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I sometr i c  i m m e r s i o n s  o f  R i e m a n n i a n  products  revis i ted 

J. L. BARBOSA, M. DAJCZER AND R. TOJEIRO 

Let M " =  M~ '1 x M~ 2 be a Riemannian  p roduc t  o f  two connected complete  

R iemann ian  manifolds.  Assume dim MT, = n~ > 2, 1 < i < 2, and that  no M~ either 

is flat everywhere or  conta ins  an "Eucl idean  s tr ip",  that  is, an open submani fo ld  

which is isometr ic  to the Riemannian  produc t  I x R ~, - 2, where f rom now on I c R 

denotes  an open interval.  Unde r  these assumpt ions  and based on earl ier  work  due 

to Moore  ([Mo]),  it was proved  in a beautiful  paper  by Alexander  and Mal tz  

([A-M]) tha t  any isometr ic  immers ion f : M n ~ R" § 2 is a R iemann ian  p roduc t  of  

hypersurface immersions.  This means that  there exist an o r thogona l  fac tor iza t ion 
R ~ + 2 = Rn~ + t x R "2 + 1 and isometric immersions  f~ : M~' ~ R", + 1, 1 < i < 2, such 

that  f ( x l ,  x 2 ) =  (f~(x~), f2(x2)) .  This outs tanding  global  theorem proved for any 

number  o f  factors  whenever  the codimension equals that  number ,  has been for a 

long time (cf. [D-G2]) the only known global  r igidity result for codimension  higher 

than one (cf. [Sa2], [D-G1]). 

The main  goal  of  this paper  is to provide  an unders tanding  of  the possible cases 
for  which f "  M ~ =  M71 x M~2--*R~+2 may  fail to be a R iemann ian  p roduc t  o f  

hypersurface  immersions.  A n  explicit  example o f  this s i tuat ion was given in 

([A-M]).  In fact, with no further  assumpt ions  on the Mi's  than completeness,  we are 

able to prove the fol lowing result: 

T H E O R E M  1. Let  f : M n = M71 x M~ 2 ~ R ~ + 2, ni > 2, be an isometric immer- 

sion o f  a complete connected Riemannian manifold where no fac tor  is everywhere f lat .  

Then there is a dense open subset each o f  whose points lies in a product neighborhood 

U = U 1  x U2, with U j c M T J  open, such that f u : U I x  U 2 ~ R  ~ +2 is one o f  the 

following types: 

(i) f u  is a Riemannian product o f  immersions. 

(ii) Each Ui is isometric to 1~ x R n~ - I, 1 < i < 2, and f u  = g x ld, where g: 11 x 

12 ~ R 4 is an isometric immersion and ld: R ~ - 2 ~  R " -  2 is the identity map. 

(iii) Only one Uj is isometric to Ij x R~J -2 and f v  = f  x Id  : (Ul x l j )  x 

R"s - ~ ~ R ~ + 2, i ~ j ,  where Id: R~J - ~ ~ RnJ - l is the identity map and 

f :  Ui x / j  --* R ~, + 3 is a composition f =  h o g o f  isometric immersions 

g : Ui x Ij ~ V, V c R ~' + 2 open, and h: V--+ R n, + s 
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For types (i) we either have a product of  hypersurfaces or one of the factors is 
totally geodesic. Types (ii) and (iii) are not disjoint since the immersions g in (ii) 
may in fact be a composition. A complete local classification of flat surfaces in R 4 
which are nowhere compositions has been recently provided in [C-D]. The example 
in [ A - M ]  attaches immersions of  types (i) and (iii). 

We.also study the case where one of the factors of  M ~ is everywhere fiat. In this 
situation we have the result below for whose statement we first have to establish 
some definitions. 

Given an isometric immersion f : M~ ~ R N, we denote by N{ (x) the first normal 

space of f at x e M n given by 

N f ( x )  = span{gf(X, Y): VX, Y c TxM} ,  

where ~:: T x M  x T x M  ~ T x M  • stands for the vector valued second fundamental 
form. We say that f is 1-regular if the subspaces N{(x)  form a subbundle of the 
normal bundle. 

An isometric immersion f :  N" +m ~ R  N is called an m-cylinder whenever there 
exists a Riemannian manifold M ~ such that N ~ + ' ,  R N and f have orthogonal 
factorizations N " + "  = M n x R",  R N =  R N-m x R"  and f = f x  Id, where f :  M n --, 
R N- " is an isometric immersion a n d / d :  R " - ,  R m is the identity map. 

