
 

 

 
 UNIVERSIDADE FEDERAL DO CEARÁ 

CENTRO DE TECNOLOGIA 

CURSO DE ENGENHARIA DE PETRÓLEO 

 

 

 

 

 

LIGIA TORNISIELLO 

 

 

 

 

 

 

A MODEL FOR PRELIMINARY DESIGN OF STEEL CATENARY RISERS USING 

BIO-INSPIRED ALGORITHMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

FORTALEZA 

2017 



 

 

LIGIA TORNISIELLO 

 

 

 

 

 

 

 

A MODEL FOR PRELIMINARY DESIGN OF STEEL CATENARY RISERS USING BIO-

INSPIRED ALGORITHMS 

 

 

 

 

 

 

 

Monography presented in the undergraduate 

course of Petroleum Engineering of the Centro 

de Tecnologia of Universidade Federal do Ceará, 

as a partial requirement for obtaining the title of 

Bachelor of Petroleum Engineering.  

 

Supervisor: Evandro Parente Junior 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FORTALEZA 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Dados Internacionais de Catalogação na Publicação  

Universidade Federal do Ceará  

Biblioteca Universitária  

Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a) 

___________________________________________________________________________ 
T638m   Tornisiello, Ligia.  

A model for preliminary design of steel catenary risers using bio-inspired algorithms / Ligia 

Tornisiello. – 2017.  

  79 f. : il. color.  

 

Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de 

Tecnologia, Curso de Engenharia de Petróleo, Fortaleza, 2017. 

Orientação: Prof. Dr. Evandro Parente Junior. 

 

1. Risers. 2. Otimização. 3. Algoritmos bio-inspirados. I. Título.  

CDD 665.5092 

 

___________________________________________________________________________ 

 

 

 

 

 

 



Balcão
Retângulo

Balcão
Retângulo

Balcão
Retângulo



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To God. 

To my parents, Nivaldo and Leni, for their 

endless love.  



 

 

ACKNOWLEDGEMENTS 

 

To my parents, José Nivaldo Tornisiello and Leni Aparecida Sbravatti, who have 

always believed in my potential and supported me in all decisions during my academic life. I 

salute you for the confidence, encouragement, for providing me good education and teaching 

me the value of hardwork. To my brother, Rodrigo, for the friendship.  

To my boyfriend, Bruno, for the companionship and motivation throughout these 

years and for the opportunity of sharing great experiences, from the exchange studies to the 

leadership of the board of directors of the Society of Petroleum Engineers student chapter at 

UFC.  

To my supervisor, Evandro Parente Junior, for all the knowledge transmitted along 

the eighteen months of development of the research and for the excellent orientation. 

To the professors of the examining board, Antônio Macário Cartaxo de Melo and 

Pedro Felipe Gadelha Silvino. 

To the colleagues of Laboratório de Mecânica Computacional e Visualização 

(LMCV), in special, Juliana, Elias, Guilherme, Luana and Marina who directly helped me in 

some stage of the development of this research.  

To CNPq and ANP/UFC PRH-31 for the financial support. 

To CAPES and the Ministry of Education of Brazil, for the scholarship that I was 

granted. The experiences lived at Missouri University of Science and Technology and at the 

University of Texas at Austin were fundamental to improvement in technical knowledge and 

likewise important to my personal growth and maturity. 

To my classmates, Lara, Milena, Bruna, Matheus and Renan, for the moments 

shared during the disciplines and entertainment outside of the class. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“If four things are followed – having a great aim, 

acquiring knowledge, hard work, and 

perseverance – then anything can be achieved.” 

A. P. J. Abdul Kalam 



 

 

ABSTRACT 

 

Risers are tubular structures used in offshore production systems to convey the fluids from the 

wellhead at the seabed to a floating platform on the sea surface. They can be fabricated with 

distinct materials, from various grades of steel to titanium and composite materials. 

Furthermore, these structures can be installed in different configurations, from free-hanging 

catenary to configurations that include floating elements. Independent of the material and 

configuration, all risers are subjected to diverse types of loadings, including hydrostatic internal 

and external pressures, weight and buoyancy, weight of internal fluid, waves, currents, and 

vessel motion. The design of a riser is very time consuming, since a large number of parameters 

(e.g. thickness, top angle, and material properties) are involved and tight safety requirements 

must be met. This leads to the study of tools, such as optimization algorithms, that can speed 

up the process of elaborating a feasible riser design for certain conditions. Considering that 

some of the parameters in the design of a riser can assume a discrete set of values, the utilization 

of mathematical programming algorithms becomes unfeasible. It is then necessary to use 

metaheuristic algorithms, such as Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO). In this context, this work presents a study on the application of bio-inspired algorithms, 

including GA and PSO, to the design optimization of steel catenary risers. The problem consists 

of finding the riser material and wall thickness that minimize the riser cost, in conformance 

with the requirements of technical standards. An inextensible cable model is utilized for riser 

analysis in the static and quasi-static loading cases. Based on the potential of the association of 

surrogate models with optimization algorithms, a surrogate model for the prediction of the 

dynamic amplification factor was developed in this work to be utilized in lieu of dynamic 

analysis. The main hypotheses that were adopted are presented, along with the description of 

the methodology employed for the construction of the surrogate model, including the selection 

of the variables, the design of the experiments, model training and validation. The efficiency of 

the utilized algorithms in finding an optimum riser design for the specified conditions is 

confirmed by the obtained numerical results. Assuredly, the main contribution of this work is 

the development of a model for preliminary design of steel catenary risers that reduces the 

dependence on the designer’s experience and allows this activity to be conducted within an 

acceptable execution time.  

 

Keywords: Risers. Optimization. Bio-inspired algorithms. 



 

 

RESUMO 

 

Risers são estruturas tubulares utilizadas em sistemas de produção de petróleo offshore para 

transportar os fluidos produzidos da cabeça do poço no solo marinho a uma unidade flutuante 

no nível do mar. Essas estruturas podem ser fabricadas com diferente materiais, incluindo 

diversos tipos de aço, titânio e materiais compósitos, e instalados em diversas configurações, 

desde catenária livre a configurações que incluem elementos flutuantes. Independente do 

material e configuração, todos os risers estão sujeitos a diversos carregamentos, incluindo 

pressão hidrostática interna e externa, peso próprio e empuxo, ondas, correntes e movimento da 

plataforma (offset). O projeto de um riser envolve muitos parâmetros, considerando também 

aspectos relacionados a segurança. Então, a seleção de um riser com desempenho estrutural 

aceitável para determinado cenário pode se tornar um processo exaustivo, e, portanto, deve ser 

tratado como um problema de otimização. A utilização de algoritmos de programação 

matemática não é viável nesse caso, pois alguns dos parâmetros do design de um riser podem 

assumir valores discretos. É necessário então utilizar algoritmos metaheuristicos, como 

Algoritmos Genéticos (AG) e Otimização por Enxame de Partículas (PSO). Nesse contexto, 

esse trabalho apresenta um estudo da aplicação de algoritmos bio-inspirados, incluindo AG e 

PSO, para otimização de risers de aço em catenária. O problema consiste em encontrar o 

material e espessura de parede que minimizam o custo do riser, em conformidade com os 

requerimentos de normas técnicas. A análise do riser nos casos de carga estáticos e quase-

estáticos é feita utilizando um modelo de cabo inextensível. Baseado no potencial de associação 

de metamodelos e algoritmos de otimização, um metamodelo para previsão do fator de 

amplificação dinâmica foi elaborado nesse trabalho para substituir as análises dinâmicas. As 

hipóteses adotadas serão apresentadas, juntamente com a descrição da metodologia para 

elaboração do metamodelo, incluindo a seleção das variáveis, o projeto de experimentos, 

treinamento e validação do modelo. A eficiência dos algoritmos em encontrar um projeto ótimo 

de riser para as condições especificadas é confirmada com os resultados dos exemplos 

numéricos. Certamente, a maior contribuição desse trabalho foi a elaboração de um modelo 

para projeto preliminar de riser de aço em catenária que reduz a dependência da experiência do 

projetista nessa atividade e permite que o pré-dimensionamento seja realizado em um tempo de 

execução aceitável. 

 

Palavras-chave: Risers. Otimização. Algoritmos bio-inspirados. 
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1 INTRODUCTION 

 

Risers, which are key elements in offshore production systems, along with other 

technological innovations, have evolved and enabled the production of oil and gas in deepwater 

fields. In such environments, riser design is complicated by some critical parameters: thicker 

walls are required due to high hydrostatic pressure, which results in heavier riser and higher 

cost; the currents can lead to vortex-induced-vibrations (VIV); design of complementary 

components of attachment of the riser to the host vessel may be necessary to accommodate 

movements of the vessel due to wave action; significant heave motions from host platform leads 

to fatigue damage (RUSWANDI, 2009).  

The failure of these structures may represent serious environmental and safety risks; 

therefore, it is necessary to establish a high degree of reliability for riser design. Design 

requirements are addressed in standards and recommended practices, such as the ones from Det 

Norske Veritas (DNV), the American Petroleum Institute (API) and the American Bureau of 

Shipping (ABS), which provide general guides to design, construction and installation of risers 

for offshore applications.  

Since riser design is performed in many stages and the traditional methodology is 

based on trial and error, it is considerably dependent on the designer’s experience. Hence, the 

problem of elaborating a feasible riser for certain scenario may be treated as an optimization 

problem. Due to the presence of discrete variables (e.g. type of material and thickness), the 

utilization of gradient based optimization methods (Mathematical Programming) is not suitable. 

Therefore, the main objective of this work was the elaboration and implementation 

of a model for preliminary design of steel catenary risers. Based on the literature review, wall 

thickness and material of the riser (which can be made up of one or more segments) were 

defined as the optimization variables. Instead of using a structural analysis software, a 

simplified model for static analyses of risers was adopted in the optimization model. In a 

comparison study, the results obtained with the inextensible cable model and Finite Element 

analysis, demonstrated the adequacy and accuracy of this this simplified analysis model.  

For refinement of the model, a surrogate for prediction of the dynamic amplification 

factor was developed in this work to be utilized in lieu of the dynamic analysis. Given that 

many individuals are evaluated during an optimization procedure and the number of loading 

cases that needs to be considered can be large, the choice of the surrogate modelling approach, 

instead of an automated routine to perform dynamic analysis in a marine analysis software, 
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proved to be adequate for preliminary design of steel catenary risers. 

This work is organized as follows. Initially, risers material and configurations are 

briefly reviewed, and the main stages of riser design and the technical standards and 

recommended practices are discussed (Chapter 2). The developed optimization model, 

including the functioning of the chosen algorithms, the model parameters, variables, objective 

function, constraints, analyses procedure, and its implementation are detailed in Chapter 3. 

In Chapter 4, the procedure of the elaboration of the surrogate for the dynamic 

amplification factor is detailed. A concise discussion of design of experiments, number of 

samples, metamodeling techniques, model training and validation is included. The effectiveness 

of the proposed optimization model is illustrated with some examples in Chapter 5, also 

demonstrating its flexibility in terms of problem definition. The final remarks and suggestions 

for future work are included in Chapter 6. 
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2 RISERS 

The exhaustion of the most profitable and easily accessible resources of oil and gas 

motivated the industry to focus on exploration and development of new reservoirs located 

offshore in deep water (from 400 to 1500 m water depth) and ultra-deepwater (water depths of 

more than 1500 m). In order to make production of oil and gas in such deepwater fields 

profitable and possible, the industry had to look for technological innovation for the facilities 

used in the different stages of the production, which should be able to stand the high pressures 

and low temperatures of these hostile environments. For instance, new platforms, drilling 

technology, risers and pipelines were developed to comply with the requirements imposed by 

deepwater fields. 

2.1 Riser types – materials and configurations 

 

A riser is a “pipe that connects an offshore floating production structure or a drilling 

rig to a subsea system either for production purposes such as drilling, production, injection and 

export or for drilling, completion and workover purposes” (TENARIS, 2017). In respect of 

materials, there are essentially two kinds of risers, namely flexible risers and rigid risers.  

