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1 Introduction

Let Rn+1(K) , n ≥ 2, be a space form of sectional curvature K = −1, 0, or +1 and m an
integer, 1 ≤ m ≤ n. In this paper we establish several a priori bounds for solutions of the
following geometric problem: under what conditions a given function ψ : Rn+1(K) → (0,∞)
is the m-th mean curvature Hm of a hypersurface M embedded in Rn+1(K) as a graph over
a sphere?

Let us formulate the problem more precisely. First we describe the space Rn+1(K) in a
form convenient for our purposes. In Euclidean space Rn+1 fix the origin O and a unit sphere
Sn centered at O. Denote by u a point on Sn and let (u, ρ) be the spherical coordinates in
Rn+1. The standard metric on Sn induced from Rn+1 we denote by e. Let a = const, 0 <
a ≤ ∞, I = [0, a), and f(ρ) a positive C∞ function on I such that f(0) = 0. Introduce in
Rn+1 a new metric

h = dρ2 + f(ρ)e. (1)

When a = ∞ and f(ρ) = ρ2 the space (Rn+1, h) is the Euclidean space ≡ Rn+1. When
a = ∞ and f(ρ) = sinh2 ρ the space (Rn+1, h) = Rn+1(−1) is the hyperbolic space Hn+1

with sectional curvature −1 and when a = π/2, f(ρ) = sin2 ρ, (Rn+1, h) = Rn+1(1) is
the elliptic space Sn+1

+ with sectional curvature +1. By the m-th mean curvature, Hm,
we understand here the normalized elementary symmetric function of order m of principal
curvatures λ1, ..., λn of M , that is,

Hm =
1

(nm)

∑

i1<...<in

λi1 · · ·λim .

The problem stated in the beginning can now be formulated as follows. Let ψ(u, ρ), u ∈
Sn, ρ ∈ I, be a given positive function. Under what conditions on ψ there exists a smooth
hypersurface M given as (u, z(u)), u ∈ Sn, z > 0, for which

Hm(u) = ψ(u, z(u)) on M? (2)
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In Euclidean space Rn+1(= Rn+1(0)) such conditions were found by I. Bakelman and B.
Kantor [2, 3] and A. Treibergs and S.W. Wei [13] when m = 1 (the mean curvature case),
by V. Oliker [11] when m = n (the Gauss curvature case), and by L. Caffarelli, L. Nirenberg
and J. Spruck [6] when 1 < m < n. Other forms of such conditions for the Gauss curvature
case in Rn+1 were investigated by P. Delanoë [7], Yan Yan Li [10] and others. In our paper
[12] we investigated the Gauss curvature case for hypersurfaces in Rn+1(−1) and Rn+1(1).
Special curvature functions for convex hypersurfaces in Riemannian manifolds have been
considered recently by C. Gerhardt [8] (see also other references there).

In all investigations of (2) in Euclidean space a priori C0, C1 and C2 estimates for
solutions of (2) play a central role in the proofs of existence. However, except for the
C0 estimates, obtaining these a priori estimates for hypersurfaces in the hyperbolic space
Rn+1(−1) and elliptic space Rn+1(1) is not straight forward and requires new efforts. The
approach of this paper allows us to obtain C1 a priori bounds in Rn+1(K) for any 1 ≤ m ≤ n
and K = −1, 0, 1. When K = 1 we obtain also the C2 a priori estimates. Essentially the
same proof of the C2 estimate works also in case when K = 0 treated earlier in [11] for
m = n and in [6] for 1 ≤ m ≤ n.

2 Preliminaries

2.1 Local formulas

Unless explicitly stated otherwise, all latin indices are in the range 1, ..., n, the sums are over
this range and summation over repeated lower and upper indices is assumed. Also, since
most of our considerations apply to space forms Rn+1(K) , where K can be −1, 0 or 1, we
will discuss the general case, indicating explicitly the restriction on K only where necessary.

We consider hypersurfaces in Rn+1(K) which are graphs over Sn. Thus, for a given
smooth positive function z(u), u ∈ Sn, we denote by r(u) = (u, z(u)) the graph M of
this function. Throughout the paper we will have to use covariant differentiation on the
sphere Sn and on the hypersurface M . We fix our notation here. First we do it for Sn.
Let u1, ..., un be some smooth local coordinates in a coordinate neigborhood U ⊂ Sn. Let
∂i = ∂/∂ui, i = 1, 2, ..., n, be the corresponding local frame of tangent vectors on U so that
e(∂i, ∂j) = eij. For a smooth function v on U the first covariant derivative vi ≡ ∇′

iv = ∂v/∂ui.
Put ∇′v = eijvj∂i, where eij = (eij)

