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Abstract. This paper presents a solid isotropic material penalization model (SIMP) based topology optimization
research and its subsequent adaptation, which allows to obtain one similar method for ortotropic materials. Both
methods have been used in the development of a regeneration model that finally has been applied to the research
of the evolution of the bone, after an operation of artificial hip (prosthesis). This way, the present research shows
different areas of knowledge, facts that have been introduced starting with a short and general historical introduction.
This areas have become more focused in the idea of obtaining key concepts, in order to define the topic. The research
themes are Optimization, the Finite Element Method and Biomechanics. In this work, a numerical problem is solved.
The case study is a post-operative femur after a femoral head is replaced by a prosthesis metallic. A preliminary
contact model is developed for load application on the femoral structure. The goal of this study is to determine the
bone tissue regeneration around the prosthesis due to adaptation of the loads. Thus, a more efficient design of the
prosthesis can be obtained. By analysis of the material density results, some aspects of bone regeneration can be
clarify. It can be concluded that the topology optimization proposed can be assumed an important tool to support
medical applications of bone assessment.
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1. INTRODUCTION

The bone regeneration topic has been an important research topic for last years by researchers in biomechanical
themes. The goal of this paper is to propose a systematic methodology to model the regeneration of bones in processing
of metallic implants. In this context, mathematical optimization methods were used in order to predict the process of bone
calcification through biomechanical models. The optimization process can be understood as the search of good solutions
for state variables that describing the behavior of any nature system. This way, the optimal solution is one of the best
according to some specific criterion. In general, the feasible solution domain are composed by a series of restrictions
or requirements. Topology Optimization is frequently used to design mechanical structures systems in a large range of
engineering applications. Pioneering works in finite element based topology optimization were developed by Bendsoe and
Kikuchi (1988), Bendsoe (1989) and Susuki and Kikuchi (1991). They used the homogenization method to find the best
distribution of material and holes in several structures. In structural optimization and design, some topology optimization
techniques have been intensively used to solve compliance minimization problems (Xie and Steven, 1997; Sigmund and
Jensen, 2003; Hsu and Hsu, 2005). The authors used a methodology based on interpolation scheme. Among others works,
Evolutionary Algorithms (EA) have demonstrated efficiency and accuracy to find optimal solutions for a large range of
optimization problems (Xie and Steven, 1997; Farmaniet al., 2005). In this work, the analysis of the bone regeneration
process is done by different approaches. First of all, it is performed the topology optimization process. This way, it is
established an objective function that represents the biological loading on bone tissue. In order to predict the adaptation
of bone subjected to mechanical loads, it is determined one mathematical relationship among stimulus and response of
bone material. The other approach is mechanistic. In other words, the bone adaptation from cell biology is adapted by
natural models, in focus on the tissue system (Garzonet al., 2005). The topology optimization, more specifically can be
applied intuitively in analysis of bone regeneration, taking into account some considerations to fit the general model to
this specific application.

The outline of the rest of the paper is as follows. In Section 2, the optimization concepts are stated. In the next
section, the elastic bone-structure model is described. Moreover, the basic assumptions are presented and the isotropic and
orthotropic elastic behaviors are presented by constitutive equations description. In this context, the numerical approaches
applied to find the material distribution in a regeneration bone process is presented. This way, some formulations to solve
optimization problem are discussed. In Section 4, the numerical results are presented and the performance of the method
is illustrated. The conclusions are outlined in Section 5.
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2. OPTIMIZATION PROBLEM STATEMENT

In general, the systems has different responses to the causal relations. Therefore, it is necessary to analyze them to
determine which is most desirable. Any mathematical model that involves the search for best responses of systems, among
all possible, it is classified as an optimization model (Oteroet al., 2006). This way, in Eq. (1), the general formulation of
the optimization problem is done as follows (Bazaraaet al., 2006):

Min f(x)
such as:x ∈ S

(1)

wherex represents the design variables,f(x) is the objective function and the setS is describe by equalities and inequal-
ities,hi(x) andgj(x), respectively. In Equation (2), the mathematical statement for the feasible regionS is presented.