Flexible risers are multiple-layer pipes, with alternate plastic and metallic layers 

with different structural functions.  As illustrated on Figure 1, the flexible riser structure 

typically contains an internal sheath that acts as internal fluid containment barrier, several 

tensile steel layers and pressure reinforcement layers, and an external layer that acts as external 

fluid barrier (CHAKRABARTI, 2005). This combination of sheaths with different properties 

and functions allow this type of riser to be, at the same time, lightweight, resistant and flexible. 

However, the cost of flexible risers is usually high. 

On the other hand, rigid risers are composed of pipe sections of rigid material (steel, 

titanium, fiber reinforced composites) that are welded together or coupled together by 

mechanical connectors located on the ends of each pipe section (e.g. threaded connectors, 

flanged connectors), which make them easier to be fabricated, and, consequently less expensive 

than flexible risers. A variety of materials can be used in the manufacture of this type of riser, 

ranging from carbon steel (API 5L – grade B to X70 or superior) to ferritic, austenitic, 

martensitic or duplex stainless steel (BAI, Y.; BAI, Q., 2005). Other alternatives, such as 

titanium and composite made of carbon fibers have been considered, but the main disadvantage 

of these materials is the high cost and complexity in manufacture. 
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Figure 1. Typical cross section of flexible pipe 

 
Source: Y. Bai and Q. Bai (2010). 

 

 The selection of material grade is a critical stage of the riser design and it should 

take into consideration the cost, the resistance to corrosion effects, weight requirements and 

weldability. The choice of the material grade has cost implications on fabrication, installation 

and operation of the riser. The resistance and cost of fabrication are higher for higher grade 

steels. However, selecting a higher grade steel may allow a reduction of riser wall thickness, 

leading to a reduction of weight and tension, and consequently a reduction in riser fabrication 

cost.  

For some of the more sophisticated steels, there are some difficulties in welding the 

pipe sections, which can delay the installation process and increase the cost of installation of 

risers made of higher grade steel when compared to lower grade steel riser. Furthermore, 

depending on the fluid that is going to be conveyed, the riser can be subjected to erosion and 

corrosion, and the adequate material should be selected in order to assure that such problems 

do not affect the operation of the riser (BAI, Y.; BAI, Q., 2005). 

Risers are one of the most complex aspects of a deepwater production system and 

they can be installed in different configurations, which range from free catenary to 

configurations that include floating elements (Figure 2). Riser configuration design is 

performed according to production requirements and site-specific environmental conditions, 

such as water depth, host vessel motion characteristics, number and type of risers and mooring 

layout and environmental data.  

In the lazy-wave and steep-wave configurations buoyancy modules are added along 

a section of the riser, while in lazy-S and steep-S configurations the lateral movement is limited 

by the utilization of a subsea buoy fixed to a structure at the seabed or positioned by chains 

(Figure 3). Because of the complexity in the installation, lazy-S and steep-S configurations are 

usually considered only when catenary and wave configurations are not suitable for the 
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particular field (LEFFLER; PATTAROZZI; STERLING, 2003). 

 

Figure 2. Riser systems overview 

 
Source: Y. Bai and Q. Bai (2010). 

 

Figure 3. Riser configurations with buoyancy modules. 

 
Source: Leffler, Pattarozzi and Sterling (2003). 

 

A buoyant free standing riser is a type of hybrid riser that has a vertical section of 

rigid metal riser connected to a subsea buoy below wave action zone and a flexible line that 

interconnects the rigid section and the host platform (Figure 4). This characteristic allows this 

type of riser to accommodate relative motion between floating structure and rigid riser. Free 

Standing Hybrid Risers (FSHR) are also relatively insensitive to motion induced fatigue 

(RUSWANDI, 2009). 

Free hanging catenary configuration, in which the riser is fixed at the top end to a 

vessel and extends freely to the soil (Figure 5), is the simplest and easiest configuration to install 

and maintain. Steel Catenary Risers (SCRs) are cost-effective alternatives for production of oil 

and gas and water injection lines on deepwater fields, where flexible risers are not feasible due 

to economic and technical limitations (BAI, Y.; BAI, Q., 2010). Despite these advantages, SCRs 

are highly sensitive to environmental loading (due to waves and currents) which results in 
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fatigue issues in the touchdown zone (TDZ). 

 

Figure 4. Buoyant free standing riser 

 

Source: Ruswandi (2009). 
 

Figure 5. Free hanging catenary riser 

 

Source: API (1998). 

 

2.2 Design aspects 

 

Given its fundamental functions during all phases of field development (from 

drilling to production) risers represent key elements in offshore production systems. As can be 

seen on Figure 6, these structures, along with flowlines, represent 12% of capital expenditures 

(CAPEX) of subsea development project in deepwater fields (BAI, Y.; BAI, Q., 2010). 

Moreover, risers are key elements in providing safety. In case of failure of these structures, oil 

spillage and pollution may occur and lives may be endangered (such as in the accident of 

Ekofisk Alpha platform in 1975 in which riser rupture occurred (VINNEM, 2007)). Therefore, 

it is necessary to establish a high degree of reliability for riser design. 
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Figure 6. Deep water subsea CAPEX 

 
Source: Y. Bai and Q. Bai (2010). 

 

Riser design is performed in many stages, which are summarized in Figure 8. 

Initially, all the data and conditions for the design of a riser system are specified for the setup 

of the design basis. Applied codes and standards, design criteria, environmental conditions, 

design loads and safety factors are defined in this document. A design criterion is used to verify 

if the designed riser is capable of withstanding all loads anticipated over its specified design 

life.  

In a preliminary front-end engineering design (FEED) phase, riser host layout, 

location, spacing and azimuth are defined. Then, general sizing of the riser is conducted. 

Internal diameter sizing is a complex stage and it is a function of the production characteristics 

of each well, such as flow rate, fluid composition and pressure (TANAKA, 2009). Riser wall 

thickness sizing is performed based on checks for burst, collapse and combined loads criteria, 

in accordance with technical standards. For SCRs in deepwater fields, thicker walls are required 

due to high hydrostatic pressure, which results in heavier riser and higher cost.  

Material selection will be influenced by reservoir properties (e.g. pressure and 

temperature), fluid characteristics (e.g. corrosive fluids), weldability, weight requirements, as 

mentioned before. The characteristic of high-pressure high-temperature (HPHT) wells may 

result in de-rating of material steel strength and care has to be taken when selecting the material 

for such cases. 

The loads to be considered in the design of riser systems include pressure loads, 

functional loads, environmental loads and accidental loads. The pressure loads are due to the 

combined effect of hydrostatic internal and external pressures. Functional loads are the ones 

that occur as a consequence of the physical existence of the system and its operation. These 

include weight and buoyancy of the riser and weight of internal fluid. The environmental loads 

are imposed directly or indirectly by the ocean environment (waves and currents). The current, 
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which varies in direction and intensity with depth, acts along the entire riser length. Moreover, 

current and waves have effect over the platform, resulting in shift in its position, which is 

referred as offset.  

Structural analysis are conducted to check the integrity of the riser under all load 

combinations. First, static analyses are conducted to determine the equilibrium profile of the 

riser under the combined effects of self-weight, buoyancy and vessel offset. These analyses are 

derived for near, mean and far locations of the host platform. Results for effective tension, 

bending moment, von Mises stress and riser configuration are obtained in the static analysis 

and used in design code checking. Then, dynamic analyses are conducted to account for the 

effect of waves over the riser. 

Both waves and currents are classified in centenary (100 years), decennial (10 years) 

and annual (1 year) waves/currents, according to their return periods. The environmental 

condition is more rigorous for waves and currents with higher return period. The loading cases 

considered in dynamic analyses are combinations of centenary waves and deccenial currents 

and vice versa. The risers can be analyzed using regular wave approach, frequency domain 

random wave approach or time domain wave approach (BAI, Y.; BAI, Q., 2005). 

The response amplitude operator (RAO) of the floating facility is an important 

input for the dynamic analysis, since it describes how the floating facilities respond to the action 

of the waves. The RAOs depend on the characteristics of the floating facility (e.g. tension leg 

platforms and semisubmersibles have different sensitivities to waves). Floaters have six degree 

of freedom: surge, sway, heave, roll, pitch and yaw, as shown in Figure 7 (KONGSBERG, 

2017). 

 

Figure 7. Floater motions 

 
Source: Kongsberg (2017). 

 

Fatigue damage occurs under the action of cyclic loads that happen during 

fabrication, installation and operation phases, due to collisions, temperature and pressure 

variations, internal fluid slugging effects, but most importantly because of the action of waves, 
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currents, winds and floater motions (DNV, 2010b). The fatigue life is defined as the number of 

stress cycles at a particular magnitude required to cause fatigue failure (DNV, 2011) but is 

commonly expressed in number of years based on the number of occurrence of the stress cycles 

per year. Traditionally, SCRs are designed for 25 years or more with a safety factor of 10 to 

cover all the uncertainties (QUEÁU, 2015). 

The general procedure for deterministic fatigue analysis reported in DNV RP-C203 

(2011) is summarized as follows. First, the entire wave scatter diagram is divided into 

representative blocks with one associated sea state per block that constitutes the loading and 

represents all the sea states within this block. The stress range, generated under the action of a 

sea state, is used along with a S-N curve to determine the number of cycles that would lead to 

failure under this loading condition and the damage for each sea state is calculated. This 

procedure is repeated for every selected sea state for the blocks of the wave scatter diagram and 

then the individual damages are accumulated using the Palmgren-Miner rule to obtain the total 

damage ratio. Finally, the fatigue life of the riser is calculated as the inverse of the total damage 

ratio. 

Then, interference and clashing analysis is performed to evaluate the potential 

interference between: different production risers, production riser and drilling riser, riser and 

mooring lines, riser and umbilicals, riser and offshore installation, riser and any other 

obstructions. Local analyses are to be conducted in order to check if clashing involving risers 

may occur and to ensure the integrity of the structures if it occurs (ABS, 2014). 

The next step in the riser design comprises an installation analysis. The pipes for 

steel risers usually arrives in 40-foot (12.2 meters) sections that are butt-welded together or 

mechanically coupled to form the line and installed by pipeline laying vessels that follow one 

of the following installation methods: S-lay, J-lay, reel-lay or tow-in (LEFFLER; 

PATTAROZZI; STERLING, 2003). The installation analysis is conducted to determine limiting 

conditions for installation procedures and takes into consideration issues such as load capacity 

and positioning capacity of installation vessel; interference between the riser in installation and 

other already-installed risers, mooring lines and umbilicals (ABS, 2014). 

Finally, design of complementary components of the subsea riser system, such as 

connector, VIV suppressors, cathodic protection system, is performed. 
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Figure 8. Riser Design Flowchart 

 
Source: ABS (2014). 
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2.3 Design codes 

 

A riser shall be designed to answer the specific needs of a project in accordance 

with technical standards. The most renowned standards and recommended practices for riser 

design were elaborated by the American Society of Mechanical Engineers (ASME), Det Norske 

Veritas (e.g. DNV-OS-F101, DNV-OS-F202, DNV-RP-F204), the International 

Standardization Organisation (ISO) or the American Petroleum Institute (e.g. API 5L, API RP 

2RD) (FROUFE, 2006). These standards are referenced throughout this work. 

Two design methods that may be applied in riser design are: Working Stress Design 

(WSD) and Load and Resistance Factor Design (LFRD). The main difference between these 

methodologies is that the WSD considers a central safety factor for each limit state to account 

for uncertainties originated from different causes, while the LFRD separates the influence of 

uncertainties by means of partial safety factors. Then, the WSD is considered as a more 

conservative design method, while the LFRD allows a more flexible design with uniform safety 

level (DNV, 2010a). 

