
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

LUCAS PERES GASPAR

PROGRAMMING MODELS TO DISTRIBUTED GRAPHS

FORTALEZA

2017

LUCAS PERES GASPAR

PROGRAMMING MODELS TO DISTRIBUTED GRAPHS

Trabalho de Conclusão de Curso apresentado ao

Curso de Graduação em Ciência da Computação

do Centro de Ciências da Universidade Federal

do Ceará, como requisito parcial à obtenção do

grau de bacharel em Ciência da Computação.

Orientador: Prof. Dr. Jose Antonio Fer-

nandes de Macedo

FORTALEZA

2017

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

G232p Gaspar, Lucas Peres.
 Programming models to distributed graphs / Lucas Peres Gaspar. – 2017.
 42 f. : il. color.

 Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de Ciências,
Curso de Computação, Fortaleza, 2017.
 Orientação: Prof. Dr. José Antônio Fernandes de Macêdo.

 1. Large graphs. 2. Distributed system. 3. Programming models. I. Título.
 CDD 005

LUCAS PERES GASPAR

PROGRAMMING MODELS TO DISTRIBUTED GRAPHS

Trabalho de Conclusão de Curso apresentado ao

Curso de Graduação em Ciência da Computação

do Centro de Ciências da Universidade Federal

do Ceará, como requisito parcial à obtenção do

grau de bacharel em Ciência da Computação.

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Jose Antonio Fernandes de

Macedo (Orientador)

Universidade Federal do Ceará (UFC)

Prof. Regis Pires Magalhães

Universidade Federal do Ceará (UFC)

Prof. Dr. Sabeur Aridhi

University of Lorraine (UL)

Prof. Dr. Engelbert Mephu Nguifo

Université Blaise Pascal Clermont-Ferrand (UBP)

Aos meus pais, por sua capacidade de acreditar

em mim e investir em mim. Mãe, seu cuidado e

dedicação foi que deram a esperança para seguir.

Aos meus amigos que sempre me auxiliaram

em meu aprendizado. Essa conquista é de todos

nós.

AGRADECIMENTOS

Primeiramente agradeço à Deus por toda esta jornada.

Ao Prof. Dr. José Antônio Fernandes de Macedo por me orientar neste início de

jornada acadêmica.

Aos meus pais, que sempre me apoiaram nas escolhas da vida. Em particular minha

mãe, que sempre mostrou que devemos buscar mais conhecimento e sempre continuar com os

estudos.

Aos meus colegas do Insight Data Science Lab, por terem me auxiliado em minhas

pesquisas, principalmente ao Prof. Regis Pires Magalhãs e David Araújo Abreu, que me motivam

e auxiliam a ampliar meus conhecimentos, tanto na ciência quanto na vida.

Ao Departamento de Computação e seu corpo docente, por terem me proporcionado

4 anos de muita experiência e aprendizado.

Aos meus colegas do PET Computação UFC e da graduação, que sempre acreditaram

em mim como cientista.

Por fim, a todos aqueles que participaram direta e indiretamente de toda minha

graduação.

“Always pass on what you have learned.”

(Master Yoda(Frank Oz), in Star Wars Episode

VI: Return of the Jedi, 1983)

RESUMO

Processamento de grafos em larga escala é vital para muitas aplicações científica, e esse pro-

cessamento está entre os sete principais métodos de análise de dados massivos. Embora alguns

frameworks facilitem o desenvolvimento de processamento de grafos paralelo e distribuído,

existe uma necessidade para um entendimento mais profundo de seu modelo conceitual. Este

trabalho revisa alguns dos mmais conhecidos modelos de programação e detalha seu funcio-

namento e suas características. Além disso, nós também apresentamos frameworks baseados

nesses modelos. Também realizamos comparações entre os modelos, a fim de mostrar pontos

fortes e fracos para que possamos decidir quando e como usar tais modelos.

Palavras-chave: Gandes Grafos. Sistemas Distribuidos. Modelos de Programação.

ABSTRACT

Large-scale graph processing is vital for many scientific applications, and graph processing is

among the seven principal computational methods of massive data analysis. Although some

frameworks facilitate the development of parallel and distributed graph processing, there is a

need for in-depth understanding of their conceptual model. This work reviews some of the

well-known programming models and details how they work, their main features. Besides, we

also present frameworks that are based on these models. We also make a comparison among

them, to show its pros and cons so that we can decide when and how to use those models.

Keywords: Large Graphs. Distributed System. Programming Models.

