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Stabi l i ty  o f  minimal  surfaces  in spaces  o f  constant  curvature 

J. L. Barbosa and M. do  Carmo 

1. Introduction. 

1.1. Let x : M ~ M', n > 3, be a minimal immersion of a C 3 2-dimensional 
orientable manifold M into. an n-dimensional smooth Riemannian mani- 

�9 fold �9 M". "Let D c M 'be  a domain wi th  compact closure D and piecewise 
.smooth boundary OD. CalI, D stable if it is a relative minimum for the area 
function, of the induced metric for all variations that leave ~3D fixed. 

In a .previous paper [1] we described the idea of a method to obtain 
sufficient conditions for the stability of D and applied it to the cases where 
M, is the 3-sphere SS(a) with constant curvature a > 0, the 3-hyperbolic 
space H3(a)wi th  constant curvature a < 0, and the.euclidean�9 space R n, 
n > 3[ In this paper, we present a more detailed description of the method 
and apply it to the case where the ambient space�9 is a Riemannian manifold 
with constant sectional curvature a. T h e  results are as follows (K will always 
denote the Gaussian curvature of M in the induced matric). 

1.2 Theorem. Let X ' M . , ~  An(a)be a minimal immersion, where An(a) is 
either:S'(a), if a .> 0 or H"(a), !f a < O. Set c, = 3 - (2/(n - 2)), and assume 
that D c M is simply-connected. Then: 

�9 

(i) /f a > 0  and ( 2 a - K )  d M <  2c n + 2 . ,  D is stable, 

f0  8~ (ii) if a < 0  and IKId~I < 2c, + 2 " D is stable. 

Actually, Theorem 1.2 is, modulo a curvature estimate, a particular 
ease of the following general theorem. 

Let x : M ~ ffI", n >_ 3,~ b e a minimal immersiort Assume 
that the sectional curvature of M ~ is bounded above by a constant a andset  
a + = max (a, 0). Let ds 2 be the metric induced by x on M and assume that the 
Gaussian curvature I( of the (possibly degenerate) metric d~rZ = (2a + - K) ds 2 
satisfies K, <_ c. Let D c M be a simply-connected domain. T h e n :  

(i) I f  MI" is analytic and 

fo 8~ (2a ~" K) eiM < - 2 c  q- 2 ' 

�9 Reccbido cm d~abro de 1979. 
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D is .stable. 

f o  87t (ii) /j' a # 0 ,  and (2a § - K) t tM < 4 c + 2  ' D is stable. 

Since we will show in Sec. 2 that if ,~n is a sPace of constant curvature 

a # 0 ,  the curvature k < c  n = 3 -  2 - n -  2 '  Theor. 1.2 and Theor. 1.4 

below will follow from Theor. 1.3. 

1.4 Theorem. Theor. 1.2 holds for  minimal immersions x " M ~ ffl"(a) into 
any n dimensional Riemannian maniJbld of  constant curvature a provided we 

replace the bound'  81t by 8re 
2c, + 2 4c n + 2 

1.5 Remark. Theor. 1.3 reduces the problem of finding a simple sufficient 
condition for stability to the problem of finding an estimate for the curva- 
ture /( that is independent of the immersion x (See Remark 4.4.). 

1.6 Remark. Theor. 1.2 generalizes Theors. 1.2 and 1.3 of [1 ]. however,  
the bound in Theor. 1.2 for a > 0 and n > 3 is probably not sharp. 
Theorem 1.3 can be used, together with the estimate 2.9 of [1 ], to p rove  
Theor. 1.4 of [1 ]. 

2. Curvature estimates. 

2.1. Let M"(a) be an n dimensional Riemannian manifold with constant  
curvature a. In this Section we estimate the Gaussian curvature /~ o f  a 
metric da 2 on M obtained by a conformal transformation of the metric ds z 
which is induced by a minimal immersion x : M  ~ A-l"(a). M o r e  precisely, 
we prove the following result. 

2.2 Proposition. Let x " M ~ ~ln(a) be a minimal immersion, K the Gaus- 
sian curvature of  the induced metric ds 2, amt .set da z = uds 2, where: 

(2.3) ~ ' u = 2 a - K ,  if a > 0 ,  

l u = - K ,  if a < 0 .  

