the following years,

while Russia and Brazil entered a period of recession [71].

In order to zoom on the differences among the dynamics of the BRIC countries,

we analyze the variation of the Fitness of such countries during the interval from 2003

and 2013. The variation of the Fitness can have two different causes: (i) changes in the

export basket, (ii) changes in the products Complexity. We can decompose the variation

of Fitness [72] as:

∆F̃c = F̃c(t1)− F̃c(t0) =
∑
p

Mcp(t1)Qp(t1)−
∑
p

Mcp(t0)Qp(t0) =

=
∑
p

∆Mcp
Qp(t1) +Qp(t0)

2
+
∑
p

∆Qp
Mcp(t1) +Mcp(t0)

2
.

(4.9)

where we have indicated with ∆X = X(t1) − X(t0) for a generic quantity X. The first

term in the last step of the equation is the contribution to ∆F̃c due to the variation in the

export basket, while the second one is the term due to variation of products Complexities.
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Figura 12: Dynamics of the World countries in the Fitness-Income plane. The
figure shows the dynamics (from the year 1995 to the year 2015) of World countries in
the Fitness-Income plane in logarithmic scale. We emphasize the BRIC countries: Brazil
in green, Russia in blue, China in red, and India in orange.
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Tabela 1: Fitness variation from 2003 to 2013 of BRIC countries.

Variation due to changes in
the export basket

Variation due to changes in
the products Complexities

Brazil -43% -6%
Russia -37% -21%
China +32% +18%
India -18% +2%
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Figura 13: Products spectroscopy of the years 2005 (dotted lines) and 2015
(filled colors) of the countries: a) Brazil, b) Russia, c) China, and d) India. The
figures show the export volume (in US Dollars) of those states for each product with
Mcp = 1 ordered in terms of their Complexity. The products have been grouped (10 for
bin) and the export volumes of each product inside each bin have been summed.

In Table 1, we show both the percentage variations due to the two terms. The results show

a deep decrease of both terms for Russia and we can see how the loss of competitiveness

of Brazil is mostly due to the drop of products that were previously exported, and not

so much related to the change in complexity of those products. In contrast China has

increased its export basket and the Complexity of the exported products. Instead, India

in 2013 exports more complex products, but has decreased its exports diversification.

Furthermore, we show in Fig 13 the products spectroscopy [69] for the BRIC

countries of the year 2005 (dotted lines) and 2015 (filled colors). The figure shows that

Brazil and Russia have a high exportation only of simple products, while India and China

have a high exportation of complex products.

Therefore, Figs 12-13 and Table 1, show that China and India both have a
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Figura 14: Time evolution of the ranking of Brazilian states according to the
Exogenous Fitness algorithm. The figure shows the time evolution of the ranking of
the Brazilian states according to the Fitness obtained through the Exogenous Fitness
algorithm applied to the time interval 2000-2015.

diversified export basket and export complex products. Such factors determine a high

Fitness and consequently a growth of the GDPp in the subsequent years. On the contrary

Brazil and Russia export simple products with a consequently low Fitness so that these

countries entered a recession period [71].

In the next section we show the results of a deepened analysis of the internal

economy of Brazil through the application of the Exogenous Fitness to the Brazilian

states.

4.5 Results

We applied the Exogenous Fitness algorithm to the Brazilian states in the time

interval from 2000 to 2015 obtaining for each year both well-defined values of Fitness for

each Brazilian state, and the ranking of states in terms of their Fitness (shown in Fig 14).

We show in Fig 15 a map of Brazil where each state is colored according to

its Fitness. From the figure, it emerges Southern states have larger Fitness, and therefore

have a better economic development, than Northern states. This result is in agreement
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Figura 15: Fitness map of the Brazilian states. The colors in the map vary from
green (high Fitness) to red (low Fitness) and they show the differences of the Fitness
among the Brazilian states.

Tabela 2: Fitness variation from 2003 to 2013 of the states: São Paulo, Paraná, Ceará,
and Roraima.

Variation due to changes in
the export basket

Variation due to changes in
the products Complexities

São Paulo +2% +2%
Paraná +59% -7%
Ceará +53% -10%
Roraima -37% +6%

with other monetary and non-monetary indices such as the Human Development Index

(HDI) and the GDP [64].

Furthermore, we show in Table 2 the variation from 2003 to 2013 of the Fitness

(∆F̃s) for several states such as: São Paulo (1st in Fitness ranking of year 2013), Paraná

(5th in Fitness ranking of year 2013), Ceará (10th in Fitness ranking of year 2013), and

Roraima (24th in Fitness ranking of year 2013). From both Fig 11 and Table 2 we observe

that São Paulo has a diversified export basket with high peaks in complex products and,

at the same time, it increases both the export basket and the Complexity of the exported

products in the considered time period. Paraná and Ceará, in contrast with the aggregate

behavior of Brazil, in the same period grew in diversification becoming more competitive –

even in the face of a minor decline in the complexity of their exported products. Roraima,

on the contrary, shows a deep decrease in the diversification.
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As mentioned in the previous section, Fig 12 presents the dynamics of World

countries in the Fitness-GDPp plane. It shows a high degree of heterogeneity of the

dynamics of countries. Indeed, the plane can roughly be divided into two regions: one

with an unpredictable “chaotic” regime of the evolution of countries, and the other with

a predictable “laminar” regime. In order to overcome the limitations of linear regressions,

Cristelli et al [17] proposed an innovative data-driven non-parametric prediction scheme

called the Selective Predictability Scheme (SPS). It is inspired by the so-called method of

analogues [73,74] and through a measure of concentration it delimits predictability regions

inside the Fitness-Income plane. The measure of concentration consists in dividing the

plane into a grid and analyzing the time evolution of the distribution of countries inside

each box with at least five countries inside.

In analogy with what has just been explained for World countries, in Fig 16a,

we show the time evolution of the real GDPp as a function of the Fitness (obtained

implementing the Exogenous Fitness algorithm), for each Brazilian state in the period

2000-2015. The dotted black line in the figure shows the expected level of GDPp given

the level of Fitness and it is the result of the minimization of the Euclidean distance of the

states from the line, weighted by the state GDP. From the figure emerges an heterogeneous

dynamics similar to the dynamics of World countries that cannot be analyzed through

a linear regression. Also the measure of concentration is not appropriate in this case.

Indeed the reduced number of Brazilian states (27) compared with the number of World

countries (146) makes this measure inappropriate for the internal analysis of Brazil. In

order to have a significant number of cells with at least five states, the granularity of the

grid should be too broad to analyze the evolution of the distribution.

Therefore, in order to validate the predictability of the dynamics of the states

in the Fitness-Income plane, here we develop a novel intuitive method, the measure of

direction. First of all let us fix the time window [t1, t2] in which we want to study the

evolution of each state in the plane log(Fitness)− log(GDPp). The time lag ∆ = t2 − t1
has to be taken large enough to get a sufficient noise reduction in the dynamics. We choose

t1 = 2003 and t2 = 2013. Second, we divide the plane in a fine grid of 100 × 100 cells

and we define two bandwidth; one for the x-axis, and the other for the y-axis. For each

cell, we define around its centroid a threshold area of sides given by the two bandwidths.

Then, for each cell k with at least three states at the time t1 inside its threshold area, we

computed the average dot product D̃k:

D̃k =
2

N(N − 1)

1,N∑
i<j

v̂i · v̂j, (4.10)
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where v̂i = ~vi
vi

where ~vi = [log(Fi(t2))− log(Fi(t1))]̂i+ [log(GDPpi(t2))− log(GDPpi(t1))]ĵ

and î and ĵ are respectively the versors in the Fitness and GDPp directions. N is the

number of states with starting point inside the threshold area of cell k. The coefficient

D̃k gives the average cosine among the versors of all states initially inside the threshold

area of cell k and varies from (−1, 1]. It measures the dispersion of the directions of

evolution in the plane in the time window [t1, t2] of all states initially in the threshold

area of cell k: when it is close to 1 all states initially in the threshold area of cell evolve in

a coherent parallel way. The smaller is D̂k the larger the dispersion of these trajectories.

A color map of the coefficient D̃ in the different cells is shown in Fig 16b. From the

figure it emerges that there is a region where the directions of evolution of the states tend

to be parallel (showed in green) and a region where the directions of motion tend to be

unevenly directed (showed in red). Increasing/decreasing the bandwidths and, therefore,

the threshold area only changes the resolution of the image, but the two regions remain

well-defined. In Fig 16b we used an x-axis bandwidth 0.86, and a y-axis bandwidth 0.38,

providing an almost continuous variation of the colors map.

In order to investigate which is the main direction of the versors in the green

region and the further directions in the red region, we divided the plane into a broader

grid (10x10). For each cell we sum all the vectors inside it and then we calculate the

versor of the sum vector. We show the result in Fig 16c. From one hand, from the figure

we can observe a region where the states tend to evolve in the same direction (shown

in green). Therefore, in this region, the future evolution of countries is predictable with

good confidence. On the other hand, another region (shown in red) can be detected

where the versors tend to be unevenly directed. The dynamics of the states in this region

is basically unpredictable. Furthermore, in the middle of the two, there is a region of

transition, shown in the figure by the overlapping of the two colors.

Lastly, in Fig 16d we show the dynamics of the states in the Fitness-Income

plane highlighting in green the states with high predictability of the motion and in red

those with low predictability. From the figure emerges that states as Ceará, Pernambuco,

and Bahia, despite having low values of GDP, are in a region of high Predictability and,

therefore, they will probably continue to growth in the same direction. While for states as

Acre, Tocantins, or Alagoas the dynamics is more chaotic and predictions are less reliable.

4.6 Comparison with other techniques

In this section we compare the results obtained implementing the Exogenous

Fitness with the results of the Endogenous Fitness and the ones published by Dataviva [64]

obtained by applying the Economic Complexity Index (ECI).
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a) b)

c) d)

Figura 16: Dynamics of Brazilian states in the Fitness-Income plane. a) The
figure shows the evolution (from 2000 to 2015) of the Brazilian states in the
Fitness-Income plane in logarithmic scale. The dotted black line in the figure shows the
expected level of GDPp given the level of Fitness and it is the result of the minimization
of the Euclidean distance of the states from the line, weighted by the states GDP. b)
The figure shows the coefficient D̃ calculated considering a time window from 2003 to
2013. The color varies from green (where the versors of evolution tend to be parallel), to
red (where the versors tend to be unevenly directed). c) The figure shows a grid where
for each cell we calculate the versor of the sum vector. From the figure two regions
appear: the first one where the versors tend to be parallel in the direction of a high
GDPp (shown in green); and the second one where the versors tend to be unevenly
directed (shown in red). Figures b and c together show that there is a region (green) of
high predictability of motion in direction of a high GDPp; and a region (red) of low
predictability of motion. d) The figure shows the dynamics (from 2000 to 2015) of the
Brazilian states in the Fitness-Income plane highlighting in green the states in the high
predictability region and in red the states in the low predictability one.
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Figura 17: Time evolution of the ranking of Brazilian states according to the
(Endogenous) Fitness algorithm. The figure shows the time evolution of the
ranking of the Brazilian states in terms of the Fitness obtained through the
(Endogenous) Fitness algorithm applied during the time interval 2000-2015.

4.6.1 Exogenous Fitness and Endogenous Fitness

We apply the (Endogenous) Fitness algorithm to the Brazilian states in the

time interval from 2000 to 2015 obtaining the time evolution of the ranking of the states

according to such kind of Fitness (shown in Fig 17). Calculating the Spearman correlation

coefficient between the ranking obtained through the Exogenous and the Endogenous

Fitness for each year in the analyzed time interval, we obtain an average value ρ̃ExEn =

0.97. This result shows a strong correlation between the rankings obtained through the

two different Fitness algorithms.

The Endogenous Fitness algorithm provide us a well-defined annual ranking

of the Brazilian states, but not well-defined quantitative values of Fitness and products

Complexity. In fact, all Fitness values except one tend to zero. After a fairly high number

of iterations, however, the ranking of states stabilizes, and there are no more changes of

ranking among the states. This circumstance is already been studied [70] and it is due to

the shape of the matrices Msp. Indeed the external area (where Msp = 0) is greater than

the internal area (where almost all elements Msp = 1) for each analyzed year.
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Figura 18: Time evolution of the ranking of Brazilian states according to the
ECI algorithm. The figure shows the time evolution of the ranking of the Brazilian
states during the period 2002-2015 in terms of the ECI, directly downloaded by the
Dataviva platform [64].