LIST OF FIGURES

Figura 1 – Undirected graph example . 16

Figura 2 – Directed graph example . 17

Figura 3 – Directed graph example . 17

Figura 4 – BSP Higher Value Vertex Example . 22

Figura 5 – BSP Superstep Workflow . 23

Figura 6 – Undirected Graph with 2 triangles . 25

Figura 7 – GAS Higher Value Vertex Example . 29

Figura 8 – GAS Superstep Workflow . 30

LIST OF TABLES

Tabela 1 – Algorithms Study Frequency (GUO et al., 2014) 18

Tabela 2 – Large Graphs Sizes . 19

Tabela 3 – Models comparison . 37

LIST OF ALGORITHMS

1 Bulk Synchronous Parallel (BSP) Vertex Interface 23

2 BSP Triangle Count . 25

3 GAS Vertex Interface . 29

4 GAS Triangle Count . 31

LISTA DE ABREVIATURAS E SIGLAS

BSP Bulk Synchronous Parallel

GAS Gather, Apply, Scatter

GPS Graph Processing System

RDD Resilient Distributed Datasets

RDG Resilient Distribute Graph

SUMÁRIO

1 INTRODUCTION . 15

2 THEORETICAL FOUNDATION . 16

2.1 Graphs . 16

2.2 Graph’s Algorithms . 17

2.3 Large Graph Processing . 18

2.4 Large Graph Processing Frameworks 19

2.5 Programming Models for Distributed Graph Processing 19

2.6 Conclusion . 20

3 BULK SYNCHRONOUS PARALLEL (BSP) 21

3.1 Introduction . 21

3.2 BSP Model . 22

3.3 Primitive Functions . 24

3.4 Code example . 25

3.5 Execution Cost . 26

3.6 Frameworks . 26

3.7 Conclusion . 27

4 GATHER, APPLY, SCATTER (GAS) . 28

4.1 Introduction . 28

4.2 GAS Model . 28

4.3 Primitive Functions . 30

4.4 Code example . 31

4.5 Execution Cost . 31

4.6 Frameworks . 32

4.7 Conclusion . 32

5 OTHER MODELS . 33

5.1 Introduction . 33

5.2 Map/Reduce . 33

5.3 Functional Programming . 34

5.4 Actor . 35

5.5 Conclusion . 36

6 MODEL COMPARISONS . 37

6.1 Introduction . 37

6.2 Criteria . 37

6.3 Analysis of models . 38

6.4 Conclusion . 39

7 CONCLUSIONS AND FUTURE WORKS 40

REFERENCES . 41

15

1 INTRODUCTION

Thanks to the popularity of technologies and the Internet, we are handling with

datasets bigger than ever. This phenomenon causes unprecedented challenges concerning data

processing. The situation is not different when dealing with graphs datasets. (JORDAN, 2013)

says that graph processing is among the seven principal computational methods of massive data

analysis. Graphs can be used in several scenarios, like analytic, business, social networks, etc.

To deal with the large-graphs context, we have tools to manipulate them. There are a

lot of frameworks that allow constructing algorithms to be applied to those graphs, but to use

them we must know how they work. Before studying the frameworks, we should understand the

programming models used to develop them.

The goal of this work is to describe some of those models, presenting how they

work, exemplifying their functionalities, showing which components we can use to construct a

distributed system with those models and showing frameworks that implement them and make

some comparisons among them, allowing us to understand better how those models works and

help us choose a good model to solve some problem on some giving scenarios.

The following parts of this work are organized as follows: Chapter 2 presents some

definitions that are important to understanding the context of this work. On Chapter 3 and

Chapter 4 we present, respectively, the BSP and Gather, Apply, Scatter (GAS) programming

models, explaining how they work, a way to structure them, an algorithm example, suggestions

of functions that can improve the semantics of the codes and frameworks that use those models.

In Chapter 5 we present some other models that are used in the big data scenario that can be

used to handle large-graphs, explaining their workflow and frameworks that uses them. Chapter

6 makes a comparison of the presented models. Finally, Chapter 7 concludes this work.

16

2 THEORETICAL FOUNDATION

This chapter presents the core concepts used in this work.We start presenting the

definition of a graph and its types. A graph is an abstract structure, and it can be used to

represent many things, like roads, decision problems, production lines, street maps, network

communications, social relations, and others. Sometimes, representing a problem in a graph

structure can help its resolution, since there are several theorems and algorithms to extract

information from graphs. this chapter also shows some types of graph algorithms that are used

to retrieve information.

Sometimes we need to work with large-graphs, that cannot be stored in memory or

may take a long time to apply some algorithms. The solution to that is to distribute the graph

information, the processing, or both. This work also shows some concepts and challenges of

processing large-graphs. We also present some frameworks that deal with them and even the

programming models used by those graph frameworks.

2.1 Graphs

(BONDY; MURTY, 1982) brings traditional definition to a graph that is helpful to

understand a lot of graph properties. In our context, we can define a graph as an ordered pair

G=(V,E) composed by two sets: V, representing the set of vertices and E representing the edges.

Each element from E is a pair of two elements of V, representing a relation (edge) between them.

Figure 1 ilustrates a graph where V = {1,2,3,4} and E = {(1,2),(1,4),(2,4),(2,3)}. In this case, we

have an Undirected graph, that is, the edges of the graph represent a symmetrical relation(the

relation (1,2) is the same as (2,1)).

Figure 1 – Undirected graph example

When the pair is ordered, that is, when the relationship is not symmetrical, we say

that the graph is Directed. Figure 2 shows an example of a directed graph. The directed relations

are represented with arrows pointing the direction of the relationship.

17

Figure 2 – Directed graph example

Suppose that one graph represents a road graph. Figure 1 says that we can go from

1 to 2 and from 2 to 1 using the same road, while Figure 2 says that we can only go from 1 to

2. But if we want to represent the distance between 1 and 2? A graph is called weighted when

its edges have weight, that is, a value to express the relation. Figure 3 shows a directed and

weighted graph where the distance(or cost) to go from 1 to 2 has the value of 2.

Figure 3 – Directed graph example

2.2 Graph’s Algorithms

(HARA et al., 2015) present a review of 124 papers and has classified 149 algorithms

to analyze the studied frequency of those algorithms. Table 1 represents the resume of this

analysis. They are classified into the following categories:

• Statistics: these algorithms computes values from the graph relations, like the number of

relations, more related vertices, groups of relations. Those are helpful to collect useful

metrics to analyze the graph.

• Traverse: traverse algorithms are one of the most known(and used) types: they help in

finding a path between two vertices of the graph.

• Related Components: some graphs have subsets of vertices and edges that are not related,

that means, there is no path linking those subsets to the rest of the graph. Subgroups like

those are called components, and these algorithms are used to find them.

• Community Detection: this algorithm category can be used to answer questions like

"what are the nearest vertex of v?", or "how many groups of similar vertices do we have?".

18

They detect groups of vertices bounded by some characteristic.

• Evolution: the idea of this type of algorithm is to study the topology of the graph to

analyze how it can affect the evolution of the graph.

• Others: here we have some categories, like partitioning algorithms, that are used to divide

the graph into subgraphs in a most optimized way (dividing the nodes, reducing the number

of edges between two partitions, etc.) and sampling algorithms, that retrieve a subgraph

that statistically represents a good sample of the graph(like keeping the mean degree of

the vertices, the maximum shortest path, the centrality, etc.).

