Minimal Ruled Submanifolds in Spaces
of Constant Curvature

J. M. BARBOSA, M. DAJCZER & L. P. JORGE

1. Let M = M"(c) be an N-dimensional Riemannian manifold with constant
curvature ¢, and M = M"*' a submanifold of M. We say that M is ruled if there
exists a foliation of M by codimension one totally geodesic submanifolds of M.
We call each leaf of the foliation a ruling of M.

One can easily obtain an abundance of examples of ruled submanifolds just by
taking, along any differentiable curve, the image of its normal bundle under the
exponential map in M. However, ruled minimal submanifolds are rare. In fact,
the classical theorem of Catalan states that the only ruled minimal surface in Eu-
clidean space E 3, other than the plane, is the helicoid. Blair and Vanstone [2]
showed that complete ruled minimal hypersurfaces of E"*', other than hyper-
planes, are Riemannian products of E"? and a helicoid in E>. More recently,
Barbosa and do Carmo [1] exhibited an example of a noncomplete ruled minimal
hypersurface in E* and announced that, even locally, any other ruled minimal
hypersurface in E**' is contained in a product of either a helicoid or their own
example with a fixed Euclidean space E"~2 or E">. They also constructed an
example of a four-dimensional ruled minimal submanifold in E°. We should also
mention that some results and examples of ruled minimal submanifolds of E" have
already appeared in [5] and [6].

Our purpose in this paper is to describe all ruled minimal submanifolds in
M"(c). We shall observe that Lawson [4] found all ruled minimal surfaces in the
sphere S°. See also [3] for the hyperbolic space H>.

All the irreducible examples that we mentioned above turn out to belong to a
class of ruled minimal submanifolds of M"(c) which can be described as follows:
Let a = a(s) be a curve in M"(c) with constant curvatures and Frenet frame
E, ..., E,. Set n = [m/2] and define the map X : R"*' — M"(c) by

X(s,t1,...,t,) = exp (2 t,-E2j(s)).

a(s) j=1

We call X, or any reparametrization of X, a helicoid and refer to it as the helicoid
associated to the curve a. In (3.3) we will show that any helicoid is a minimal
submanifold. Using the fact that any curve o with constant curvatures in M"(c)
is the orbit of a one-parameter subgroup of rigid motions A(s) of M, one can also
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show that the helicoid associated to a is invariant by A(s).

However, it is not true that any ruled minimal submanifold invariant by a one-
parameter group of rigid motions is a helicoid. Consider a totally geodesic sub-
manifold S of M orthogonal to the orbits of a one-parameter subgroup of rigid
motions A of M and set X(s,P) = A(s)P for the action of A at S. Then, whenever
X is a minimal immersion, we call it a generalized helicoid in M. The main pur-
pose of this paper is to show: Even locally, any ruled submanifold of M"(c) is
part of a generalized helicoid (see (4.1)). A complete classification of generalized
helicoids when M"(c) is EV, S" or H" is given in (3.9) and (3.10). Several other
properties of generalized helicoids are also discussed. In particular, we observe
that a generalized helicoid is not necessarily a regular map (cf. (3.9)). In (3.15)
through (3.21) we describe the set of singular points and show that in certain
cases generalized helicoids are complete and even embedded.

We would like to thank the referee for pointing out a serious gap in an earlier
version of this work.

2. Preliminary results. Let M"(c) be a space form and M"*' C M be an
(n + 1)-dimensional ruled submanifold of M. Locally we can always assume that
MP"(c) is the Euclidean sphere S™(c), the Euclidean space E" or the hyperbolic
space H" (c) according to ¢ being positive, zero or negative. For simplicity we
take ¢ = 0, 1 or —1. We will consider S¥ = $¥(1), EY and H" = H"(1), re-
spectively, as hypersurfaces of the ambient spaces R¥*', and L"*', respectively,
where L¥*! denotes the Lorentz (N + 1)-dimensional space with the canonical
flat metric

N
2.1) ds* = —dx3 + Y, dX?.

i=1

We also will denote the usual derivative of the ambient space by ' and the con-
nection on M by D.

Let a(s) be an integral curve of the field of normal directions to the foliation
of M which we will assume to be parametrized by arc length. Choose » orthonor-
mal vector fields e, (s), ..., e,(s) along o that generate the tangent space
TS« Of the leaf S, through a(s) for each s. The next lemma shows that we
can choose the vector fields e, ..., e, such that each one does not move with
respect to any other.

(2.2) Lemma. Given a curve o and orthonormal vector fields ey, . . ., e, along
o in a Riemannian manifold M with Riemannian connection D, we can always
choose orthonormal vector fields fi, ..., f, along o such that:

(a) the sets of vectors {fi(s) : 1 = j < n} and {¢;(s) : 1 < j =< n} generate the
same subspace of T,,M.