4.6.2 Exogenous Fitness and ECI

In Fig 18 we show the time evolution (from 2002 to 2015) of the ranking of

the Brazilian states according to ECI, directly downloaded by the Dataviva platform [64].

Therefore, in order to compare the ranking obtained through the Exogenous Fitness

algorithm and the ECI algorithm, we calculate the annual Spearman correlation coefficient

between the two rankings in the period 2002-2015, obtaining an average value ρ̃ExECI =

−0.14. This result shows an almost total absence of correlations between the two rankings,

i.e. between the two algorithms.

Indeed, already from a qualitative point of view, ECI ranking seems to be

unrealistic. For example, it ranks rich states in GDP, but also with high HDI [64], such

as Santa Catarina or Paraná, in the last positions (respectively 26th and 24th position in

2015). Moreover, the state of Alagoas (last in HDI ranking of 2014 [64]) is unrealistically

ranked in 4th position in the 2015.

In Fig 19, we show the map of Brazil where each state is colored according to

its ECI. From the figure, it emerges that there is no geographic coherence among the ECI
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Figura 19: ECI map of the Brazilian states. The colors in the map vary from green
(high ECI) to red (low ECI) and they show the variation of the ECI across the Brazilian
states.

of the different states. For instance the figure shows that the state of Santa Catarina has

a high ECI, but it is in the middle between the states of Rio Grande do Sul and Paraná

that have a low ECI.

Furthermore, we show in Fig 20a the evolution of Brazilian states in the ECI-

Income plane, where the income is in logarithmic scale. In Fig 20b, we show the coefficient

D̃ above defined but applied to ECI instead to log(Fitness) and in Fig 20c the directions

of motions. Differently from the results obtained through the application of the Exogenous

Fitness (Fig 16), using the ECI index the dynamics of the states is unpredictable. Indeed,

all the states except São Paulo and the Distrito Federal are concentrated in a small region

of the plane and, therefore, totally indistinguishable.

4.7 Discussion

In this project we first compared the dynamics of Brazil in the Fitness-Income

plane with the other BRIC countries. In Fig 12, we observed that IC (India and China)

countries, both with a high Fitness compared to the BR (Brazil and Russia) countries,

grow in GDPp for the entire analyzed time interval. Table 1 shows that IC improve the

Complexity of export baskets in the analyzed time interval, and China even shows an

improvement of the diversification. Instead, BR countries did not invested in diversifica-
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a) b)

c)

Figura 20: Evolution of Brazilian states in the ECI-Income plane. a) The figure
shows the dynamics (from 2002 to 2015) of the Brazilian states in the ECI-Income
plane, where the GDPp is in logarithmic scale. Only the state of São Paulo and the
Distrito Federal appear to be clearly distinguishable from the rest of the states. All the
others states are indeed concentrated in a small region of the graph. b) The figure shows
the coefficient D̃ calculated considering the time interval 2003-2013. Colors vary from
green (where the versors tend to be parallel), to red (where the versors tend to be
unevenly directed). From the figure we can therefore verify that there is a low
predictability of the evolution of all the states. c) Here we show a grid where for each
cell we calculate the versor of the sum vector. From the figure we see that there is no
privileged direction, indeed the vectors are unevenly directed.
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tion and in Complexity of the exported products (as shown in Table 1). These results

strengthen an hypothesis previously formulated in [17]: Fitness is the driving force behind

growth.

In the second part of the project, we introduced a new algorithm called “Exo-

genous Fitness” to calculate the Fitness of subnational entities and we applied it to the

states of Brazil. The comparison between the Fitness and the GDPp showed an heteroge-

neous dynamics of the Brazilian states in the Fitness-Income plane. Indeed, two regions

are distinguishable in the plane: one with high predictability and the other with low

predictability. Here, we have shown that economic forecasting is possible for those states

in the high predictability region, while it is not for those in the low predictability region.

As a consequence of this analysis Fitness seems to be the driving force behind growth.

Indeed, the dynamics in the high predictability region is characterized by high values of

Fitness, while high value of GDPp is not a good signature of growth. The heterogeneous

dynamics observed for the Brazilian states shows a strict analogy with the heterogeneous

dynamics observed for the World countries [17]. Furthermore, by comparing the export

“spectroscopy” of BRIC countries with the one of Brazilian states of São Paulo, Paraná,

Ceará, and Roraima, and, comparing the variations of the Fitness, we observe that coun-

tries/states with diversified export baskets produce high complex products and grew in

GDPp in the considered period. This observation can be important for the evaluation of

perspectives of economic growth for Brazilian states, and, more generally, for developing

countries.

The time evolution of the ranking obtained through the Exogenous Fitness

algorithm shows that developed states in the top part of the ranking change little their

positions, with a smooth slow motion. On the contrary states in the inferior part of the

ranking changes drastically their position during the analyzed time-interval. These facts

are probably due to the stability of the developed states that are in the high predictability

region of the Fitness-GDPp plane and the instability of the states in the low predictability

region.

Finally, we showed the non-correlation (ρ̃ExECI = −0.14) between the ranking

obtained though the Exogenous Fitness algorithm and the results of the ECI published

by Dataviva [64]. Analyzing qualitatively the ranking of the states according to ECI,

we argued that this ranking appears quite unrealistic. Therefore, we propose here the

Exogenous Fitness algorithm as its valid substitute. Instead, comparing the Exogenous

and (Endogenous) Fitness we obtained a strong correlation (ρ̃ExEn = 0.97) for what

concerns the ranking of states. This result shows that the two algorithmic tools are almost

similar in identifying the ranking of the states, but just the Exogenous Fitness algorithm
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provides also stable quantitative values of the Fitness, in addition to the ranking.
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5 DYNAMICS OF RACIAL SEGREGATION AND GENTRIFICATION
IN NEW YORK CITY

5.1 Introduction

Although it is not a recent phenomenon, racial residential segregation (RRS)

continues to permeate the United States metropolitan areas and it is still an object of

study for scientists of different areas [83–107]. The decrease of RRS in American cities

is controversial and drastically varies from one city to another. Furthermore, it shows

different trends according to the race analyzed. For example, several studies show that

the segregation between white and black citizens has decreased in the last fifty years

[91–94]. Instead, segregation between white and Hispanic, and white and Asian citizens

has increased [93,94].

Several indexes were developed to quantify RRS [83, 95–103]. The first and

still most used nowadays is the dissimilarity index created by Duncan and Duncan in

1955 [103]. Subsequently, in 1988, Massey and Denton [101] defined five distinct axes of

measurement of residential segregation: evenness, exposure, concentration, centralization,

and clustering. The authors affirmed that, in order to fully analyze residential segregation,

at least five indexes corresponding to the five spatial dimensions are necessary. Meanwhile,

in 2004, Reardon and O’Sullivan’s developed several measures of multigroup segregation

and, among them, the authors consider the Information Theory Index the most concep-

tually and mathematically satisfactory measure to quantify residential segregation [99].

RRS is the cause and effect of several inequalities. Studies show the relations

between racial segregation and income inequalities [104] and property values inequalities.

Furthermore, RRS causes racial disparities in health and in education [104–107]. In New

York City, for instance the mortality rates of black citizens vary substantially by locality

according to the pattern of racial segregation [107].

In the recent years, some researches also suggest that the phenomena of gentri-

fication is a cause of perpetuation or even of the increase of RRS [108–111]. Gentrification

is defined by The Encyclopedia of Housing [112,113] as:

The process by which central urban neighborhoods that have undergone disin-

vestment and economic decline experience a reversal, reinvestment, and the

in-migration of a relatively well-off, middle and upper middle-class popula-

tion.

The main reason to indicate gentrification as a cause of perpetuation of racial segregation

is the presumed displacement of the low-income class, in many cases predominantly black
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or Hispanic citizens, from their native neighborhood during the gentrification process

[108, 111, 112, 114, 115]. Taking the example of New York City once again, there is an

intense debate about the gentrification of regions inside the neighborhoods of Harlem and

the borough of Brooklyn [116–118].

The aim of this project is to study the dynamics of RRS in New York City

from 1990 to 2010. Here, we developed a novel method able both to measure RRS and

to delimit the segregated zones. Indeed, differently from previous measures, our method,

in addition to quantifying the phenomena, provides a topography of the segregation.

Furthermore, in the section Comparison with the Dissimilarity index, we compare our

segregation index, the Overlap coefficient, with the dissimilarity index.

With the limit of the segregated zones, we analyze the per capita income in

each high-density zone of population (defined for each race) and also in the zones of

overlaps between them. In order to quantify income inequality, we calculated the Gini

coefficient in each zone. Then, we studied the variation of the per capita income and of

the properties’ value for the census tracts that change zone during these twenty years.

Finally, we focused on the segregation between white and black citizens. Particularly,

we used a simplified version of the City Clustering Algorithm (CCA) [5–12] to cluster

the high-density zone of black citizens and to measure the displacement and the area of

the four biggest clusters. Where one of these clusters includes a gentrified region in the

neighborhood of Harlem and another one is inside the borough of Brooklyn.

The project is structured as follows: first, we introduce the data and our

method. Then, we present the results of the application of the method to New York City.

Finally, we draw the conclusion about the results.

5.2 Database

All the data used in this project is extracted from the National Historical

Geographic Information System (NHGIS) [121]. The platform provides population, hou-

sing, agricultural, and economic data with GIS-compatible boundary files for geographic

units in the United States from 1790 to the present. From the platform, population

data has been extracted according to race, per capita income data, and the number of

owner-occupied housing units by value.

Population dataset (TABLE CW7 Persons by Hispanics or Latino

origin by race): The data provides the number of people for each race for the years

of 1990, 2000, and 2010 divided by Hispanic or Latino and Not Hispanic or Latino. We

consider white as Not Hispanic or Latino: white (single race), black as Not Hispanic

or Latino: black or African American (single race), Asian as Not Hispanic or Latino:
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Asian or Pacific Islander (single race), and Hispanic as Hispanic or Latino: white (single

race) plus Hispanic or Latino: black or African American (single race) plus Hispanic or

Latino: Asian and Pacific Islander (single race). The data table is downloadable with

the respective GIS-compatible boundary file formed by census tracts standardized to the

2010 census [122].

Per capita income dataset (BD5 Per capita Income in the Previous

Year): The data provides the average per capita income of each American census Tract

in the previous year of 1980, 1990, 2000, and between 2008 and 2012. The values are not

adjusted for inflation.

Properties values dataset (NH23 Specified owner-occupied housing

units and B25075 Owner-occupied housing units): The properties values data are

divided into two databases: the table NH23, for the year of 1990, and the table B25075,

for the years between 2006 and 2010. The tables provide the number of houses in each

price range. The price ranges are divided as: in the table NH23, in twenty ranges, and,

in table B25075, in twenty-four ranges from zero Dollar to infinity. For each tract, the

weighted arithmetic mean of the properties values has been calculated. The table B25075

is provided in the 2012 census tract and it is consistent with the Population data and

the per capita income data, whereas table NH23 is provided in 1990 tracts. Therefore,

through a superimposing process, the data was recomposed in the 2012 Census Tract.

The superimposing process consists in considering all the properties in a 1990 census

tract with centroid in a 2012 census tract as part of that 2012 census tract.

5.3 Method

The method consists of the following steps: first we define the limits of the city

using the City Clustering Algorithm (CCA) [5–12]. Second we find the high-density zones

for white, black, Asian, and Hispanic citizens. Finally, we measure the RRS through the

Overlap Coefficient.

The CCA is an algorithm introduced to define boundaries of metropolitan

areas [5–12]. Its result depends on two parameters: a population density threshold D∗ (in

people/km2), and a cutoff length ` (in km). The elementary information for population

data are provided in census tract. Where the tracts are geographic regions defined by

the United States Census Bureau [122]. For each tract, we have the total area and the

total population given by the sum of people of each race. Therefore, for each tract, its

population density is calculated. According to the CCA, the assumption is that only the

tracts with Di > D∗ are populated.