Table 1 – Algorithms Study Frequency (GUO et al., 2014)

Class Algorithms Ocurrences %

Statistics Triangulation, Diameter,

BC

24 16.1

Traverse BFS, DFS, Shortest

Path

69 46.3

Related Components MIS, BiCC, Reachabi-

lity

20 13.4

Communities Detection Clustering, Nearest

Neighbors (kNN)

8 5.4

Evolution Forest Fire Model,

Preferential Attachment

Model

6 4

Others Sampling, Partitioning 22 148

Total 149 100

2.3 Large Graph Processing

We can work with graphs of several sizes, form small graphs representing a family

tree; to large graphs, like huge social networks. Such large-graphs require special techniques to

be processed, since, to do so, we must use disk memory or distribute the processing. (KYROLA

et al., 2012) presents a table with the size of large-graphs used in experimentation on their work,

in 2012. Table 2 shows some of that information.

Nowadays, there are many techniques and frameworks to handle large datasets and

to collect information from them, but, when related to graphs, they cannot be applied, because, in

some scenarios, the computer can not store all the data or it would take much time to process it.

That is why Large Graph Processing is not a simple task. To handle that amount

of data in a graph requires specifically designed approaches.

19

Table 2 – Large Graphs Sizes

Graph Vertices Edges
Netflix (BENNETT et al., 2007) 0.5M 99M

Domain (YAHOO. . . , 2017) 26M 0.37B

Live Journal (BACKSTROM et al., 2006) 4.8M 69M

Twitter 2010 (KWAK et al., 2010) 42M 1.5B

UK Web Graph (BOLDI et al., 2008) 109M 3.7B

Yahoo Web (YAHOO. . . , 2017) 1.4B 6.6B

2.4 Large Graph Processing Frameworks

Many frameworks allow the processing of large-graphs in a distributed environment.

Each framework has its abstraction with its particularities, like the topology element used on the

distribution(vertices, edges or subgraphs).

The most common topology used is the vertex(called vertex-centric), proposed first

by Pregel(MALEWICZ et al., 2010), a Google framework. The scope of an algorithm defined

on this framework is the vertex value and messages that are sent to it. This framework is also the

basis for many others, where all of them try to optimize some feature or remove limitations.

(HEIDARI et al., 2017) and (REZENDE, 2017) compare some of those frameworks,

presenting some criteria chosen by them and explaining how they work, the scenarios to use

them and their programming models.

2.5 Programming Models for Distributed Graph Processing

Programming in a distributed system is not a simple task. Many challenges can be

found in the way, like synchronization between the machines (or nodes), the information flow,

etc. There are some patterns that are used to develop such systems. These patterns help to define

an execution flow, information exchange, and architecture.

When working with distributed graphs, we must define the graph element which the

process will be distributed. Currently, the most common approach used is the vertex-centric,

popularized by (MALEWICZ et al., 2010). Every computation happens inside a vertex, using

its information. This approach was based on MapReduce model(DEAN; GHEMAWAT, 2008),

that proposes a local action execution schema, where they all can happen independently. All

computation occurs over a vertex, and its value delimits its scope of information. However, there

are other approaches like Edges-Centric, where every computation happens inside the edges,

20

and Block-Centrick, where every computation happens over subgraphs(or blocks) of the whole

graph.

In the vertex-centric context, there are two most used programming models: the BSP

and GAS, which are going to be presented in chapters 3 and 4, respectively. These models are

very used due to some frameworks success.

2.6 Conclusion

This chapter presented the definition of a graph, what are the types algorithms applied

to them and its importance. We also discussed the problems to work with large graph datasets

and presented two programming models to deal with those problems.

Understanding those models are not just helpful to work with those frameworks, but

also to understand how we can adapt a graph problem to the distributed graph context and how

to construct its solution.

21

3 BULK SYNCHRONOUS PARALLEL (BSP)

3.1 Introduction

According to (VALIANT, 1990), in the 80’s the sequential computation has brought

an efficient bridge between software and hardware, allowing the compilation and execution of

high-level languages. But, to deal with parallel computation, was required a model that can allow

this same simplicity. That is the BSP goal.

The BSP model first appeared in 1990s (VALIANT, 1990). It was proposed at

Harvard University by Leslie Valiant to deal with distributed computing in several scenarios,

allowing that operations could be easily programmed to execute in multiples machines.

When used in the context of graphs, BSP becomes a vertex-centric programming

model, working with a sequence of iterations named superstep. A superstep consists of a set

of independent local computations, followed by a global communication phase acting as a

synchronization unit. Inside a superstep, messages can be exchanged between vertices, passing

information that will be computed on the next superstep.

The basic workflow of an algorithm on the BSP model is as following: on the first

superstep, each vertex execute its compute function. After that, the vertex will become inactive.

At the end of this execution, the vertex may (or not) send messages to all its neighbors. If so, the

vertex that receive messages becomes active. After the first superstep, in each other superstep S,

only the active vertices execute their computations and they use the messages received on the

superstep S-1.

To understand better the BSP workflow, assume the example in Figure 4. The idea

of the example is to get the vertex with the higher value. It starts with every vertex sending its

value to their neighbors. On the second superstep, the vertices will process only the messages

with a value higher than its own. That is what happens on the middle vertex: it receives 2 values

that are higher than its, so it will update its value and send again messages, but now with value 5.

On the third superstep, only the top and bottom vertices are going to be active, since only them

have messages to process. The bottom vertex will update its value and send a message to the

middle vertex. Then, on the last superstep, the middle vertex will receive a message, but will not

update its value. Since no message was sent, the execution stops.

In this chapter we describe the BSP model, presenting an abstract description of

its vertex model and system structure. We also present some graph manipulation primitives

22

Figure 4 – BSP Higher Value Vertex Example

that can improve the semantics of a program written on the model, based on the proposals of

(SALIHOGLU; WIDOM, 2014). We also show frameworks that implement this model.

3.2 BSP Model

BSP is a vertex-centric model, so the main structure that we must analyze is the

vertex. It computes a function in each superstep, and it can(or can not) change its value and then

it becomes inactive. In summary, the vertex is composed of the following components:

• Value: the value of the vertex itself on the graph. Let’s suppose the vertex represents a

user on a social network. Its values can be id, name, username, etc.