(b) the vector field (D/ds) f,(s) is normal to the subspace of TysM spanned by
{fis):1=j=n}foreach1 =i=<n.

Proof. Case n = 1 is trivial. Assume n = 2 and write



MINIMAL RULED SUBMANIFOLDS 533

)= a;s) e(s), 1=i=n,
j=1

where s is the parameter of a and a;;(s) are functions to be determined. Condition
(b) of the lemma is now equivalent to the following system of differential equa-
tions:

2.3) i a; + i aik<2 ek,ej> =0, 1=i,j=n.
ds =1 ds
This can always be solved and the functions a; are always determined up to initial
conditions. For a fixed s,, we set
(2.4 a;5(s0) = ;.

Now the vector fields f; are completely determined and condition (b) implies that
(f;,fi) are constant functions. From (2.4) we have that

(f] ,f k) = 8jk’
as we wished to prove.
From now on we assume the {¢;} are chosen satisfying conditions (a) and (b)

of Lemma (2.2). If we represent by ( , ) the inner product of the ambient
space, this amounts to saying that for all 1 = i, j = n, we have that
2.5) (eie;) = 0.

We consider the parametrization of M given by

2.6) X(s,t1,. . ,1,) = €xp (2 tjej(s)>,

a(s) j=1

where exp stands for the exponential map of the space form M. Since M is SV,
E" or H", then we know that the exponential map has the following simple expres-
sion:

2.7 e);p(rv) =f(p + gy,
where p € M(c) and v € T,M, |v| = 1, are considered to be vectors in the ambient
space. The functions f, g are given by
frn=1 gn)=r, ifc=0
2.8) f(r)=cosr g(r) =sinr, ifc=1
f(@r)=coshr g(r)=sinhr, ifc= -1
It is now simple to verify that the induced metric in M is given by
(2.9) do? = |X,|* ds* + do?,

where X, means derivative of X in the ambient space and d@? is the metric on the
totally geodesic submanifold S, of M. Since do” has this particularly simple
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form we may extend the vector fields e, ..., e,, a' along a to orthonormal vector
fields f;, ..., f,+: in a neighborhood of & in M in such a way that

(2.10) forr =X/|X,]

andfy, ..., f, are tangent to S,. Since S, is totally geodesic the second fundamental

form of M restricted to S, is identically zero. The mean curvature vector of M
then becomes:

(2.11) (X",

H=———
(n + D|X,[

where ( )* means projection on the normal space of M as a submanifold of M(c).

Assume ¢ # 0. Since X and X, , 1 = i = n, are given by a linear combination
of a and ¢;, 1 = j =< n, it follows that the subspace of the ambient space spanned
by X, X;, X,,, ..., X,, is the same as the one spanned by «, X;, e, ..., e,. Then,
if ¢ # 0, we obtain

2.12) (n+ DIXJfaNeyN... Ne, NX,\NH
=alNeeN...Ne, N\ X, \X,,.
If ¢ = 0, the same argument shows that
2.13) (n+ DXLPe N ... Ne,NXNH=e N Ne, N X, N X,
It follows that:
m+DIXPH =aNe ... Ne, N\X,\NX,|, ifc#0
n+ DXL IH =lesN... Ne, N\X, \NX,|, ifc = 0.

As a simple application of this formula consider the case when ¢ = 0 and
|H| = h(s) # 0, that is, |H| is a non-zero constant along the rulings. Squaring
equation (2.14) and considering ¢t = t;, , = ... = t, = 0, one reduces (2.14) to
an equation of the type

2.14

2

3 4
(n+ 1?1 (2 akt"> = A,
j=0

k=0

where a, = |ej|* and A;, a; do not depend on ¢. It follows that |ej| = 0 and so
e} = 0. The same kind of argument shows that |ej| = 0, 1 = i < n. Therefore
the n-plane spanned by e, e, ..., e, does not depend on s and hence it is constant
along the curve a. Thus X splits as a product:

X:UXICR"XR—E"XE"™"
(p,8) = (p,a(s))
and so M is a piece of a generalized cylinder. We just proved:

(2.15) Theorem. If M is a ruled submanifold of EV whose mean curvature is
a non-zero constant along the rulings then M is a piece of generalized cylinder.
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3. Helicoids. Let a: R — M"(c) be a curve with constant curvatures param-
etrized by arc length. Denote by E,, ..., E, the Frenet frame associated to the
curve . This means

3.1) £ =%
' Y ods
and
D .
_Ej=_1{j_1Ej_1+KjEj+1 IS]Sm,
ds
where K, ..., K,,—; are the curvatures of a and K, = K,, = 0. Set n = [m/2].
The map X : R"*' — M"(c) given by
(32) X(satl9~ . ~’tn) = e’(‘l)’ <z tjEZj(s)>’
a(s j=1

defines, wherever it is regular, a ruled immersion on M. We call X, or any re-
parametrization of X, a helicoid and refer to X as the helicoid associated to the
curve a.

