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RESUMO

Essa dissertação apresenta análise de estabilidade robusta e nominal do Simplified Dead-time

Compensator (SDTC) na presença de saturação do atuador para processos estáveis e integradores

com atraso de transporte. Tal análise é concebida por meio de LMIs obtidas da condição de

estabilidade de Lyapunov e da condição do setor, com análise de desempenho baseada no ganho

L2. A principal vantagem do SDTC é que uma estratégia anti-windup pode ser implementada

apenas pela adição do modelo da saturação do atuador à estrutura de controle. O procedimento

de ajuste juntamente com comparações entre a estratégia proposta e outros controladores de

tempo-morto anti-windup, incluindo um MPC com restrições, são apresentados nos exemplos de

simulação. Em adição, resultados experimentais numa unidade de tratamento intensivo neonatal

são apresentados para validar a utilidade do SDTC.

Palavras-chave: Compensador de Tempo Morto Simplificado. Preditor de Smith Filtrado.

Saturação do Atuador. Estabilidade.



ABSTRACT

This thesis presents nominal and robust stability analysis of the simplified dead-time compen-

sator (SDTC) with actuator saturation for stable and integrative dead-time processes. Such

analysis is carried out under LMI framework obtained from the Lyapunov stability and the sector

boundedness conditions with performance analysis based on L2 gain. The main advantage of

the SDTC is that an anti-windup strategy can be implemented just by addition of the actuator

saturation model to the control structure. Tuning procedure along with comparison between

the proposed strategy and other anti-windup DTC controllers, including constrained MPC, are

discussed with simulation examples. In addition, experimental results on a neonatal intensive

care unit are presented in order to validate the usefulness of the SDTC.

Keywords: Simplified Dead-time Compensator. Filtered Smith Predictor. Actuator Saturation.

Stability
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1 INTRODUCTION

1.1 Time-delay systems

Time-delay appears in a wide variety of real-word processes from biology to eco-

nomics and communication systems. The source of delay can be related to many causes such as

mass or energy transportation in the process. For instance, in the case of economics, time-delay

looks quite natural since there exists time intervals between information acquisition, decision

making and their effects in the market.

Time-delay can appear either in the state, control input or in the measured plant

output, and is usually associated to a source of instability in the closed-loop. Therefore, stability

analysis of control structures for such systems is of theoretical importance. Systems with constant

delay have received most of the attention in the last decade, whereas the problem of time-varying

delay started to gain more importance in recent years due to the rise of Networked Control

Systems (NCSs).

Networked control systems are distributed systems in which data is transmitted

between actuators, sensors and controllers through communication networks, often relying on

protocols such as Transmission Control Protocol (TCP). This research area is identified as a key

for the future of control systems (LAMNABHI-LAGARRIGUE et al., 2017; HESPANHA et al.,

2007) due to its diverse application; networks of mobile vehicles, smart grids and the healthcare

industry are a few examples. A general structure of a networked output-feedback control system

is depicted in Figure 1, where y(t) is the process measured output, u(t) is the plant input and τ is

a time-varying delay due to the communication network.

1.2 Actuator Saturation

Besides time-delay, another major topic in control systems is actuator saturation.

Although most control systems projects do not consider boundaries in the amplitude or rate of

the process control input, all real-life actuators present such limitations. For instance, electrical

actuators have voltage limits, whereas there exist limitations on both volume and rate of flow in

hydraulic actuators. This can also be a cause of instability in the closed-loop system, due to a

phenomenon known as windup. Instability is, however, only one of the possible consequences

of this condition. Therefore, it is necessary to include strategies which avoid windup and its
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Figure 1 – General networked output-feedback control system.

ProcessActuator Sensor

EncoderDecoder

DelayDelay

Controller

Network

u(t)=f(y(t-τ))

Plant

y(t)

Source: The author.

undesirable consequences in the control loop, as contextualized as follows.

Windup occurs when the model of the saturation to the plant input is unknown, thus

leading the states of the controller to be wrongly updated (KOTHARE et al., 1994) and causing

major problems to the control system. Especially, this can make the output of the plant oscillatory

or unstable. In other cases, the set-point tracking response can become painfully slow. The

origin of the term windup comes from the cases of Proportional Integral (PI) and Proportional

Integral Derivative (PID) controllers, in which the integral state "winds up" to large values during

saturation events; the associated energy is later dissipated, causing the problems described above.

It is import to note that although early practice control engineers associated this phenomenon to

integral action, it was latter discovered that slow or unstable modes in the control system can

also cause windup problems.

In addition to avoiding windup consequences, research effort on saturated systems

is of interest because considering limitations on the control signal can lead to the synthesis of

more economic control laws. Moreover, in the historical perspective, saturated actuators have

had implications in many tragedies such as aircraft crashes and the Chernobyl nuclear power

station disaster (TARBOURIECH; TURNER, 2009). Thus, it is mandatory to guarantee stability

of control structures operating at such conditions. However, this is not an easy task and the

necessary mathematical rigor to make such guarantees was mainly developed in the 1990’s with

the development of the Linear Matrix Inequality (LMI) theory, which is going to be heavily

employed in this work.



17

1.3 Related Work

Dead-time Compensators (DTCs) have been widely studied for about the past 25

years mainly due to their ability to improve the performance of classical PI and/or PID controllers

when the process presents time-delay between the input and output. The first DTC was proposed

in Smith (1957), also known in literature as the Smith Predictor (SP). The proposal presented

limitations, since its application is restricted to open-loop stable plants, while the disturbance

rejection response is dominated by the slow poles of the plant (NORMEY-RICO; CAMACHO,

2007). Since then several extensions have been proposed to improve robustness, disturbance

rejection, and measurement noise attenuation. Some works intended to improve the SP robustness

and disturbance rejection of stable and/or integrative dead time processes can be found in Astrom

et al. (1994), Mataušek and Micić" (1996), Mataušek and Micić (1999), Rao et al. (2007),

Kaya (2003), Rao and Chidambaram (2008), Normey-Rico and Camacho (2008), Kirtania

and Choudhury (2012). Nevertheless, the study of the effect of the measurement noise is less

common. In García et al. (2006), Albertos and García (2009), García and Albertos (2008) the

noise effect in DTC structures is shown using simulations. In Santos et al. (2010), an analysis

for stable, integrative and unstable dead-time processes using the Filtered Smith Predictor (FSP)

with improved noise attenuation was presented. However, the aforementioned works are not

concerned with actuator saturation, which is common in practical applications and can cause

windup problems due to differences between the controller output and the actual plant input. An

applicable solution of the modified Smith predictor (MATAUŠEK; MICIĆ", 1996; MATAUŠEK;

MICIĆ, 1999), with anti-windup was proposed in Mataušek and Ribić (2012), although an

optimization procedure is necessary to define some desired robustness and noise sensitivity

constraints.

In Zhang and Jiang (2008) and Flesch et al. (2017) anti-windup structures for the

FSP were proposed. In Huba (2013) a predictive disturbance observer based filtered PI control

for First Order Plus Dead-time (FOPDT) processes is presented and in Huba (2015) the tuning

for integrative plants with dead time based on robustness and performance criteria is analysed.

Another alternative to deal with constraints lies in the use of Model-based Predictive Controllers

(MPCs) (CAMACHO; BORDONS, 2004; NORMEY-RICO; CAMACHO, 2007). However, in

the MPC case a constrained quadratic problem needs to be solved at each sampling time.

In Torrico et al. (2013), simple tuning rules were proposed for the FSP applied to

the control of stable, integrative, and unstable first-order plus dead-time processes. The primary
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controller is free from integral action, differently from the traditional FSP, and ensures good

trade-off among disturbance rejection, robustness, and noise attenuation. The results were better

than those proposed by Santos et al. (2010). In Huba and Tapak (2011), a control structure

equivalent to that of Torrico et al. (2013) (with addition of anti-windup action) was presented.

Nevertheless, the tuning of the proposed structure was limited for open-loop stable systems only.

In Torrico et al. (2016), the results obtained in Torrico et al. (2013) were extended

to the case of multiple-delay Single-input Single-output (SISO) systems of any model order,

namely Simplified Dead-time Compensator (SDTC). Despite of the good results in the presence

of nonlinearity saturation, stability of the proposed scheme was not studied.

1.4 The Present Work

In this thesis the anti-windup characteristics of the SDTC are further studied, while

stability and performance are analysed using LMI theory. Simulation results are used to analyse

the tuning and establish a fair comparison with other anti-windup DTC presented in Zhang and

Jiang (2008), Flesch et al. (2017) and also a constrained MPC. Furthermore, in order to test the

applicability of the proposed controller, an experiment was performed to control the temperature

in a Neonatal Intensive Care Unit (NICU). This work has the following specific objectives:

• To proof the nominal stability of the SDTC in the presence of actuator saturation.

• To proof robust stability of the SDTC under actuator saturation for the cases of

norm-bounded and polytopic uncertainties in the process fast-model. In addition

to these uncertainties, to consider the process delay to be unknown, bounded, and

possibly time-varying, which can be even more harmful than constant delays.

• To use simulations to establish useful rules for the tuning of the anti-windup

SDTC and demonstrate the good performance of the control structure by com-

parison with other anti-windup strategies.

• To use an experimental result to prove the real-life usefulness of the anti-windup

SDTC.

1.5 Outline

The rest of this thesis is organized as follows.

• In Chapter 2, the mathematical preliminaries necessary to establish stability
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and performance conditions in the presence of actuator saturation are presented.

To comply with this goal, basic knowledge in LMIs manipulation is initially

constructed. Subsequently, concepts on the Lyapunov stability of linear systems

with and without delays are presented. The final Section of the Chapter is devoted

to present essential concepts on the stability of systems with actuator saturation.

• Chapter 3 starts with a review of the SDTC structure. Later, its anti-windup

characteristics are explained and the structure is extended to the anti-windup

SDTC (AWSDTC) case by means of a simple addition to the control structure.

• Chapter 4 is a collection of nominal and robust stability results given in the form

of corollaries. Thorough proof of such statements are constructed throughout the

text under the LMI framework.

• Results are presented in Chapter 5, with simulation examples showing the ef-

fectiveness of the Anti-windup Simplified Dead-time Compensator (AWSDTC)

structure. Experimental data for the temperature control of a neonatal incubator

are discussed.

• Finally, concluding remarks are brought in the last chapter of this thesis. Contri-

butions are summarized whereas future work is listed.



20

2 THEORETICAL PRELIMINARIES

In this Chapter, the preliminary knowledge necessary to proof stability of the SDTC

under actuator saturation is constructed. Initially, the main properties in LMIs manipulation are

presented in Section 2.1. In order to access stability, the Lyapunov stability of linear systems and

the sector boundness condition for the stability of systems with actuator saturation are presented

in Sections 2.2 and 2.3, respectively. Section 2.3 also presents the definition of the L2 gain,

which is used as a performance indicator of the anti-windup strategy.

2.1 Linear Matrix Inequalities

A wide variety of control problems can be described in the format of LMIs. These are

matrix inequalities which have an affine relationship with a set of matrix variables. While most

of the earlier works on Lyapunov stability were formulated using algebraic Riccati equations,

the use of LMIs became popular in the 1990’s due to the development of efficient interior point

method algorithms. LMIs soon became a powerful tool in robust control synthesis in the presence

of structured uncertainties (CHILALI; GAHINET, 1996), and later in the presence of actuator

saturation (WESTON; POSTLETHWAITE, 2000). There exist many packages which provide

solutions to LMIs by using convex optimization, such as the Yalmip toolbox (LOFBERG, 2004).

The main attractions for the use of LMI are listed as (SKOGESTAD; POSTLETH-

WAITE, 2005)

• LMIs can be used to solve problems which involve several matrix variables.

• Their manipulation is flexible, thus a wide variety of problems can be posed as

LMIs in a very straightforward way.