Then the Gaussian curvature I( o f  da 2 sat is f ies  

2 
R ~ c .  = 3  

n - 2  
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ProoJl Let us choose an adapted orthonormal frame e~,e2, e3,' . , e ,  to 
x in M"(a), that is, e 1, e z are tangent to x (M)  c ~t"(a), and let us agree in 
the following rang_e of ifidices: 

(2.4) i , j ,k  . . . . .  1,2, ct, fl, y . . . . .  3 . . . . .  n, A , B , Z ,  ... = 1 . . . . .  n. 

We will denote by hia j the coefficients of the second fundamental form of 
x in t lae normal direction e, and will write llnl12 = 2 a - ' 2 K ,  hence (2.3) 
can be written as 

(2.5) 
! 

u -: lal § ~-,,,,IlBII 2 > o .  

It is easily computed the cu rva tu re / (  of da 2 = u d s  2 is given by (Cf. e.g. [2]) 

'(  ) (2.6) g = --~ g + - Au + v u l r  u ~ 

where Au is the Laplacian of u and Vu is the gradient of u, both computed 
in the metric ds 2. 

From (2.5), it follows that 

( 1 ~  h ~ j ) =  ~, hiajhlajkO)k, du = ,t lal + "T- 
iotjk 

�9 where a~ A is the pull-back by x of the coframe 0 A of e A (since e A is an 
adapted frame, oJ  = 0), and hi~jk are the components of the covariant deri- 
vative of the second fundamental form of x. Thus the components of the 
gradient Vu of u are 

(2.7) u k = ~, hi~ j hi~jk. 

By. taking the covariante derivative D of Vu, we obtain 

D (Uk) = ~, huq L hiajk (.09. + Z hiaj hi=jkg. ~OZ, 
iat jL. ict j L  

where hi~jk z are the components of the second covariant derivative of h~j. 
Thus, the componentes of D (Vu) are 

UkZ = ~, hi~jt hjajk "}" E hi~ hi~jkZ 
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and the Laplacian of u is given by 

(2.8) Au = 2 Ukk = Z h2~jk + ~ hiaj Ahiaj, 
k ictjk iaj 

where Ahi~ ~ is the Laplacian of the second fundamental form. We now use 
Simons inequality ([3], pg. 41) 

(2.9) - ~ h~j Ahi~ ~ < 2 n - 2 IIBII4 - 2a [IBII 2 

to estimate the second summand of the right hand side of (2.8), and  by 
(2.5)-(2.9), we obtain 

, )  } " - : ' u  u "---r- n - 2 (u - l a l )  z - a (u - l a l )  + 

,{  (, ) } § ~ - al + 8112 2 h2 , ~  + E (y~ h~j h,~;~) 2 
iajk k iaj 

We need the following lemma. 

2 . 1 1  L e m m a .  W = 

Proof of the Lemma. 

l 2 
2 118112 ~ hi~jk + ~, (~"hiajhi~jk)2 < O. 

iajk k iaj 

Since IIBII 2 ~, 2 = h,# s, we have 
rt~s 

1 h2 h2 W < - T 2  ,~s~, i~jk+T(2hi~jhiajk) 2 = T. 
rfs i~tjk iaj 

Thus it suffices to prove that T = O. Actually we will prove that this is 
so for each fixed ct. 

By minimality, and the fact that the ambient space has constant  cur- 

vature, we have, for each ~ that h ~  1 = - h2a2, hias. i = - hi,~, k a n d  hi~.t k is 
symmetric in latin indices. Thus, on the one hand, 

2 2 + h 2 ~" h2s hi2ajk = 8 (h2al . +  h l a 2 ) ( h l a l  i tal 2), 
rsljk 

and on the other hand, 
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E (~, hi=j hi~j~) 2 = E (hi=j hi=jl) 2 "1" ( E  h,aj hi,./2) 2 = 
k 0 U ij 

= 4(h1~ l hl~ll + h l a z h l a l 2 )  2 + 4(h1~ 1 h i l l 2  - -  hl~2 h l = l l )  2 = 

= 4 ( h 2 ,  + h  2 1{/,2 2 
i c t 2 / , : # l a t l l  ~ -  h l c t 1 2 ) .  

It follows that  T = 0 and this proves the Lemma.  

T o  prove  that /( < c,, we will consider two cases. 

First, let a < 0. Then u = -  K. By ( 2 . 1 0 ) a n d  L e m m a  (2.11), we 
obta in  

~ U" n 2 

(w) = - 1 + 2  + \ . - 2 /  - 

< - !  + 2 + 2 (  n - 3  = 3  2 
- n ----2-~) n ~ - 2  = c., 

and this proves  Prop.  2.2 for the case a < 0. 