−1. For the covariant derivative of ∇′v we have

∇′
∂s
∇′v = vsje

ji∂i + vj∇′
∂s

(eij∂i) = ∇′
sjve

jk∂k

(

vsj =
∂2v

∂us∂uj

)

,

or, equivalently,
∇′
sjv = vsj − Γ′i

sjvi,

where Γ′i
sj are the Christoffel symbols of the second kind of the metric e. This differentiation

is extended to vector-valued functions by differentiating each of the components.
Similarly, if T is a smooth symmetric (0, 2)− tensor on U with components Tij relative

to the dual coframe then the components of its first covariant derivatives on Sn are given by

∇′
lTij =

∂Tij
∂ul

− hkjΓ
′k
lj − TkiΓ

′k
il .
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WhenM is a hypersurface in Rn+1(K) and g is a metric onM the covariant differentiation
on M is defined as above but with respect to connection of the metric g. In this case for a
smooth function v on M we denote by ∇iv and ∇ijv its first and second covariant derivatives
and similarly for vector-valued functions and smooth symmetric tensors on M .

We now define the metric and the second fundamental form of M in the case when M
is a graph of a smooth and positive function z on Sn, that is, M = (u, z(u)), u ∈ Sn. In
spherical coordinates (u, ρ) in Rn+1(K) we let R = ∂/∂ρ. The frame ∂1, ..., ∂n, R is a local
frame along M and a basis of tangent vectors on M is given by ri = ∂i + ziR, i = 1, ..., n.
The metric g = gijdu

iduj on M induced from Rn+1(K) has coefficients

gij = feij + zizj and det(gij) = fn−1(f + |∇′z|2) det(eij). (3)

Obviously, M is an embedded hypersurface. The inverse matrix (gij)
−1 is given by

gij =
1

f

[

eij − zizj

f + |∇′z|2
]

(

zi = eijzj
)

. (4)

The unit normal vector field on M is given by

N =
∇′z − fR

√

f 2 + f |∇′z|2
. (5)

The second fundamental form b of M is the normal component of the covariant derivative
in Rn+1(K) with respect to connection defined by the metric (1). In local coordinates its
coefficients are given by ([12])

bij =
f

√

f 2 + f |∇′z|2

[

−∇′
ijz +

∂ ln f

∂ρ
zizj +

1

2

∂f

∂ρ
eij

]

, (6)

Note that with our choice of the normal the second fundamental form of a sphere z = const >
0 is positive definite, since for Rn+1(K) ∂f/∂ρ > 0.

The principal curvatures ofM are the eigenvalues of the second fundamental form relative
to the metric g and are the real roots, λ1, ..., λn, of the equation

det(bij − λgij) = 0,

or, of the equivalent equation,

det(aij − λδij) = 0,

where

aij = gikbkj . (7)

The elementary symmetric function of order m, 1 ≤ m ≤ n, of λ = (λ1, ..., λn) is

Sm(λ) =
∑

i1<...<in

λi1 · · ·λim;
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that is, Sm(λ) = F (aij), where F is the sum of the principal minors of (aij) of order m. It
follows from the preceding discussion that

F (aij) ≡ F (u, z,∇′
1, ...,∇′

nz,∇′
11z, ...,∇′

nnz).

The equation (2) assumes now the form

F (aij) = ψ̄(u, z(u)), (8)

where here and for the rest of the paper we put for convenience ψ̄ ≡ (nm)ψ.
Let Γ be the connected component of {λ ∈ Rn | Sm(λ) > 0} containing the positive cone

{λ ∈ Rn | λ1, ..., λn > 0}.
Definition 2.1 A positive function z ∈ C2(Sn) is admissible for the operator F if the cor-
responding hypersurface M = (u, z(u)), u ∈ Sn, is such that at every point of M with the
choice of the normal as in (5), the principal curvatures (λ1, ..., λn) ∈ Γ.

It is known, [5], that

Smλi
≡ ∂Sm

∂λi
> 0, Smλiλj

≡ ∂2Sm
∂λi∂λj

> 0 (9)

for all λ ∈ Γ, i 6= j. For the first of the inequalities see also [4]. It is also known that the
function (Sm(λ))1/m is concave on Γ [5].