• Restrictions that cause traditional formulations to either fail or struggle to find a

solution can often be removed by using LMIs. Furthermore, LMIs can aid their

extension to more general scenarios.

• Many control problems can be united into a single LMI.

2.1.1 Fundamentals of LMIs

After explaining the fundamental reasons for using LMIs, the following text explains

their concepts.
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Definition 2.1.1 A linear matrix inequality (LMI) is described by the following expression

(BOYD et al., 1994)

F(x), F0 +
m

∑
i=1

xiFi > 0. (2.1)

Where

• Fi = Fᵀ
i ∈ Rnxn are real given symmetric matrices.

• x = [xi, ...,xm] ∈ Rm is the decision variable.

• The inequality > 0 denotes that F(x) is positive definite, i.e. all eigenvalues are

positive. Thus, uᵀF(x)u > 0 for all u ∈ Rn,u 6= 0. Non-strict LMIs are defined by

using the symbol ≥ 0.

The LMI problem in Equation (2.1) is to find x such that F(x) holds. This is a

convex constraint on x, i.e., the set {x|F(x)> 0} is convex. Multiple LMIs F1(x)> 0,F2(x)>

0, ...,Fm(x)> 0, can be expressed as a single LMI of the form:

F(x) =


F1(x) · · · 0

... . . . ...

0 · · · Fm(x)

> 0, (2.2)

which is also a convex set, as illustrated in Figure 2.

Figure 2 – Convex set of LMIs.

LMI1

LMI2

LMI3

Source: The author.

Convex optimization solution may be arranged in two main problems to be solved

under the LMI framework. The first one is called a feasibility problem and consists of either
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finding any x f eas such that F(x f eas)> 0 holds or determining that the problem is infeasible. The

second is called an optimization problem (also called eigenvalue problem). This consists of

minimizing (or maximizing) some convex cost function of the unknown variable x subject to

LMI constraints as

min Γ(x) such that F(x)> 0. (2.3)

Important tricks used in the manipulation of LMIs (useful for the stability proofs

provided in this work) are explained in the rest of this section.

2.1.1.1 Congruence Transformation

Consider a real positive definite matrix P ∈ Rnxn. It is known that pre- and postmul-

tiplication of P by a full rank matrix W ∈Rnxn, and its transpose, does not affect the definitess of

P. Then, the following Equation illustrates the process of congruence transformation

WPWᵀ > 0. (2.4)

This trick is often used along with change of variables to eliminate nonlinearities in matrix

inequalities, as illustrated in Example 1.

2.1.1.2 Change of Variables

Consider the Example 1 to explain the tricks of change of variable and also congru-

ence transformation.

Example 1 Consider the problem of finding a state-feedback matrix such that the continuous

closed-loop system

ẋ = (A+BK)x (2.5)

with A ∈ Rnxn and B ∈ Rnxm is asymptotically stable. Then the standard Lyapunov LMI problem

to make such guarantee is defined as (see Zhou et al. (1996)) to find state-feedback matrix

K ∈ Rmxn and a positive definite matrix P ∈ Rnxn such that

(A+BK)ᵀP+P(A+BK)< 0. (2.6)
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Note that this problem is not linear due to the products between decision variables

P and K. First, it is needed to apply a congruence transformation by multiplying both sides of

each term in (2.6) by Q = P−1, obtaining

QAᵀ+AQ+QKᵀBᵀ+BKQ < 0. (2.7)

This new matrix inequality is still nonlinear due to the product between K and the

new variable Q. A change of variable L = KQ is then used to obtain

QAᵀ+AQ+LᵀBᵀ+BL < 0, (2.8)

which is now an LMI with new variables Q > 0 and L ∈ Rmxn. Finally, the state-feedback matrix

K is found after solving (2.8) by making K = LQ−1. If it is also desirable, the Lyapunov matrix

P can be found by making P = Q−1.

2.1.1.3 Schur Complement

Schur Complement is a tool used mainly to eliminate quadratic terms in matrix

inequalities. The Schur Complement Lemma is stated as follows

Lemma 2.1.1 Consider the following matrix inequality

Q(x) S(x)

S(x)ᵀ R(x)

> 0, (2.9)

where Q(x) = Q(x)ᵀ, R(x) = R(x)ᵀ, and S(x) are matrices affine in x. Then the conditions

R(x)> 0 and Q(x)−S(x)R(x)−1S(x)ᵀ > 0 (2.10)

are equivalent to (2.9).

Example 2 illustrates the use of Lemma 2.1.1.

Example 2 Consider the following matrix inequalityAAᵀ 0

0 γ2I

> 0. (2.11)
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where scalar γ > 0 ∈ R is the decision variable. The inequality in Equation 2.11 is not an LMI

because of the quadratic term in γ . To rectify this, first divide Equation (2.11) by γ

A1
γ
Aᵀ 0

0 γI

> 0. (2.12)

Then, rewrite Equation (2.12) as follows

0 0

0 γI

−
A

0

[−1
γ

][
Aᵀ 0

]
> 0, (2.13)

and use Lemma 2.1.1 to obtain the following LMI


0 0 A

0 γI 0

Aᵀ 0 −γI

> 0, with γ > 0. (2.14)

2.1.1.4 S-Procedure

The S-Procedure is a method that allows two or more inequalities to be combined

into only one. This is specially useful when it is necessary to guarantee that a quadratic function

is negative whenever other quadratic forms are positive (or negative).

Definition 2.1.2 Let F0(x), ...,Fm(x) be quadratic functions of x ∈ Rn such as (BOYD et al.,

1994)

Fi(x), xᵀAix+2uᵀi x+b0, where Ai = Aᵀ
i , i = 0, ...,m. (2.15)

If there exist τ1 ≥ 0, ...,τm ≥ 0 such that

for all x, F0(x)−
m

∑
i=1

τiFi(x)≥ 0, (2.16)

then it holds that

F0(x)≥ 0 for all x such that Fi(x)≥ 0 (2.17)
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Example 3 Suppose that the following constraints on P and W hold, where x =
[
xᵀ1 xᵀ2

]ᵀ
,

xᵀ

AᵀP+PᵀA PB

? 0

x < 0 (2.18)

xᵀ

0 −CW

? −2W

x≥ 0 (2.19)

Then, by applying Definition 2.1.2, inequalities Equations (2.18) and (2.19) can be

combined into a single inequality as

xᵀ

AᵀP+PᵀA PB−CWτ

? −2Wτ

x < 0, with τ > 0. (2.20)

Since τ only appears adjacent to W, it is possible to apply the change of variable Wτ =V . Thus,

the following LMI in P > 0 and V > 0 is obtained

AᵀP+PᵀA PB−CV

? −2V

< 0. (2.21)

2.2 Lyapunov Stability of Discrete-Time Linear Systems

In this Section the fundamentals for stability analysis of the SDTC are constructed.

As it will be demonstrated in Chapter 4, stability of the closed-loop system in the nominal case

(when there are no uncertainties in the process model) depends upon the process fast-model.

Thus, the Lyapunov criterion for the stability of systems without delay is reviewed in Subsection

2.2.1.

For robust stability analysis the process delay is not compensated by the predictor,

and appears in the states of the equivalent closed-loop system. There exist two main methods

to study stability of systems with delayed states, namely the Krasovskii and the Razumikhin

methods of Lyapunov functionals (SUN; CHEN, 2017; FRIDMAN, 2014b). The former is the

most popular, being applicable in a wider range of problems and leading to less conservative

results (FRIDMAN, 2014a). Thus, it was the choice for this work and is reviewed in Subsection

2.2.2.
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2.2.1 Stability of Systems without Delay

There are different forms of stability, being input-output stability and stability of

equilibrium points the most used. The latter, which is used in this work, is characterized in

the sense of Lyapunov functionals. An asymptotically stable equilibrium point is a point for

which the trajectories of states with different initial conditions converge as time approaches

infinity (KHALIL, 2002). The region of attraction of an equilibrium point x∗ is the set of initial

conditions x0 for which x(x0, t)→ x∗ as t goes to infinity (BRIAT, 2015). Furthermore, an

equilibrium point is said to be globally stable if its region of attraction is the whole space, e.g.

Rn. Note that in the discrete-time domain, the time t dependence is usually replaced by the

sample k.

In order to establish the stability of discrete-time linear systems without delay, the

following Lyapunov condition is given

Theorem 2.2.1 For a chosen positive definite function V (x(k)) = xT (k)Px(k), ∀x 6= 0, the

discrete-time system x(k+1) = f (x(k)) is stable if and only if

∆V (x(k)),V (x(k+1))−V (x(k))< 0, with P = Pᵀ > 0. (2.22)

Note that Theorem 2.2.1 is in the form of a feasibility problem. It states that if there

can be found any positive definite symmetric matrix P for which ∆V (x(k))< 0 holds, then the

system x(k+1) = f (x(k)) is stable. This kind of problem can usually be solved in a very strait

manner by using LMIs. The stability phenomena is illustrated in the example that follows.

Example 4 Consider the following second-order discrete-time system

x(k+1) =

2 0

1 3

x(k)+

1

1

u(k). (2.23)

From classical control systems theory, the open-loop is unstable since the eigenvalues of A (3 and

2) are outside the unit circle. Consider then the problem of finding a stabilizing state feedback

control law u(t) =−Kx; this substitution leads to the following equivalent closed-loop system

x(k+1) = (A−BK)x(k). (2.24)
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First, apply theorem 2.2.1 to Equation (2.24) as follows

V (x(k+1))−V (x(k)) = x(k)ᵀ(A−BK)ᵀP(A−BK)x(k)− x(k)ᵀPx(k)> 0, P > 0. (2.25)

Then, by rearranging (2.25) one obtains

x(k)ᵀ
[
(A−BK)ᵀP(A−BK)−P

]
x(k)< 0, P > 0, (2.26)

which is equivalent to simply

[
(A−BK)ᵀP(A−BK)−P

]
< 0, P > 0. (2.27)

Next, apply the Schur complement Lemma to (2.27) to obtain

−P Aᵀ+KᵀBᵀ

? −P−1

< 0, P > 0. (2.28)

By applying a congruence transformation with diag(P−1, I), and making the change of variable

Q = P−1 it is obtained

−Q QAᵀ+QKᵀBᵀ

? −Q

< 0, Q > 0. (2.29)

Finally, by setting K = NQ−1 one obtains the following LMI.

−Q QAᵀ+NᵀBᵀ

? −Q

< 0, Q > 0. (2.30)

Next, consider that the LMI in Equation (2.30) was solved and the stabilizing state-

feedback gain K =
[
−0.93 2.97

]
was found. Closed-loop system (2.24) is now asymptotically

stable with globally stable equilibrium point x∗ = 0, i.e. ∀ x0 ∈ R2, x(x0,k)→ x∗ as k→ inf,

since the eigenvalues of (A−BK) (0.3 and 0.8) are inside the unit circle. Figure 3 illustrates a

plot of part of the region of attraction using different initial conditions for states x1 and x2. Since

the system is globally asymptotically stable, the region of attraction is the whole R2 space. The

time response is shown in Figure 4. The effects of actuator saturation in the stability of such

system will be shown in the second part of this example, in Section 2.3.
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Figure 3 – Convergent trajectories for equilibrium point in Example 4. Equilibrium point
(x∗ = 0); initial conditions (o).
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2.2.2 Delay-Dependent Stability

In this Subsection, bases for the stability investigation of the SDTC with model

uncertainties are established. As it will be seen in Chapter 4, the equivalent state-space closed-

loop representation of the SDTC in the presence of model uncertainties is a system with delayed

states. Furthermore, the delay in the states is equal to the delay of the process model. In this

work, the delay in the controlled process is considered to be not only uncertain but also possibly

time-varying.