• Mutable value: a value to the vertex that is used in the execution of an algorithm. This

value is a result of the execution of some algorithm applied to the vertex, as the number of

neighbors, for example.

• Compute function: a function that receives the messages and executes an algorithm on

each superstep. Usually, one compute function is implemented for each algorithm.

• Halt function: function to set the vertex to inactive state.

Algorithm 1 presents an interface to this vertex structure. First, we have the compute

function used on the supersteps. Then, we have a function to retrieve the vertex value from the

model. After, we have functions to get and set the mutable value used on the algorithms. We

also have a function to send messages to the neighbors and one to set the vertex state to inactive.

Based on that structure, we can decompose a BSP system into building blocks to

help to identify the modules of it. Figure 4 presents the components that must be present on the

23

Algorithm 1 BSP Vertex Interface

public void compute(MessageList msgs);

public Value getValue();

public void setMutableValue(MutableValue m);

public MutableValue getMutableValue();

public void sendMessageTo(Message msg);

public void halt();

system, which are:

• Message Block: this block will be responsible for managing the message exchange among

the vertices. It will store the mailbox of each vertex, controlling the insertion and retrieval

of messages.

• Storage Block: This block is responsible for storing the graph model. It gives access to

information like vertex id and its values. It can also save the mutable values described

before.

• Execution Block: It executes the compute function of the vertex.

• Distribution Block: It coordinates the parallel execution of the algorithm, passing to the

Execution Block its vertex information and the messages sent to it(we are going to call

this set of messages as mailbox). This block works like the controller of the algorithm,

and, therefore, it synchronizes the executions.

Figure 5 – BSP Superstep Workflow

The workflow of a superstep starts in the Distribution Block. For each vertex of the

24

graph that has messages on the mailbox (that means, it is active) the block will get the messages

from the Message Block and the vertex data from the Storage Block and send them to the

Execution Block. After that, the Execution Block takes this data and run the compute function.

If necessary, the block can send messages to other mailboxes of vertices in the Message Block.

After all the active vertices have passed over the Execution Block and finished the computing,

the superstep ends.

This model structure uses the message trading, what let us change the number of

computer nodes without concern with the access of the data, what makes the BSP model easily

scalable.

3.3 Primitive Functions

Some applications may require an extense coding from the programmer. That

happens because the expressiveness of the functions presented in Algorithm 1. They are the

basic components of the model. The work on (SALIHOGLU; WIDOM, 2014) presents a set

of primitive function to improve the algorithms semantics. From those functions, we can bring

some of them to the BSP model:

Filter

This primitive is very simple: it applies some decision over each vertex and, if it

returns a false value, the element will be removed from the model. This can be implemented

with a call to the compute function over each node but is easier to understand semantically, once

you do not need to create a whole vertex structure just for this.

Update Value

This one is also a standard computation in a superstep, but it requires that messages

have been sent to the vertex from its neighbors. So, this function can work in two steps: first, the

user defines the information that will be sent from the vertex to its neighbors and, after that, the

user specifies what to do with the data. The system will execute two supersteps: one to broadcast

the information defined by the user and one to handle that information.

25

Graph Value

The idea of this primitive is to gather some value over the graph, like the mean

degree of the vertices. This primitive can be seen as a superstep of a computation applied only

over a single vertex.

3.4 Code example

We will present an abstract algorithm to Triangle Count on an undirected graph

using the BSP model. Figure 5 shows an example of a graph with two triangles on its structure.

Algorithm 2 shows the code of this algorithm.

Figure 6 – Undirected Graph with 2 triangles

Algorithm 2 BSP Triangle Count

1: if superstep≤ 1 then
2: triangles← 0

3: sendToNeighbors(neighbors)

4: else
5: for message in mailbox do
6: for vertex in message.data() do
7: if vertex in neighbors then
8: triangles← triangles+0.5

9: end if
10: end for
11: end for
12: end if
13: halt()

The algorithm execution is simple: when is the first superstep(lines 1-3), the number

of triangles that the vertex is in is set to 0, and the list of neighbors of each vertex is broadcasted

between their neighbors. In the others supersteps(lines 5-11), for each message received, the

26

vertex will check the neighbors’ list in the messages, checking for familiar neighbors. If a

common neighbor is found, the triangle value will be incremented in 0.5 (the graph is undirected

so that the same triangle will be computed twice). After that, each vertex will have the number

of triangles in which it is.

3.5 Execution Cost

The cost of execution inside a superstep in the BSP model can be represented as the

sum of three factors:

• The cost of the longest running local computation, that is, the vertex that will take the

longest time to execute;

• The higher number of messages that will be sent to a vertex plus the number of messages

exchanged between the distribution block and each vertex (usually they are two: one to

start the execution and another one to notify its end);

• The cost of the synchronization barrier at the end of the superstep.

Based on that, we can approximate the execution cost from an algorithm with S

supersteps by the following formula, where:

∑
S
s=1 ws +g∑

S
s=1 hs +Sl

• S is the number of supersteps;

• ws is the longest vertex execution on superstep s;

• g represents the number of messages exchanged between the distribution and execution

block;

• hs is the maximum number of messages sent from a vertex on superstep s.

• l is the cost of a superstep

3.6 Frameworks

One of the most popular BSP implementation is Pregel, from Google, and most of

other BSP implementations follows its characteristics. Its API that allows the user to build his

vertex implementation with its compute function. The framework has generic classes that allow

computing store and send in the message any data.

Many frameworks try to optimize it. One of them is the Graph Processing System

(GPS)(SALIHOGLU; WIDOM, 2013). Its major contributions to Pregel are:

27

• It allows the programmer to manipulate multiple vertices at the same time, where one

vertex is the master vertex that can control the others.

• It optimizes the partitioning of the vertices among the nodes, allowing fewer messages to

be exchanged among the machines.

• It can partition high-degree vertices over the nodes so that the computation of these vertices

can also be parallelized.