The function

q(ρ) ≡ 1

2f(ρ)

df(ρ)

dρ
(10)

will play an important role in our constructions. Note that for a sphere of radius c

F (aij) = (nm)qm(ρ)|ρ=c
. (11)

In Rn+1 q(ρ) = ρ−1.
For ease of reference we state here two basic properties of the function q(ρ). First note

that it is strictly positive on the interval I (where f is defined). Further, since

∂q

∂ρ
= −1

f
, (12)

it is strictly decreasing on I. Also, it follows directly from the definition of function f for
each of the spaces Rn+1(K) that

f =
1

q2 +K
. (13)

3 C0
- estimates

Lemma 3.1 Let 1 ≤ m ≤ n and let ψ(X) be a positive continuous function defined on
Rn+1(K) \{0}. Suppose there exist two numbers R1 and R2, 0 < R1 < R2 < a, such that

ψ(u, ρ) > qm(ρ) for u ∈ Sn, ρ < R1, (14)

ψ(u, ρ) < qm(ρ) for u ∈ Sn, ρ > R2. (15)
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Let z ∈ C2(Sn) be a solution of equation (8). Then

R1 ≤ z(u) ≤ R2, u ∈ Sn. (16)

In applications a slightly different form of this estimate is sufficient.

Lemma 3.2 Let 1 ≤ m ≤ n and let ψ(X) be a positive continuous function in the annulus
Ω̄ : u ∈ Sn, ρ ∈ [R1, R2], 0 < R1 < R2 < a. Suppose ψ satisfies the conditions:

ψ(u,R1) ≥ qm(R1) for u ∈ Sn, (17)

ψ(u,R2) ≤ qm(R2) for u ∈ Sn. (18)

Let z ∈ C2(Sn) be a solution of equation (8) and R1 ≤ z(u) ≤ R2, u ∈ Sn. Then either
z ≡ R1, or z ≡ R2, or

R1 < z(u) < R2, u ∈ Sn. (19)

Proof of Lemma 3.1. Suppose there exists a point ū ∈ Sn such that maxSnz(u) =
z(ū) > R2. At ū grad z = 0 and Hess(z) ≤ 0. Then at ū

gij =
1

f
eij , bij = −Hess(z) + fqeij ≥ fqeij ,

and aij ≥ qδij . Consequently,

F (aij) = ψ̄(ū, R2) ≥ (nm)qm(ρ)|ρ=R2

which contradicts the inequality (15). Similarly it is shown that R1 ≥ z(u).
The Lemma 3.2 is a consequence of a strong maximum principle as in [1], Theorem 1.

4 C1
- estimate

Theorem 4.1 Let 1 ≤ m ≤ n and let ψ(X) be a positive C1 function in the annulus
Ω̄ : u ∈ Sn, ρ ∈ [R1, R2], 0 < R1 < R2 < a. Let z ∈ C3(Sn) be an admissible solution of
equation (8) satisfying the inequalities

R1 ≤ z(u) ≤ R2, u ∈ Sn. (20)

Suppose, in addition, that for all u ∈ Sn and ρ ∈ [R1, R2] ψ satisfies one of the following
conditions:
if the sectional curvature K = 0 or 1 then

∂

∂ρ

[

ψ(u, ρ)q−m(ρ)
]

≤ 0; (21)

if the sectional curvature K = −1 then

∂

∂ρ

[

ψ(u, ρ)fm/2(ρ)
]

≤ 0. (22)

Then
|grad z| ≤ C (23)

where C is a constant depending only on m,n,R1, R2, ψ, gradψ.
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Proof. It will be convenient to make the substitution

v(u) = q(ρ)|ρ=z(u).

Using (12) we get

vi = −zi
f
, ∇′

ijv =
1

f

[

−∇′
ijz +

fρ
f
zizj

]

,

where fρ denotes the derivative of f with respect to ρ. Then

∇′
ijv + veij =

1

f

[

−∇′
ijz +

fρ
f
zizj +

1

2
fρeij

]

.

Using (4), (6) and (7) we obtain

gij =
1

f

[

eij − fvivj

1 + f |∇′v|2
]

(vi = eijvj),

bij =
f

√

1 + f |∇′v|2
(∇′

ijv + veij),

aij =

[

(1 + f |∇′v|2)eis − fvivs

(1 + f |∇′v|2)3/2

]

(∇′
sjv + vesj). (24)

Put
p2 = v2 + |∇′v|2 +K, P is = p2eis − vivs, Wsj = ∇′

sjv + vesj.

Note that by (13) and (20) v ≥ c > 1 for K = −1 and v ≥ c′ > 0 for K = 0, 1, where the
constsnts c and c′ depend only on R1 and R2. Using (13) with q = v we rewrite (24) in the
form

aij =

√
v2 +K

p3
P isWsj. (25)

The C0 bounds of v imply that p ≥ c = const > on Sn, where c depends only on R1 and R2.
In order to estimate |∇′v| we estimate the maximum of the function

φ = p2η(v),

where η is a positive function to be specified later. This will give us an estimate of |∇′v| and
therefore of |∇′z|.