As explained in the introductory chapter of this thesis, the motivation for the study

of stability in the case of time-varying delays lies on the recent advance of networked con-

trolled systems. Although NCSs are useful in a wide variety of applications, these systems

introduced a robustness problem which is called quenching phenomenon in the literature (PA-

PACHRISTODOULOU et al., 2007; LOUISELL, 2001). Basically, this phenomenon occurs

when dead-time processes are stable for the case of constant delays but become unstable for
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Figure 4 – Example 4 - time responses for six different initial conditions x0.
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time-varying ones, thus showing that the latter case is more harmful for the stability of control

systems.
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2.2.2.1 Lyapunov-Krasovskii Method

Consider the following discrete-time linear system with time-varying delay

x(k+1) = Ax(k)+Adx(k− τk), k ∈ Z+, τk ∈ N, 0≤ τk ≤ h1. (2.31)

For simplicity, denote xk( j) , x(k+ j), j = −h1, ...,0. When τk = h1 (worst case), the initial

condition for (2.31) should be given as

col{x(0),x(−1), ...,x(−h)}= col{φ(0),φ(−1), ...,φ(−h)}. (2.32)

Then, consider the following Lemma borrowed from Fridman (2014a).

Lemma 2.2.1 If there exist positive numbers α , β and a functional V : Rn× . . .×Rn︸ ︷︷ ︸
h1+1 times

→ R+

such that for all k = 0,1,2 . . .

0≤V (xk)≤ β{max j∈[−h,0]|x(k+ j)|2} (2.33)

and

V (xk+1)−V (xk)≤−α|x(k)|2 (2.34)

for x(k) satisfying (2.31), then (2.31) is asymptotically stable.

Proof of Lemma 2.33 comes directly from Fridman (2014a), page 248, and is shown in the

sequence. From (2.34) it follows that

k

∑
j=0

V (x j+1)−V (x j)≡V (xk+1)−V (x0)≤−α

k

∑
j=0
|x( j)|2. (2.35)

Then, due to (2.33), for x(k) satisfying both (2.31) and (2.32), it is obtained that

|x(k)|2 ≤
k

∑
j=0
|x( j)|2 ≤ 1

α
V (x0)≤

β

α
max j∈[−h,0]|φ( j)|2, ∀k ∈ Z+, (2.36)
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which implies that |x(k)|2 is small for small enough max j∈[−h,0]|φ( j)|2. Furthermore,

inf

∑
j=0
|x( j)|2 ≤ 1

α
V (x0)< inf . (2.37)

Hence, |x( j)|2→ 0 for j→ inf, and the proof is complete.

Thus, the problem of providing stability proof for systems with delayed states can

also be solved by choosing an appropriate Lyapunov functional V (x), as stated by Lemma

2.2.1. Note that this condition is sufficient only, meaning that the choice of functional and its

consequent manipulation can lead to more or less conservative results. This is a hot field of

research, with many works published in the last ten years. For more details, see the works of Zhu

and Yang (2008), Zhang et al. (2008), Shao and Han (2011), Liu and Zhang (2012) and Seuret et

al. (2015).

In this work, some precautions are taken in order to yield less conservative re-

sults, such as employing the convex analysis of Park et al. (2011) and the descriptor model

transformation, introduced in Fridman (2001). The descriptor model transformation makes it

possible to analyze systems with fast-varying delays. The employment of the convex analysis

approach will be exemplified in the derivation of stability results, whereas the discrete-time

model transformation from Fridman (2014a) is reviewed in the following text.

2.2.2.1.1 Discrete-Time Descriptor System Review

The introduction of the descriptor method was mainly motivated by the conservatism

of prior results in time-varying delay systems. The first Lyapunov-Krasovskii conditions dealt

mainly with the case of slow-varying delays, while systems with fast-varying delays had to

be analyzed by using system augmentation, i.e. delay-independent conditions in the form of

Lyapunov-Razumikihn functionals. Consider the definition

ȳ = x(k+1)− x(k), x(k+1) = ȳ− x(k). (2.38)

Then it is clear that

x(k+1)− x(k)− ȳ = 0. (2.39)
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In order to illustrate the use of the descriptor method, first consider the case of a

delay-free autonomous system given by

x(k+1) = Ax(k), (2.40)

then substitute (2.40) into (2.39) to obtain

(A− I)x(k)− ȳ = 0, (2.41)

which is equivalent to (2.40) in the sense of stability (FRIDMAN, 2014a). Consider the Lyapunov

functional for stability of discrete-time systems without delay presented in Theorem 2.2.1. In the

descriptor approach, x(k+1) = ȳ− x(k) is substituted into ∆V (x(k)) rather than the right-hand

side of (2.31), thus

∆V (x(k)) = 2xᵀ(k)Pȳ(k)+ ȳᵀ(k)Pȳ(k). (2.42)

Now, by using (2.41), it is clear that the following equation holds for free matrices P2 and P3

2[xᵀ(k)Pᵀ
2 + ȳᵀ(k)Pᵀ

3 ][(A− I)x(k)− ȳ] = 0. (2.43)

Then, a new stability condition by using the descriptor method is found by adding (2.42) to

(2.43), yielding

∆V (x(k))+2[xᵀ(k)Pᵀ
2 + ȳᵀ(k)Pᵀ

3 ][(A− I)x(k)− ȳ]< 0. (2.44)

By substitution of (2.42) into (2.44), it follows that

2xᵀ(k)Pȳ(k)+ ȳᵀ(k)Pȳ(k)+2[xᵀ(k)Pᵀ
2 + ȳᵀ(k)Pᵀ

3 ][(A− I)x(k)− ȳ]< 0, (2.45)

which can be written in the LMI format as

Pᵀ
2 (A− I)+(A− I)ᵀP2 P−Pᵀ

2 +(A− I)ᵀP3

? P−P3−Pᵀ
3

< 0. (2.46)
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Then, the autonomous system (2.40) is asymptotically stable if there exist matrices P > 0, P2 and

P3 such that (2.46) is feasible. This method will be used in this work instead of the traditional

method where x(k+1) is substituted into the Lyapunov functional. The two main advantages of

using this method are described in Fridman (2014a) as

• The use of the descriptor method yields less conservative stability conditions

(with or without delay).

• LMIs are easily extended for the case of uncertain systems, due to the affine

relationship in the system matrices.

2.2.2.1.2 Interval Time-Varying Delay

Note that system (2.31) was defined for small like delays τk ∈ [0,h1]. However, the

motivation in this work is to provide stability analysis for systems with non-small interval delays

such as

x(k+1) = Ax(k)+Adx(k− τk), k ∈ Z+, τk ∈ N, h0 ≤ τk ≤ h1. (2.47)

This can be achieved by considering the following Lyapunov-Krasovskii functional

(FRIDMAN, 2014a)

V (x(k)) =VP(k)+VS(k)+VR(k)+VS1(k)+VR1(k) (2.48)

where

VP(k) = xT Px

VS(k) =
k−1

∑
j=k−h0

xT ( j)Sx( j)

VR(k) = h0

−1

∑
m=−h0

k−1

∑
j=k+m

yT ( j)Ry( j)

VS1(k) =
k−h0−1

∑
j=k−h1

xT ( j)S1x( j)

VR1(k) = (h1−h0)
−h0−1

∑
m=−h1

k−1

∑
j=k+m

yT ( j)R1y( j)

y( j) = x( j+1)− x( j)

P > 0,S > 0,R > 0,S1 > 0,R1 > 0.

(2.49)
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This analysis employs the discrete-time version of the Jensen’s inequality (HIEN;

TRINH, 2016), which is stated in the following Lemma.

Lemma 2.2.2 For integers a < b, a function θ : Z[a,b]→ Rn and a matrix R > 0, the following

inequality holds

b

∑
k=a

θ
ᵀ(k)Rθ(k)≥ 1

l

(
b

∑
k=a

θ
ᵀ(k)

)
R

(
b

∑
k=a

θ(k)

)
, (2.50)

where l = b−a+1 denotes the length of interval [a,b] in Z.

In order to find an LMI that establishes stability conditions for system in (2.47), it

is necessary to find ∆V (x(k)) as defined by Lyapunov functional in (2.48), (2.49). Thus, by

applying suitable math to (2.49) and using the descriptor method substitution from Equation

(2.38) it is found that

∆VP(k) = 2xT (k)Py(k)+ yT (k)Py(k) (2.51)

∆VS(k) = xT (k)Sx(k)− xT (k−h0)Sx(k−h0) (2.52)

∆VS1(k) = xT (k−h0)S1x(k−h0)− xT (k−h1)Sx(k−h1) (2.53)

∆VR(k) = h2
0yT (k)Ry(k)−h0

k−1

∑
j=k−h0

yT ( j)Ry( j) (2.54)

∆VR1(k) = (h1−h0)
2yT (k)R1y(k)− (h1−h0)

k−h0−1

∑
j=k−h1

yT ( j)R1y( j) (2.55)

By applying Jensen’s inequality to the summation terms in the right-hand side of

equations (2.54) and (2.55), and using the reciprocally convex approach, the following relations

are obtained

∆VR jen(k)≡ h2
0yT (k)Ry(k)− [xT (k)− xT (k−h0)]R[x(k)− x(k−h0)]≥ ∆VR(k), and (2.56)
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∆VR1 jen(k)≡ (h1−h0)
2yT (k)R1y(k)−η

T

R1 S12

? R1

η ≥ ∆VR1(k), (2.57)

where

η =

x(k−h0)− x(k− τk)

x(k− τk)− x(k−h1)

 , and (2.58)

R1 S12

? R1

≥ 0 for some S12. (2.59)

Then, define

∆Vtime(x(k)) = ∆VP(k)+∆VS(k)+∆VS1(k)+∆VR jen(k)+∆VR1 jen(k), (2.60)

which is computed as the sum of the terms in the right-hand side of equations (2.51), (2.52),

(2.53), (2.56) and (2.57). Next, by applying the descriptor method to system (2.47), it is obtained

DESCuns(k)≡ 2[xᵀ(k)Pᵀ
2 + ȳᵀ(k)Pᵀ

3 ][(A− I)x(k)+Adx(k)− ȳ] = 0. (2.61)

Finally, by addition of (2.61) to (2.60) and definition of

ηcase1(k) = col{x(k),y(k),x(k−h0),x(k−h1),x(k− τk)}, (2.62)

it is obtained that

V (x(k−1))−V (x(k))≤ ηcase1(k)
T

ϒ11ηcase1(k)≤−α|x(k)|2, (2.63)

is satisfied for some α > 0, where ϒ11 is defined in the following Theorem which establishes

stability of system (2.47) in the case of time-varying delay.
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Theorem 2.2.2 The closed-loop system (2.47) is asymptotically stable for all time-varying

delays h0 ≤ τk ≤ h1 if there exist matrices P > 0,R > 0,S > 0,R1 > 0,S1 > 0,P2,P3,S12 such

that LMIs (2.59) and

ϒ11 =



Ψ11 Ψ12 R 0 PT
2 Ad

? Ψ22 0 0 PT
3 Ad

? ? Ψ33 S12 R−S12

? ? ? Ψ44 R1−ST
12

? ? ? ? Ψ55


≤ 0 (2.64)

are feasible, where

Ψ11 = S−R+(AT − I)P2 +PT
2 (A− I),

Ψ12 = P−PT
2 +(AT − I)P3,

Ψ22 = P+Rh2
0 +R1(h1−h0)

2−PT
3 −P3,

Ψ33 =−R−S+S1−R1,

Ψ44 =−S1−R1,

Ψ55 = S12 +ST
12−2R1.

(2.65)

2.2.3 Robust Stability with Model Uncertainties

Model uncertainties are the differences between the actual system and its model. The

less sensitive to such differences the more robust the control system is. In this Subsection, the

LMI (2.64) is extended to the case of model uncertainties, which can be either structured (using

polytopic representation) or unstructured (with norm-bounded matrices). Since the LMI (2.64)

is affine in the system matrices, it can be applied to both of these cases.

