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ininterruptos. À minha avó, Nenê, e tias Expedita, Aparecida e Liduina, por cuidarem
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Ao meu orientador Prof. Dr. André Lima Férrer de Almeida, e ao meu

coorientador Prof. Dr. João Paulo Carvalho Lustosa da Costa, pela excelente orientação,

lições, paciência, disponibilidade, oportunidades e amizade durante esses longos anos. A
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Onde há ofensa, que eu leve o perdão.
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RESUMO

Em diversas aplicações no campo de processamento digital de sinais, como por exemplo,

comunicações sem-fio, sonar e radar, o sinal recebido possui natureza multidimensional que

pode incluir intrinsecamente em sua estrutura dimensões como espaço, tempo, frequência,

código e polarização. Em virtude disso, técnicas modernas de processamento que explo-

ram as múltiplas dimensões do sinal podem ser desenvolvidas para melhorar o desempenho

desses sistemas devido à estimativas de parâmetros mais acuradas (por exemplo: direção

de partida, direção de chegada, atraso, frequência Doppler, coeficientes de canal, rúıdo

de fase) apresentando melhores condições de identificabilidade. Nesse contexto, esta tese

propõe novas modelagens tensoriais para processamento de sinais em arranjos e estimação

de canal aplicada à sistemas de comunicações sem-fio. Na primeira parte desta tese,

dedicada à processamento de sinais em arranjos multidimensionais de sensores e radar,

propomos uma nova técnica de pré-processamento tensorial para supressão de rúıdo que

reduz significantemente o efeito do rúıdo em dados matriciais e tensoriais implicando em

melhores estimativas dos parâmetros desejados. Em seguida, novas modelagens tensoriais

baseadas nas decomposições PARAFAC, Tucker e Nested-PARAFAC são formuladas, a

partir das quais novos algoritmos para estimação conjunta de ângulo de partida e ângulo

de chegada são propostos. Na segunda parte deste documento, modelagens tensoriais

são desenvolvidas para resolver o problema de estimação de canal em sistemas de comu-

nicações MIMO sem-fio. Primeiramente, propomos um esquema de codificação e retrans-

missão multi-frequencial que concentra o processamento associado à estimação conjunta

dos canais de downlink e uplink na estação-base. Mostramos que o sinal retransmitido

recebido pode ser modelado como a decomposição PARAFAC de um tensor de terceira-

ordem. Em seguida, a decomposição PARAFAC é novamente explorada na modelagem

de um sistema de comunicação MIMO mais realista que considera perturbações de rúıdos

de fase em cada antena transmissora e receptora. Algoritmos receptores para estimação

de canal e rúıdo de fase são formulados. Resultados de simulação são apresentados para

ilustrar o desempenho dos receptores propostos que são comparados ao estado-da-arte.

Palavras-chave: Modelagem tensorial, processamento em arranjos, sistemas de comu-

nicações sem-fio, arranjos multidimensionais de sensores, radar MIMO biestático, su-

pressão de rúıdo, estimação de parâmetros, estimação de canal, estimação de rúıdo de

fase, PARAFAC, Nested-PARAFAC, decomposição de Tucker.



ABSTRACT

In several applications in the field of digital signal processing, for example, wireless com-

munications, sonar and radar, the received signal has a multidimensional nature which

can intrinsically include on its structure many dimensions such as space, time, frequency,

code, and polarization. In view of this, modern processing techniques which exploit all

the signal dimensions can be developed to improve the system performance due to more

accurate parameter estimation (for example: direction of departure, direction of arrival,

delay, Doppler frequency, channel coefficients, phase noise) with powerful identifiability

conditions. In this context, this thesis proposes new tensor modeling approaches for ar-

ray processing and channel estimation applied to wireless communications systems. In

the first part of this thesis, devoted to multidimensional sensor array and radar process-

ing, we propose a new tensor-based preprocessing technique for noise supression which

significantly reduces the noise effect in matrix and tensor data leading to more accu-

rate estimates of the desired parameters. Then, new tensor methods capitalizing on the

PARAFAC, Tucker and Nested-PARAFAC decompositions are formulated, from which

new algorithms for joint direction of departure and direction of arrival estimation are pro-

posed. In the second part of this document, tensor modeling approaches are developed to

solve channel estimation problems in MIMO wireless communications systems. Firstly,

we propose a new closed-loop and multi-frequency channel training framework that con-

centrates the processing associated with joint downlink and uplink channel estimation at

the base station. We also show that the received closed-loop signal can be modeled as the

PARAFAC decomposition of a third-order tensor. Then, the PARAFAC decomposition is

also exploited to modeling a more realistic MIMO communication system that considers

phase noise perturbations at each transmit and receive antenna. Receiver algorithms for

channel and phase noise estimation are formulated. Simulation results are presented to il-

lustrate the performance of the proposed receivers which are compared to state-of-the-art

approaches.

Keywords: Tensor modeling, array processing, wireless communications systems, multi-

dimensional sensor arrays, bistatic MIMO radar, denoising, parameters estimation, chan-

nel estimation, phase noise estimation, PARAFAC, Nested-PARAFAC, Tucker decompo-

sition.
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NOTATION

Throughout this thesis the following conventions are used. Scalars are de-

noted by lower-case letters x, column vectors as boldface lower-case letters x, matrices as

boldface upper-case letters X, and tensors as boldface calligraphic letters X .

C set of complex-valued numbers

CI set of complex-valued I-dimensional vectors

CI×Q set of complex-valued (I ×Q)-matrices

CI1×I2×···×IN set of complex-valued (I1 × I2 × · · · × IN)-tensors

{·}∗ complex conjugate

{·}T transpose

{·}H conjugate transpose

{·}−1 inverse

{·}† Moore-Penrose pseudo-inverse

‖ · ‖F Frobenius norm

⊗ Kronecker product

� Khatri-Rao (column-wise Kronecker) product

◦ outer product

xi,q (i, q)-th element of X ∈ CI×Q

xi1,i2,··· ,iN (i1, i2, · · · , iN)-th element of X ∈ CI1×I2×···×IN

xq q-th column of X ∈ CI×Q

X (i, :) i-th row of X ∈ CI×Q

X (i : k, :), i < k submatrix fomed by the i-th to j-th row of X

X i1·· i1-th horizontal slice of X ∈ CI1×I2×I3

X ·i2· i2-th lateral slice of X ∈ CI1×I2×I3

X ··i3 i3-th frontal slice of X ∈ CI1×I2×I3

[X ](n) n-mode unfolding matrix of X ∈ CI1×I2×···×IN

×n n-mode product

IN identity matrix of size N ×N
IN,Q identity tensor of N -th order and rank-Q

ρx rank of X

κx Kruskal-rank (k-rank) of X

E{·} expectation operator

tn concatenation operator along n-th mode of X
vec (·) vectorization operator

unvec (·) unvectorization operator (inverse of the vectorization operator)

vecd (·) converts the main diagonal of a matrix into a column vector

Di (A) diagonal matrix with diagonal entries given by i-th row of A
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1 INTRODUCTION

This is an introductory chapter where we present the motivation and scope of this thesis

in Section 1.1. After that, we present our main contributions in Section 1.2, followed by

the thesis overview in Section 1.3. Finally, the main scientific production produced during

the doctoral period are presented in Section 1.4.

1.1 Thesis Scope and Motivation

High resolution parameter estimation and channel estimation problems play

fundamental roles in several practical applications in the field of digital signal processing.

For example, the first one ranging from array processing in radar, sonar, acoustics and

global navigation satellite systems (GNSS), to name a few, while the latter is commonly

applied to mobile communications systems. Conventional signal processing techniques

usually consider only the space and time dimensions which leads to matrix-based model-

ing. However, often the space domain can be split into two signal dimensions (azimuth

and elevation), while the time domain can be divided into other two dimensions (frames

and sub-frames) so that the received signal to be processed has a multidimensional nature

which can also include on its structure other dimensions (for example: frequency, code

and polarization) that are not take into account since matrices are only two-dimensional

data structures. In view of this, modern processing techniques that extend the existing

approaches by exploiting all the signal dimensions can be developed by using tensor tools.

There are significant advantages of using tensor-based signal processing instead of matrix-

based signal processing. Among these advantages, we can cite the improved identifiability

conditions, which generally come from the essential uniqueness property of tensor decom-

positions. Tensor-based methods also inherits the so-called tensor gain, which translates

into improved accuracy due to the efficient noise rejection capability (DA COSTA et al.,

2011; ROEMER, 2013).

In order to deal with such a multidimensional nature of the signals, tensor de-

compositions have extensively been applied in recent years in array processing and wire-

less communications systems areas. In the array processing context, the seminal works

(SIDIROPOULOS, BRO, and GIANNAKIS, 2000) and (NION and SIDIROPOULOS,

2010) linked the Parallel Factor (PARAFAC) decomposition (CARROLL and CHANG,

1970; HARSHMAN, 1970) to the problems of multiple invariance sensor array processing

and targets localization in multiple-input multiple-output (MIMO) radar systems, respec-

tively. The authors of (GUO, MIRON, and BRIE, 2008) show that a polarized source

mixture on a vector sensor array can be interpreted as a PARAFAC decomposition of a

third-order tensor. In (DA COSTA et al., 2010), a closed-form solution to estimate the

factor matrices of a PARAFAC decomposition has been proposed for spatial parameter
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estimation in multidimensional sensor arrays. An interesting transmission scheme based

on power variations of the transmitted signals at successive time blocks was proposed

in (RONG et al., 2005). It solve the problem of spatial signature estimation using two

different approaches: the first one is based on the PARAFAC decomposition, while the

second one relies a joint approximate diagonalization algorithm.

In the context of wireless communications systems, the authors of the semi-

nal work (SIDIROPOULOS, GIANNAKIS, and BRO, 2000) proposed a blind multiuser

separation for direct-sequence code-division multiple access (DS-CDMA) by modeling the

received signal as a third-order PARAFAC decomposition. DE ALMEIDA, FAVIER, and

MOTA (2007) proposes a unified PARAFAC-based modeling with application to blind

multiuser equalization. In works (LIU et al., 2013) and (DE ALMEIDA et al., 2013),

different tensor-based receivers are formulated to solving the joint symbol and channel

estimation problem in space-time-frequency (STF) MIMO communication systems. In

the former, the PARAFAC decomposition is exploited to derive a closed-form solution

based on the factorization of the Khatri-Rao product. The latter proposed a blind re-

ceiver that exploits a generalized PARATUCK2 model (HARSHMAN and LUNDY, 1996)

of the STF-MIMO transmission system.

Nowadays, millimeter wave (mmWave) MIMO communication systems has

been subject of increasing interest in both academia and industry since it is a promising

technology for future 5G mobile communication systems due to its potential to offer

gigabit-per-second data rates by exploiting the large bandwidth available at mmWave

frequencies (ZHOU et al., 2016a). This has motived the development of new tensor-based

approaches for mmWave MIMO channel estimation. In this way, the authors of (ZHOU

et al., 2016a) proposed a layered pilot transmission scheme and explored the intrinsic

low-rank structure of the received signal, resulting of the sparse scattering nature of the

mmWave channel, to formulate a PARAFAC-based method for the joint estimation of the

uplink channels of multiple users assuming channel reciprocity. In (ZHOU et al., 2017),

the same authors studied the downlink channel estimation problem for frequency-selective

mmWave MIMO channels. Similarly, the received signal is organized into a third-order

tensor which admits a PARAFAC decomposition and the channel parameters (angles of

departure and arrival, time delays and fading coefficients) are jointly estimated from the

decomposed factor matrices. In contrast to (ZHOU et al., 2017), the authors of (ARAÚJO

and DE ALMEIDA, 2017) explore both the sparse and multidimensional structures of

frequency-selective mmWave MIMO channels and recast the channel estimation problem

as a multi-way compressed sensing problem. The channel parameters are estimated by

solving a simpler compressive sensing problem for each channel dimension.

The key features motivating the use of tensor decompositions in the afore-

mentioned applications come from their powerful identifiability and uniqueness proper-

ties compared with traditional matrix-based methods (HARSHMAN, 1970; KOLDA and
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BADER, 2009). Additionally, one can also benefit from the multidimensional structure

of tensor data to perform noise rejection/prewhitening, as shown in (DA COSTA et al.,

2011).

1.2 Main Contributions

In this thesis, we propose new tensor-based modeling and algorithms to solve

parameter estimation problems in array processing, as well as channel and phase noise

estimation problems in MIMO wireless communications systems. The main contributions

can be summarized as follows:

• Development of a new denoising framework for matrix and tensor data to improve

the parameter estimation accuracy in multidimensional sensor array processing;

• New tensor-based formulations for the covariance structure of the received signal

in multidimensional sensor arrays and bistatic MIMO radar systems exploiting the

PARAFAC, Nested-PARAFAC and Tucker decompositions;

• Development of new PARAFAC, Nested-PARAFAC and Tucker-based receiver al-

gorithms for direction of departure and direction of arrival estimation in multidi-

mensional sensor arrays and bistatic MIMO radar systems;

• Proposal of a new PARAFAC-based channel training framework and development

of receiver algorithms which concentrate the joint downlink and uplink channel

estimation at the BS side in MIMO wireless communications systems ;

• Development of a new PARAFAC-based approach for the joint channel and phase

noise estimation in MIMO communication systems;

• Study of the identifiability issues and computational complexities of the proposed

methods.

1.3 Thesis Organization

This thesis is divided into seven chapters, including this introductory chapter.

In the following, we briefly describe the content of the six remaining chapters.

Chapter 2: Prerequisites of Multilinear Algebra. This chapter provides a theoretical

basis for the methods developed in this thesis. It first review important definitions and

operations of multilinear algebra. Then, the three most important tensor decompositions

to the context of this thesis, namely PARAFAC, Nested-PARAFAC and Tucker decompo-

sitions are introduced. The contribution presented in this chapter is to unify in one place

fundamental concepts spread in the literature in order to make it easily understandable

for the reader.
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The first part of this thesis, which comprises Chapters 3 and 4, is devoted to

solve the problem of spatial parameter estimation in multidimensional sensor arrays and

bistatic MIMO radar systems, respectively.

Chapter 3: Tensor-Based Methods for Blind Spatial Signatures Estimation in Multi-

dimensional Sensor Arrays. This chapter tackles the denoising and spatial parameter

estimation in array signal processing problems. In the first part, by exploiting the possi-

ble subarrays created by the spatial smoothing preprocessing technique and then applying

successive low-rank approximations, we formulate a novel denoising framework for ten-

sor and matrix data. In the second part, the covariance matrix of the received signal is

formulated as a PARAFAC model (for uncorrelated sources) and as a Tucker model (for

correlated sources). Two generalized iterative algorithms for direction of arrival estima-

tion are proposed.

Chapter 4: A Nested-PARAFAC Approach for Target Localization in Bistatic MIMO

Radar Systems. This chapter addresses the target localization problem in bistatic MIMO

radar systems. We formulate a new tensor modeling for the cross-covariance matrix

of the matched filters outputs using a Nested-PARAFAC decomposition, from which two

receiver algorithms are proposed to jointly estimate the directions of departure and arrival

of multiple targets located at the same range bin of interest. Identifiability issues and

computational complexity of the proposed algorithms are also discussed.

The second part of this thesis, which comprises Chapters 5 and 6, is devoted

to solve the problem of channel and phase noise estimation in MIMO wireless communi-

cations systems.

Chapter 5: Joint Downlink and Uplink Channel Estimation Using Tensor Processing.

This chapter addresses the problem of channel estimation in MIMO wireless communica-

tions systems. Initially, a novel closed-loop and multi-frequency based channel training

framework is presented. It allows to concentrate most of the processing burden for channel

estimation at the base station, i.e., avoiding such processing at the mobile stations side.

We formulate a new PARAFAC-based modeling for the received closed-loop signal. We

also extend the proposed tensor signal model for millimeter-wave MIMO scenarios. Two

new semi-blind receivers to perform the joint downlink and uplink channel estimation are

developed, and identifiability issues and computational complexity are studied.

Chapter 6: Tensor-Based Semi-Blind Receiver for Joint Channel and Phase Noise Es-

timation in Frequency-Selective MIMO Systems. This chapter addresses the problem of

channel and phase noise estimation using a PARAFAC-based modeling. By assuming

a transmission scheme in which each frame is divided into small sub-frames so that the

phase noise varies sub-frame to sub-frame, we show that the received signal can be mod-

eled as a third-order PARAFAC decomposition. We propose a semi-blind receiver for
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jointly recovering the channel impulse response and the phase noise at the transmitter

and receiver antennas. The identifiability issues and the computational complexity of the

proposed receiver are also discussed.

Chapter 7: This chapter concludes the thesis by summarizing the obtained results and

listing some perspectives for future work.

Remark: This thesis has four chapters with the main contributions that cover

different aspects of array signal processing and channel estimation in MIMO wireless

communications systems. Every chapter is meant to be self-contained so that the reader

can read them independently without loss of information.

1.4 Scientific Production

The experiences in research projects as well as the technical reports and pub-

lications produced during the doctoral period are listed as follows.

1.4.1 Participation in Research Projects

• Speech Processing for Far Field Automatic Speech Recognition. March/2015 - Febru-

ary/2016. Developed under the context of LG Electronics/UFC technical coopera-

tion projects;

• UFC.44 Hybrid Beamforming and Massive MIMO for 5G Wireless Systems. Octo-

ber/2016 - September 2018. Developed under the context of Ericsson/UFC technical

cooperation projects,

in which a number of four technical reports in UFC.44 were delivered:

• Paulo R. B. Gomes, and André L. F. de Almeida, Joint DL and UL Chan-

nel Estimation Using Tensor Processing. First Technical Report (TR01) UFC.44.

GTEL-UFC, April, 2017;

• Paulo R. B. Gomes, and André L. F. de Almeida, Joint DL and UL Channel Es-

timation for Massive MIMO Communications Using Hybrid Beamforming. Second

Technical Report (TR02) UFC.44. GTEL-UFC, October, 2017;

• Paulo R. B. Gomes, and André L. F. de Almeida, Multidimensional User Group-

ing for Frequency-Selective MU-MIMO Systems. Third Technical Report (TR03)

UFC.44. GTEL-UFC, April, 2018.

• Paulo R. B. Gomes, Francisco H. C. Neto, Weskley V. F. Mauŕıcio, Daniel C.

Araújo, André L. F. de Almeida, and Tarcisio F. Maciel, Hybrid Beamforming De-

sign Exploiting Implicit and Explicit CSI in Massive MIMO Systems. Fourth Tech-

nical Report (TR04) UFC.44. GTEL-UFC, September, 2018.

The Chapter 5 of this thesis is related to the UFC.44 research project.
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1.4.2 Journal Papers

• Paulo R. B. Gomes, André L. F. de Almeida, João Paulo C. L. da Costa, and

G. Del Galdo, Tensor-Based Methods for Blind Spatial Signature Estimation Under

Arbitrary and Unknown Source Covariance Structure, in Digital Signal Processing,

vol. 62, pp. 197-210, 2017;

• Paulo R. B. Gomes, André L. F. de Almeida, João Paulo C. L. da Costa, João C.

M. Mota, Daniel Valle de Lima, and G. Del Galdo, Tensor-Based Methods for Blind

Spatial Signature Estimation in Multidimensional Sensor Arrays, in International

Journal of Antennas and Propagation, vol. 2017, pp. 1-11, 2017;

• Paulo R. B. Gomes, João Paulo C. L. da Costa, and André L. F. de Almeida,

Tensor-Based Multiple Denoising via Successive Spatial Smoothing, Low-Rank Ap-

proximation and Reconstruction for R-D Sensor Array Processing, in Digital Signal

Processing, May 2018. Under Major Revision;

• Paulo R. B. Gomes, André L. F. de Almeida, and João Paulo C. L. da Costa, A

Nested-PARAFAC Based Approach for Target Localization in Bistatic MIMO Radar

Systems, in Digital Signal Processing, April, 2018. Under Major Revision;

• Paulo R. B. Gomes, André L. F. de Almeida, João Paulo C. L. da Costa, and

Rafael T. de Sousa Jr., Tensor-Based Semi-Blind Receiver for Joint Channel and

Phase Noise Estimation in Frequency-Selective MIMO Systems, To be Submitted ;

• Paulo R. B. Gomes, and André L. F. de Almeida, Joint DL and UL Channel

Estimation for Millimeter Wave MIMO Communications Using Tensor Based Pro-

cessing, To be Submitted ;

• Paulo R. B. Gomes, André L. F. de Almeida, and Tarcisio F. Maciel, Multidimen-

sional User Grouping for Users Scheduling in Frequency-Selective MIMO Systems,

In Preparation.

1.4.3 Conference Papers

• Paulo R. B. Gomes, André L. F. de Almeida, and João C. M. Mota, Estimação

Cega de Assinaturas Espaciais para Arranjos em Formato L Baseada em Modelagem

Tensorial de Correlações Cruzadas, in XXXIII Brazilian Symposium on Telecom-

munications (SBrT2015), September, 2015, Juiz de Fora, MG.

• Paulo R. B. Gomes, André L. F. de Almeida, João Paulo C. L. da Costa, and João

C. M. Mota, Métodos Tensoriais para Estimação Cega de Assinaturas Espaciais

em Arranjos Multidimensionais de Sensores, in XXXIV Brazilian Symposium on

Telecommunications (SBrT2016), September, 2016, Santarém, PA.
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1.4.4 Patent

A request for patent application related to the UFC.44 project is under eval-

uation at Ericsson research.

• Paulo R. B. Gomes, Daniel C. Araújo, André L. F. de Almeida, and Eleftherios

Karipidis, A Method for Joint Forward and Reverse CSI Acquisition.
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2 PREREQUISITES OF MULTILINEAR ALGEBRA

In this chapter, we focus on review some important basic definitions and operations of

multilinear algebra that are exploited in later chapters of this thesis. Our goal here is

to contribute with a compilation of fundamental concepts spread over many works in the

literature in order to make it easily understandable for the reader. The chapter is di-

vided into four parts. Firstly, we define some matrix operators, and then the Kronecker

and Khatri-Rao products are introduced. Secondly, we review the matrix singular value

decomposition (SVD) and least-squares Khatri-Rao factorization (LS-KRF). The third

and fourth parts are particularly devoted to introduce operations involving tensors and an

overview on PARAllel FACtor (PARAFAC), Nested-PARAFAC and Tucker decomposi-

tions, respectively. All the contents presented here will be extensively used throughout this

thesis in the context of different applications.

2.1 Matrix Products and Operators

The matrix Kronecker and Khatri-Rao products are important operations in

multilinear algebra. Often, these two products are employed to represent in a simpli-

fied way the unfolding matrices of well-used tensor decompositions. In the following,

Kronecker and Khatri-Rao products are described in detail.

Definition 1. (Kronecker product) The Kronecker product, denoted by ⊗, between two

matrices A ∈ CI1×Q and B ∈ CI2×R results in a matrix of size I1I2 ×QR denoted by

A⊗B =


a1,1B a1,2B · · · a1,QB

a2,1B a2,2B · · · a2,QB
...

...
. . .

...

aI1,1B aI1,2B · · · aI1,QB

 ∈ CI1I2×QR. (1)

Definition 2. (Khatri-Rao product) The Khatri-Rao product introduced by KHATRI

and R. RAO (1968), denoted by �, is the column-wise Kronecker product. Let A ∈ CI1×Q

and B ∈ CI2×Q be two matrices with the same number of columns Q, the Khatri-Rao

product between them results in a matrix of size I1I2 ×Q denoted by

A �B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aQ ⊗ bQ

]
∈ CI1I2×Q, (2)

where aq ∈ CI1 and bq ∈ CI2 denote the q-th column (q = 1, . . . , Q) of A and B,

respectively.

Definition 3. (Vectorization operator) Given a matrix A = [a1,a2, · · · ,aQ] ∈ CI1×Q the

vectorization operation, denoted by vec (A), converts A to a column vector a ∈ CI1Q by
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stacking its columns aq ∈ CI1 (q = 1, . . . , Q) on top of each other, i.e.,

vec (A) =


a1

a2

...

aQ

 ∈ CI1Q. (3)

As an inverse operation of the vectorization, the unvectorization operator denoted by

unvecI1×Q (a), reshapes the column vector a ∈ CI1Q into a matrix A ∈ CI1×Q.

Throughout this thesis, we shall make use of the following properties involving

the Kronecker and Khatri-Rao products (BREWER, 1978; PETERSEN and PEDERSEN,

2008):

(A �B)T =
[
D1 (A)BT · · ·DI1 (A)BT

]
, (4)

AC ⊗BD = (A⊗B) (C ⊗D) , (5)

AC �BD = (A⊗B) (C �D) , (6)

vec
(
ABCT

)
= (C ⊗A) vec (B) , (7)

vec
(
ABCT

)
= (C �A) vecd (B) , (8)

a⊗ b = vec (b ◦ a) , (9)

where B is assumed to be a full matrix in (7), while it is a diagonal matrix in (8). The op-

erator Di1 (A) forms a diagonal matrix holding the i1-th row ofA ∈ CI1×Q (i1 = 1, . . . , I1)

on its main diagonal. The operator vecd (B) converts the main diagonal elements of B

into a column vector. The symbol “◦”denotes the outer product operator. In each prop-

erty above the vectors and matrices involved have compatible dimension.

2.2 Matrix Factorizations

In this section, we introduce the matrix singular value decomposition (SVD)

and least-squares Khatri-Rao factorization (LS-KRF). The first one is an important con-

cept to define the higher-order singular value decomposition (HOSVD) in the next sec-

tions. The LS-KRF is used when the observed data is an estimate of a Khatri-Rao

product which we would like to factorize in a closed-form way by solving a set of rank-1

approximation problems.
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2.2.1 Singular Value Decomposition (SVD)

The SVD, introduced by BELTRAMI (1873) and JORDAN (1874a,b), decom-

poses an arbitrary matrix X ∈ CI1×I2 of rank-Q as

X = UΣV H, (10)

where U ∈ CI1×I1 is the unitary matrix of left singular vectors, V ∈ CI2×I2 is the unitary

matrix of right singular vectors, and Σ ∈ CI1×I2 is a diagonal matrix that contains the

Q non-zero singular values σ1 ≥ σ2 · · · ≥ σQ on its main diagonal and zeros elsewhere.

Equation (10) can be also expressed as an economy size SVD notation. The idea is to

obtain the same data matrix, without losses, by reducing the number of columns of U

and V . The economy size SVD of X is defined as

X = U sΣsV
H
s , (11)

where U s ∈ CI1×Q and V s ∈ CI2×Q contain the first Q columns of U and V , and

Σs ∈ CQ×Q contains only the first Q non-zero singular values on its main diagonal.

IfX is a rank-1 matrix, the optimum low-rank approximation ofX is obtained

by truncating its SVD to a rank-1 approximation as follows:

X = σ1u1v
H
1 , (12)

where u1 ∈ CI1 and v1 ∈ CI2 are the dominant left and right singular vectors of U and

V , and σ1 is the dominant singular value.

According to (GOLUB and VAN LOAN, 1996) the computational complexity

of the full SVD computation ofX ∈ CI1×I2 , in terms of floating point operations (FLOPs)

counts, is given by O(I1 · I2 ·min(I1, I2)). On the other hand, the computational cost of

the economy size SVD (truncated to rank-Q) is O(I1 · I2 ·Q). The solution of the rank-1

approximation problem (12) requires O(I1 · I2) FLOPs.

2.2.2 Least-Squares Khatri-Rao Factorization (LS-KRF)

In some applications addressed in this thesis, we will be interested in approxi-

mating a matrix Khatri-Rao product between two factor matrices. This problem appears

repeatedly over the next chapters in the context of our applications. To solve it, we make

use of the well known LS-KRF algorithm proposed by KINBANGOU and FAVIER (2009);

ROEMER and HAARDT (2010); ROEMER (2013). In the following, we formulate the

Khatri-Rao factorization problem. In addition, the LS-KRF algorithm is summarized in

the pseudo-code form.
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Algorithm 1 Least-squares Khatri-Rao factorization (LS-KRF)

1: procedure LS-KRF
2: for q = 1, . . . , Q
3: 1. Apply the unvecI2×I1 operator in the q-th column of X to obtain the rank-1
4: matrix Ψ q ∈ CI2×I1 in (14).
5: 2. Compute the SVD of Ψ q given by U qΣqV

H
q . Then, obtain the estimates for

6: the q-th column of Â and B̂ as follows:
7:

âq =
√
σ1v

∗
1 and b̂q =

√
σ1u1,

8: where u1 and v1 denote the dominant left and right singular vectors of U q and
9: V q, and σ1 represents the dominant singular value of Σq, respectively.