(3.3) Proposition. The helicoid X associated to a curve o : R — M"(c), wher-
ever it is regular, describes a minimal immersion in M.

To prove the minimallity of X we start with a neighborhood of a regular point.
Locally we may assume that M"(c) is S, E¥ or H" considered respectively as
hypersurfaces of EN*! or L"*', as we did in Section 2. Making use of (2.7) we
obtain that (DX,/ds), as a vector in the ambient space, is a linear combination of
DE,/ds and D*E,;/ds*, 1 < i < n. Now, using (3.1) plus the fact that K;, 0 <
i = n, are constant, it comes out that
D’Ey,

D
3.4 ds? = Ky2Kyi1 Eyicy — (Kjiey + K3)Egi + KyiKpii1 Egis.

Therefore DX,/ds is a linear combination of E,;, 1 < i < n and from (2.14) it
follows that the mean curvature H of X vanishes.

The following proposition is certainly well known, but we could not find it in
the literature. So we state it and give a sketch of the proof.

(3.5) Proposition. Let M"(c) represent E", S” or H" and let o be a regular
curve defined on R with values in M. The curve o has constant curvatures if and
only if there is a one-parameter subgroup of rigid motions A(s) of M such that
A(S)a(t) = o (s + 1) for all s, t € R.

It is a simple consequence of this that A(s), considered as a one-parameter
subgroup of rigid motions of the ambient space, preserves the Frenet frame of o
in the sense that A(s)E;(t) = E;(s + ¢) for all 5, t € R.

We sketch the proof for the case of S¥ C EY*'. Given s € R and a: R — SV
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a curve with constant curvatures parametrized by arc length, we define a linear
map A(s) : ENT — ENY by A(s)a(0) = a(s) and A(s)E;(0) = E;(s). As before,
E,, ..., Ey stands for the Frenet frame of o in SV. Since a, E,, ..., Ey are ortho-
normal then A(s) defines a linear isometry of R¥*'. It follows that A(s), restricted
to SV, is also an isometry. Now we observe that

{A() ), AG)E (D), . ...A()Ex(D)}
and
{a(s + 0,E (s + 0),....Ex(s + 1)}
are both solutions for the linear system
Yo = Yy

d = '—I<j—1¢'j—1 + Kj‘-l’jﬂ'

Since both solutions agree for ¢+ = 0, then they agree everywhere. Therefore
A(s)a(t) = a(s + 1) and A(s)E;(t) = E; (s + #). Now it is easy to show that G =
{A(s),s € R} is a one-parameter subgroup of O(N + 1;R).

The proof of the converse is quite simple and can be done by taking derivatives
with respect to ¢ on both sides of the equation A(s)a(f) = a(s + 1).

The proof when M”" is H" is exactly the same changing only R"*' to L"*' and
O(n + 1;R) to O(n,1;R). The case where M" is E" is treated similarly. In this
case we obtain a(s) by integration of E(f). If N is odd, then A(s) keeps a line
invariant and we need to compose A(s) with the translations in the direction of
this line. Therefore we have the following result.

(3.6) Proposition. Let M"(c) represent EV, S or H", and let X be a helicoid
associated to a curve o in M. Then there is a one-parameter subgroup A(s) of
rigid motions of M such that

AW)X(@,t,....t,) = X(s + t,t,...,1,)
for all s,t,t;, ..., t, € R.

It is not true that any ruled minimal immersion invariant under a one-parameter
subgroup A(s) of rigid motions of M is a helicoid. A simple example can be
obtained as follows. Consider the action of a one-parameter subgroup of O(4;R)
in the two-plane of R* spanned by (1,0,0,0) and (0,0,1,0), given by

3.7 X(s,t,,t,) = (¢, cos s,t, sin s,t, €OS 8,1, sin ).

For (#,,;) # (0,0) this clearly describes a ruled immersion that one can easily
show to be minimal. By fixing #, and #, we obtain plane curves which are normal
to the leaves of X. We conclude that X cannot be a helicoid otherwise it would
be contained in a three-dimensional subspace of R* and this is not the case.

Let A(s) be a one-parameter subgroup of rigid motions of M"(c) and S an n-
dimensional complete totally geodesic submanifold of M orthogonal to the orbits
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of A(s). Then the map X : R X § — M defined by X(s,p) = A(s)p, wherever it
is regular, describes a ruled immersion. These maps that are minimal wherever
they are regular will be called generalized helicoids.

From (3.6) we have that helicoids are particular examples of generalized heli-
coids. The next proposition gives an idea of how generalized helicoids look.