The next step of the algorithm is the clusterization. In this step, we define the
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urban center. For each populated tract, we draw a circle of radius ` with center in the

centroid of the tract. All populated tracts that have the centroid inside the circle belong

to the same cluster, and, therefore, the same city. The parameter D∗ and ` are chosen

respecting the isometry between area and population of the cities [6,7,10]. The algorithm

is applied in the entire country and, subsequently, we extract only the cluster equivalent

to New York City.

The importance of using the CCA to define the urban area of New York City

is due to the fact that RRS deeply depends on the definition of urban areas [91, 95, 97].

For example, it was shown in [6,7] that the Metropolitan Urban Areas (MSA) have large

inhabited regions. Instead, the aim of our research is to analyze RRS in a very dense

urban area, specifically in New York City.

We define the high-density (HD) zones as regions inside the city with a high

population density of a specific race. The HD zone of a specific race r is defined applying

a density threshold D∗r and considering populated with that race only the tracts with

Dr > D∗r . Dr is the population density of that race. The choice of parameter D∗r is made

by studying how the fraction of population of race r, with respect of the total population

of the same race inside the whole city, depends on it. Therefore, for each race r, we define

a parameter pr as:

pr =
Population of race r inside the HD r zone

Total population of race r inside the city
. (5.1)

To make the analysis as uniform as possible, we choose D∗r so that both D∗r and pr take

similar values for all considered races r.

In the Fig 21 we show the variation of the parameter p in function of parameter

D∗r for each race in New York City. We consider the same fraction of people in three cases

using a similar D∗r : when it is next to 0, to∞, and ∼ 2000. The first two are trivial, in fact

they shows respectively all and any population. While in p = 0.8 (that is considering the

80% of the total population for each race), we have for each race D∗ ∼ 2000. The dotted

black line in the Figure is exactly in p = 0.8 showing the 80% of the total population

of each race. Parameter pr has been tested in the interval from 0.7 to 0.9 without find

deep discrepancies in the results. Therefore, at the end of this step, the method provides

well-defined geographic limits of the HD zones for each race.

From the definition of the HD zones, we measured the RRS between two races

computing the sharing area (or overlap area) between the two HD zones. Therefore, we

define the Overlap coefficient (or Szymkiewicz-Simpson coefficient [119]) as:

Orr′ =
|Xr ∩Xr′|

min(|Xr| , |Xr′ |)
, (5.2)
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Figura 21: Variation of p in function of parameter D∗
r for each race in New

York City in 2010. The Figure shows the variation of parameter p in function of
parameter D∗ for white, black, Asian, and Hispanic. The dashed black line in p = 0.8
shows the 80% of the total population for each race.

where Xr and Xr′ are respectively the HD zone areas of races Xr and Xr′ . Coefficient

Orr′ is the sharing area between the HD r zone and the HD r′ zone divided by minimum

area between the two zones. The Overlap coefficient is included between 0 and 1. When

it is next to 0 (low overlap), the coefficient indicates high segregation, while when it is

next to 1 (high overlap), it indicates low segregation (see Table 3).

5.4 Results

Firstly, we defined the limits of New York City by applying the CCA to the

population data in 2010. Then, we calculated the HD zone for white, black, Asian, and

Hispanic for the year of 1990, 2000, and 2010. In Fig 22, we show the dynamics of the

segregation between: white and black; white and Hispanic; and white and Asian citizens

with the respective Overlap zones.

For each pair of races, we calculated the Overlap coefficients and the results

were presented in Table 3. The Table shows that the segregation between white and

black, and black and Asian citizens remain quite stable during the time interval. While

segregation between white and Hispanic, white and Asian, and Hispanic and Asian has

increased, the segregation between black and Hispanic citizens has decreased. Black

people are constantly the most segregated having a high overlap coefficient only with

Hispanic.

After the definition of the HD zones and the Overlap zones, we calculated the
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Figura 22: Dynamics of the HD zones of: a) white (in blue), black (in red), and
Overlap between white and blacks (in black). b) whites (in blue), Hispanics (in green),
and Overlap between whites and Hispanics (in black). C) whites (in blue), Asians (in
yellow), and Overlap between whites and Asians (in black). Dark grey tracts are part of
the city that do not belong to any of the zones, while light grey tracts are not part of
New York City.

average per capita income of each race inside each zone for the years of 1990, 2000, and

2010. The results are presented in Fig 23, where “only” means the HD zone without the

Overlap zone. The Figure shows that white citizens earn more than all the other races

in all the zones except in the study of the segregation between white and Asian citizens.

While, black and Hispanic citizens earn less than whites in all the zones. Moreover, the

Figure shows that income inequality between white and black citizens is greater in the

Overlap zone than in the only white zone and the only black zone.

To deepen the per capita income inequalities for each study of segregation

(white and black, white and Hispanic, and white and Asian), we calculated the Gini

coefficient [120] inside each of them. The results are presented in Fig 24. The Gini

coefficient varies from 0 to 1. When it is next to 0, there is not inequality, while when it

is next to 1, inequality is maximum [120]. The Figure shows that inequality is greater in

the Overlap zones in all cases in favor of whites.
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Tabela 3: Overlap Coefficients

1990 2000 2010
White and Black 0.22 0.19 0.20
White and Hispanic 0.61 0.53 0.47
White and Asian 0.82 0.73 0.67
Black and Hispanic 0.52 0.52 0.61
Black and Asian 0.27 0.24 0.26
Hispanic and Asian 0.58 0.48 0.29

Figura 23: Per capita income analysis. The Figure shows the mean per capita
income for each race for the study of the segregation between white and black, white
and Hispanic, and white and Asian for the years of 1990, 2000, and 2010.

Furthermore, we analyzed the tracts that migrated from one zone to another

from 1990 to 2010 for the studies of segregation between: white and black citizens in

Fig 25; white and Asian citizens in Fig 26; and white and Hispanic citizens in Fig 27.

The colors in the maps in Figs 25-26-27 show the alternatives of migration of the tracts

from one zone to another, which are described in the caption. For each alternative, we

calculated the average variation of the per capita income (∆I) and the average variation

of the properties values (∆H) normalized by the average variation in the city (δI and
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Figura 24: Gini coefficient for the years of 1990, 2000, and 2010. The Figure
shows the Gini coefficient in the HD only zones and in the Overlap zones for the study
of segregation between: white and black, white and Hispanic, and white and Asian.

δH) from 1990 to 2010. The variations are defined as:

∆I =
1

N

N∑
i=1

δIi − δI∣∣δI∣∣ , (5.3)

and,

∆H =
1

N

N∑
i=1

δHi − δH∣∣δH∣∣ . (5.4)

Where N is the number of tracts of the analyzed pairs of races and δIi and δHi are the

variations of the per capita income and properties values of tract i, respectively. Therefore,

positive ∆I or ∆H mean growth higher than the city mean, while, conversely negative

∆I or ∆H mean growth lower than the city mean.

Moreover, we focused on the segregation between white and black citizens and

the flux of people from 1990 to 2010 inside the tracts that migrated from one zone to

another or to the Overlap zone. The flux of people of a specific race inside a tract is

the variation of people of that specific race X inside tract i compared with the mean

variation of that specific race in the whole city. Similarly to Eq 5.3 and 5.4, the average

flux ∆FluxX is defined:

∆FluxX =
1

N

N∑
i=1

δF luxX,i − δF luxX∣∣δF luxX∣∣ , (5.5)

where δF luxX is the mean flux of race X in the whole city.

In Fig 28, still focusing on the segregation between white and black citizens,

we show: the variation of income; the variation of properties values; and the flux of people

in the tracts that change zone between the years 1990 and 2010. For those tracts, in Fig

29 we compare the variation of the flux of white and black citizens with the variation of
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Figura 25: Tracts that migrated from one zone to another or to the Overlap
zone from 1990 to 2010: white and black citizens. All the tracts that changed
zone during the period from 1990 to 2010 are shown on the map, while the colors show
the different alternatives of migration. Furthermore, for each alternative of migration,
the value of ∆H and ∆I is shown.

the properties values. In Fig 29a, we show the outgoing white flux in orange where the

red square is the centroid. In blue, we show the incoming white flux, where the black

circle is the centroid. While in Fig 29b we show the outgoing black flux in green and the

red square is the centroid. The incoming black flux in the considered tracts is shown in

red and the black circle is the centroid. The Figures show that where the flux of white

citizens is on average positive, also the properties values increase more than the mean, as

well as where the flux of black citizens is negative on average.

To investigate the dynamics and the displacement of black citizens in New

York City, we deepened the HD black zone. With a simplified version of the CCA we

divided in clusters the HD black zone. Indeed, we ignored the threshold D∗ and we apply

the cutoff length `′. The parameter `′ is chosen by analyzing the distribution of the tracts

area. Each tract area is considered as a circle with the same area. The mean radius has

been found to be r̄ = 1.3 km, therefore in order to consider two neighbors tracts as part
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Figura 26: Tracts that migrated from one zone to another or to the Overlap
zone from 1990 to 2010: white and Asian citizens. Similar to Fig 25, here we
analyze white and Asian citizens.

of the same cluster, we used `′ = 1.5 km. The results of the clusterization for the years

1990 and 2010 are shown in Fig 30. In the Figure, we highlight the four biggest clusters

A, B, C, and D.

For the four biggest clusters (A, B, C, and D), in Table 4 we show the area of

each of them for the years 1990 and 2010 and also the displacement of clusters’s centroid,

highlighting the fact that cluster A and C have a displacement about three times higher

than clusters B and D. In Fig 31, we show the displacement of clusters A and C from 1990

to 2010. The cluster A includes a region in the neighborhood of Harlem, while the cluster

B is inside the boroughs of Brooklyn. In the same Figure, we also show the variation of

the per capita income ∆I for the tracts that change zone in the analyzed period.
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Figura 27: Tracts that migrated from one zone to another or to the Overlap
zone from 1990 to 2010: white and Hispanic citizens. Similar to Fig 25 and 26,
here we analyze white and Hispanic citizens.

5.5 Comparison with the Dissimilarity index

In order to verify the robustness of our method, we compared the Overlap

coefficient defined in Eq 5.2 with the dissimilarity index [103]:

Dab =
1

2

N∑
i=1

∣∣∣∣aiA − bi
B

∣∣∣∣ , (5.6)

where ai is the population of race a in tract i and bi, the population of race b in the same

tract. A and B are the total population of race a and b in the whole city, where the city

Tabela 4: Areas and displacements of the four biggest clusters of the HD black zone.

Area1990 (km2) Area2010 (km2) Displacement2010−1990 (km)
A 30.7 32.8 1.55
B 38.0 54.6 0.44
C 41.8 44.1 1.57
D 37.3 58.2 0.64
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Figura 28: Segregation between white and black. The Figure shows: a) the
variation of the per capita income, b) the variation of the properties values, c) the
incoming flux of white, and d) the incoming flux of black for the tracts that migrated
from one zone to another or to the Overlap zone from 1990 to 2010.
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Figura 29: Variation of properties values in function of the incoming flux of
white and black citizens for the tracts that change zone from 1990 to 2010.
a) Variation of the properties values in function of the incoming flux of white citizens.
The tracts with an outgoing flux of white are shown in orange, while the tracts with an
incoming flux of white are shown in blue. The black red square is the centroid of the
outgoing flux, while the black circle is the centroid of the incoming flux. b) Variation of
the properties values in function of the incoming flux of black citizens. The tracts with
an outgoing flux of black are shown in green, while the tracts with an incoming flux of
black are shown in red. The black red square is the centroid of the outgoing flux, while
the black circle is the centroid of the incoming flux.

is defined using the CCA. N are all the tracts that belong to New York City. The value

of Dab varies from 0 to 1. When it is next to 1, RRS is high, and vice versa, when it is
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Figura 30: Clusterization of the HD black zone for the years of 1990 and 2010.
The Figure shows the results of the clusterization of HD black zone using parameter
`′ = 1.5 km for the years of 1990 and 2010. The four biggest clusters A (in red), B (in
dark green), C (in yellow), and D (in light green) are highlighted.
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Figura 31: Displacement of clusters A and C and the variation of per capita
income. The Figure shows the displacement of cluster A (equivalent to the
neighborhood of Harlem and the borough of Bronx) and C (equivalent to the borough of
Brooklyn). The clusters in the year 1990 are shown in yellow and the clusters in the
year of 2010 are shown in red, with the respective centroids. The figures below show
qualitatively the variation of the per capita income for the tracts that change zone in
the analyzed period.
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Tabela 5: Dissimilarity index

1990 2000 2010
White and Black 0.81 0.80 0.79
White and Hispanic 0.64 0.64 0.62
White and Asian 0.47 0.50 0.51
Black and Hispanic 0.58 0.58 0.54
Black and Asian 0.78 0.78 0.76
Hispanic and Asian 0.56 0.58 0.58

next to 0 there is not segregation. It shows the percentage of one of the two populations

that have to move in order to reduce segregation to 0 [103]. The results obtained in New

York City are shown in Table 5.