10: end
11: The final estimates are given by Â = [â1, · · · , âQ] and B̂ = [b̂1, · · · , b̂Q].

12: Remove the scaling ambiguities of Â and B̂ through normalization procedure.

Let X ∈ CI1I2×Q be an observed data matrix given by the Khatri-Rao product

X ≈ A �B, where A ∈ CI1×Q and B ∈ CI2×Q. We want to obtain the matrices A and

B from X by solving the following optimization problem:

min
A,B
‖X −A �B‖2

F . (13)

According to Definition 2 and using the property (9), the q-th column of X

can be interpreted as the vectorized form of the following rank-1 matrix

Ψ q = bq ◦ aq ∈ CI2×I1 , (14)

where aq ∈ CI1 and bq ∈ CI2 denote the q-th column (q = 1, . . . , Q) of A and B,

respectively. Therefore, being Ψ q ∈ CI2×I1 a rank-1 matrix the best estimates for the

vectors aq and bq in the least squares (LS) sense can be obtained by truncating the SVD

of Ψ q, defined by U qΣqV
H
q , to a rank-1 approximation, i.e.,

âq =
√
σ1v

∗
1 and b̂q =

√
σ1u1, (15)

where u1 and v1 are the dominant left and right singular vectors of U q and V q, and σ1 is

the dominant singular value of Σq, respectively. Note that the estimated vectors âq and

b̂q are affected by non-zero complex scaling ambiguity, i.e., aq⊗bq = (γq · âq)⊗
(

1
γq
· b̂q
)

.

However, it can be easily removed through normalization if the first row of A or B is

known (ROEMER, 2013). The final estimates Â = [â1, · · · , âQ] and B̂ = [b̂1, · · · , b̂Q]

are obtained by solving this rank-1 approximation problem for each column of X. Based

on the aforementioned computational complexity of the rank-1 approximation problem

solved via SVD, we can observe that the computational cost of the LS-KRF algorithm is
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Figure 1 – Schematic of the parallelized procedure for the LS-KRF computation.

Source: Created by the author.

O(I1 · I2 ·Q).

Note that the LS-KRF procedure is computed independently for each column

of X. Therefore, the columns of the estimated matrices Â and B̂ can be obtained in a

parallel way if Q processing units are available, reducing the processing time by a factor Q.

The parallelized version of the LS-KRF algorithm is illustrated in Figure 1. In addition,

the LS-KRF procedure is summarized in the form of pseudo-code in Algorithm 1.

2.3 Tensor Definitions and Operations

The remainder of this chapter is dedicated to presenting the theoric and algo-

rithmic concepts of multilinear (tensor) algebra. We begin by introducing some definitions

and operations of multilinear algebra. At the end, we provide an overview on the most

important tensor decompositions to be used in this thesis, which are the PARAFAC,

Nested-PARAFAC and Tucker decompositions.

Throughout this thesis, an N -th order tensor (or higher-order tensor) X ∈
CI1×I2×···×IN with size In along mode (or dimension) n (n = 1, . . . , N) and elements

xi1,i2,...,iN is interpreted as a multidimensional array of numerical values with dimension-

ality N . Mathematically, it represents an element of the tensor product between N

vector spaces (COMON, 2014). As special cases matrices, vectors and scalars are com-

moly referred as 2-order, 1-order and 0-order tensors, respectively. Other definitions and

operations involving tensors are presented in the following.
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Figure 2 – Illustration of a rank-1 third-order tensor.

Source: Adapted from (DE ALMEIDA, 2007).

Definition 4. (Inner product) The inner product between two tensors X and Y both of

N -th order, denoted by 〈X ,Y〉, results in a scalar value given by

〈X ,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

xi1,i2,...,iNyi1,i2,...,iN . (16)

If 〈X ,Y〉 = 0, the tensors X and Y are mutually orthogonal (DE ALMEIDA, 2007).

Definition 5. (Frobenius norm) The Frobenius norm of an N -th order tensor X ∈
CI1×I2×···×IN is defined as

‖X‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

|xi1,i2,...,iN |2. (17)

The Frobenius norm can be also represented using inner product notation as ‖X‖F =√
〈X ,X 〉. Note that (17) is similar to the matrix Frobenius norm if N = 2.

Definition 6. (Rank-1 tensor) An N -th order tensor X ∈ CI1×I2×···×IN is said to be

rank-1 when it is computed as the outer product between N vectors, i.e.,

X = x1 ◦ x2 ◦ · · · ◦ xN , (18)

where xn ∈ CIn (n = 1, . . . , N) is called component of X along the n-th mode (or

dimension). As a visual example, Figure 2 illustrates a rank-1 third-order tensor X ∈
CI1×I2×I3 formed by the outer product of three vectors x1 ∈ CI1 , x2 ∈ CI2 and x3 ∈ CI3 .

Definition 7. (Tensor rank) The rank of an arbitrary tensor is defined as the min-

imum number of rank-1 components that exactly decomposes additively a tensor (DE

ALMEIDA, 2007; RIBEIRO, 2016).
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Figure 3 – Illustration of the horizontal, lateral and frontal slices of a third-order tensor.

Source: Adapted from (DE ALMEIDA, 2007).

Definition 8. (Fibers) An n-mode fiber represents an one-dimensional section of a tensor

analogue of matrix rows and columns. A fiber is obtained by fixing every index but one.

An n-mode fiber has size In× 1, where In denotes the size of the n-th mode of the tensor.

Third-order tensors are formed by row, column and tube fibers (KOLDA and BADER,

2009).

Definition 9. (Slices) A slice represents a two-dimensional section of a tensor. It is

obtained by fixing all but two indices. Third-order tensors are formed by horizontal,

lateral and frontal slices as illustrated in Figure 3.

Definition 10. (n-mode unfolding) The n-mode unfolding matrix, represented by [X ](n),

is the process of reordering the elements of an N -th order tensor X ∈ CI1×I2×···×IN into

a matrix without loss of information. Similar to (KOLDA and BADER, 2009) and (CI-

CHOCKI et al., 2015), we define [X ](n) by concatenating side-by-side the slices (or n-mode

fibers) of X . Since many computational resources are not able to manipulate tensors of

order higher than two, the unfolding matrix concept is important to facilitate the compu-

tational manipulation of a given data tensor. Figure 4 illustrates the construction process

of the 1-mode [X ](1) ∈ CI1×I2I3 , 2-mode [X ](2) ∈ CI2×I1I3 and 3-mode [X ](3) ∈ CI3×I1I2

unfolding matrices of a third-order tensor X ∈ CI1×I2×I3 from its frontal, horizontal and

lateral slices, respectively.

Definition 11. (n-mode product) The n-mode product operation, denoted by×n, consists

of multiplying an N -th order tensor X ∈ CI1×I2×···×IN by a matrix A ∈ CQ×In along its

n-th mode. The result of this operation is

Y = X ×n A ∈ CI1×I2×···×In−1×Q×In+1×···×IN . (19)

The n-mode product can be also represented in terms of the n-mode unfolding matrices

of X as follows

[Y ](n) = A [X ](n) . (20)
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Figure 4 – Construction process of the 1-mode, 2-mode and 3-mode unfolding matrices
of a third-order tensor from its frontal, horizontal and lateral slices.

Source: Adapted from (XIMENES, 2015).

In other words, the n-mode product multiplies all the n-mode fibers of X with the matrix

A from the left hand side. In this work, we shall make use of the following n-mode

product properties (KOLDA and BADER, 2009):

X ×m A×n B = X ×n B ×m A (m 6= n), (21)

X ×n A×n B = X ×n (BA) . (22)

2.4 Tensor Decompositions

This section provides an overview on the main tensor decompositions encoun-

tered in the applications investigated throughout this thesis, namely PARAFAC, Nested-

PARAFAC and Tucker decompositions.
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Figure 5 – PARAFAC decomposition of X ∈ CI1×I2×I3 into Q components.

Source: Adapted from (DE ALMEIDA, 2007).

2.4.1 PARAFAC Decomposition

The PARAllel FACtor (PARAFAC) decomposition or CANonical DECOM-

Position (CANDECOMP) has been independently proposed by HARSHMAN (1970)

in phonetics and by CARROLL and CHANG (1970) in psychometrics fields. KIERS

(2000) suggests the standardization of the terminology by using the abbreviation CAN-

DECOMP/PARAFAC (CP).

Let X ∈ CI1×I2×I3 be a third-order tensor, the PARAFAC decomposition

factorizes it into a sum of Q rank-1 component tensors. i.e.,

X =

Q∑
q=1

a(1)
q ◦ a(2)

q ◦ a(3)
q , (23)

where its (i1, i2, i3)-th element is given by

xi1,i2,i3 =

Q∑
q=1

a
(1)
i1,q
a

(2)
i2,q
a

(3)
i3,q
, (24)

where Q is called number of factors or rank of X and it is defined as the minimum number

of rank-1 tensors for which (23) holds exactly. a
(1)
i1,q

, a
(2)
i2,q

and a
(3)
i3,q

are the elements of

the factor matrices A(n) =
[
a

(n)
1 , · · · ,a(n)

Q

]
∈ CIn×Q (in = 1, . . . , In and n = 1, 2, 3),

respectively. Figure 5 illustrates the PARAFAC decomposition of X ∈ CI1×I2×I3 into Q

rank-1 components.

The PARAFAC decomposition (23) can be also alternatively represented, in

terms of its factor matrices, in a more compact form by using the n-mode product notation

as follows

X = I3,Q ×1 A
(1) ×2 A

(2) ×3 A
(3), (25)

where I3,Q represents a third-order identity tensor of size Q × Q × Q. The elements of

I3,Q are equal to 1 when all indices are equal, and 0 elsewhere.
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As previously mentioned in Section (2.3), we can represent X into three dif-

ferent ways according to Definition 9. The horizontal X i1·· ∈ CI2×I3 (i1 = 1, . . . , I1),

lateral X ·i2· ∈ CI3×I1 (i2 = 1, . . . , I2) and frontal X ··i3 ∈ CI1×I2 (i3 = 1, . . . , I3) slices of

(25) are denoted by

X i1·· =

Q∑
q=1

a
(1)
i1,q
a(2)
q a

(3)T

q = A(2)Di1

(
A(1)

)
A(3)T

, (26)

X ·i2· =

Q∑
q=1

a
(2)
i2,q
a(3)
q a

(1)T

q = A(3)Di2

(
A(2)

)
A(1)T

, (27)

X ··i3 =

Q∑
q=1

a
(3)
i3,q
a(1)
q a

(2)T

q = A(1)Di3

(
A(3)

)
A(2)T

. (28)

According to Definition 10 and using the property (4) and the expressions

(26), (27) and (28), we can express the 1-mode [X ](1) ∈ CI1×I2I3 , 2-mode [X ](2) ∈ CI2×I1I3

and 3-mode [X ](3) ∈ CI3×I1I2 unfolding matrices of the PARAFAC decomposition as

[X ]1 = [X ··1 · · ·X ··I3 ] = A(1)
[
D1

(
A(3)

)
A(2)T · · ·DI3

(
A(3)

)
A(2)T

]
= A(1)

(
A(3) �A(2)

)T

∈ CI1×I2I3 , (29)

[X ](2) =
[
XT
··1 · · ·XT

··I3

]
= A(2)

[
D1

(
A(3)

)
A(1)T · · ·DI3

(
A(3)

)
A(1)T

]
= A(2)

(
A(3) �A(1)

)T

∈ CI2×I1I3 , (30)

[X ](3) = [X ·1· · · ·X ·I2·] = A(3)
[
D1

(
A(2)

)
A(1)T · · ·DI2

(
A(2)

)
A(1)T

]
= A(3)

(
A(2) �A(1)

)T

∈ CI3×I1I2 . (31)

Based on the Equations (29), (30) and (31) we can formulate the classical

alternating least squares (ALS) algorithm to estimate iteratively the factor matrices

A(n) (n = 1, . . . , N) from the measurement tensor X (BRO, 1998; SMILDE, BRO, and

GELADI, 2004; CICHOCKI et al., 2009). Each iteration of the ALS-PARAFAC algorithm

contains three LS updating steps. At each step, one factor matrix is updated while the

remaining factor matrices are assumed fixed to their values obtained in the previous steps.

This procedure is repeated until the convergence of the algorithm at the i-th iteration

which is achieved when |ei − ei−1| ≤ δ, where e(i) denotes the residual error calculated at

the i-th iteration defined by

e(i) =

wwwwwwwwX − I3,Q ×1 Â
(1)

(i) ×2 Â
(2)

(i) ×3 Â
(3)

(i)︸ ︷︷ ︸
X̂ (i)

wwwwwwww
2

F

, (32)
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Algorithm 2 ALS-PARAFAC

1: procedure ALS-PARAFAC

2: 1. Set i = 0. Randomly initialize Â
(2)

(i=0) and Â
(3)

(i=0);
3: 2. i← i+ 1;

4: 3. From [X ](1) in (29), obtain an LS estimate of Â
(1)

(i) :
5:

Â
(1)

(i) = [X ](1)

[(
Â

(3)

(i−1) � Â
(2)

(i−1)

)T
]†

;

6: 4. From [X ](2) in (30), obtain an LS estimate of Â
(2)

(i) :
7:

Â
(2)

(i) = [X ](2)

[(
Â

(3)

(i−1) � Â
(1)

(i)

)T
]†

;

8: 5. From [X ](3) in (31), obtain an LS estimate of Â
(3)

(i) :
9:

Â
(3)

(i) = [X ](3)

[(
Â

(2)

(i) � Â
(1)

(i)

)T
]†

;

10: Repeat steps 2-5 until convergence.

where X̂ (i) is the reconstructed version of X computed from the estimated factor matrices

Â
(n)

(i) (n = 1, 2, 3) obtained at the end of the i-th iteration. δ is a prescribed threshold value

assumed to be 10−6 throughout this thesis. The ALS-PARAFAC algorithm is summarized

in Algorithm 2. Note that the dominant cost of the ALS-PARAFAC algorithm is associ-

ated with the SVD computation used to calculate three pseudo-inverses in lines 5, 7 and 9

of Algorithm 2. Therefore, the overall computational complexity of the ALS-PARAFAC

(per iteration) can be approximated to O(Q2(I1I2 + I1I3 + I2I3)) FLOPs.

Uniqueness of the PARAFAC Decomposition

The most attractive feature of the PARAFAC decomposition for signal pro-

cessing applications is its simple and well defined essential uniqueness property that is

guaranteed by the Kruskal’s condition introduced by KRUSKAL (1977). This condition

is based on the following fundamental Kruskal-rank (k-rank) definition:

Definition 12. (k-rank) The Kruskal-rank of A ∈ CI1×Q, defined as κA, is the maxi-

mum number such that any subset of κA columns of A are linearly independent. As a

consequence κA ≤ ρA ≤ min (I1, Q), in which ρA denotes the rank of A. If A is a full

rank matrix it is also full k-rank, i.e., κA = ρA.

For the third-order tensor (23), if the following Kruskal’s condition is satisfied

κA(1) + κA(2) + κA(3) ≥ 2Q+ 2, (33)

the uniqueness of its PARAFAC decomposition is guaranteed. Basically, any triplet
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(
Â

(1)
, Â

(2)
, Â

(3)
)

is related to the true triplet
(
A(1),A(2),A(3)

)
up to trivial permu-

tation and scaling of columns. In this case, the true and estimated factor matrices are

linked by the following relation:

Â
(n)

= A(n)Π∆(n), n = 1, 2, 3, (34)

where ∆(n) (n = 1, 2, 3) are diagonal scaling matrices such as
∏3

n=1∆
(n) = IQ, and Π is

an unknown permutation matrix.

Extension of the PARAFAC Decomposition to N-th Order Tensors

For simplicity of presentation, we first introduced above only the PARAFAC

decomposition of a third-order tensor. However, its generalization for anN -th order tensor

is straightforward. The PARAFAC decomposition of the rank-Q tensor X ∈ CI1×I2×···×IN

is given by

X =

Q∑
q=1

a(1)
q ◦ a(2)

q ◦ · · · ◦ a(N)
q , (35)

or, equivalently, by using n-mode product notation we get

X = IN,Q ×1 A
(1) ×2 A

(2) · · · ×N A(N). (36)

The n-mode unfolding matrix of (36) is given by

[X ](n) = A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T

. (37)

Remark: Throughout Chapter 3, a special attention is given to dual-symmetric

tensors. The PARAFAC decomposition of a tensor X ∈ CI1×···×I2N of even order 2N is

said to have dual-symmetry if it is defined as (WEIS, 2015):

X = I2N,Q ×1 A
(1) ×2 A

(2) · · · ×N A(N) ×N+1 A
(1)∗ ×N+2 A

(2)∗ · · · ×2N A
(N)∗ , (38)

where IN+n = In and A(N+n) = A(n)∗ (n = 1, . . . , N). This definition also applies to

Tucker decomposition by simply replacing the identity tensor I2N,Q by an arbitrary core

tensor G of order 2N .

The generalization of the Kruskal’s condition (33) was formulated by SIDIROPOU-

LOS and BRO (2000) for an N -th order tensor. For the generalized case, the Kruskal’s

condition becomes:
N∑
n=1

κA(n) ≥ 2Q+ (N − 1). (39)
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2.4.2 Nested-PARAFAC Decomposition

The Nested-PARAFAC decomposition was introduced and also applied by

DE ALMEIDA and FAVIER (2013) in the wireless communication area. The Nested-

PARAFAC decomposition assumes that the n-th factor matrix A(n) ∈ CIn×Q in (25) is

itself an unfolding matrix of an additional PARAFAC decomposition. By assuming, for

simplicity of presentation, that A(1) ∈ CI1×Q denotes the 1-mode unfolding of the third-

order tensor Y ∈ CJ1×J2×J3 , i.e., A(1) = [Y ](1) in which J1 = I1 and J2J3 = Q, we can

define the Nested-PARAFAC decomposition of X in terms of the following two (linked)

PARAFAC decompositions

X = I3,Q ×1 [Y ](1) ×2 A
(2) ×3 A

(3), (40)

Y = I3,Q ×1 B
(1) ×2 B

(2) ×3 B
(3), (41)

where (40) is called outer PARAFAC part, while (41) is called inner PARAFAC part (LIU

et al., 2013). The matrices B(n) ∈ CJn×Q (n = 1, 2, 3) are the factor matices of the inner

PARAFAC part. Note that, in a generalized representation form, the inner PARAFAC

part may be associated with any mode of X without loss of generality.

The estimation of the factor matrices A(n) and B(n) (n = 1, 2, 3) can be

obtained using the Algorithm 2 two times sequentially. First, the factor matrices of the

outer PARAFAC part are estimated from X . After the convergence of the first stage, the

factor matrices of the inner PARAFAC part are estimated from Y previously obtained.

This procedure is detailed in Algorithm 3. Since the Nested-PARAFAC decomposition

can be formulated as two linked PARAFAC decompositions according to (40) and (41),

its uniqueness is achieved satisfying together the following two Kruskal’s conditions:

κA(1) + κA(2) + κA(3) ≥ 2Q+ 2 and κB(1) + κB(2) + κB(3) ≥ 2Q+ 2. (42)

2.4.3 Tucker Decomposition

The Tucker decomposition was introduced by TUCKER (1966). Given a

third-order tensor X ∈ CI1×I2×I3 , the Tucker decomposition factorizes it as a multi-

linear transformation of a third-order core tensor G ∈ CQ1×Q2×Q3 by the factor matrices

A(n) =
[
a

(n)
1 ,a

(n)
2 , . . . ,a

(n)
Qn

]
∈ CIn×Qn (n = 1, 2, 3) as illustrated in Figure 6. Mathemati-

cally, the Tucker decomposition of X is defined as

X =

Q1∑
q1=1

Q2∑
q2=1

Q3∑
q3=1

gq1,q2,q3
(
a(1)
q1
◦ a(2)

q2
◦ a(3)

q3

)
, (43)
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Algorithm 3 ALS-Nested-PARAFAC

1: procedure ALS-Nested-PARAFAC
2: First Stage: ALS-PARAFAC in the outer PARAFAC part

3: 1.1 Set i = 0. Randomly initialize Â
(2)
(i=0) and Â

(3)
(i=0);

4: 1.2 i← i+ 1;

5: 1.3 From [X ](1), obtain an LS estimate of Â
(1)
(i) :

6:

Â
(1)
(i) = [X ](1)

[(
Â

(3)
(i−1) � Â

(2)
(i−1)

)T
]†

;

7: 1.4 From [X ](2), obtain an LS estimate of Â
(2)
(i) :

8:

Â
(2)
(i) = [X ](2)

[(
Â

(3)
(i−1) � Â

(1)
(i)

)T
]†

;

9: 1.5 From [X ](3), obtain an LS estimate of Â
(3)
(i) :

10:

Â
(3)
(i) = [X ](3)

[(
Â

(2)
(i) � Â

(1)
(i)

)T
]†

;

11: Repeat steps 1.2-1.5 until convergence.
12: Second Stage: ALS-PARAFAC in the inner PARAFAC part

13: 2.1 Construct the tensor Y from Â
(1)

= [Y](1);

14: 2.2 Set i = 0. Randomly initialize B̂
(2)
(i=0) and B̂

(3)
(i=0);

15: 2.3 i← i+ 1;

16: 2.4 From [Y](1), obtain an LS estimate of B̂
(1)
(i) :

17:

B̂
(1)
(i) = [Y](1)

[(
B̂

(3)
(i−1) � B̂

(2)
(i−1)

)T
]†

;

18: 2.5 From [Y](2), obtain an LS estimate of B̂
(2)
(i) :

19:

B̂
(2)
(i) = [Y](2)

[(
B̂

(3)
(i−1) � B̂

(1)
(i)

)T
]†

;

20: 2.6 From [Y](3), obtain an LS estimate of B̂
(3)
(i) :

21:

B̂
(3)
(i) = [Y](3)

[(
B̂

(2)
(i) � B̂

(1)
(i)

)T
]†

;

22: Repeat steps 2.3-2.6 until convergence.

where its (i1, i2, i3)-th element is given by

xi1,i2,i3 =

Q1∑
q1=1

Q2∑
q2=1

Q3∑
q3=1

gq1,q2,q3a
(1)
i1,q1

a
(2)
i2,q2

a
(3)
i3,q3

, (44)

where Qn is the multilinear rank of X , i.e., the number of components in the n-th (n =

1, 2, 3) mode of X . a
(n)
in,qn

is the (in, qn)-th element of the factor matrix A(n) ∈ CIn×Qn

(n = 1, 2, 3) and gq1,q2,q3 is the (q1, q2, q3)-th element of the core tensor G ∈ CQ1×Q2×Q3 .

Using the n-mode product notation, the Tucker decomposition of X can be written as

X = G ×1 A
(1) ×2 A

(2) ×3 A
(3). (45)
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Figure 6 – Tucker decomposition of a third-order tensor X ∈ CI1×I2×I3 .

Source: Adapted from (DE ALMEIDA, 2007).

The 1-mode [X ](1) ∈ CI1×I2I3 , 2-mode [X ](2) ∈ CI2×I1I3 and 3-mode [X ](3) ∈
CI3×I1I2 unfolding matrices of X are represented, respectively, by

[X ](1) = A(1) [G](1)

(
A(3) ⊗A(2)

)T

, (46)

[X ](2) = A(2) [G](2)

(
A(3) ⊗A(1)

)T

, (47)

[X ](3) = A(3) [G](3)

(
A(2) ⊗A(1)

)T

, (48)

where [G](1) ∈ CQ1×Q2Q3 , [G](2) ∈ CQ2×Q1Q3 and [G](3) ∈ CQ3×Q1Q2 denote the 1-mode,

2-mode and 3-mode unfolding matrices of G, respectively. The Tucker2 decomposition

where A(3) = II3 and G ∈ CQ1×Q2×I3 , and the Tucker1 decomposition where A(3) = II3 ,

A(2) = II2 and G ∈ CQ1×I2×I3 are special cases of the Tucker decomposition (KOLDA

and BADER, 2009).

Uniqueness of the Tucker Decomposition

In general, the Tucker decomposition is not unique i.e., there are infinite solu-

tions for the factor matrices and for the core tensor that leads to the same tensor X .

Proof. Let T (n) (n = 1, 2, 3) be non-singular matrices, we can rewrite (45) as

X = Ĝ ×1 Â
(1)
×2 Â

(2)
×3 Â

(3)

= G ×1 T
(1)−1 ×2 T

(2)−1 ×3 T
(3)−1︸ ︷︷ ︸

Ĝ

×1A
(1)T (1)︸ ︷︷ ︸
Â

(1)

×2A
(2)T (2)︸ ︷︷ ︸
Â

(2)

×3A
(3)T (3)︸ ︷︷ ︸
Â

(3)

= G ×1 T
(1)−1 ×1 A

(1)T (1) ×2 T
(2)−1 ×2 A

(2)T (2) ×3 T
(3)−1 ×3 A

(3)T (3).



43

Making use of the property (22), we obtain

X = G ×1

(
A(1)T (1)T (1)−1

)
×2

(
A(2)T (2)T (2)−1

)
×3

(
A(3)T (3)T (3)−1

)
= G ×1 A

(1) ×2 A
(2) ×3 A

(3). �

From the above deduction, we can conclude that the Tucker decomposition

is not unique since its factor matrices are affected by arbitrary linear transformations,

while the inverse of these transformations affect the core tensor, leading to the same

tensor X . However, in special cases in which several elements of G are constrained to

be equal to zero, that is, if the core tensor has some sparsity, the solutions to the factor

matrices becomes unique up to trivial permutations and scaling ambiguities similar to the

PARAFAC decomposition (TEN BERGE and SMILDE, 2002). The Tucker decomposition

formulated throughout this thesis belong to this special category where unique solutions

exist due to the sparsity of the core tensor.

Extension of the Tucker Decomposition to N-th Order Tensors

For an N -th order tensor X ∈ CI1×I2×···×IN , its N -th order Tucker decomposi-

tion is given by

X =

Q1∑
q1=1

Q2∑
q2=1

· · ·
QN∑
qN=1

gq1,q2,...,qN
(
a(1)
q1
◦ a(2)

q2
◦ · · · ◦ a(N)

qN

)
, (49)

or, equivalently, by using n-mode product notation

X = G ×1 A
(1) ×2 A

(2) · · · ×N A(N). (50)

The n-mode unfolding matrix of (50) is given by

[X ](n) = A(n) [G](n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T

. (51)

The Higher-Order Singular Value Decomposition (HOSVD)

The HOSVD, introduced by DE LATHAUWER, DE MOOR, and VANDE-

WALLE (2000), is a direct extension of the matrix SVD to higher-order tensors. It is

a way to compute the basis for each factor matrix of the Tucker decomposition. The

HOSVD of an N -th order tensor X ∈ CI1×I2×···×IN is defined as

X = S ×1 U
(1) ×2 U

(2) · · · ×N U (N), (52)

where U (n) ∈ CIn×Qn (n = 1, 2, . . . , N) are unitary matrices and S ∈ CQ1×Q2×···×QN is

the core tensor. The set (Q1, Q2, . . . , QN) denotes the multilinear rank of X . The matrix
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Algorithm 4 Higher-order singular value decomposition (HOSVD)

1: procedure HOSVD
2: for n = 1, . . . , N
3: 1. Compute U (n) as the first Qn left singular vectors of [X ](n) :
4:

[X ](n) = U (n)Σ(n)V (n)H

;

5: end
6: 2. Compute the core tensor as:
7:

S = X ×1 U
(1)H ×2 U

(2)H · · · ×N U (N)H

.