T H E O R E M  2. Let  M ~ be a complete connected Riemannian manifold o f  nonneg- 

ative Ricci curvature without f lat  points and let f :  M"  x Rm --. R ~ + "~ + 2 be a 1-regular 

isometric immersion. Then f is either an m-cylinder or it is an (m - 1)-cylinder, 

f = f x / d :  (M ~ x R) x R " - l  _..R~+,,,+2 

and there exist a f lat  Riemannian manifoM Ng + 2 and isometric g " M n x R ~ Ng + 2 

and h : Ng + 2 ~ R n + 3 such that f = h o g is a composition. 

Furthermore, when M ~ is simply connected we can take Ng § 2 in the latter case to 

be an open subset o f  R n § 2 and, then g = ~ x ld, where ld: R ~ R is the identity map 

and ~ : M ~ --* R ~ § 1 is an embedding whose image is a convex hypersurface. 

The above result is false without the assumption of  l-regularity. Counterexam- 
pies can easily be constructed following the procedure given by Henke ([He]). For  
m = 1, a weaker result but without our 1-regularity assumption has been given by 
Noronha  ([No]). 

The paper  is organized as follows. In w we review from [Mo] and [A-M] basic 
facts on isometric immersions of  Riemannian products. In w we prove a local result 
on isometric immers ions f :  M n-  l x I ~ R n § 2 which is a crucial step in the proof  of  
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Theorem 1 and also of  independent interest. Finally, in w we present the proofs of 
our main results where we make strong use of  the fine arguments in [A-M]. 

w Preliminaries 

Let f : M " ~ R  ~+k be an isometric immersion. Recall that the relative nullity 
space o f f  at x e M ~ is defined by 

Ax = {X  ~ TxM:  ~f(X,  Y) = O, VY ~ TxM} .  

Then, by the Gauss equation, Ax is contained in the nullity space o f  f a t  x e M  ~ given 
by 

N~ = {X  c T~M: R(X,  Y)  = O, V Y  c TxM} ,  

where R denotes the curvature tensor of M". 
A classical inequality due to Chern and Kuiper says that the index o f  nullity 

It(x) = dim Nx and the index o f  relative nullity v(x) = dim A x verify 

0 <- #(x) - v(x) < k. 

Let M" = MT' x M~ 2, ni > 2, be a Riemannian product. The following sharp- 
ened version of Chern-Kuiper 's inequality derived in [A-M] holds. 

L E M M A  3. Let f : M "  = M 7' x M~ 2 --* R" + 2 be an isometric immersion. A t  any 

point x = (Xl, x2) e M",  we have 

0 < p(x) - v(x) < k ' ( x )  

where k ' ( x )  is the number o f  factors M~ :i f iat  at xi. 

Denote by ni the orthogonal projection of T x M  onto Tx, Mi and by MT' (x) the 
copy of M7 ' through x = (x~, x2) e M ". The relative nullity and the nullity spaces of  
flMp,t~ at x will be denoted by Ai~ and Ni~ respectively. Then, it is not difficult to 

show that Nix = N~ c ~ , ( T x M ) ,  Ai~ = A~ c~ni(T~M) and 

with equality holding at the first inclusion if and only if it holds at the second. A 
simple example is provided in [A-M] where equality does not hold. I f  it does we say 
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as in [A-M] that  A~ conforms to the product structure of  M".  A first and fundamen-  
tal step in the p roo f  of  the main  theorem in [A-M] was to show that  this is always 
the case if the MT"s are complete,  unless one of them is everywhere fiat. 

L E M M A  4. Let  f :  M " =  My'  x M ~ 2 ~ R  "+2 be an isometric immersion o f  a 

complete connected Riemannian manifold. Then the relative nullity spaces o f  f 

conform to the product structure o f  M "  unless one o f  the factors  is everywhere f lat .  

Next,  we state a more  basic lemma due to Moore  ([Mo]). Following [A-M] we 
will say that  condition ~y(Xt ,  )(2) = 0 holds at x ~ M "  if this equat ion holds for any 
Xt ~ Tx tM1,  )(2 ~ Tx2M2. Also, given an open subset S of  Mi(x ) ,  a point  y is said 
to be visible along S f rom x if there is a geodesic ? satisfying 7 ( 0 ) = x ,  
7(b) = y, 7(s) e S and 7'(s) e A~(~) for 0 < s < b. 

L E M M A  5. For an isometric immersion f : M "  = My'  x M~ 2 ~ R" + 2 the fo l low-  

ing assertions are true: 

(i) I f  otf(Xl, )(2) = 0 holds everywhere on M",  then f is a product o f  immersions. 