Let ū ∈ Sn be the point where the maxSn φ(u) is attained, that is, maxSn φ(u) = φ(ū).
Assume that ū is the origin of a local coordinate system on Sn chosen so that at ū the
corresponding local frame of tangent vectors to Sn is orthonormal. Then at ū the covariant
derivatives coincide with the usual derivatives. At ū we have

φi = 2p∇′
ipη + p2η′vi = 0 and φii(≡ ∇′

iiφ) ≤ 0, i = 1, 2, ..., n (η′ ≡ dη

dv
). (26)

The first of these conditions implies

p∇′
ip = vs(∇′

siv + vesi) = vsWsi = −p
2

2

η′

η
vi. (27)
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It follows from (25) that at ū

aji =

√
v2 +K

p

(

eikWkj +
η′

2η
vivj

)

. (28)

The second condition in (26) together with (27) give

2(∇′
iv
sWsi + vs∇′

iWsi) +





η′′

η
− 2

(

η′

η

)2


 p2v2
i + p2η

′

η
∇′
iiv ≤ 0, (29)

where η′′ = d2η
dv2

.
By the Ricci identity on Sn

∇′
iWsi = ∇′

sWii.

Applying it in (29) we get

2(∇′
iv
sWsi + vs∇′

sWii) +





η′′

η
− 2

(

η′

η

)2


 p2v2
i + p2η

′

η
∇′
iiv ≤ 0. (30)

Next, we differentiate covariantly on Sn the equation (8),

F j
i ∇′

sa
i
j = ψ̄s + ψ̄vvs, (31)

where the subscript v at ψ̄v denotes differentiation with respect to v. Then, we multiply (31)
by vs and sum over s. This is a lengthy calculation and we break it down into several steps.
Using (25) and (27) we obtain at ū

vs∇′
s

√
v2 +K

p3
=

√
v2 +K

p3

[

v

v2 +K
+

3

2

η′

η

]

|∇′v|2

and

vsF j
i ∇′

s

√
v2 +K

p3
P ikWkj =

[

v

v2 +K
+

3

2

η′

η

]

mψ̄|∇′v|2. (32)

Next, we have with repeated use of (27)

vs∇′
sP

ikWkj = 2ppsv
seikWkj − vs∇′

sv
ivkWkj − vivs∇′

sv
kWkj

= − p3

√
v2 +K

η′

η
|∇′v|2aij +

p2

2

(

η′

η

)2

|∇′v|2vivj − p2 η
′

η

(

p2

2

η′

η
+ v

)

vivj .

Then, taking into account that p2 = v2 + |∇′v|2 +K, we obtain

vs
√
v2 +K

p3
F j
i ∇′

sP
ikWkj = −η

′

η
|∇′v|2mψ̄ −

√
v2 +K

p





v2 +K

2

(

η′

η

)2

+
η′

η
v



 |Dv|2, (33)

where we put
|Dv|2 ≡ F j

i v
ivj.
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Multiply now (31) by vs and sum over s. Then, using (32), (33), we get

√
v2 +K

p3
vsF j

i P
ik∇′

sWkj = ψ̄sv
s +

[

ψ̄v −
mvψ̄

v2 +K

]

|∇′v|2 (34)

− η′

2η
mψ̄|∇′v|2 +

√
v2 +K

p





v2 +K

2

(

η′

η

)2

+
η′

η
v



 |Dv|2.

We transform (34) as follows. Assuming that |∇′v| 6= 0 (otherwise the needed estimate
is obvious), we can rotate the local frame so that ∇′v = v1∂1. At ū eij = δij and it follows
from (27) that at ū

∇′
1iv = v1i = W1i = 0 when i > 1.

By rotating the frame ∂2, ..., ∂n at ū we can diagonalize the matrix (vij) at ū. Then by (28)

a1
1 =

√
v2 +K

p
(v11 +vδ11 +

η′

2η
v2
1), aii =

√
v2 +K

p
(vii+vδii) for i > 1, aij = 0 if i 6= j.

Consequently, the matrix (F j
i ) is diagonal at ū.

The matrix (P ik) is also diagonal at ū with P 11 = p2 − (v1)
2 = v2 +K and P ii = p2 for

i > 1. Thus, (34) becomes

√
v2 +K

p3
v1F

i
jP

ji∇′
1Wii = ψ̄1v1 +

[

ψ̄v −
mvψ̄

v2 +K

]

v2
1 (35)

− η′

2η
mψ̄v2

1 +

√
v2 +K

p





v2 +K

2

(

η′

η

)2

+
η′

η
v



F 1
1 v

2
1.