8: 3. Return S and U (n) (n = 1, 2, . . . , N).

U (n) is computed as the Qn left singular vectors of the n-th unfolding matrix of X , i.e.,

[X ](n) = U (n)Σ(n)V (n)H

. (53)

From U (n) (n = 1, 2, . . . , N) computed according (53), the core tensor can be obtained as

S = X ×1 U
(1)H ×2 U

(2)H · · · ×N U (N)H

. (54)

The HOSVD procedure is described in the pseudo-code form in Algorithm 4.

In this thesis, we will use the HOSVD concept to formulate efficient denoising

strategies in Chapter 3. As aforementioned, the HOSVD provides the bases for the factor

matrices of the Tucker decomposition. In contrast, in Chapter 3 an iterative algorithm

based on the ALS concept is developed and applied in our context to estimate the true

factor matrices and core tensor of a fourth-order Tucker decomposition.

2.5 Chapter Summary

This chapter has provided a summary of the main theoretical and algorithmic

backgrounds on multilinear algebra and tensor decompositions. All the contents pre-

sented in this chapter, in the course of four parts, provide the basic material that will

be exploited throughout this thesis. In the first and second parts of this chapter, we

have introduced some operations, namely, the Kronecker and Khatri-Rao products, the

SVD and the LS-KRF factorizations. In the third and fourth parts of this chapter, we

have focused on presenting basic tensor operations and the most important tensor de-

compositions encountered in the application contexts of this thesis, such as array signal

processing, MIMO radar and MIMO wireless communications systems.
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3 TENSOR-BASED METHODS FOR BLIND SPATIAL SIGNATURE ES-

TIMATION IN MULTIDIMENSIONAL SENSOR ARRAYS

In this chapter, we address the spatial signatures and spatial frequencies estimation prob-

lems in multidimensional (R-D) sensor arrays. It is divided into two parts. In the first

part of this chapter, we propose a tensor-based multiple denoising approach that succes-

sively applies spatial smoothing, denoising and reconstruction to the noisy data. By taking

into account the knowledge of the model order and by exploiting subarrays created by the

spatial smoothing, we can successively denoise the data by means of HOSVD-based and

SVD-based low-rank approximation for tensor and matrix data, respectively. In the second

part of this chapter, we propose two generalized iterative algorithms for spatial signatures

estimation. The first tensor-based algorithm is an R-D blind spatial signature estima-

tor that operates in scenarios where the sources’ covariance matrix is nondiagonal and

unknown. The second tensor-based algorithm is formulated to address the uncorrelated

sources case and exploits the dual-symmetry of the covariance tensor. Additionally, a

new tensor-based formulation is proposed for an L-shaped array configuration. Simula-

tion results show that the proposed receiver, referred to as multiple denoising (MuDe),

significantly reduces the noise level, yielding a more accurate estimation of the parameters

without decreasing the sensor array aperture, while the algorithms proposed in the sec-

ond part outperform the state-of-the-art matrix-based and tensor-based spatial parameter

estimation techniques.

3.1 Introduction and Motivation

The high resolution parameter estimation from noisy signal measurements

plays a key role in several practical applications in the array signal processing area ranging

from MIMO communications (ZHOU et al., 2016a), radar (SINGH, WANG, and CRAGÉ,

2016; NION and SIDIROPOULOS, 2010) and global navigation satellite systems (GNSS)

(HAMMOUD et al., 2016) to name a few. The performance of parameter estimation

techniques is sensitive to the SNR and severely degrades in noisy scenarios. Therefore,

a denoising preprocessing can be an effective step to improve the SNR and consequently

the estimation accuracy.

The interest in denoising techniques for multidimensional data has received

strong attention in seismology (MUTI and BOURENNANE, 2005) and image processing

(ZHANG et al., 2015; CHEN and QIAN, 2011) applications. In the array signal process-

ing context, low-rank tensor approximation based on the HOSVD (DE LATHAUWER,

DE MOOR, and VANDEWALLE, 2000) has been used as tool for denoising in multidi-

mensional data (HAARDT, ROEMER, and DEL GALDO, 2008; GOMES et al., 2017;

WEIS, DEL GALDO, and HAARDT, 2007). For applying the denoising, the model order
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should be previously estimated (DA COSTA et al., 2011; LIU et al., 2016).

From the preprocessed denoised data, several parameter estimation techniques

such as the classical multiple signal classification (MUSIC) (SCHMIDT, 1986) and esti-

mation of signal parameters via rotational invariance technique (ESPRIT) (ROY and

KAILATH, 1989) can be applied to estimate the spatial frequencies of the sources. How-

ever, improved performance can be achieved by exploiting the multidimensional structure

of the data by means of tensor modeling, which can include several signal dimensions

such as space, time, frequency, and polarization. Tensor decompositions have been suc-

cessfully employed in array signal processing for parameters estimation since they provide

better identifiability conditions when compared to conventional matrix-based techniques.

Another advantage of tensor-based methods is the so-called tensor gain which manifests

itself with more precise parameter estimates due to the good noise rejection capability

of tensor-based signal processing as shown in (DA COSTA et al., 2011; ROEMER, 2013;

DA COSTA et al., 2013; DA COSTA, 2010).

In this chapter, we address the spatial signatures and spatial frequencies esti-

mation problems in multidimensional sensor arrays. In the first part of the chapter, we

show that, by taking into account the model order and by exploiting the possible subar-

rays created by the spatial smoothing, the data can be successively denoised by means

of the HOSVD-based and SVD-based low-rank approximations, which drastically reduces

the noise effect in tensor and matrix data, respectively. We initially propose a new tensor-

based preprocessing method for noise reduction in noisy measurement data collected by a

multidimensional (R-D) sensor array. Exploiting the spatial smoothing concept (SHAN,

WAX, and KAILATH, 1985), a better signal estimation is obtained by applying succes-

sive SVD-based low-rank approximations in the output signals for subarrays of different

sizes in each spatial dimension of the received signal tensor, and then reconstructing back

the subarrays into the original tensor so that the procedure can be repeated. We also

discuss the matrix-based approach that is a particular case of the proposed method when

an one-dimensional sensor array is considered.

In the second part of the chapter, two tensor-based approaches to the esti-

mation of spatial signatures are presented. By using the signals received on an R-D

sensor array, covariance tensors are computed and solutions for correlated and uncorre-

lated sources are formulated, respectively. For the former scenario, in which the sources’

covariance structure is nondiagonal and unknown, the covariance tensor of the received

data is formulated as a Tucker decomposition of order 2R. Such a formulation yields a

generalized Tucker model based R-D sensor array processing that deals with arbitrary

source covariance structures. By assuming uncorrelated sources, we then show that the

problem boils down to a PARAFAC decomposition, from which a method that exploits

the dual-symmetry property of the covariance tensor is derived by considering the ideas

rooted in (WEIS et al., 2012). For both Tucker and PARAFAC based models, the blind
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estimation of the spatial signatures are achieved by means of ALS-based algorithms. Sim-

ulation results show that the MuDe achieves a significant noise reduction capability, while

the proposed algorithms for spatial parameters estimation outperform the state-of-the-art

matrix-based and tensor-based approaches.

3.1.1 Chapter Organization

This chapter is organized as follows. Referring to its first part, Section 3.2

presents the data model for an R-dimensional sensor array. In Section 3.3, we briefly

recall the R-D spatial smoothing preprocessing scheme. The proposed multiple denoising

(MuDe) via successive spatial smoothing, low-rank approximation and reconstruction

is described for matrix and tensor formulations in Section 3.4. Simulation results for

performance evaluation of MuDe are provided in Section 3.5. Referring to the second

part of the chapter, Section 3.6 introduce a novel covariance-based tensor modeling for the

received data from which the proposed algorithms for blind spatial signatures estimation

are formulated. In Section 3.7, a novel tensor-based approach for parameters estimation

in L-shaped sensor arrays is proposed. The computational complexity of the proposed

algorithms is analyzed in Section 3.8. In Section 3.9, the advantages and the disadvantages

of the proposed methods are discussed. Simulation results to the contributions contained

in the second part are provided in Section 3.10. Finally, the conclusions are drawn in

Section 3.11.

In the following section, we begin the first part of this chapter dedicated to

formulate the proposed MuDe preprocessing method.

3.2 Data Model

Let us consider an R-dimensional sensor array of size N1 × N2 × · · · × NR

composed by N =
∏R

r=1Nr sensor elements, where Nr (r = 1, . . . , R) denotes the number

of sensors in the r-th spatial dimension, i.e., the size of the r-th array dimension. The

received signal X ∈ CN×K at the sensor array from the superposition of M far-field

narrowband signal sources sampled on K subsequent time instants is given by

X = AS +N ∈ CN×K , (55)

where S = [s(1), . . . , s(K)] ∈ CM×K is the symbols matrix and N = [n(1), . . . ,n(K)] ∈
CN×K is the additive white Gaussian noise (AWGN) matrix. A = [a1, . . . ,aM ] ∈ CN×M

denotes the overall array steering matrix and am (m = 1, . . . ,M) represents the array

steering vector related to the m-th signal source.
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In the special case in which the received signal has a multidimensional struc-

ture, for instance, when an outer product based array (OPA) is considered (DA COSTA

et al., 2010), the received signal matrix in (55) can be expressed as (HAARDT, ROEMER,

and DEL GALDO, 2008; STEINWANDT et al., 2017)

X =
(
A(1) �A(2) · · · �A(R)

)
S +N , (56)

where A = A(1) �A(2) · · · �A(R) ∈ CN×M , A(r) = [a
(r)
1 , . . . ,a

(r)
M ] ∈ CNr×M is the array

steering matrix of the r-th array dimension. The vector a
(r)
m ∈ CNr×1 denotes the array

response for the m-th signal source, m = 1, . . . ,M , in the r-th spatial dimension given by

a(r)
m =

[
1, ej·µ

(r)
m , ej·2µ

(r)
m , · · · , ej·(Nr−1)µ

(r)
m

]T

, (57)

where µ
(r)
m is the spatial frequency of the m-th wavefront in the r-th array dimension.

In this case, the multidimensional structure of the data can be naturally

exploited and (56) can be seen as a unimodal unfolding matrix of the noisy tensor

X ∈ CN1×N2×···×NR×K of order R + 1 modeled as follows

X = X o + N

= IR+1,M ×1 A
(1) · · · ×R A(R) ×R+1 S

T + N , (58)

where IR+1,M is the identity tensor of order R + 1 in which each dimension has size M .

Its elements are equal to one when all indices are equal, and zero otherwise. The AWGN

tensor N ∈ CN1×N2×···×NR×K is obtained by arranging N as a tensor of order R + 1.

According to (37), the unimodal unfolding matrix [X ](r) ∈ CNr×
∏
j 6=r NjK along

the r-th spatial mode of X (r = 1, . . . , R) is expressed as

[X ](r) = [X o](r) + [N ](r)

= A(r)
(
ST �A(R) � · · ·A(r+1) �A(r−1) � · · ·A(1)

)T

+ [N ](r). (59)

where [N ](r) ∈ CNr×
∏
j 6=r NjK denotes the r-th unfolding matrix of the noise tensor N .

Remark : In the absence of noise, the measurement tensor X in (58) has rank

M . Throughout this chapter, we assume the knowledge of M at the receiver. The model

order can be estimated with good accuracy by applying the techniques proposed in (DA

COSTA et al., 2011) and (LIU et al., 2016). The model order estimation problem is

beyond the scope of our study.
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3.3 Spatial Smoothing

In the following, we briefly overview concepts about the R-D spatial smoothing

preprocessing scheme. It will be incorporated as an important part of the proposed

denoising technique formulated in the next section of this chapter.

Consider that the r-th unfolding matrix [X ](r), defined in (59), with Nr rows

is divided into Lr subarrays of size N
(sub)
r = Nr − Lr + 1 each. By applying the spatial

smoothing preprocessing scheme (SHAN, WAX, and KAILATH, 1985) independently in

each unfolding matrix for r = 1, . . . , R, we define the r-th mode spatially smoothed matrix

X
(Lr)
SS,r ∈ CN

(sub)
r ×

∏
j 6=r NjLrK which collects the output signals of the Lr subarrays as follows

(THAKRE et al., 2010)

X
(Lr)
SS,r =

[
[X ]

(1)
(r) , [X ]

(2)
(r) , . . . , [X ]

(Lr)
(r)

]
=
[
J

(Nr)
1 [X ](r) ,J

(Nr)
2 [X ](r) , · · · ,J

(Nr)
Lr

[X ](r)

]
, (60)

r = 1, . . . , R

where [X ]
(lr)
(r) = J

(Nr)
lr

[X ](r) ∈ CN
(sub)
r ×

∏
j 6=r NjK (lr = 1, . . . , Lr) denotes the output signal

of the lr-th subarray in the r-th dimension. The selection matrix J
(Nr)
lr

related to the lr-th

subarray in the r-th dimension is given by

J
(Nr)
lr

=
[
0
N

(sub)
r ×(lr−1)

I
N

(sub)
r

0
N

(sub)
r ×(Lr−lr)

]
. (61)

3.4 Proposed Multiple Denoising via Successive Spatial Smoothing, Low-Rank

Approximation and Reconstruction

In this section, we propose the matrix and tensor based multiple denoising

(MuDe) via successive spatial smoothing, low-rank approximation and reconstruction

as a preprocessing step to enhance parameter estimation accuracy in R-D sensor array

processing. We first start from the general case by adopting a tensor-based approach.

The matrix approach will be briefly discussed as a special case.

3.4.1 Tensor-based Approach (R-D sensor array case)

The R-D spatial smoothing scheme presented in Section 3.3 provides us with

subarrays for each spatial dimension of X ∈ CN1×N2×···×NR×K . By fully exploiting all pos-

sible subarrays, the received tensor can be successively denoised from low-rank approxi-

mations applied to the set of spatially smoothed unfolding matrices
{
X

(1)
SS,r, . . . ,X

(Lr)
SS,r

}
in (60) formed from subarrays of different sizes (lr = 1, . . . , Lr) for each spatial dimension

(r = 1, . . . , R). The denoised tensor version X̃ ∈ CN1×N2×···×NR×K can then be obtained
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Figure 7 – Illustration of spatial smoothing and sensors in common for lr = 2 subarrays
in the r-th spatial dimension.

Source: Created by the author.

by reconstructing back the subarrays in the r-th array dimension into the original tensor

form. To this end, we formulate below the three steps of the proposed MuDe method:

• Step 1 - Subarray Construction: Initially, we construct the r-th mode

spatially smoothed matrix X
(lr)
SS,r according to (60) associated with the lr-th subarray size

in the r-th spatial dimension of the received data tensor.

• Step 2 - Low-Rank Approximation: By assuming the knowledge of the model

order M , we compute the following low-rank approximation for the spatially smoothed

matrix X
(lr)
SS,r obtained in step 1:

X̃
(lr)

SS,r =
[
[X̃ ]

(1)
(r) · · · [X̃ ]

(lr)
(r)

]
, (62)

where X̃
(lr)

SS,r = U sΣsV
H
s is obtained by truncating the SVD of X

(lr)
SS,r to the signal sub-

space. Note that this step requires that N
(sub)
r ≥M .

• Step 3 - Reconstruction of the Denoised Tensor : Finally, we reconstruct

back the low-rank approximation of the subarrays outputs [X̃ ]
(lr)
(r) in (62) into the original

tensor form of the received data. Note that applying spatial smoothing in step 1 yields

overlapping subarrays with sensors in common in the r-th spatial dimension. Thanks

to this overlapping, we get a multiple denoised unfolding matrix [X̃ ](r) ∈ CNr×
∏
j 6=r NjK

associated with the r-th dimension given by

[X̃ ](r) =


[X̃ ](r)(1, :)

[X̃ ](r)(2, :)
...

[X̃ ](r)(Nr, :)

 ∈ CNr×
∏
j 6=r NjK , (63)
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which can be reconstructed from each subarray output using a mean-based reconstruction

method. The n-th row of the denoised unfolding matrix [X̃ ](r) is computed as

[X̃ ](r)(n, :) =
1

l′

lr∑
i=1

[X̃ ]
(i)
(r)(n− i+ 1, :). (64)

The value of l′ is equal to the number of times in which the term [X̃ ]
(i)
(r)(n−i+1, :) is a valid

output in the lr-th subarray of the r-th dimension. This occurs when N
(sub)
r ≥ n−i+1 > 0.

Figure 7 illustrates the use of the relation (64) for the particular case lr = 2. As a

numerical example, and in accordance with Figure 7, the following expression describes

[X̃ ](r) as a function of the output signal of each subarray after the subarray construction

and low-rank approximation steps:

[X̃ ](r) =


[X̃ ]

(1)
(r)(1, :)

1
2

[
[X̃ ]

(1)
(r)(2 : Nr − 1, :) + [X̃ ]

(2)
(r)(1 : Nr − 2, :)

]
[X̃ ]

(2)
(r)(Nr − 1, :)

 .
Our main idea consists in achieving a higher noise reduction capability by

exploiting all possible subarrays in each spatial dimension of the received data. This is

possible by applying steps 1-3 successively for subarrays of sizes lr = 1, . . . , Lr, for each

value r = 1, . . . , R. In the end, after covering all possible subarrays sizes for each spatial

dimension of the received data, the multiple denoised tensor X̃ ∈ CN1×N2×···×NR×K is

obtained by arranging (63) as a tensor of order R + 1. Then, the spatial frequencies of

the M wavefronts can be estimated by resorting to R-D parameter estimation schemes to

preprocessed data X̃ instead of the raw data X .

The proposed MuDe method is a general preprocessing framework for de-

noising, so that several R-D parameter estimation techniques such as Tensor-ESPRIT

(HAARDT, ROEMER, and DEL GALDO, 2008), Tensor-MUSIC (GONG, XU, and LIU,

2006) and PARAFAC decomposition (LIU and SIDIROPOULOS, 2004) can be applied

in the preprocessed data tensor to estimate the spatial frequencies of the sources with

increased accuracy, due to the high noise rejection capability of MuDe. However, Tensor-

MUSIC based approaches needs multi-dimensional search and have high computational

complexity. Parameter estimates based on the PARAFAC decomposition are often ob-

tained via iterative techniques such as the classical ALS-PARAFAC algorithm 2. The

ALS-PARAFAC algorithm requires many iterations and do not guarantee convergence to

the global optimum (RAJIH, 2006). In contrast, ESPRIT-based approaches have demon-

strated to be powerful tools due to their closed-form solutions with faster processing time

and performance close to the Cramér-Rao bound (CRB) (DA COSTA et al., 2010).
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Algorithm 5 Proposed MuDe Method

1: procedure MuDe
2: input: received signal tensor X ∈ CN1×N2×···×NR×K , model order M , maximum num-

ber of subarrays in each spatial dimension Lr = N
(sub)
r −M (r = 1, . . . , R).

3: output: denoised tensor : X̃ ∈ CN1×N2×···×NR×K .
4: for r = 1, . . . , R
5: for lr = 1, . . . , Lr
6: 1. Compute the r-th mode spatially smoothed matrix X

(lr)
SS,r for the lr-th subarray

7: size in the r-th array dimension according to (60).

8: 2. Compute the low-rank approximation X̃
(lr)

SS,r of the spatially smoothed matrix

9: X
(lr)
SS,r.

10: 3. Obtain the multiple denoised tensor X̃ by arranging the r-th unfolding matrix
11: (63) as a (R + 1)-th order tensor.
12: end
13: end

According to Algorithm 5, our approach begins with the subarray construction

step by means of the spatial smoothing preprocessing scheme in the r-th array dimension

for a given subarray size, as described in Section 3.3. Then, by assuming the knowledge of

the model order, the low-rank approximation applied to the r-th mode spatially smoothed

matrix (60) is computed. In the end, a refined estimation is obtained by reconstructing

back the low-rank approximation of the subarrays outputs into the original tensor form

in accordance with (63) and (64). These steps are repeated for all possible subarrays sizes

(lr = 1, . . . , Lr) in all spatial dimensions (r = 1, . . . , R) of the received data. The resulting

multiple denoised tensor X̃ can be subsequently processed instead of the received signal

X in (58).

3.4.2 Computational Complexity of MuDe

The computational complexity of MuDe can be approximated as the sum of the

FLOPs required to compute a total of Lr truncated SVDs for each spatial dimension of the

data tensor (r = 1, . . . , R). According to (GOLUB and VAN LOAN, 1996), the computa-

tional complexity of the SVD for a matrix of size Nr− lr + 1× (
∏

j 6=rNj)lrK truncated to

rank M is O
(

(
∏

j 6=rNj)(Nr − lr + 1)MlrK
)

. From this, we deduce that the overall com-

putational complexity of the MuDe method isO
(∑R

r=1

∑Lr
lr=1(

∏
j 6=rNj)(Nr − lr + 1)MlrK

)
.

Remark: Note that, the higher noise reduction capability of MuDe is accom-

panied by an increase of computational complexity since a total of R ·Lr truncated SVD

computations are required. In contrast, the state-of-the-art approach such as (HAARDT,

ROEMER, and DEL GALDO, 2008) requires only R SVD computations. The trade-

off between more accurated spatial parameter estimation and computational complexity

using MuDe is reinforced through computational simulations in Section 3.5.
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3.4.3 Matrix-based Approach (1-D sensor array case)

A particular case of the proposed MuDe method occurs when a uniform linear

array (ULA) is considered. For the 1-D array configuration, the spatial smoothing scheme

is directly applied to the received data matrix in (55). Given X ∈ CN×K as input to

Algorithm 5, the steps 1-3 are repeated only L times, where L denotes the number of

possible subarrays in the 1-D sensor array. Hence, in the matrix (1-D array) case, the

computational complexity of the MuDe method reduces to O
(∑L

l=1 ((N − l + 1)MlK)
)

.

3.5 Performance Evaluation of MuDe

In this section, we evaluate the performance of MuDe through computational

experiments. We present simulation results for the proposed matrix-based and tensor-

based MuDe approaches. We consider three figures of merit obtained from 50000 inde-

pendent Monte Carlo runs. First, we evaluate the SNR gain when MuDe is used as a

preprocessing step for noise reduction. Then, we evaluate the accuracy of the estimated

spatial frequencies in terms of the total root mean square error (RMSE) for the 1-D and

R-D sensor array configurations. At the end, we evaluate the mean processing time of

different techniques. The spatial frequencies are uniformly distributed in [−π, π] and ran-

domly chosen in each run. The distance between neighboring sensors is assumed to be λ/2

in all array dimensions, while the source symbols are binary phase shift keying (BPSK)

modulated signals. Zero-mean AWGN is assumed in all experiments.

The total RMSE(i) computed at the i-th Monte Carlo run is defined as follows:

RMSE(i) =

√√√√ 1

RM

(
R∑
r=1

M∑
m=1

(
µ

(r)
m,i − µ̂

(r)
m,i

)2
)
, (65)

where µ̂
(r)
m,i denotes the estimate of the m-th spatial frequency in the r-th array dimension

at the i-th Monte Carlo run. The total RMSE for a given SNR value plotted in the

Figures 9, 10, 11 and 12 denote the median value computed over 50000 independent

Monte Carlo runs. Here, the spatial frequencies are estimated by applying the standard

one-dimensional MUSIC (SCHMIDT, 1986), the one-dimensional ESPRIT (ROY and

KAILATH, 1989), the standard multidimensional R-D ESPRIT (HAARDT, ROEMER,

and DEL GALDO, 2008) and the ALS-PARAFAC 2 algorithms. We also compare our

results to the Cramér-Rao bound (CRB) for uniform linear array (ULA) and uniform

rectangular array (URA) configurations derived in (ROEMER and HAARDT, 2012).

In Figures 8 and 9, we evaluate the performance of MuDe considering a third-

order received signal tensor (two spatial dimensions and one temporal dimension). In

both cases, we assume a URA (i.e., R = 2) with N1 and N2 equal to 30 sensors in each

spatial dimension, M = 6 wavefronts and K = 10 signal samples. The SNR gain of MuDe
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Figure 8 – SNRoutput vs. SNRinput for a third-order tensor to compare the SNR gain of
MuDe and the classical single HOSVD based low-rank approximation proposed by
(HAARDT, ROEMER, and DEL GALDO, 2008). In the simulated scenario: URA,
N1 = 30, N2 = 30, M = 6 and K = 10.
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is shown in Figure 8. In this analysis, we consider a controlled scenario in which the

noiseless signal term X o in (58) is available. Being X̃ the preprocessed data, we define

the output SNR as follows:

SNRoutput = 10 · log10

(
‖X o‖2

F

‖X̃ −X o‖2
F

)
(dB). (66)

According to Figure 8, the proposed tensor-based MuDe outperforms the clas-

sical single HOSVD based low-rank approximation proposed in (HAARDT, ROEMER,

and DEL GALDO, 2008) in approximatelly 4 dB. When compared to the received raw

data in (58) i.e., without consider any denoising preprocessing, the tensor-based MuDe

achieves a SNR gain up to 6 dB.

In Figure 9, a first preprocessing step via forward-backward averaging (FBA)

technique (LINEBARGER, DE GROAT, and DOWLING, 1994; HAARDT, ROEMER,

and DEL GALDO, 2008) is incorporated in all tensor-based methods. In (STEIN-

WANDT, ROEMER, and HAARDT, 2014), the number of subarrays in the spatial

smoothing is optimized by minimizing the mean-squared error (MSE) for the standard ES-

PRIT. In the considered scenario the optimal subarray length is Lopt
r = 10 in each spatial

mode (r = 1, 2) for the method proposed in (STEINWANDT, ROEMER, and HAARDT,

2014) It is plotted here as a reference for comparison. For more details about the ana-

lytical derivation of the optimal number of subarrays for spatial smoothing please con-
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Figure 9 – Median of the total RMSE of the spatial frequencies vs. SNR (dB) for a
third-order tensor to compare the spatial parameter estimation accuracy. In the
scenario: URA, N1 = 30, N2 = 30, M = 6 and K = 10.
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sult reference (STEINWANDT, ROEMER, and HAARDT, 2014). The proposed MuDe

method outperforms the single HOSVD+FBA method in (HAARDT, ROEMER, and

DEL GALDO, 2008) and the ALS-PARAFAC+FBA in (DA COSTA et al., 2010). Com-

pared to the HOSVD+FBA+SS method in (STEINWANDT, ROEMER, and HAARDT,

2014) for the optimal number of subarrays Lopt
r = 10, MuDe provides a lower estimation

error in all the simulated SNR range, showing more accentuate gains in the low SNR

regime.

In Figure 10, we assume K = 30 signal samples, M = 6 wavefronts and a

ULA (i.e., R = 1) equipped with N = 30 sensors. As benchmarks to the matrix-based

MuDe approach, we consider the state-of-the-art single SVD-based low-rank approxima-

tion method and its version added with spatial smoothing preprocessing scheme, where

the optimal number of subarrays Lopt = N/3 = 10 is considered, as proposed in (STEIN-

WANDT, ROEMER, and HAARDT, 2014). The standard one-dimensional MUSIC with

an angular updating of 0.1◦ is also plotted for comparison. The proposed MuDe method

outperforms the competing techniques with a more accentuated gain when compared to

the classical single SVD-based low-rank approximation without spatial smoothing and

MUSIC. In the single source case, the proposed method presents the same performance

as that of (STEINWANDT, ROEMER, and HAARDT, 2014), as shown in Figure 11. This

result corroborates the remarkable performance provided by MuDe, achieving the bound

derived in (STEINWANDT, ROEMER, and HAARDT, 2014). On the other hand, the

proposed method becomes preferable when a larger number of signal sources is considered,
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Figure 10 – Median of the total RMSE of the spatial frequencies vs. SNR (dB) for the
matrix-based approach. In the scenario: ULA, N = 30, M = 6 and K = 30.

SNR (dB)

-5 0 5 10

M
e

d
ia

n
 o

f 
th

e
 T

o
ta

l 
R

M
S

E
 (

S
p

a
ti
a

l 
F

re
q

u
e

n
c
ie

s
)

10-3

10-2

10-1

100

101

102

Raw Data (single SVD)

Raw Data (MUSIC)

Single SVD + SS for L
opt

 = 10

MuDe

CRB

Source: Created by the author.

as shown in Figure 10.