S ≡ {x ∈ Ω/hi(x) = 0; gj(x) ≤ 0}
such as
i ∈ I = {1, 2, ...m}
j ∈ J = {1, 2, ..., k}

(2)

where the setΩ correspond to the state variable values in a finite dimension.
The topology optimization of the bone-structure system is performed using an continuum model for the material that

combines a finite element method with an optimality criteria optimization technique. The objective of this optimization is
to find the material distribution history of bone-structure domainΩ for a particular boundary conditions setting. The finite
element formulation implemented is based on the differential equations of plane elasticity based on the displacements
values for isotropic and orthotropic material behavior (Cooket al., 2001). In the next section, the SIMP (“Solid Isotropic
Material with Penalization”) and SOMP (“Solid Orthotropic Material with Penalization”) methods are developed in the
context of the bone regeneration problem.

3. BONE REGENERATION MODEL

In this section, it is presented the model of bone regeneration by topology optimization. However, our objective is not
build a model that faithfully simulates the reality, but provide an initial draft about a possible research line.

The human body has four mechanisms that control the dynamic changes of bone: growth, modeling, remodeling and
bone repair (Hernandeset al., 1995). In this work, the focus is the bone remodeling. In this process, certain areas of bone
are destroyed and replaced by new bone tissue. In the bone remodeling process, structural changes leading to an increased
sensitivity to mechanical stimuli because the bone-structure system can accumulate fatigue damage or micro fractures. In
view of structural modification process controlled by the remodeling to adapt to possible changes in mechanical stimuli,
the use of the SIMP model for regeneration and placement of bone is justified. On the other hand, it is created a laminated
tissue oriented along the lines of force acting on the area being repaired. This leads to the use of orthotropic models like
as the SOMP model proposed.

The design variable is defined as the relative density between the solid material and empty regions. This variable must
be evaluated in the domain. In this context, the design variables are defined as elementary densities and “gray” solutions
are allowed. In other words, for structural optimization case, it is necessary to obtain solutions with defined solid shapes.
However, for the bone regeneration case, the optimization is free to distribute the material in the domain with the best
configuration as possible, including densities values among0 and1.

The SIMP formulation is considered easy implementation in the context of a finite element program. There are
explicit procedures for evaluating the relative densities. This way, the resolution of the minimizing problem is facilitated
(Bendsoe, 2005; Muiños, 2001). However, the classical SIMP method can present numerical instabilities. For this reason,
the convergence of the method is prevented and it leads to distributions known as “checkerboard”.

For the bone regeneration model, another design variable is introduced to the optimization model. Because the exis-
tence of a preferred direction of bone growth, the variableθ is introduced. It is supposed that the mechanism of regener-
ation is free to replace the directions of the blades in any direction and quantity, for both macroscopic and microscopic
scales. In accordance with this theory, the physical properties in the directionθ are different values when compared
with the properties of others directions. The SOMP formulation can be understood as a SIMP model modified by using
orthotropic material models.

3.1 Finite element description

In this paper, is is supposed small displacement values and the loads acting on the material in the linear elastic field.
The elastic domainΩ is discretized by quadrilateral elements with linear shape functions (Cooket al., 2001; Reddy,
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1984). Using Galerkin’s method in the plane elasticity equations and takingδU as the admissible virtual variation of the
structural displacement vectorU, we can define the strain tensor operator applied to structural displacement variable, as
follows:

ε(U) = B(x, y)U (3)

whereB(x, y) is the differential operator to plane elasticity problem.
The tensor of stressσ is related with the tensor of strain by linear constitutive equation, in the following form:

σ(U) = C ε(U) (4)

whereC is the constitutive matrix.
In the equilibrium, the internal forces can be grouped in a integral formulation. For a finite element domainΩe, the

virtual internal workWi can be evaluated by Eq. (5).

Wi =
∫

Ωe

εt(δU)σ(U)dΩ (5)

Finally, substituting the Eq. (3) and (4) into (5), using a finite element approximation forU andδU and isolating the
elementary stiffness matrix, we obtain:

Ke =
∫

Ωe

Bt(x, y) C B(x, y) dΩ (6)

The Equation (6) is used to calculate the elementary contribution. Therefore, the global assemblage is performed and
a linear system problem is produced. In order to obtain the global displacementU, the linear equation system must be
solved for instance using numerical methods. In the next section, it is presented the particularities for the isotropic and
orthotropic formulations. The relevant constitutive relations are presented in Section 3.2.