(3.8) Proposition. Let A(s) be a one-parameter subgroup of rigid motions of
M"(c) and S C M be a complete n-dimensional totally geodesic submanifold of
M orthogonal to the orbits of A(s). The map X:R X S — M defined by
X(s,p) = A(s)p is a generalized helicoid if and only if the covariant derivative
Da' /ds of the velocity vector of a(s) = X(s,p) lies in the tangent of A(s)S at
X(s,p) for each s E R and p € §.

Proof. 1t is sufficient to consider the case when M"(c) is E,S" or H" and S
is E",S" or H" respectively. If p € S, then the curve a(s) = A(s)p is, by hy-
pothesis, orthogonal to S. If a is not constant then it is parametrized by a multiple
of arc length and is orthogonal to all leaves A(s)S. Then the mean curvature vector
H of X is given by (2.11). Now observe that

. (DBx,\"
- (25

ds

hence, H = 0 if and only if DX,/ds is tangent to the immersion. This occurs if
and only if the curve a(s) = A(s)p, considered as a curve in M, verifies that
(D/ds)a’ is tangent to the leaves A(s)S.

We now extend the definition of generalized helicoids to include the case in
which M"¥(c) is the Lorentz space L" and S is a Lorentzian totally geodesic sub-
manifold of L”. In this case (3.8) holds.

(3.9) Proposition. A generalized helicoid X : R X S" — S" is the restriction
to R X S" of a generalized helicoid X : R X E"' — E"*'. A generalized heli-
coid X:R X H" — H" is the restriction to R X H" of a generalized helicoid
X:R X L™ — ["*', In both cases X(s,0) = 0. The converse is true for gen-
eralized helicoids that satisfy this additional property.

Proof. First of all observe that, if A(s) is a one-parameter subgroup of rigid
motions of S then, A(s) is a one-parameter subgroup of rigid motions of EV*!
that leaves S" invariant. Now if S is an n-dimensional totally geodesic submanifold
of SY then S is the intersection of an (n + 1)-dimensional subspace V of R"*! with
SY. Furthermore, if S is orthogonal to the orbits of A(s) then V also has the same
property. Consider the map X : R X § — SV, defined by X(s,p) = A(s)p and let
X:R X V— E"*' be defined by X (s,q) = A(s)q. It is clear that X is the restriction
of X to R X § and the X(s,0) = 0. Since we have, for q # 0, that

X(s,9) = |l X(s,q/lq))
then

X(5,9) = |g| X(s.q/lg) and X.(5,9) = |q| X.\(5,q/|q))
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It follows from (2.9) that X will be singular at g if and only if X is singular at
q/lq|- At regular points we have from (2.11) that the mean curvatures H of X and
H of X are related by H(s,q) = H(s,q/|q|)/|q|. Hence X is minimal if and only if
X is minimal. The second part of the proposition is proved similarly.

From the above proposition it follows that to classify all generalized helicoids
of EV,S" or HY it is sufficient to classify just the ones in E¥*' and LV*!.

(3.10) Theorem. Let X be an (n + 1)-dimensional generalized helicoid in
EM*' or LN*'. Then, up to rigid motion of the ambient space, we have the fol-
lowing expressions:

(@) X(s,t1,. . 1) = 2 tiels) + 2t Vowi + BV ik
for generalized helicoids X in EVN*' and

(b) X(s,tise . 1) = Sy 6£i(8) + 2 i Vogas + SOV piiin,
or

X(s’tb"',tn) = 2::1]‘ tivi + E§=l tn—k+if;t-k+i + Sbvn+k+1
for generalized helicoids X in LN"'. Here the vectors V, ..., Vy,,are any special
orthonormal bases of EN*' or LN*! respectively and in this least case (V,,V,) =
—1. The fields e(s) and f:(s) are defined by

e;(s) = cos a;sV,_; + sin a;sV,;, I=1,...,n,
fi(s) = cosh a,sV; + sinh a,;sV,,
fi(s) = es), i=2,3,...,n

where a,, ..., a,, b, are real numbers and s, t,, ..., t, € R.

Proof. Let A(s) be a one-parameter subgroup of rigid motions of EN*!, § C
EM*!, be an n-plane orthogonal to the orbits of A(s) and X:R X § — EV*!, de-
fined by X(s,p) = A(s)p, be a generalized helicoid.

Take p € S and ey, ..., e, € T,S. Define a(s) = A(s)p and e;(s) = A(s)e;,
1 =i = n. Then S is parametrized by

=p+ > te, HER,

and
X(s,9) = a(s) + D, 1;¢;(s).
j=1

Since for each fixed g the curve A(s)q is orthogonal to S, we obtain that o'(0),
e1(0), ..., e,(0) are normal to S and consequently a'(s), e}(s), ..., e,(s) are normal
to A(s)S.