In order to evaluate the spatial frequency estimation accuracy for close-sources,

we present the Figure 12. In this experiment, we assume a ULA with N = 30 sensors,

K = 30 and M = 5 closely spaced signal sources. The SNR is fixed to 0 dB. The

angular spacing between the sources (in degrees) is shown on the horizontal axis. We can

see that the performance of all techniques improves when the angular spacing between

sources increases. As we can see from these simulation results, for very close-sources,

when the angular spacing is less than 10◦, the proposed MuDe is more accurate than

the competitors methods. The worse performance of the approach in (STEINWANDT,

ROEMER, and HAARDT, 2014) is due to the decrease of the array aperture with the use

of the spatial smoothing preprocessing scheme, which decreases the array resolution for

very close-sources. In contrast, the proposed MuDe significantly reduces the noise effect

without decreasing the array aperture providing more accurate estimates in challeging

scenarios when the sources are closely spaced.

In Figure 13, the mean processing time (in seconds) of the MuDe is compared

to the state-of-the-art techniques for the single-source scenario. We can see that the MuDe

is more computationally expensive than competing techniques showing an increase in the

processing time when the number of sensors increases. According to Figures 9 and 10,

this is the trade-off to achieve more accurate estimates for the spatial frequencies.

In the following section, we begin the second part of this chapter dedicated

to formulate two new generalized tensor-based algorithms to solve the spatial signatures

estimation problem in R-D sensor arrays.
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Figure 11 – Median of the total RMSE of the spatial frequencies vs. SNR (dB) for the
matrix-based approach. In the scenario: ULA, N = 30, M = 1 and K = 30.
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Figure 12 – Median of the total RMSE of the spatial frequencies vs. angular spacing (in
degrees) between the sources. In the scenario: ULA, N = 30, M = 5, K = 30 and SNR
equal to 0 dB.
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3.6 Proposed Tensor-Based Methods for Blind Spatial Signature Estimation

In this section, we first formulate a novel multidimensional structure from

the covariance matrix of the received data. Then, an iterative ALS-based algorithm for

a Tucker decomposition of order 2N is proposed. Finally, we derive a link between the
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Figure 13 – Mean processing time (in seconds) vs. number of sensors. In the scenario:
ULA, single-source case, K = 30 and SNR equal to 30 dB.
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method in (WEIS et al., 2012) and the covariance-based blind spatial signature estimation

problem.

3.6.1 Covariance Tensor Formulation

From (56), the sample covariance matrix R̂ ∈ CN×N of the signals received at

the R-D sensor array can be computed as

R̂ ,
1

K
XXH ≈ ARsA

H + σ2
nI

≈
(
A(1) � · · · �A(R)

)
Rs

(
A(1) � · · · �A(R)

)H

+ σ2
nI, (67)

where Rs = 1
K
SSH is the sample covariance matrix of the source signals, and σ2

n is the

noise variance.

The noiseless sample covariance matrix in (67), given by Ro = R̂ − σ2
nI ∈

CN×N , can be interpreted as a multimode unfolding of the noiseless covariance tensor

Ro ∈ CN1×N2×...×NR×N1×N2×...×NR of order 2N , defined as

Ro = Rs ×1 A
(1) ×2 A

(2) . . .×R A(R) (68)

×R+1 A
(1)∗ ×R+2 A

(2)∗ . . .×2R A
(R)∗ ,

where Rs is the source covariance tensor, which has 2R dimensions, each of size M .

According to (38), Ro is a dual-symmetric tensor, i.e. the factor matrix related to the

(R + r)-th dimension is equal to A(r)∗ , and Nr = NR+r (r = 1, . . . , R). The m-th frontal



59

slice of Rs is a diagonal matrix whose main diagonal is given by the m-th column of

the covariance matrix Rs. For instance, considering R = 2 for the sake of notation, the

following expression satisfies the relationship previously cited:

Rs(:, :,m,m) = diag (Rs(:,m)) , m = 1, . . . ,M, (69)

where the matrix Rs(:, :,m,m) ∈ CM×M denotes the m-th frontal slice of the covariance

tensor Rs obtained by fixing its last two modes. The tensor Ro follows a dual-symmetric

Tucker decomposition of order 2R with factor matrices A(r) and A(r)∗ , r = 1, . . . , R, and

core tensor Rs.

Considering the case in which the sources are uncorrelated and have unitary

variance, we can rewrite (68) as

Ro = I2R,M ×1 A
(1) ×2 A

(2) . . .×R A(R) (70)

×R+1 A
(1)∗ ×R+2 A

(2)∗ . . .×2R A
(R)∗ ,

where I2R,M is the identity tensor of order 2R in which each dimension has size M . In

this case, the covariance tensor Ro follows a dual-symmetric PARAFAC decomposition

of order 2R.

As discussed in Section 2.4.3, the Tucker decomposition does not impose re-

strictions on the core tensor structure, which makes this model more flexible compared

to PARAFAC decomposition. In our context, this characteristic reflects an arbitrary and

unknown structure for the sources’ covariance Rs which can also be estimated from (68).

In contrast, the PARAFAC decomposition (70) denotes a particular case of the Tucker de-

composition when the sources’ signals are uncorrelated and the source covariance matrix

is perfectly known (i.e. diagonal). In practice, this may not hold.

3.6.2 ALS-Tucker Algorithm

Our goal is to blindly estimate the spatial signature matrices A(r) and A(r)∗

(r = 1, . . . , R) which refer to the different dimensions of the sensor array from the covari-

ance tensor Ro. For the sake of simplicity, from this point on, we considerA(R+r) = A(r)∗ .

According to (51), the Tucker decomposition (68) allows the following factorization in

terms of its factor matrices and core tensor:

[Ro](r) = A(r)∆(r), (71)
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where

∆(r) = [Rs](r)
(
A(2R) ⊗ . . .⊗A(r+1) (72)

⊗A(r−1) ⊗ . . .⊗A(1)
)T
,

where [Ro](r) and [Rs](r) (r = 1, . . . , 2R), denote the n-mode unfolding of the covariance

tensor Ro and the core tensor Rs, respectively.

From the unfolding matrices of Ro, an ALS-based algorithm can be formulated

to estimate the desired factor matrices. An estimate of the spatial signature matrix Â
(r)

(r = 1, . . . , 2R), associated with the r-th dimension of the covariance tensor, is obtained

by solving the following LS problem:

Â
(r)

= arg min
A(r)

∥∥∥ [Ro](r) −A
(r)∆(r)

∥∥∥2

F
, (73)

The solution of which is given by

Â
(r)

= [Ro](r)

(
∆(r)

)†
. (74)

Note, however, that the core tensor is also assumed to be unknown in the

Tucker decomposition, and should also be estimated. Let Rs be an unknown matrix of

arbitrary structure, the following LS problem can be formulated from the vectorization

of the sample covariance matrix R̂:

vec
(
R̂s

)
= arg min

Rs

∥∥∥vec
(
R̂
)
− (A∗ ⊗A) vec (Rs)

∥∥∥2

F
, (75)

from which an estimate of R̂s can be obtained as

vec
(
R̂s

)
= (A∗ ⊗A)† vec

(
R̂
)
, (76)

where A = A(1) �A(2) . . . �A(R) ∈ CN×M .

Since Equations (74) and (76) are nonlinear functions of the parameters to be

estimated, the blind spatial signature estimation problem can be solved using a classical

ALS iterative solution (BRO, 1998; SMILDE, BRO, and GELADI, 2004). The basic idea

of the algorithm is to estimate one factor matrix at each step while the others remain fixed

at the values obtained in previous steps. This procedure is repeated until convergence.

The proposed generalized ALS-Tucker algorithm for R-D sensor arrays is summarized in

Algorithm 6.

In this approach the factor matrices are treated as independent variables, i.e.

the dual-symmetry property of the covariance tensor is not exploited. In this case, a final

estimate of the spatial signature matrix associated with the r-th dimension of the array
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Algorithm 6 Proposed ALS-Tucker algorithm

1: procedure ALS-Tucker

2: 1. Randomly Initialize Â
(r)
∈ CNr×M for r = 2, . . . , 2R and the core tensor R̂s;

3: 2. for r = 1, . . . , 2R

4: According to (74), obtain an LS estimate for the matrix Â
(r)

:
5:

Â
(r)

= [R](r)

(
∆(r)

)†
;

6: • Note: The matrix ∆(r), described in (72), is updated by fixing Â
(r)

calculated
7: previously.
8: end
9: 3. According to (76), obtain an LS estimate for R̂s:

10:

vec
(
R̂s

)
= (A∗ ⊗A)† vec

(
R̂
)

;

R̂s = unvecM×M

(
vec
(
R̂s

))
;

11: 4. Using (69), reconstruct the core tensor R̂s from R̂s;
12: 5. Repeat steps 2-4 until convergence.

can be computed as:

Â
(r)

final =
Â

(r)
+ Â

(R+r)∗

2
. (77)

3.6.3 ALS-ProKRaft Algorithm

Here, a link is established between the alternating Procrustes estimation and

Khatri-Rao factorization (ALS-ProKRaft) algorithm proposed by WEIS et al. (2012)

and the blind spatial signature estimation problem in multidimensional sensor arrays.

The main idea behind this algorithm is to exploit the dual-symmetry property of the

PARAFAC decomposition described in (70). Next, the ALS-ProKRaft algorithm is for-

mulated for the context of this thesis.

The multimode unfolding of the PARAFAC decomposition (70) can be rewrit-

ten as follows

Rmm =
(
A(1) � . . . �A(R)

)(
A(1) � . . . �A(R)

)H

, (78)

which assumes the following factorization

Rmm = R
1
2
mm ·

(
R

1
2
mm

)H

, (79)
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Algorithm 7 ALS-ProKRaft algorithm

1: procedure ALS-ProKRaft
2: 1. Set i = 0. Initialize T̂ (i=0) = IM ;

3: 2. According to (80), obtain U [M ] and Σ[M ] from the SVD of the multimode
4: unfolding matrix Rmm;
5: 3. i← i+ 1;

6: 4. According to (81), obtain estimates for Â
(r)

(i) (r = 1, . . . , R) by applying the

7: LS-KRF algorithm 1 on U [M ]Σ[M ]T̂
H

(i−1);

8: 5. According to (84), compute the SVD of
(
Â

(1)

(i) � · · · � Â
(R)

(i)

)H

U [M ]Σ[M ] =

9: UPΣPV
H
P and obtain T̂ (i) = UPV

H
P ;

10: 6. Repeat steps 3-5 until convergence.

where R
1
2
mm ∈ CN×M can be obtained from the SVD of Rmm as follows

Rmm = UΣV H, (80)

obeying the following structure

R
1
2
mm ≈ U [M ]Σ[M ]T H =

(
A(1) � . . . �A(R)

)
, (81)

where U [M ] ∈ CN×M is formed by the first M columns of U and Σ[M ] ∈ CM×M is a

diagonal matrix which contains the M dominant singular values of Rmm. The matrix T

represents a unitary rotation factor.

Equation (81) is an orthogonal Procrustes problem (OPP) (SCHONEMANN,

1966), in which T is a transformation matrix that maps U [M ]Σ[M ] to
(
A(1) � . . . �A(R)

)
such that U [M ]Σ[M ]T H =

(
A(1) � . . . �A(R)

)
. An efficient estimate for T is obtained

minimizing the Frobenius norm of the residual error:

arg min
T

∥∥∥U [M ]Σ[M ]T H −
(
A(1) � . . . �A(R)

)∥∥∥
F
. (82)

This problem can be solved using a change of basis from the SVD of the matrix(
A(1) � . . . �A(R)

)H

U [M ]Σ[M ] = UPΣPV
H
P , (83)

which leads to the following solution according to (SCHONEMANN, 1966):

T̂ = UPV
H
P . (84)

From Equations (81) and (84), an ALS-based iterative algorithm can be for-

mulated to estimate the spatial signature matrices from the PARAFAC decomposition
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Figure 14 – L-shaped array configuration with N1 +N2 − 1 sensors. The distance
between the sensors in the z axis is d(1) while the distance between the sensors in the x
axis is d(2). The m-th wavefront has elevation and azimuth angles equal to αm and βm,
respectively.

Source: Created by the author.

(70). Firstly, individual estimates for each factor matrix Â
(r)

(r = 1, . . . , R), are ob-

tained by applying the LS-KRF algorithm 1 on the composite spatial signature matrix

Â = Â
(1)
�Â

(2)
. . .�Â

(R)
. Then, the matrix T̂ is obtained from (84). The ALS-ProKRaft

algorithm for blind spatial signature estimation in R-D sensor arrays is summarized in

the pseudo-code form in Algorithm 7.

Note that compared to the conventional ALS-PARAFAC solution 2 formu-

lated from the unimodal unfolding matrices (37), the ALS-ProKRaft algorithm becomes

preferred since only half of the factors matrices needs to be estimated by exploiting the

dual-symmetry property of the covariance tensor. This generally leads to a fast conver-

gence rate of the algorithm.

3.7 Spatial Signature Estimation in L-Shaped Sensor Arrays

In this section, the blind spatial signature estimation problem is formulated

for L-shaped array configuration. Considering that the receiver array is divided into

smaller sub-arrays, the Tucker decomposition of a fourth-order tensor is formulated from

the sample cross-correlation matrix of the data received by the different sub-arrays. From

this multidimensional structure, the proposed generalized ALS-Tucker algorithm 6 can be

used to estimate the sources’ spatial signatures in L-shaped array scenarios.
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3.7.1 Cross-Correlation Tensor for L-shaped Sensor Arrays

Consider an L-shaped sensor array equipped withN1+N2−1 sensors positioned

in the x-z plane, as illustrated in Figure 14. Each linear array contains N1 and N2

sensors equally spaced at distances d(1) and d(2), respectively. We consider that each

linear array is divided into P and W smaller sub-arrays, respectively. Each sub-array

contains N
(sub)
1 = N1 − P + 1 and N

(sub)
2 = N2 −W + 1 sensors. The signal received at

the p-th sub-array (p = 1, . . . , P ) is given by

X(1)
p = As

(1)Dp

(
Φ(1)

)
S +N (1)

p ∈ CN
(sub)
1 ×K , (85)

while the signal received at the w-th sub-array (w = 1, . . . ,W ) is given by

X(2)
w = As

(2)Dw

(
Φ(2)

)
S +N (2)

w ∈ CN
(sub)
2 ×K , (86)

where As
(r) ∈ CN

(sub)
r ×M is the spatial signature matrix of the first sub-array (or reference

sub-array) for the r-th array dimension (r = 1, 2). Dp

(
Φ(1)

)
andDw

(
Φ(2)

)
are diagonal

matrices whose main diagonal is given by the p-th and w-th row of the matrices Φ(1) ∈
CP×M and Φ(2) ∈ CW×M , respectively.

The rows of Φ(1) and Φ(2) capture the delays suffered by the signals impinging

on the p-th and w-th sub-arrays with respect to the reference sub-array, which are defined

based on the following spatial frequencies:

µ(1)
m =

2π · d(1) · cosαm
λ

, (87)

µ(2)
m =

2π · d(2) · sinαm · cos βm
λ

, (88)

where αm and βm denote the azimuth and elevation angles of the m-th source, respectively.

From (85) and (86), let us introduce now the following extended data matrices:

X(1) =
[
X

(1)
1 , . . . ,X

(1)
P

]T

∈ CN
(sub)
1 P×K , (89)

X(2) =
[
X

(2)
1 , . . . ,X

(2)
W

]T

∈ CN
(sub)
2 W×K , (90)

or, more compactly, we get

X(r) =
(
Φ(r) �As

(r)
)
S +N (r), r = 1, 2. (91)
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Similar to (67), in this approach we shall work with the following sample cross-

correlation matrix:

R̂ =
(
Φ(1) �As

(1)
)
Rs

(
Φ(2) �As

(2)
)H

+ σ2
nI. (92)

As aforementioned, we can see that the noiseless term in (92) denotes a multi-

mode unfolding of the following cross-correlation tensor of size N
(sub)
1 × P ×N (sub)

2 ×W :

Ro = Rs ×1 As
(1) ×2 Φ

(1) ×3 As
(2)∗ ×4 Φ

(2)∗ , (93)

where Rs ∈ CM×M×M×M . In this modeling, the tensor Ro follows a fourth-order Tucker

decomposition. By analogy with (50), we can deduce the following correspondences:

(I1, I2, I3, I4)↔
(
N

(sub)
1 , P,N

(sub)
2 ,W

)
(Q1, Q2, Q3, Q4)↔M (94)(

G,A(1),A(2),A(3),A(4)
)
↔
(
Rs,As

(1),Φ(1),As
(2)∗ ,Φ(2)∗

)
.

The spatial signatures of the sources can be estimated from (93) by using the

proposed generalized ALS-Tucker algorithm 6. Note that, in this approach, the ALS-

Tucker algorithm is simplified to a fourth-order tensor input.

For all the previously proposed algorithms, the final estimates for the spatial

signature matrices are obtained when the convergence is declared. An usually adopted

criterion for convergence is defined as |e(i)− e(i−1)| ≤ 10−6, where e(i) denotes the residual

error of the i-th iteration, defined as:

e(i) =
∥∥∥R− R̂(i)

∥∥∥2

F
, (95)

where R = Ro + N is a noisy version of the covariance tensor, N is an AWGN tensor

and R̂(i) is the covariance tensor reconstructed from the estimated factor matrices and

core tensor. Since the ALS-ProKRaft algorithm exploits the dual-symmetry property of

the data tensor the procedure (77) is not necessary.

3.7.2 Estimation of the Spatial Frequencies

After the estimation of the spatial signatures matrices Â
(r)

final (r = 1, . . . , R),

the final step is to estimate the spatial frequencies of the sources µ̂
(r)
m (m = 1, . . . ,M).

The final estimates can be computed from the average over the values obtained in each
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row of Â
(r)

final as follows:

µ̂(r)
m =

1

Nr − 1

Nr∑
n=2

arg
{
Â

(r)

final(n,m)
}

n− 1
. (96)

3.8 Computational Complexity

In the following, we discuss on the computational complexity of the iterative

ALS-Tucker and ALS-ProKRaft algorithms. The computational complexity of one Tucker

iteration refers to the cost associated with the SVD used to calculate the matrix pseudo-

inverses in the least squares problems (73) and (75). The overall computational complexity

per iteration of the ALS-Tucker algorithm equals the complexity of 2R matrix SVDs

associated with each estimated factor matrix according to (74) plus the complexity of

one additional matrix SVD associated with the estimated core tensor according to (76).

The overall computational cost per iteration of the ALS-ProKRaft algorithm equals the

complexity of M(R − 1) matrix SVDs associated with the application of the LS-KRF

algorithm in (81) plus the complexity of one additional matrix SVD associated with the

update of the unknown unitary rotation factor matrix T in (84).

3.9 Advantages and Disadvantages of the Proposed Methods

In this section, we discuss on the advantages and disadvantages of the proposed

methods for blind spatial signatures estimation in R-D sensor arrays. As previously stated

in Section 3.6.3, the ALS-ProKRaft algorithm works on the assumption that the sample

covariance matrix of the sourcesRs is perfectly known and diagonal. However, this is only

true in the asymptotic case when a sufficiently large number of snapshots is assumed (i.e.

K →∞), as well as when the source signals are perfectly uncorrelated. In practice, this

assumption is not guaranteed. On the other hand, the ALS-Tucker algorithm previously

formulated in Section 3.6.2 naturally captures any structure for the sources covariance

into the core tensor Rs. Therefore, the assumption of uncorrelated source signals is not

necessary for the ALS-Tucker algorithm, making it able to operate in scenarios where

the source covariance structure is unknown and arbitrary (non-diagonal). Such scenarios

occur, for instance, when the sample covariance is computed from a limited number of

snapshots.

The ALS-Tucker algorithm does not exploit the dual-symmetry property of the

data covariance tensor and all factor matrices and the core tensor needs to be estimated as

independent variables. In contrast, in the ALS-ProKRaft algorithm, only half of the factor

matrices are estimated by exploiting the dual-symmetry property of the covariance tensor.

Therefore, the ALS-ProKRaft algorithm is more computationally attractive than the ALS-

Tucker algorithm. When compared with the state-of-the-art matrix based algorithms such
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Figure 15 – Total RMSE vs. SNR for N = 64 sensors, K = 10 samples, DoAs: {30◦, 55◦}
and {45◦, 60◦} for Hadamard sources’ sequences. Uniform retangular array (URA).

SNR (dB)

-5 0 5 10 15 20

T
o
ta

l 
R

M
S

E
 (

S
p
a
ti
a
l 
F

re
q
u
e
n
c
ie

s
)

10-3

10-2

10-1

100

SE

STE

MUSIC

ALS-Tucker

ALS-ProKRaft

Source: Created by the author.

as MUSIC, ESPRIT and Propagator Method, the proposed tensor-based algorithms have

the advantage of fully exploiting the multidimensional nature of the received signal in

less specific scenarios, which leads to more accurate estimates. For instance, the ESPRIT

algorithm was originally formulated for sensor arrays that must obey the shift invariance

property. On the other hand, the MUSIC algorithm has high computational complexity

due to the search of parameters in the spatial spectrum.

3.10 Performance Evaluation of ALS-Tucker and ALS-ProKraft Algorithms

In this section, the performance of the iterative ALS-Tucker and ALS-ProKRaft

algorithms are investigated through computer simulations. Fisrt, the numerical results re-

lated to Section 3.6 are presented and discussed. Then, the same methodology is adopted

for the L-shaped modeling developed in Section 3.7. Final results are obtained as an av-

erage of 1000 independent Monte Carlo runs. Initially, we consider a uniform rectangular

array (URA) positioned on the x-z plane. The m-th wavefront has direction of arrival

{αm, βm}Mm=1, where αm and βm are the elevation and azimuth angles, respectively.

In Figures 15 and 16, the performance is measured in terms of total RMSE (65)

of the estimated spatial frequencies µ̂
(r)
m as a function of the SNR. The relations between

directions of arrival and spatial frequencies are given in (87) and (88), where d(r) denotes

the distance between sensors in the r-th array dimension, which is assumed here to be

equals λ/2. In Figure 15, we consider Hadamard sequences for the sources’ symbols, while

in Figure 16 we consider BPSK modulated sources’ symbols. In both cases, we assume

N = 64 sensors (i.e. N1 and N2 equal to 8) and the sample covariance matrix of the
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Figure 16 – Total RMSE vs. SNR for N = 64 sensors, K = 10 samples, DoAs: {30◦, 55◦}
and {45◦, 60◦} for BPSK sources’ sequences. Uniform retangular array (URA).
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Figure 17 – Convergence of the iterative ALS-Tucker and ALS-ProKRaft algorithms.
Uniform retangular array (URA).
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received data (67) computed from a reduced number of K = 10 samples.

From Figure 15, it can be seen that both ALS-Tucker and ALS-ProKRaft

algorithms have similar performances in terms of total RMSE, when Hadamard sources’

sequences are considered. On the other hand, in Figure 16, when BPSK sources’ symbols

are considered, a floor is exhibited by the ALS-ProKraft algorithm for high SNR values.

This behavior occurs due to the modeling errors in the core tensor of the PARAFAC

decomposition, which in turn arises due to the non-orthogonality of the source signals,

resulting in a non-diagonal sample covariance matrix of the sources in this case. Note that
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Figure 18 – Total RMSE vs. SNR for N = 13 sensors, K = 500 samples, DoAs:
{30◦, 45◦} and {50◦, 55◦}. L-Shaped array.
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in the ALS-Tucker algorithm the covariance matrix of the sources possess an arbitrary

and unknown structure which discards possible constraints to the source signals. This

difference makes the Tucker decomposition approach more attractive in those practical

scenarios in which source uncorrelatedness is not guaranteed. When compared to state-

of-the-art matrix-based standard ESPRIT (SE) (ROY and KAILATH, 1989) adapted to

planar arrays, matrix-based MUSIC algorithm to planar array configuration (SEKIZAWA,

1998) and standard Tensor-ESPRIT (STE) (HAARDT, ROEMER, and DEL GALDO,

2008), the proposed algorithms have improved accuracy in all the considered scenarios.

Figure 17 shows the convergence performance of the iterative algorithms. In

this experiment, the median values of the normalized estimation error e(i)/N
(2R) are plot-

ted in terms of the number of iterations for different SNR values. It is noteworthy that

the ALS-ProKRaft algorithm has a very faster convergence compared to the ALS-Tucker

algorithm. This behavior is expected since ALS-ProKRaft exploits the dual-symmetry

property of the data tensor, which results in estimating half as many factor matrices

compared to the ALS-Tucker approach.

Now, we consider an L-shaped array configuration. In Figure 18, we setN = 13

sensors (i.e. N1 and N2 equal to 7) and K = 500 samples. Each uniform linear array

is divided into P = 2 and W = 2 sub-arrays, respectively. In this experiment, the

performance of the proposed ALS-Tucker algorithm is compared to the state-of-the-art

matrix-based methods, namely, Propagator Method (PM) (TAYEM and KWON, 2005),

MUSIC (CHANGUEL, HARABI, and GHARSALLAH, 2006) and ESPRIT (ZHANG,

GAO, and CHEN, 2009), all of them originally formulated for L-shaped arrays. Note

that the ALS-Tucker algorithm presents an improved performance over its competitors,
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Figure 19 – Total RMSE vs. SNR (performance of the ALS-Tucker algorithm for
different number os sensors). L-Shaped array.
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Figure 20 – Total RMSE vs. number of samples. L-Shaped array.

Number of Samples

0 500 1000 1500 2000 2500 3000

T
o
ta

l 
R

M
S

E
 (

S
p
a
ti
a
l 
F

re
q
u
e
n
c
ie

s
)

10-2

10-1

100

PM

ESPRIT

MUSIC

ALS-Tucker

Source: Created by the author.

with more evidenced gains in the low-to-medium SNR range. For high SNR values, the

performance of the MUSIC method comes close to that of our proposal. However, the

ALS-Tucker algorithm dispense any estimation procedure via bidimensional peak search

as occurs with MUSIC, being the former more computationally attractive.

Figure 19 shows the performance of the ALS-Tucker by assuming different

number of sensors. In this experiment, we consider K = 500 samples. We can observe a

better performance in terms of RMSE when the number sensors of the L-shaped array is

increased. This is valid for all the simulated SNR values.
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In Figure 20, we analyze the influence of the number of samples K on the per-

formance of the ALS-Tucker algorithm. This experiment considers the same parameters

as the experiment of Figure 18, except the SNR value that is assumed fixed at 20 dB

and the number of samples that varies between 50 and 3000. First, we can see that the

performance of the algorithms improves by increasing the number of samples collected

by sensor array, as expected. However, similar to Figure 18 the proposed ALS-Tucker

algorithm outperforms the state-of-the-art PM, ESPRIT and MUSIC methods.

3.11 Chapter Summary

In this chapter, we have addressed the spatial frequencies estimation problem

in multidimensional sensors arrays. Initially, we have proposed a tensor-based multiple

denoising (MuDe) method that enhances parameter estimation in R-D sensor array pro-

cessing. The MuDe exploits all possible subarrays created by an R-D spatial smoothing

and achieves a higher noise reduction capability with successive low-rank approximations

in tensor and matrix data. For a reduced number of sources close to one, the MuDe has

a remarkable performance achieving the bound derived in (STEINWANDT, ROEMER,

and HAARDT, 2014). Our proposed approach considerably outperforms state-of-the-art

solutions for scenarios with a high number of sources.