2.2.3.1 Polytopic uncertainty

Structured uncertainties can be modeled as polytopic uncertainties when parameters

in a transfer function or in a state-space matrix are unknown but bounded with known limits. A

polytope is a convex hull which can represent structured uncertainties in systems, where each

vertice is a combination of the known parameter limits.
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Lets denote matrices A and Ad from system (2.47) with (FRIDMAN, 2014a)

Γ =
[
A Ad

]
, Γ ∈Π{Γ j, j = 1, ...,M} (2.66)

Γ =
M

∑
j=1

ω jΓ j, for some 0≤ ω j ≤ 1,
M

∑
j=1

ω j = 1, (2.67)

where Γ j =
[
A j A j

d

]
describes the M vertices of the polytope. Then, the following corollary

establishes stability of system (2.47) in the presence of polytopic like uncertainties.

Corollary 2.2.1 Assume that (2.59) and M LMIs (2.64) written in the vertices of Γ j

ϒ
j
11 =



Ψ
j
11 Ψ

j
12 R 0 PT

2 A j
d

? Ψ22 0 0 PT
3 A j

d

? ? Ψ33 S12 R−S12

? ? ? Ψ44 R1−ST
12

? ? ? ? Ψ55


≤ 0 (2.68)

are feasible for the same matrices P > 0,R > 0,S > 0,R1 > 0,S1 > 0,P2,P3 and S12, where

Ψ
j
11 = S−R+(A jT − I)P2 +PT

2 (A j− I),

Ψ
j
12 = P−PT

2 +(A jT − I)P3.
(2.69)

Then

M

∑
j=1

ω jϒ
j
11 = ϒ11 < 0, (2.70)

and the closed-loop system (2.47) with polytopic type uncertainties described by (2.66) and

(2.67) is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1.

2.2.3.2 Norm-bounded uncertainty

Consider the following system

x(k+1) = [A+∆A(k)]x(k)+ [Ad +∆Ad(k)]x(k− τk), (2.71)
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where the norm-bounded uncertainties are of the form
[
∆A(k) ∆Ad(k)

]
= Eδ (k)

[
HA HAd

]
.

The matrices E, HA and HAd are constant and known, whereas δ (k) is an unknown time-varying

matrix satisfying

δ
T (k)δ (k)≤ I. (2.72)

In order to analyse this case, first matrices A and Ad are replaced in ϒ11 (Equation

(2.64)) by A+Eδ (k)HA and Ad +Eδ (k)HAd , respectively. Then, separation of terms with

uncertainties leads to the following inequality

ϒ11 +ϒ12δ (k)ϒT
13 +ϒ13δ (k)T

ϒ
T
12 < 0. (2.73)

where

ϒ12 =



PT
2 E

PT
3 E

0

0

0


, ϒ13 =



HA
T

0

0

0

HAd
T


. (2.74)

Then, by the application of the following inequality for some scalar ε > 0 (XIE, 1996)

ϒ12δ (k)ϒT
13 +ϒ13δ (k)T

ϒ
T
12 ≤ ε

−1
ϒ12ϒ

T
12 + εϒ13ϒ

T
13, (2.75)

and Schur complements, the following LMI is obtained


ϒ11 ϒ12 εϒ13

? −ε 0

? ? −ε

< 0. (2.76)

Then, the following Corollary establishes robust stability of system (2.71).

Corollary 2.2.2 The system (2.71) is asymptotically stable for all time-varying delays h0 ≤

τk ≤ h1 and all δ (k) satisfying Equation (2.72) if there exists matrices P > 0,R > 0,S > 0,R1 >

0,S1 > 0,P2,P3,S12 and scalar ε > 0 such that LMIs (2.76) and (2.59) are feasible.
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2.3 Stability of Systems with Actuator Saturation

2.3.1 Fundamentals

Systems with saturating actuators are on the boundary between linearity and non-

linearity. Even if an open-loop process is linear, the saturation of the actuator will turn the

closed-loop into a nonlinear system. Thus, in this Section, the basis for understanding how satu-

ration affects stability and performance of closed-loop systems is briefly presented. The stability

condition is presented using the sector nonlinearity model approach, whereas a performance

condition is presented in the form of the L2 gain.

There are three main approaches to tackling the stability problem of saturating

systems, namely the global, semi-global and regions of stability approaches. When saturation

occurs, it may not be possible to guarantee asymptotic stability of the closed-loop system for

all initials conditions. Determination of the so called regions of stability is, thus, of theoretical

importance for analysis of such systems. Herein, the phenomena of loss of stability for different

initial conditions is illustrated by means of Example 4. However, the problem of finding ellipsoids

of stability is not treated further, as this thesis concentrates in providing global stability analysis

only.

Example 5 Consider the same second-order discrete-time open-loop unstable system from

Example 4

x(k+1) = A =

2 0

1 3

x(k)+

1

1

u(k) (2.77)

Once again, consider a state feedback control law u(k) = −Kx(k), with K =
[
−0.93 2.97

]
.

When saturation is absent, the linear closed-loop system is stable with eigenvalues 0.3 and 0.8,

and is governed by the dynamics of Equation (2.24). Convergent trajectories for different initial

conditions were plotted in Example 4. Now, lets suppose that the control signal actually is

saturated with boundaries −10≤ u(k)≤ 10. Now, the closed-loop system is nonlinear with the
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form

x(k+1) = Ax(k)+Bsat(Kx(k)), with sat(Kx(k)) =


10, if Kx(k)> 10

Kx(k), if |Kx(k)| ≤ 10

−10, if Kx(k)<−10

(2.78)

Figures 5 and 6 show the trajectories and the time-response of the saturated system

for the same initial conditions of Example 4. Note that now three of the trajectories were

divergent, for x0 = [−5;−4], x0 = [4;5] and x0 = [2;−4]. In these cases, the system remained

saturated for almost all the time. Interestingly, for both x0 = [−3;−2] and x0 = [4;2], spite of

the control getting saturated in the initial instants, the trajectories converge for the origin. It is

clear that, although being asymptotically stable to the origin in the absence of saturation, the

origin becomes only a regional equilibrium point in the presence of the saturation nonlinearity.

Figure 5 – Convergent and divergent trajectories in Example 5. Regional equilibrium point
(x∗ = 0); initial conditions (o).
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Source: The author.
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Figure 6 – Example 5 - time responses for six different initial conditions.
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2.3.2 Global Stabilization

One might wonder if it is possible to design a state-feedback control law for which

system (2.77) is asymptotically stable for any saturation value. The answer to this question is a

simple no, since it has been shown long ago that systems with unstable poles cannot be globally

stabilized; see, for example Yang et al. (1997) for the case of discrete-time systems, from where
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the following formal result can be stated

Theorem 2.3.1 A discrete-time system

x(k+1) = Ax(k)+Bu(k) (2.79)

can only be globally stabilized by means of bounded feedback control laws if and only if

1. the pair (A,B) is stabilizable;

2. all the eigenvalues of matrix A have modulus equal to or less than 1,

where system (2.79) is said to be globally asymptotically stabilizable if and only if there exists a

bounded control law for which x∗ = 0 is the global equilibrium point, i.e. for any initial condition

x0, the trajectory x(x0,k)→ 0 as k→ ∞.

Consider system (2.79) with a feedback control law u(k) =−Kx(k) and lets formally

define the saturation nonlinearity model for SISO systems (since this work does not treat the

case of Multiple-input Multiple-output (MIMO) systems) as

sat(u) = sign(u)×min{|u|, |ū|}, ū > 0, (2.80)

Figure 7 – The saturation function.

sat(u)
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u u

u

u

Source: The author.
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where ū is the bound on the control signal. Then, the closed-loop system can be re-written as

x(k+1) = Ax(k)+Bsat(u(k))

u(k) =−Kx(k).
(2.81)

This kind of representation, however, is not interesting for the study of stability, and the following

dead-zone operator is defined

Dz(u) = u− sat(u), (2.82)

thus closed-loop system (2.81) can be re-written in a equivalent manner as

x(k+1) = [A+BK]x(k)+BDz(u(k)),

u(k) =−Kx(k),
(2.83)

Note that, when there is no saturation in the control signal u(k) = sat(u(k)) = 0, thus the problem

of stability of (2.83) is reduced back to the problem of stability of system (2.79). Therefore, the

connection between a linear system and the nonlinear operator Dz is clear.

Consider now the following equations

for u≥ 0 : Dz(u)≥ 0 and Dz(u)≤ λu,

for u≤ 0 : Dz(u)≤ 0 and Dz(u)≥ λu,
(2.84)

where λ is a positive scalar. When λ = 1, the decentralized nonlinearity Dz(u) is said to belong

globally to Sector[0,1]. Similarly, when λ < 1 it is said that Dz(u) belongs locally to Sector[0,λ ].

This study focus on global stability, then from eq. (2.84) and for some one-by-one matrix W > 0,

the following inequality holds

2Dz(u)TW [u−Dz(u)]≥ 0. (2.85)

LMIs that state the global stability condition for systems with input saturation can

be derived by using a Lyapunov functional together with the sector condition presented in (2.85).

This is illustrated in the following example.
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Figure 8 – Dead-zone nonlinearity in the global sector.
Dz(u)

u

u u

λu
Source: The author.

Example 6 Consider the problem of checking if the closed system (2.83) is globally stable for a

given state-feedback matrix K. By denoting Acl = A+BK, ũ=Dz(u), and applying the Lyapunov

functional from Theorem 2.2.1

∆V (x(k)) = [xᵀ(k)Aᵀ
cl + ũᵀBᵀ]P[Aclx(k)+Bũ]− x(k)ᵀPx(k)< 0, (2.86)

which can be written in matrix form as

x(k)

ũ(k)

ᵀAᵀ
clPAcl−P Aᵀ

clPB

? BᵀPB

x(k)

ũ(k)

< 0. (2.87)

Moreover, applying the sector boundedness condition (2.85) to (2.83)

2 ˜u(k)W [−Kx(k)− ũ(k)]≥ 0, (2.88)

which can be written in matrix format as

x(k)

ũ(k)

ᵀ0 −KᵀW

? −2W

x(k)

ũ(k)

≥ 0. (2.89)

By using the S-procedure, inequalities (2.87) and (2.89) can be combined as

Aᵀ
clPAcl−P Aᵀ

clPB−KᵀWτ

? BᵀPB−2Wτ

< 0, for some τ > 0. (2.90)
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Since τ only appears adjacent to W, the change of variable V =Wτ can be applied,

thus

Aᵀ
clPAcl−P Aᵀ

clPB−KᵀV

? BᵀPB−2V

< 0. (2.91)

Finally, closed-loop system (2.83) is globally asymptotically stable if LMI (2.91) is feasible for

some P > 0, W > 0. Note that, in this example, K was supposedly designed using conventional

methods and is previously known, thus not being a decision variable in (2.91). If the project of K

was the intention, tough, (2.91) would need to be further manipulated. However, the use of LMIs

in this work is concerned with demonstrating stability of closed-loops in the presence of actuator

saturation (and also process delay) rather than synthesizing stabilizing control laws.

In order to establish a performance indicator for the SDTC anti-windup strategy (in

the nominal case) the following definition will be used throughout this work.

Definition 2.3.1 A nonlinear system with input ulin(k) and output yd(k) has an L2 gain of γ

when

|yd|2 < γ|ulin|2 +θ , (2.92)

where |.|2 denotes the standard Euclidean vector norm and θ is a positive constant.

The L2 gain represents a bound on the root mean square energy gain of a nonlinear

system.
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3 THE SIMPLIFIED DEAD-TIME COMPENSATOR

This Chapter presents the SDTC control structure and its tuning procedures. Initially,

a review of the SDTC (TORRICO et al., 2016) is presented in Section 3.1. Later, in Section 3.2,

the anti-windup strategy for the SDTC (AWSDTC) is explained.