This work follows the standards and recommended practices of DNV, which will 

be discussed herein. According to DNV-OS-F201, the limit states are classified as: 

- Serviceability Limit State (SLS) requires that the riser must be able to remain in 

service and operate properly when subjected to operational loads; 

- Ultimate Limit State (ULS) requires that the riser must remain intact and avoid 

rupture, but not necessary be able to operate; 

- Accidental Limit State (ALS) requires that the riser must remain intact and avoid 

rupture when subjected to accidental loads; 

- Fatigue Limit State (FLS) requires that the riser must remain fit to function during 

its service life due to accumulated excessive fatigue crack growth or damage under cyclic 

loading. Three major issues that can cause fatigue damage include first order wave loading and 

associated floater motion, second order floater motion and VIVs due to current.  

In ULS, the riser shall be designed against bursting, buckling and combined loading 

criteria. To avoid bursting (rupture of the pipe wall due to internal overpressure), riser shall be 

designed to satisfy the following condition at all cross sections: 

 (1) 
SCm

b
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P
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where Pli is the local incidental pressure, Pe is the external pressure, γm is the material resistance 

factor that accounts for material and resistance uncertainties (Table 1), γSC is the safety class 

factor (Table 2), Pb is the burst resistance given by:  

 (2) 

where t is the riser wall thickness, D is the riser outer diameter, fy is the yield strength given by: 

 

(3) 

where SMYS is the specified minimum yield stress at room temperature based on the 

engineering stress-strain curve, fy,temp is the temperature de-rating factor for the yield stress and 

αU is the material strength factor (Table 4). The fu is the tensile strength given by: 

 

(4) 

where SMTS specified minimum tensile strength at room temperature based on the engineering 

stress-strain curve and fu,temp is the temperature de-rating factor for the tensile strength. Values 

for the temperature derating factors for yield stress and tensile strength can be found on DNV-

OS-F201 (2010), accordingly to riser material and temperature of operation. 

The local incidental pressure can be calculated at each riser cross section as: 

 (5) 

where Pd is the design pressure (maximum surface pressure during normal operations), ρint is 

the density of the internal fluid, g is the gravity acceleration, and h is the hydrostatic column at 

the specified riser cross section. 

 

Table 1. Material resistance factor 

γm 

ULS, ALS 1.15 

SLS, FLS 1.00 

Source: adapted from DNV (2010a). 

 

Table 2. Safety class resistance factor 

γSC 

Low 1.04 

Normal 1.14 

High 1.26 

Source: adapted from DNV (2010a). 
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Table 3. Classification of safety classes 

Safety class Definition 

Low 
Where failure implies low risk of human injury and minor 

environmental and economic consequences. 

Normal 

For conditions where failure implies risk of human injury, 

significant environmental pollution or very high economic or 

political consequences. 

High 
For operating conditions where failure implies high risk of 

human injury, significant environmental pollution or very high 

economic or political consequences. 

Source: adapted from DNV (2010a). 

 

Table 4. Material strength factor 

αU 

Normal 0.96 

Supplementary requirement 1.00 

Source: adapted from DNV (2010a). 

 

To avoid buckling (rupture of the pipe wall due to external overpressure), riser shall 

be designed to satisfy the following condition at all cross sections: 

 (6) 

where Pmin is a minimum internal pressure, PPr is the resistance against buckling propagation, 

γc is a factor that assumes the value of 1.0 if no buckle propagation is allowed. The resistance 

against buckling propagation PPr is given by: 

 (7) 

where αfab is a fabrication factor that assumes the value of 0.85 in the worst scenario. If the pipe 

design is sufficient to meet the above propagation criterion, the system hoop buckling (collapse) 

criterion is also met.  

To guarantee riser integrity under combined loading, the following conditions shall 

be respected in case of net internal overpressure and net external overpressure, respectively: 

 (8) 

 (9) 
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where Ted is the design effective tension, Tk is the plastic axial force resistance, Md is the design 

bending moment, Mk is the plastic bending moment resistance, Pld is the local internal design 

pressure and Pc is the hoop buckling resistance. 

The plastic axial force resistance Tk is given by: 

 

(

(10) 

and the plastic bending moment resistance Mk is given by 

 

(

(11) 

where αc is a parameter accounting for strain hardening and wall thinning given by: 

 

(

(12) 

where 

  

  

The design effective tension Ted is given by:  

 

(

(13) 

where γF, γE, γA are the load effect factors for functional, environmental and accidental loads 

respectively (Table 5), TeF, TeE, TeA are the effective tension from functional, environmental and 

accidental loads, respectively.  

The design bending moment Md is given by: 

 

(

(14) 

where MF, ME, MA are the bending moment from functional, environmental and accidental 

loads, respectively.  
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Table 5. Load effect factor 

Limit state γF γE γA 

ULS 1.1 1.3 NA 

FLS 1.0 1.0 NA 

SLS, ALS 1.0 1.0 1.0 

Source: adapted from DNV (2010a). 

 

The hoop buckling resistance Pc is calculated from: 

 

(

(15) 

where fo is the ovality, Pp is the plastic collapse pressure and Pel is the elastic collapse pressure. 

This equation has the following analytical solution (DNV, 2013): 

 

(

(16) 

where 

 

The plastic collapse pressure Pp is given by: 

 

(

(17) 

The elastic collapse pressure Pel is given by:  

 

(

(18) 

where E is the Young’s Modulus and ν is the Poisson’s ratio. 

  

t

D
fppppppp pelcpcelc 0

22 ))(( 

1

3
cp y b 

2

0

2

2

3

1

3

1 1

3 3

1 2 1

2 27 3

cos

60
2 cos

3 180

el

p el p

el p

b p

D
c p p p f

t

d p p

u b c

v b bc d

v

u

y u



 



 

 
   

 



 
   

 

 
   

 

 
  

 

 
    

 

fabyp f
D

t
p 2

2

3

1

2













D

t
E

pel



29 

 

3 RISER OPTIMIZATION  

 

The utilization of optimization procedures in the field of Petroleum Engineering 

has been increasing recently, such as in the optimization of production operations (WANG, 

2003; WANG; FENG; HAYNES, 2015), optimization of waterflooding management 

(HOROWITZ; AFONSO; MENDOÇA, 2013), optimization of artificial lift systems such as 

electric submersible pumps (ADHAV; SAMAD; KENYERY, 2015), riser optimization 

(LARSEN; HANSON, 1999; PINA et al., 2011; VIEIRA; LIMA; JACOB, 2012; SILVA et al., 

2013; TANAKA; MARTINS, 2007; DE ANDRADE et al., 2010), and other problems.  

The objective of an optimization procedure is to find not only a satisfactory solution, 

but an optimal solution that minimizes a cost function and respects all safety criteria and 

fabrication constraints. The optimization algorithms can be deterministic (such as Linear 

Programming and Sequential Quadratic Programming) or random (such as Genetic Algorithm, 

Particle Swarm Optimization, and Simulated Annealing). Deterministic algorithms require 

continuous and differentiable objective and constraint functions in the search domain. However, 

this is not the case for most of the engineering applications. For these cases, algorithms such as 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), which are included in the 

class of bio-inspired algorithms, may be utilized. 

Larsen and Hanson (1999) developed a methodology for optimization of steel 

catenary risers considering only static scenarios. The design variables chosen by the authors 

were the length and thickness of riser segments and the horizontal distance from lower to upper 

end of the riser at far position. Since the variables were considered as continuous, a Sequential 

Quadratic Programming (SQP) scheme was adopted. For the global riser analysis, initially an 

approximated solution is found by catenary theory, and this solution is then applied as starting 

point for a finite element method. The objective was to minimize the riser total cost and 

restrictions related to design variables bounds, global geometry (sum of the segments must 

exceed the length of a straight line between the ends of the riser), minimum riser length in 

contact with the seafloor, maximum equivalent stress and local buckling capacity are considered. 

The numerical examples presented by the authors demonstrated the usefulness of optimization 

tools for the design of catenary risers. 

With the objective of defining the best values and variation behavior of the set of 

parameters of the PSO algorithm, Pina et al. (2011) developed a methodology for the 

optimization of steel lazy-wave riser connected to platform by a flex-joint. The riser analysis is 

performed using a catenary solver. The design variables are the lengths of top riser segment, 
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riser segment with distributed floater, lower riser segment and buoy length, buoy diameter and 

buoy spacing. The objective function is the total cost of the riser. Restrictions of maximum 

equivalent von Mises stress, maximum angle between riser axis and the vertical direction at the 

connection with the platform, maximum “built in” angle (dictated by the design of the flex 

joint), maximum tension at riser top and minimum tension at the riser bottom are considered. 

For a numerical example considering only static load cases, PSO and some of its variants were 

tested. As the result of the employed methodology, the authors were able to tailor a PSO 

algorithm for the design of steel lazy-wave risers and developed a user-friendly optimization 

tool. 

In order to perform a more extensive comparison between different optimization 

strategies based on evolutionary concepts, Vieira, Lima and Jacob (2012) adopted the same 

model developed by Pina et al. (2011), but tested other algorithms, such as GA, Genetic 

Algorithm with Adaptive Fuzzy Fitness Granulation (AFFG) and Artificial Immune System 

(AIS). As exposed by the authors, the main purpose of the AFFG technique is to reduce the 

number of fitness evaluations during the optimization process with the GA, replacing expensive 

exact evaluations by an approximation model. On the other hand, AIS follows ideas taken from 

immunology to develop computational systems capable of performing different tasks such as 

optimization, data analysis and machine learning. In AIS, the antibodies are the candidate 

solutions of the problem, and their quality is called affinity. On the example illustrated by the 

authors, a better performance was obtained with the AIS variants, closely followed by the PSO. 

Silva et al. (2013) proposed a methodology for the optimization of composite 

catenary risers subjected to multiple load cases. The design variables considered in the model 

were the thickness and fiber orientation of each layer of the composite. The layup was 

considered constant along the riser, since considering different properties along the riser length 

would lead to increased computational cost. The riser analysis was performed in global and 

local levels. For the global analysis, an analytical catenary solver was used. For the local 

analysis, the classical lamination theory was adopted. The objective was to minimize the cross 

sectional area of the riser. To verify the strength of the metallic liner, von Mises failure criterion 

was employed, while for the strength verification of the composite layers, maximum stress or 

Tsai-Wu failure criteria was adopted. The methodology was implemented in MATLAB 

(MATHWORKS, 2010) and three different optimization algorithms were considered: SQP, 

Penalty Function (PF) approach and GA. From the tested numerical examples, the authors 

concluded that the SQP for continuous variables was the most efficient, while GA was the most 

time consuming, but GA solutions had greater diversity, presenting more choices to the designer. 
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Tanaka and Martins (2007) developed a model for optimization of steel risers for 

free-hanging catenary and lazy wave configurations considering dynamic loads. For this 

purpose, it was considered that the riser had three segments and the lengths of these segments 

were the design variables. The floater thickness of the second segment was also a design 

variable. Materials, inner and outer diameters of the segments were considered as given. The 

riser analysis for static problem was based in the direct integration of the differential equations 

which govern the behavior of the riser without bending stiffness (EI = 0), via a Runge-Kutta 

method. For dynamic analysis, a finite element model was used. Since simulations of dynamic 

conditions can slow down the optimization process, only one extreme dynamic condition was 

considered on the examples illustrated by the authors. The objective function chosen by the 

authors was the maximum stress amplitude of the dynamic problem solution. This choice of 

objective function was motivated by the fact that performing actual fatigue calculation during 

the optimization would be computationally too costly. Then, by minimizing such stress, the 

authors expect that the fatigue life would be maximized. Based on standard design practices, 

constraints on minimum tension along the riser, minimum curvature radius and maximum stress 

were defined. The optimization algorithm chosen by the authors was GA.  