In addition, we also have proposed two tensor-based approaches based on the

Tucker and PARAFAC decompositions to solve the blind spatial signatures estimation

problem. One is a covariance-based generalization of the Tucker decomposition for R-

D sensor arrays. The other one, is a link between the ALS-ProKRaft algorithm and

covariance-based array processing for blind spatial signatures estimation. As another

contribution, we have formulated a cross-correlation-based fourth-order Tucker decompo-

sition which makes the proposed ALS-Tucker algorithm applicable in scenarios composed

by L-Shaped array configurations. The two proposed tensor methods differ in the struc-

ture assumed for the source covariance. It is worth pointing out that in realistic scenarios,

when the received covariance matrix is calculated from a reduced number of samples, or

snapshots, the ALS-Tucker algorithm becomes preferable since it operates with an arbi-

trary and unknown structure for the covariance of the source signals. On the other hand,

when the sources can be assumed to be uncorrelated, we can achieve improved perfor-

mance by exploiting the dual-symmetry property of the covariance tensor, which makes

the ALS-ProKRaft algorithm preferable since it provides good estimation accuracy with

a smaller number of iterations. When compared with other state-of-the-art matrix-based

and tensor-based techniques, the proposed tensor-based iterative algorithms have shown

their effectiveness with remarkable gains in terms of estimation accuracy.
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4 A NESTED-PARAFAC BASED APPROACH FOR TARGET LOCALIZA-

TION IN BISTATIC MIMO RADAR SYSTEMS

In this chapter, we make use of the Nested-PARAFAC decomposition to formulate a

tensor-based method for joint direction of departure (DoD) and direction of arrival (DoA)

estimation in bistatic MIMO radar systems. By assuming that the transmit array is di-

vided into two maximally overlapping subarrays, we initially model the cross-covariance

matrix of the matched filters outputs as a Nested-PARAFAC decomposition of a fourth-

order covariance tensor. Then, exploiting the algebraic structure of this decomposition, we

first propose a two stage algorithm for joint DoD and DoA estimation of multiple targets

based on double alternating least squares (DALS). In addition, for scenarios in which the

number of receive antennas exceeds the number of targets, we propose a closed-form solu-

tion to the second stage of the proposed method based on the LS-KRF concept. Simulation

results show that the proposed method offers a highly-accurate localization of multiple tar-

gets in real-world scenarios where the antenna elements at the transmit and receive arrays

have positioning errors as well as less complexity compared to competing state-of-the-art

tensor-based solutions.

4.1 Introduction and Motivation

In recent years, research on target detection and localization techniques for

MIMO radar systems has drawn great attention in the signal processing community

(ZHENG, ZHANG, and ZHANG, 2012; GU, HE, and ZHU, 2013; JIANG et al., 2013).

In contrast to conventional phased-array radars that emits coherent waveforms, MIMO

radar systems simultaneously transmit orthogonal waveforms using multiple antennas,

increasing the performance of parameter estimation compared to previous ones (WANG

et al., 2014). Regarding the configuration of transmit and receive antennas, MIMO radars

are divided in statistical (HAIMOVICH, BLUM, and CIMINI, 2008) and colocated (LI

and STOICA, 2007) MIMO radars. The former assumes that transmit and receive an-

tennas are widely spaced, while the latter assumes antennas closely spaced, resulting in

monostatic (TAN, NIE, and WEN, 2017) or bistatic (LIU and LIAO, 2010) MIMO radar

schemes. Throughout this chapter, we focus on the bistatic MIMO radar case, where the

direction of departure (DoD) and direction of arrival (DoA) of the targets need to be

jointly estimated.

Many techniques to solve the multiple targets localization problem in MIMO

radar are based on traditional eigenspace algorithms, such as MUSIC (XIE, LIU, and WU,

2011; LI et al., 2013) and ESPRIT (CHEN, GU, and SU, 2010; JIN, LIAO, and LI, 2009).

However, MUSIC-based methods need a bidimensional search in the spatial spectrum to

find the DoDs and DoAs of the targets. In this case, the accuracy of the estimated pa-
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rameters is directly related to an increase in the computational cost. On the other hand,

ESPRIT-based methods avoid the exhaustive peak search by exploiting the shift invari-

ance property of the antenna array. However, this approach implies constraints on the

geometry of the transmit and receive arrays, and a performance degradation is observed

when the antenna elements have positioning errors. In (NION and SIDIROPOULOS,

2010), a direct-data tensor formulation based on the PARAFAC decomposition for joint

DoD and DoD estimation in MIMO radar has been proposed. However, this approach

becomes prohibitive when a large number of snapshots are processed at the receiver,

motivating in this way, a tensor formulation based on second-order statistics which are

long-term parameters that can be assumed to be constant over a larger time-scale. In

addition, (NION and SIDIROPOULOS, 2010) also provides a performance analysis of

tensor-based and matrix-based approaches, but it does not consider real-world scenarios

where calibration errors are present at the transmit and receive arrays.

In this chapter, we make use of the Nested-PARAFAC decomposition (see

Section 2.4.2) to formulate a tensor-based method for joint DoD and DoA estimation

in bistatic MIMO radar systems. By assuming that the transmit array is divided into

two maximally overlapping subarrays, we show that the cross-correlation matrix of the re-

ceived signals after the matched filters can be modeled as a fourth-order tensor following a

Nested-PARAFAC decomposition. Exploiting the multilinear structure of this decompo-

sition, a two stage double alternating least squares (DALS) estimator is formulated from

the inner and outer third-order PARAFAC parts of the Nested-PARAFAC model to solve

the multi-target localization problem. In contrast to classical matrix-based and tensor-

based ESPRIT versions (ROY and KAILATH, 1989; HAARDT, ROEMER, and DEL

GALDO, 2008), the proposed method does not impose any constraints on the geometry

of the transmit and receive arrays. Moreover, it divides a high complexity fourth-order

estimation problem into two third-order subproblems leading to a reduction in the pro-

cessing time and complexity for parameter estimation when compared to state-of-the-art

direct data (NION and SIDIROPOULOS, 2010) and covariance-based (GOMES et al.,

2017; WANG et al., 2018) solutions. Our simulation results also show that the proposed

tensor-based receiver is capable of jointly estimating the spatial parameters of multiple

targets with good accuracy even when the antenna arrays are vulnerable to calibration

errors or have arbitrary geometries.

4.1.1 Chapter Organization

This chapter is organized as follows. In Section 4.2, the basic signal model for

a bistatic MIMO radar system is presented. In Section 4.3, the cross-covariance tensor of

the matched filters outputs for two transmit subarrays is modeled as a Nested-PARAFAC

decomposition. Then, the proposed two-stage tensor-based algorithm for joint DoD and
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Figure 21 – Bistatic MIMO radar scenario.

Source: Adapted from (WANG et al., 2018).

DoA estimation is formulated. Uniqueness issues of the proposed Nested-PARAFAC based

estimator are discussed in Section 4.4. In Section 4.5, the computational complexities of

proposed and competing state-of-the-art algorithms are discussed. Simulation results are

provided in Section 4.6 and the chapter is concluded in Section 4.7.

4.2 Signal Model

We consider a narrowband bistatic MIMO radar system in which the transmit

and receive arrays have M and N antenna elements, respectively. This scenario is shown

in Figure 21. At the transmit side, each antenna element emits one waveform. The M

transmitted waveforms have identical bandwidth and center frequency but are temporally

orthogonal. The waveform vector transmitted by the m-th array element within one

repetition interval is denoted by sm ∈ C1×K , m = 1, . . . ,M , where K is the number of

samples per pulse period and sms
H
m = K. We also assume that P targets in the far-field

of the transmit and receive arrays, with different Doppler frequencies are located at the

same range bin of interest. The location of the p-th target (p = 1, . . . , P ) is denoted by

(φp, θp), where φp and θp are the DoD and DoA with respect to the transmit and receive

arrays, respectively. The received signal X(l) ∈ CN×K at the output of the receive array

in the l-th pulse period, l = 1, . . . , L, from reflections of P targets is given by (CHEN,

GU, and SU, 2010)

X(l) =
P∑
p=1

ar(θp)β
(l)
p a

T
t (φp)


s1

...

sM

 ej2πfDptl +N (l), (97)

l = 1, . . . , L

where β
(l)
p denotes the complex-valued reflection coefficient of the p-th target assumed con-

stant during a pulse period, fDp is the Doppler frequency of the p-th target, tl is the slow

time index of the l-th pulse period and N (l) ∈ CN×K denotes the AWGN contribution.
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The steering vectors of the transmit and receive arrays with respect to the

p-th target, at(φp) ∈ CM×1 and ar(θp) ∈ CN×1, assume arbitrary geometries, and are

computed as functions of the angular parameters φp and θp, respectively. For instance,

considering a linear array with positioning errors between the antenna elements, the m-th

and n-th entries of at(φp) and ar(θp) are modeled as

[at(φp)]m = ej
2π
λ

[(m−1)dt+αεm] sinφp and [ar(θp)]n = ej
2π
λ

[(n−1)dr+αεn] sin θp , (98)

where λ denotes the wavelength of the transmitted signal, dt and dr are the inter-element

spacing of the transmit and receive arrays, α denotes a positioning error factor, while εm

and εn are zero mean real Gaussian random variables assumed different for each value of

m = 1, . . . ,M and n = 1 . . . , N . In contrast to real-world scenarios in which positioning

errors are present in both transmit and receive arrays, the ESPRIT-based algorithms

(ROY and KAILATH, 1989; HAARDT, ROEMER, and DEL GALDO, 2008) assume

antenna arrays that satisfy the shift invariance property and have good accuracy (only

valid in the ideal case, when α→ 0).

Due to the orthogonality of the transmitted waveforms, the received signal (97)

can be matched to the m-th waveform sm, m = 1, . . . ,M . The output of the matched

filters w.r.t. the m-th transmitted waveform is given by

y(l)
m =

1

K
X(l)sH

m = ArDm (At)γ
(l) +w(l)

m ∈ CN×1, (99)

where At = [at(φ1), . . . ,at(φP )] ∈ CM×P denotes the transmit steering matrix, Ar =

[ar(θ1), . . . ,ar(θP )] ∈ CN×P is the receive steering matrix, the vector gains is denoted by

γ(l) =
[
β

(l)
1 ej2πfD1tl , . . . , β

(l)
P e

j2πfDP tl

]T

∈ CP×1 and w
(l)
m = 1

K
N (l)sH

m ∈ CN×1 is the noise

contribution at the matched filter output associated with the m-th transmitted waveform.

Our aim in this chapter is to locate the P targets in the same range bin of

interest by estimating their DoDs and DoAs. In the following, by starting from the output

signals of the matched filters in (99), we formulate the proposed two-stage tensor-based

method for the joint estimation of the spatial target parameters.

4.3 Proposed Tensor-Based Method for Joint DoD and DoA Estimation

Let us consider that the transmit array is divided into two smaller subarrays.

We assume maximally overlapping subarrays, i.e., the first subarray contains the first

M − 1 antenna elements of the transmit array, while the second subarray contains its

last M − 1 antenna elements. The received signal at the output of the matched filters
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associated with the first subarray is given by

z
(l)
1 =


y

(l)
1
...

y
(l)
M−1

 =


ArD1 (At)γ

(l)

...

ArDM−1 (At)γ
(l)

+


w

(l)
1
...

w
(l)
M−1


= (At,1 �Ar)γ

(l) +w
(l)
MF1 ∈ C(M−1)N×1, (100)

where At,1 = [at,1(φ1), . . . ,at,1(φP )] ∈ CM−1×P denotes the transmit steering matrix of

the first subarray. In a similar way, the output signals associated with the second subarray

can be written as

z
(l)
2 =


y

(l)
2
...

y
(l)
M

 =


ArD2 (At)γ

(l)

...

ArDM (At)γ
(l)

+


w

(l)
2
...

w
(l)
M


= (At,2 �Ar)γ

(l) +w
(l)
MF2 ∈ C(M−1)N×1, (101)

where At,2 = [at,2(φ1), . . . ,at,2(φP )] ∈ CM−1×P denotes the transmit steering matrix of

the second subarray. The vector w
(l)
MFi ∈ C(M−1)N×1 is the noise term at the matched

filter output with respect to the i-th transmit subarray (i = 1, 2).

From (100) and (101), the cross-covariance matrix R ∈ C(M−1)N×(M−1)N be-

tween the subarrays output signals is given by

R = E
{
z

(l)
2 z

(l)H
1

}
, l = 1, . . . , L

= (At,2 �Ar)Rγ (At,1 �Ar)
H +Rw, (102)

where Rγ = E
{
γ(l)γ(l)H

}
∈ CP×P . The term Rw = E

{
w

(l)
MF2w

(l)H
MF1

}
∈ C(M−1)N×(M−1)N

denotes the cross-covariance matrix of the unknown noise contribution.

Note that the cross-covariance matrixR in (102) can be viewed as a multimode

unfolding of the following fourth-order cross-covariance tensor R ∈ CN×M−1×N×M−1

R = Rγ ×1 Ar ×2 At,2 ×3 A
∗
r ×4 A

∗
t,1 + Rw, (103)

where Rγ ∈ CP×P×P×P and Rw ∈ CN×M−1×N×M−1 are obtained by “tensorizing”Rγ and

Rw as fourth-order tensors of sizes P×P×P×P and N×M−1×N×M−1, respectively.

Indeed, the noiseless part of (103) satisfies a fourth-order Tucker decomposition. By

comparing (103) with (50), the following correspondences can be deduced:

(I1, I2, I3, I4, Qn=1,2,3,4)↔ (N,M − 1, N,M − 1, P ) ,(
G,A(1),A(2),A(3),A(4)

)
↔
(
Rγ,Ar,At,2,A

∗
r,A

∗
t,1

)
.
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The estimation of the targets’ spatial parameters (DoDs and DoAs) can be ob-

tained using different approaches such as ESPRIT-based algorithms (ROY and KAILATH,

1989; HAARDT, ROEMER, and DEL GALDO, 2008), PARAFAC-based direct-data algo-

rithms (NION and SIDIROPOULOS, 2010), and ALS-Tucker4 algorithms (GOMES et al.,

2017; WANG et al., 2018). The first approach (ROY and KAILATH, 1989; HAARDT,

ROEMER, and DEL GALDO, 2008) assumes perfect array calibration. Array imper-

fections in real-world scenarios may severely degrade the estimation accuracy of these

methods. Although the direct-data algorithm in (NION and SIDIROPOULOS, 2010)

provide good estimation accuracy by applying the ALS-PARAFAC algorithm 2 directly

to the received data tensor, its computational complexity may be high when the data

block size is large. In the ALS-Tucker4 algorithm proposed by GOMES et al. (2017), five

LS estimation steps are necessary to estimate the factor matrices and the core tensor from

the cross-correlation tensor (103). However, this approach also has high computational

cost and may present slow convergence due the wide search space to alternately minimize

a cost function with five unknown variables, represented by the core tensor and four factor

matrices that model the covariance tensor. In the following, we formulate a new algo-

rithm for joint DoD and DoA estimation that is based on a two-stage Nested-PARAFAC

modeling approach. As will be clear in the sequel, the Nested-PARAFAC approach breaks

down the complex fourth-order tensor problem (103) into two smaller third-order tensor

subproblems, without affecting the accuracy of the parameters estimation.

4.3.1 Proposed Nested-PARAFAC Based Modeling

The cross-covariance matrix R in (102) can now be viewed as an unfolding

matrix of a third-order cross-covariance tensor R ∈ C(M−1)N×N×M−1 expressed using the

n-mode product notation as

R = I3,P ×1 [A]T(1) ×2 A
∗
r ×3 A

∗
t,1 + Rw, (104)

where Rw ∈ C(M−1)N×N×M−1 is now a third-order cross-covariance noise tensor. The

factor matrix [A]T(1) ∈ C(M−1)N×P in (104) denotes the transpose of the 1-mode unfolding

of the following third-order PARAFAC decomposition

A = I3,P ×1 R
T
γ ×2 Ar ×3 At,2. (105)

Indeed, the noiseless term of the cross-covariance tensor (104) corresponds to

the Nested-PARAFAC decomposition of a fourth-order tensor, according to Section 2.4.2.
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By analogy with (40) and (41), we can deduce the following correspondences:(
X , [Y ](1) ,A

(2),A(3)
)
↔
(
R, [A]T(1) ,A

∗
r,A

∗
t,1

)
,︸ ︷︷ ︸

outer PARAFAC part(
Y ,B(1),B(2),B(3)

)
↔
(
A,RT

γ ,Ar,At,2

)
.︸ ︷︷ ︸

inner PARAFAC part

4.3.2 First ALS Stage (Trilinear ALS)

According to (29), (30) and (31), the outer PARAFAC part (104) admits the

following representations in terms of its 1-mode, 2-mode and 3-mode unfolding matrices

[R](1) = [A]T(1)

(
A∗t,1 �A∗r

)T
+ [Rw](1) , (106)

[R](2) = A∗r

(
A∗t,1 � [A]T(1)

)T

+ [Rw](2) , (107)

[R](3) = A∗t,1

(
A∗r � [A]T(1)

)T

+ [Rw](3) . (108)

Assuming that the number of targets is known or has been previously estimated

using, e.g., the methods proposed in (DA COSTA et al., 2011; LIU et al., 2016), estimates

of the factor matrices [A]T(1), A
∗
r and A∗t,1 can be obtained from the outer PARAFAC part

using the ALS-PARAFAC algorithm 2. The first trilinear ALS (TALS) stage of the

proposed method consists of estimating the matrices of interest in an alternating way

from the unfolding matrices [R](n=1,2,3) by solving three linear LS problems from (106),

(107) and (108), whose analytic solutions are given by ˆ[A]
T

(1) = [R](1)

[(
A∗t,1 �A∗r

)T
]†

,

Â
∗
r = [R](2)

[(
A∗t,1 � [A]T(1)

)T
]†

and Â
∗
t,1 = [R](3)

[(
A∗r � [A]T(1)

)T
]†

, respectively.

Each iteration of the first TALS stage contains three LS estimation steps to

update ˆ[A]
T

(1), Â
∗
r and Â

∗
t,1 in an iterative way. At each step, a given factor matrix is

updated by fixing the other two to their estimates obtained at previous updating steps.

This procedure is repeated until the convergence of the first stage. Convergence of the

first TALS stage at the i-th iteration is declared when |e(i) − e(i−1)| ≤ 10−6, where e(i)

denotes the residual error at the i-th iteration defined as

e(i) =
∥∥∥R− R̂(i)

∥∥∥2

F
, (109)

where R̂(i) is the reconstructed version of the cross-covariance tensor obtained from the

estimated factor matrices at the end of the i-th iteration.
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4.3.3 Second ALS Stage (Bilinear ALS)

After the convergence of the first TALS stage, a second bilinear ALS (BALS)

stage can be formulated to estimate the factor matrices At,2 and Rγ from the outputs

Âr and ˆ[A](1) of the first stage. Thanks to the Nested-PARAFAC structure of R, the

estimated factor matrix ˆ[A](1) can be recast as a third-order PARAFAC decomposition in

unfolded form. Thus, in a similar way, and assuming now that Ar is known in the second

stage, the matrices of interest can be obtained from the unfolding matrices

[A](1) = RT
γ (At,2 �Ar)

T , (110)

[A](3) = At,2

(
Ar �RT

γ

)T
, (111)

by solving two linear LS problems whose analytic solutions are R̂
T

γ = [A](1)

[
(At,2 �Ar)

T
]†

and Ât,2 = [A](3)

[(
Ar �RT

γ

)T
]†

, respectively. Note that, this second BALS stage has a

faster convergence since it estimates only two factor matrices due to the knowledge of Ar

previously obtained in the first TALS stage.

4.3.4 DoD and DoA Parameters Estimation

By exploiting the redundancy inserted by the maximally overlapping subar-

rays, a final estimate of the transmit steering matrix is computed from Ât,1 obtained in

the first TALS stage and from Ât,2 obtained in the second BALS stage using the following

relation:

Ât =


Ât,1 (1, :)

1
2

[
Ât,1 (2 : M − 1, :) + Ât,2 (1 : M − 2, :)

]
Ât,2 (M − 1, :)

 . (112)

The final step of the proposed method is to estimate the DoDs and DoAs of

P targets. For the p-th target, which corresponds to the p-th column of the estimated

transmit and receive steering matrices, estimates of its angular parameters φ̂p and θ̂p

can be obtained from a one-dimensional peak search in the following spatial spectra (DA

COSTA et al., 2010):

φ̂p = argmax
φp

∣∣∣aH
t (φp) · ât(φ̂p)

∣∣∣, (113)

θ̂p = argmax
θp

∣∣∣aH
r (θp) · âr(θ̂p)

∣∣∣, (114)

where at(φp) and ar(θp) are known array monifolds of the transmit and receive arrays for

a given localization (φp, θp), respectively.
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Algorithm 8 Proposed DALS algorithm for joint DoD and DoA estimation

1: procedure
2: First Trilinear ALS Stage

3: 1.1 Set i = 0 and initialize randomly Ât,1(i=0) and Âr(i=0);

4: 1.2 i← i+ 1;
5: 1.3 From [R](1), obtain an LS estimate of [A](1):

6:
ˆ[A]

T

(1)(i) = [R](1)

[(
Ât,1(i−1) � Âr(i−1)

)H
]†

;

7: 1.4 From [R](2), obtain an LS estimate of A∗r :

8:

Â
∗
r(i) = [R](2)

[(
A∗t,1(i−1) � ˆ[A]

T

(1)(i)

)T
]†

;

9: 1.5 From [R](3), obtain an LS estimate of A∗t,1:

10:

Â
∗
t,1(i) = [R](3)

[(
A∗r(i) � ˆ[A]

T

(1)(i)

)T
]†

;

11: 1.6 Repeat steps 1.2-1.5 until convergence of the first stage.
12: Second Bilinear ALS Stage

13: 2.1 Obtain Â ∈ CP×N×M−1 by reshaping the estimated 1-mode unfolding matrix ˆ[A](1)(i) obtained in the first

14: stage as a third-order tensor in accordance with (105);

15: 2.2 Set j = 0 and initialize randomly R̂γ(j=0) and Ât,2(j=0);

16: 2.3 j ← j + 1;

17: 2.4 From ˆ[A](1) and Âr(i), obtain an LS estimate of RT
γ :

18:

R̂
T
γ(j) = ˆ[A](1)

[(
Ât,2(j−1) � Âr(i)

)T
]†

;

19: 2.5 From ˆ[A](3) and Âr(i), obtain an LS estimate of At,2:

20:

Ât,2(j) = ˆ[A](3)

[(
Âr(i) � R̂

T
γ(j)

)T
]†

;

21: 2.6 Repeat steps 2.3-2.5 until convergence of the second stage.
22: DoD and DoA Parameters Estimation
23: 3.1 From Ât,1(i) and Ât,2(j), obtain a final estimate of Ât using the relation (112);

24: 3.2 From the p-th column of Ât and Âr, find the estimates of φ̂p and θ̂p (p = 1, . . . , P ) performing
25: the one-dimensional peak search in the spatial spectrum (113) and (114), respectively.

The proposed tensor-based double alternating least squares (DALS) algorithm

for multi-target localization is summarized in the form of pseudo-code in Algorithm 8.

4.3.5 Alternative Closed-Form Solution to the Second Stage

When N ≥ P an estimate to At,2 can be obtained from the first stage output
ˆ[A](1) in closed-form by means of the LS-KRF algorithm 1 presented in Section 2.2.2.

Multiplying both sides of ˆ[A]
T

(2) by the pseudo-inverse of Â
T

r obtained in the first step,

the p-th column of the resulting matrix Ât,2 � R̂
T

γ denotes the vectorization operation of

the rank-1 matrix Ψ p = r∗p ◦ at,2(φp) ∈ CP×M−1, where rp ∈ CP×1 is the p-th column

of the covariance matrix R̂γ. Defining U pΣpV
H
p as the SVD of Ψ p, estimates of r∗p and

at,2(φp) (p = 1, . . . , P ) can be obtained by truncating the SVD to a rank-1 approximation

as follows:

r̂∗p =
√
σ1u1 and ât,2(φp) =

√
σ1v

∗
1, (115)
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Algorithm 9 Algorithm with alternative closed-form solution to the second stage

1: procedure
2: 1. From the covariance tensor R in (104), obtain the estimates of Â, Ât,1 and

3: Âr using the first trilinear ALS stage in Algorithm 8;

4: 2. From [Â]T(2) ·
(
Â

T

r

)†
= Ât,2 � R̂

T

γ , obtain the estimates of Ât,2 and R̂
T

γ using

5: the LS-KRF procedure in Algorithm 1;
6: 3. From the p-th column of Ât and Âr, find the estimates of φ̂p and θ̂p
7: (p = 1, . . . , P ) performing the one-dimensional peak search in the spatial
8: spectrum (113) and (114), respectively.

where u1 ∈ CP×1 and v1 ∈ CM−1×1 are the first left and right singular vectors of U p and

V p, respectively, and σ1 is the largest singular value. The estimates of the matrices Ât,2

and R̂γ are obtained by repeating this procedure P times according to Algorithm 1.

Remark: Note that the LS-KRF and peak search steps can be computed in-

dependently for each column of the estimated matrices. Thus, the estimates of DoDs

and DoAs can be obtained in a parallel way if P processors are available, reducing the

processing time by a factor of P . A version of the proposed tensor-based algorithm using

the closed-form LS-KRF solution in the second stage is summarized in Algorithm 9.

4.4 Uniqueness Issues

We assume that each factor matrix in the Nested-PARAFAC model (104) has

full-rank, i.e., all targets are uncorrelated with each other and have different DoDs and

DoAs. Based on this assumption, and applying the Kruskal’s condition (33) to the inner

and outer PARAFAC parts of the Nested-PARAFAC decomposition, we can deduce that

the estimated matrices Ât and Âr are unique up to permutation and scaling columns if

min (N(M − 1), P ) + min (N,P ) + min (M − 1, P ) ≥ 2P + 2 (116)

min (N,P ) + min (M − 1, P ) ≥ P + 2. (117)

The combination of conditions (116) and (117) yields the following two corollaries:

• If N ≥ P , then M ≥ 3 transmit antennas are necessary to uniquely recover the

spatial parameters of P targets;

• If M − 1 ≥ P , then N ≥ 2 receive antennas are necessary to uniquely recover the

spatial parameters of P targets.

Since positioning errors can be measured as a function of the first antenna

element (being the reference one), the first row of each matrix At and Ar is assumed to

have unity entries. Hence, at the output of the first TALS stage, the scaling ambiguity in

Ât,1 and Âr can be removed from this a priori information through normalization. By its

turn, the scaling ambiguity affecting the estimate Ât,2 obtained in the second BALS stage
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Table 1 – Complexity analysis of different tensor-based algorithms.
Algorithm Number of FLOPs

ALS-PARAFAC (NION and SIDIROPOULOS, 2010) LMP 2 + LNP 2 +MNP 2

ALS-Tucker4 (GOMES et al., 2017) 2N(M − 1)2P 2 + 2N2(M − 1)P 2 +N2(M − 1)2P 4

Nested-PARAFAC
TALS (1st stage) N(M − 1)2P 2 +N2(M − 1)P 2 +N(M − 1)P 2

BALS (2nd stage) N(M − 1)P 2 +NP 3

LS-KRF (2nd stage) (M − 1)P 2 +NP 2

Source: Created by the author.

can be removed from the second row of Ât,1 already estimated in the first stage. Note

that, the column permutation is the same for all matrices which means that the proposed

method provides automatically paired estimates of the targets’ DoDs and DoAs.

4.5 Computational Complexity

In the following, we evaluate the computational complexity of our proposed

Nested-PARAFAC based estimator with respect to competing tensor-based algorithms

recently proposed in the literature. The complexity of each algorithm in terms of FLOPs

counts at each iteration is summarized in Table 1. In these expressions, the number of

FLOPs refers to the dominant cost of the algorithms, which are the computations of

the SVDs required to calculate pseudo-inverses at each iteration of the iterative tensor-

based algorithms. Similar to (GOLUB and VAN LOAN, 1996), we assume here that the

computational cost to calculate the SVD of a matrix of size I1×I2 isO (I1 · I2 ·min(I1, I2)).