3.1 Review of the Simplified Dead-Time Compensator (SDTC)

The unsaturated SDTC control structure is depicted in Fig. 9, where Pn(z) =

Gn(z)z−dn is the nominal process, with Gn(z) and dn being the fast model and nominal dead-time,

respectively. Plant P(z) = G(z)z−τk is the model of the real process. The input-output transfer

functions for the nominal case (Pn(z) = P(z)) are

Hyr(z) =
Y (z)

Re f (z)
=

KrPn(z)
1+R(z)+Gn(z)F(z)

, (3.1)

Hyq(z) =
Y (z)
Q(z)

= Pn(z)
[

1− Pn(z)V (z)
1+R(z)+Gn(z)F(z)

]
, (3.2)

Hun(z) =
U(z)
N(z)

=
−V (z)

1+R(z)+Gn(z)F(z)
, (3.3)

where U(z), Y (z), Re f (z), N(z) and Q(z) refer to the Z-transform of the control action u(k),

process output y(k), reference re f (k), measurement noise n(k), and input load disturbance q(k),

respectively.

For such control strategy, robust stability is achieved if the following condition

Ir(ω) =
| 1+R(e jωTs)+Gn(e jωTs)F(e jωTs) |

| Gn(e jωTs)V (e jωTs) |
> δP(ω), (3.4)

is met, where Ts is the sampling time, 0 < ω < π/Ts, δP( jω) is the norm-bounded multiplicative

uncertainty, and Ir(ω) is defined as robustness index.

It is important to highlight from Equations (3.1) to (3.4) that Kr, R(z) and F(z) can

be tuned in order to obtain a desired set-point tracking, while the filter V (z) is set for: (i) to

cancel the effect of slow or unstable poles for disturbance rejection Hyq(z); (ii) to obtain a desired

trade-off between robustness and disturbance rejection.
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Figure 9 – SDTC conceptual structure.

R F

Gn

Kr

+

-

+

+

z-dn

P

V
+
+

+

-

+
+

+
+ y(k)ref(k) u(k)

q(k) n(k)

Source: The author.

3.1.1 Tuning of the primary controller

Simple tuning rules for the primary controller, defined by Kr, R(z), and F(z), were

established by (TORRICO et al., 2016) in order to obtain a desired set-point tracking. Feedback

polynomials R(z) and F(z) are FIR filters

R(z) = r1z−1 + r2z−2 + ...+ rn−1z−n+1, (3.5)

F(z) = f0 + f1z−1 + f2z−2 + ...+ fn−1z−n+1, (3.6)

where n is the order of the fast model Gn(z). Coefficients of R(z) and F(z) are obtained by means

of classical design techniques (such as pole allocation) in order to reach a desired set-point

tracking response. This work uses the cited technique, thus the coefficients of R and F are found
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by solving an equation of the type Mx = y, with

2n−1





1 0 . . . 0 b1 . . . 0

a1 1
... b2

...

... a1 0
... 0

an
... 1 bn b1

0 an a1 0
...

︸ ︷︷ ︸
n−1

0 0 an ︸ ︷︷ ︸
n

0 bn





r1

...

rn−1

f0

...

fn−1


=



p1−a1

...

pn−an

pn+1

...

p2n−1


, (3.7)

where M is a non-singular 2n−1 square matrix, a1 . . .an and b1 . . .bn are the coefficients of

Gn(z) =
b1z−1 +b2z−2 . . .bnz−n

1+a1z−1 +a2z−2 . . .anz−n , (3.8)

and p1 . . . p2n−1 are the coefficients of the desired characteristic polynomial.

Note that in the case of FOPDT systems, R(z) = 0 and F(z) = f0, which is a simple

gain, thus the control structure reduces to the one presented in (TORRICO et al., 2013). Kr is a

gain calculated to yield zero steady-state error, then it follows that

Kr =
1+F1(1)+Gn(1)F2(1)

Pn(1)
. (3.9)

3.1.2 Tuning of the robustness filter V (z)

Robustness filter V (z) is tuned aiming: (i) to reject step-like disturbances applied in

the control signal; (ii) to eliminate slow modes of the plant model Pn(z); (iii) to establish desired

compromise between robustness and disturbance rejection. Such goals can be met by applying

the following filter

V (z) =
b0 +b1z−1 + ...+bpz−p

(1−β z−1)p+1 , (3.10)
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where p is the number of slow modes of the plant model and β is the filter tuning parameter. For

the first objective (i) Hyq(z) must be zero at steady-state, i. e.

V (1) =
1+R(1)+Gn(1)F(1)

Pn(1)
. (3.11)

For the second objective (ii), the poles pi of the process model must be canceled

from Hyq(z), thus

[
1− Pn(z)V (z)

1+R(z)+Gn(z)F(z)

]
z=pi 6=1

= 0, (3.12)

d
dz

[
1− Pn(z)V (z)

1+R(z)+Gn(z)F(z)

]
z=pi=1

= 0. (3.13)

Then, coefficients b0 . . .bp are computed using (3.11), (3.12) and (3.13). Such

equations altogether set a linear system so that coefficients b0 . . .bp can be readily found.

Frequency response characteristics of the objective (iii) can be met by user adjustment

of 0 < β < 1 parameter.

3.2 The Anti-windup SDTC (AWSDTC)

It is an essential question for any anti-windup control strategy a proper knowledge

of the control signal excursion in nominal operation. Within this context, it is fundamental to

obtain the control law for the SDTC structure, which can be found by inspection on its block

diagram presented in Figure 9, leading to

U(z) =
KrRe f (z)−V (z)Y (z)

1+S(z)
, (3.14)

where

S(z) = R(z)+Gn(z)(F(z)−V (z)z−d) (3.15)

is used to obtain an internally stable implementation of the SDTC for any process, as illustrated

in Figure 10.
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Figure 10 – SDTC implementation structure.
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Note that if the plant is under input saturation, the integrative and slow modes

of 1+ S(z) can produce the windup effect, leading the system to become oscillatory or even

unstable.

Anti-windup characteristics of the SDTC is devised by simply adding the nonlinear

saturation model

sat(u) = sign(u)×min{|u|, |ū|}, ū > 0 (3.16)

prior to the input of the plant, as illustrated in Figure 11.

Figure 11 – Anti-windup SDTC scheme.
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In this case, the control signal is given by

U(z) = KrRe f (z)− (1+S(z))Ua(z)−V (z)Y (z). (3.17)

In order to properly analyze anti-windup characteristics of the SDTC controller,

important features related to the reference tracking and disturbance rejection must be observed

as following.

For such control strategy reference tracking is reached by means of Kr given in

equation (3.9), which is a simple gain computed from steady-state behavior. On the other hand

disturbance rejection is guaranteed by the proper design and tuning of the V (z) robustness filter

in equation (3.10).

Therefore, one may notice that neither Kr nor V (z) apply integral action to accom-

plish control tasks. These features are the essentials which makes the SDTC useful to deal with

saturation in control signal, as it never cumulatively integrates saturated values. Such observation

can be easily noticed in equation (3.17).
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4 CLOSED-LOOP STABILITY ANALYSIS

This Chapter presents global closed-loop stability analysis of the AWSDTC structures

for both nominal (in Section 4.1) and modeling uncertainty (in Section 4.2) cases. Furthermore,

Section 4.2 also presents robust stability results for the unsaturated SDTC. For organization

purposes, the demonstration of some content used in Section 4.1 were moved to Appendix A.

Previous studies have proven that closed-loop global stability in the presence of

actuator saturation cannot be achieved by a bounded input in the case of unstable processes

(SONTAG, 1984), (LASSERRE, 1993) (also see Theorem 2.3.1). In case of critically stable pro-

cesses, closed loop stability can only be achieved with nonlinear control laws (TARBOURIECH

G. GARCIA, 2011).

Thus, in this thesis it is assumed that all the poles of the fast model Gn(z) (for

nominal stability analysis) are within the closed unit circle, and there are no multiple poles with

|z|= 1. Also, it is assumed that the plant P(z) = G(z)z−τk remains stable even in the presence

of modeling uncertainties (for robust stability analysis). The theoretical background necessary

to establish stability conditions of the AWSDTC were presented in Chapter 2. Note that in this

work the control strategy is limited to SISO systems.

4.1 Nominal Stability Analysis of the AWSDTC

In order to analyse stability and performance of the nominal anti-windup SDTC

(Pn(z) = P(z)), the scheme in Fig. 11 is redrawn in a more attractive equivalent form depicted by

Fig. 12 (see demonstration in Appendix A), where

M1(z) =
Gn(z)

1+R(z)+Gn(z)F(z)
, and (4.1)

M2(z) =−
R(z)+Gn(z)F(z)

1+R(z)+Gn(z)F(z)
. (4.2)

As it can be seen, the system is divided in three parts, namely the linear loop, the

nonlinear loop and the disturbance filter, with output y = ylin− ydz−dn . This kind of decoupled

structure is widely used for the purpose of stability analysis of closed-loop systems under input

saturation (see Turner and Postlethwaite (2007) for instance).
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Figure 12 – Equivalent Structure for Stability Analysis.
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The linear loop represents how the system would behave in the absence of control

saturation. Comparing Eqs. (3.1) and (4.1) it can be seen that all the poles of M1(z) are within

the unit circle, therefore in the nominal case stability of the structure in Fig. 11 depends only

upon the stability of the nonlinear loop in Fig. 12.

In addition, performance of the anti-windup system can be measured by choosing an

appropriate induced norm for the map from ulin to yd . From Fig. 12 note that the performance of

the anti-windup compensator is related to the size of the map τpn : ulin→ yd , which is measured

in terms of the L2 gain (see Definition 2.3.1). The size of this map represents how much the

behavior of the system is deviated from the linear nominal system when a saturation event occurs.

Assuming that keeping the behavior as close as possible to the linear nominal system is desired, it

is said that the anti-windup compensator is successful when the size of this map is small enough.

Finally, the disturbance filter M1(z) represents how the system recovers after sat-

uration events occurs. Note that when a saturation event ends, the output of the dead-zone

nonlinearity ũ becomes null. However, effects caused by the saturation are not instantaneously

over, as the states of the disturbance filter M1(z) are not null. Therefore, M1(z) is responsible

for determining both speed and manner of recovery of the closed-loop system after saturation

ceases.

Consider the state-space realization of the process fast model Gn(z), given by ma-
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trices Ap,Bp,Cp,Dp. Without loss of generality, it is assumed that Dp = 0, i.e. Gn(z) is strictly

proper. In addition, the state-space realization for FIR filters R and F are given by AR,BR,CR,DR

and AF ,BF ,CF ,DF , respectively. Then, the mapping τpn : ulin→ yd is defined as (see demon-

stration in Appendix A)

τpn ,



x(k+1) = Āx(k)+ B̄ũ

ud = C̄2x(k)+ D̄2ũ

yd = C̄1x(k)

ũ = Dz(ulin−ud)

(4.3)

where

Ā =


Ap−Bp∆DFCp −Bp∆CF −Bp∆CR

BFCp AF 0

−BR∆DFCp −BR∆CF AR−BR∆CR

 ,

B̄ =


Bp−Bp∆DR

0

BR−BR∆DR

 ,

C̄1 =
[
Cp 0 0

]
, C̄2 =

[
−∆DFCp −∆CF −∆CR

]
,

D̄2 =
[
−∆DR

]
, ∆ =

[
I−DR

]
.