To analyze the correlation between the two indexes, we plot the dissimilarity

indexes Dab found in New York City as a function of their respective Overlap coefficients

Orr′ (where Xr is the HD zone of race a, and Xr′ of race b) in Fig 32. The red line in

the Figure shows the result of the Ordinary least Square (OLS). As expected, the relation

is inverse with a linear coefficient m = −0.57 ± 0.01. Whereupon, in order to quantify

the correlation between the two indexes, we calculated the Pearson correlation coefficient

(PCC), ρD,O = −0.96. The value implies a strong inverse correlation between the two

indexes, proving the robustness of our method.

0.2 0.4 0.6 0.8
O

0.5

0.6

0.7
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ρDO= −0.96

Figura 32: Dissimilarity index D as a function of the Overlap coefficient O.
The red line is the OLS with angular coefficient m = −0.57± 0.1. The Pearson
correlation coefficient, ρ = −0.96, shows a strong inverse correlation between the two
indexes.
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5.6 Discussion

We developed a new method in order to measure and to define the topography

of RRS and it has been applied to the metropolitan area of New York City for the years

of 1990, 2000, and 2010. Despite the fact that several studies show that, on average,

segregation between white and black citizens in the United States has decreased in the

last fifty years [91–94], our results show that it has remained quite stable during the time

interval 1990-2010 in the metropolitan area of New York City as well as for black and

Asian citizens. Instead, segregation between white and Hispanic, white and Asian, and

Hispanic and Asian citizens has grown. Only black and Hispanic are less segregated in

2010 compared with 1990.

By analyzing the per capita income, we observed that white citizens earn more

than the other races in all the regions, except when we studied the segregation between

whites and Asian, where Asian citizens have a similar income to white citizens. Regarding

the segregation between white and black citizens, we verified that black citizens earn less

than white citizens in all the regions. Furthermore, the inequality between white and

black citizens is greater in the regions of high density of population of both the races.

This result is confirmed by the Gini coefficient, in fact we showed that it is higher in the

regions of high density of population of two or more races.

Furthermore, we deepened the segregation between white and black and the

segregation between white and Hispanic citizens. We analyzed the tracts that change

population density from 1990 to 2010 (from region of high density of black, Hispanic, or

overlap with white citizens) to region of only high density of white citizens. In this region,

we observed that the per capita income and the properties values increased more than the

city mean. Conversely, in the tracts that migrated from a region of overlap to a region

with high density of population of only black or Hispanic citizens we observed that the

per capita income and the properties values increased less than the mean. The same does

not happen deepening the segregation between white and Asian citizens.

Focusing on the segregation between white and black citizens, we analyzed the

flux of white and black citizens in function of the variation of the properties values. Here,

we confirmed our previous result, that is where the flux of white citizens is positive, the

properties values increased more than the city mean, while, where the flux of black citizens

is positive, the properties values increased less than the city mean. How can low-income

black citizens continue to live in places where the properties increase more than the city

mean?

Previous studies [116–118] questioned the effects of gentrification in the neigh-
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borhood of Harlem and in the borough of Brooklyn. Here, by clustering the region of high

density of black citizens, we showed the displacement of the clusters defined as A (that

include a region inside the neighborhood of Harlem) and B (that is inside the borough

of Brooklyn). The displacement is of respectively 1.55 km and 1.57 km in twenty years.

This result confirms the theory of displacement of black citizens in the neighborhood of

Harlem and in the borough of Brooklyn. Moreover, we showed the census tracts that

migrate out from the cluster A or C have an increase of the per capita income higher than

for the tracts that migrate in those clusters.
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6 GENERAL CONCLUSION

The aim of this thesis is to show three projects developed by us in the field of

the physics of complex systems. All the three projects are founded in the statistical analy-

sis of real data. The first project The light pollution as a surrogate for urban population of

the US cities showed that it is plausible to utilize night-time light as a surrogate for city

population. Furthermore, it showed that there is no economy of scale or sublinearity con-

cerning the night-time light in US cities and we corroborated previous works showing that

the scaling behaviors of urban indicators with population can be substantially different

for distinct definitions of city boundaries.

In the second project Dynamics in the Fitness-Income plane: Brazilian States

VS World Countries, we developed a variant of the Fitness algorithm for subnational

entities and we applied it to the Brazilian states. Our results showed deep analogies

between the dynamics of the world countries and the dynamics of the Brazilian states

in the Fitness-Income plane. Indeed, we showed the high predictability of growth of the

economy of several states, while for others the dynamics is less predictable.

In the last project entitled Dynamics of racial segregation and gentrification

in New York City, we analyzed the phenomenon of the racial residential segregation in

New York City. We developed a new index for measure the residential segregation able

to define the topography of the segregated zones. We compared the dynamics of the

segregation with the dynamics of per capita income and the properties values, showing

deep discrepancies in function of the region and the races. Furthermore, we measured

the displacement of black citizens in the gentrified neighborhood of Harlem and in the

borough of Brooklyn.

These three projects are examples of how physicists can contribute in social

sciences and in economy. The ability of extract information from a large and, often

complex, data is not only a peculiarity of physicists, but it needs the collaboration and

the interconnection among scientists of different areas. This view is coherent with an

holistic view of the nature, where divisions inside the science are only human artifices.

Perhaps, the state of the art of a new science is without limits among the fields of study,

and in this context the physics of the complex systems is a little step in this direction.
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APÊNDICE A -- PUBLISHED PAPERS



Please cite this article in press as: F.G. Operti, et al., The light pollution as a surrogate for urban population of the US cities, Physica A (2017),
https://doi.org/10.1016/j.physa.2017.11.039.

Physica A ( ) –

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

The light pollution as a surrogate for urban population of the
US cities
Felipe G. Operti a, Erneson A. Oliveira a,b,*, Humberto A. Carmona a,
Javam C. Machado c, José S. Andrade Jr. a
a Departamento de Física, Campus do Pici, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
b Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza, 60811-905, Fortaleza, Ceará, Brazil
c Departamento de Computação, Campus do Pici, Universidade Federal do Ceará, 60455-760, Fortaleza, Ceará, Brazil

h i g h l i g h t s

• City boundaries influence the scaling of the night light as a function of population.
• Small and large cities are indistinguishable in terms of light pollution.
• It is plausible to utilize the night-time light as a surrogate for city population.

a r t i c l e i n f o

Article history:
Received 14 June 2017
Received in revised form 1 November 2017
Available online xxxx

MSC:
00-01
99-00

Keywords:
Allometry
Night-time light
Light pollution
City clustering algorithm
Metropolitan/Consolidated Metropolitan
Statistical Area

a b s t r a c t

We show that the definition of the city boundaries can have a dramatic influence on
the scaling behavior of the night-time light (NTL) as a function of population (POP) in
the US. Precisely, our results show that the arbitrary geopolitical definition based on the
Metropolitan/ConsolidatedMetropolitan Statistical Areas (MSA/CMSA) leads to a sublinear
power-lawgrowth ofNTLwith POP. On the other hand,when cities are defined according to
a more natural agglomeration criteria, namely, the City Clustering Algorithm (CCA), an iso-
metric relation emerges between NTL and population. This discrepancy is compatible with
results from previous works showing that the scaling behaviors of various urban indicators
with population can be substantially different for distinct definitions of city boundaries.
Moreover, considering the CCA definition as more adequate than the MSA/CMSA one
because the former does not violate the expected extensivity between land population
and area of their generated clusters, we conclude that, without loss of generality, the CCA
measures of light pollution and population could be interchangeably utilized in future
studies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

More than 80% of the world and more than 90% of the US and European populations live under light-polluted skies
(exposition to light at night) [1]. Since the first electric-powered illumination in the second half of the 19th century, theworld
has become covered by artificial electric light, changing drastically the night view of the Earth from space. The spreading
of artificial electric light plays an important role on the duration of the productive day, not only for working but also for
recreational activities. If in one hand the benefits of artificial light are quite evident, on the other hand, scientific researches

* Corresponding author at: Departamento de Física, Campus do Pici, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
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suggest that the exposition to light at night could have adverse effects on both human andwildlife health [2–9]. For example,
in humans, the pineal and blood melatonin rhythms are quickly disturbed by light pollution. Such studies argue that the
night light exposure have two major physiological effects: they disrupt the circadian rhythms and suppress the production
ofmelatonin [8]. This repeated suppressionmayhave large consequences for themammals health. For instance, itwas shown
that the suppression of the melatonin at night accelerates the metabolic activity and growth of rat hepatoma [5] and human
breast cancer [3]. Moreover, the disruption of circadian rhythmsmade by the exposure of light at night might plays a crucial
role in the etiology of depression [8].

The significant consequences of the exposure to night-time light (NTL) with the fact that 54% of world’s population lives
in urban areas stimulates the interest in understanding how the light pollution evolves with the size of the US cities [10].
Bettencourt et al. found the cities in the US exhibit three different types of allometric laws for urban indicators with
population size [11]: (i) Superlinear . The superlinear urban indicators increase proportionally more than the population of
the cities. Such behavior is intrinsically associatedwith the social currency of a city, indicating that larger cities are associated
with optimal levels of human productivity and quality of life. Doubling the city size leads to a larger-than-double increment
in productivity and life standards [11–13]. For example, wages, income, growth domestic product (GDP), bank deposits,
as well as rates of invention measured by the number of patents and employment in creative sectors show a superlinear
behavior [11]. (ii) Linear or isometric relation. The increasing of the linear urban indicators is proportional to the increasing
of the population reflecting the common individual human needs, like the number of jobs, houses, and water consumption
[11]. (iii) Sublinear. The sublinear urban indicators increase proportionally less than the population of the cities. This case is
a manifestation of the economy of scale. The sublinearity is found in the number of gasoline stations, length of electrical
cables, and road surfaces (material and infrastructure) cases [11]. From the results shown by Bettencourt et al., several
studies have been carried out on the allometry of urban indicators in different levels of human aggregation [14–20]. For
instance, recently therewere found correlations between the flows of energies andmaterial (such as electricity consumption,
water consumption, etc.) and several urban indicators (such as population growth, economic activity, etc.) for the world’s
27 megacities with populations greater than 10 million people in 2010 [21]. Furthermore, the deepening of the energy
metabolism of megacities showed an allometric scaling between the per capita total energy consumption and the urban
population densitywith the characterized -3/4 coefficient, proving that compact cities aremore energy efficientwith respect
dispersed ones [22]. Following this aim, we analyze and classify the allometric law between the NTL and the population of
the US cities.

Here, we use three geo-referenced dataset: the population dataset, the NTL dataset and the Metropolitan/Consolidated
Metropolitan Statistical Area (MSA/CMSA). In order to define the boundaries of each US city, we use two methods: the City
Clustering Algorithm (CCA) [23–26] and the MSA/CMSA [27]. Finally, we find the allometric scaling between the NTL and
the population for the two appliedmethods. Furthermore, to compare them, we analyze the allometric scaling between area
and population.

2. Materials and method

2.1. Population dataset (GPWv4)

The population dataset is extracted from the fourth version of the Gridded Population of theWorld (GPWv4) [28,29] from
the Center for International Earth Science Information Network (CIESIN) at the Columbia University. The GPWv4models the
human population distribution on a continuous surface at high resolution. Population input data is collected through several
censuses around the US, between 2005 and 2014. Data are provided in grid form, where each cell is formed by 30 arc-second
angles (approximately 1 km × 1 km at the Equator line). We use the US population count data, measured in number of
people, for the year 2015, as depicted in Fig. 1a.