As previously mentioned, the complexity of the ALS-PARAFAC algorithm is

a function of the data block size L to be processed at the receiver. In Table 1, we can see

that the first two terms of the ALS-Tucker4 algorithm has double the complexity than the

first two terms in the TALS stage of the Nested-PARAFAC algorithm, while the last term

has quadratic complexity compared to the last term in the TALS stage. Moreover, the

knowledge of Ar in the BALS stage results in a faster convergence and lower complexity

estimation, in comparison with the first TALS stage. Thus, the dominant part of the

complexity of the Nested-PARAFAC refers to its first TALS stage. This becomes more

evident when the alternative closed-form solution based on the LS-KRF algorithm is used

in the second stage. Based on this analysis, we can conclude that the ALS-Tucker4 is

computationally more expansive than the proposed Nested-PARAFAC algorithm. This

discussion will be reinforced by the numerical results of Section 4.6, showing that the

proposed approach yields similar performance as (NION and SIDIROPOULOS, 2010)

and (GOMES et al., 2017) while being more computationally attractive.
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Figure 22 – Total RMSE (deg) vs. positioning error factor (α).
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4.6 Simulation Results

In this section, we evaluate the performance of the proposed Nested-PARAFAC

estimator from computer simulations. We consider M = 6 and N = 5 antennas at the

transmit and receive arrays, respectively. The antenna arrays are assumed to be non-

uniform linear arrays (NULAs) with known positioning errors, i.e., the array manifolds

are known. We assume K = 128 samples per pulse period, a pulse duration of 5 µs,

and data block of size L = 100. Our simulated scenario has three targets with Doppler

frequencies {fDp}3
p=1 = {300, 400, 400} Hz and reflection coefficients {|βp|}3

p=1 = 1, which

are located at (φ1, θ1) = (30◦, 20◦), (φ2, θ2) = (50◦, 40◦) and (φ3, θ3) = (70◦, 60◦). The

numerical results represent an average of 1000 independent Monte Carlo runs.

In Figure 22, we show as a figure of merit the total root mean square error

(RMSE) of the estimated angles as a function of the positioning error factor α. The total

RMSE is defined as:

RMSE =

√√√√E

{
P∑
p=1

(φp − φ̂p)2 + (θp − θ̂p)2

}
, (118)

where φ̂p and θ̂p are the estimated DoD and DoA of the p-th target, respectively. We

compare the estimation accuracy of the proposed method with matrix-based 2D-ESPRIT

(CHEN, GU, and SU, 2008) and Tensor-ESPRIT (HAARDT, ROEMER, and DEL GALDO,

2008). We also include in our evaluation, the tensor-based competitors ALS-Tucker4

(GOMES et al., 2017) and ALS-PARAFAC (NION and SIDIROPOULOS, 2010), which



84

Figure 23 – Number of iterations for convergence vs. SNR (dB).
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solve the same problem. We call attention that in the ALS-Tucker4 algorithm, the co-

variance matrix (102) is interpreted as a multimode unfolding of a fourth-order Tucker

decomposition, and a five-step ALS-based algorithm is proposed to estimate the DoDs

and DoAs of the targets from (103). The ALS-PARAFAC is a direct-data approach in

which a trilinear ALS-based fitting algorithm is applied directly to received signal ten-

sor (97), which is of size N ×M × L. According to Figure 22, the iterative ALS-based

algorithms are robust to real-world scenarios with array calibration errors and have no

performance degradation when the error factor α increases. On the other hand, the

accuracy of matrix-based and tensor-based ESPRIT techniques is degraded due to the

violation of the shift-invariance property that only holds in the ideal scenario with α→ 0.

Note that all tensor-based iterative algorithms have similar estimation accuracy. Thus,

the best choice within the simulated tensor-based methods can be guided mainly by the

computational complexity. This aspect is evaluated in our next experiment.

In Figure 23, we evaluate the convergence rate of the iterative ALS-based

algorithms. We plot as a figure of merit the average number of iterations required for

convergence as a function of signal-to-noise ratio (SNR) in dB. In this experiment, the

fast convergence of the ALS-PARAFAC algorithm does not expose its high computational

cost per iteration when L is large, as shown in Table 1. Despite the same performance in

terms of RMSE, the proposed Nested-PARAFAC estimator requires less iterations than

the ALS-Tucker4 one. Indeed, as discussed in Section 4.5, most of the processing burden of

the Nested-PARAFAC estimator is concentrated in its first TALS stage which corresponds

to approximately 90% of the overall number of iterations. Figure 23 together with the

values in Table 1 reveal that the proposed Nested-PARAFAC algorithm is preferable than
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Figure 24 – Mean processing time (in seconds) vs. data block size.
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the ALS-Tucker4 in terms of computational complexity.

Figure 24 depicts the mean processing time (in seconds) as a function of the

data block size L processed at the receiver. In this experiment, we set the SNR to

30 dB. In contrast to Figure 23, we can observe more clearly the dependence between

the computational complexity of the ALS-PARAFAC and the data block size. More

specifically, for a reasonable value of L, the Nested-PARAFAC approach outperforms the

ALS-PARAFAC one since the latter operates directly on the received raw data samples

and thus has a higher computational complexity when L is large, as shown earlier in

Table 1. These numerical results validate the merits of the proposed tensor-based method

compared to state-of-the-art tensor-based ones.

4.7 Chapter Summary

In this chapter, we have proposed a new Nested-PARAFAC based approach

for solving the multi-target localization problem in bistatic MIMO radar systems without

imposing constraints on the geometry of the transmit and receive arrays. The proposed

Nested-PARAFAC estimator offers the same performance in terms of DoD and DoA accu-

racy estimation as that of competing tensor-based methods in (NION and SIDIROPOU-

LOS, 2010) and (GOMES et al., 2017), while being less computationally complex. At the

same time, the proposed solution is robust to positioning errors of the antenna elements,

in contrast to competing ESPRIT and Tensor-ESPRIT techniques in (CHEN, GU, and

SU, 2008) and (HAARDT, ROEMER, and DEL GALDO, 2008), respectively.
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5 JOINT DOWNLINK AND UPLINK CHANNEL ESTIMATION USING

TENSOR PROCESSING

In this chapter, we address the problem of joint downlink (DL) and uplink (UL) channel

estimation in multiuser wireless communications systems. We first propose a closed-loop

and multi-frequency based channel training framework in which pilot signals received by

multiple mobile stations (MSs) are coded, spread in the frequency-domain via multiple

adjacent subcarriers, and then reported back to the BS. Then, we show that the received

closed-loop signal can be modeled as a third-order PARAFAC decomposition from which

two semi-blind receivers to perform the joint estimation of the DL and UL channels are

formulated. In addition, as another contribution, we extend the proposed framework for

millimeter wave (mmWave) MIMO scenarios in which the BS is assumed to be equipped

with a hybrid analog-digital beamforming (HB) architecture. In contrast to the classical

approach, in which the DL and UL channel estimation problems are usually considered

as two separate problems, our idea is to jointly estimate both the DL and UL channels as

a single problem by concentrating most of the processing burden for channel estimation

at the BS side. The proposed framework alleviates the computational overhead for chan-

nel estimation at the MSs side with limited processing capability, while relaxing channel

reciprocity assumptions. Our identifiability study shows that the proposed receivers can

achieve a reduced training overhead as well as require few frequency resources. Simulation

results demonstrate that the proposed receivers achieve a performance close to the classical

approach, with the advantage of avoiding complex computations for channel estimation at

the MSs side as well as dedicated feedback channels for each MS.

5.1 Introduction and Motivation

The MIMO systems has been applied to many wireless standards since it can

increase the capacity and reliability in wireless communications systems (LU et al., 2014).

In recent years, great attention has been given to multiuser MIMO systems (MU-MIMO)

(GESBERT et al., 2007), where a base station (BS) equipped whith multiple antennas

simultaneously serves a set of (single or multiple antennas) mobile stations (MSs). The

performance of MU-MIMO systems strongly depends on the efficient measurement of the

channel state information (CSI) by the BS. This is possible from a training phase in which

the BS transmits known training signals to the MSs. According to (CHOI, LOVE, and

BIDIGARE, 2014), the BS can learn the CSI from limited feedback in frequency division

duplexing (FDD) (LOVE et al., 2008) or assuming channel reciprocity in time division

duplexing (TDD) (MARZETA, 2010). However, in practice, the downlink (DL) channel

estimated by the uplink (UL) channel considering channel reciprocity may not be accurate

(GUEY and LARSSON, 2004). Futhermore, the channel acquisition becomes a challenge
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if the BS has to transmit long DL training sequences, and the MS has to report back its

large channel matrix estimates. The amount of overhead in the DL channel estimation

due to the long training sequences and in the UL channel due to the large matrices to

be reported can severely decrease the spectral efficiency of the system, calling for novel

solutions that enable us to reduce the unnecessary overhead.

Alternatively to the classical MIMO systems, the millimeter wave (mmWave)

massive MIMO technology has been subject of increasing interest in both academia and

industry for future wireless standards, due to its great potential to provide substancial

energy efficiency and data rate gains. The first one is due to the reduced number of radio

frequency (RF) chains, assumed to be smaller that the number of antennas. The last one

is due to the large chunck of available frequencies in the mmWave band. However, due

to the severe path loss over the mmWave frequency bands, large antenna arrays should

be deployed at the BS and MSs to provide sufficient beamforming gains using hybrid

analog-digital beamforming (HB) architectures (ALKHATEEB et al., 2014b; RIAL et al.,

2016). To fully benefit from the beamforming gains in mmWave MIMO systems, accurate

CSI estimation is also crucial to realize the hybrid precoding designs in which the analog

part can be used to improve the signal power, while the digital part is designed to supress

inter-user interferences (LIANG, XU, and DONG, 2014; ALKHATEEB, HEATH, and

LEUS, 2015; GALLACHER and RAHMAN, 2015).

Motivated by the strong importance of accurate CSI estimates in the MIMO

systems performance, several channel estimation techniques have been proposed (ALKHA-

TEEB et al., 2014a; VENUGOPAL et al., 2017; ZHOU et al., 2016b, 2017). However, they

assume conventional channel training framework, in which the DL and UL channel esti-

mation problems are trated as two decoupled procedures at the MSs and BS, respectively.

In contrast, in this chapter we study the problem of joint DL and UL channel estimation.

Initially, as a first contribution, we propose a novel closed-loop and multi-frequency based

channel training framework in which the pilot signals received by multiple MSs are coded

and spread in the frequency-domain, and then feed back to the BS over the same UL

resources. Making use of this framework, the received closed-loop signal can be modeled

as a third-order PARAFAC decomposition. As a second contribution, by capitalizing the

multidimensional structure of the received signal, we propose two tensor-based semi-blind

receivers for joint DL and UL channel estimation. The first one is an iterative solution

based on the ALS concept. The second one is a closed-form solution based on the LS-

KRF algorithm. As a third contribution, we extend the proposed techniques to opperate

in mmWave MIMO scenarios. The proposed framework allows concentrating most of

the processing burden for channel estimation at the BS side, i.e., avoiding computational

overhead for channel estimation at the MSs with limited processing capability. Simula-

tion results reveal that the proposed receivers achieve a performance close to the classical

framework that treat the estimation of DL and UL channels as separate problems.
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5.1.1 Chapter Organization

This chapter is organized as follows. In Section 5.2, we present the proposed

closed-loop channel training framework and the proposed system model. Section 5.3

formulates the proposed tensor-based semi-blind receivers for joint DL and UL channel

estimation. In Section 5.4, we analyze the uniqueness issues and computational complexity

of the proposed receivers. The first set of simulation results are provided in Section

5.5. The extension of the proposed techniques for mmWave massive MIMO scenarios is

provided in Section 5.6. The set of simulation results related to the proposed extension

are provided in Section 5.7. Finally, the chapter conclusions are drawn in Section 5.8.

5.2 System Model

In this section, we introduce the proposed closed-loop and multi-frequency

channel training framework. Based on it, we formulate the corresponding DL and UL

signal models. Our focus here is to show that the proposed framework allows joint DL and

UL channel estimation by concentrating the processing burden associated with channel

estimation at the BS, while relaxing channel reciprocity assumption.

5.2.1 Downlink Signal Model

Consider a multiuser wireless communication system consisting of a BS and U

MSs. The BS is equiped with a ULA of N elements while each MS is a single-antenna

device. Let S ∈ CT×N be a known pilot signal sent by the BS to all MSs in which T

denotes the length of the training sequence. The signal yu ∈ CT received by the u-th MS

is given by

yu = Shu + v(DL)
u , (119)

where hu ∈ CN denotes the DL channel vector and v
(DL)
u ∈ CT is the AWGN vector, both

related to the u-th MS.

5.2.2 Uplink Signal Model

The pilot signal (119) received by the u-th MS is feed back to the BS after

a multi-frequency coding operation (i.e., no channel estimation is done at the MS side).

More specifically, we assume a preprocessing step in which yu (u = 1, . . . , U) is coded and

spread in the frequency-domain across F adjacent subcarriers over which the UL channel

is assumed to be constant. The u-th MS loads the received pilot into the f -th subcarrier

using the code factor cf,u. The BS then receives the sum of U co-channel signals. The
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received closed-loop signal at the BS associated with the f -th subcarrier is given by

Xf =

(
U∑
u=1

cf,uguy
T
u

)
+ V

(UL)
f

= GDf (C)Y T + V
(UL)
f ∈ CN×T , f = 1, . . . , F, (120)

where cf,u denotes the (f, u)-th entry of the so called frequency spreading matrix C =

[c1, . . . , cU ] ∈ CF×U . The u-th column of C contains the set of code coefficients used

by the u-th MS over F frequencies. The matrix Y = SH + V (DL) ∈ CT×U collects

in its u-th column the pilot signal (119) received by the u-th MS. The matrices H =

[h1, . . . ,hU ] ∈ CN×U and G = [g1, . . . , gU ] ∈ CN×U denote the DL and UL channel

matrices, respectively. V (DL) ∈ CT×U and V
(UL)
f ∈ CN×T denote the overall DL and UL

noise contributions. Throughout this chapter, we assume that H and G are possibly

different, which means channel reciprocity may not hold.

Remark: It is worth noting that the coding vectors used by the different MSs

do not need to be orthogonal. In practice, this means that these codes can be locally gen-

erated at each MS as pseudo-random sequences, i.e., no prior signaling and coordination

between MSs is necessary.

5.2.3 Conventional x Proposed Channel Training Framework

The conventional channel training framework, illustrated in Figure 25, assumes

channel reciprocity in TDD or treat the DL and UL channel estimation as two separated

problems in FDD, i.e., the DL and UL channel estimation procedures are performed

independently at the MS and BS, respectively. In the DL channel estimation the BS

(first) sends pilot signals, and the MS use them to obtain the DL channel estimation

by means of state-of-the-art LS, minimum mean square error (MMSE) or compressed

sensing (CS) based estimators. Then, the estimated DL channel is feedback to the BS

via dedicated UL resources (SHEN et al., 2016). There are two ways of feeding back the

DL channel information to the BS. Explicit feedback consists in reporting the estimated

channel vector ĥu computed by the u-th MS. However, its report may produce important

overhead when the number of antennas is large. On the other hand, implicit feedback

means transmitting quantized versions of the channel, which reduces the overhead to the

cost of channel accuracy (ARAÚJO, 2016). To solve the UL channel estimation problem,

the pilot signal is sent by the MS to the BS. Finally, the UL channel estimation procedure

is performed by the BS.

Reciprocity-based channel estimation assume that DL and UL channels are

reciprocal, i.e., one is a transposed version of another one. The channel estimation pro-

cedure initiates at the MS by sending pilot signals toward BS. It collects the pilot signals
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Figure 25 – Conventional training framework. The DL and UL channel estimation
problems are solved independently. The BS first transmits pilot signals. Then, the DL
channel is estimated at the MSs side. The estimated DL channel is feed back to the BS
via dedicated uplink resources. The UL channel is estimated at the BS side. The blue
words refer to DL communication, while red words refer to UL communication.

BS
UL channel estimation

DL Channel
u-th MS

DL channel estimation

UL Channel

DL training pilots received DL pilots

estimated DL channel (via dedicated feed back channel)

UL training pilotsreceived UL pilots

Source: Created by the author.

Figure 26 – Proposed closed-loop and multi-frequency based training
framework. The DL and UL channels are jointly estimated. The BS first transmits
pilot signals. The MSs encode the received pilots and then feed them back to the BS.
The BS jointly estimates the DL and UL channels from (120). The blue words refer to
DL communication, while red words refer to UL communication.

BS
joint DL and UL

channel estimation

DL Channel

u-th MS
feed back of the received DL pilots

via multiple coded subcarriers

UL Channel

DL training pilots received DL pilots

coded DL pilots (shared uplink channel)received UL pilots

Source: Created by the author.
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and estimates the UL channel by using state-of-the-art techniques, after that, MS uses

the reciprocity assumption to obtain an estimate of the DL channel (ARAÚJO, 2016). In

practice, the reciprocity assumption may not be hold due to radio frequency distortions,

mutual coupling effects between antenna elements and different carrier frequency such as

in FDD (SHEPARD et al.). Furthermore, the conventional framework may imply a high

computational complexity at the MS side, especially when devices with limited processing

capability are utilized by the users.

By making use of the proposed closed-loop and multi-frequency channel train-

ing framework, illustrated in Figure 26, no processing for channel estimation is performed

at the MSs side. In contrast to the conventional approach in Figure 25, the pilot sig-

nal received by each MS is feedback to the BS after a multi-frequency coding operation

across adjacent subcarriers. After this closed-loop transmission scheme, the joint DL

and UL channel estimation can be performed at the BS from the received signal (120).

The proposed framework alleviates computational overhead due to processing for channel

estimation at the MS side, by shiffiting channel estimation processing to the BS side.

Furthermore, it also relaxes channel reciprocity assumptions, typical in TDD systems,

since the DL and UL channels can be estimated as independent variables from (120).

5.3 Proposed Tensor-Based Semi-Blind Receivers for Joint DL and UL Chan-

nel Estimation

Our aim in this chapter is to jointly estimate the DL and UL channel matrices

H and G by solving a multiuser channel estimation problem at the BS. For this pur-

pose, we first recall the received closed-loop signal (120) using tensor formalism. Then,

by capitalizing its multidimensional structure, we formulate two tensor-based semi-blind

receivers to estimate the channel matrices by means of the well-known ALS and LS-KRF

algorithms.

5.3.1 PARAFAC-Based Modeling

Similar to (28), the noiseless term in the closed-loop received signal (120)

represents the f -th frontal slice of the third-order tensor X ∈ CN×T×F obtained by con-

catenating the F signal matrices {Xf}Ff=1 associated to the different adjacent subcarriers

along the third mode of X , i.e.,

X = X1 t3 X2 t3 . . . t3 XF . (121)

The tensor X assumes the following PARAFAC decomposition

X = I3,U ×1 G×2 Y ×3 C. (122)
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The following correspondences can be stated by comparing (122) with (25):

(I1, I2, I3, Q)↔ (N, T, F, U)(
A(1),A(2),A(3)

)
↔ (G,Y ,C) .

According to (29), (30) and (31), the tensor X admits the following factoriza-

tions in terms of its unfolding and factor matrices:

[X ](1) = G (C � Y )T ∈ CN×TF , (123)

[X ](2) = Y (C �G)T ∈ CT×NF , (124)

[X ](3) = C (Y �G)T ∈ CF×NT . (125)

In order to jointly estimate the channel matrices H and G from the received

signal tensor X in (122), we formulate in the following the two proposed tensor-based

semi-blind receivers which are based on the ALS and LS-KRF algoritms, respectively.

5.3.2 ALS-PARAFAC Receiver

From (122), estimates of G, Y and C can be obtained by solving the following

quadratic optimization problem:

min
Ĝ,Ŷ ,Ĉ

∥∥∥∥∥X −
U∑
u=1

ĝu ◦ ŷu ◦ ĉu

∥∥∥∥∥
2

F

. (126)

This problem can be solved by means of the ALS-PARAFAC algorithm 2. It consists of

estimating in an alternating way the factor matrices from the unfolding matrices [X ](n)

(n = 1, . . . , 3) by solving the following three linear LS problems:

argmin
G

∥∥∥[X ](1) −G (C � Y )T
∥∥∥2

F
, (127)

argmin
Y

∥∥∥[X ](2) − Y (C �G)T
∥∥∥2

F
, (128)

argmin
C

∥∥∥[X ](3) −C (Y �G)T
∥∥∥2

F
. (129)

The solutions of which are given by Ĝ = [X ](1)

[
(C � Y )T

]†
, Ŷ = [X ](2)

[
(C �G)T

]†
and

Ĉ = [X ](3)

[
(Y �G)T

]†
, respectively.

Each iteration of the ALS-PARAFAC algorithm has three LS updating steps.

At each step, one factor matrix is updated while the remaining factor matrices are assumed

fixed to their values obtained in the previous steps. This procedure is repeated until the
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convergence of the algorithm. Denoting by

e(i) =
∥∥∥[X ](1) − [X̂ ](1)

∥∥∥2

F
(130)

the residual error between the received signal and the reconstructed signal at the i-th it-

eration, defined as [X̂ ](1) = Ĝ
(
Ĉ � Ŷ

)T

, the convergence at the i-th iteration is declared

when |e(i) − e(i−1)| 6 10−6.

By assuming a coordinated scenario in which the frequency spreading matrix

C is known at the BS, only column scaling ambiguity in the estimated matrices Ĝ and

Ŷ exists. The scaling ambiguity matrix ∆G can be determined by assuming knowledge

of the first row of G. In turn, the ambiguity matrix ∆Y can be obtained by means of the

following relation:

∆G∆Y = IU . (131)

In practice, the knowledge of the first row of G can be obtained using a simple

supervised procedure in which a known pilot symbol is sent to the BS by each MS (FER-

NANDES, FAVIER, and MOTA, 2011; XIMENES, FAVIER, and DE ALMEIDA, 2015).

We assume that before transmission, each MS send a known pilot sequence to estimate

its link between the first receive antenna at the BS. This “pre-phase” is essential for the

receiver to remove the scaling ambiguity in the estimated matrices.

Downlink Channel Estimation: After the convergence of the ALS-PARAFAC

algorithm, an additional step becomes necessary to estimate the DL channel matrix Ĥ

from the output matrix Ŷ = SĤ + V̂
(DL)

. To this end, we incorporate the classical

training-based MMSE channel estimator as final step of the proposed receiver. The MMSE

estimate of Ĥ is given by (KAY, 2000; CHO et al., 2010)

Ĥ =
[
SHR(DL)−1

vv S +R
(DL)−1

hh

]−1

SHR(DL)−1

vv Ŷ , (132)

where R(DL)
vv ∈ CT×T and R

(DL)
hh ∈ CN×N denote the noise covariance matrix and the

covariance matrix of the DL channel, respectively. The proposed ALS-PARAFAC receiver

for joint estimation of the DL and UL channels is summarized in Algorithm 10.

5.3.3 LS-KRF Receiver

Alternatively to the iterative ALS-PARAFAC receiver, estimates of the DL and

UL channel matrices can be obtained in a closed-form way by exploiting the knowledge

of the frequency spreading matrix C, and then solving a set of rank-1 approximation

problems by means of the LS-KRF algorithm formulated in Section 2.2.2.



94

Algorithm 10 Proposed ALS-PARAFC receiver for joint DL and UL channel estimation

1: procedure
2: 1. Set i = 0. Randomly initialize Ŷ (i=0);
3: 2. i← i+ 1;
4: 3. Using [X ](1) in (123), find an LS estimate of Ĝ(i):
5:

Ĝ(i) = [X ](1)

[(
C � Ŷ (i−1)

)T
]†

;

6: 4. Using [X ](2) in (124), find an LS estimate of Ŷ (i):
7:

Ŷ (i) = [X ](2)

[(
C � Ĝ(i)

)T
]†

;

8: 5. Repeat steps 2-4 until convergence;
9: 6. Obtain the MMSE estimate for Ĥ using (132).

By assuming F ≥ U , and multiplying both sides of [X ]T(3) in (125) by the

pseudo-inverse of CT from the right hand side, we get

Y �G = [X ]T(3)

(
CT
)†

(133)

= [y1 ⊗ g1, . . . ,yU ⊗ gU ] ∈ CNT×U . (134)

According to property (9), the u-th column of (134) can be rewritten as

yu ⊗ gu = vec (gu ◦ yu) , (135)

that represents the vectorization operation of the rank-1 matrix W u = gu ◦ yu ∈ CN×T .

Being UuΣuV
H
u the SVD of W u, estimates for gu and yu (u = 1, . . . , U) can be obtained

by truncating the SVD for a rank-1 approximation, i.e.,

ĝu =
√
σ1u1 and ŷu =

√
σ1v

∗
1, (136)

where u1 ∈ CN×1 and v1 ∈ CT×1 are the first left and right singular vectors of Uu and

V u, respectively, and σ1 is the largest singular value. Final estimates for the matrices

Y and G are obtained by repeating this process for u = 1, . . . , U as in Algorithm 1.

Analogous to the proposed ALS-PARAFAC receiver, the column scaling ambiguity in Ĝ

and Ŷ can be removed when the first row of G is known. In the same way, the MMSE

estimate for Ĥ can be obtained from (132). The proposed LS-KRF receiver is shown in

Algorithm 11.

Note that in the proposed LS-KRF receiver, a single SVD is computed inde-

pendently for each column of the Khatri-Rao product Y �G. Therefore, the U columns

of the estimated matrices Ŷ and Ĝ can be computed in a parallel way when U proces-
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Algorithm 11 Proposed LS-KRF receiver for joint DL and UL channel estimation

1: procedure

2: 1. From Y �G = [X ]T(3)

(
CT
)†

, obtain the estimates of Ĝ and Ŷ using the
3: LS-KRF algorithm 1;
4: 2. Obtain the MMSE estimate for Ĥ using (132).

sors are available at the BS. In other words, the processing delay associated with channel

estimation and symbol detection at the BS can be kept constant (i.e. it does not increase

with the number of MSs), as long as the BS is equipped with multiple (at least U) DSP

units. Note also that the complexity per unit is that of a rank-1 approximation problem.

5.4 Identifiability and Computational Complexity

In this section, we study the identifiability issues under which the downlink H

and uplink G channel matrices can be jointly and uniquely recovered using the proposed

ALS-PARAFAC and LS-KRF receivers. In addition, we also present a brief discussion

about the computational complexity of the proposed methods.

5.4.1 Identifiability Conditions

1. ALS-PARAFAC receiver: Based on the received signal tensor X ∈ CN×T×F

in (120), the Kruskal’s condition (33) can be rewritten to our signal model as:

κG + κY + κC ≥ 2U + 2. (137)

We assume the following: (i) The DL and UL channels of the u-th MS are modeled as a

combination of Lu paths, each one of them being characterized by differents AoDs, AoAs

and fading coefficients (DE ALMEIDA, FAVIER, and MOTA, 2006); (ii) The antenna

array response has a Vandermonde structure (we assume a ULA at the BS) and (iii) The

factor matrix S is randomly generated and follows a uniform distribution whileC is a DFT

matrix. Under the assumptions (i) and (ii) the DL and UL channel matrices H and G

have full rank with probability one. From Definition 12, this implies κG = min(N,U).

Assumption (iii) implies that the matrices S and C have full rank, and consequently

κY = min(T, U) and κC = min(F,U). From this analysis, the Kruskal’s condition (137)

can be equivalently written as follows:

min(N,U) + min(T, U) + min(F,U) ≥ 2U + 2. (138)
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Since the assumption that the number of antennas at the BS is greater than the number

of MSs is reasonable, the identifiability condition (138) simplifies to

min(T, U) + min(F,U) ≥ U + 2. (139)

From condition (139), we can analyze the following scenarios:

1) Considering T ≥ U , only F = 2 subcarriers are required to estimate the DL and UL

channels of U MSs. Otherwise stated, the ALS-PARAFAC receiver requires a reduced

number of frequency resources (subcarriers).

2) Considering F ≥ U , a training sequence of length T = 2 pilots is enough to estimate

the DL and UL channels of U MSs. Due to the small size of the training sequence, the

ALS-PARAFAC receiver has a reduced training overhead.

2. LS-KRF receiver: The LS-KRF receiver requires that the following neces-

sary and sufficient uniqueness condition be satisfied:

F ≥ U. (140)

Note that this condition represents a particular case of (139), which indicates that the

application of the LS-KRF receiver requires a more restricted scenario compared to the

ALS-PARAFAC receiver, since the number of used frequency resources (subcarriers) in-

creases with the number of active MSs. On the other hand, the LS-KRF receiver is a

closed-form solution that allows parallel (user-wise) channel estimation and symbol de-

tection, in contrast to the ALS-PARAFAC one, where all users are processed jointly.