3.2 Constitutive equations for elastic materials

In this work, it is assumed plane stress formulation. For isotropic material behavior, the constitutive matrix is done as:

C1 =
E

1− ν2




1 ν 0
ν 1 0
0 0 (1− ν)/2


 (7)

where the material properties are the Young ModulusE and the Poisson’s ratioν.
The orthotropic materials are composed by blades arranged in orthogonal directions as description in Fig. 1. A few

number of material constants are used to represent the constitutive matrix for orthotropic materials (Haftka and Gürdal,
1991).

Figure 1. The blade direction in the orthotropic material



Proceedings of PACAM XII
12th Pan-American Congress of Applied Mechanics - PACAM XII

January 02-06, 2012, Port of Spain, Trinidad

In this context, we introduceθ as the direction of blades to respect the global axisx. The constitute matrix for
orthotropic materials in a plane state is presented as follows:

C2 =




Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


 (8)

In Equation (9) through (14), it is presented the terms of the constitutive matrixC2.

Q̄11 = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ (9)

Q̄12 = (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12(sin4 θ + cos4 θ) (10)

Q̄22 = Q11 sin4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 cos4 θ (11)

Q̄16 = (Q11 −Q12 − 2Q66) sin θ cos3 θ + (Q12 −Q22 + 2Q66) sin3 θ cos θ (12)

Q̄26 = (Q11 −Q22 − 2Q66) sin3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos3 θ (13)

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66(sin4 θ + cos4 θ) (14)

where the orthotropic termsQ are calculated using the material constants measures in orthogonal directions 1-2. The
relations are presented as follows:

Q11 =
E1

1− ν12ν21
(15)

Q22 =
E2

1− ν12ν21
(16)

Q12 =
ν12E2

1− ν12ν21
=

ν21E1

1− ν12ν21
(17)

Q66 = G12 (18)

In the next section, it is presented a description of the SIMP and SOMP optimization models based on development
done by Sigmund (2001).

3.3 The Compliance Minimization Problem

The structural optimization can be applied under different approaches: minimization of stress, strain, weight, etc. The
minimization of the internal energy is proposed by Bendsoe and Kikuchi (1988) as equivalent to stiffness maximization.
In this work, the objective function is the compliance of the structural systemc(x). This optimization problem correspond
to determine the best material distribution that presents the bigger stiffness/weight ratio. Therefore, the objective function
in a finite element formulation can be written as:

Min c(x) = UtKU =
N∑

e=1
xp

eu
t
ekeue

such as:
V (x)/V0 = f
KU = F
0 < x < 1

(19)

whereU represents the nodal vector displacement,K is the global stiffness matrix,N is the number of elements in the
mesh,xe is the density of elemente, p is the penalty value,ue is the nodal vector displacement evaluated in the nodes
of the elemente, ke is the element stiffness matrix,f is the volumetric fraction of material,V0 is the initial volume of
material.

The optimization process is based on the gradient of the objective function value with respect to elementary densities
(optimality criteria method). The evaluation of the design variablesx is done by the algorithm as follows:

xnew
e =





max(xmin, xe −m)
ifxeB

η
e ≤ max(xmin, xe −m),

xeB
η
e

if max(xmin, xe −m) < xeB
η
e < min(1, xe + m),

min(1, xe + m)
if min(1, xe + m) ≤ xeB

η
e

(20)
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wherem is a positive limit number toxe, η works as damping factor. The functionBe indicates the direction of the
minimum solution and it defined as:

Be =
−∂c/∂xe

λ∂V/∂xe
(21)

whereλ is the Lagrange multiplier. In this context, the gradient function of the compliancec(x) is done by:

∂c

∂xe
= p xp−1

e ut
ekeue (22)

In order to overcome the checkerboard distribution problem, Sigmund (1997) introduces a new gradient function
calculated by using filtering properties, as described in Eq. (23).

∂̂c

∂xe
=

1

xe

N∑
f=1

Ĥf

N∑

f=1

Ĥfxf
∂c

∂xf
(23)

whereĤf is a convolution operator done by:

Ĥf = rmin − dist(e, f),
{f ∈ N/dist(e, f) ≤ rmin} , e = {1, ..., N} (24)

For the SOMP method, several meshes must be build to represent the behavior of each orthotropic blade. In Figure (2),
it is presented the several blade directions of the orthotropic material for optimization analysis using the SOMP method.