The method successively introduced requires the population density of each grid cell. Therefore, we calculated the area
of each grid cell dividing them into two spherical triangles. The area of a spherical triangle with edges a, b and c is given by,

A = R2E, (1)

where R = 6378.137 km is the Earth’s radius and the spherical excess E is defined by the following expression:

E = 4tan−1
[
tan

( s
2

)
tan

( sa
2

)
tan

( sb
2

)
tan

( sc
2

)]1/2
. (2)

with s = (a/R+ b/R+ c/R)/2, sa = s− a/R, sb = s− b/R, and sc = s− c/R. In this context, the distance between two points,
i and j, on the Earth’s surface is calculated by,

dij = Rθ, (3)

with

θ = cos−1
[sin(yi) sin(yj) + cos(yi) cos(yj) cos(xj − xi)]. (4)

In this formalism, the values of xi (xj) and yi (yj) are the longitude and latitude, respectively, of the point i (j), measured
in radians.
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Fig. 1. Datasets (on colors). (a) The population dataset is defined as a 30 arc-second geolocated grid. It is obtained from the GPWv4 in logarithmic scale for
the year 2015 [28,29]. (b) The NTL dataset is obtained through the night-time light radiance emission data from the VIIRS DNB in nW/cm2/sr [30–32]. It
is defined at the resolution of 15 arc-second grid in logarithmic scale for the year 2015 (April).

2.2. Night-time light dataset (NTL)

TheNTL dataset is given by the night-time light radiance emission data from theNational Centers for Environmental Infor-
mation (NCEI) [31]. The NTL dataset is defined by themonthly average of radiance, measured in nW/cm2/sr, using the night-
time data from the scanning radiometer Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) [30–32].
The VIIRS DNB data are processed and filtered in order to exclude data impacted by the lunar illumination, lightning and
cloud-cover, but they are susceptible to other temporal lights, e.g. aurora, fires, and boats [30,31]. Such data span through
the entire globewith a resolution of 15 arc-second (approximately 500m× 500m at the Equator line) between the latitudes
75◦ North and 65◦ South. We use the US data for the year 2015 (April), as shown in Fig. 1b.

2.3. Metropolitan Statistical Area (MSA), Primary Metropolitan Statistical Area (PMSA) and Consolidated Metropolitan Statistical
Area (CMSA)

The MSA are geographic entities with high degree of socioeconomic integration and population over 50,000 people. The
PMSA are quite similar toMSA, however they present population over 1,000,000 people. The CMSA aremetropolitan regions
defined by the agglomeration of some PMSA. They are all delineated by the Office of Management and Budget (OMB) and
provided by the US Census Bureau [27].

2.4. Data processing

In order to superimpose the datasets, we perform two processes: (i) The two datasets, NTL and GPWv4, have different
resolutions. Indeed, the NTL grid has a higher resolution than the GPWv4 grid. Here, we define a newNTL grid with the same
positioning and resolution of the GPWv4 dataset. Therefore, the newNTL cells are defined by the adding of the inner old NTL
cells, i.e. the old NTL cells within the perimeter of each new NTL cell. (ii) For the MSA/CMSA case, we use the same approach
of (i), even though the MSA/CMSA are complex polygons. To deal with this problem, we use the even–odd rule algorithm
[33]. Thus, we define the NTL value for each MSA/CMSA.

2.5. City Clustering Algorithm (CCA).

We define the boundaries of each US city by applying the CCA to the population grid [23–26]. We use the continuum CCA
that depends on two parameters, namely, a population density threshold, D∗ and a cutoff length, ℓ [26]. For the ith grid cell,
the population density Di is geo-referenced in its geometric center (shown as small black circles in Fig. 2). If Di > D∗, the
ith grid cell is populated. In Fig. 2 the populated cells are shown in gray and red. Next, the algorithm selects a populated cell
(red cell in Fig. 2a) and aggregates in the same cluster all nearest populated cells which are within a distance ℓ from each
(red cells in Figs. 2b, c and d). The Fig. 2 shows the four steps to determine the red cluster.
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Fig. 2. The CCA steps. The gray and the red cells are populated (Di > D∗). The small black circles are the geometric centers of each populated cell. The red
cells belong the same analyzed cluster. (a) First step: the algorithm select a populated cell and draw a circle of radius ℓ. (b) Second step: the cells with the
geometric centers inside the circles of radius ℓ become a part of the red cluster and from their geometric center are drawn others two circles of radius ℓ. The
circle of the first step is showed in opaque black. (c) Third step: two more cells became part of the red cluster and two more circles are drawn. (d) Fourth
step: the last cell became part of the red cluster. The entire cluster is determined and the algorithmwill start to analyze another cluster. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Results

We apply the CCA to the population grid varying D∗ (in people/km2), from 0 to 10000, and ℓ (in km), from 1 to 20. For
all pairs of parameters, we find that it is possible to statistically correlate through power-law relations the area and the
population as well as the NTL and the population of the US cities,

log(AREA) = a + αCCA log(POP), (5)

log(NTL) = b + βCCA log(POP). (6)

The exponents αCCA and βCCA are obtained through Ordinary Least Square (OLS) [34] fitting to the data for different
values of the parameters D∗ and ℓ. The ranges of compatibility and the consistency of the CCA technique are investigated in
Fig. 3a–d.

Indeed, the definition of the parametersD∗ and ℓ of the CCA affects the dimension and the geometry of the cities, but from
Figs. 3c and d, it can be seen that it does not affect the allometric exponent βCCA. In Fig. 3d, there is a noticeable tendency
towards smaller values of β for ℓ > 10. This fact is due to the grouping of many clusters at once, which leads to a decreasing
of the number of cluster samples. Therefore, such decreasing is reflected in large error bars for ℓ > 10, i.e. a larger statistical
fluctuation. Here, our starting strategy is to determine a range of parameters D∗ and ℓ for which the relation between area
and population is isometric [25,26,15,19]. We find that for D∗ > 4000 and ℓ = 3 the allometric exponent αCCA is between
0.93 and 0.95 and we consider this relation approximately linear. Inside this range, we analyze the result of the CCA using
D∗

= 4560 and ℓ = 3,where the five larger cities in theUSNortheast Coast naturally emerge, as depicted in Fig. 4.We believe
that, the lack of an exactly linearity, also inside this range, is due to the high density of some downtowns, specifically, of the
most populated urban centers of the US Northeast Coast.

For the pair of parameters, D∗
= 4560 and ℓ = 3, we find a allometric exponent αCCA = 0.93 ± 0.01 (Fig. 5a). The

slight sublinearity of the scaling exponent is due to the lack of statistics for large cities and, consequently, such fact tends to
produce a small deviation in the linear regression coefficient. We also find a linear scaling between NTL and the population
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Fig. 3. Allometric exponent αCCA and βCCA as a function of the parameter D∗ and ℓ. (a) The exponent αCCA as a function of D∗ for ℓ = 3 km. The parameter
D∗ varies from 0 to 10000 people/km2 . For D∗ > 4000 and ℓ = 3 the allometric exponent αCCA is between 0.93 (dashed blue line) and 0.95. For D∗

= 4560
people/km2 (dashed red line) we observe the arising of five large cities in US Northeast Coast. (b) The exponent αCCA as a function of the CCA parameter ℓ for
D∗

= 1000, 2000, 3000, 4000, and 5000 people/km2 . We find a plateau region after ℓ = 3 km, where αCCA ≈ 0.93 (dashed blue line). (c) The figure shows
the allometric exponent βCCA as a function of D∗ for ℓ = 3 km. The parameter D∗ varies from 0 to 10000 people/km2 . The dashed red line corresponds to
β = 1. (d) The figure shows the allometric exponent βCCA as a function of the CCA parameter ℓ for D∗

= 1000, 2000, 3000, 4000, and 5000 people/km2 . The
dashed brown line corresponds to β = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Application of CCA to the US Northeast region. We use the CCA parameters D∗
= 4560 people/km2 and ℓ = 3 km. The clusters of different colors

identify different urban agglomerations. Essentially, we distinguish five famous cities such as Boston (light green), New York (green), Philadelphia (pink),
Baltimore (red), and Washington D.C. (gold). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Allometric exponent α applying the CCA and using the MSA/CMSA definitions. (a) The figure shows the allometric scaling law in Eq. (5) and its
allometric scaling exponent αCCA = 0.93 ± 0.01 using CCA parameters D∗

= 4560 people/km2 and l = 3 km. The red line is the OLS result, and the
solid black line is the Nadaraya–Watson estimator (N–W) [35,36]. The dashed black lines show the 95% confidence bands of the N–W. The dashed blue
line corresponds to α = 1. (b) The figure shows the allometric scaling exponent αMSA/CMSA = 0.49 ± 0.03 using the MSA/CMSA definitions. The red line
is the OLS result, and the solid black line is the N–W estimator. The dashed black lines show the 95% confidence bands of the N–W. The dashed blue line
corresponds to α = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. NTL versus population using the CCA and the MSA/CMSA definitions. (a) NTL versus population using CCA parameters D∗
= 4560 people/km2

and l = 3 km. The graph shows a linear relation between the NTL measured in nW/cm2/sr and the population with allometric scaling exponent
βCCA = 1.01 ± 0.02 (R2

= 0.88). The solid red line is the linear regression obtained using the OLS method. The solid black line is the Nadaraya–Watson
estimator (N–W) and the dashed black lines show the lower and the upper confidence interval (95%) [35,36]. The dashed blue line corresponds to β = 1.
(b) NTL versus population using MSA/CMSA. The graph shows a sublinear relation between the NTL, measured in nW/cm2/sr, and the population with
allometric scaling exponent β = 0.89 ± 0.02 (R2

= 0.89). The red line is the linear regression and the black line is the N–W estimator. The dashed black
lines show the 95% confidence band of the N–W. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

with exponent βCCA = 1.01 ± 0.02 (Fig. 6a). Alternatively, others parameters inside this range could be analyzed without
affecting the allometric exponent βCCA (as shown in Figs. 3c and 3d).

By analyzing the allometric scaling of the NTL with the population of the US cities using the MSA/CMSA (Fig. 6b), we
obtain the allometric exponent βMSA/CMSA = 0.89 ± 0.02. Such an exponent characterizes a sublinear relation between the
NTL and the population, in contrast with the CCA result.

As shown in Fig. 5b, the sublinear scaling behavior of the MSA/CMSA areas as a function of their corresponding
populations, αMSA/CMSA = 0.49 ± 0.03, clearly suggests that this might not be the most adequate definition of a city
agglomerate to be adopted in our study.

As indicated by Oliveira et al. [15], the arbitrary geopolitical concept behind the MSA/CMSA seems to overestimate the
natural limits of urban areas. In order to illustrate this fact, we show in Fig. 7 the MSA/CMSA of the five most populated US
regions, namely, New York-Northern New Jersey-Long Island (NY, NJ, CT, PA), Los Angeles-Riverside-Orange County (CA),
Chicago-Gary-Kenosha (IL, IN, WI) and Houston-Galveston-Brazoria (TX). The first and second columns show respectively
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Fig. 7. Comparison between the CCA and MSA/CMSA (on colors). Figures (a), (d), (g) and (j) are the human population grid in logarithmic scale obtained
from the GPWv4 for the year 2015 [28,29]. Figures (b), (e), (h) and (k) are the NTL measured in logarithmic scale with units nW/cm2/sr obtained through
the night-time light radiance emission data from the VIIRS DNB [30–32]. In figures (c), (f), (i) and (l) we show the CCA clusters obtained using the CCA
parameters D∗

= 4560 people/km2 and l = 3 km of the CMSA of: New York-Northern New Jersey-Long Island (NY, NJ, CT, PA), Los Angeles-Riverside-
Orange County (CA), Chicago-Gary-Kenosha (IL,IN,WI) and Houston-Galveston-Brazoria (TX). The figures show the discrepancy between the area estimated
by the MSA/CMSA and the area delimited by the CCA.

the detailed maps of the population and the NTL datasets. The third column exhibits the cities defined by the CCA with
D∗=4560 and ℓ=3, as well as the discrepancy between the urban areas belonging to MSA/CMSA and CCA.

4. Conclusions

We analyzed the allometric scaling behavior of the NTL as a function of the population of the US cities. Our results
corroborate previous works showing that the scaling behaviors of urban indicators with population can be substantially
different for distinct definitions of city boundaries. Precisely, using theMSA/CMSAdefinition,we found a sublinear allometric
scaling exponent βMSA/CMSA = 0.89 ± 002. Applying the CCA, we found an exponent βCCA = 1.01 ± 0.02 which indicates
an isometric relation between the light pollution and the population of the US urban agglomerations, in clear contrast
with the exponent obtained using the MSA/CMSA. Considering the consistency of the CCA definition in terms of the
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extensivity between land population and area of their generated clusters, as demonstrated in previous studies for other
urban indicators [15], we come to the conclusion that the proportionality between light pollution and population is indeed
correct, as intuitively expected [37]. Under this framework and without loss of generality, it is therefore plausible to utilize
NTL as a surrogate for city population in future studies.