5.4.2 Computational complexity

1. ALS-PARAFAC receiver: We approximate the computational complexity

of the proposed ALS-PARAFAC receiver, in terms of FLOPs, considering only the cost

associated with the SVD used to compute the matrix pseudo-inverses in the LS solutions

of (127) and (128). According to (GOLUB and VAN LOAN, 1996), each iteration of the

ALS-PARAFAC receiver requires approximately O(U2FT + U2FN) FLOPs.

2. LS-KRF receiver: The computational complexity of the LS-KRF receiver

can be approximated as the cost to obtain Y � G from (125) added with the cost to

calculate U SVD-based rank-1 approximations to estimate Ĝ and Ŷ from the previous

Khatri-Rao product. Thus, the LS-KRF requires approximately O(U2F +UNT ) FLOPs.

Therefore, the overall complexities of the proposed semi-blind receivers are

equal to the sum of the the above complexities and the computational cost O(T 3 + N3)

associated with the MMSE estimate of Ĥ from Ŷ according to (132).
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5.5 Simulation Results (Part 1)

The first set of simulation results presented here is devoted to evaluate the

performance of the proposed ALS-PARAFAC and LS-KRF semi-blind receivers in some

selected system configurations. We evaluate the performance in DL and UL channel es-

timations in terms of normalized mean square error (NMSE) of the estimated matrices

compared to the actual channel matrices. We consider a ULA composed by N = 32 an-

tenna elements at the BS. The DL and UL channels of the u-th MS are generated assuming

a multipath channel model (DE ALMEIDA, FAVIER, and MOTA, 2006) composed by

Lu paths being each one characterized by a particular AoD, AoA and path gain. At each

run, Lu is set randomly between one and five for each MS. The AoDs and AoAs to the

l-th path of the u-th MS are randomly distributed in the interval [0, 2π] and the path

gains follow a complex-valued Gaussian distribution with zero-mean and unit variance.

We also assume that the known pilot signal S is a BPSK modulated sequence while the

frequency spreading matrix C is designed to be DFT. The results are averaged over 2000

independent Monte Carlo runs.

The NMSE of the estimated DL and UL channel matrices are defined as:

NMSE
(
Ĥ
)

=
1

2000

2000∑
τ=1

‖H(τ) − Ĥ(τ)‖2
F

‖H(τ)‖2
F

, (141)

NMSE
(
Ĝ
)

=
1

2000

2000∑
τ=1

‖G(τ) − Ĝ(τ)‖2
F

‖G(τ)‖2
F

, (142)

where H(τ) and G(τ) denote the true DL and UL channel matrices while Ĥ(τ) and Ĝ(τ)

denote the DL and UL channel estimates, both with respect to the τ -th Monte Carlo run.

In Figures 27 and 28, the NMSE is evaluated as a function of the SNR. In

these experiments, we consider a pilot signal of length T = 16, U = 8 MSs and F = 8

subcarriers for a “symmetric” scenario in which the SNR in the DL and UL are equal. As

references for comparison, we also evaluate the performance of the MMSE-based channel

estimators. These two approaches are referred in our plots as MMSE in MS and MMSE in

BS. They represent the solutions to the conventional channel training framework in which

the estimates for the DL and UL channels are computed at the MS and BS, respectively.

The proposed ALS-PARAFAC and LS-KRF receivers present performance close to the

competing MMSE estimators. However, the latter requires two independent estimation

steps at the MSs and BS side. The proposed receivers concentrate the processing burden

for channel estimation at the BS, avoiding such previously mentioned some practical

limitations such as channel reciprocity as well as high complexity processing for channel

estimation at each MS. Despite the same performance between the proposed tensor-based

receivers, the LS-KRF receiver is more limited due to its more restrictive identifiability



98

Figure 27 – NMSE (Downlink Channel) vs. SNR (dB) for N = 32, T = 16, F = 8,
U = 8. The SNR values in DL and UL are assumed to be equal.
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Figure 28 – NMSE (Uplink Channel) vs. SNR (dB) for N = 32, T = 16, F = 8, U = 8.
The SNR values in DL and UL are assumed to be equal.
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condition in (140).

In Figure 29, the performance is evaluated as a function of the number of

subcarriers F . The parameters T and U are fixed to T = 16 and U = 4, respectively. The

SNR in the DL and UL communications are set equal to 10 dB. This experiment shows

the accuracy in the DL channel estimate is not affected by the number of subcarriers used.

In contrast, when the number of subcarriers increases, the proposed receivers get better
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Figure 29 – NMSE (DL and UL Channels) vs. number of subcarriers (F ) for N = 32,
T = 16, U = 4 and SNR = 10 dB.
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performance in the UL channel estimation. We also observe a strong proximity between

the proposed methods and the MMSE-based approaches. The performance gap between

the curves presents low variability when the number of subcarriers is modified.

In Figure 30, we plot the NMSE as a function of the length of the training

sequence T . We consider F = 4, U = 4 and the same SNR value as the previous

experiment. We can see that the performance of all methods improves when T increases.

In the important case of T < N we can notice the proposed LS-KRF and ALS-PARAFAC

receivers present performance very close to the MMSE estimators. For a massive scenario,

this result implies in a satisfactory performance of the proposed methods even when a

training sequence of reduced length is used. In this case, the proposed receivers achieve

a substancial training overhead reduction.

In Figure 31, we analyze the convergence rate of the proposed ALS-PARAFAC

receiver. We plot the number of iterations for convergence as a function of the SNR by

assuming different subcarrier numbers. In general, the ALS convergence depends on

the factor matrices initialization and can be very slow when all matrices are unknown.

However, we can see that the convergence of the ALS-PARAFAC receiver is achieved with

few iterations due to the knowledge of the frequency spreading matrix C at the BS. We

can also notice that the number of iterations for convergence is sensitive to the number of

subcarriers and the difference is more pronounced when a reduced number of subcarriers

is assumed in the UL transmission.

In the following section, we formulate an extension of the proposed methods

able to opperate in mmWave MIMO scenarios. In this new approach, we consider that
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Figure 30 – NMSE (DL and UL Channels) vs. length of the training sequence (T ) for
N = 32, F = 4, U = 4 and SNR = 10 dB.
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Figure 31 – Number of iterations for convergence of the proposed ALS-PARAFAC
receiver vs. SNR (dB) for N = 32, T = 16 and U = 4.
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the BS is equipped with a HB architecture and the DL and UL channels assume sparse

representations typical of mmWave propagation environments. Additional simulation

results for performance evaluation are also provided in the sequence.
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5.6 Extension to mmWave Massive MIMO Systems

Consider now a BS equipped with NBS antennas serving simultaneously U MSs

equipped with NMS antennas. BS employs a HB architecture using MRF RF chains. Due

to the different instants of time dedicated to DL and UL communications, the beamform-

ing matrix associated with DL transmission is denoted by W = W RFW BB ∈ CNBS×MRF ,

while the beamforming matrix associated with UL reception is denoted by F = F RFF BB ∈
CNBS×MRF . Note that equal beamforming matrices can also be considered in the trans-

mission and reception phases without loss of generality. The BS transmits a length-T

pilot sequence sp ∈ CT over the p-th spatial direction using the beamforming vector

wp ∈ CNBS (p = 1, . . . , P and P ≤ MRF). The received signal at the u-th MS over P

different directions is given by

Y u = HuWS + V (DL)
u ∈ CNMS×T , (143)

where Hu ∈ CNMS×NBS denotes the DL channel matrix associated to the u-th MS,

W = [w1,w2, . . . ,wP ] ∈ CNBS×P denotes the transmission beamforming matrix, S =

[s1, s2, . . . , sP ]T ∈ CP×T concatenates the pilot signals to be sent by each transmission

beam. The matrix V (DL)
u ∈ CNMS×T is the AWGN term at the u-th MS.

During the channel training phase, we assume identity matrices for the digital

beamforming matrices, while the analog beamforming matrices have constant unit modu-

lus entries with random phases. Therefore, the entries of W and F are chosen uniformly

from a unit circle scaled by a constant 1/
√
NBS, i.e.,

[W ]i,j =
1√
NBS

ejϑi,j and [F ]i,j =
1√
NBS

ejϕi,j , (144)

where ϑi,j and ϕi,j ∈ [−π, π] follow a uniform distribution. Since this work deals with

the channel estimation problem, the optimum design of the beamforming matrices is not

adressed.

Making use of the proposed channel training framework, the coded version of

(143) feed back to the BS at the f -th subcarrier is denoted by

Y f,u = diag(cf,u)Y u ∈ CNMS×T , (145)

where cf,u ∈ CNMS denotes the known code vector associated with the f -th subcarrier

used by the u-th MS.

In the UL communication, the BS employs Q beamforming vectors f q ∈ CNBS

(q = 1, . . . , Q and Q ≤ MRF) to receive the coded UL pilot signals over a set of Q

different spatial directions. The received closed-loop signal at the BS associated with the

f -th subcarrier is given by
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Xf = F H

(
U∑
u=1

GuY f,u + V (UL)

)
=

(
F HGe

)
diag(cf )Y

T
e + F HV (UL) ∈ CQ×T , (146)

where Ge = [G1,G2, . . . ,GU ] ∈ CNBS×UNMS denotes an extended version of the UL chan-

nel matrix that concatenates the U UL channel matrices Gu ∈ CNBS×NMS (u = 1, . . . , U)

of all MSs, Y e =
[
Y T

1 ,Y
T
2 , . . . ,Y

T
U

]
∈ CT×UNMS denotes an extended matrix that con-

catenates the feed back signals send by all MSs, cf =
[
cT
f,1, c

T
f,2, . . . , c

T
f,U

]T ∈ CUNMS is an

extended code vector that contains the coding vectors of all MSs at the f -th subcarrier,

and F HV (UL) represents the filtered noise version at the RF chains output.

Remark: For this approach, we particularly consider a mmWave propagation

environment with limited scattering. According (ALKHATEEB et al., 2014a), mmWave

channels can be modeled by a clustered channel model with few Lu dominant paths

between the u-th MS and the BS. Therefore, the DL channel matrix Hu ∈ CNMS×NBS

associated with the u-th MS can be expressed as

Hu =
Lu∑
l=1

αu,laMS(θu,l)aBS(φu,l)
T, (147)

where αu,l denotes the complex path gain of the u-th MS related to the l-th path. The

path gains are modeled as circular symmetric Gaussian random variables with zero mean

and unit variance. aMS(θu,l) ∈ CNMS and aBS(φu,l) ∈ CNBS are the antenna array response

vectors evaluated at angle of arrival θu,l and angle of departure φu,l uniformly distributed

in the interval [0, 2π]. We assume ULA at the BS and MSs. However, the proposed

method can be applied to arbitrary array geometries without loss of generality. For

ULA configurations with inter-antennas spacing equals to d = λ
2
, where λ denotes the

wavelength of the signal, the array response vectors at the MS and BS can be modeled

as follows

aMS(θu,l) =
1√
NMS

[
1, ejπ cos θu,l , · · · , ejπ(NMS−1) cos θu,l

]T
, (148)

aBS(φu,l) =
1√
NBS

[
1, ejπ cosφu,l , · · · , ejπ(NBS−1) cosφu,l

]T
. (149)

Using a matrix fashion notation, Hu can be rewritten as

Hu = AMSdiag(α)AT
BS, (150)

where α =
√
NMSNBS/Lu [αu,1, αu,2, . . . , αu,Lu ]T ∈ CLu denotes the vector that contains

the Lu path gains in the DL. The array response matrices AMS ∈ CNMS×Lu and ABS ∈



103

CNBS×Lu at the MS and BS are expressed by

AMS = [aMS(θu,1),aMS(θu,2), · · · ,aMS(θu,Lu)] , (151)

ABS = [aBS(φu,1),aBS(φu,2), · · · ,aBS(φu,Lu)] . (152)

The UL channel matrix Gu ∈ CNBS×NMS from the u-th MS to the BS can be

represented in a similar way. We define Gu as follows

Gu = ABSdiag(β)AT
MS, (153)

where ABS ∈ CNBS×Mu and AMS ∈ CNMS×Mu are now function of the spatial parameters

in the UL, while β =
√
NMSNBS/Mu [βu,1, βu,2, . . . , βu,Mu ]T ∈ CMu denotes the vector that

contains the Mu path gains of the UL channel.

Note that, similar to (120) the noiseless signal term in (146) denotes the f -th

frontal slice of the PARAFAC tensor

X = I3,U ·NMS
×1

(
F HGe

)
×2 Y e ×3 C ∈ CQ×T×F , (154)

where (
A(1),A(2),A(3)

)
↔
(
F HGe,Y e,C

)
(I1, I2, I3, Q)↔ (Q, T, F, UNMS) .

The three dimensions, or modes, of X stands for the number of receive beams,

pilot signal length and number of subcarriers. The matrix F can be seen as a compression

matrix associated with the first mode of X which reduces the size of the first mode from

NBS to Q RF chains (i.e., number of beams). The f -th row of the frequency spreading

matrix C ∈ CF×UNMS contains the code coefficients used by the U MSs at the f -th

subcarrier, i.e.,

C = [c1, c2, . . . , cK ]T ∈ CF×UNMS . (155)

Remark: Note that, the use of the proposed ALS-PARAFAC 10 and LS-KRF

11 receivers to estimate the compressed DL and UL channel matrices F HGe ∈ CQ×UNMS

and Y e ∈ CT×UNMS from (154) is straightforward.

5.6.1 Sparse Formulation for DL and UL Channel Parameters Estimation

A second processing step consists of estimating the channel parameters (AoDs,

AoAs and path gains) to reconstruct the channel matrices Ĥu and Ĝu (u = 1, . . . , U).
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Let us introduce the following short block representation:

F HĜe =
[
Φ̂1, Φ̂2, · · · , Φ̂U

]
∈ CQ×UNMS , (156)

where

Φ̂u = F HĜu ∈ CQ×NMS , u = 1, . . . , U. (157)

By replacing Ĝu for (153), and then vectorizing (157) according to property (8), we get

ϕ̂u = vec
(
Φ̂u

)
=
(
ÂMS � F HÂBS

)
β̂. (158)

Using the property (6), we straightforwardly obtain

ϕ̂u =
(
INMS

⊗ F H
) (
ÂMS � ÂBS

)
β̂ ∈ CQNMS , (159)

where INMS
denotes an identity matrix of size NMS ×NMS.

The same procedure can be directly performed in the u-th block Ŷ
T

u of the

estimated factor matrix

Ŷ e =
[
Ŷ

T

1 , Ŷ
T

2 , · · · , Ŷ
T

U

]
∈ CT×UNMS , (160)

where

Ŷ
T

u = STW TĤ
T

u + V (DL)T

u ∈ CT×NMS . (161)

Similar to (159), we can obtain the following vector formulation

ŷu =
(
INMS

⊗ STW T
) (
ÂMS � ÂBS

)
α̂+ v(DL)

u ∈ CTNMS , (162)

where ŷu = vec
(
Ŷ

T

u

)
and v

(DL)
u = vec

(
V (DL)T

u

)
.

From (159) and (162), two independent CS problems can be formulated to

estimate the channel parameters of the u-th MS. We assume that grid quantization errors

are neglected, i.e., the AoDs and AoAs are drawn from a uniform angle grid of Ng points

contained in the set
{

0, 2π
Ng
, . . . , 2π(Ng−1)

Ng

}
, with Ng � Lu and Ng � Mu. Based on this

assumption, we can obtain the following sparse formulations for the vectors ŷu and ϕ̂u:

ŷu =
(
INMS

⊗ STW T
)
ΣDᾱ, (163)

ϕ̂u =
(
INMS

⊗ F H
)
ΣDβ̄, (164)

whereΣD = ĀMS⊗ĀBS ∈ CNMSNBS×N2
g denotes the known dictionary matrix used to solve

the sparse signal recovery problem. The matrices ĀMS ∈ CNMS×Ng and ĀBS ∈ CNBS×Ng
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that build the dictionary are denoted by

ĀMS =

[
aMS (0) ,aMS

(
2π

Ng

)
, . . . ,aMS

(
2π(Ng − 1)

Ng

)]
, (165)

ĀBS =

[
aBS (0) ,aBS

(
2π

Ng

)
, . . . ,aBS

(
2π(Ng − 1)

Ng

)]
, (166)

and contains all points of the angle grid. The left hand side matrices
(
INMS

⊗ STW T
)

and
(
INMS

⊗ F H
)

are called measurement matrices of the sparse problems. ᾱ ∈ CN2
g and

β̄ ∈ CN2
g are sparse vectors obtained by augmenting the vector gains α and β with zero

elements, respectively.

Estimates for the channel parameters can be obtained by applying state-

of-the-art CS algorithms in the estimated sparse vectors (163) and (164). Many ef-

ficient algorithms such as orthogonal matching pursuit (OMP) (PATI, REZAIIFAR,

and KRISHNAPRASAD, 1993), structured compressive sampling matching pursuit (S-

CoSaMP) (SHEN et al., 2016) and fast iterative shrinkage-thresholding (FISTA) (BECK

and TEBOULLE, 2009), to name a few, can be used to solve these two sparse signal

recovery problems. In a simplified view, the estimates for the path gains α̂ and β̂ corre-

spond to non-zero entries of the estimated sparse vectors ᾱ and β̄, while estimation for

the AoDs and AoAs are obtained by selecting the columns of the dictionary matrix ΣD

related to the positions of the estimated path gains in the sparse vector.

Finally, from the estimated channel parameters the BS can construct the es-

timated DL and UL channel matrices Ĥu and Ĝu of the u-th MS according to relations

(150) and (153) as follows:

Ĥu = ÂMSdiag(α̂)Â
T

BS, (167)

Ĝu = ÂBSdiag(β̂)Â
T

MS. (168)

Remark: Compared to (159), the sparse signal recovery problem formulated

from (162) naturally incorporates the DL noise contribution in its structure. For this

reason, the proposed framework can lead to some performance degradation in the DL

channel estimation compared to UL channel estimation. Therefore, we can observe a

trade-off between DL channel estimation accuracy performed by the BS and reduction

of the processing cost for channel estimation at the users’ side. This discussion is later

reinforced by means of numerical simulations in the next section.

5.6.2 Identifiability Condition

Unique LS solutions for the compressed DL and UL channel matrices F HGe

and Y e obtained from the 1-mode and 2-mode unfoldings of (154) requires that (C � Y e)
T ∈

CUNMS×FT and
(
C � F HGe

)T ∈ CUNMS×FQ be full row-rank to be right-invertible. For
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this, the following two conditions must be satisfied:

FT > UNMS and FQ > UNMS. (169)

Combining these conditions yields the following lower bound on the number of subcarriers:

F ≥ max

(⌈
UNMS

T
,
UNMS

Q

⌉)
, (170)

where dxe denotes the smallest integer number that is greater or equal to x.

5.7 Simulation Results (Part 2)

Here, we provide a second set of simulation results referring to Section 5.6.1.

We compare the proposed method with the conventional approach illustrated in Figure

25. The state-of-the-art compressed sensing OMP algorithm (PATI, REZAIIFAR, and

KRISHNAPRASAD, 1993) is used in both MSs and BS as a channel estimation technique.

It is also considered as the second stage of our algorithm. Both MSs and BS employ ULA

with half wavelength spaced antennas. We set NBS = 32, NMS = 16, U = 2, Ng = 64 and

equal SNR values for the DL and UL communications in all experiments. The obtained

results are averaged over 1000 independent Monte Carlo runs. In each run, the DL and UL

channel matrices with Lu = 3 and Mu = 3 paths per user and HB matrices are generated

in accordance with Equations (150), (153) and (144), respectively. The pilot signal S is

a BPSK modulated matrix, and the frequency spreading matrix C is a random matrix

that follows a uniform distribution.

The algorithm performance is evaluated in terms of the NMSE between the

estimated and true channel matrices, given by

NMSE
(
Ĥ
)

=

∑U
u=1‖Hu − Ĥu‖2

F∑U
u=1‖Hu‖2

F

, (171)

NMSE
(
Ĝ
)

=

∑U
u=1‖Gu − Ĝu‖2

F∑U
u=1‖Gu‖2

F

. (172)

In our experiments, we selected some system configurations by varying the SNR values,

number of transmission (P ) and reception (Q) beams, number of subcarriers (F ) and the

length of the pilot signal (T ).

Figures 32 and 33 show the NMSE as a function of the number of transmission

(P ) and reception (Q) beams. The proposed method ouperforms the classical framework

to the UL channel estimation, while the DL performance is worse in the all SNR range

considered. From this experiment, we observe a trade-off between DL channel estimation

accuracy and computational complexity for channel estimation. In other words, the pro-
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Figure 32 – NMSE vs. number of transmission beams (P ) for the DL channel
estimation, U = 2, T = 16 and F = 25.
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Figure 33 – NMSE vs. number of reception beams (Q) for the UL channel estimation,
U = 2, T = 16 and F = 25.
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posed method concentrate most of the processing burden for channel estimation at the

BS side, while a better performance of DL channel estimation is accompanied of a high

computational cost to complex channel estimation processing at the MSs side when the

conventional framework is considered. On the other hand, the performance loss at DL is

compensated with more accurate estimations at UL. In addition, the NMSE performance

is not influenced by the number of RF chains when P and Q are greater than 12. This

result reveals that the proposed method provides good channel estimation accuracy even

when the BS is equipped with few number of RF chains.
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Figure 34 – NMSE vs. number of subcarriers (F ) for the DL channel estimation, U = 2
and T = 16.

Number of Subcarriers (F)

0 20 40 60 80 100 120 140

N
M

S
E

 (
D

L
 C

h
a
n
n
e
l)

10-5

10-4

10-3

10-2

10-1

100

101

102

ALS-PARAFAC (SNR = 0 dB, P = 8)

ALS-PARAFAC (SNR = 0, P = 12)

ALS-PARAFAC (SNR = 15dB, P = 8)

ALS-PARAFAC (SNR = 15 dB, P = 12)

ALS-PARAFAC (SNR = 30 dB, P = 8)

ALS-PARAFAC (SNR = 30 dB, P = 12)

Source: Created by the author.

Figure 35 – NMSE vs. number of subcarriers (F ) for the UL channel estimation, U = 2
and T = 16.
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In Figures 34 and 35, the NMSE performance is avaluated as a function of the

number of subcarriers (F ). An increase of F leads to an improved performance only until

F = 32 subcarriers in the DL channel estimation, while for the UL channel estimation this

value is approximately equal to F = 64 subcarriers. This result show that the proposed

method can operate with few frequency resources to estimate jointly the MSs channels

with high accuracy.

In Figures 36 and 37, we evaluate the NMSE performance in terms of the pilot

signal length (T ). In this experiment we also set U = 2, P = 8 and F = 25. Here we
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Figure 36 – NMSE vs. length of the pilot signal (T ) for the DL channel estimation,
U = 2, P = 8 and F = 25.
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Figure 37 – NMSE vs. length of the pilot signal (T ) for the UL channel estimation,
U = 2, P = 8 and F = 25.
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conclude that short pilots signals are necessary to estimate the DL and UL channels by

means of the proposed method. Low variability in the NMSE values is observed when

T > 15. For a massive MIMO scenario, this result implies in a substancial reduction in

the pilot overhead to training.
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5.8 Chapter Summary

. In this chapter, we have addressed the joint DL and UL channel estima-

tion problem in MU-MIMO wireless communications systems. We first proposed a novel

multi-carrier based training scheme able to concentrate the processing burden for chan-

nel estimation at the BS. Then, we have formulated two tensor-based receivers for joint

DL and UL channel estimation. In addition, we have also proposed an extension of

these methods able to operate in mmWave propagation environments. Simulation results

showed that the proposed receivers achieve a performance close to the classical channel

estimation framework, with the advantage of avoiding complex processing for channel

estimation at the MSs, which in many cases are power-limited devices.
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6 TENSOR-BASED SEMI-BLIND RECEIVER FOR JOINT CHANNEL AND

PHASE NOISE ESTIMATION IN FREQUENCY-SELECTIVE MIMO SYS-

TEMS

The MIMO technologies significantly enhance the spectral efficiency of wireless commu-

nications systems. However, its performance can be severely degrated due to oscillator

imperfections that lead to an unknown phase noise (PN) per transmit and receive antenna

which needs to be compensated. In this chapter, we propose a new method to solve the

joint channel and PN estimation problem in frequency-selective MIMO systems. By as-

suming a transmission scheme in which each frame is divided into small sub-frames so that

the PN varies sub-frame to sub-frame, the received signal can be formulated using tensor

modeling concepts. From the obtained tensor model, we propose an iterative semi-blind

receiver for channel estimation in the presence of PN perturbations. The proposed receiver

consists of two stages. In the first stage, the frequency-selective MIMO channel is directly

estimated through a tensor-based ALS-PARAFAC algorithm that fits a PARAFAC model

to the noisy received signal. In the second one, the LS-KRF algorithm is used to extract

the PN components at the transmitter and receiver. The identifiability conditions of the

proposed tensor model and the computational complexity of the our receiver algorithm are

also analyzed. Our approach dispenses idealized assumptions such as perfect knowledge of

the channel and statistical distribution for the PN process, which makes it applicable to

more challenging scenarios compared to other solutions in the literature.

6.1 Introduction and Motivation

Modern wireless communications systems are expected to support high data

rates by increasing the spectral efficiency of 5G New Radio (NR) with Frequency Range

(FG) 1 up to 6 GHz and by mitigating the losses in the 5G NR with FR 2 from 24

to 86 GHz. MIMO technologies achieve such improved spectral efficiency by employing

multiple antennas at both the transmitter and the receiver to exploit the four typical

array signal processing gains, namely, array diversity, multiplexing and reduced interfer-

ence gains (FOSCHINI and GANS, 1998; TAROKH, SESHADRI, and CALDERBANK,

1998). However, for the practical implementation of MIMO systems, there are hardware

impairments due to non-ideal radio frequency (RF) front-ends, such as oscillator imper-

fections that result in unknown phase noise (PN) per antenna. Therefore, distortions

can be introduced in the transmitted and received signal leading to a severe performance

loss. Moreover, the instantaneous channel acquisition that can be used to improve system

performance through precoding/beamforming techniques becomes a challenging problem

since the effective channel is a distorted version of the true channel, and thus the PN has

to be compensated in the channel acquisition step. Therefore, new approaches that can
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jointly estimate the channel and PN at the transmitter and receiver have great practical

appeal.

The PN compensation problem has been extensively studied in the past years.

For instance, in (PETROVIC, RAVE, and FETTWEIS, 2007) and (KIM et al., 2008),

techniques for PN compensation are proposed for single-input single-output (SISO) sys-

tems. However, they assume perfect CSI knowledge at the receiver, which is not feasible

in practice. In MIMO systems, (NGEBANI et al., 2017) proposes a novel placement of

pilot carriers in the preamble and data portion of the MIMO-OFDM frame for joint chan-

nel and PN estimation. The authors in (HADASCHIK et al., 2005) and (ISHAQUE and

ASCHEID, 2012) propose compensation schemes based on the knowledge of the statistical

modelling of PN process. Note that, in contrast to (HADASCHIK et al., 2005; ISHAQUE

and ASCHEID, 2012), our goal is to devise a method that can provide accurate channel

and PN estimation by avoiding perfect CSI knowledge and at the same time being robust

to PN model variations, i.e., without requiring also explicit knowledge of the PN model.

In this chapter, we propose a new tensor-based method for frequency-selective

MIMO channel estimation in the presence of PN impairments. By assuming that each

transmitted frame is divided into multiple sub-frames and that the PN perturbations vary

between sub-frames, we show that the received signal can be modeled as a third-order

PARAFAC decomposition. Motivated by the multidimensional structure of the received

signal, we propose a two-stage iterative semi-blind receiver for the joint estimation of the

channel and PN. In the first stage, estimates of the channel gains for different frequencies

are obtained by means of an ALS algorithm that fits a PARAFAC model to the noisy

received signal, while the second one obtain closed-form estimates of the PN per antenna

port using a LS-KRF algorithm. The identifiability conditions of the proposed tensor

model and the computational complexity of our two-stage receiver algorithm are also

discussed. The proposed receiver does not require perfect knowledge of the channel and

PN model. Therefore, our solution becomes more attractive compared to other works in

the literature with non-realistic assumptions. Simulation results show the effectiveness

and high accuracy of the proposed receiver for joint estimation of the channel and PN

impairments.