3.7 Conclusion

This chapter describes features of the BSP model. We show a primary interface to

its vertex, explaining it and an example of an algorithm using this model. We also show how

can we have some primitive functions to improve the semantics of the model. Finally, we briefly

show some frameworks that use this model.

The BSP model is simple to understand and very helpful on the distributed graph

scenario, but, on situations that are expensive to exchange information between computer nodes,

the BSP can lead to high execution costs.

28

4 GATHER, APPLY, SCATTER (GAS)

4.1 Introduction

The BSP model allows the creation of many frameworks to handle graphs in a

distributed environment. The BSP requires that the information exchange occurs by message

passing, and it can have a high cost. The GAS model addresses this problem.

GAS was initially presented in PowerGraph(GONZALEZ et al., 2012) in 2012.

Gonzalez proposed this new programming model based on the framework GraphLab(LOW et

al., 2012), that implements an alternative information exchanging to the BSP model.

The GAS model is an abstraction to BSP. The difference between them is how the

computation occurs over the vertices in each superstep. This execution can be divided into three

steps:

• Gather: the vertex gathers the information of all its neighborhood through the edges,

without the need to directly receive a message from some vertex.

• Apply: after gathering all the information needed, the vertex compute the data to update

its mutable value.

• Scatter: in the end, the computed data is sent to the edges, allowing that other vertices

can gather that information on the next superstep.

To understand better the GAS workflow, we retake the example from the BSP model.

Figure 7 shows this example. The only difference is that, on the first superstep, the nodes already

know the values of its neighbors. Then, the execution flows in the same way that on the BSP.

This chapter discusses the GAS model, following the same structure used in the last

chapter. First, we present an abstract description of its vertex model and structure to the system.

Then, we show some primitives to graph manipulation. For last, frameworks that implement this

model.

4.2 GAS Model

The basic structure of a GAS vertex can be seen as the BSP one, but adding the three

functions before mentioned(gather, apply and scatter), where the apply function is the compute

function. The model in Algorithm 3 presents a model to the GAS vertex. One difference between

this model and the BSP presented is the three function gather, apply and scatter, that represents

29

Figure 7 – GAS Higher Value Vertex Example

the steps mentioned above. They are private because, on the execution, the compute function is

the one that will be called and, inside it, those three functions are going to be used.

Algorithm 3 GAS Vertex Interface

private Update gather();

private Update apply();

private void scatter();

public void compute();

public Value getValue();

public void setMutableValue(MutableValue m);

public MutableValue getMutableValue();

public void halt();

Other difference on this model is that we have an Update type on the gather and

scatter functions. This type is responsible for representing the changes of the vertices’ values

over the graph. Messages on the BSP are an example of Update since they are responsible for

carrying the information from the vertices.

The GAS model abstracts the way that the information will flow over the graph.

This allows information to be passed by a message, file serialization, direct communication,

shared memory, etc. Therefore, the block architecture is more straightforward than the BSP

one, allowing the Message Block removal from the requirements. Figure 8 presents this block

architecture and the workflow of a superstep.

The workflow on GAS is almost the same used in BSP: the Distribution Block takes

the vertex information and send it to the Execution Block, that will execute the gather, apply and

30

Figure 8 – GAS Superstep Workflow

scatter functions.

Without the requirement to exchange messages, this model can become more efficient

then BSP, since the information flow can be made inside a node, without the need to communicate

with another, but it requires a more effort on programming since the optimization depends on the

implementation of the information flow.

4.3 Primitive Functions

As presented in the last chapter, we can use some primitive function to improve the

algorithm semantic on the GAS model. We can use the same 3 presented to BSP and add 2 more

from those presented on (SALIHOGLU; WIDOM, 2014):

Collect Values

This primitive allows a vertex to collect information from its neighbors, like the

gather function. So that, the vertex can group that information and store a new one inside it.

This implementation can be made only using a gather and an apply functions.

Aggregate Vertices

The idea of this primitive is to merge some vertices into a supervertex, whose value

is a representation of all the others. This function is helpful to apply some graph clustering

partitioning algorithms. The user informs the criteria to join the vertices and how they are going

to be merged.

31

4.4 Code example

On Algorithm 4 implements Triangle Count using the GAS model. Different from

BSP model, GAS allows this algorithm to run in just one superstep. That happens because the

common neighbors checking can be done at the beginning of the algorithm since the vertex

already have information about its neighborhood.

Algorithm 4 GAS Triangle Count

1: for neighborsList in neighborhood do
2: for vertex in neighborsList do
3: if vertex in neighbors then
4: triangles← triangles+0.5

5: end if
6: end for
7: end for
8: halt()

The algorithm execution is almost the same from the Algorithm 2 but is not needed

more than one superstep: for each neighbor oh the vertex(line 1), the vertex will check for a

common neighbor between them (lines 2 and 3). If so, the triangles value is increased by 0.5(this

value is because each triangle will be counted twice). After that, the vertex enters in the inactive

state.

4.5 Execution Cost

The execution cost of a superstep on the GAS model can be analyzed by the same

BSP formula, but with some little changes. The formula and its variables are:

∑
S
s=1 ws +g∑

S
s=1(hs +us)+Sl

• S is the number of supersteps;

• ws is the longest vertex execution on superstep s;

• g represents the number of messages exchanged between the distribution and execution

block;

• hs is the maximum number of messages sent from a vertex on superstep s.

• us is the higher cost to update a neighborhood on superstep s

• l is the cost of a superstep

32

It is possible that, in a superstep, a node sends messages to other nodes, to update

the neighborhoods (it all depends on how it will be implemented). The cost to update the

neighborhoods must be counted independently if is by message passing or not, that is why us is

used. That represents the higher cost to update the neighborhood.

4.6 Frameworks

GraphLab(LOW et al., 2012) in an open source implementation of graphs with

focus on to Data Science and Machine Learning. It has a shared memory feature that allows

the vertices know its neighborhoods so that they can execute the gather and the scatter phases.