An optimization procedure for steel lazy wave riser configuration for spread 

moored FPSOs was developed by De Andrade et al. (2010) considering riser segments lengths, 

top angle and buoy diameter, spacing and length as design variables. Before proceeding to the 

optimization, the authors conducted extensive extreme load analysis of the risers for all the 

involved load cases and identified the most critical riser configuration and the most critical 

environmental condition associated. The riser analysis was performed with the software 

ANFLEX (PETROBRAS, 2001). A multiobjective formulation was adopted by the authors with 

the objective of minimizing floater volume, tension force at the riser top and code criteria by 

DNV. The constraints applied were related to geometric limits and criteria defined in DNV-OS-

F201. The optimization was carried out using the software modeFRONTIER (ESTECO, 2009) 

and the chosen algorithm was the Non-dominated Sorting Genetic Algorithm II (NSGA-II). It 

is important to note that the optimization process was performed primarily to search for 

configurations that met the extreme load analysis criteria, while the VIV and installation 

analyses were performed outside the optimization process. The installation analysis was 

performed focusing on identifying the maximum tension forces, maximum stresses and 

verification of compression during the riser installation procedure.  The VIV analysis was 

performed using Shear7 (VANDIVER, 2007) to identify fatigue damage at the touch down point 

(TDP) and to determine the extension of the riser that would need VIV suppressors. By adopting 
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this methodology, the authors confirmed that such optimization technique reduces the effort of 

generating preliminary steel lazy wave riser configurations that meet design code criteria. 

In this work, an optimization model for SCRs was developed. This chapter will 

discuss the details of the developed optimization model, including the functioning of GA and 

PSO, and the model parameters, variables, objective function, constraints and analyses 

procedure, and its implementation.  

3.1 Optimization algorithms 

 

3.1.1 Genetic Algorithms 

 

The Genetic Algorithms, first studied by John Holland in the 1970’s, is based on 

the ideas of natural selection proposed by Darwin and genetic heritance proposed by Mendel 

(ARORA, 2012). According to Darwin’s theory, the individuals that are most adapted to the 

environment have greater chances of transmitting their genetic characteristics to the next 

generations, while the least adapted individuals tend to disappear.  

In this optimization algorithm, individuals represent possible solutions of the 

optimization problem, and these are subjected to natural evolution, genetic recombination and 

mutation, which will be discussed later. In the context of riser optimization, it means that each 

individual represents a set of data that defines certain riser design in the domain of the problem 

solutions, and this data is encoded in the individual’s chromosomes. Furthermore, the set of 

individuals, which evolves throughout the generations, corresponds to the population.  

In respect to riser optimization, the determination of the quality of a possible 

solution, which represents the individual fitness, requires the execution of an analysis procedure 

for the determination of the riser response and the calculation of the constraints. The individuals 

with higher fitness – corresponding to the best solutions of the optimization problem – are able 

to pass their genetic material (the encoded riser data) to the next generations, while the 

individuals with lower fitness – corresponding to improbable riser designs – tend to disappear. 

In the functioning of the algorithm (summarized in Figure 9), the random generation 

of a population of individuals is the first step. In this step, an important parameter is the 

population size, which defines the number of individuals that will be evaluated in each 

generation. Although an increase in the population leads to a better exploration of the search 

space, the computational cost will increase, since more individuals (i.e. designs) will be 

analyzed. 
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Then, the fitness of each individual of the population is calculated based on the 

penalized objective function of the problem. In a minimization problem, as is the case in this 

work, individuals with lower values for the objective function have higher fitness and are 

assigned greater probabilities of selection for crossover (ROCHA, 2013). With the calculated 

fitness, pairs of individuals are randomly selected for crossover. There are different mechanisms 

for the selection of these pairs, such as ranking, roulette and tournament (ARORA, 2012). 

The crossover involves the breakdown of the chromosome in certain points and the 

recombination of the parts. This genetic operator, which is responsible for the convergence of 

the method, is applied to the pairs of individuals (parents) and generates two new individuals 

(sons) with the characteristics of both parents. In a mechanism referred as elitism, the best 

individuals of a previous generation are copied to the next generation. This algorithm feature 

guarantees that the best solutions do not worse from one generation to another (BARROSO, 

2015). 

 

Figure 9. Genetic algorithm functioning diagram 

 
Source: author. 

 

In addition, mutation, which increases the diversity of the population throughout 

the generations, can occur with certain probability. This is an important operation for the 

avoidance of premature convergence to a local minimum, and thus increases the chance of 
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finding the global minimum of the problem. These operations are repeated until a stop criterion 

(e.g. maximum number of generations, maximum number of generations without improvement 

of the penalized objective function) is met.  

3.1.2 Particle Swarm Optimization 

 

The Particle Swarm Optimization, proposed by Kennedy and Eberhardt (1995), 

mimics the social behavior of animals, such as flock of birds and schools of fishes, in the search 

for food. As in GA, the PSO involves a population of individuals or particles, which represent 

potential solutions of the optimization problem, but in this case the search of the particle swarm 

is guided by social interactions (VIEIRA, 2009). This means that each particle moves in the 

search space cooperating and competing with the other particles through successive iterations 

(BRATTON, 2007). In other words, each particle learns from its own previous experiences and 

from the swarm experience, evaluating its performance, comparing it to the other particles 

performance, and then mimicking only the more successful particles.  

Firstly, a set of particles is randomly generated. Each particle is represented by a 

vector x, with dimension equal to the number of design variables. Each particle xi has an 

associated velocity vector vi. The fitness function is evaluated for each of the particles and it is 

compared to the best fitness value for the particle from all previous iterations, and the 

correspondent position xi
p is stored. The particle in the neighborhood with the best success is 

identified and its correspondent position xi
g  is updated.  

The particles position and velocity are iteratively updated by the following 

expressions, until a stop criterion is met. 

i i i x x v  
(

(19) 

1 1 2 2( ) ( )i i i i i i

p gw rc r c    v v x x x x  
(

(20) 

where w is the particle inertia constant, c1 is the cognitive factor, c2 is the social factor, r1 e r2 

are random numbers uniformly distributed in the interval [0, 1], xi
p is the best position found 

by the particle until the present iteration and xi
g is the best position found by neighboring 

particles. It is important to mention that the particle position is represented by a matrix of 

integers, while the particle’s velocity is represented by a matrix of real numbers and, for the 

update of the particle position, rounding to the nearest integer is considered. 
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Since the development of the PSO by Kennedy and Eberhardt (1995), many other 

variations of the method have been proposed, such as the introduction of a term related to the 

passive congregation force (which refers to an attraction of an individual to other group 

members but where there is no display of social behavior) (HE et. al, 2004; ALBRECHT, 

2005), linear and non-linear variation of the inertia coefficient (EBERHARDT; SHI, 2000; 

CHATTERJEE; SIARRY, 2006), linear variation of the aggregation and congregation 

coefficients (RATNAWEERA et al., 2004; PINA et al., 2011) 

In the initial version of PSO (KENNEDY; EBERHARDT, 1995), the neighborhood 

was defined as the whole swarm, referred as Global Topology. This topology generally leads 

to a fast convergence, but makes the algorithm highly susceptible to premature convergence to 

non-optimal solutions (BARROSO; PARENTE JR.; MELO, 2017). Later, in order to solve this 

problem of premature convergence, the interactions between a particle and the neighboring 

particles and the influence of the topology on the particles’ learning were studied and other 

swarm topologies (e.g. Ring Topology, Square Topology) were proposed (Figure 10).   

 

Figure 10. Swarm topologies 

 

a) Global   b) Ring   c) Square 

Source: Barroso, Parente Jr. and Cartaxo (2017) 

3.2 Definition of the optimization problem 

 

As previously discussed, the design of a riser with acceptable structural 

performance for a given scenario can be exhaustive, since many parameters and safety aspects 

are involved. Therefore, the main objective of this work was to develop and implement a model 

for the optimization of SCRs subjected to multiple load cases. The model details will be 

discussed in the following subsections. 
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3.2.1 Model parameters  

 

The model parameters involve all the data that is constant along the optimization 

process (Table 6). This includes the data that defines the scenario, such as the water depth, the 

coordinates of the connection, the still water level and the horizontal projection (horizontal 

distance from lower to upper end of the riser), and the safety factors. Each load case considered 

in the optimization model is described by a set of data, as presented in Table 7. Also, each 

current profile is defined by a number of points that correlates depth and current velocity. 

The optimization algorithm parameters are defined in a specific input file. For both 

algorithms, it is necessary to specify the optimization number, the maximum generations, the 

population size (number of individuals) and the constraint tolerance. For GA, is necessary to 

specify the selection method (ranking or fitness proportional), the crossover rate, and the 

mutation probability. If PSO is the optimization algorithm chosen, the input file should include 

the swarm topology (square, ring or global), the particle inertia, the cognitive factor, the social 

factor. The structure of this file is described in Appendix A. 

 

Table 6. Model parameters 

Parameter Symbol 

Gravity acceleration g 

Water density ρwater 

Still water level SWL 

Connection coordinates (xcon, ycon) 

Horizontal projection HP 

Safety class factor γSC 

Material resistance factor γm 

Buckling propagation factor γc 

Material strength factor αU 

Material fabrication factor αfab 

Temperature derating factor for the yield stress fy,temp 

Temperature derating factor for the tensile strength fu,temp 

Source: author. 

 

Table 7. Data that define a load case 

Parameter Offset 

Internal 

fluid 

density 

Pressure 

at riser 

top 

Amplification 

factor 

Load effect 

factor for 

functional 

loads 

Load effect 

factor for 

environmental 

loads 

Current 

profile 

index 

Symbol Δ ρint Pd β γF γE icp 

Source: author. 
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3.2.2 Design variables 

 

In the literature review on SCRs optimization models and riser design methodology, 

the conclusions of the following authors were fundamental to the choice of the design variables 

of the proposed model. Karunakaran et al. (2005) presents the concept of weight optimized 

SCR, in which a variation in weight along the riser is achieved by the application of different 

density coatings along the riser length, indicating a remarkable improvement in SCR strength. 

Chandrasekaran and Jain (2016) argue that weight distribution along riser length profile may 

also be accomplished by varying the steel wall thickness of the riser. When designing risers for 

water depths between 3000 m and 4500m, Saglar, Toleman and Thethi (2015), indicated that 

an advantage could be gained if wall thickness of the top section of the riser was increased 

(instead of a single specified wall thickness for the entire riser). However, they did not consider 

this design in their work. 

Based on the considerations and findings of the reviewed works, the design 

variables chosen for the optimization model were the material and thickness of the riser, which 

can be made up of only one segment or multiple segments. In the implementation, each possible 

design is represented by a matrix with two rows (the first row represents the material and the 

second row represents the thickness of the segments) and number of columns equal to the 

number of riser segments.  

An integer encoding is used to represent the discrete variables, where each value 

assumed by the optimization variables represents the index of a list of discrete values. The 

possible materials and values for thickness are defined in the input file of the optimization. The 

structure of this file is described in Appendix A. Table 8 and Table 9 illustrate the encoding for 

the consideration of nine types of materials (represented in the encoding by numbers 0 to 8) and 

twenty possible values for wall thickness (represented in the encoding by numbers 0 to 19). 

In GA parlance, the codified variables correspond to the genotype of an individual, 

while the decodified values correspond to its phenotype. The genotype is used by the algorithm 

operators, while the phenotype is used for the evaluation of the fitness function. For a riser with 

three segments, the codified variables of a possible design could be, for example: 

[
6 4 7

10 8 12
] 

which represents a riser in which the first segment is made up of API 5L X65 steel and thickness 

of 0.030 m, the second segment is made up of API 5L X56 and thickness of 0.025 m and the 

third segment is made up of API 5L X70 steel and thickness of 0.035 m, as illustrated on Figure 
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11. 

 

Table 8. Material encoding 

Code Material 

0 B 

1 X42 

2 X46 

3 X52 

4 X56 

5 X60 

6 X65 

7 X70 

8 X80 

Source: author. 

 

Table 9. Thickness encoding 

Code 
Thickness 

(mm) 
Code 

Thickness 

(mm) 

0 5,0 10 30,0 

1 7,5 11 32,5 

2 10,0 12 35,0 

3 12,5 13 37,5 

4 15,0 14 40,0 

5 17,5 15 42,5 

6 20,0 16 45,0 

7 22,5 17 47,5 

8 25,0 18 50,0 

9 27,5 19 52,5 

Source: author. 