The isometric relation betweenNTL and population of the US urban agglomeration, obtained applying the CCA, imply that
small and large cities are proportionally indistinguishable in terms of light pollution. In other words, there is no economy of
scale or sublinearity concerning the NTL in US cities. Our result shows that a growth of the US cities will aggravate the light
pollution and therefore the possible negative effects of the light pollution for the humans and the wildlife health.
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Abstract
In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fit-

ness of subnational entities and we apply it to the states of Brazil. In the last decade, several

indices were introduced to measure the competitiveness of countries by looking at the com-

plexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called

Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the

other BRIC countries, we introduce a new methodology based on the Fitness algorithm,

called Exogenous Fitness. Combining the results with the Gross Domestic Product per cap-

ita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two

regimes are distinguishable: one with high predictability and the other with low predictability,

showing a deep analogy with the heterogeneous dynamics of the World countries. Further-

more, we compare the ranking of the Brazilian states according to the Exogenous Fitness

with the ranking obtained through two other techniques, namely Endogenous Fitness and

Economic Complexity Index.

Introduction

Large countries are often characterized by a strong internal heterogeneity between richer

regions and poorer hierarchical regions. Just think to the difference between the GDP per cap-
ita (GDPp) of the states of New York and Mississippi in the US [1], or the difference between

the states of Kerala and Bihar in India [2], or between the unexplored forest of Amazon and

the modern state of São Paulo in Brazil [3]. While the recent literature on Economic Complex-

ity focused on countries [4–7], we believe that there are two very strong reasons to extend the

scope of the analysis to the subnational level.

The first reason is purely academic. Indeed, sharp differences in economic outcomes in a

uniform institutional area—with common cultural background and free movement of workers

—are both a theoretical puzzle for traditional economics and an empirical opportunity for the

Economic Complexity field. Indeed, the analysis of subnational entities competing on an even
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playing field is the perfect experimental setup to identify the role of organizational and techni-

cal capabilities with respect to more traditional economic factors of analysis. In this paper we

will analyze the case of Brazil, to see if the capabilities driven dynamics of a country is repli-

cated at a smaller scale.

The second reason is to improve economic forecasting. Indeed Economic Complexity has

been proved to be very effective in forecasting the economic performances of countries [8]. An

understanding of subnational entities could give however more accuracy and more detail. It is

clear for example that future GDPp growth of Brazil will depend not only on further growth of

the Southern industrial core, but on the convergence of the other regions. This is crucial both

to correctly forecast aggregate Brazil GDPp growth and to address the vast internal inequality

of the country.

Brazil or, officially, the Federative Republic of Brazil is the ninth World economy in the

GDP ranking of the year 2015 [9]. Its population is equivalent to 2.81% of the total World pop-

ulation [10] and its large area (8.515.767,049 km2), divided by its twenty-seven Federative

Units [11], make it the fifth largest country of the World [12]. The political and administrative

organization of Brazil is hierarchically organized in a sequence of geopolitical structures:

Union, states, Federal District and Counties. Each one is autonomous and organized according

with the division of powers: legislative, executive, and judiciary. Due to the deep inequalities,

but also for the good perspectives of growth, Brazil and the others Latin American countries

were often a focus of economic development analysis during the last century [13–17].

Economists usually focus on monetary based indices to analyze economies such as the

GDP. However, GDP alone, as shown by different studies [4–7, 18], does not provide deep

information about the perspective of growth and development of World countries. Several

studies tried to gain information on the unobservable characteristics of countries by looking at

stock indices to exploit the “wisdom of the crowd” [19, 20]. In order to gain a direct measure

of the country capabilities, the last decade has been marked by a line of research of new indices

inspired by the science of complex systems, able to better describe and explain the large scale

World economy [4–7, 21–23] and to estimate global and regional inequalities [24, 25].

In this respect, different authors recently introduced two indices: Economy Complexity

Index (ECI) [4] and Fitness [5]. Furthermore, Cristelli et al [7], through a novel method called

Selective Predictability Scheme (SPS), showed that the comparison between GDPp and Fitness

provides a highly performing forecasting tool for several countries.

In this paper, we first present an overview of Brazil as a whole from the point of view of the

Economic Complexity approach. In this context we compare its export basket and its Fitness

with the ones of the BRIC group of countries (Brazil, Russia, India, and China) [26].

Then, we focus on the comparative study of the economies of the single Brazilian states.

Based on the “classical” Fitness algorithm, we introduce a new methodology, called Exogenous

Fitness, able to measure the Fitness of subnational entities, and we apply it to the states of Bra-

zil. In analogy with what was proposed in [7], we analyze the coevolution of GDPp and Fitness

studying in this way the predictability of the economic growth of the Brazilian states.

Furthermore, we compare the Exogenous Fitness with: (i) the (Endogenous) Fitness -i.e,

the natural application of the “classical” Fitness algorithm to the subnational entities of a coun-

try-; (ii) the results published by the Dataviva platform (an application of the ECI algorithm)

[27].

The paper is structured as follows: first we introduce the methods and we provide an over-

view about Brazil. Then, we show the results of the Exogenous Fitness applied to the Brazilian

states and the comparisons with the other techniques. Finally, we conclude with a general dis-

cussion about the implications of the results with respect to both points of view of scientific

community and policy makers. In the Appendix A, we describe in detail the used database.

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries
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Methods

In this section we describe the algorithms and methods involved in the calculation of the states

and countries Fitness coupled to the Complexity of exported products.

Revealed Comparative Advantage (RCA)

The Revealed Comparative Advantage (RCA) [28] is a quantitative criterion to assess the rela-

tive advantages of a country, or, in this case, of a Brazilian state, in the export of certain prod-

ucts compared to the average export of those products. Defining qsp as the flow of the export

(in US dollars) of the product p by the state s (see the section Database for the data origin), the

RCA is defined as:

RCAsp ¼

qsp
P

p0qsp0P
s0qs0pP

s0p0qs0p0

: ð1Þ

Therefore, it is the ratio between the share of the export of product p with respect to the total

export of State s divided by the share of the export of product p with respect to the total Brazil-

ian export.

From the calculation of the RCA for each state-product pair, we build the binary state-prod-

uct matrix Msp. We consider the state s an exporter of a product p, if RCAsp� 1 and, conse-

quently, we set Msp = 1. On the contrary, if RCAsp< 1, we set Msp = 0.

An analogous criterion is used to define the World countries-products matrix Mcp (see the

section Database). This binary matrix shows which country has a comparative advantage in a

certain product with respect to the World average [29, 30].

(Endogenous) Fitness

Recently, different studies have shown the economic relevance of the diversification of the

export basket for the competitiveness of a country [4, 6]. The matrix M shows a substantial

nested structure highlighted by a strong triangularity, which can be interpreted in the follow-

ing way: each country approximately exports all the possible products it has the capabilities to

produce [5].

Here, considering the geographic size of Brazil and its federal structure, we assume that the

same concept is also valid to understand the development and growth of its states. In this

framework, we apply the Fitness algorithm to the states-products matrix of elements Msp

above defined [5], a statistical approach based on non linear maps coupling Fitness of states

and Complexity of Products, to compare Brazilian states. The (Endogenous) Fitness algorithm

is defined by the following iterative equations [6]:

~F ðnÞs ¼ SpMspQB ðn� 1Þ
p

~QB ðnÞ
p ¼

1

P
sMsp

1

Fðn� 1Þ
s

8
>>>><

>>>>:

!

FðnÞs ¼
~F ðnÞs

h~F ðnÞs is

QB ðnÞ
p ¼

~QB ðnÞ
p

h~QB ðnÞ
p ip

:

8
>>>>><

>>>>>:

ð2Þ

The elements Msp are the elements of the previously discussed binary states-products matrix.

~F ðnÞs and ~QB ðnÞ
s are intermediate variables which are subsequently normalized at each iteration.

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries
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The initial conditions satisfy the relations: ~F ð0Þs ¼ C and ~QB ð0Þ
p ¼ C, where we assume C = 1 for

each state s and for each product p [6].

At each iteration of the algorithm, the Fitness of each state is proportional to the sum of its

exported products weighted by their Complexity stressing the importance of having at the

same time both a diversified export basket and the most complex possible products in it. The

formula for the Complexity of a product is motivated by the following argument: the more the

exporters of a product and the smaller their Fitness, the less its expected from the Complexity.

In this manner, a state with low Fitness abruptly influences the Complexity of all the products

it exports [6]. Therefore, an highly Complex product is made only by few countries/states with

high Fitness, while a little Complex product can be made by all the countries/states, both with

high and low Fitness. The stability and robustness of the algorithm has been studied in [6, 31]

and the Fitness ranking of the states and the Complexity ranking of the products is unambigu-

ously defined after a large enough number of iterations.

Fig 1 shows the matrix Msp of the year 2015, by ordering the states according to the Fitness

(the upper the higher complexity), and the products according to the Complexity (the more

right the higher the complexity).

In Fig 2 we show the products spectroscopy [32] of the years 2005 (dashed lines) and 2015

(filled colors) for few Brazilian states such as: São Paulo, Paraná, Ceará, and Roraima. The

spectroscopy is a graphic representation of the export volume (in US Dollars) of a state for

each product with Msp = 1 ordered at increasing Complexity from left to right [32]. We subse-

quently group the products (10 for bin) and we summed the export volumes of each product

inside each bin. The spectroscopy allows to compare the diversification and the Complexity of

the exportation of the states. The figure shows the spectroscopy of high Fitness states such as

São Paulo (diversified all along the Complexity spectrum) and Paraná (with a clear peak on

medium-high Complexity products), a middle rank state such as Ceará and a low Fitness state

such as Roraima (with few low Complexity exports). From the figure, it emerges that a very

developed state such as São Paulo has a high flow of exports for a very diversified number of

products with a bias towards the high Complexity ones. Paraná has a high peak in several com-

plex products, while Roraima has only one peak in the less complex products. Ceará is a mid-

dle ground between the two.

Fig 1. The binary matrix Msp of the year 2015. Each row of the matrix represents a Brazilian state. States are ordered

in terms of their Fitness from the smallest value (row 0) to the largest one (row 26). Analogously columns represent

Products ordered in terms of their Complexity from the smallest value (column 0) to the largest one (column 1172).

The matrix elements Msp are drawn in dark green and the others in white. In the figure we highlight high Fitness states

such as São Paulo and Paraná, a middle rank State such as Ceará and a low Fitness state such as Roraima.

https://doi.org/10.1371/journal.pone.0197616.g001

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries

PLOS ONE | https://doi.org/10.1371/journal.pone.0197616 June 6, 2018 4 / 20



Exogenous Fitness

Here, we define the new Exogenous Fitness algorithm, an innovative method to calculate the

Fitness of subnational entities of a country grounded on the measure of the products Complex-

ity from the World-wide trade network. Exogenous Fitness is a coherent extension of the “clas-

sical” Fitness algorithm [6], with the assumption of an obvious concept: products have an

intrinsic Complexity, reflected by the trade on the global World scale by all countries, while

the trade from the regions of a single country may not represent well such intrinsic Complexity

as it can be affected by local biases. In particular if we consider only Brazil to define the Com-

plexity of the exported products, we can introduce local economic biases in its measure related

to the peculiar features of Brazil economy. Indeed, as shown in Fig 1, there is a big range of

products made only by few states that make the measure of Complexity very inaccurate. From

this observation, it is natural to use as the best measure of Complexity of products the ones QW
p

extracted from the Fitness algorithm applied to the trade of goods of all World countries, i.e.

we take:

QW
p � QB

p � Qp: ð3Þ

Indeed, the Complexities of the products obtained applying the Endogenous Fitness to the

Fig 2. Products spectroscopy of the years 2005 (dotted lines) and 2015 (filled colors) of the states: a) São Paulo, b) Paraná, c)

Ceará, and d) Roraima. The figures show the export volume (in US Dollars) of those states for each product with Mcp = 1 ordered

according to their Complexity. Products are grouped in bins of 10 and the export volume in each bin are summed up.

https://doi.org/10.1371/journal.pone.0197616.g002
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World countries (QW
P ) can be considered the same of the Complexities of the products inside

Brazil (QB
P) and, therefore, we simply define them as Qp.