From (3.8) we know that o"(s), €1(s), ..., en(s) belong to T, (A(s)S) for each
value of s. It follows that (¢(s),e/(s)) = 0, 1 < i, j < n, and so (e/(s), €] (5)) are
constant functions.

Observe that the subspace generated by a(s), ¢;(s) and e/(s) is independent of
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s and, by simplicity, we can assume that its dimension is N + 1.

Set a; = (€i(s),¢;(s)) = —{ei(s),e/(s)). It is now clear that (a;) is a constant
symmetric matrix. Hence, the second derivative (") is a self-adjoint linear map
from T,S into T,S. Therefore there exists an orthonormal basis of T,S relative to
which the matrix of (") is diagonal. We still represent such a basis by e, ..., e,.
For such a choice we obtain €/(s) = \,;e;(s) with \; = —(e/(s), e/(s)). Hence, for
each i, 1 =i = n, we have two possibilities:

(3.11)(a) e;(s) is a constant function,

or

(3.11)(b) e;(s) describes a circle in a two-dimensional subspace V; of EN*'. In
this case V; is an invariant subspace of A(s).

For the case of L', the same kind of argument can be applied to obtain:

(3.11)'(a) e;(s) is a constant function,

or

(3.11)'(b) e;(s) is either a circle in a two-dimensional Riemannian subspace V;
of LIN*, or a circle (H") in a Lorentz two-dimensional subspace V; of
L"*'. In any case V; is an invariant subspace of A(s).

Since A(s) is a one-parameter subgroup of rigid motions of R" or L", then we
know that the invariant subspaces of A(s) do not depend on s and have dimension
one or two. It is a fact that A(s) decomposes as a product of simple one-parameter
subgroups in the following way

(3.12) A@) =T(s)o... 2 A,

where T(s) is a translation subgroup (or the identity) of a one-dimensional sub-
space V, and A;(s) is a one-parameter subgroup of “rotations” of a two-dimen-
sional subspace V;, 1 = j = m. The subspaces V; are mutually orthogonal and
with respect to an orthonormal base of each V;, 0 < j = m, A, (s) has one of the
following forms:

cos a;s — sina;s cosh g;s sinh a;s
J J J J
(3.13) a)| . b)| . ,
sin a;s Ccos a;s sinh a;s cosh a;s

where the g; are real numbers. Case (a) occurs when V; is metrically E* and case
(b) when V; is metrically L>. We may then decompose RY*' or L"*! as a direct
sum

(3.14) VoDV, ®... 8V, DV,

where V,,,, is a subspace kept pointwise invariant by all A;(s), 0 < j < m, and
by T(s).

The last ingredient we need to complete our proof is the observation that, from
the beginning, we may have chosen the point p in such way that a(s) = A(s)p is
either a point or a line. To prove that, we use the fact that for each value of

s,0"(s) belongs to T, (A(s)S) and therefore o” = 2}: , ae;. Observe that
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(a",e;) = —(a',e;) are constant functions and remember that €7(s) = \,e;(s) with
N = —(el(s),ei(s)). Assume \; # 0 for 1 < i =<k, and \; = O for i > k. Then
we may write

k

k
a;
o = Z ae; = Z ;’ e.
\ j=1 =1l
Hence, if ¢ = p + EFI tie; where t; = —a;/\;, 1 < j < k, then the curve

B(s) = A(s)q satisfies B"(s) = 0. This fact will be extended in this section to all
generalized helicoids.

We now choose p € S from the beginning such that a(s) = A(s)p is either a
point or a line. From (3.11) and (3.11)" it follows that we may renumber the e;
in such way thate; € V;, 1 < j <k, and e;.4, ..., e, € V,;,, where k and p are
two integers such that k = m, k + p = n and p = dim V,,,,. By changing the
basis in E¥*! or L¥*! we obtain the desired result.

A natural question to ask at this point is: how large is the set of points where
a generalized helicoid is singular? To answer this question it is convenient to say
that a generalized helicoid of EV described by (13.10) is of type (n,k).

(3.15) Proposition. Let X be a generalized helicoid of type (n,k) of E" gen-
erated by a one-parameter subgroup A(s) of rigid motions of EN. The canonical
form of A(s) given by (3.12) includes translations if and only if X is regular every-
where. If X is singular, then the set of singular points is the (n — k + 1)-plane
defined by t, = ... = t, = 0.

A similar proposition can be proved for L". In that case it is convenient to say
that the first generalized helicoid described in (3.10)(b) is of type (n,k,—1) and
the second of type (n,k,1).

(3.16) Proposition. Let X be a generalized helicoid of " generated by a one-
parameter subgroup A(s) of rigid motions of L". If the canonical form of A(s)
given by (3.12) includes translations or if X is of type (n,k,—1) then X is every-
where regular. If X is singular, then the set of singular points is the (n — k + 1)-
plane defined by t, = ... = t, = 0.