6.1.1 Chapter Organization

This chapter is organized as follows. The data model and main assumptions

for the considered frequency-selective MIMO system with PN are presented in Section 6.2.

In Section 6.3, the joint channel and PN estimation problem is recast using tensor-based

modeling. Then, the proposed semi-blind receiver algorithm is formulated in Section 6.4.

The uniqueness issues of the proposed tensor-based system model and the computational

complexity of the proposed receiver algorithm are analyzed in Section 6.5. Simulation
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Figure 38 – Frequency-selective MIMO system equipped with different oscilators at the
M transmit and N receive antennas.

Source: Adapted from (HUANG, WANG, and HE, 2015).

Figure 39 – Illustration of frame and sub-frame structures. The pilot symbols part SP is
reused sub-frame to sub-frame. The PN is invariant within a sub-frame while the
channel gains remain constant over the length of one frame1.

Source: Created by the author.

results are shown in Section 6.6. Finally, Section 6.7 brings some concluding remarks.

6.2 System Model

Let us consider a point to point frequency-selective MIMO system with trans-

mitter and receiver having M and N antennas, respectively. Each transmit and receive

antenna is equipped with its own independent oscillator so that the PN is assumed to be

different between the antennas, as illustrated in Figure 38. Each transmitted frame of

length LF = K · LS is composed by K sub-frames, each having a length of LS samples.

Each sub-frame consists of a known pilot symbols part SP ∈ CM×LP of length LP and

an unknown data part SD,k ∈ CM×LD of length LD. Thus, each transmitted sub-frame

has size LS = LP +LD. The pilot symbols part is reused sub-frame to sub-frame. Figure

39 illustrates the considered frame structure. We assume that the system operates with

high sampling rate and the PN is time-invariant1 within a small sub-frame, but varying

from sub-frame to sub-frame. The channel is frequency-selective with L taps assumed to

remain constant over the length of one frame, i.e., the channel vary more slowly than the

1For most practical oscillators the temporal innovation variance of the PN at each transmit and receive
antenna is very small in order of (10−3, 10−5) rad2 (MEHRPOUYAN et al., 2012). Therefore, it is a valid
assumption for sub-frames with small size.
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PN process. In the frequency domain, the received signal Xk,f ∈ CN×LS associated with

the k-th sub-frame at the f -th frequency is denoted by

Xk,f = WDk

(
Φ[r]
)
HfDk

(
Φ[t]
)
Sk +WV k,f , (173)

where W ∈ CN×N denotes the combining matrix assumed fixed to all sub-frames and

frequencies, Hf ∈ CN×M is the MIMO channel matrix associated with the f -th frequency,

Sk = [SP |SD,k] ∈ CM×LS denotes the k-th transmitted sub-frame, and V k,f ∈ CN×LS is

the cicularly symmetric complex AWGN matrix. In (173), Hf represents the f -th frontal

slice of the tensor H = H̃ ×3 F L ∈ CN×M×F obtained after the multiplication of the

channel impulse response tensor H̃ ∈ CN×M×L with a DFT matrix F L ∈ CF×L along the

3-mode. The n-th and m-th row of the matrices Φ[r] ∈ CK×N and Φ[t] ∈ CK×M can be

expressed as:

Φ[r](k, :) =
[
ejθ

[r]
1 (k), · · · , ejθ

[r]
N (k)

]
∈ C1×N (174)

and

Φ[t](k, :) =
[
ejθ

[t]
1 (k), · · · , ejθ

[t]
M (k)

]
∈ C1×M . (175)

These row vectors contain the unknown PN θ
[r]
n (k) and θ

[t]
m(k) at the n-th (n = 1, . . . , N)

receive antenna and m-th (m = 1, . . . ,M) transmit antenna within the k-th sub-frame,

respectively. Note that the data model in (173), (174) and (175) accepts any statistical

distribution for the PN process. We do not make any assumption on the statistical

distribution of the PN.

6.3 Proposed PARAFAC-Based Modeling

At the receiver, the frame shown in Figure 39 is processed in two sequential

ways. Firstly, a training-based processing step for joint channel and PN estimation is

performed, which is followed by a processing step for data information decoding. In the

first step, the receiver extracts only the pilot preamble of each sub-frame. From (173),

the contribution of the pilot part X
(P )
k,f ∈ CN×LP associated to the k-th sub-frame at the

f -th frequency is represented by

X
(P )
k,f = WDk

(
Φ[r]
)
HfDk

(
Φ[t]
)
SP +WV

(P )
k,f , (176)

where WV
(P )
k,f ∈ CN×LP denotes the filtered noise contribution associated to the pilot

part of the k-th sub-frame. In a similar way, the contribution of the information symbols

part X
(D)
k,f ∈ CN×LD associated to the k-th sub-frame at the f -th frequency is given by

X
(D)
k,f = WDk

(
Φ[r]
)
HfDk

(
Φ[t]
)
SD,k +WV

(D)
k,f , (177)
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where WV
(D)
k,f ∈ CN×LD denotes the filtered noise contribution associated to the infor-

mation symbols part of the k-th sub-frame. Note that Xk,f =
[
X

(P )
k,f |X

(D)
k,f

]
∈ CN×LS .

According to property (7), by vectorizing the pilot part X
(P )
k,f of the k-th sub-

frame (176) we obtain

x
(P )
k,f =

(
ST
P ⊗W

)
vec
(
Dk

(
Φ[r]
)
HfDk

(
Φ[t]
))

+ ṽ
(P )
k,f , (178)

where x
(P )
k,f = vec

(
X

(P )
k,f

)
∈ CNLP and ṽ

(P )
k,f = vec

(
WV

(P )
k,f

)
∈ CNLP for simplicity of

notation.

By applying again the property (7) to the second term in the right hand side

of (178), we get

x
(P )
k,f =

(
ST
P ⊗W

) (
Dk

(
Φ[t]
)
⊗Dk

(
Φ[r]
))
hf + ṽ

(P )
k,f , (179)

where hf = vec (Hf ) ∈ CNM . Now using the property diag(a)b = diag(b)a, we can

rewrite (179) as follows

x
(P )
k,f =

(
ST
P ⊗W

)
diag (hf )

(
Φ[t]T(k, :)⊗Φ[r]T(k, :)

)
+ ṽ

(P )
k,f . (180)

Collecting the vectorized received pilots x
(P )
k,f for all the k = 1, . . . , K sub-

frames that form a given received frame at the f -th frequency as the columns of the

resulting matrix X
(P )
f =

[
x

(P )
1,f , . . . ,x

(P )
K,f

]
∈ CNLP×K and according to the definition of

the Khatri-Rao product in (2), which corresponds to the column-wise Kronecker product,

we have

X
(P )
f =

(
ST
P ⊗W

)
diag (hf )

(
Φ[t]T �Φ[r]T

)
+ Ṽ

(P )

f , (181)

where Ṽ
(P )

f =
[
ṽ

(P )
1,f , . . . , ṽ

(P )
K,f

]
∈ CNLP×K .

Note that, by comparing (181) with (28) is easy to see that the noiseless term

of X
(P )
f can be interpreted as the f -th frontal slice of the third-order tensor X (P ) ∈

CNLP×K×F which corresponds to the following PARAFAC decomposition

X (P ) = I3,MN ×1

(
ST
P ⊗W

)
×2

(
Φ[t]T �Φ[r]T

)T

×3 H , (182)

where H(f, :) = hT
f ∈ C1×MN (f = 1, . . . , F ). By analogy with (25), the correspondences

below are valid:(
A(1),A(2),A(3)

)
↔
((
ST
P ⊗W

)
,
(
Φ[t]T �Φ[r]T

)T

,H

)
,

(I1, I2, I3, Q)↔ (NLP , K, F,MN) .
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According to (29), (30) and (31), the 1-mode, 2-mode and 3-mode unfolding

matrices
[
X (P )

]
(1)
∈ CNLP×KF ,

[
X (P )

]
(2)
∈ CK×FNLP and

[
X (P )

]
(3)
∈ CF×KNLP of X (P )

take the following forms:

[
X (P )

]
(1)

=
(
ST
P ⊗W

)(
H �

(
Φ[t]T �Φ[r]T

)T
)T

, (183)[
X (P )

]
(2)

=
(
Φ[t]T �Φ[r]T

)T (
H �

(
ST
P ⊗W

))T
, (184)[

X (P )
]

(3)
= H

((
Φ[t]T �Φ[r]T

)T

�
(
ST
P ⊗W

))T

. (185)

It is worth mentioning that the estimates of the frequency-selective MIMO

channel and PN impairments can be obtained from the above equations by means of a

two-stage receiver algorithm, as it will be explained in the sequel.

6.4 Proposed Semi-Blind Receiver for Joint Channel and PN Estimation

Our goal is to jointly estimate from the noisy version of X (P ) the frequency-

selective channel and the PN per sub-frame without a priori knowledge of the CSI and

PN model. Note that the combining filter W is fixed (and known) at the receiver. The

proposed semi-blind receiver algorithm consists of two stages. In the first stage, estimates

of Hf for different frequencies are obtained using the state-of-the-art ALS-PARAFAC

algorithm 2. In the second one, the individual estimates of Φ[t] and Φ[r] are obtained by

applying the LS-KRF algorithm 1 in the estimated factor matrix (related to the second

mode of X (P )) previously computed in the first ALS stage. In the following, we formulate

in detail each stage of the proposed tensor-based semi-blind receiver.

The first stage of the proposed algorithm, called BALS, consists of estimating

the factor matrices Φ =
(
Φ[t]T �Φ[r]T

)T

and H in an alternating way from the unfolding

matrices
[
X (P )

]
(2)

and
[
X (P )

]
(3)

in (184) and (185), respectively. This can be done by

optimizing, respectively, the following two LS criteria:

Φ̂ = argmin
Φ

∥∥∥∥[X (P )
]

(2)
−Φ

(
H �

(
ST
P ⊗W

))T

∥∥∥∥2

F

, (186)

Ĥ = argmin
H

∥∥∥∥[X (P )
]

(3)
−H

(
Φ �

(
ST
P ⊗W

))T

∥∥∥∥2

F

. (187)

The solutions of which are given by

Φ̂ =
[
X (P )

]
(2)

[(
H �

(
ST
P ⊗W

))T
]†
, (188)

Ĥ =
[
X (P )

]
(3)

[(
Φ �

(
ST
P ⊗W

))T
]†
, (189)
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Algorithm 12 Proposed two-stage semi-blind-receiver for joint channel and PN estima-
tion

1: procedure
2: First Stage (BALS)

3: 1.1 Set i = 0. Initialize randomly the factor matrix Ĥ(i=0);
4: 1.2 i← i+ 1;
5: 1.3 According to (188), obtain an LS estimate of Φ:
6:

Φ̂(i) =
[
X (P )

]
(2)

[(
Ĥ(i−1) �

(
ST
P ⊗W

))T
]†

;

7: 1.4 According to (189), obtain an LS estimate of H :
8:

Ĥ(i) =
[
X (P )

]
(3)

[(
Φ̂(i) �

(
ST
P ⊗W

))T
]†

;

9: 1.5 Repeat steps 1.2-1.4 until convergence.
10: Second Stage (LS-KRF)

11: 2.1 From Φ̂, obtained in the BALS stage, obtain the estimates of Φ[t] and Φ[r]

12: using the LS-KRF algorithm 1.

respectively.

Due to the knowledge ofW and SP at the receiver, each iteration of the BALS

stage contains only two updating steps. At each step, the fitting error is minimized with

respect to one given factor matrix by fixing the other to its value obtained at previous

updating step. This procedure is repeated until the convergence of the BALS stage at the

i-th iteration. The convergence is declared when |e(i) − e(i−1)| ≤ 10−6, where e(i) denotes

the residual error calculated at the i-th iteration defined as

e(i) =
∥∥∥X (P ) − X̂

(P )

(i)

∥∥∥2

F
, (190)

where X̂
(P )

(i) represents the reconstructed version of X (P ) computed from the estimated

factor matrices at the end of the i-th iteration. It is important to mention that the conver-

gence of the BALS stage to the global minimum is always achieved within a few iterations

(between 8 and 28 in our simulation). The permutation ambiguity does not exist due to

the knowledge of 1-mode factor matrix. Therefore, the column scaling ambiguity affecting

the estimated factor matrices can be removed with a simple normalization procedure.

The second stage, called LS-KRF, consists of estimating the PN matrices Φ[t]

and Φ[r] from the estimated factor matrix Φ̂
T

previously computed in the BALS stage.

For the sake of convenience, let us define ϕ
[t]
k ∈ CM and ϕ

[r]
k ∈ CN as the k-th column of

Φ[t]T and Φ[r]T , respectively. According to definition (2), we have

Φ̂
T

=
[
ϕ

[t]
1 ⊗ϕ

[r]
1 , . . . ,ϕ

[t]
K ⊗ϕ

[r]
K

]
∈ CMN×K . (191)
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According to property (9), the k-th column of (191) can be interpreted as the

vectorized form of the following rank-1 matrix

ϕ
[t]
k ⊗ϕ

[r]
k = vec (Ψ k) , (192)

where Ψ k = ϕ
[r]
k ◦ ϕ

[t]
k ∈ CN×M . Therefore, estimates for the vectors ϕ

[r]
k and ϕ

[t]
k can be

obtained by truncating the SVD of Ψ k defined by U kΣkV
H
k to a rank-1 approximation

as follows:

ϕ̂
[r]
k =

√
σ1u1 and ϕ̂

[t]
k =

√
σ1v

∗
1, (193)

where u1 ∈ CN and v1 ∈ CM are the dominant left and right singular vectors of U k and

V k, and σ1 is the dominant singular value, respectively. Note that, the final estimates of

Φ̂
[r]T

and Φ̂
[t]T

are obtained by solving this rank-1 approximation problem for k = 1, . . . , K

according to Algorithm 1. The proposed two-stage tensor-based semi-blind receiver for

joint channel and PN estimation is summarized in Algorithm 12.

6.4.1 Channel Equalization

Since the proposed semi-blind receiver algorithm provides estimates for the

frequency-selective channel and PN impairments for both transmit and receive antennas,

this information can be used to equalize the channel and decode the transmitted symbols.

From (177), by collecting the data part of the k-th sub-frame for f = 1, . . . , F frequencies,

we obtain 
X

(D)
k,1
...

X
(D)
k,F


︸ ︷︷ ︸

X
(D)
k

=


WDk

(
Φ[r]
)
H1Dk

(
Φ[t]
)

...

WDk

(
Φ[r]
)
HFDk

(
Φ[t]
)


︸ ︷︷ ︸
H

(eff)
k

SD,k +


WV

(D)
k,1

...

WV
(D)
k,F


︸ ︷︷ ︸

Ṽ
(D)
k

or, equivalently,

X
(D)
k = H

(eff)
k SD,k + Ṽ

(D)

k ∈ CFN×LD . (194)

Therefore, an LS estimation for the data part SD,k in the k-th sub-frame can be obtained

from the estimated matrices Ĥ , Φ̂
[t]

and Φ̂
[r]

as follows:

ŜD,k =
(
Ĥ

(eff)

k

)†
X

(D)
k ∈ CM×LD , (195)

where

Ĥ
(eff)

k =


WDk

(
Φ̂

[r]
)
Ĥ1Dk

(
Φ̂

[t]
)

...

WDk

(
Φ̂

[r]
)
ĤFDk

(
Φ̂

[t]
)
 ∈ CFN×M . (196)
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Remark : Note that according to (176), an LS estimate of the effective chan-

nel matrix Ĥ
(eff)

k,f = X
(P )
k,f S

†
P can be directly obtained from the pilot preamble for each

sub-frame if LP ≥ M . Then, channel equalization can be performed using the es-

timated effective channel to obtain an estimate of the transmmited symbols matrix

ŜD,k =
(
Ĥ

(eff)

k,f

)†
X

(D)
k,f . However, this standard approach provides an estimate of the

PN-distorted channel instead of the true frequency-selective MIMO channel. In contrast,

our tensor-based semi-blind receiver provides an estimate of the true channel matrix

Ĥ which can be used, for instance, to design efficient beamforming strategies in order

to improve system performance. Furthermore, our approach can reduce pilot overhead

since it relaxes the identifiability condition of the standard LS estimator (which requires

LP ≥M), as will be analyzed in the following.

6.5 Identifiability and Computational Complexity

In the following, we analyze under which conditions the channel and PN matri-

ces can be uniquely estimated. In addition, we also study the computational complexity

of the proposed receiver algorithm.

6.5.1 Identifiability Conditions

According to (188) and (189), unique LS solutions for Φ and H obtained

from the unfolding matrices
[
X (P )

]
(2)

and
[
X (P )

]
(3)

requires that
(
H �

(
ST
P ⊗W

))T ∈

CMN×FNLP and
(
Φ �

(
ST
P ⊗W

))T ∈ CMN×KNLP be full row-rank to be right-invertible.

Therefore, the following conditions must be satisfied:

FLP ≥M and KLP ≥M. (197)

By combining these two conditions, the lower bound on the length of the pilot preamble

LP (per sub-frame) is given by

LP ≥ max

(⌈
M

F

⌉
,

⌈
M

K

⌉)
, (198)

where dxe denotes the smallest integer number that is greater or equal to x. From (198),

we can conclude that the proposed approach requires less pilot overhead when compared

to the standard pilot-based LS approach, which requires LP ≥M . Note that, this feature

has great relevance in scenarios with a high number of transmit antennas.
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6.5.2 Computational Complexity

We evaluate the computational complexity of the proposed receiver in terms

of FLOPs. By observing (188), (189) and (193) we can note that the dominant cost of

the proposed algorithm is associated with two matrix inverses per iteration with sizes

MN×FNLP and MN×KNLP plus K rank-1 approximation problems of matrices with

sizes N ×M computed via SVD. According to (GOLUB and VAN LOAN, 1996), the ma-

trix inverses in (188) and (189) have complexities O(N3M2FLP ) and O(N3M2KLP ), re-

spectively. We can conclude that the BALS stage has complexity O(N3M2LP (F +K)) at

each iteration, while the LS-KRF stage has complexity O(MNK). Therefore, we can ap-

proximate the complexity of our receiver algorithm as O((N3M2LP (F +K)I) +KNM),

where I denotes the number of iterations until the convergence of the BALS stage.

6.6 Simulation Results

In this section, we evaluate the performance of the proposed receiver algorithm

in terms of the normalized mean square error (NMSE) between the estimated and true

frequency-selective MIMO channel and PN matrices, the bit error rate (BER) and the

number of iterations for convergence. The simulation results represent an average over

3000 independent Monte Carlo runs. Each run corresponds to an independent realization

of the channel, PN matrices, pilots, data and additive noise. In all experiments we set

a 4 × 4 frequency-selective MIMO system, LD = 100 snapshots, K = 10 sub-frames

and F = 10 subcarriers. The pilot and data symbols are BPSK modulated. The PN

perturbations are normally distributed random variables, and independently generated for

each transmit and receive antenna. The channel impulse response tensor H̃ is assumed

to have independent and identically distributed (i.i.d.) complex Gaussian entries with

zero-mean and unit variance. The matrices W and F L are DFT matrices. The NMSE of

the estimated channel and PN matrices are defined as follows:

NMSE
(
Ĥ
)
=

wwwH − Ĥwww2

F

‖H‖2F
, NMSE

(
Φ̂

[t]
)
=

wwwΦ[t] − Φ̂
[t]
www2

FwwwΦ[t]
www2

F

and NMSE
(
Φ̂

[r]
)
=

wwwΦ[r] − Φ̂
[r]
www2

FwwwΦ[r]
www2

F

.

Figures 40, 41 and 42 show the estimation accuracy of the channel and PN

matrices versus SNR when the length of the pilot preamble (LP ) is 5%, 10%, 15% and

20% of the length of the data part (LD). As expected, the estimation accuracy improves

when the length of the pilot preamble increases. However, good performance results

are achieved with fewer pilots symbols approximately 20% of the data part length for

all simulated SNR range. These three experiments demonstrate the effectiveness of the

proposed tensor-based semi-blind receiver in estimating jointly the frequency-selective

MIMO channel and PN matrices.
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Figure 40 – NMSE of Ĥ vs. SNR (dB) of a 4× 4 MIMO system for different pilot
length (LP ), LD = 100 and BPSK modulation.
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Figure 41 – NMSE of Φ̂
[t]

vs. SNR (dB) of a 4× 4 MIMO system for different pilot
length (LP ), LD = 100 and BPSK modulation.
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Figure 43 despicts the BER as a function of the SNR. In this experiment, the

performance of the proposed receiver is compared with that of the standard pilot-aidded

LS equalizer. The ideal case with perfect channel and PN knowledge is also plotted as

a lower bound. As can be seen, without PN compensation at the receiver, the system

performance severely deteriorates as expected. The standard LS equalizer outperforms

the proposed receiver when LP is less than 20% of the data length. However, as a disad-
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Figure 42 – NMSE of Φ̂
[r]

vs. SNR (dB) of a 4× 4 MIMO system for different pilot
length (LP ), LD = 100 and BPSK modulation.
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Figure 43 – BER vs. SNR (dB) of a 4× 4 MIMO system with perfect and imperfect
channel and PN knowledge for different pilot length (LP ), LD = 100 and BPSK
modulation.

SNR in dB

0 5 10 15 20 25 30 35 40 45 50

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Without PN Compensation

Proposed Receiver L
P

 (5% of L
D

)

LS Equalization L
P

 (5% of L
D

)

Proposed Receiver L
P

 (10% of L
D

)

LS Equalization L
P

 (10% of L
D

)

Proposed Receiver L
P

 (20% of L
D

)

LS Equalization L
P

 (20% of L
D

)

Perf. Channel and PN Knowledge

Source: Created by the author.

vantage, the LS receiver provides an estimate of the effective channel matrix instead true

frequency-selective MIMO channel. More importantly, the system performance is very

close to the ideal case of perfect channel and PN knowledge with few pilot overhead, e.g.,

when LP is equal to 20% of the data length.



123

Figure 44 – Number of iterations for convergence vs. SNR (dB) of a 4× 4 MIMO system
for different pilot length (LP ), LD = 100 and BPSK modulation.
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Figure 44 provides the mean number of iterations required for the convergence

of the BALS stage. This result confirms experimentally the rapid convergence of the

proposed receiver (between 8 and 28 iterations).

6.7 Chapter Summary

In this chapter, we have showed that the received signal in a frequency-selective

MIMO system in which both the transmit and the receive antennas are equipped with

independent oscillators can be modeled as a third-order PARAFAC model. Furthermore,

we have proposed a two-stage semi-blind receiver to solve the joint channel and PN esti-

mation problem using the state-of-the-art ALS-PARAFAC and LS-KRF algorithms. The

proposed approach avoids idealized assumptions such as perfect channel and PN model

knowledge, which makes it applicable to more challenging scenarios compared to other

solutions in the literature. Simulation results indicate that the proposed receiver can

achieve a performance very close to the ideal case of perfect channel and PN knowledge

with fewer pilot symbols, rapid convergence and providing an accurate estimate of the true

frequency-selective MIMO channel matrix which can be used a posteriori, for instance, to

design efficient beamforming strategies in order to improve system performance.
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7 CONCLUSIONS AND PERSPECTIVES

In this thesis, we have developed new tensor modeling approaches and signal

processing algorithms for channel and signal parameters estimation in multidimensional

sensor arrays, bistatic MIMO radar and MIMO wireless communications systems. The

main conclusions for each chapter are summarized below:

• In Chapter 2, we have contributed with a review on tensor algebra and tensor

decompositions concepts needed throughout this thesis. The PARAFAC, Nested-

PARAFAC and Tucker decompositions have been presented in different (scalar,

slices, unfoldings and n-mode product) notations. The state-of-the-art ALS algo-

rithms to estimate the factor matrices, and the uniqueness conditions of these tensor

models have also been presented.

• In Chapter 3, the spatial parameters estimation problem in multidimensional sen-

sor arrays was addressed. We developed a preprocessing framework for denoising

called MuDe. We found that MuDe provides more accurate estimation of the spatial

parameters compared to state-of-the-art techniques, while achieving the MSE bound

derived in (STEINWANDT, ROEMER, and HAARDT, 2014) for the single source

scenario. We also exploited the multidimensional structure of the covariance matrix

of the signal received at an R-D sensor array to formulate two generalized Tucker-

based and PARAFAC-based algorithms for spatial signature estimation. The first

one has a higher computational complexity, but can effectively handle unknown

structures for the covariance of the source signals. On the other hand, the lower

computational complexity of the second one is accompanied by the assumption of

uncorrelated sources, which may not hold in more realistic scenarios. Simulation

results showed that the proposed tensor methods outperform the state-of-the-art

matrix-based and tensor-based techniques in terms of parameters estimation accu-

racy.

• In Chapter 4, the multiple targets localization problem in bistatic MIMO radar

systems was addressed. We have capitalized on the Nested-PARAFAC decomposi-

tion to formulate new solutions for joint DoD and DoA estimation. The Nested-

PARAFAC decomposition allows to decouple a complex fourth-order tensor problem

into two smaller third-order tensor subproblems without affecting the accuracy of

the parameter estimates. The proposed method has a lower complexity compared

to state-of-the-art solutions, being robust to positioning errors between the antenna

elements.

• In Chapter 5, the impact of the joint DL and UL channel estimation at the BS

was evaluated. We have proposed a new closed-loop and multi-frequency channel

training framework that allows to concentrate the processing burden for channel

estimation at the BS, thus avoiding, additional processing for channel estimation
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at the MSs as well as channel reciprocity assumptions. The proposed framework

yields the formulation of the received closed-loop signal as a third-order PARAFAC

decomposition. A new PARAFAC modeling is also proposed for MIMO wireless

communications systems equipped with hybrid analog-digital beamforming archi-

tectures and operating in mmWave propagation environments. This approach capi-

talizes on the sparse representation of the channel from which sparse signal recovery

problems are solved by the BS to estimate the channel parameters. Numerical re-

sults showed a trade-off between DL channel estimation accuracy performed at the

BS and reduction of the processing cost for channel estimation at the MS side.

• In Chapter 6, the problem of joint channel and phase noise estimation was ad-

dressed for frequency-selective MIMO systems. The PARAFAC decomposition was

exploited for modeling a more realistic MIMO communication system that assumes

real-world hardware impairments that result in unknown phase noise perturbations

per antenna. The proposed PARAFAC-based receiver relies on the ALS and LS-

KRF algorithms to jointly estimate the channel and phase noise. Simulation results

showed that the proposed method provides an efficient phase noise compensation

achieving performance very close to that obtained with perfect CSI knowledge and

without requiring the knowledge of the channel and statistical distribution of the

phase noise process.

Several perspectives may be raised, as listed below:

• With respect to Chapter 3, we shall develop a full framework that takes into

account a first step for model order selection (MOS) and incorporate the prepro-

cessing multidimensional prewhitening stage in (DA COSTA et al., 2013) to eval-

uate the MuDe performance in the spatial colored noise environments. Addition-

ally, we also intend to extend the MuDe to operate in other sensor array geome-

tries, e.g., those considered in (PAL and VAIDYANATHAN, 2010) and (P.PAL and

VAIDYANATHAN, 2012).

• Perspectives for the Chapter 5 include its extension to frequency-selective channels,

a performance evaluation assuming different HB designs, grid mismatch and realistic

channel models.

• For Chapter 6, we shall incorporate a more realistic model for the temporal varia-

tion for the phase noise perturbations and investigate its impact on the performance

of the proposed method. A new tensor modeling that consider the same phase noise

perturbations for a group of antennas is also an interesting research topic for dis-

tributed MIMO systems.
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