Using the Lyapunov functional from Theorem 2.2.1 and the L2 gain from Definition

2.3.1, a necessary but not enough condition for stability is written as

∆V (x(k))+ yT
d yd− γ

2uT
linulin < 0. (4.4)

Substitution of x(k+1) and yd as defined in (4.3) leads to

xᵀ(k+1)Px(k+1)− xᵀ(k)Px(k)+ xᵀ(k)C̄1
ᵀC1x(k)− γ

2uT
linulin < 0, (4.5)
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(Āx(k)+ B̄ũ)ᵀP(Āx(k)+ B̄ũ)− xᵀ(k)Px(k)+ xᵀ(k)C̄1
ᵀC1x(k)− γ

2uT
linulin < 0, (4.6)

and by defining z =
[
xT ũT uT

lin

]T
, inequality (4.6) can be written in an equivalent quadratic

form as

zT


ĀT PĀ−P+C̄1

TC̄1 ĀT PB̄ 0

? B̄T PB̄ 0

? ? −γ2I

z < 0. (4.7)

Furthermore, from the sector boundedness condition of the deadzone (2.85), the

following inequalities hold

2ũTW
[
ulin−ud− ũ

]
≥ 0,

2ũTW
[
ulin−C̄2x− D̄2ũ− ũ

]
≥ 0,

(4.8)

which can be written in matrix form as

zT


0 −C̄2

TW 0

? −2W (D̄2 + I) W

? ? 0

z≥ 0. (4.9)

Using the S-procedure inequalities from Equations (4.7) and (4.9) are combined to

obtain


ĀT PĀ−P+C̄1

TC̄1 ĀT PB̄−C̄2
TWτ 0

? B̄T PB̄−2Wτ(D̄2 + I) Wτ

? ? −γ2I

< 0. (4.10)

Since τ only appears adjacent to W , the change of variable V = Wτ is made. In

addition, by dividing all terms of (4.10) which do not contain decision variables by γ , the

following matrix inequality is obtained (note that division of a matrix variable by a positive
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scalar does not alter its positiveness, hence it is not necessary to divide terms which contain P

and V by γ),


ĀT PĀ−P ĀT PB̄−C̄2

TV 0

? B̄T PB̄−2V (D̄2 + I) V

? ? −γI

−


C̄1
T

0

0

[−γ−1
][

C1 0 0
]
< 0, (4.11)

which is, by Schur complement, equivalent to


ĀT PĀ−P ĀT PB̄−C̄2

TV 0 C̄1
T

? B̄T PB̄−2V (D̄2 + I) V 0

? ? −γI 0

? ? ? −γI

< 0. (4.12)

Note that the procedure above was executed in order to eliminate the quadratic term in decision

variable γ . However, there still exists a problem with (4.12); in order to achieve an LMI format

(described in Definition 2.1.1), decision variable P cannot stay between matrices ĀT and Ā.

Therefore, Schur complement is applied once more to obtain



−P −C̄2
TV 0 C̄1

T ĀT

? −V 2(D̄2 + I) V 0 B̄T

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −P−1


< 0. (4.13)

Now, it is necessary to eliminate the nonlinear term P−1 from (4.13). For this, first

diag(P−1,V−1, I, I, I) is used to apply a congruence transformation with (4.13), obtaining



−P−1 −P−1C̄2
T 0 P−1C̄1

T P−1ĀT

? −2(D̄2 + I)V−1 I 0 V−1B̄T

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −P−1


< 0. (4.14)
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Then, by defining new variables Q = P−1 and U =V−1, the following LMI is obtained

ϒnom =



−Q −QC̄2
T 0 QC̄1

T QĀT

? −2(D̄2 + I)U I 0 UB̄T

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −Q


< 0, (4.15)

with Q > 0, U > 0 and γ > 0. Next, the following theorem establishes a condition to prove

stability of the AWSDTC in the nominal case.

Theorem 4.1.1 The closed-loop system in Figure 11 is internally stable for the nominal case

(Pn(z) = P(z)) if there exist symmetric matrices Q > 0,U > 0, and scalar γ > 0 such that

ϒnom < 0 is feasible. Moreover, the L2 gain is computed by minimizing γ subject to the above

constraints.

4.2 Robust Stability Analysis

In this Section, stability results are presented for the closed-loop system in the

presence of model uncertainties. The analysis is carried out in such a way that six theorems are

obtained for six different scenarios in the presence of model uncertainties. For all the situations,

though, the process delay is considered to be unknown, bounded, and possibly time-varying.

Initially, in Subsection 4.2.1, an equivalent representation of the SDTC with actuator

saturation in the presence of norm-bounded uncertainties is obtained. This is the most general

case, hence it is useful to obtain the equivalent representation in such a way, as it will become

clearer latter. Then, the rest of this Section is organized as follows.

• Subsection 4.2.2 presents three robust stability results in the LMI format for the

SDTC (without saturation nonlinearity): (i) stability for uncertain time-varying

delay without uncertainties in the process fast-model, (ii) stability in the presence

of uncertain time-varying delay processes plus polytopic uncertainties in the

process fast-model, (iii) stability in the presence of uncertain time-varying delay

processes plus norm-bounded uncertainties in the process fast-model

• In Subsection 4.2.3, other three cases with the same uncertainties of Subsection

4.2.2 are presented; however, actuator saturation is considered (AWSDTC), thus
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achieving the ultimate goal of this work.

4.2.1 Equivalent State-Space Delay Representation

Consider the anti-windup SDTC implementation structure in Figure 10; moreover,

consider that the process delay is bounded and time-varying such as h0 ≤ τk ≤ h1, and norm-

bounded uncertainties in the delay free plant model Gn(z). For the purposes of internal stability

analysis, external signals can be considered null (re f (k) = 0,q(k) = 0,n(k) = 0). By defining

Dz(u(k)) = ũ(k) and using identity (2.82) one obtains

ua(k) = sat(u(k)) = u(k)− ũ(k).

Then, the state-space representation of the discrete process P(z), the subsystem S(z) (3.15), and

the robustness filter V (z) are defined by the following equations

P(z) =

xp(k+1) = Âpxp(k)+ B̂pua(k− τk)

y(k) =Cpxp(k)

S(z) =

xs(k+1) = Asxs(k)+Bsua(k)

ys(k) =Csxs(k)

V (z) =

xv(k+1) = Avxv(k)+Bvy(k)

yv(k) =Cvxv(k)+Dvy(k)

where Âp = Ap +∆Ap, B̂p = Bp +∆Bp, and the uncertainties are of the form
[
∆Ap ∆Bp

]
=

Eδ (k)
[
HA HB

]
. The matrices E, HA and HB are constant and known, whereas δ (k) is an

unknown time-varying matrix satisfying

δ
T (k)δ (k)≤ I. (4.16)
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After some algebraic manipulations the equivalent state space closed-loop represen-

tation is obtained as


x(k+1) = [A+∆A(k)]x(k)+ [Ad +∆Ad(k)]x(k− τk)

+Bũ(k)+ [Bd +∆Bd(k)]ũ(k− τk)

ũ(k) = Dz(Cx(k))

(4.17)

where the process delay tk appears in the states of the system and

x(k) =
[
xp(k)T xs(k)T xv(k)T

]T
(4.18)

A =


Ap 0 0

−BsDvCp As−BsCs −BsCv

BvCp 0 Av

 (4.19)

∆A(k) = Eδ (k)HA

E =
[
E 0 0

]T
, HA =

[
HA 0 0

] (4.20)

Ad =


−BpDvCp −BpCs −BpCv

0 0 0

0 0 0

 (4.21)

∆Ad(k) = Eδ (k)HAd

HAd =
[
−HBDvCp −HBCs −HBCv

] (4.22)

B =


0

−Bs

0

 ,Bd =


−Bp

0

0

 (4.23)

∆Bd(k) = Eδ (k)HB, HB =−HB (4.24)

C =
[
−DvCp −Cs −Cv

]
(4.25)
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4.2.2 Robust stability of the SDTC with time-varying delay

4.2.2.1 Case 1 - SDTC with time-varying process delay

Consider the equivalent state space representation of the AW SDTC in (4.17) without

actuator saturation. In this situation, sat(u(k)) is always equal to u(k), thus ˜u(k) = Dz(u(k)) = 0

for all k > 0 and the AWSDTC reduces simply to the original SDTC. Furthermore, when there

are no uncertainties in the process fast-model (∆A = 0 and ∆Ad = 0), closed-loop system (4.17)

reduces to

x(k+1) = Ax(k)+Adx(k− τk), k ∈ Z+, τk ∈ N, h0 ≤ τk ≤ h1, (4.26)

which is equal to the system (2.47) that has been previously studied in Chapter 2. Therefore, the

Corollary below easily follows from Theorem 2.2.2 to establish stability of the SDTC in this

scenario.

Corollary 4.2.1 The SDTC is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1 if

there exists matrices P > 0,R > 0,S > 0,R1 > 0,S1 > 0,P2,P3,S12 such that LMIs (2.64) and

(2.59) are feasible, where closed-loop matrices A and Ad are defined by Equations (4.19) and

(4.21), respectively.

4.2.2.2 Case 2 - SDTC with time-varying process delay and polytopic uncertainties

Once more, the fundamentals for this case have already been demonstrated in

Chapter 2. Consider that state-space matrices Ap and Bp contain structured model uncertainties

as polytopic uncertainties. Since closed-loop matrices A and Ad depend on Ap and Bp, the

aforementioned uncertainties can be mapped to A and Ad as follows

Γ =
[
A Ad

]
, Γ ∈Π{Γ j, j = 1, ...,M} (4.27)

Γ =
M

∑
j=1

ω jΓ j, for some 0≤ ω j ≤ 1,
M

∑
j=1

ω j = 1, (4.28)



61

where Γ j =
[
A j A j

d

]
describes the M vertices of the polytope. Thus, the problem of guaranteeing

closed-loop stability of the SDTC in this scenario is equivalent to the problem in Corollary 2.2.1.

Then, the Corollary below clearly holds

Corollary 4.2.2 Assume that (2.59) and M LMIs (2.64) written in the vertices of Γ j as described

by Equations (4.27) and (4.28) are feasible for the same matrices P > 0,R > 0,S > 0,R1 >

0,S1 > 0,P2,P3 and S12. Then,

M

∑
j=1

ω jϒ
j
11 = ϒ11 < 0, (4.29)

and the SDTC closed-loop system with polytopic type uncertainties described by (4.27) and

(4.28) is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1.

4.2.2.3 Case 3 - SDTC with time-varying process delay and norm-bounded uncertainties

For the case of norm-bounded uncertainties, the SDTC equivalent closed-loop is

written (similarly to (2.71)) as

x(k+1) = [A+∆A(k)]x(k)+ [Ad +∆Ad(k)]x(k− τk), (4.30)

where matrices A, ∆A = Eδ (k)HA, Ad and ∆Ad = Eδ (k)HAd have been defined in (4.19), (4.20),

(4.21) and (4.22), respectively. Then, from Corollary (2.2.2) it follows that

Corollary 4.2.3 The SDTC is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1

and all δ (k) satisfying Equation (4.16) if there exists matrices P > 0,R > 0,S > 0,R1 > 0,S1 >

0,P2,P3,S12 and scalar ε > 0 such that LMIs (2.76) and (2.59) are feasible.

4.2.3 Robust stability of the AWSDTC with time-varying delay

4.2.3.1 Case 4 - AWSDTC with time-varying process delay

In the AWSDTC case (Dz(u) = ũ 6= 0) without uncertainties in the process fast-model

(∆A = 0 and ∆Ad = 0), closed-loop system (4.17) reduces to

x(k+1) = Ax(k)+Adx(k− τk)+Bũ(k)+Bd ũ(k− τk),

ũ(k) = Dz(Cx(k)),
(4.31)
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thus, the definition of x(k+1) is different from (4.26), and therefore it is necessary to obtain a

new equation by applying the descriptor method to (4.31)

DESCsat(k)≡ 2[xᵀ(k)Pᵀ
2 + ȳᵀ(k)Pᵀ

3 ][(A− I)x(k)+Adx(k− τk)+Bũ(k)+Bd ũ(k− τk)− ȳ] = 0.