If X is a generalized helicoid of SV or H", we may associate with X to a gen-
eralized helicoid X as was done in (3.9). In the case of SV, we will say that X is
of type (n,k) if X is of type (n + 1,k + 1). For the case of H" we will say that
X is of type (n,k,—1) or (n,k,1) if X is, respectively, of type (n + 1,k + 1,—1)
or(n+ 1,k + 1,1).

(3.17) Proposition. Let X be a generalized helicoid of H". If k = n or if X
is of type (n,k,—1) then X is everywhere regular. If X is of type (n,k,1) and k <
n then X is singular on a totally geodesic H" *™' of each leaf defined by t, =
e e = 0.

(3.18) Proposition. Let X be a generalized helicoid of S of type (n,k). If
k = n then X is everywhere regular. If k < n, then X is singular on a totally
geodesic 8" of each leaf, defined by t, = ... = ti;, = 0.
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On (3.17) H® means just one point of H". On (3.18) S° means the set of two
antipodal points of SV.

To prove (3.15), (3.16), (3.17) and (3.18) we must observe that, according to
(2.9), X is regular at a point if and only if |X,| # O in that point. If X is a helicoid
of type (n,k) of R then

k
X, =D 6/(5) + bVyepnn.
j=1

Hence, if b # 0 (A(s) contains translation) then X is everywhere regular. If b =
Othent, = ... = t, = 0 is the solution of X(s,t,,...,2,) = 0. This proves (3.15).
The other propositions can be proved similarly.

(3.19) Proposition. Let X be a generalized helicoid of M"(c). If X is every-
where regular then the metric induced on its domain (R X E",R X S"orR X H"),
is complete.

Proof. 1t is sufficient to prove this when M"(c) is R", S or H". The metric
induced by X in R X M"(c) is do® = |X|* ds* + d6*, where d@’ is the standard
metric of M"(c). Since X is everywhere regular then |X,|* is a positive differentiable
function defined on R X M"(c). It is easy to see that |X,|> depends on the variable
q € M"(c) but not on s. Let y(u) = (s(u),q(u)) be a curve in R X M"(c). If q(u)
is itself a divergent path on R X M"(c) then

fd02fd0=°°.
Y q

If g(u) is not a divergent path, then g([a,»)) is bounded. We may then find € >
0 such that

X,(s(w),qw)’=¢  onvy([a,)).

Since vy is divergent and g([a,»)) is bounded, then lim s(u) = . It follows that

u—®

fdo->f g€ds = o,
h] s(a)

This shows that the length of any divergent path on R X M"(c), endowed with
the metric do? is infinite and therefore (R X M"(c),do?) is complete.

It is well known that the helicoid of R* has a line as its striction curve. Next
proposition shows this to be a general fact for generalized helicoids without sin-
gular points. One also may consider that a generalized helicoid with a singular
point has this point as a striction curve.

_(3.20) Proposition. Let M"(c) represent EV, S” or H" and let X : M""'(s) —
M"(c) be an everywhere regular generalized helicoid. Then, at least one of the
curves B(s) = X(s,q) is a geodesic of M"(c).

Proof. If X:R"' — E" and X is everywhere regular, then
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n

X(S,t1y0oty) = A(s)(E tje,.> + bseo,  b#0

Jj=1
where A(s) is a one-parameter subgroup of rigid motions of the subspace of EV
orthogonal to e,. Hence

X, = D, AW
j=1

and the equation X, = 0 givesus ¢t; = ... = t, = 0. Therefore B(s) = X(s,0,...,0)
is a geodesic of EV.

When ¢ > 0, it is sufficient to consider the case X: R X §" ! — SV, If X is
everywhere regular then

X(sytl, . '9tn) = A(S) E tjej’
j=1

where 2 t; = 1 and A(s) moves each ¢;. We then obtain

X, = D, iNAG)e,

where \;, ..., A\, are nonzero constants. It is simple to verify that (D/ds)X, =
X,, — (X, X)X and that (D/ds)X, = 0 is now equivalent to the linear system.

L\ = (2 t,%)\k>tj 1<j=n.
k=1
Since 2 t} = 1, this system has at least the following solutions for

t,.. ..ty : (1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1).

By taking g to be any one of such solutions we obtain that B(s) = X(s,q) is a
geodesic of SV.