(ii) I f  MT' is not f la t  at xi,  1 < i < 2, then ~y(X1, )(2) = 0 holds at x = (x i ,  x2). 
(iii) Let  S be an open subset o f  M~J(x)  on which the spaces Alx have constant 

dimension. I f  a point where ~ f (X l ,  X2) = 0 holds is visible along S f r o m  x, 

then ~tf(Xl, )(2) = 0 holds at x also. 

We conclude this section with a well known character izat ion of  complete  
Euclidean cylinders due to H a r t m a n  ([Ha]). Recall that  in a Riemannian  manifold  
a line is a complete  goedesic such that  every subarc is minimizing. 

L E M M A  6. Let  f : M "  --* R N be an &ometric immersion o f  a connected complete 

Riemannian manifold with nonnegative Ricci curvature such that t i M " )  contains m 

linearly independent lines through one point. Then f is an m-cylinder. 

w The local result 

T H E O R E M  7. Let  M " - ~  be a connected Riemannian manifold without f la t  

points and let f : N"  = M ~ -  l x !--* R n + 2 be an isometric immersion such that 

~9(Xl,  X 2 ) =  0 fai ls  everywhere. Then there exist  a f la t  Riemannian manifoM Ng + 1 

and isometric immersions g : N ~ ~ Ng + ~ and h : Ng + 1 ~ R ~ + 2 such that f = h o g is 

a composition. Furthermore, Ng + 1 may  be taken to be an open subset o f  R ~ + 1 when 

f is an embedding. 
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In wha t  follows Z will always denote  a unit  vector  field tangent  to L 

L E M M A  8. Assume that M " - ~  is nowhere flat and that f :  N " = M  n - l  x 

I ~ R n + 2 verifies ~f(Z,  Z )  ~ 0 everywhere. Then there exists a smooth unitary normal 

vector f ield ~ such that everywhere rank Ar = 1, Im Ar r T M  and A , Z  = 0 for  any 
section rl ~ L o f  the smooth normal line bundle with fibers orthogonal to ~. 

Proof. Define ~ e T N  • by o~c(Z, Z ) = / ~  and let t /~  L be a smooth  uni tary 

local section. Since ( A , Z , Z ) = 0 ,  there exist X~ . . . . .  Xn i E T M  such that  

X._x  . . . . .  X ~ , Z  is an o r thonorma l  frame o f  T N  with respect to which 

A , Z  = 7X,,  A c Z  = ~Z  + 2~X~ + 22X2, where g # 0 by assumpt ion.  We have: 

c U 
A t l  = 

_ 

0 

0 ' 

7 

A~ = 

0 0 ' "  0 7 0 0 " "  

F r o m  (R(X~, Z ) Z ,  Xj ) =  0 and the Gauss  equat ions,  we get 

#a,j = (AnZ ,  X, } ( A n Z ,  Xj > + <AcZ, X~ ) ( A c Z ,  Xj ) .  

Thus 

a o = 0  for i > 3, /./all =72+22 ,  #a12=2122, 

The Gauss  equat ions  and (R(X; ,  Z)X~,  Xk ) = 0 yield 

7Cik = Cli ( A , Z ,  Xk ) + 21 aik -- all (AcZ ,  Xk } = O. 

7cik + 2,a;k = 0 for k > 3. 

Hence, 

7cn + 2~an - 2 2 a .  = 0, 

Using ( 1 ) ,  w e  get 

f 
~e 12 = 22a|1 -- 21 al2 = 22~ 2/] X 

~C22 22a12 -- 21 a22 = 0 

yc u, 0 f o r k > 3 .  

0 

a u 0 

22 

0 22 2t P 

#a22 = 2 2. (1) 
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We claim that V = 0. Otherwise, we conclude from (2) that c12 ~---22"~/~A , C22 = 0 
and C~k = 0 for k ~ 3. Therefore, 

0 22y/# A~= 

~-2 ):/]2 Cll 

0 " ' "  0 7 i] , Ar ,~2/~ ~l ~ / ~  

21,h/~ ( r ~ + , ~ ) / #  

�9 �9 �9 2 2  2 j  

0 

22 

21 
# 

(3) 

Thus we have for the sectional curvatures 

K(X, ,  )(2) = - - - 7  + -~ - -  #2 = O, K(X,, Xj) = O, 2 <- i , j  < n, 

which contradicts our assumption that M " -  1 is nowhere flat and proves our claim. 
Notice that Ae is given by (3) regardless of 7 being zero or not. Hence rank Ar = 1 
and this concludes the proof�9 [] 