 

 The mechanical properties of commercially available steels can be found on 

technical standards, such as in API Specification 5L (2004). Values for yield stress and tensile 

strength of the materials on Table 8 are listed on Table 10. These material properties are also 

specified on the input file of the optimization, along with the material density, Young’s Modulus 

and Poisson’s ratio. 
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Figure 11. Example of encoding for a possible riser design 

 

Source: author. 

 

Table 10. Mechanical properties of the materials 

Classification 

Yield Stress 

(MPa) 

Tensile 

strength 

(MPa) 

B 241 414 

X42 290 414 

X46 317 434 

X52 359 455 

X56 386 490 

X60 414 517 

X65 448 531 

X70 483 565 

X80 552 621 

Source: author. 

3.2.3 Objective function 

 

The chosen objective function was the riser cost, given by 

2 2

1

( )
n

obj e i i i

i

f R R L C


   (21) 

where n is the number of riser segments, Ri is the internal radius of the segment, Re is the 

external radius of the segment, Li is the length of the segment and Ci is the cost (volumetric) of 
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the material of the segment (defined in the input file of the optimization). 

3.2.4 Constraints 

 

The model restrictions follow the verification for the ULS in the normal safety class, 

as defined in DNV-OS-F201 (2010). Checks for bursting, buckling and combined load are 

included, according to Eq. (1), (6), (8) and (9). Since the analysis procedure adopted in the 

optimization model disregards the bending stiffness, the design bending moment (Md) and 

plastic bending moment resistance (Mk) terms in Eq. (8) and (9) are null. 

Then, the optimization model can be summarized as follows: 

find 𝑥 = [
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1 … 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑛

𝑡1 … 𝑡𝑛
] 

that minimizes 2 2

1

( ) ( )
n

e i

i

f x R R LC


   

subjected to:  

1( ) 1 0,  where  and ;

brst

req brst brst b
req m SC nbrst

n li e

SF P
g x SF SF

SF P P
     


 

Pr
2

min

( ) 1 0,  where  and ;

bckl

req bckl bckl

req c m SC nbckl

n e

SF P
g x SF SF

SF P P
      


 

 
2 2

3( ) 1 0;ed ld e
SC m

k b

T p p
g x

T p
 

     
       

     

 

   
4 2

2 2 min
4 ( ) 1 0.ed e

SC m SC m

k c

T p p
g x

T p
   

     
      

     

 

 

3.2.5 Riser analysis  

 

Riser analysis can be carried out by different procedures, ranging from simpler 

models based on catenary equations to more complex models such as Finite Element Model 

(FEM). In the proposed methodology, a simplified model for static analyses of risers is used 

with the objective of determining the geometry and acting forces. This model considers the riser 

as an inextensible cable subjected to vertical loads (weight and buoyancy), horizontal loads 

(current) and floater offset. A more detailed description of the model can be found on the work 

by Alves and Parente Jr. (2016). 
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With the objective of validating the analysis model, different risers were analyzed 

using both the mentioned inextensible cable model and FLEXCOM (MCS KENNY, 2013), a 

structural analysis software package widely used in the offshore oil and gas industry, and the 

obtained results were compared. For illustration of the efficiency of the adopted analysis model, 

the comparison for a riser made of API 5L X56 steel with total length of 2520 m, internal radius 

of 0.125 m, thickness of 0.025 m, installed in a scenario with water depth of 1500 m and 

horizontal projection of 1732 m, is included.  

The model for this riser on FLEXCOM can be seen on Figure 12. A total of 250 

elements, numbered from the anchor to the connection, were considered. The load cases 

considered in this comparison are specified on Table 11 and the current data are detailed on 

Table 12. For each of the load cases, results for effective tension and geometry were compared. 

As can be seen on Table 13, the differences for effective tension at the anchor between the 

inextensible cable model and FLEXCOM are within ±3.5%. Furthermore, the differences for 

the effective tension at the connection are smaller than ±1%. In addition, a comparison of the 

computational cost of both procedures was carried-out and the results showed that the 

inextensible cable model was 16 to 26 times faster than FLEXCOM. 

 

Figure 12. Riser model in FLEXCOM 

 
Source: author. 

 

Comparison studies such as the previously mentioned were carried out for other 

riser models and the obtained differences were in the same range. These studies demonstrated 

the quickness of the inextensible cable model in comparison with FE analysis. Taking into 

consideration the accuracy and lower execution time of the inextensible cable model, it can be 
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concluded that this simplified analysis model is adequate for the proposed optimization model, 

since many individuals have to be evaluated during the optimization process.   

 

Table 11. Load cases data for comparison of riser analyses results using the inextensible cable 

model and FLEXCOM 

Load 

case 

Internal 

Fluid 

Offset Current 

Direction 
% 

SWL 

Return 

period 
Direction 

1 Oil near 8.5 - - 

2 Oil far 8.5 - - 

3 Empty near 8.5 - - 

4 Empty far 8.5 - - 

5 Water near 3.0 - - 

6 Water far 3.0 - - 

7 Oil near 8.5 100 E 

8 Oil far 8.5 100 W 

9 Empty near 8.5 100 E 

10 Empty far 8.5 100 W 

11 Water near 3.0 1 E 

12 Water far 3.0 1 W 

Source: author. 

 

Table 12. Current data 

Depth [m] 
Velocity [m/s] 

CE 1 CE 100 CW 1 CW 100 

0 0.85 1.70 0.97 1.79 

100 0.76 1.52 0.78 1.44 

350 0.70 1.40 0.75 1.39 

500 0.46 0.92 0.52 0.96 

1000 0.35 0.70 0.36 0.67 

1500 0.27 0.54 0.35 0.65 

Source: author. 
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Table 13. Results for effective tension using the inextensible cable model and FLEXCOM 

Load 

case 

Effective Tension at Anchor 

[kN] 

Effective Tension at 

Connection [kN] 

Flexcom Cable Diff. Flexcom Cable Diff. 

1 655.0 659.8 0.73% 2718.9 2723.5 0.17% 

2 1754.4 1770.0 0.89% 3817.0 3830.0 0.34% 

3 456.4 457.0 0.13% 1884.9 1880.0 -0.26% 

4 1222.1 1230.0 0.65% 2650.4 2650.0 -0.02% 

5 945.7 953.0 0.77% 3113.0 3121.6 0.28% 

6 1334.1 1350.0 1.19% 3501.3 3510.0 0.25% 

7 579.1 595.4 2.82% 2642.2 2659.1 0.64% 

8 1847.9 1848.5 0.03% 3910.4 3919.2 0.23% 

9 379.0 392.4 3.54% 1808.1 1820.7 0.70% 

10 1315.8 1303.4 -0.94% 2744.0 2732.0 -0.44% 

11 952.2 923.4 -3.02% 3092.6 3092.0 -0.02% 

12 1360.0 1379.3 1.42% 3527.1 3547.9 0.59% 

Source: author. 

3.2.6 Implementation 

 

The proposed model was implemented in BIOS (Bio-inspired Optimization System), 

an optimization program written in C++ language according to the principles of Object-

Oriented Programming (OOP) at the Laboratório de Mecânica Computacional e Visualização 

(LMCV) of the Universidade Federal do Ceará (UFC). For the optimization process, the data is 

defined in two input files: one of the files includes the model parameters; and the other contains 

the optimization algorithm parameters. More details about these input files are included in 

Appendix A.  
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4 SURROGATE FOR DYNAMIC AMPLIFICATION FACTOR 

 

4.1 Surrogate modelling  

 

In many industries (such as in the aerospace, automotive and electronics industries) 

design problems are slow down by the computational burden incurred by expensive analysis 

and simulation processes. To address such challenge and to improve overall computation 

efficiency, surrogate models (also referred as metamodels) have been developed to replace these 

expensive numerical simulation procedures (WANG; SHAN, 2006). 

The objective of a surrogate is to emulate the behavior of the actual expensive 

numerical procedure (also referred as high fidelity model), by capturing the relationship 

between the inputs and outputs. Once built, it provides fast analysis tools for exploration of the 

design space and optimization by using approximations in lieu of the computationally 

expensive analysis code themselves (SIMPSON et. al, 2001). 

While the basic idea of the surrogate approach may sound simple, there are many 

details involved in this technique, including the choice of a design of experiments for data 

generation, the choice of a model to represent this data and the fitting of the model to the 

observed data (FORRESTER; SÓBESTER; KEANE, 2008). For each of these steps there are 

several options, as it will be discussed. 

The surrogate modelling process can be summarized as follows (Figure 13): first, 

the model variables are selected according to preliminary experiments; then, samples are 

generated according to a sampling plan; next, a surrogate model type is selected and used to 

build a model of the underlying problem; later, new design points are analyzed and the results 

are added for upgrade of the surrogate, if necessary (FORRESTER; KEANE, 2009).  

The surrogate modelling techniques include Kriging, Artificial Neural Networks 

(ANN), Radial Basis Functions (RBF), Multivariate Adaptive Regressions Splines (MARS), 

Support Vector Machine (SVM) (WANG; SHAN, 2006). In the field of Petroleum Engineering, 

these techniques can been applied to different kinds of problems.  

For example, ANNs have been applied for prediction of geomechanical parameters 

and to assist in wellbore instability studies (OKPO; DOSUNMU; ODAGME, 2016), to generate 

pseudo-density logs that can be used in reservoir characterization (LONG; CHAI; 

AMINZADEH, 2016), to predict troubles due to geological and technical factors during drilling 

of oil and gas wells (LIND; KABIROVA, 2014), for prediction of wax deposition in tubulars 

(ADEYEMI; SULAIMON, 2012), to predict gas injection rate and oil production rate for wells 
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under gas lift operations (RANJAN; VERMA; SINGH, 2015), to analysis of spread-mooring 

configurations for floating production systems (PINA et al., 2016).  

Moreover, Kriging has been utilized in design optimization of electric centrifugal 

pumps (ADHAV; SAMAD; KENYERY, 2015) and for reservoir management optimization 

(PINTO, 2014), SVM has been used to assist in seismic interpretation (ZHAO et. al, 2014) and 

for prediction of PVT properties of crude oil systems (EL-SEBAKHY et. al, 2007), RBF has 

been applied to optimization of shaped-charge explosives of perforating guns (MCDONALD 

et. al, 2007) and riser design (CHEN et al., 2015). 

 

Figure 13. Surrogate modelling framework 

 

Source: Forrester and Keane (2009). 

 

4.1.1 Surrogate variables and sampling plan 

 

The selection of the variables is the first step in surrogate modelling. A high number 

of variables may represent a limitation, since the number of samples needed to give reasonably 

uniform coverage rises exponentially (the so-called curse of dimensionality). While the 

selection of variables in a familiar design problem may be obvious, in new design problems it 
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may be necessary to perform screening and sensitivity studies to identify the variables that do 

not have a significant effect on the objective function and thus can be left out of the surrogate 

(FORRESTER; SÓBESTER; KEANE, 2008). 

The number of samples is dependent on the complexity of the function to be 

approximated and has a great impact over the surrogate accuracy. In general, more information 

of the function is provided when more sample points are considered, however, at a higher 

expense. On the other hand, for low-dimension functions, after a certain sample size is reached, 

an increase in the number of sample points does not contribute much to the surrogate accuracy 

(WANG; SHAN, 2006). Amouzgar and Strömberg (2017) define medium sample sizes of 3.5k 

and 2.5k for low dimension (four design variables or less) and high dimension (more than four 

design variables) functions respectively, and high samples sizes of 6k and 5k for low dimension 

and high dimension functions respectively, with the coefficient k given by:  

( 1)( 2)

2

m m
k

 
  (22) 

where m is the number of variables. 

For successful construction of a surrogate of the response of interest based on a 

limited number of expensive simulations, careful planning of the experiments (referred as 

design of experiments) is crucial. There are many sampling approaches (e.g. random, full 

factorial, orthogonal arrays, Latin Hypercube, importance sampling, sequential or adaptive 

methods) (WANG; SHAN, 2006) and a robust sampling technique is desired to avoid 

dependency of the surrogate.  