(4.32)

Furthermore, the sector boundedness condition of the deadzone (2.85) is applied to (4.17),

obtaining

2ũTW
[
Cx(k)− ũ(k)

]
≥ 0, for some W > 0. (4.33)

2ũT (k− τk)W
[
Cx(k− τk)− ũ(k− τk)

]
≥ 0, for some W > 0. (4.34)

Then, by addition of (4.32) and (4.34) to Lyapunov condition (2.60) and definition of

ηcase4(k) = col{x(k),y(k),x(k−h0),x(k−h1),x(k− τk), ũ(k), ũ(k− τk)}, (4.35)

it is obtained that

V (x(k−1))−V (x(k))≤ ηcase4(k)
T

Φ11ηcase4(k)≤−α|x(k)|2, (4.36)

is satisfied for some α > 0, where Φ11 is defined in the following Corollary which establishes

stability of the AWSDTC in the this case.

Corollary 4.2.4 The AWSDTC is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1

if there exists matrices P > 0,R > 0,S > 0,R1 > 0,S1 > 0,W > 0,P2,P3,S12 such that LMIs
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(2.59) and

Φ11 =



Ψ11 Ψ12 R 0 PT
2 Ad PT

2 B+CTW PT
2 Bd

? Ψ22 0 0 PT
3 Ad PT

3 B PT
3 Bd

? ? Ψ33 S12 R−S12 0 0

? ? ? Ψ44 R1−ST
12 0 0

? ? ? ? Ψ55 0 CTW T

? ? ? ? ? −2W 0

? ? ? ? ? ? −2W


≤ 0 (4.37)

are feasible.

4.2.3.2 Case 5 - AWSDTC with time-varying process delay and polytopic uncertainties

Once again, consider polytopic uncertainties in state-space matrices Ap and Bp. Since

closed-loop matrices A, Ad and Bd depend on Ap and Bp, those uncertainties can be mapped to

A, Ad and Bd , and the following polytope can be defined

Γ
sat =

[
A Ad Bd

]
, Γ

sat ∈Π{Γsat
j , j = 1, ...,M}, (4.38)

Γ
sat =

M

∑
j=1

ω jΓ
sat
j , for some 0≤ ω j ≤ 1,

M

∑
j=1

ω j = 1, (4.39)

where Γsat
j =

[
A j A j

d B j
d

]
describes the M vertices of the polytope. Then, the Corollary below

can be stated

Corollary 4.2.5 Assume that (2.59) and M LMIs (4.37) written in the vertices of Γsat
j

Φ
j
11 =



Ψ
j
11 Ψ

j
12 R 0 PT

2 A j
d PT

2 B+CTW PT
2 B j

d

? Ψ22 0 0 PT
3 A j

d PT
3 B PT

3 B j
d

? ? Ψ33 S12 R−S12 0 0

? ? ? Ψ44 R1−ST
12 0 0

? ? ? ? Ψ55 0 CTW T

? ? ? ? ? −2W 0

? ? ? ? ? ? −2W


≤ 0 (4.40)
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are feasible for the same matrices P > 0,R > 0,S > 0,R1 > 0,S1 > 0,W > 0,P2,P3 and S12.

Then,

M

∑
j=1

ω jΦ
j
11 = Φ11 < 0, (4.41)

and the AWSDTC closed-loop system with polytopic type uncertainties described by (4.38) and

(4.39) is asymptotically stable for all time-varying delays h0 ≤ τk ≤ h1.

4.2.3.3 Case 6 - AWSDTC with time-varying process delay and norm-bounded uncertainties

In this case, norm-bounded uncertainties are considered in the process. Thus, matri-

ces ∆A, ∆Ad and ∆Bd exist in the closed-loop, as described by (4.17). LMI (4.37) is affine in the

system matrices, thus A, Ad and Bd are replaced in Φ11 by A+Eδ (k)HA, Ad +Eδ (k)HAd and

Bd +Eδ (k)HB, respectively. Then, separation of terms with uncertainties leads to the following

inequality

Φ11 +Φ12δ (k)ΦT
13 +Φ13δ (k)T

Φ
T
12 < 0. (4.42)

where

Φ12 =



PT
2 E

PT
3 E

0

0

0

0

0


, Φ13 =



HA
T

0

0

0

HAd
T

0

HB
T


. (4.43)

Then, by the application of the following inequality for some scalar ε > 0 (XIE, 1996)

Φ12δ (k)ΦT
13 +Φ13δ (k)T

Φ
T
12 ≤ ε

−1
Φ12Φ

T
12 + εΦ13Φ

T
13, (4.44)
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and Schur complements, the following LMI is obtained


Φ11 Φ12 εΦ13

? −ε 0

? ? −ε

< 0. (4.45)

Finally, the following Corollary establishes robust stability of the AWSDTC with norm-bounded

uncertainties and time-varying process delay.

Corollary 4.2.6 The AWSDTC is asymptotically stable for all time-varying delays h≤ τk ≤ h1

and all δ (k) satisfying Equation (4.16) if there exists matrices P > 0,R > 0,S > 0,R1 > 0,S1 >

0,W > 0,P2,P3,S12 and scalar ε > 0 such that LMIs (4.45) and (2.59) are feasible.
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5 RESULTS

This Chapter has the following specific objectives: (i) to use simulation results to

establish a fair comparison between the proposed anti-windup SDTC and other anti-windup

controllers, (ii) to use a simulation example to compare the AWSDTC with the regular SDTC,

(iii) to use a first-order process to show how different choices in tuning parameters and modeling

uncertainties can affect the delay interval for which stability is guaranteed, (iv) to use a practical

experiment to proof real life applicability of the AWSDTC. Section 5.1 is aimed at achieving the

first three goals, whereas Section 5.2 is shortly presented to fulfill the last.

5.1 Simulation Results

This section first presents a simulation case study using the integrative process

presented (ZHANG; JIANG, 2008). This example is used to establish a fair comparison with

other anti-windup strategies. Therefore, the delay was initially considered to be bounded and

uncertain but time-invariant, as in the aforementioned work. In the second example, the same

first-order process from (ZHANG; JIANG, 2008) is used to analyse robust closed-loop stability

of the AWSDTC in the presence of uncertain time-varying delays and its relation with the user

tuning parameter β (3.10). Later, a second-order process is used to compare the AWSDTC with

the SDTC and show the relation between the tuning of the primary controller and the anti-windup

performance by means of the L2 gain. The considered controllers were evaluated under input

disturbances and step reference variations.

5.1.1 Example 1 - Comparison with other anti-windup controllers

This example presents comparative simulation results obtained with the following

four controllers: an input constrained MPC (CAMACHO; BORDONS, 2004), the controller

reported in (ZHANG; JIANG, 2008), and the proposed anti-windup SDTC. For this purpose, the

following process model presented in (ZHANG; JIANG, 2008) is considered:

P(s) =
e−5s

s
.

By using a sampling time T = 0.2 the following discretized system is obtained:

P(z) =
0.2

z−1
z−25.
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The input limits are ul =−1 and uu = 1. The parameters of the (ZHANG; JIANG,

2008) controller are defined in the paper. The MPC uses the following model to compute the

predictions:

(1−q−1)y(t) = 0.1u(t−1−dn)+
(1−βmpcq−1)2

(1−q−1)
en(t), (5.1)

where q−1 is the backward shift operator, βmpc = e−T/2.4, dn = 0.5/T = 25, and en(t) is a

white noise. The MPC tuning parameters are: the limits of the prediction windows N1 = d +1,

N2 = d + 100, the control horizon Nu = 70, and the control weights defined as λ1 = 0 and

λi = 250, i = 2, . . . ,Nu. The MPC was tuned in order to present a step response quite similar to

(ZHANG; JIANG, 2008) controller in the nominal case without input saturation.

For the AWSDTC controller three different tunings are considered. The first one,

named AWSDTC1, aims a step response close to the one observed for the MPC. Thus, the

AWSDTC1 controller is given by:

Kr = 0.4, f0 = 0.4, and V (z−1) =
0.1574−0.1549z−1

(1−0.92z−1)2 .

On the other hand, the second one (AWSDTC2) was tuned aiming an improved disturbance

rejection under input saturation, leading to the following parameters:

Kr = 0.2, f0 = 0.2, and V (z−1) =
0.2326−0.2289z−1

(1−0.865z−1)2 .

Figures 13 and 14 show the simulation results for a step reference for the AWSDTC1

and AWSDTC2. An input disturbance pulse with amplitude of −1.5 was applied from t = 40 s

to t = 50 s. A step input disturbance with amplitude of −0.5 was applied at t = 100 s.

Fig. 13 shows the simulation results without uncertainties. As it can be observed all

the anti-windup controllers follow the reference in a similar way.

On the other hand, in the case of both input pulse disturbance and input saturation,

the proposed AWSDTC2 controller is the only one which does not present undesired overshoots.

For the step input disturbance the control action is not saturated and the performance of all

controllers are nearly the same. It is worth to mention that the predictor of the anti-windup SDTC

can be interpreted as an observer. According to (3.10), β is the only free tuning parameter of

the robustness filter, and can be used to speed up disturbance rejection or improve robustness.

However when one is prioritized the other is impaired. It can be observed that the β parameter
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Figure 13 – Simulation results for Example 1 (no uncertainties), Z&J is Zhang and Jiang (2008).
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Figure 14 – Simulation results for Example 1 (20% dead-time uncertainty), Z&J is (ZHANG;
JIANG, 2008).
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of V (z) for the proposed SDTC2 is smaller than the SDTC1, which means lower robustness and

better speed performance, as can be seen in Fig. 13.
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Fig. 14 shows simulation results using +20% dead-time uncertainty. It can be seen

that the proposed AWSDTC2 still presents the best response in this situation. It is important to

highlight that the proposed anti-windup SDTC achieves similar or better performance than a

MPC, which is a more complex controller.

In order to establish a fair comparison with a recently published anti-windup strategy

(FLESCH et al., 2017), the AWSDTC3 was tuned to yield a similar set-point tracking response

by using the following parameters

Kr = 0.5, f0 = 0.5, and V (z−1) =
2.17−1.925z−1

(1−0.3z−1)2 .

Figure 15 shows the results for the nominal case, while Figure 16 presents the results

using +5% dead-time uncertainty. Notice that in the nominal case the AWSDTC3 does not

present overshoots, while the controller from Flesch et al. (2017) presents peaks after both the

pulse and step disturbances. Also note (from Figure 16) that even a uncertainty as small as +5%

in the dead-time can seriously harm the performance of the compared controller.

Figure 15 – Simulation results for Example 1 (no uncertainties).
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Figure 16 – Simulation results for Example 1 (5% dead-time uncertainty).
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5.1.2 Example 2 - Robust stability analysis

The nominal state-space realization of the FOPDT process studies in Example 1

when a sampling time T = 0.5s is used is given by Ap = 1, Bp = 1, Cp = 0.5 and dn = 10.

Consider the following controller tuning for this example (AWSDTC1):

Kr = 0.08, f0 = 0.08, and V (z−1) =
0.03021−0.0297z−1

(1−0.92z−1)2 .

Initially, consider that there are no uncertainties in the plant fast-model and no

actuator saturation. Then, by means of the LMIs in Corollary 4.2.1 (Case 1) it is possible to

guarantee stability of the closed-loop for all time-varying delay such as dn−10≤ τk ≤ dn +11

(h0 = 0 and h1 = 21).

Consider now that norm-bounded uncertainties exist with HA = −0.01, HB = 0.1

and E = 0.1 such that the state-state realization of the real process is given by Âp = Ap +∆Ap,

B̂p = Bp + ∆Bp, where
[
∆Ap ∆Bp

]
= Eδ (k)

[
HA HB

]
and δ (k) satisfies Equation (4.16).

Then, by means of the LMIs in Corollary 4.2.3 (Case 3) it is possible to guarantee stability of the

closed-loop for all time-varying delay such as dn−10≤ τk ≤ dn +10 (h0 = 0 and h1 = 20).
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For the cases with actuator saturations, both Corollaries 4.2.4 (Case 4) and 4.2.6

(Case 6) guarantee stability of the closed-loop for all time-varying delay such as dn−4≤ τk ≤

dn +4 (h0 = 6 and h1 = 16).