The implementation is a little more complex than the Pregel one: it uses an Update structure to

represent the information of the neighborhood. The execution of its algorithms happens over that

data and the vertex data.

Power Graph(GONZALEZ et al., 2012) is a framework that combines the best of

Pregel and GraphLab, since they can have bad performances on high-degree vertices. It is the

first framework to use the GAS officially model to factor the vertices programs over the edges,

using the shared memory approach from GraphLab and the commutative and associative gather

concept from Pregel. In other words, the information collected from the neighborhood can be

gathered in any order.

4.7 Conclusion

In this chapter we described the GAS model, presenting its vertex structure, system

organization, an algorithm execution, primitive functions and frameworks that use this model.

Like the BSP model, GAS can have a high cost on information exchange among

the nodes, but the abstraction of this information flow can allow the implementation of some

optimized techniques to do this exchange, what can reduce its cost.

33

5 OTHER MODELS

5.1 Introduction

There are some programming models very popular to deal with large datasets on the

big data scenario, without the need to be a graph dataset. Since those models and its frameworks’

are very used, some frameworks were developed over them to handle large-graphs.

(WU et al., 2017) describes a set of programming models that are used in the Big

Data scenario. It describes each model and makes comparison among them and their frameworks.

On this chapter, we briefly present the MapReduce, Functional Programming and

Actor models, explaining how their work, how can we use them in graph context and present

frameworks to them.

5.2 Map/Reduce

MapReduce is a Tuple Centric model proposed by Jeffrey Dean, from Google, on

2008(DEAN; GHEMAWAT, 2008). This model works dividing the function into two major

categories:

• Map, where some computation is applied to each data unit. This computation returns an

object containing, at least, one key and one value. This key represents the category of the

resultant information.

• Reduce combines all the data with the same key, applying a function defined by the

programmer. After mapping the data, the ones with the same key are grouped and

condensed into one major information. The result or the reduce is a set of data, one for

each unique key on the map stage.

A very common example of the MapReduce model is the word count. Assume that

you want to count the number of occurrences of a word in a text. Using MapReduce, you could

map the phrases, counting the number of times that a word appears, and them reduce it, for each

word found, summing its occurrences.

When working with graphs, we can use the MapReduce model working as a data

unity any element of graph’s topology(an edge, a vertex or a subgraph). Each one of this units

must contain all the data that they need, because no message is exchanged between them during

the execution, except if some structure to broadcast the information or to access external data

34

is implemented, but with a computational cost. When using the vertex as the data unit, the

algorithms became similar to the GAS model, but without the scatter phase.

Apache Hadoop(HADOOP, 2009) is the open-source implementation of Google’s

MapReduce paradigm, mainly implemented in Java. It has a map and a reduce interface so that

programmers can implement their functions in order to process the data. From Hadoop we have

Pegasus(KANG et al., 2009): a graph mining framework that can handle graphs with billions

of nodes and edges. It is constructed over the Haddop environment and uses a matrix-vector

generalization to execute the algorithms.

5.3 Functional Programming

Functional Programming is a programming paradigm that has grown in the last years

and is becoming very common in the programming languages. The importance of this paradigm

was described since the 80’s on (HUGHES, 1989) and (HENDERSON, 1980). One advantage

of this paradigm is that everything is a function. We can pass a function as values and generate

ones according to some input values.

This paradigm is emerging as a programming model for this generation on big data

systems, due to frameworks like Spark(ZAHARIA et al., 2010). This framework was build over

Hadoop environment and provides functional interfaces to data manipulation, that is stored on

its built-in model called Resilient Distributed Datasets (RDD). Spark was created to solve some

limitations to the MapReduce model, giving a set of high-level function primitives.

When working with graphs, we can similarly use this model as MapReduce: we

can define a topology element of the graph to represent the data unit and, over them, apply

some function defined by the programmer. Here we also may not have a simple way to trade

information between two data unities, so the data units should contain all the information that

they need.

GraphX(XIN et al., 2013) is a framework built over Spark to work with distributed

graphs. It uses a structure of graph called Resilient Distribute Graph (RDG), that is based on

Spark’s RDD. Because of Spark, this framework has some extra features like fault tolerance

and easy scalability. With a few lines of code, GraphX implement Pregel API, allowing that

algorithms made on this framework can be easily translated.

35

5.4 Actor

The Actor model is used for concurrent computation. It has a primitive computation

unit called as actor which is responsible for reacting to events triggered by messages in different

contexts. The following example presents a scenario to help explain this model:

"Suppose we have a family living in their home and the home need to be clean. The

parents say the children to clean their respective bedrooms. When the kids finish cleaning their

bedrooms, they can go out and play."

In this example, we have two kinds of actors: parent and child. When the parents

say to the child to clean the bedroom, that is a message sent from the parents to the child, where

we can see the "clean the room"as the action that will be executed, and it will be executed

concurrently by each child. The "respective bedroom"represents that each child actor will have

its domain, that is, a set of data to handle. When the children finish their works, they send a

message to inform that and, after, they can go out and play. That is an example of a workflow

using the Actor model.

One framework that is widely used and uses this model is Akka(THURAU, 2012).

Typesafe developed its first release in 2009 and, although it allows the implementation of other

models, it focuses on the Actor model. Akka uses asynchronous messages to communicate

the actors, so there is no synchronization primitive. Also, its actors objects can run local and

distributed, without the need to modify their logic.

To work with graphs, we can use the Actor model defining subgraphs to actors so

that the operations are going to be executed inside each actor. This division allows that we can

use this model to compose or create new programming models. For example, we can divide the

graph into subgraphs, in each subgraph run a BSP algorithm and then apply a reduce function

over it.

BLADYG(ARIDHI et al., 2016) is a graph framework that uses the actor model

to handle large dynamic graphs built over the Akka framework. Each worker actor on this

framework is responsible to a partition(subgraph) of the graph, that will execute computations

over it. There is a master actor that is responsible for coordinating the execution of the workers

and processing the information computed by them.

36

5.5 Conclusion

This chapter presented some big data programming models, explaining how they

operate, its features and frameworks that implement them.