When ¢ < 0, it is sufficient to consider the case X : R X H*?"! - HN If X
is everywhere regular then we must have

k k+p
X(S,tye - oliry) = D) GAG)e + D0 e,
j=1 j=k+1
where ey, ..., €., are orthonormal in LY and (ei€,) = —1 for some ip, 1 =

iy = k. Assuming i, = 0, we obtain X = Z;':I ti\;A(s)e; where Ny, ..., \; are

nonzero constants. It is simple to verify that (D/d)X, = X,, + (X,,,X)X and that
(D/ds)X, = 0 is now equivalent to the linear system

k
LN+ (—t?h + 2 z})\j>ti =0 l<si<k+p.
j=2
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Thent = 1,1t = ... = tiy, = 0 is a solution for this system and hence B(s) =
X(s,1,0,...,0) is a geodesic on H".

(3.21) Proposition. LetX:R X E"— E" or X:R X H" — H" be an every-
where regular generalized helicoid. Then X is an embedding.

Proof. We will show that X is 1-1 and proper. Let B(s) = X(s,q0) be the
geodesic of EY or H" whose existence was assured in Proposition (3.20). This
geodesic is normal to all leaves of X. Two such leaves cannot intersect otherwise
we would have a geodesic triangle with two right angles on EV or H". Hence X
is 1-1.

Let d( , ) represent the intrinsic distance on X(R X H"), and d( , )be
the distance on E" or H". Let A = B(s,), B = B(s;) and C = X(51,9), 9 # qo.
For the geodesic triangle ABC (with right angle on B) on E" or H", we have
d(A,C) = d(A,B), d(A,C) = d(B,C) and then it follows that d(A,C) =< d(A,B) +
d(B,C) = d(A,B) + d(B,C) = 2d(A,C).This is sufficient to show that X is proper.

A full classification of generalized helicoids is directly obtained from (3.10).
In the next section we will show that generalized helicoids are the most general
examples of minimal ruled submanifolds of space forms.

4. The main result. In this section we prove the following result.

_(4.1) Theorem. Let M"*' be a minimal ruled submanifold of M"(c), where
A/!N(c) is EN, SY or HY. Then there is a generalized helicoid X : R X M"(c) —
M"(c) and an open set U C R X M"(c) such that X restricted to U parametrizes
M.

Proof. As we did in Section 2, we parametrize M by a map X described in
(2.6) where the domain of X can be taken to be an open set of the product R X M"(c).
Let us assume ¢ # 0. From (2.16) we see that X is minimal if and only if

4.2) alNe,/N...Ne, N X, \NX,, =0,

where

X(s,t1,. . .5ty) = f(afs) + @ 2 1¢()
j=1

1/2
for r = (E;ﬂ tf) and f and g defined as on (2.8). Whent, = ... =1, =0

this reduces to X(s,0,...,0) = a(s) and (4.2) becomes
alNeg,/ N...Ne,No' Na" = 0.

Since o, o', e, ..., e, are orthonormal vector fields in the ambient space and o
is normal to o', this implies that a” belongs to the subspace generated by a, e,
..., e,. Consequently
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ay i

o
—€eT,S,.
ds

Since X, = f(r) «" + (g()/r) 2}”: . tiej then (4.2) implies, for r # 0, that

a/\el/\.../\en/\Xs/\the}’=0

j=1
or equivalently

n t
fOX TaNa N Ne, Ao N
j=1

W
+g(r) z ;'fa/\el/\.../\en/\ei'/\e;:=0.

i,j=1

By setting & = t;/r,a;, = a Neg /N ... Ne, N’ N\ eland by = a N\ e, N\
... N e, )\ e;/\ €] we may rewrite this equation as

f 2 &a + g(n 2 §&b; +by)=0.
j=1 i=j
Because f(r) and g(r) are independent functions it follows that
> ga,=0 and D, &&(by + by) =0
j=1 i=j

for (&,,...,£,), a variable point of $"~' C R". By choosing special values for (§,,. . .,£,)
we may conclude that a; = 0 and b; + b; = 0, 1 =i, j < n. That is,

(a) alNeyN...Ne,Na' Nel=0, l<j=<n

and

®) alNe/N...Ne,NelNef+e/N\...\e,/\e\e/=0 l1<i,j<n.
In particular, if i = j in equation (b), one obtains

(b") aNey/\...e,\ej/\Nef=0 l1=j=n.

Hence e} belongs to the intersection of the (n + 2)-planes generated by «, ey, ...,
e, o' and a, ey, ..., e,, e/. Assume there exists an index i such that (ej,a’) # 0.
Then o' is parallel to ] and consequently, by (a)

alNey/N...Ne,\Ne[N\Nef=0 lsj=<n.
Now from (b) we obtain
alNe,N...Ne,Ne//\Ne/=0 l=j=n.