Proof of  Theorem 7: In what follows we represent by V the Riemannian 
connection in N n and by V • the induced connection in the normal bundle. By 
assumption, at any (x, t) e N n there exists X ~ TxM for which ct1(X, Z)  # 0. On the 
other hand, the sectional curvature K(X, Z )  vanishes. We conclude from the Gauss 
equation that ~s(Z, Z)  # 0 everywhere. In particular, Lemma 8 applies�9 

Define ~ k : T N ~ R  by ~b(W) = (V~v~/,~) where t l e L  is taken unitary. We 
claim that 

ker A~ c ker ~k. (4) 

Let X be any vector field tangent to M n-  1. Since A~Z = V x Z  = V z X  = 0, the 
Codazzi equation for A,, X and Z reduces to 

V z A . X  = A ~ X  - A ~ . Z  = r  - ~(X)AcZ.  (5) 

Denote by Y a unit vector field spanning the eigenbundle of A~ corresponding to 
the nonzero principal curvature 2. Notice that the right hand side of the above 
equation is a multiple of  Y. On the other hand, ~9(Z, Z ) # 0  implies that 
(Z,  Y ) #  0. From this and 

( V z A . X ,  Z )  = Z ( A . X ,  Z )  - (A~X, V z Z )  = O, 
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we conclude that 
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VzA~X = O. (6) 

Hence, taking the inner product of  (5) with Y, we get 

2~(<X, Y>Z - <Z, Y>X) = O. (7) 

Since <Z, Y) # 0, the linear map S : {Z} -L ~ { y}_L given by S(X)  = <X, Y ) Z  - 
<Z, Y>X has trivial kernel. Therefore it maps {Z} -u onto {Y}~ and the claim 
follows from (7). 

To conclude the proof  we make use of  arguments from [D-T]. Let n: T ~ N "  
denote the line bundle whose fibers are contained in the plane bundle span{ Y} ~ L 
and are everywhere orthogonal to P'rr = - 2 Y + ~ k ( Y ) r / .  Here g stands for the 
connection in the ambient space. Hence, the fibers of  T given by span 
{qJ(Y) Y + ~.n } are nowhere tangent to N". Now define a hypersurface F : T ~ R" + z 

by 

F ( f ) = f ( x )  +6,  x = n ( 6 ) .  

Then F is an immersion when restricted to a tubular neighborhood N~ § t of  the 
zero section N" of T. Moreover, if f is an embedding, then N~ § can be taken to 
be an open subset of  R" +~ embedded in R" § 2. For local sections X ~ TN and 
# e T, we have by condition (4) 

(Vx#, ~> = - < # ,  l~x~ > = <#, Ar  - $(X)tt> = <X, Y><~u, 2Y - ~k(Y)r/> = O. 

Therefore, the Gauss map of Flu0 is ~. Since ~ only depends on one parameter, the 
metric induced by F on Ng + i is fiat. [] 

w The proofs of  the main results 

Proof  of  Theorem 1: Let X denote the open subset of  M" on which condition 
�9 T(X~, )(2) = 0 fails. T h e n f i s  a product of  immersions by (i) of  Lemma 5 on any 
connected open subset U = U~ x U2 c M " - X ,  Uj c M]J. Now set 

I70 = {x e X: M~" is flat at xi for i = 1, 2} 
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and, for i = 1, 2, 

V~ = {x ~ X: MT' is not  flat at x~ and M]J is flat at xj for j :/: 1 }. 

Then X = 170 u V~ u V2 by part  (ii) o f  Lemma 5. 
We claim that v~ =- ni - 1 on 17oU Vj, i :/:j. 
By Lemmas 3 and 4, the sum of  the codimensions o f  the A/s  in the N / s  at x e X 

is k'(x) = 1, 2. Since vh(x) ~_ nh -- 1, 1 < h < 2, because ~f(X~, )(2) = 0 fails at x, our  
claim follows. 

We show that the V/s are open subsets o f  M". Given x ~ ,  let W be a 
neighborhood o f  x in X where vi(y) < vi(x) for all y = (y~, Y2) e W. Hence W c Vi 

since MT, is not  flat at Yr. 
N o w  let x0 e V~ and set S = M']J(Xo) n V , j  ~ i. Given x ~ S consider a geodesic 