We also saw how to apply those models on the context of distributed graphs and

briefly presented frameworks that use those models and famous implementations of them,

showing that big data models can also be used to help handle large-scale graphs.

37

6 MODEL COMPARISONS

6.1 Introduction

To better understand all the models presented in this work and how they resemble

and diverge, we compare those models following some of the criteria presented in (REZENDE,

2017), so that we can be able to, given a scenario, chose an adequate model to use.

On this chapter, we first define the criteria, and then we will analyze the models

based on them.

6.2 Criteria

Each model has its workflow with similarities in some cases. Following we present

six features that we use to compare the models.

• Partitioning Influence: the distribution of the information among the nodes can have a

critical influence on the performance of the algorithms because that can imply in more

messages to be exchanged, what increases the cost. So, we may have models that the

partitioning has a high or a low influence on the performance.

• Computation Unit: the approach to the computation unit can be vertex-centric, edge-

centric or block-centric.

• Execution(EX): the execution can be synchronous(S), if there is a synchronization unit

(like the superstep from the BSP) or asynchronous(A), otherwise.

• Mutability(M): it supports mutability if, during the execution of an algorithm, a new

vertex, edge or a set of both is inserted, it will consider that without the need to restart the

algorithm.

Table 3 – Models comparison

Model Partitioning
Influence

Computation
Unit

Execution Mutability

BSP High Vertex Synch* Yes

GAS High Vertex Synch* Yes

MapReduce Low Vertex /Edge

/Block

Synch No

Functional Programing Low Vertex /Edge

/Block

Synch No

Actor High Subgraph Asynch Can

38

6.3 Analysis of models

From Table 3 we report that the BSP and GAS are basically the same:

• The way that the vertices are distributed can imply on a significant information exchange

over the nodes, increasing the cost of computation;

• Both are vertex-centric;

• They have the superstep as a synchronization unit. These models have some implementa-

tions like (WANG et al., 2013), that make an asynchronous implementation of the BSP

model to improve the convergence time of some algorithms and keep the simplicity and

scalability. Also, Graphlab(LOW et al., 2012) allows the execution in asynchronous way;

• If a change is made in the model, in the next superstep it will be sensed by the nodes and

the new information will flow over the graph;

Based on that, if we have an environment with low cost to message exchange or

the need to a keep changing the number of machines, the BSP and the GAS model can be very

efficient. Otherwise, on scenarios with high message exchanging cost, those models may be

costly.

About the MapReduce and Functional Programming models we can see that the

distribution of the information would not have a significant impact on the execution. That

happens because we need to take the information of every node to retrieve a final result and they

work with an abstract data unity, allowing to use vertex and subgraphs. Also, if any information

is added to the graph model, all the functions may be applied again to capture the modification.

This situation exemplifies why we have not many frameworks to handle distributed graphs using

these models.

MapReduce and Functional Programming models can be helpful if we need to

compute some simple metrics over a graph, without the need of a more coordinated algorithm(like

a shortest path, for example), since they do not have any communication among the computations

and the operations can be applied over the vertices in any order.

The Actor model is the most different among the models presented here: it uses a

subgraph as computation unit, it is asynchronous due to the events that are triggered by message

passing and it can or not sense the mutability, that depends on how the application will be

implemented.

The Actor model can be useful when we have a huge graph but we don’t want to

retrieve information from the whole graph. One example can be the roads network. If we want

39

the shortest path between two points in the same city in Europe, we do not need to access the

information from South America. So, on this examples, we could have an actor responsible for

each continent.

6.4 Conclusion

Here we made model comparisons, presenting how they behave according to some

criteria. We conclude that there is a high similarity between BSP and GAS, and also between

MapReduce and Functional. We also conclude that the Actor model is different from the others.

40

7 CONCLUSIONS AND FUTURE WORKS

This work presented some programming models for distributed graphs. We discussed

how they work, explaining their workflow and structure, and introduced frameworks that use

those models.

On the vertex-centric models, we presented BSP and GAS models. We discussed

their features, explaining its workflow, how to structure a vertex on these models and wich

components we may use to build a distributed system. We also show an algorithm to examplify

these models and how to calculate its execution cost.

Some big data models were presented also. We briefly described Functional Pro-

gramming, Map/Reduce and Actor models, presenting frameworks that uses those models and

how to use them on graphs context.

We also compare the models, presenting some details that can help to choose a model

to implement an application and exemplifying some scenarios that each model can be helpful.

This shows that there is no best model to work with distributed graphs. All of them have their

particularities and are useful in some contexts.

With this new knowledge, we can propose as future work an efficiency comparison

among those models, to better define the scenarios to each model and also propose some

optimization that must be done when implementing them. Also, this knowledge will be helpful

to develop a distributed framework to handle large graphs but with one more feature: the

information on the graph(vertex value, edges cost, etc.) can have different values in different

moments. Those are named time-dependent graphs.

41

REFERENCES

ARIDHI, S.; MONTRESOR, A.; VELEGRAKIS, Y. Bladyg: A novel block-centric framework

for the analysis of large dynamic graphs. In: ACM. Proceedings of the ACM Workshop on
High Performance Graph Processing. [S.l.], 2016. p. 39–42.

BACKSTROM, L.; HUTTENLOCHER, D.; KLEINBERG, J.; LAN, X. Group formation in

large social networks: membership, growth, and evolution. In: ACM. Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining. [S.l.],

2006. p. 44–54.

BENNETT, J.; LANNING, S. et al. The netflix prize. In: NEW YORK, NY, USA. Proceedings
of KDD cup and workshop. [S.l.], 2007. v. 2007, p. 35.

BOLDI, P.; SANTINI, M.; VIGNA, S. A large time-aware web graph. In: ACM. ACM SIGIR
Forum. [S.l.], 2008. v. 42, n. 2, p. 33–38.

BONDY, J. A.; MURTY, U. S. R. GRAPH THEORY WITH APPLICATIONS. [S.l.: s.n.],

1982.