N o w  consider a > 0. Then  u = 2a - K. By (2.10), L e m m a  (2.11), and 
K 2a - u 

the fact that  - - =  - - ,  we obtain  
2 a - K  u 

, { ( , )  /~ < 2 a - u  I- 2 -  ( 2 u - 2 a )  2 - 2 a ( 2 u - 2 a )  = 
- - - 7 - - -  ~ n - 2  

(2.12) = f(u). 

N o w  set 1/(n - 2) = ~t and  observe that  

f ( u ) =  ( 3 - 2 c t )  u 2 - 4 ( 2 - c t )  au + ( 6 - 2 ~ ) a  2 
u 2 

By noticing that  u > a > 0 ,  f (a )=  1, f ' (a)<O, l im f ( u ) - - - 3 , 2 ~  and 
iI -e co 

that  f ' (u )=O if and  only if u = ( 3 - 0 t ) a / ( 2 - ~ ) ,  we see tha t  f (u )< 
< 3 -  2ct = c,. F r o m  (2.12), ~: < c,, and  this concludes the proof  of 
Prop.  2.2. 
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3. Proof. Theorem 1.2. 

3.1. We first fix our notation and make some general remarks .  

Let x : M - - *  )Vff be a minimal immersion into an n-dimensionaL Rie- 
mannian manifold. Choose an adapted orthonormal frame e a in a neigh- 
borhood ofJVff and tal~e the range of indices as in (2.4). Considera  domain 
D c M and denote by V = y '  V,,e~, a normal vector field that vanishes on 

0D. Then the formula for the second variation along V is (See [3]) 

(3.1) l(V, v) = ( -  Z, V A V, - Z,p + V, Vp) aM. 

Here/~aBc~ is the curvature tensor of the Riemannian manifold 
/~,p = ~/~i,/a, AV~ are the components of the Laplacian of V, and 

i 

~ ~'0 = Z hi~tj hiM, 
O 

where hi, J are the coefficients of the second fundamental form of x in the 
direction e,. 

V is called a Jacobi .field if, for each ~, 

(3.2) - AV, ~] (/~,p + #,p) V~ = 0. 
P 

ff M" is a real analytic Riemannian manifold, it follows that the minimal 
immersion x is real analytic. As solutions of (3.2), Jacobi fields ,are then 
real analytic normal vector fields. 

3.3. Now assume that M" is real analytic and that D c M is not stable. 
By Smale's version of the Morse index theorem ([4], [5 ]), there exists a 
domain D ' c  D and a Jacobi field V that vanishes on aD'. Since V is 
analytic, it only vanishes along analytic curves and at isolated points. We 
assume that OD' is the "first" conjugate boundary, that is, that V only 
vanishes in D' at isolated points ql . . . . .  q,,. Away from such points, we can 
choose the adapted frame e a so that V = ue3, u > 0. This defines a func- 

in 

tion u in W.~ = D' - u {qs}, where the 3-component of Eq. (3.2) is given by 
S----1 

(3.4) Au + u(Ae a, ea) + u ~../~i3/a + u ~ h/23j = 0. 
i ij 

Set u = 0 if V = 0. Thus u is a nonnegative function in D' that is differen- 
tiable in _W, satisfies (3_4) in ~ and vanishes on OD'. Notice that u 2 is 
differentiable in all of D'. 
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By noticing that 

(Ae3, e3) = -- Z IVeN/e3l z, 
i 

Z h~3j = Z h2 -- h2 i~tj E i~tj ~ 
ij  i,r i , j ,  ct> 3 

and by setting 

A2 = E  VNe 2 2 
I. e i 31' + E hi=p 

i i , j , r  

we can write (3.4) as 

(3.5) Al l  --~ U Z R i 3 i 3  "~ u E h2 - -  A 2 u  = O. icj 
i imj 

3.6. Proof of Theor. 1.2. (i) Since S"(a) is real analytic, the assumption that 
D is not stable implies the existence of a domain D' c D and a function 

u :D'--* R satisfying the conditions described in 3.3. Furthermore, since 
the ambient space has constant curvature a, we have Ri313 = a, and 

h ~  = 2a - 2K. 
ioq 

Thus (3.5)can be written as 

(3.7) Au + 2(2a - K) u - A2u = O. 

The proof is now similar to the proof of Theor. 1.4 in [1 ]. Consider 
the first eigenvalue R1 for the problem 

(3.8) A f  + ;t(2a - K ) f  = 0. 