Therefore, the algorithm consists of two steps:

1. We apply the (Endogenous) Fitness (Eq 2) to the World countries, as previously done in

[5–7]. The criterion adopted to determine if a country c is a “good” exporter of a given

product p is again based on the RCA extended to all World countries: we set Mcp = 1 if

RCAcp� 1 and Mcp = 0 otherwise (see the section Database for the source of the data).

Applying the (Endogenous) Fitness algorithm to the matrix Mcp, after a sufficiently large

number of iterations the algorithm converges to the fixed point so that, we obtain the

respective Fitness Fc for each country and the Complexity QW
p for each product.

2. From the assumption Eq 3, we use as Complexity of the products exported by Brazilian

states Qp the values obtained by the Fitness algorithm applied to the export of all World

countries. Therefore, we use the information in the matrix Msp and the product Complexity

Qp to calculate the Fitness of the Brazilian states through the following formula:

~Fs ¼ SpMspQp

Fs ¼
~Fs

h~Fsis
:

8
><

>:
ð4Þ

The relevance of developing the Exogenous Fitness measure is two folds. First of all, using

world wide data we extract all the information to compute the Complexity of products to bet-

ter compute the Fitness of states. Since the algorithm works by exploiting differences of capa-

bilities, using world wide data we gain additional information related to the export baskets of

countries with a wider range of Fitness and capabilities. Of course we still expect the two mea-

sures to be highly correlated in rank, in particular for a country like Brazil that contains such a

vast array of development levels. As we will see in section Comparison with other techniques,
this is indeed the case. The second reason is that the Exogenous Fitness allows to have for states

Fitness values comparable with those of countries. Indeed, while the ranking between Exoge-

nous and Endogenous Fitness are highly correlated, their actual values and distributions are

vastly different. As detailed explained in the paper [33], while the ranking for the Fitness mea-

sure is always well defined, the shape of the matrix directly affects the convergence properties

of the algorithm to a polarized distribution. Employing the Exogenous Fitness method we

have smoothly changing values that allows for the forecasting exercises of section Results.

Overview of Brazil

First, we analyze Brazil as a whole applying the (Endogenous) Fitness to World countries in

the time interval from 1995 to 2015. In Fig 3 we show the matrix Mcp of the World countries

of year 2015 obtained by ordering the countries according to the Fitness and the products

according to the Complexity. In that year, Brazil is ranked in the 44th/147 position (equivalent

to the raw 103 in Fig 3).

In Fig 4, we show the dynamics of the World countries in the Fitness-Income plane empha-

sizing the BRIC countries (Brazil in green, Russia in blue, India in orange, and China in red).

The figure shows that India and China have in 1995 lower values of GDPp than Brazil and Rus-

sia, but higher values of Fitness. According with [7], this difference justifies the dynamics in

the plane of the four countries for the next years. Indeed, India and China continued their

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries

PLOS ONE | https://doi.org/10.1371/journal.pone.0197616 June 6, 2018 6 / 20



economic growth during the following years, while Russia and Brazil entered a period of reces-

sion [34].

In order to zoom on the differences among the dynamics of the BRIC countries, we analyze

the variation of the Fitness of such countries during the interval from 2003 and 2013. The vari-

ation of the Fitness can have two different causes: (i) changes in the export basket, (ii) changes

in the products Complexity. We can decompose the variation of Fitness [35] as:

D~Fc ¼
~Fcðt1Þ � ~Fcðt0Þ ¼

X

p

Mcpðt1ÞQpðt1Þ �
X

p

Mcpðt0ÞQpðt0Þ ¼

¼
X

p

DMcp

Qpðt1Þ þ Qpðt0Þ
2

þ
X

p

DQp

Mcpðt1Þ þMcpðt0Þ
2

:

ð5Þ

Fig 3. The binary matrix Mcp of the year 2015. The rows of the matrix represent the World countries ordered

according to their Fitness with row 0 for the country with the lowest Fitness and row 147 for the one with the highest

Fitness. Analogously columns represent Products ordered in terms of their Complexity from the lowest one at column

0 to the highest one at column 1174. The elements Mcp = 1 are represented as blue dots.

https://doi.org/10.1371/journal.pone.0197616.g003

Fig 4. Dynamics of the World countries in the Fitness-Income plane. The figure shows the dynamics (from the year

1995 to the year 2015) of World countries in the Fitness-Income plane in logarithmic scale. We emphasize the BRIC

countries: Brazil in green, Russia in blue, China in red, and India in orange.

https://doi.org/10.1371/journal.pone.0197616.g004
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where we have indicated with ΔX = X(t1) − X(t0) for a generic quantity X. The first term in the

last step of the equation is the contribution to D~Fc due to the variation in the export basket,

while the second one is the term due to variation of products Complexities. In Table 1, we

show both the percentage variations due to the two terms. The results show a deep decrease of

both terms for Russia and we can see how the loss of competitiveness of Brazil is mostly due to

the drop of products that were previously exported, and not so much related to the change in

complexity of those products. In contrast China has increased its export basket and the Com-

plexity of the exported products. Instead, India in 2013 exports more complex products, but

has decreased its exports diversification.

Furthermore, we show in Fig 5 the products spectroscopy [32] for the BRIC countries of

the year 2005 (dotted lines) and 2015 (filled colors). The figure shows that Brazil and Russia

Table 1. Fitness variation from 2003 to 2013 of BRIC countries.

Variation due to changes in the export basket Variation due to changes in the products Complexities

Brazil -43% -6%

Russia -37% -21%

China +32% +18%

India -18% +2%

https://doi.org/10.1371/journal.pone.0197616.t001

Fig 5. Products spectroscopy of the years 2005 (dotted lines) and 2015 (filled colors) of the countries: a) Brazil, b) Russia, c)

China, and d) India. The figures show the export volume (in US Dollars) of those states for each product with Mcp = 1 ordered in

terms of their Complexity. The products have been grouped (10 for bin) and the export volumes of each product inside each bin

have been summed.

https://doi.org/10.1371/journal.pone.0197616.g005

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries
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have a high exportation only of simple products, while India and China have a high exporta-

tion of complex products.

Therefore, Figs 4 and 5 and Table 1, show that China and India both have a diversified

export basket and export complex products. Such factors determine a high Fitness and conse-

quently a growth of the GDPp in the subsequent years. On the contrary Brazil and Russia

export simple products with a consequently low Fitness so that these countries entered a reces-

sion period [34].

In the next section we show the results of a deepened analysis of the internal economy of

Brazil through the application of the Exogenous Fitness to the Brazilian states.

Results

We applied the Exogenous Fitness algorithm to the Brazilian states in the time interval from

2000 to 2015 obtaining for each year both well-defined values of Fitness for each Brazilian

state, and the ranking of states in terms of their Fitness (shown in Fig 6).

Fig 6. Time evolution of the ranking of Brazilian states according to the Exogenous Fitness algorithm. The figure shows the time evolution of the ranking of the

Brazilian states according to the Fitness obtained through the Exogenous Fitness algorithm applied to the time interval 2000-2015.

https://doi.org/10.1371/journal.pone.0197616.g006
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We show in Fig 7 a map of Brazil where each state is colored according to its Fitness. From

the figure, it emerges Southern states have larger Fitness, and therefore have a better economic

development, than Northern states. This result is in agreement with other monetary and non-

monetary indices such as the Human Development Index (HDI) and the GDP [27].

Furthermore, we show in Table 2 the variation from 2003 to 2013 of the Fitness (D ~Fs) for

several states such as: São Paulo (1st in Fitness ranking of year 2013), Paraná (5th in Fitness

ranking of year 2013), Ceará (10th in Fitness ranking of year 2013), and Roraima (24th in Fit-

ness ranking of year 2013). From both Fig 2 and Table 2 we observe that São Paulo has a diver-

sified export basket with high peaks in complex products and, at the same time, it increases

both the export basket and the Complexity of the exported products in the considered time

period. Paraná and Ceará, in contrast with the aggregate behavior of Brazil, in the same period

grew in diversification becoming more competitive—even in the face of a minor decline in the

complexity of their exported products. Roraima, on the contrarty, shows a deep decrease in

the diversification.

As mentioned in the previous section, Fig 4 presents the dynamics of World countries in

the Fitness-GDPp plane. It shows a high degree of heterogeneity of the dynamics of countries.

Indeed, the plane can roughly be divided into two regions: one with an unpredictable “chaotic”

regime of the evolution of countries, and the other with a predictable “laminar” regime. In

order to overcome the limitations of linear regressions, Cristelli et al [7] proposed an

Fig 7. Fitness map of the Brazilian states. The colors in the map vary from green (high Fitness) to red (low Fitness)

and they show the differences of the Fitness among the Brazilian states.

https://doi.org/10.1371/journal.pone.0197616.g007

Table 2. Fitness variation from 2003 to 2013 of the states: São Paulo, Paraná, Ceará, and Roraima.

Variation due to changes in the export

basket

Variation due to changes in the products

Complexities

São

Paulo

+2% +2%

Paraná +59% -7%

Ceará +53% -10%

Roraima -37% +6%

https://doi.org/10.1371/journal.pone.0197616.t002

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries
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innovative data-driven non-parametric prediction scheme called the Selective Predictability
Scheme (SPS). It is inspired by the so-called method of analogues [36, 37] and through a mea-
sure of concentration it delimits predictability regions inside the Fitness-Income plane. The

measure of concentration consists in dividing the plane into a grid and analyzing the time evo-

lution of the distribution of countries inside each box with at least five countries inside.

In analogy with what has just been explained for World countries, in Fig 8a, we show the

time evolution of the real GDPp as a function of the Fitness (obtained implementing the Exog-

enous Fitness algorithm), for each Brazilian state in the period 2000-2015. The dotted black

line in the figure shows the expected level of GDPp given the level of Fitness and it is the result

of the minimization of the Euclidean distance of the states from the line, weighted by the state

GDP. From the figure emerges an heterogeneous dynamics similar to the dynamics of World

countries that cannot be analyzed through a linear regression. Also the measure of concentra-
tion is not appropriate in this case. Indeed the reduced number of Brazilian states (27) com-

pared with the number of World countries (146) makes this measure inappropriate for the

internal analysis of Brazil. In order to have a significant number of cells with at least five states,

the granularity of the grid should be too broad to analyze the evolution of the distribution.

Therefore, in order to validate the predictability of the dynamics of the states in the Fitness-

Income plane, here we develop a novel intuitive method, the measure of direction. First of all

let us fix the time window [t1, t2] in which we want to study the evolution of each state in the

plane log(Fitness) − log(GDPp). The time lag Δ = t2 − t1 has to be taken large enough to get a

sufficient noise reduction in the dynamics. We choose t1 = 2003 and t2 = 2013. Second, we

divide the plane in a fine grid of 100 × 100 cells and we define two bandwidth; one for the x-

axis, and the other for the y-axis. For each cell, we define around its centroid a threshold area

of sides given by the two bandwidths. Then, for each cell k with at least three states at the time

t1 inside its threshold area, we computed the average dot product ~Dk :

~Dk ¼
2

NðN � 1Þ

X1;N

i<j

v̂ i � v̂ j; ð6Þ

where v̂ i ¼
~vi
vi

where~vi ¼ ½logðFiðt2ÞÞ � logðFiðt1ÞÞ�̂i þ ½logðGDPpi
ðt2ÞÞ � logðGDPpi

ðt1ÞÞ�̂j and

î and ĵ are respectively the versors in the Fitness and GDPp directions. N is the number of

states with starting point inside the threshold area of cell k. The coefficient ~Dk gives the average

cosine among the versors of all states initially inside the threshold area of cell k and varies from

(−1, 1]. It measures the dispersion of the directions of evolution in the plane in the time win-

dow [t1, t2] of all states initially in the threshold area of cell k: when it is close to 1 all states ini-

tially in the threshold area of cell evolve in a coherent parallel way. The smaller is D̂k the larger

the dispersion of these trajectories. A color map of the coefficient ~D in the different cells is

shown in Fig 8b. From the figure it emerges that there is a region where the directions of evolu-

tion of the states tend to be parallel (showed in green) and a region where the directions of

motion tend to be unevenly directed (showed in red). Increasing/decreasing the bandwidths

and, therefore, the threshold area only changes the resolution of the image, but the two regions

remain well-defined. In Fig 8b we used an x-axis bandwidth 0.86, and a y-axis bandwidth 0.38,

providing an almost continuous variation of the colors map.