In the chosen coordinates the inequality (30) assumes the form

2(
∑

s

visWsi + v1∇′
1Wii) +





η′′

η
− 2

(

η′

η

)2


 p2v2
i + p2η

′

η
vii ≤ 0. (36)

By the first of the inequalities in (9) F i
i > 0 and P ii > 0 by the C0 bounds, as it was

explained in the beginning of this section. For each i = 1, 2, ..., n we multiply the inequality
(36) by F i

jP
ji and sum over i. Then we obtain

v1F
i
jP

ji∇′
1Wii ≤ −F i

jP
ji
∑

s

visWsi −




η′′

2η
−
(

η′

η

)2


 p2F 1
1P

11v2
1 −

p2

2

η′

η
F i
jP

jivii

= −F i
jP

jiW 2
ii+

vp3

√
v2 +K

F i
ja

j
i −





η′′

2η
−
(

η′

η

)2


 p2F 1
1P

11v2
1 −

p5

2

η′

η

F i
ja

j
i√

v2 +K
+
p2v

2

η′

η

∑

i

F i
jP

ji

≤ vmψ̄p3

√
v2 +K

− p5

2

η′

η

mψ̄√
v2 +K

−




η′′

2η
−
(

η′

η

)2


 p2F 1
1P

11v2
1 +

p2v

2

η′

η

∑

i

F i
jP

ji. (37)
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Combining this inequality with (35) we obtain

vmψ̄ − p2

2

η′

η
mψ̄ −

√
v2 +K

p





η′′

2η
−
(

η′

η

)2


F 1
1P

11v2
1 +

√
v2 +K

p

v

2

η′

η

∑

i

F i
jP

ji

≥ ψ̄1v1 +

[

ψ̄v −
mvψ̄

v2 +K

]

v2
1 −

η′

2η
mψ̄v2

1 +

√
v2 +K

p





v2 +K

2

(

η′

η

)2

+
η′

η
v



F 1
1 v

2
1 . (38)

It can be shown that each of the conditions (21), (22) imply in each of the respective
cases that

ψ̄v −
mvψ̄

v2 +K
≥ 0. (39)

In order not to interrupt the present arguments we will postpone the proof of (39) till the
end of this section.

Using (39) we strengthen the inequality (38) by deleting the term with ψ̄v − mvψ̄
v2+K

. In
addition, we simplify it by using the fact that P 11 = v2 + K and also regroup the terms.
Then (38) becomes

ψ̄1v1 ≤ vmψ̄ − (v2 +K)mψ̄η′

2η
+
pv

√
v2 +K

2

η′

η

∑

i

F i
i + J

√
v2 +Kv1F

1
1 , (40)

where

J ≡ η′

η

[

v(v2 +K)

2pv1
− pv

2v1
− v1v

p

]

− v1(v
2 +K)

2p





η′′

η
−
(

η′

η

)2


 .

We claim that the function η can be chosen so that J ≤ 0. First note that without loss of
generality it may be assumed that maxSn |∇′v| ≥ maxSn

√
v2 +K. Otherwise, the required

estimate is trivial. With this assumption we have the following estimates

pv

2|∇′v| +
|∇′v|v
p

≤ (1 +

√
2

2
) max

Sn
v (≡ A),

|∇′v|(v2 +K)

2p
≥ minSn(v2 +K)

2
√

2
(≡ B).

By the C0-estimates A > 0, B > 0. We choose now the function η by setting

η(v) = exp{QB
A

exp{−Av
B

}},

where Q is a positive constant to be specified later. Then at ū we have

η′

η
= −Q exp{−Av

B
}, η′′

η
−
(

η′

η

)2

= Q
A

B
exp{−Av

B
}

and

J = Q exp{−Av
B

}
{[

−v(v
2 +K)

2pv1
+
pv

2v1
+
v1v

p

]

− A

B

v1(v
2 +K)

2p

}

< 0.
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Consequently, the last term on the right side of (40) can be deleted.
We consider now the remaining terms in (40). We have

pv
√
v2 +K

2

η′

η

∑

i

F i
i = −Q exp{−Av

B
}pv

√
v2 +K

2

∑

i

F i
i .

Since ψ̄ > 0, the
∑

i F
i
i admits a positive lower bound depending only on ψ̄; see [9]. Therefore,

exp{−Av
B

}v
√
v2 +K

2

∑

i

F i
i ≥ c > 0

where c is a constant depending only on ψ̄, R1, R2, m, n. Thus, we can choose Q so that

Q exp{−Av
B

}v
√
v2 +K

2

∑

i

F i
i − max

Ω̄
|gradψ̄| ≥ c1 > 0

with the choice of Q dependent only on ψ̄, R1, R2, m, n, |gradψ|. Then the inequality (40)
assumes the form

c1p ≤ vmψ̄ +Q
(v2 +K)mψ̄

2
exp{−Av

B
}

which implies a bound on p at ū. Then

max
Sn

φ ≤ c2 <∞,

where c2 depends only on ψ̄, R1, R2, m, n, |gradψ|. This implies the required bound (23).
In order to complete the proof it remains to establish (39). Consider first the case K = 1.