Evaluating the objective function for every possible combination of every possible 

design variable (which is referred as a full factorial design) (Figure 14) may be computational 

expensive. Although such design satisfies the uniformity criterion, it is only defined for designs 

of certain sizes (those that can be written as products of the numbers of levels for each 

dimension) and can lead to an unmanageably large number of samples (FORRESTER; 

SÓBESTER; KEANE, 2008). On the contrary, in a random sampling there is no uniformity, 

since the points are randomly defined within the variables bounds. 

Among the sampling strategies, Latin Hypercube designs have become very 

popular. For an experimental design with p points in d dimensions, Latin Hypercube Sampling 

(LHS) is constructed in such a way that each of the d dimensions is divided into p equal levels 

or bins and that there is only one sample at each level (VIANA, 2013). In other words, since 

LHS is a stratified sampling approach, it is ensured that all portions of a given partition are 
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sampled (QUEIPO et. al, 2005). Figure 15 illustrates this feature for a ten-point LHS for a 

problem with three variables. 

 

Figure 14. Example of a three-dimensional full factorial sampling 

 

Source: Forrester, Sóbester and Keane (2008). 

 

Figure 15. Example of a three-dimensional, ten-point Latin Hypercube sampling 

 

Source: Forrester, Sóbester and Keane (2008). 
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4.1.2 Choice of surrogate modelling approach  

 

As mentioned, the surrogate modelling process starts with the identification of the 

variables that have a significant impact on the function to be approximated and the selection of 

a number of samples and sampling plan that represent the design domain as thoroughly as 

possible. The next step is the selection of a surrogate modelling technique, which is dependent 

on the problem size, the expected complexity and the cost of the analyses the surrogate is to be 

used in lieu of (FORRESTER; KEANE, 2009). 

Other criteria that may be considered for proper selection of a surrogate modelling 

technique include: the functional form of the surrogate and its computational complexity, the 

robustness of the prediction away from the sampled data, the existence of software for 

computing the surrogate and characterizing its fit and prediction error (HUSSAIN; BARTON; 

JOSHI, 2002). 

In the context of surrogate-based optimization (which refers to the idea of speeding 

optimization process by using surrogates for the objective functions and/or constraints), 

different modeling approaches have been shown to be effective (e.g. polynomial regression, 

RBF, Kriging, SVM) (QUEIPO et. al, 2005). Polynomial models, however, are unsuitable for 

the highly nonlinear and multidimensional engineering design problems (FORRESTER; 

SÓBESTER; KEANE, 2008). Alternatively, Kriging (one of the most complex surrogates) has 

the potential of providing more accurate predictions, but it can only be used for relatively low-

dimensional problems due to the expense of training the model (FORRESTER; KEANE, 2009). 

Among the available surrogate modelling techniques, RBFs have generated much 

interest because of its advantages over other techniques, such as the ability to effectively 

generate multi-dimensional interpolative approximation and versatility (MULLUR; MESSAC, 

2005). In this work, RBF was utilized to construct a surrogate of the dynamic amplification 

factor. The purpose of the surrogate will be discussed in detail in Section 4.2, while this section 

will focus on the general description of the technique. 

4.1.2.1 Radial Basis Functions 

 

Given a set of samples xi  (i = 1, …, np) and the corresponding expensive function 

values 𝑓(𝑥𝑖), the objective is to obtain a global approximation function 𝑓(𝑥), that accurately 

represents the original function over a given design domain. In an interpolating surrogate the 

function and the approximation are equal at all of the prescribed sample points: 
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ˆ ( ) ( ),  for 1,...,k k

pf x f x k n   (23) 

A radial basis function (RBF) 𝑓 has the form  

 
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ˆ ( )
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i

i

i

f x x x


   (24) 

where σi are unknown coefficients (weights) to be determined, xi denotes the ith of the np 

prescribed data points (or basis function centers) and ψ is the np–vector containing the values 

of the basis functions ψ themselves, evaluated at the Eucledian distances between the point x 

and the centres xi of the basis functions.  

There are many variations of RBFs in the literature, but the main difference is if 

the model is based on approximation or interpolation. In the case of interpolative RBF, it is 

assured that the surrogate solution at the training points is exact. On the other hand, in the case 

of approximation, the weights are obtained through least squares method, and the surrogate 

solution at the training points is not exact. 

The basis functions ψ can be linear, cubic, Gaussian, multiquadratic or inverse 

multiquadratic. For a Gaussian function, 

2

22( )

r

cr e


  (25) 

where c is a prescribed parameter (c > 0). 

To calculate the coefficients, the constraint of Eq. (23) is enforced, resulting in a 

linear system of equations 
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which can be written in matrix form as 

    A F   (27) 
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Since the linear system of equation is square (the number of equations is equal to 

the number of unknowns), there exist a unique set of coefficients i that solves the linear system. 

With the determined coefficients σi, Eq. (24) can be used to estimate the function value at any 

point in the design domain.  
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Amouzgar and Strömberg (2017) present a variation of the classical RBF of the 

form  

 
1

ˆ ( ) ( )
pn

i

i

i

f x x x b x


    (28) 

where b(x) is the bias, presented as a group of polynomial functions.  

Mullur and Messac (2005) argue that the unique solvability may represent a 

potential drawback, since the designer cannot impose any requirement regarding the shape of 

the final surrogate because such surrogate is fully prescribed by a unique formulation. Since the 

typical RBF approach does not provide the capability of generating a surrogate of choice, the 

authors proposed a surrogate modeling method called the extended radial basis function (E-

RBF). 

In this methodology, the following approximation function is defined 

   
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where 𝛷𝑖 are nonradial basis functions. Satisfying the condition of Eq. (23) and writing in 

matrix notation: 

         [ ]
T

T T
L R TA B F      (30) 

with 

 11 12 1 ( )( )
( ) 1

     ...    ...  
p

p

T
L L L L L

m n m
mn x

      

 11 12 1 ( )( )
( ) 1

     ...    ...  
p

p

T
R R R R R

m n m
mn x

      

 11 12 1 ( )( )
( ) 1

     ...    ...  
p

p

T

m n m
mn x

      

where 𝛼𝐿, 𝛼𝑅 and β are the coefficients of nonradial basis function (MULLUR; MESSAC, 

2005). 

 

4.1.3 Model Training and Validation 

 

The stage of model training comprises the determination of the weights σi, which 

are calculated differently depending on the RBF formulation. Once the surrogate has been built, 

it is necessary to validate the model and assess its accuracy by evaluating the error. In this stage, 

additional sample points (validation data set) may be employed to compare the obtained 

predicted function values and the real values. 
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When it is too costly to employ a separate validation data set, the cross-validation 

method can be used (FORRESTER; KEANE, 2009). In cross-validation, the surrogate training 

data is randomly split into q roughly equal subsets, then each of these subsets is removed in 

turn and the model is fitted to the remaining q – 1 subsets. When all subsets have been removed, 

n predictions 𝑓𝑖 of the n observed data points fi will have been calculated, and these are used 

to calculate the cross-validation error:  

 
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1

1 ˆ
tn

cv i i

i

f f
n




   (31) 

Two standard performance metrics are the Root Mean Squared Error (RMSE) and 

the Maximum Absolute Error (MAE). Accurate surrogates will have low values for these two 

error measures.  

The RMSE is calculated by 
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(32) 

and the MAE is defined by: 

ˆMAE max i if f   (33) 

where nt is the test data size, fi is the exact function value at the ith test point and 𝑓𝑖 is the 

corresponding predicted function value.  

4.2 Surrogates in riser design  

 

In a riser design for certain scenario, there is a large number of alternative riser 

configurations. Analyzing all these alternatives using FEM can be time-consuming and may 

incur high computational cost. Therefore, the development of approximations models that can 

replace the expensive numerical simulation procedures is encouraged. This section will review 

how these techniques have been used and applied for the design of such offshore systems by 

some authors and discuss the details of the surrogate developed in this work. 

With the objective of improving confidence in SCR fatigue design, Quéau (2015) 

developed an efficient method for the approximation of the maximum stress range in the 

touchdown zone of the riser by employing an ANN approach. The authors firstly conducted a 

sensitivity analysis study, in order to determine the contribution of certain dimensionless groups 

on the fatigue life of the riser. In order to construct the ANN, 57,023 SCR configurations were 

simulated using OrcaFlex (ORCINA, 2012) and the input and output of some of those cases 
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were used to train and test the ANN. For the construction of a first approximation model, a 

back-propagation artificial neural network was trained. For a more refined approximation, the 

authors proposed various approximation for different areas of the design space, which resulted 

in an improved approximation comprising a total of nine ANN. With this methodology, the 

authors were able to develop an approximation that successfully approximates over 99% of the 

cases of the database with an accuracy of ±5%. 

Yang and Zheng (2011) employed a reliability-based design optimization (RBDO) 

methodology, which combines reliability-based design and optimization design, and replaced 

the finite element code used for the simulations with a surrogate. The authors compared three 

surrogate modelling approaches (second-order response surface model, fourth-order response 

surface model and Kriging) for approximating the structural weight of the riser and the stress 

along the riser. When comparing the performance of the surrogates to the analysis results 

obtained with a finite element model, the authors concluded that the approximation of the riser 

weight had high accuracy, while the accuracy of the approximation for the stress was inferior.  

The association of surrogates with optimization tools based on evolutionary 

algorithms represents a promising tool in the context of riser design. Yang, Li and Park (2011) 

presents an optimization scheme for deepwater risers’ design considering fatigue life constraints. 

The problem defined by the authors consist of finding riser coating material and thickness of 

riser segments that minimize riser weight by employing an approximated model that replaces 

the numerical analysis procedures. Strength criteria, as specified by DNV-FOS-201, and fatigue 

criteria are considered as constraints. For the construction of the surrogate using Kriging, the 

authors firstly select a number of design points using LHS at which the computationally 

expensive code analysis is performed. Then, response surfaces are established for the functional 

relationships between the design variables and objective function. Finally, an assessment of the 

accuracy of the approximation model is made. The optimization algorithm chosen by the 

authors was the Island-based Genetic Algorithm (IGA). The authors demonstrated an example 

for a riser with six segments and the results showed that the Kriging models were successfully 

used in the optimization design for deepwater risers with different thickness and coating for the 

segments.  

Chen et al. (2015) developed an optimization design of steep wave riser for extreme 

shallow water based on RBF surrogate model approach. In the optimization model defined by 

the authors, the design variables are the upper catenary length, the buoyancy segment length, 

the lower catenary length and the horizontal distance from hang-off point to TDP. Constraints 

of dynamic maximum tension at riser top, hang-off angle, minimum clearance of sag bend and 
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seabed, and riser total length were adopted. A surrogate model that approximates the 

relationship between the design variables and the response of maximum dynamic curvature at 

the riser top was used to substitute expensive evaluations of the objective function. For the 

construction of the surrogate using RBF networks, firstly, 152 sample points were obtained 

through LHS. For each of those samples points, a numerical simulation using OrcaFlex 

(ORCINA, 2012) considering only one critical load case was performed. A hybrid optimization 

combining two algorithms, which are multi-island genetic (MIGA) and non-linear 

programming by quadratic Lagrangian (NLPQL), was adopted. An optimal design was found 

for the example of a steep wave for an urgent design for an oil spill incident in extreme shallow 

water, demonstrating the high accuracy and efficiency of the methodology employed by the 

authors. 

As mentioned in Chapter 2, in riser design, dynamic analyses are conducted to 

account for the combined effect of waves and currents over the riser. The number of loading 

cases that needs to be considered in dynamic analyses can be large, depending on the 

environment in which the riser is going to be deployed and its metaocean data, and, therefore, 

this stage of riser design can become time-consuming. Since many riser designs are evaluated 

during the optimization process, we anticipated that creating an automation routine to link the 

optimization model and the marine analysis software FLEXCOM would negatively affect the 

efficiency of the optimization process. Therefore, based on the reviewed works and the potential 

of the association of surrogates with optimization algorithms, a surrogate for the prediction of 

the dynamic amplification factor was developed in this work to be utilized in the optimization 

model in the lieu of dynamic analysis with FLEXCOM.   