Therefore ¢; is parallel to o’ for all j, 1 < j < n. Consequently either a' is parallel
to e; for all i, 1 =i =< n, or ¢ belongs to the subspace spanned by «, ey, ..., e,.
If the first possibility occurs the (n + 2)-plane generated by a, ey, ..., €,, a' is
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a fixed (n + 2)-plane of the ambient space. Since this space is the same as the
one generated by X, X,, ..., X, , X, it follows that the normal space of X in M
is constant in the ambient space and therefore, X describes a totally geodesic
immersion in M. The same kind of argument can be carried out when ¢ = 0. We
summarize the results obtained so far in the following statement:

(4.3) Under the hypothesis of (4.2) either M is totally geodesic or Da'/ds and
De}/ds, 1 < i < n, belong to T,S,.

One shall observe that ¢/, 1 =< i =< n, are tangent vectors to X and so it makes
sense to write De!/ds. This is clear when ¢ = 0. If ¢ # 0, since {(a,e;) = 0 and
(a',e;) = 0 then (a,e]) = (a,e) — (a',e;) = 0 and so e is perpendicular to o and
hence belongs to T,M.

If X is a totally geodesic immersion then it is a generalized helicoid and the
remainder of the theorem is trivially true. Thus we assume that X is not totally
geodesic. Under this hypothesis we will prove the following claim:

(4.4) The curve o has constant curvatures.

We start by observing that since Da’/ds and De|/ds belong to T,S, then

4.5) (el,¢j) and (a',e/) are constant along a.
Let E,, E,, ..., E, be the Frenet frame associated to the curve a. Then E; = o'
and we have the Frenet formulas
D .
(4.6) ZSE" = —kj—lE'—l + k]E]+1 1 SJ = m,
where ki, ..., k,_, are the curvatures of a and k, = k,, = 0. Since E; = o', we
have
Do/ - LE
dS 142

Using (4.3) and (4.5) we can write

where the g; are constant. Then K; is constant, E; belongs to (T,S)* and E,
belongs to T, S,. By (4.6) we have

DE,
_—= _klEl + k2E3.
ds
Hence
DE, 1K
T q;¢;

ds k_1j=1
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and
DE, 13 Def 1
== D> a—=—— a;cipey,
ds* kS ds kT
where ¢;, = —(e],ep). _

By (4.5) ¢y, |DE,/ds| and |D’E,/ds’| are constant. Therefore k, and k; are con-
stant, E; belongs to (T,S,)*, E, belongs to T,S and E, = 2 a,e; where the ay;
are constant. Proceeding in this way we conclude that o has constant curvatures,
E,; belongs to T, S, and E,;,; belongs to (T,S,)". Furthermore,

(4.7) E2j = E a;e; and E2j_1 = 2 bjie,-',
i=1 i=1

where the a,; and b;; are constant. This proves (4.4).
In fact, if we just repeat the argument above for e;(s) we conclude that

(4.8) Each e;(s) describes, in the ambient space, a curve with constant curva-
tures.

Let R(a) be the subspace of the ambient space spanned by a, E, ..., E,. It
is clear that R (o) does not depend on s. We may then choose for R(a) N T, S,
the basis {E,;: 1 = i = [m/2]}.

Since R(a) is constant, so is its orthogonal complement R(c). We can apply
Lemma (2.2) to any basis of R(a) N T, S, to obtain a new basis for such a space
that has the same properties as the one we have been working with so far. In
particular they will satisfy (4.3) and (4.8). We will then have

Z—z’ = > ey, Im/21<i=n,
j>lm/2]

where (c;;) is a constant symmetric matrix. Since (c;;) is symmetric we may change
basis again, in such way as to diagonalize (c;;). Since the change of basis will be
done through constant matrices, it will keep all properties of e;, [m/2] < j < n.

For this last basis we will have that each e;, [m/2] < j = n will describe a
curve with constant curvatures contained in a Euclidean plane V; of the ambient
space. Each plane V; is invariant with s and is generated by e; and e;. They are
mutually orthogonal as one can see by observing that, if i # j then

<ei9ej> = <ei9ej,> = <ej’ei’> = 0
and
(ei’aej,> = _<ei’e}/> = _<ei,)\jej> =0.

Each ¢;(s) is then an orbit of a one-parameter subgroup of rigid motions A;(s)
of V,, [m/2] <j =n, described by (4.8). Then there is a one-parameter family
of rigid motions A(s) satisfying (3.5). Furthermore, as we observe after Propo-
sition (3.5) we have A(S)E;(1) = Ej(s + 1), 1 = j = m. If we now take A =
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Ao Apmz+1°© ... ° A, then we obtain the decomposition (3.14) and letting ¢; € R
we see that X is the restriction of a generalized helicoid. This proves the theorem.

Added in proof. After this paper had been completed, our attention was called
to the work of Giinter Aumann (Die Minimalhyperregelflichen, Manuscripta Math.
34 (1981), 293-304) in which he treats the particular case of minimal ruled hy-
persurfaces in E".
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