We transform the condition (21) in Theorem 4.1 as follows. Using (12), (13) we get

∂

∂ρ

[

ψq−m
]

= q−m[ψρ +mq−1(q2 +K)ψ] ≤ 0, (41)

where ψρ = ∂ψ
∂ρ

. Using the relation v = q(ρ), we obtain with the use of (12) and (13)

∂ρ

∂v
= −f = − 1

q2 +K
, ψv = − ψρ

v2 +K

and it follows from (41) that
−ψv +mv−1ψ ≤ 0. (42)

Since K > 0, (42) implies that

ψ̄v −
mvψ̄

v2 +K
> ψ̄v −

mψ̄

v
≥ 0 (43)

and (39) is established.
Suppose now that K = 0. Then, arguing as in the case K = 1, we conclude that the left

hand side of condition (21) is transformed into

ψv −mv−1ψ,

10



which together with (21) implies (39).
Finally, consider the case when K = −1. It follows from condition (22) and definition of

q that
−ψv(v2 +K) +mvψ ≤ 0.

The proof of Theorem 4.1 is now complete.
Remark 1. In the case K > 0 the proof of the gradient estimate can be completed by

setting η ≡ 1 in (38). Then it follows from (38) that

vmψ̄ ≥ ψ̄1v1 +
[

ψ̄v −
v

v2 +K
mψ̄

]

v2
1. (44)

Together with (43) this establishes the required estimate (23).
Remark 2. If in Theorem 4.1 m = n then the the estimate (23) is true without the

conditions (21) and (22); see [11, 12]. In this case it can be shown that ∇′v = 0 at the
point where the maxSn p2 is attained. This obviously implies an estimate of |∇′v| by the
maxSn(v2 +K).

5 C2
-estimate

Let z ∈ C4(Sn) be an admissible solution of equation (8). Let M be a hypersurface in
Rn+1(1) given as a graph of z over Sn. In this section an estimate of the maximal principal
curvature of the hypersurface M is obtained. Such an estimate together with the C0− and
C1− a priori estimates in sections 3 and 4 implies an a priori estimate of the C2 norm of
solutions to the equation (8).

Many of our considerations here are valid for Rn+1(K) with K = −1, 0, 1 and may be
useful in other instances. For that reason we will state and prove some of the preliminary
results for an arbitrary space form. Unfortunately, the arguments in the proof of Theorem
5.2 are valid only when sectional curvature K is equal to either 1 or 0.

5.1 More local formulas

It is convenient to use a common framework to model Rn+1(K) in which the hyperbolic space
Rn+1(−1) is modeled as the upper sheet of the two-sheeted hyperboloid in the (n + 2)-
dimensional Minkowski space with Lorentz metric and the elliptic space Rn+1(1) as the
upper hemisphere of Sn+1 in Euclidean space Rn+2. We can combine all three cases (including
Euclidean space) by introducing the space

Ln+2 = {p = (p0, p1, . . . , pn+1)| p0, p1, . . . , pn+1 ∈ R}

with the metric
〈, 〉 = Kdp2

0 + dp2
1 + . . . dp2

n+1.

In this setting Rn+1(K) is identified with the appropriate hypersurface

{p ∈ Ln+2; 〈p, p〉 = K, }

11



where in case of K = −1 we take p0 ≥ 1, when K = 1 we take p0 > 0 and when K = 0 we
take p0 = 0.

Let Sn be a unit sphere centered at the origin and lying in the hyperplane p0 = 0 in Ln+2.
Put e0 = (1, 0, . . . , 0). When K = ±1 we represent the hypersurface M in Rn+1(K) defined
by function z(u), u ∈ Sn, as

X(u) = c(z(u)) e0 + s(z(u)) u, (45)

where u is treated as a point on Sn and also as a unit vector and

s(ρ) =
√

f(ρ), c =
ds

dρ
.

When K = 0
X(u) = z(u)u.

As in section 2.1 we let u1, ..., un be some local coordinates on M and Xi = ∂iX, i =
1, ..., n, the corresponding local frame of tangent vectors. The unit normal N to M (as a
submanifold of Ln+2) oriented in the inward direction is given by

N =
1

√

f(z) + |∇′z|2
(Kf(z)e0 + ∇′z − c(z)s(z)u). (46)

We record here the Weingarten, Codazzi, Gauss, and Ricci equations on M .