4.2.1 Surrogate model for the dynamic amplification factor  

 

In order to explore the potential of the technique, a simplified surrogate for 

prediction of the amplification factor was developed. A sensitivity analysis was conducted to 

determine the surrogate variables. For this, departing from the riser defined in Section 2.2.5, 

different parameters were varied, keeping riser total length, horizontal projection and water 

level unchanged. The dynamic analysis were performed in FLEXCOM, and regular waves 

analyses were carried out for five wave cycles with wave loading ramped up over one wave 

period. Then, the results for effective tension from the static and dynamic analysis were plotted 

together and the amplification factor was calculated as 
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Dynamic response

Static response
   (34) 

It was concluded that the parameters with greater influence are the riser outer 

diameter, the internal fluid density and the wave data (returning period and amplitude). Figure 

16 illustrates some of the results obtained in the sensitivity study, for risers with outer diameter 

ranging from 0.3 to 0.4 m, full of oil/water and empty, wave periods (Ts) from 10 to 20s, and 

wave amplitude (H) from 5 to 8 m. It was also observed that the wave direction did not influence 

the dynamic amplification factor. 

With the defined surrogate variables and the variables bounds (Table 14), 30 

samples were generated using LHS function in Matlab (MATHWORKS, 2010). Figure 17 

shows 2D projections of the sampling plan. Then, each of the samples were analyzed in 

FLEXCOM and then amplification factor was calculated as previously described. 

 

Table 14. Metamodel variables and bounds 

Variable Minimum Maximum 

Wave amplitude (H) 5 m 8 m 

Wave period (Ts) 10 s 20 s 

Internal fluid density (ρint) 0 1025 kg/m3 

Riser outer diameter (Do) 0,26 m 0,5 m 

Source: author. 

 

Next, the sample points and the real function values (the dynamic amplification 

factors calculated with FLEXCOM), were used to train the surrogate. The first approach tested 

was the formulation RBF bias posteriori described in the work by Amouzgar and Strömberg 

(2017). Fifteen training points (randomly selected from a set of available simulation results) 

were used to validate the model. Due to the low size of the sampling plan, the RBF was not 

able to capture the behavior of the function. RSME and MAE of 9.8% and 23.4% were obtained, 

respectively. Although the RBF was capable of predicting the dynamic amplification factor 

accurately for some of the points (with errors between the real function value and the predicted 

value of less than 1%), the discrepancy for points near of any of the variables bounds was high 

(around ±23%). 

 

 

 

 

 



55 

 

Figure 16. Results obtained with the sensitivity study (a) Do = 0.3m, riser full of oil; (b) Do = 

0.3m, riser full of water; (c) Riser Do = 0.3m, empty riser; (d) Do = 0.4m, riser full of oil; (e) 

Do = 0.4m, riser full of water; (f) Do = 0.4m, empty riser. 

 

 

Source: author. 
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Figure 17. 2D projections of the LHS 

 

Source: author. 
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Given the unsatisfactory predictions obtained with the RBF bias posteriori 

formulation, the 30 samples points generated with LHS were used to train an E-RBF, as 

formulated in the work by Mullur and Messac (2005). This extended formulation, which 

encloses the simplified RBF formulation, results in a greater system of linear equations to be 

solved, and its implementation is more sophisticated. Yet this approach resulted in somewhat 

better predictions. Table 18 illustrates the comparison of the dynamic amplification factors 

predicted by the E-RBF and obtained with FLEXCOM for the riser detailed in Section 3.2.5. 

The dynamic loads simulated are shown on Table 15, with wave data given in Table 16 and 

current data given in Table 17. Although this formulation is more complex that the RBF bias 

posteriori and the model training is computationally more expensive, the execution time of the 

optimizations with the associated surrogate is in the same range.  

Although the trained surrogate is not very accurate (errors between the real function 

value and the predicted value are within ±15%), which is due to the low sample size, its 

association with the developed optimization model represents a promising tool, as will be 

demonstrated by the numerical examples.  

 

Table 15. Dynamic load cases considered in the comparison between dynamic amplification 

factors predicted by E-RBF and obtained with Flexcom for the riser defined in Section 3.2.5  

Load 

case 

Internal 

fluid 

Design 

pressure 

Offset Current Wave 

Direction 
% 

SWL 

Return 

period 
Direction 

Return 

period 
Direction 

13 Oil 30 MPa near 8 10 E 100 W 

14 Oil 30 MPa near 8 100 E 10 W 

15 Oil 30 MPa far 8 10 W 100 E 

16 Oil 30 MPa far 8 100 W 10 E 

17 Empty 0 near 8 10 E 100 W 

18 Empty 0 near 8 100 E 10 W 

19 Empty 0 far 8 10 W 100 E 

20 Empty 0 far 8 100 W 10 E 

21 Water 37.5 MPa near 3 10 E 100 W 

22 Water 37.5 MPa near 3 100 E 10 W 

23 Water 37.5 MPa far 3 10 W 100 E 

24 Water 37.5 MPa far 3 100 W 10 E 

Source: author. 
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Table 16. Wave data for the load cases considered in the comparison between dynamic 

amplification factors predicted by E-RBF and obtained with Flexcom for the riser defined in 

Section 3.2.5 

Return 

period 
Direction 

Wave 

amplitude [m] 

Wave 

period [s] 

100 W 6.7 11.0 

10 W 5.8 10.0 

100 E 6.5 11.5 

10 E 5.0 10.5 

Source: author. 

 

Table 17. Current data for the load cases considered in the comparison between dynamic 

amplification factors predicted by E-RBF and obtained with Flexcom for the riser defined in 

Section 3.2.5 

Depth [m] 
Velocity [m/s] 

CE 10 CE 100 CW 10 CW 100 

0 1.28 1.70 1.26 1.79 

100 1.14 1.52 1.01 1.44 

350 1.05 1.40 0.98 1.39 

500 0.69 0.92 0.68 0.96 

1000 0.53 0.70 0.47 0.67 

1500 0.41 0.54 0.46 0.65 

Source: author. 

 

Table 18. Comparison of the dynamic amplification factor predicted by the E-RBF and 

calculated with FLEXCOM for the riser defined in Section 3.2.5 

Load 

case 
βFLEXCOM βsurrogate Difference 

13 1.21 1.21 0.0% 

14 1.05 1.15 9.5% 

15 1.29 1.18 -8.5% 

16 1.06 1.13 6.6% 

17 1.27 1.22 -3.9% 

18 1.07 1.17 9.3% 

19 1.40 1.19 -15.0% 

20 1.07 1.17 9.3% 

21 1.20 1.23 2.5% 

22 1.05 1.17 11.4% 

23 1.27 1.20 -5.5% 

24 1.05 1.14 8.6% 

Source: author. 
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5 NUMERICAL EXAMPLES AND DISCUSSION 

 

With the objective of validating the proposed optimization model, different 

numerical examples were tested. The obtained results are discussed and the robustness of the 

implemented model is demonstrated. 

In the first scenario, with water level of 1500 m, three SCRs (with internal radius 

of 0.125 m) were optimized: the first case considers a SCR constituted of only one segment; 

the second case considers a SCR made up of three riser segments (with lengths of 800, 1000 

and 720 m) of the same material; in the third case, the riser segments have the same length of 

case 2 but it is allowed the consideration of different materials for the segments. The surrogate 

model was not used for these examples. 

The model parameters are shown on Table 19. The load effect factors for functional 

and environmental loads and the dynamic amplification factor are 1.1, 1.3 and 1.5, respectively. 

The surrogate model was not used in these examples and the value utilized for dynamic 

amplification factor was adopted from previous studies of Silva et al. (2013). Only 6 static load 

cases (Table 20) were considered and the current effect was ignored in these examples. The 

PSO and AG parameters are shown on Table 21. On the optimizations, the materials from Table 

8 and thickness values of Table 9 were considered. The material properties given on Table 10 

and relative costs given on Table 22 were used in the input file of the optimization. 

 

Table 19. Model parameters - SCR for Scenario 1 

Parameter Symbol Value 

Gravity acceleration g 9.81 m/s² 

Water density ρwater 1025 kg/m³ 

Still water level SWL 1500 m 

Connection coordinates (xcon, ycon) (0m, 1500m) 

Horizontal projection HP 1732m 

Safety class factor γSC 1.14 

Material resistance factor γm 1.15 

Buckling propagation factor γc 1.0 

Material strength factor αU 0.96 

Material fabrication factor αfab 0.85 

Temperature derating factor for the yield stress fy,temp 0.0 

Temperature derating factor for the tensile strength fu,temp 0.0 

Source: author. 
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Table 20. Load cases - SCR for Scenario 1 

Load 

case  
Offset Direction 

Internal fluid 

density 

Pressure at 

riser top  
Current 

1 8.5% near 880 kg/m³ 30 MPa 0 m/s 

2 8.5% far 880 kg/m³  30 MPa 0 m/s 

3 8.5% near 0 0 0 m/s 

4 8.5% far 0 0 0 m/s 

5 3.0% near 1025 kg/m³ 37.5 MPa 0 m/s 

6 3.0% far 1025 kg/m³  37.5 MPa 0 m/s 

Source: author. 

 

Table 21. Parameters of the optimization algorithms 

 GA PSO 

Crossover rate 0.90 0.90 

Mutation rate 0.05 0.05 

Swarm topology NA Gbest 

Particle inertia  NA Linear, varying from 0.9 to 0.4 

Cognitive factor NA Linear, varying from 2.5 to 0.0 

Social factor NA Linear, varying from 0.0 to 2.5 

Source: author. 

 

Table 22. Relative cost of the materials – Case 1 

Classification 
Relative cost 

(volumetric) 

B 1,00 

X42 1,20 

X46 1,32 

X52 1,49 

X56 1,60 

X60 1,72 

X65 1,86 

X70 2,00 

X80 2,29 

Source: author. 

 

For the first case, with the riser constituted of only one segment with total length of 

2520 m, the optimum design, obtained with a population of 50 individuals and 25 generations, 

is a SCR made of API 5L X56 steel and wall thickness of 0.025 m, for which the objective 

function is 87.085. Both algorithms found this optimum solution, but convergence was achieved 

earlier for PSO. 
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For the second case, the optimum design is a SCR made of API 5L X46 steel and 

wall thickness of 0.030 m for the first segment and 0.0275 m for the second and third segments, 

for which the objective function is 82.298. Lastly, the optimum design for the third case is a 

riser in which the first segment is made of API 5L grade B steel and wall thickness of 0.035 m, 

the second segment is made of API 5L X46 steel and wall thickness of 0.0275 m and the third 

segment is made of API 5L grade B steel and wall thickness of 0.0325 m. Both algorithms 

found this optimum solution, but again convergence was achieved earlier for PSO. 

The results for this scenario show that the adopted methodology of dividing the 

riser in segments represented an advantage, since it implied in overall reduction of riser cost. 

When comparing the solutions for the riser with one segment and the riser with three segments, 

a reduction of about 11% in the total cost of the riser was achieved. In terms of optimization, it 

can be seen that a better solution is found when multiple segments are admitted, since a larger 

search space is considered. 

Then, optimization of SCRs for a scenario with water level of 2000 m, riser 

horizontal projection of 1909.3 m and total length of 3100 m was performed. The load cases of 

Table 20 were considered, but a polygonal current profile varying from 1.0 m/s at the sea top 

and 0 m/s at the sea bottom was applied. Again, the surrogate model was not used, but this time 

the amplification factor was 1.05 (based on the comparison study of the results obtained with 

inextensible cable model and FLEXCOM, which showed differences of less than 5%). A 

comparison was made for different pricing cases of materials.  

Considering the costs given on Table 22, for a riser with only one segment, the 

optimum design is a riser made of API 5L grade B steel and wall thickness of 0.0375 m (with 

objective function 104.998). Taking into account a reduction in material costs, as shown on 

Table 23, the optimum design is a riser made of API 5L X46 steel and wall thickness of 0.0325 

m (with objective function 102.828). Although the cost difference between the optimum designs 

obtained with the two pricing cases was small, this comparison shows that a reduction in the 

price of the steels favored the utilization of a superior steel grade, with higher resistance, 

implying in reduction of riser wall thickness.  