In order to investigate which is the main direction of the versors in the green region and

the further directions in the red region, we divided the plane into a broader grid (10x10). For

each cell we sum all the vectors inside it and then we calculate the versor of the sum vector. We

show the result in Fig 8c. From one hand, from the figure we can observe a region where the

states tend to evolve in the same direction (shown in green). Therefore, in this region, the
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Fig 8. Dynamics of Brazilian states in the Fitness-Income plane. a) The figure shows the evolution (from 2000 to 2015) of the Brazilian states in the

Fitness-Income plane in logarithmic scale. The dotted black line in the figure shows the expected level of GDPp given the level of Fitness and it is the

result of the minimization of the Euclidean distance of the states from the line, weighted by the states GDP. b) The figure shows the coefficient ~D
calculated considering a time window from 2003 to 2013. The color varies from green (where the versors of evolution tend to be parallel), to red (where

the versors tend to be unevenly directed). c) The figure shows a grid where for each cell we calculate the versor of the sum vector. From the figure two

regions appear: the first one where the versors tend to be parallel in the direction of a high GDPp (shown in green); and the second one where the

versors tend to be unevenly directed (shown in red). Fig 8b and c together show that there is a region (green) of high predictability of motion in

direction of a high GDPp; and a region (red) of low predictability of motion. d) The figure shows the dynamics (from 2000 to 2015) of the Brazilian

states in the Fitness-Income plane highlighting in green the states in the high predictability region and in red the states in the low predictability one.

https://doi.org/10.1371/journal.pone.0197616.g008
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future evolution of countries is predictable with good confidence. On the other hand, another

region (shown in red) can be detected where the versors tend to be unevenly directed. The

dynamics of the states in this region is basically unpredictable. Furthermore, in the middle of

the two, there is a region of transition, shown in the figure by the overlapping of the two

colors.

Lastly, in Fig 8d we show the dynamics of the states in the Fitness-Income plane highlight-

ing in green the states with high predictability of the motion and in red those with low predict-

ability. From the figure emerges that states as Ceará, Pernambuco, and Bahia, despite having

low values of GDP, are in a region of high Predictability and, therefore, they will probably con-

tinue to growth in the same direction. While for states as Acre, Tocantins, or Alagoas the

dynamics is more chaotic and predictions are less reliable.

Comparison with other techniques

In this section we compare the results obtained implementing the Exogenous Fitness with the

results of the Endogenous Fitness and the ones published by Dataviva [27] obtained by apply-

ing the Economic Complexity Index (ECI).

Exogenous Fitness and Endogenous Fitness

We apply the (Endogenous) Fitness algorithm to the Brazilian states in the time interval from

2000 to 2015 obtaining the time evolution of the ranking of the states according to such kind

of Fitness (shown in Fig 9). Calculating the Spearman correlation coefficient between the rank-

ing obtained through the Exogenous and the Endogenous Fitness for each year in the analyzed

time interval, we obtain an average value ~rExEn ¼ 0:97. This result shows a strong correlation

between the rankings obtained through the two different Fitness algorithms.

The Endogenous Fitness algorithm provide us a well-defined annual ranking of the Brazil-

ian states, but not well-defined quantitative values of Fitness and products Complexity. In fact,

all Fitness values except one tend to zero. After a fairly high number of iterations, however, the

ranking of states stabilizes, and there are no more changes of ranking among the states. This

circumstance is already been studied [33] and it is due to the shape of the matrices Msp. Indeed

the external area (where Msp = 0) is greater than the internal area (where almost all elements

Msp = 1) for each analyzed year.

Exogenous Fitness and ECI

In Fig 10 we show the time evolution (from 2002 to 2015) of the ranking of the Brazilian states

according to ECI, directly downloaded by the Dataviva platform [27]. Therefore, in order to

compare the ranking obtained through the Exogenous Fitness algorithm and the ECI algo-

rithm, we calculate the annual Spearman correlation coefficient between the two rankings in

the period 2002-2015, obtaining an average value ~rExECI ¼ � 0:14. This result shows an almost

total absence of correlations between the two rankings, i.e. between the two algorithms.

Indeed, already from a qualitative point of view, ECI ranking seems to be unrealistic. For

example, it ranks rich states in GDP, but also with high HDI [27], such as Santa Catarina or

Paraná, in the last positions (respectively 26th and 24th position in 2015). Moreover, the state

of Alagoas (last in HDI ranking of 2014 [27]) is unrealistically ranked in 4th position in the

2015.

In Fig 11, we show the map of Brazil where each state is colored according to its ECI. From

the figure, it emerges that there is no geographic coherence among the ECI of the different

states. For instance the figure shows that the state of Santa Catarina has a high ECI, but it is in

the middle between the states of Rio Grande do Sul and Paraná that have a low ECI.

Dynamics in the Fitness-Income plane: Brazilian States vs World Countries
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Furthermore, we show in Fig 12a the evolution of Brazilian states in the ECI-Income plane,

where the income is in logarithmic scale. In Fig 12b, we show the coefficient ~D above defined

but applied to ECI instead to log(Fitness) and in Fig 12c the directions of motions. Differently

from the results obtained through the application of the Exogenous Fitness (Fig 8), using the

ECI index the dynamics of the states is unpredictable. Indeed, all the states except São Paulo

and the Distrito Federal are concentrated in a small region of the plane and, therefore, totally

indistinguishable.

Discussion

In this paper we first compared the dynamics of Brazil in the Fitness-Income plane with the

other BRIC countries. In Fig 4, we observed that IC (India and China) countries, both with a

high Fitness compared to the BR (Brazil and Russia) countries, grow in GDPp for the entire

analyzed time interval. Table 1 shows that IC improve the Complexity of export baskets in the

analyzed time interval, and China even shows an improvement of the diversification. Instead,

BR countries did not invested in diversification and in Complexity of the exported products

Fig 9. Time evolution of the ranking of Brazilian states according to the (Endogenous) Fitness algorithm. The figure shows the time evolution of the

ranking of the Brazilian states in terms of the Fitness obtained through the (Endogenous) Fitness algorithm applied during the time interval 2000-2015.

https://doi.org/10.1371/journal.pone.0197616.g009
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(as shown in Table 1). These results strengthen an hypothesis previously formulated in [7]: Fit-

ness is the driving force behind growth.

In the second part of the paper, we introduced a new algorithm called “Exogenous Fitness”

to calculate the Fitness of subnational entities and we applied it to the states of Brazil. The com-

parison between the Fitness and the GDPp showed an heterogeneous dynamics of the Brazilian

states in the Fitness-Income plane. Indeed, two regions are distinguishable in the plane: one

with high predictability and the other with low predictability. Here, we have shown that eco-

nomic forecasting is possible for those states in the high predictability region, while it is not for

those in the low predictability region. As a consequence of this analysis Fitness seems to be the

driving force behind growth. Indeed, the dynamics in the high predictability region is charac-

terized by high values of Fitness, while high value of GDPp is not a good signature of growth.

The heterogeneous dynamics observed for the Brazilian states shows a strict analogy with the

heterogeneous dynamics observed for the World countries [7]. Furthermore, by comparing

the export “spectroscopy” of BRIC countries with the one of Brazilian states of São Paulo,

Paraná, Ceará, and Roraima, and, comparing the variations of the Fitness, we observe that

countries/states with diversified export baskets produce high complex products and grew in

Fig 10. Time evolution of the ranking of Brazilian states according to the ECI algorithm. The figure shows the time evolution of the ranking of the

Brazilian states during the period 2002-2015 in terms of the ECI, directly downloaded by the Dataviva platform [27].

https://doi.org/10.1371/journal.pone.0197616.g010
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GDPp in the considered period. This observation can be important for the evaluation of per-

spectives of economic growth for Brazilian states, and, more generally, for developing

countries.

The time evolution of the ranking obtained through the Exogenous Fitness algorithm

shows that developed states in the top part of the ranking change little their positions, with a

smooth slow motion. On the contrary states in the inferior part of the ranking changes drasti-

cally their position during the analyzed time-interval. These facts are probably due to the sta-

bility of the developed states that are in the high predictability region of the Fitness-GDPp

plane and the instability of the states in the low predictability region.

Finally, we showed the non-correlation (~rExECI ¼ � 0:14) between the ranking obtained

though the Exogenous Fitness algorithm and the results of the ECI published by Dataviva [27].

Analyzing qualitatively the ranking of the states according to ECI, we argued that this ranking

appears quite unrealistic. Therefore, we propose here the Exogenous Fitness algorithm as its

valid substitute. Instead, comparing the Exogenous and (Endogenous) Fitness we obtained a

strong correlation (~rExEn ¼ 0:97) for what concerns the ranking of states. This result shows

that the two algorithmic tools are almost similar in identifying the ranking of the states, but

Fig 11. ECI map of the Brazilian states. The colors in the map vary from green (high ECI) to red (low ECI) and they

show the variation of the ECI across the Brazilian states.

https://doi.org/10.1371/journal.pone.0197616.g011
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Fig 12. Evolution of Brazilian states in the ECI-Income plane. a) The figure shows the dynamics (from 2002 to 2015) of the Brazilian states in the ECI-Income

plane, where the GDPp is in logarithmic scale. Only the state of São Paulo and the Distrito Federal appear to be clearly distinguishable from the rest of the states.

All the others states are indeed concentrated in a small region of the graph. b) The figure shows the coefficient ~D calculated considering the time interval 2003-

2013. Colors vary from green (where the versors tend to be parallel), to red (where the versors tend to be unevenly directed). From the figure we can therefore

verify that there is a low predictability of the evolution of all the states. c) Here we show a grid where for each cell we calculate the versor of the sum vector. From

the figure we see that there is no privileged direction, indeed the vectors are unevenly directed.

https://doi.org/10.1371/journal.pone.0197616.g012
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just the Exogenous Fitness algorithm provides also stable quantitative values of the Fitness, in

addition to the ranking.

Appendix A

Dataset

The vast majority of data used in this paper is published by DataViva [27]. It is an open access

platform that easily allows the access to a large amount of Brazilian socioeconomic data. The

database is provided by the Brazilian Ministries: of Employment (MTPS), Development, Indus-
try and International Trade (MDIC) and Education (MEC). The project is an initiative of the

Government of the state of Minas Gerais, Minas Gerais Investment, Trade Promotion Agency
(INDI) and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [27,

38] in collaboration with the Sistema Mineiro de Inovaçao (SIMI) [39], Big Data Corp [40] and

the MITMedia Lab [41]. The first version was published in November 2013 and the last one,

the 3.0 version, in May 2015.

The platform includes data about imports/exports products, trade partners, occupation,

economic activities, basic education, higher education and universities. All data are available

in several levels of aggregation: region, state, mesoregion, microregion and municipality. The

crossover among data and level of aggregations allows users to access more than 1 billion

visualizations.

The visualization is made through some graph types, such as: Tree Map, Stacked, Geo Map,

Network, Rings, Scatter, Compare, Occugrid, Line, Box Plot and Bar Chart. Furthermore, each

data and aggregations is downloadable, and easily accessible through the API architecture

[42].

Here, we use the export data of each Brazilian state for the entire time interval from 2000 to

2015. Furthermore, DataViva provides the data of total GDP and the total population for each

state for the same time interval. Combining these with the GDP deflator GDPdefl, published by

the World Bank [43], we find the real GDP per capita of each state as:

GDPreal
p ¼

1

N
GDP
GDPdefl

100; ð7Þ

where N is the total population of each state.

Concerning World export data, used to define the matrix Mcp of the World countries and

to calculate the products complexity, we use data from BACI dataset [29] that is grounded on

the COMTRADE dataset [30]. The database, in its extension, contains data about more than

200 countries and 5000 products classified according to a 4 digit code with categorization Har-
monized System 2007 [44]. Data are extracted from the year 2000 to 2015. The time evolution

of the GDP per capita of each country is published by World Bank [45].
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