∇iN = −bisgskXk, (47)

∇ijN = −
∑

s,k

∇jbisg
skXk −

∑

s,k

bisg
skbkjN +KbijX, (48)

∇ibjk = ∇kbji, (49)

∇ijX = bijN −KgijX (50)

Rijkl = bikbjl − bilbjk +K(gikgjl − gilgjk), (51)

∇l∇kbij −∇k∇lbij =
∑

l

bilRljkl +
∑

l

bjlRlikl, (52)

where ∇i and ∇ij denote covariant differentiation in the metric g on M with respect to some
local coordinates on M .

5.2 An estimate of the maximal normal curvature of M

Let k1 ≥ ... ≥ kn be the principal curvatures of M . Since the function ψ̄ in (8) is positive,
it follows that

∑

i ki > 0 on M and therefore k1 > 0.

Lemma 5.1 Let 1 ≤ m ≤ n and let ψ(X) be a positive C2 function in the annulus Ω̄ : u ∈
Sn, ρ ∈ [R1, R2], 0 < R1 < R2 < a. Let z ∈ C4(Sn) be an admissible solution of equation
(8) in Rn+1(1). Let ū be a point on M and coordinates u1, ..., un with origin at ū in some

12



neighborhood U of ū are such that the frame X1, ..., Xn, is orthonormal in metric g on U
and the second fundamental form bij is diagonal at ū. Then at ū

ψ̄II − (1 − 1

m
)
ψ̄2
I

ψ̄
≤
∑

i

F i
i∇iib11 + b11

∑

i

F i
i b

2
ii − b211mψ̄ +K(mψ̄ − b11

∑

i

F i
i ), (53)

where

ψ̄I ≡ ∇1ψ̄ + ψ̄z∇1z

(

ψ̄z =
∂ψ̄

∂z

)

and

ψ̄II ≡ ∇11ψ̄ + 2∇1ψ̄z∇1z + ψ̄zz(∇1z)
2 + ψ̄z∇11z

(

ψ̄zz =
∂2ψ̄

∂z2

)

.

Proof. First we calculate the first covariant derivative (in the metric g) of the equation (8)
with respect to u1. This derivative is given by

∑

i,j

F j
i ∇1a

j
i = ψ̄I , (54)

The second covariant derivative is given by

∑

i,j,k,s

i6=s, j 6=k

∂F j
i

∂aks
∇1a

k
s∇1a

i
j +

∑

i,j

F j
i ∇11a

i
j = ψ̄II (55)

Note that the metric g is constant with respect to the operator ∇ and therefore at ū

∇1a
j
i = ∇1bij .

Taking into account that F i
j and bij are both diagonal at ū, it follows from (54) that

∑

i

F i
i∇1bii = ψ̄I at ū. (56)

Similarly, at ū we have

∑

i,j,k,s

i6=s, j 6=k

∂F j
i

∂aks
∇1a

k
s∇1a

j
i =

∑

i6=j

∂2F

∂bjj∂bii
[∇1bjj∇1bii − (∇1bij)

2].

Since F 1/m(aji ) = S1/m
m (k1, ..., kn), we can use the second inequality in (9) to delete the term

with the negative sign on the right. Then

∑

i,j,k,s

i6=s, j 6=k

∂F j
i

∂aks
∇1a

k
s∇1a

i
j ≤

∑

i6=j

∂2F

∂bjj∂bii
∇1bjj∇1bii. (57)

Using concavity of F 1/m(aji ) we get

∑

i6=j

∂2F

∂bjj∂bii
∇1bjj∇1bii ≤ (1 − 1

m
)
1

F

(

∑

i

F i
i∇1bii

)2

= (1 − 1

m
)
ψ̄2
I

ψ̄
.
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The equality on the right follows from (56). This inequality, (57) and (55) give

∑

i

F i
i∇11bii ≥ ψ̄II − (1 − 1

m
)
ψ̄2
I

ψ̄
. (58)

We transform the left side of this inequality as follows. Using (49) and (52) we obtain

∇11bii = ∇1ib1i = ∇i1b1i +
∑

k

b1kRkii1 +
∑

k

bikRk1i1.

By (49) ∇i1b1i = ∇iib11 and applying the Gauss equations (51) we get at ū

∇11bii = ∇iib11 +
∑

k

b1k(bkibi1 − bk1bii +K(δkiδi1 − δk1δii))

+
∑

k

bik(bkib11 − bk1b1i +K(δkiδ11 − δk1δ1i))

= ∇iib11 + b11b
2
ii − b211bii +K(b11δ1iδ1i − b11δii + bii − bi1δ1i).

Noting that at ū
∑

i F
i
i bii = mψ̄, we get

∑

i

F i
i∇11bii =

∑

i

F i
i∇iib11 + b11

∑

i

F i
i b

2
ii − b211mψ̄ +K(mψ̄ − b11

∑

i

F i
i ). (59)

This expression and (58) give (53).