For the same scenario, a SCR with three segments (930, 1270 and 900 m), was 

optimized. The optimum design for this case is a riser in which the first segment is made of API 

5L X60 steel and wall thickness of 0.022 m, the second segment is made of API 5L X52 steel 

and wall thickness of 0.030 m and the third segment is made of API 5L grade B steel and wall 

thickness of 0.045 m (objective function 102.472). Although this example allowed the adoption 

of materials with higher resistances to be used just in the portions of the riser with higher 
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requirements, the possibility of dividing the riser in segments was less advantageous than in the 

first scenario, when referring to cost reduction. 

 

Table 23. Relative cost of the materials – Case 2 

Classification 
Relative cost 

(volumetric) 

B 1,00 

X42 1,10 

X46 1,15 

X52 1,20 

X56 1,28 

X60 1,38 

X65 1,49 

X70 1,80 

X80 2,00 

Source: author. 

 

Later, the optimization of SCRs for a scenario with water level of 2000 m, riser 

horizontal projection of 1909.3 m and total length of 3400 m, with more load cases was 

performed. First, the static and quasi-static load cases of Table 11 (with current data given on 

Table 24) were considered. Initially, the surrogate model was not used and the dynamic 

amplification factor was considered as 1.5 for all load cases. The relative costs given on Table 

23 were adopted. The optimum design for this case is a riser made of API 5L X65 steel and wall 

thickness of 0.030 m (objective function 133.689). For optimizations with 50 generations and 

25 individuals, both algorithms found this optimum design, but for PSO the convergence was 

achieved in the 5nd generation, while, for GA, the convergence was achieved in the 7th 

generation.  

Then, the dynamic load cases given on Table 15 were input in the optimization file, 

along with the previous static and quasi-static load cases (Table 11). The dynamic amplification 

factor was considered 1.05 for the static and quasi-static load cases (to account for the difference 

between the results obtained with the inextensible cable model and FLEXCOM) and the E-RBF 

(trained outside of the optimization procedure) was utilized for the prediction of the dynamic 

amplification factor in the dynamic load cases. The optimum design for this case is a riser made 

of API 5L X56 steel and wall thickness of 0.030 m (objective function 114.847). 

The comparison of the last two examples shows that the introduction of the E-RBF 

for the prediction of the dynamic amplification factor was important to refinement of the model, 
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since the previous methodology of considering the dynamic amplification factor as 1.5 can lead 

to overly conservative riser designs. In these examples, the consideration of the surrogate model 

lead to a reduction of 16.4% in the objective function. 

Lastly, to validate the latter optimized riser design, a model for it was build in 

FLEXCOM, all the load cases were simulated and code checking was performed. Maximum 

LFRD for the cases were in accordance with the technical standard, with maximum values 

occurring in the TDZ. Figures 18, 19 and 20 illustrates the maximum LFRD obtained with 

FLEXCOM for some of the load cases. 

Ultimately, the efficiency of the optimization process is demonstrated by a 

comparison of execution time. Simulating each static and dynamic load case take 2 seconds and 

50 seconds, respectively, in FLEXCOM. Thus, analyzing all the 24 load cases previously 

defined for a riser design in FLEXCOM would take approximately 10.4 minutes. In an 

optimization with 50 generations and 25 individuals, 1275 possible riser designs are evaluated, 

and if the analysis was performed using FLEXCOM, it would take 221 hours to finish it. 

Nonetheless, the optimization process with the consideration of the inextensible cable model 

and the surrogate model, is concluded within 5 to 12 minutes, depending if the riser is has one 

or multiple segments.  

 

Table 24. Current data – Scenario with water depth of 2000 m 

Depth [m] 
  Velocity [m/s] 

CE 1 CE 10 CE 100 CW 1 CW10 CW 100 

0 0.96 1.35 1.77 1.05 1.32 1.83 

500 0.85 1.28 1.70 0.97 1.26 1.79 

600 0.76 1.14 1.52 0.78 1.01 1.44 

850 0.70 1.05 1.40 0.75 0.98 1.39 

1000 0.46 0.69 0.92 0.52 0.68 0.96 

1500 0.35 0.53 0.70 0.36 0.47 0.67 

2000 0.27 0.41 0.54 0.35 0.46 0.65 

Source: author. 

 

Table 25. Wave data – Scenario with water depth of 2000 m 

Return 

period 
Direction 

Wave 

amplitude [m] 

Wave 

period [s] 

100 W 6.7 11.5 

10 W 5.8 10.5 

100 E 6.5 12.0 

10 E 5.4 10.5 

Source: author. 
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Figure 18. DNV code checking using FLEXCOM – Load cases n° 7, 8, 11, 12 

 

Source: imported from FLEXCOM. 

 

Figure 19. DNV code checking using FLEXCOM – Load cases n° 13 to 16 

 

Source: imported from FLEXCOM. 
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Figure 20. DNV code checking using FLEXCOM – Load cases n° 21 to 24 
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6 CONCLUSIONS 

 

In this work, a preliminary model for design of steel catenary risers using bio-

inspired optimization algorithms was developed and implemented. In the optimization model, 

the choice of using an inextensible cable model for analysis of static and quasi-static load cases 

proved to be adequate, with differences of ± 5% in comparison to FE analysis. A surrogate 

model for the dynamic amplification factor, utilized in lieu of dynamic analyses, was introduced 

for refinement of the model. Although the sampling size used for surrogate training was small 

and the prediction near the variables bounds are not very accurate, the potential of the 

association of surrogate models and optimization tools was demonstrated.  

Optimum solutions, which represent the riser with the lowest value for the objective 

function that fulfills requirements of the technical standards for the specified conditions, were 

found for all the numerical examples presented by both algorithms tested, proving the 

robustness of the proposed methodology and its computer implementation. The numerical 

examples herein presented also demonstrated the flexibility of the optimization model in terms 

of problem definition. In addition, this preliminary model is not dependent on designer’s 

experience and it allows this activity to be conducted within an acceptable execution time: it 

can obtain viable riser designs in a period 18 times lower than if the traditional methodology of 

trial and error is employed.  

Suggestions for future work include: 

- Refinement of the surrogate model for the dynamic amplification factor: 

addressing other sampling techniques, the effect of sampling size over the surrogate accuracy, 

comparison of different surrogate modelling techniques. 

-  Incorporation of a model for optimization of steel lazy-wave risers, to provide 

the designer with SLWR and SCR designs for given input data. 

-  Include in the optimization model the concept of weight-optimized risers using 

clump weights, to analyze how it can improve SCR response in deepwater applications. 

- Elaboration of a surrogate model for maximum dynamic stress amplitude, to be 

utilized in lieu of fatigue analysis.  
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APPENDIX A – STRUCTURE OF THE INPUT FILES OF THE OPTIMIZATION 

PROCEDURE 

 

The general structure of the input files (.ris and .opt) is composed of 

%KEYWORDS followed by the associated data. Integer and real values are herein indicated as 

[data] and <data>, respectively. Strings should be written in the input file between ' ' and are 

indicated in the as 'data'. The end of the input file is indicated by the keyword %END. All data 

after the %END keyword is not the read by the program. The keywords and associated data of 

each input file will be presented in the following. 

The algorithm variables are defined in the .opt file. The keywords and input data 

of the file are described in the following table. 

 

Table 26. Structure of the .opt file 

%HEADER 

This section must be in the beginning of the file and must contain any relevant information 

about the current file. 

 

%PROBLEM.TYPE 

'SCR' 

 

%OPTIMIZATION.ALGORITHM 

'StdGA' 

'StdPSO' 

 

%INDIVIDUAL.TYPE 

'IntegerMatrix' 

 

%OPTIMIZATION.NUMBER 

[optimization number] 

 

%MAXIMUM.GENERATIONS 

[maximum generations] 

 

%POPULATION.SIZE 

[population size] 

 

%MIGRATION.GENERATION.GAP 

[migration generation gap] 

 

%MIGRATION.INDIVIDUAL.NUMBER 

[migration individual number] 

 

%CONSTRAINT.TOLERANCE 

<constraint tolerance> 

 



73 

 

%SELECTION.METHOD 

'Ranking' 

'FitnessProportional' 

 

%CROSSOVER.RATE 

<crossover rate> 

 

%MUTATION.PROBABILITY 

<mutation probability> 

 

%SWARM.TOPOLOGY 

'Square' 

'Ring' 

'Gbest' 

 

%PARTICLE.INERTIA 

'CONSTANT' 0.72 

 

%COGNITIVE.FACTOR 

'CONSTANT' 1.5 

 

%SOCIAL.FACTOR 

'CONSTANT' 1.5 

 

%END 

 

The data that should be included in the .ris file for the optimization of SCRs is 

described in the following table. These include the keywords for the definition of the riser 

parameters and the keywords for reading the surrogate trained out of the optimization 

procedure. 

Table 27. Structure of the .ris file 

%HEADER 

This section should be in the beginning of the file and should contain any relevant 

information about the current file. 

 

%MATERIAL 

[number of materials] 

 

%MATERIAL.ISOTROPIC 

[number of materials] 

[material label]  <Young’s modulus>  <Poisson’s ratio>  <yield stress>  <tensile strength> 

 

%MATERIAL.DENSITY 

[number of materials] 

[material label]  <material density> 

 

%MATERIAL.COST 
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[number of materials] 

[material label]  <material cost> 

 

%RISER.PARAMETERS 

<gravity acceleration> 

<water density> 

<still water level> 

 

%RISER.CABLE.PARAMETERS 

[cable definition] ( 1 = defined by top angle; 2 = defined by horizontal projection) 

[anchor position ] ( 1 = suspended anchor; 2 = anchor fixed to seabed) 

<x coordinate of connection>  <y coordinate of connection> 

<top angle or horizontal displacement> 

 

%RISER.LOAD.CASES 

[number of load cases] 

[load case index] [load type (1 = static; 2 = dynamic)] <offset> <internal fluid density> 

<internal pressure at the top> <amplification factor> <functional loads factor> 

<environmental loads factor> [current profile index] [wave profile index] 

 

%RISER.CURRENT.PROFILES 

[number of current profiles] 

[current profile sequential index] [number of points] 

<y coordinate of the first point> <velocity at first point> 

<y coordinate of the nth point> <velocity at nth point> 

 

%RISER.WAVE.PROFILES 

[number of wave profiles] 

[wave profile index] <wave amplitude> <wave period> 

 

%RISER.MATERIAL.SAFETY.FACTORS 

<safety class factor> 

<material resistance factor> 

<buckling propagation factor> 

<material strength factor> 

<material fabrication factor> 

<temperature derating factor for the yield stress> 

<temperature derating factor for the tensile strength> 

 

%RISER.NUMBER.SEGMENTS 

[number of metallic segments] 

 

%RISER.METALLIC.SEGMENT 

[number of metallic segments] 

[segment label] [number of segment divisions] <length ratio> <segment length> 

<concentrated force at the end of the segment> <internal radius> <external radius> 

<hydrodynamic radius> <riser material> <liner material> 

 

Note: external radius, hydrodynamic radius and riser material are actualized during the 

optimization, but are included for compatibility with the implementation. 
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%THICKNESS.VALUES 

[number of possible values for thickness] 

<list of discrete values for thickness> 

 

%NUM.VAR 

[number of surrogate variables] 

 

%NUM.SAMPLES 

[number of samples used for model training] 

 

%BETA.MAX 

<maximum value for beta from the real function values of the samples> 

 

%BETA.MIN 

<minimum value for beta from the real function values of the samples> 

 

%N.FACTOR 

<n – E-RBF formulation> 

 

%GAMA.FACTOR 

<gamma – E-RBF formulation> 

 

%RADIUS 

<radius – E-RBF formulation> 

 

%GAMA.FACTOR 

<variables lower and upper bounds> 

 

%CENTERS 

<centers – E-RBF formulation> 

 

%WEIGHTS 

<weights – E-RBF formulation> 

 

%END 

 