We claim that (3.7) implies that 21 < 2. To see that, cover the points qs e D' 
(See 3.3) be small nonoverlapping disks D~(qs) around q~, set D~ = y D~(q~) 
and obtain from (3.7) 

2 fo ( 2 a -  K) u2 dM >- - fD u Au dM = 
t-Dr. t - D  E 

f~ I fo (Vu 2, n) ds, = llvull dM + T 
, -- D~ De 
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where n is a Unit normal vector along the boundary dD,. Since u 2 is diffe- 
rentiable, we obtain, as e ~ 0, 

IIvul[ 2 dM 

2 > > ) ' 1 ,  

fD, (2a - K) u 2 tiM 

as we claimed. 

Now introduce in M a metric d~2= ( 2 a -  K)ds 2, where ds 2 is the 
metric induced by x .  By Prop. 2.2, the Gaussian curvature / (  of da 2 satisfies 

K < c , = 3  2 ' n 2 From Prop. 3..13 of [1], we conclude that 21 _> 

> ).~(D*), where ).~(D*) is the first eigenvalue of the Laplacian of a geodesic 
disk in a sphere-S2(l/x/~,) with curvature c, such that 

A* = area (D*) = ,(2a - K ) d M  < 2c~ + 2 

By using Prop. 3.10 of [I ], we compute that, for such a domain, 

2 41r - A* 
) ' I ( D*)  -> - -  A* > 2. 

C n 

Thus 

2 > 2 1  >21(D* ) > 2 .  

This is a contradiction, and proves Theor. 1.2 (i). 

(3.9) Proof of Theorem 1.2. (ii) Since a < 0, it follows from (3.7) that 

(3.10) Au - 2Ku > O. 

Now the proof follows in a way entirely similar to the proof of (i), by repla- 
cing 2 a - K  by - K. 

4. Proof of Theorem 1.3. 

4.1. Suppose that D : M is not stable. By assuming that M" is real ana- 
lytic (Sec. 3.3) and that the sectional curvature of M" is bounded above 
by a, we obtain that 
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E h~j = 2 R 1 2 1 2  - 2K ~ 2a - 2K 

and that ~-Ri3i3 <~ 2a. Thus (3.5) implies that 
i 

(4.2) Au + 2(2a - K)u  > 0, in W, 

where W is defined in Sec. (3.3). 

If h4" is not analytic, (4.2) holds for the Open set of points U c D' 
where u r 0 (See definition of D' in (3.3)). Since there is a finite member 
of conjugate boundaries in D', we can assume that OD', is the first such 
boundary, and thus that U is connected. We also can assume that u _> 0 
on D'. Since u 2 is still differentiable in D' and in U 

= 2UAU § 21lwll 

we can write (4.2) in the form 

1 2 ~-Au + 2uZ(2a - K) - Ilvull 2 = u~u + 2ua(2a - K) >__ 0, in U. 

Thus, by setting f = U 2, we see, by a limiting process, that, in D' 

(4.3) A f  + 4f(2a - K) > 0. 

In both cases (4.2) or (4.3), we obtain, by using the arguments in the 
proof of Theorem 1.2 (See (3.6)) that the first eigenvalue ).t of the problem 

Ag + 2(2a + - K)g  = 0, a + = m a x  (a ,  0 ) ,  

satisfies 2 t < ~, where ~ is equal to 2 or 4 according to )~" is real analytic 
or not, respectively. 

We now observe that the metric da 2 = (2a § - K ) d s  2 only degenerates 
if a = 0. In the analytic case, this happens only at a finite number of points. 
We then use Prop. 3.13 and Cor. 3.20 of [1 ] together with Prop. 3.10 of [1] 
to show, in the same way as we did in the proof of Theor. 3.1, that the 
conditions /( < c and 

~o 8~ (2a § - K ) d M  < 2c +-------~ 
n 

imply that 2 t > 2, a contradiction. In the nonanalytic case, we restrict 
ourselves to the case a 4 :0  and use Props. 3.13 and 3.10 of [1] to show 
that the conditions /(  < c and 
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fo 87t ( 2 a  + -- K) dM < 4c +-----~ 

imply that 21 > 4, a contradiction. This completes the proof  of Theor. 1.3. 

4 .4  Remark. Theorem 1.3 raises the question of finding an estimate for 
/(  that depends only on bounds for geometric quantities in a general 
manifold M" (for instance, bounds for the curvature tensor of M" and some 
of its covariant derivates). From the proof of Prop. 2.2, we see that the 
search for such an estimate can be reduced to suitable generalizations of 
Lemma 2.11 and Simon's estimate 2.9). 
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