Theorem 5.2 Let 1 ≤ m ≤ n and let ψ(X) be a positive C2 function in the annulus
Ω̄ : u ∈ Sn, ρ ∈ [R1, R2], 0 < R1 < R2 < a. Let z ∈ C4(Sn) be an admissible solution of
equation (8) in Rn+1(1) satisfying the inequalities

R1 ≤ z(u) ≤ R2, u ∈ Sn (60)

and
|∇′z| ≤ C = const on Sn. (61)

Then
‖ z ‖C2(Sn)≤ C1, (62)

where the constant C1 depends only on m,n,R1, R2, C, ‖ ψ ‖C2(Ω̄).

Proof. We estimate the maximal principal curvature of M . Such an estimate together
with the C0− and C1− estimates implies an estimate of ‖ z ‖C2(Sn). We preserve here the
notation used in the proof of the preceding lemma. Put

τ(u) = 〈N(u), e0〉, η(u) = 〈X(u), e0〉

It follows from (60) and (61) that the function τ on M is uniformly bounded away from 0
and ∞. Let

ω(u) = log
b11(u)

τ(u)
. (63)
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Again, because of the estimates (60) and (61), in order to estimate the maximal curvature
k1 on M it suffices to estimate maxM ω.

The function ω is similar to the function g in [6], section 4, but here we work in elliptic
space. Also, in our proof we do not use the special local coordinates used in [6] and this
simplifies the computations.

Let ū ∈ M be a point where the function ω attains its maximum and the coordinates
u1, ..., un are as in Lemma 5.1. Then F j

i = ∂F
∂bii

when i = j and F j
i = 0 otherwise. Note that

at ū the covariant derivatives coincide with the usual derivatives.
At ū we have ∇iω = 0, which implies

∇ib11
b11

=
∇iτ

τ
, i = 1, 2, ..., n, (64)

and

∇iiω =
∇iib11
b11

−
(

∇ib11
b11

)2

− ∇iiτ

τ
+
(∇iτ

τ

)2

≤ 0, i = 1, 2, ..., n. (65)

Squaring (64) and substituting in (65) we get

∇iib11
b11

≤ ∇iiτ

τ
. (66)

Using definitions of functions τ and η and the Weingarten, Codazzi and Gauss equations
(with K = 1), we obtain

∇iτ = −bii∇iη, ∇iiτ = −
∑

s

∇sη∇sbii − τb2ii + ηbii, ∇iiη = τbii − ηδii.

Substituting these expressions into (66) we get

∇iib11
b11

≤ −1

τ

∑

s

∇sη∇sbii − b2ii +
ηbii
τ
.

At ū F i
j is diagonal and F i

i > 0 by (9). Multiplying the last inequality by F i
i , summing over

i and taking into account that
∑

i F
i
i bii = mψ̄, we obtain

1

b11

∑

i

F i
i∇iib11 ≤

1

τ

∑

s

∇sη∇sψ̄ +
mψ̄η

τ
−
∑

i

F i
i b

2
ii. (67)

Consider now the inequality (53) in Lemma 5.1. We use the estimate (67) to bound the
first term on the right of (53). Also, we strengthen the inequality (53) by deleting the term
−b11

∑

i F
i
i . Then (53) assumes the form

ψ̄II − (1 − 1

m
)
ψ̄2
I

ψ̄
≤ b11

τ

(

∑

s

∇sη∇sψ̄ +mψ̄η

)

+mψ̄ − b211mψ̄. (68)

Next, we observe that the maxM |ψ̄I | is bounded by a constant depending only on ψ̄, its first
derivatives, and C1− norm of z. Similarly, maxM |ψ̄II | is bounded by a constant depending
on the same quantities, ‖ ψ̄ ‖C2(Ω̄) and maxM |∇′

11z|. On the other hand, it follows from
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(6) that |∇′
11z| < c2|b11| + c3, where the constants c2, c3 depend only on R1, R2 and C

in (61). Then, it follows from (68) that b11 is bounded by a constant depending only on
m,n,R1, R2, ψ, gradψ, |gradz|. It follows from (63) that maxMb11 is bounded by a constant
depending on the same quantities. Now, (6) implies the required estimate (62).

Remark. Essentially the same arguments give also the estimate (62) in the case when
K = 0 treated earlier in [11] for m = n and in [6] for general m, 1 ≤ m ≤ n. The required
modifications reduce to replacing the function τ(u) by τ(u) = 〈N(u), X(u)〉, setting η(u) ≡ 0,
and using Lemma 5.1 with K = 0. The calculations using the Weingarten, Codazzi, Gauss,
and Ricci equations should also be adjusted accordingly.
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