V tangent to Aj with 7(0) = x. Assume that 7([0, b)) c Vg for some b E R. By part  
(iii) of  Lemma 5, we have 7(b) E X. On the other hand, since the M~-component o f  
V is constant,  we conclude that 7 remains in Vj. Therefore, the leaves o f  Aj in V; are 
complete. A similar argument  shows that the leaves of  A~ and A2 in V0 = int I70 
must also be complete. From the argument  in ([A-M], p. 53) it follows that S is 

isometric to I(xo) x R"J-  ~. The same conclusion can easily be reached from Lemma 
1.1 in [Ha] whose p roof  only uses completeness o f  the leaves o f  the relative nullity 

foliation. 
We claim that the spaces R"J-  ~ are parallel along any component  of  V; with 

i = 1, 2. As in the p roo f  o f  Lemma 8, let Z denote a unit vector field tangent to the 
intervals and r a unit normal  vector field parallel to ~9(Z, Z) .  All we have to show 

is that V x Z  = 0 for all X ~ TM~. From the Codazzi equation for A t, X and Z, we 
have for any W ~ Aj that 

( V x A c Z  - V z A r  W ) = 0 ,  

Set A~Z = 2jXj + gZ, where X~ is unitary and or thogonal  to Z. Since V z Z  = 0, we 

get 

(FzAcX,  W )  = - ( A ~ X ,  V z W )  = (AcX,  Z ) ( Z ,  V z W )  = O. 

Hence, 

<VxA~Z, W> = - <Ar Vx W> = 2~ <X~, Vx W> + #<Z, Vx W> = O. 

Because ( X ~ , V x W ) = - ( V x X  ~ , W ) = O  and  / ~ # 0 ,  we conclude that  
(W ,  V x Z )  = 0 which proves our  claim. 
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From the claim and the above, every point o f  V~ has a neighborhood of  type 

U x I • R"J ~, where U is an open subset of  MT', and f splits as a product  f x Id 
with f :  U x I ~ R "' § 3 an isometric embedding. We conclude from Theorem 7 that 
f is as in (iii) of  the statement and the remainder of  the p roof  is straightfor- 

ward. [] 

Proof of Theorem 2: The hypothesis o f f  being 1-regular implies that rank N{ is 
constant and equal to either 1 or 2. Assume first that rank N { = 1. By assumption 
rank Aa >- 2 for any nonzero 6 E N{. It is now a standard result (see [Sp], Lemma 
28 of  chapter 12) that the immersion reduces codimension to one. It follows easily 

f rom Lemma 3 and 6 (cf. [Ma]) that f is m-cylindrical. 
Now assume that rank N{ = 2. We have to consider two cases: 
Case 1: There exists x e M n such that ef(Z, ;Z)=0 for all Z, • tangent to 

{x} x R"  and all y e R m. Then, the image of  {x} x R"  is totally geodesic in the 

Euclidean space and we conclude from Lemma 6 that f is m-cylindrical. 
Case 2.: It  follows from Lemmas 3 and 6 t h a t f i s  cylindrical with respect to a 

hyperplane in R".  Therefore, it suffices to argue for m = 1. In this case we are 
assuming that for all x e M "  there exists t e R  such that at (x , t )  we have 
es(Z, Z )  r 0 for Z tangent to R. Fix x and consider the open subset o f  the line 
{x} x R where ej(Z,  Z )  r 0. By Lemma 8 there exist or thonormal  vector fields 

and q along the subset such that AnZ = 0 and rank A t = 1. We show that the subset 
is the entire line. If  not,  let ~ represent a boundary  point. We have easily f rom (6) 
that A n is parallel along the open subset. Thus A n extends to the point  (x, t-). We 
easily conclude that at this point  dim Nil = 1, which is a contradict ion and proves 

our  claim. 
We want  to obtain here the same conclusion of  Theorem 7 al though we do not 

have the same hypothesis. Nevertheless, we argue that the above condition implies 
condition (4) and then the remainder o f  the p roof  there applies to our  case. In fact, 
where ~s(X, Z )  = 0 fails the p roof  o f  (4) is exactly the one o f  Theorem 7. At  the 

other points, the conclusion is trivial using (i) of  Lemma 5. Therefore, there exist 
a flat Riemannian manifold N~ +2 and isometric immersions g ' M n x  R ~ N g  +2 
a n d h ' N g  + 2 ~ R  n+3 such t h a t f = h o g .  

Assume now that M"  is simply connected. Then also N~ + z is simply connected. 
Because it is fiat it can be isometrically immersed in Euclidean space R" § 2. The 

second fundamental  form of  g, considered into R "+z, is A n. Since A,Z = 0, it 
follows f rom Lemma 6 that g = ~ x Id, where Id: R ~ R is the identity map  and 

: M . __. R n + i is an isometric immersion whose image is a convex hypersurface by 

a well-known theorem of  Sacksteder ([Sa~]). Since Ng + 2 is just a tubular neighbor- 
hood  of  g(M") then it can be chosen to be embedded. This completes our 

proof.  [] 
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