DEAN, J.; GHEMAWAT, S. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, ACM, v. 51, n. 1, p. 107–113, 2008.

GONZALEZ, J. E.; LOW, Y.; GU, H.; BICKSON, D.; GUESTRIN, C. Powergraph: Distributed

graph-parallel computation on natural graphs. In: OSDI. [S.l.: s.n.], 2012. v. 12, n. 1, p. 2.

GUO, Y.; VARBANESCU, A. L.; IOSUP, A.; MARTELLA, C.; WILLKE, T. L. Benchmarking

graph-processing platforms: a vision. In: ACM. Proceedings of the 5th ACM/SPEC
international conference on Performance engineering. [S.l.], 2014. p. 289–292.

HADOOP, A. Hadoop. 2009. <http://hadoop.apache.org/>. [Online; accessed 06-December-

2017].

HARA, C. S.; PORTO, F.; OGASAWARA, E. Tópicos em gerenciamento de dados e

informações 2015. 2015.

HEIDARI, S.; SIMMHAN, Y.; CALHEIROS, R. N.; BUYYA, R. Scalable graph processing

frameworks: A taxonomy and open challenges. 2017.

HENDERSON, P. Functional programming: application and implementation. [S.l.]:

Prentice-Hall, 1980.

HUGHES, J. Why functional programming matters. The computer journal, Oxford University

Press, v. 32, n. 2, p. 98–107, 1989.

JORDAN, M. Committee on the analysis of massive data, committee on applied and theoretical

statistics, board on mathematical sciences and their applications, division on engineering and

physical sciences, council, nr, 2013. frontiers in massive data analysis. Frontiers in Massive
Data Analysis, 2013.

KANG, U.; TSOURAKAKIS, C. E.; FALOUTSOS, C. Pegasus: A peta-scale graph mining

system implementation and observations. In: IEEE. Data Mining, 2009. ICDM’09. Ninth
IEEE International Conference on. [S.l.], 2009. p. 229–238.

http://hadoop.apache.org/

42

KWAK, H.; LEE, C.; PARK, H.; MOON, S. What is twitter, a social network or a news media?

In: ACM. Proceedings of the 19th international conference on World wide web. [S.l.], 2010.

p. 591–600.

KYROLA, A.; BLELLOCH, G. E.; GUESTRIN, C. Graphchi: Large-scale graph computation

on just a pc. In: USENIX. [S.l.], 2012.

LOW, Y.; BICKSON, D.; GONZALEZ, J.; GUESTRIN, C.; KYROLA, A.; HELLERSTEIN,

J. M. Distributed graphlab: a framework for machine learning and data mining in the cloud.

Proceedings of the VLDB Endowment, VLDB Endowment, v. 5, n. 8, p. 716–727, 2012.

MALEWICZ, G.; AUSTERN, M. H.; BIK, A. J.; DEHNERT, J. C.; HORN, I.; LEISER, N.;

CZAJKOWSKI, G. Pregel: a system for large-scale graph processing. In: ACM. Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data. [S.l.], 2010. p.

135–146.

REZENDE, C. A. d. A component-oriented framework for large-scale parallel processing
of big graphs. Tese (Doutorado), 2017.

SALIHOGLU, S.; WIDOM, J. Gps: A graph processing system. In: ACM. Proceedings of the
25th International Conference on Scientific and Statistical Database Management. [S.l.],

2013. p. 22.

SALIHOGLU, S.; WIDOM, J. Help: High-level primitives for large-scale graph processing. In:

ACM. Proceedings of Workshop on GRAph Data management Experiences and Systems.

[S.l.], 2014. p. 1–6.

THURAU, M. Akka framework. 2012. <https://media.itm.uni-luebeck.de/teaching/ws2012/

sem-sse/martin-thurau-akka.io.pdf>. [Online; accessed 06-December-2017].

VALIANT, L. G. A bridging model for parallel computation. Communications of the ACM,

ACM, v. 33, n. 8, p. 103–111, 1990.

WANG, G.; XIE, W.; DEMERS, A. J.; GEHRKE, J. Asynchronous large-scale graph processing

made easy. In: CIDR. [S.l.: s.n.], 2013. v. 13, p. 3–6.

WU, D.; SAKR, S.; ZHU, L. Big data programming models. In: Handbook of Big Data
Technologies. [S.l.]: Springer, 2017. p. 31–63.

XIN, R. S.; GONZALEZ, J. E.; FRANKLIN, M. J.; STOICA, I. Graphx: A resilient

distributed graph system on spark. In: ACM. First International Workshop on Graph Data
Management Experiences and Systems. [S.l.], 2013. p. 2.

YAHOO WebScope. 2017. <https://webscope.sandbox.yahoo.com/catalog.php?datatype=g>.

Accessed: 2017-12-04.

ZAHARIA, M.; CHOWDHURY, M.; FRANKLIN, M. J.; SHENKER, S.; STOICA, I. Spark:

Cluster computing with working sets. HotCloud, v. 10, n. 10-10, p. 95, 2010.

https://media.itm.uni-luebeck.de/teaching/ws2012/sem-sse/martin-thurau-akka.io.pdf
https://media.itm.uni-luebeck.de/teaching/ws2012/sem-sse/martin-thurau-akka.io.pdf
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introduction
	Theoretical Foundation
	Graphs
	Graph's Algorithms
	Large Graph Processing
	Large Graph Processing Frameworks
	Programming Models for Distributed Graph Processing
	Conclusion

	Bulk Synchronous Parallel (BSP)
	Introduction
	BSP Model
	Primitive Functions
	Code example
	Execution Cost
	Frameworks
	Conclusion

	Gather, Apply, Scatter (GAS)
	Introduction
	GAS Model
	Primitive Functions
	Code example
	Execution Cost
	Frameworks
	Conclusion

	Other Models
	Introduction
	Map/Reduce
	Functional Programming
	Actor
	Conclusion

	Model Comparisons
	Introduction
	Criteria
	Analysis of models
	Conclusion

	Conclusions and Future Works
	References