Figure 2. Several planes configurations for the orthotropic material optimization

In order to determine the global stiffness matrix for the SOMP optimization method, sub-elements matrices corre-
sponding to several direction blades are calculated. Therefore, the elementary stiffness matrix is update as:

Ke =
nb∑

i=1

Ke,θi (25)

whereKe,θi represents the sub-element matrix in the directionθi andnb is the number of available blades to model.

In this context, the optimization formulation presented can be considered appropriate since the cell system in regener-
ation acts constantly. This construction process has been demonstrated in several experimental studies (Cojín, 2001). In
the next section, the optimization methods are performed by numerical tests. A geometrical model of a typical femoral
bone is obtained and submitted to regeneration process analysis.



Proceedings of PACAM XII
12th Pan-American Congress of Applied Mechanics - PACAM XII

January 02-06, 2012, Port of Spain, Trinidad

4. NUMERICAL RESULTS

In this section, the numerical results of plane elastic domains for two material behaviors are presented. The SIMP
and SOMP methods were applied in order to determine the probably configuration of a femoral bone in regeneration after
implant procedure. In Figure (3), a typical radiography of femoral bone with metallic implant and boundary conditions of
domain are presented. By geometrical analysis, the dimensions of the bone domain were estimated. The external forces
were introduced based on typical values of body solicitations studies, but there is not accuracy about the contact model.
Therefore, the bigger loading situation on the bone was used.

Figure 3. Femoral bone domain and its boundary conditions

The first test consists in evaluate the bone regeneration process in a domain without the presence of implants. For
SIMP and SOMP model, it was removed 50% of initial volume material, the following results are obtained, as described
in Fig. (4).

(a) density distribution - SIMP method
volume reduction ratiof = 0.5

compliance valuec = 186.3

(b) density distribution - SOMP method
volume reduction ratiof = 0.5

compliance valuec = 225.5

Figure 4. Optimization results without implant presence.

For the second test, the implant presence case was analyzed. Firstly, the bone material was considered isotropic. The
optimization results are presented in Fig. (5). For the last test, the bone material was considered orthotropic and the
SOMP method was used. For this case, the optimization results are presented in Fig. (6).
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(a) density distribution - SIMP method
volume reduction ratiof = 0.5

compliance valuec = 211.9

(b) density distribution - SIMP method
volume reduction ratiof = 0.8

compliance valuec = 174.8

Figure 5. Optimization results with implant presence - Isotropic Material Behavior.

(a) density distribution - SOMP method
volume reduction ratiof = 0.5

compliance valuec = 256.1

(b) density distribution - SOMP method
volume reduction ratiof = 0.8

compliance valuec = 221.5

Figure 6. Optimization results with implant presence - Orthotropic Material Behavior.

It can be noted similar results for the SIMP and SOMP models. Global results were found for both models regarding
density distribution on the domain. However, the compliance values of optimal solutions are different. For the ortotropic
material case, it was used 10% of relative difference among the properties in the orthogonal directions. For the implant
presence case, it was obtained a relative diference of 26,7% on the SIMP and SOMP compliance results. The penalty
value used wasp = 3, and it is responsible to obtain the density distributions presented.

Due to some regions have presented density values lower to corresponding regions in the analysis without implant
presence, the need of new prosthesis design can be relevant. This way, the load on the bone should be differently trans-
mitted. Therefore, a new study can be performed: the topology optimization of the metallic implant.

5. CONCLUSIONS

In this work, a bone regeneration model as optimization process have been proposed. A geometrical configuration
obtained from computerized images was used to build the domain discretized by plane finite elements. In this context,
a femoral bone with metallic implants presence has been analyzed by several numerical tests. It was created a first
methodology to detect the recuperation of bone tissue systems. The main objective is select and evaluate the application
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of prosthesis in clinical cases. Therefore, the topology optimization can be a useful tool for aid the Medical Research
on the bone regeneration evaluation. This work has a qualitative aspect and the results make up some future researches
themes. Further works will include multi-physics modeling, three-dimensional analysis and studies about the governing
parameters of the bone regeneration mechanisms.
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