Consider now that the value of β in this example is reduced from 0.92 to 0.865, thus

the new controller (AWSDTC2) has the following parameters:

Kr = 0.08, f0 = 0.08, and V (z−1) =
0.07117−0.06971z−1

(1−0.865z−1)2 .

In this scenario, both Corollaries 4.2.1 (Case 1) and 4.2.3 (Case 3) guarantee stability

of the closed-loop for all time-varying delay such as dn− 9 ≤ τk ≤ dn + 9 (h0 = 1, h1 = 19).

Furthermore, both Corollaries 4.2.4 (Case 4) and 4.2.4 (Case 6) guarantee stability of the closed-

loop for all time-varying delay such as dn− 2 ≤ τk ≤ dn + 2 (h0 = 8, h1 = 12). Thus, all the

stability intervals were reduced when β was reduced, making it evident that as the regular

SDTC the proposed anti-windup SDTC is still sensitive to this tuning parameter (see Table 1).

Therefore, it is necessary to take precautions when choosing the appropriate value of β ; higher

values yield more robustness to the closed-loop in exchange to becoming more susceptible to

windup effects due to slow modes in Equation (3.17), as evidenced in the simulation results of

Example 1 where the AWSDTC with lower β presented better time-responses.

To conclude this Subsection, Figure 17 shows the time-response of the (AWSDTC1)

in the presence of a time-varying delay dn−4≤ τk≤ dn+4 and cited norm-bounded uncertainties.

The control bound for this example was set in ū = 0.05. A step-like input disturbance of +0.01

was applied to the control signal at time t = 100s and measurement noise was applied in the

last 20s of simulation. The (AWSDTC1) is capable of rejecting the disturbance and follow

the reference, demonstrating effectiveness of the anti-windup strategy even in the presence of

time-varying delays and norm-bounded uncertainties. In addition, Figure 18 shows the profile of

the time-varying delay.

Table 1 – Delay time-varying intervals for stability
Controller Case 1 Case 3 Case 4 Case 6

AWSDTC1 (h0 = 0 and h1 = 21) (h0 = 0 and h1 = 20) (h0 = 6 and h1 = 16) (h0 = 6 and h1 = 16)
AWSDTC2 (h0 = 1 and h1 = 19) (h0 = 1 and h1 = 19) (h0 = 8 and h1 = 12) (h0 = 8 and h1 = 12)

Source: The author.
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Figure 17 – Simulation results for Example 2

0 50 100 150 200
0

0.5

1
O

u
tp

u
t

AWSDTC
1

0 50 100 150 200

Time(s)

0

0.02

0.04

C
o

n
tr

o
l 
S

ig
n

a
l

Source: The author.

Figure 18 – Time varying delay for Example 2.
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5.1.3 Example 3 - Comparison with regular SDTC and L2 gain analysis

In order to validate the proposed anti-windup strategy (AWSDTC) against the tradi-

tional SDTC, which does not include the saturation model to the control structure, consider the

problem of controlling the following stable Second Order Plus Dead-time (SOPDT) system

P(s) =
e−0.5s

(s+1)(s+2)
.

By using a sampling time T = 0.2 the following discretized system is obtained:

P(z) =
0.01643z−1 +0.01345z−2

1−1.489z−1 +0.5488z−2 z−3.

The primary controller was tuned to obtain set-tracking poles (3.1) equal to 0.5, 0.7,

and 0.9, and robustness filter was tuned with β = 0.865 for both the AWSDTC and the SDTC

controllers, thus obtaining

Kr = 0.502, R =−0.593z−1, F =−1.09+0.7782z−1, and

V (z−1) =
0.01553−0.02147z−1 +0.007184z−2

(1−0.865z−1)3 .

Figure 19 shows the results for a simulation with the same disturbances previously

used in Example 1. As expected, the AWSDTC presented better response due to the windup

effects that slowed down the pulse disturbance rejection of the SDTC without the saturation

model.

In order to validate the nominal stability analysis of the AWSDTC, which uses a

decoupled structure between the nonlinear and linear responses, a simulation was executed

and shown in Figure (20). Note that the influence of the nonlinear loop and disturbance filter

ynl (refer to Figure 12) is mainly present during the rejection of the pulse disturbance. This

happens because the AWSDTC control signal remains saturated for some time during this event.

Also note that y = ylin− ynl is equal to the AWSDTC output response shown in Figure 19, as it

should. By using Theorem 4.1.1, the L2 gain of the AWSDTC for this situation was calculated

as γ = 0.68651.

From Figure 12 it became clear that the L2 gain of the AWSDTC in the nominal

case depends only upon the process fast-model Gn, and FIR filters R, F , which are used to set the

poles of the reference-tracking response (3.1). Thus, Figure 21 was plotted (by using Theorem
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Figure 19 – Simulation results for Example 3.
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Figure 20 – Nonlinear and linear components of the AWSDTC output - Example 3.
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4.1.1) to demonstrate the relationship between the L2 gain and the desired closed-loop poles. In

order to generate a surface plot, one of the closed loop poles was fixed at p3 = 0.5 while poles

p1 and p2 were varied within the range
[
0.04 0.96

]
. Then, it is clear that faster poles results in

smaller L2 gains. This is due to the fact that the poles of the disturbance filter M1 are equal to

the poles of the set-point tracking Hyr.

Figure 21 – L2 gain dependence on set-point tracking poles - Example 3.
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5.1.4 Remarks on Stability

Although it is possible to guarantee global stability of the closed-loop system in

the nominal case for first-order integrator processes (as stated by Theorem 2.3.1), none of the

controllers used in Example 1 could make such guarantee by using Theorem 4.1.1 (which

establishes stability for the nominal case) as no feasible solution was found. Therefore, the L2

gain was only presented for the stable second-order system in Example 3.

Nevertheless, feasible solutions were found using Corollaries 4.2.1, 4.2.3, 4.2.4 and

4.2.6 for the FOPDT system, as was presented in Example 2. A possible explanation for this is

that the Corollaries which state the internal stability of the AWSDTC and SDTC were derived

using the implementable structure of both controllers, where the subsystem S (3.15) is employed,
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thus eliminating the integrator mode of Gn from the controller. This was verified by running

LMIs from Theorem 4.1.1 using a very small negative pole for the fast-model Gn instead of

the integrator mode of the real process model G, for which a feasible solution with small L2

gain was found. Corollaries 4.2.2 and 4.38, which establish stability conditions in the case of

polytopic uncertainties, were not used in this Section as it was understood that the examples

provided are enough to show the relation between tuning parameters and closed-loop robustness

and performance of the AWSDTC. However, these Corollaries are available for use in future

publication and are also a contribution of this work.

5.2 Experimental Data

To show the practical usefulness of the proposed anti-windup SDTC, the temperature

control of a neonatal intensive care unit, depicted in Fig. 22, is presented. The plant model was

obtained using a step-test identification procedure (NORMEY-RICO; CAMACHO, 2007) and is

given by

Pn(s) =
0.169e−7.8s

60s+1
,

where the time is measured in minutes and the control signal is constrained within the range

from 0 to 100 %. Using a sampling time of Ts = 0.2(min), the discrete-time model is obtained as

Pn(z) =
0.0005624
z−0.9967

z−39.

Figure 22 – Picture of the neonatal intensive care unit.

Source: The author.
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The control parameters were set as R(z) = 0, F(z) = f0 = 74.89 and Kr = 80.8089.

It is important to notice that with this controller the nominal desired closed loop transfer function

is

Hyr(z) =
0.04545

z−0.9546
z−39, (5.2)

which was chosen to obtain a much faster set-point tracking response than the open-loop plant.

Conventional PID controllers are not able to obtain such improvement as the one obtained with

the SDTC.

The filter V (z), with b0 = 26.82, b1 =−26.49 and β = 0.9355 was used to increase

the system robustness with a properly measurement noise attenuation.

Experimental results using the proposed controller are shown in Fig. 23. The

temperature set-point is 30oC. Observe that, as expected, the settling time is close to 30 min with

small oscillation, showing an undershoot of 0.5oC due to unmodeled dynamics. It is important to

note that even though the plant input became saturated during the first 20 minutes, the controller

did not present windup issues.

Figure 23 – Experimental results: Temperature control of a NICU.
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According to the nominal desired closed loop transfer function, the expected settling
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time for the unconstrained case is 20.7 min (5% criteria). However, due to the input saturation,

the observed response in Fig. 23 has a settling time of approximately 30 min.

In order to assess the controller robustness, the front port holes of the NICU were

opened between t = 100 min and t = 105 min. In this case, an undershoot of 0.3oC occurred

and the set-point was achieved once again within 12 min.
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6 CONCLUSION

An anti-windup SDTC strategy applied to the control of stable and integrative plants

has been presented. The proposed controller includes the saturation model in its structure and

maintains the tuning simplicity of a conventional SDTC. However, in this case robustness filter

must be chosen carefully in order to avoid windup problems. It was shown that disturbance

rejection response of the proposed anti-windup SDTC during saturation events can present better

results if compared to another anti-windup DTC schemes previously proposed in the literature.

Simulation results demonstrated that the proposed anti-windup SDTC is able to

remain stable and present good time-response even in the presence of time-varying delays and

norm-bounded uncertainties. Theorems that state robust global stability of the AWSDTC (and

also the conventional SDTC) in the presence of time-varying delays, polytopic and norm-bounded

uncertainties were provided in the form of LMIs. The relationship between the tuning parameters

and the stability and performance of the proposed strategy was also demonstrated.

Finally, the developed experiment effectively assures that the proposed controller

does not present windup issues, while keeps the good performance of a conventional SDTC.

Due to its inherent simplicity, the proposed scheme is supposed to present great potential if

implemented in commercial applications.

6.1 Recommendations for Future Work

In this thesis, global stability conditions were presented for the anti-windup SDTC.

Although this analysis is useful as a first study, its employment is very limiting since it cannot be

used for unstable open-loop plants. Therefore, it is of interest to relax these conditions to the

case of regional stability, since most of the time in real life applications initial conditions are

limited to a specific area of the Rn, thus not being necessary to consider the whole space as the

domain of attraction.

Another important point to comment is that in this thesis LMIs were used uniquely

to provide proof of stability. Hence, a useful extension of the results provided herein would be to

develop LMIs that can also be used for the design of the compensator. More specifically, FIR

filters R and F could be designed to minimize the L2 gain.

In addition, this work was limited to the case of SISO systems. It is of theoretical

importance to extend the results for MIMO systems with actuator saturation.
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MATAUŠEK, M. R.; MICIĆ", A. D. A modified smith predictor for controlling a process with a
integrator and long dead-time. IEEE Trans Autom Control, v. 41, n. 8, p. 1199–1203, 1996.
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MATAUŠEK, M. R.; RIBIĆ, A. I. Control of stable, integrating and unstable processes by the
modified smith predictor. J Process Control, v. 22, n. 1, p. 338–343, 2012.

NORMEY-RICO, J. E.; CAMACHO, E. F. Control of Dead-time Processes. Berlin: Springer,
2007.

NORMEY-RICO, J. E.; CAMACHO, E. F. Simple robust dead-time compensator for first-order
plus dead-time unstable processes. Ind Eng Chem Res, v. 47, n. 14, p. 4784–4790, 2008.

PAPACHRISTODOULOU, A.; PEET, M. M.; NICULESCU, S. I. Stability analysis of linear
systems with time-varying delays: Delay uncertainty and quenching. In: 2007 46th IEEE
Conference on Decision and Control. [S.l.: s.n.], 2007. p. 2117–2122. ISSN 0191-2216.

PARK, P.; KO, J. W.; JEONG, C. Reciprocally convex approach to stability of systems with
time-varying delays. Automatica, v. 47, n. 1, p. 235 – 238, 2011. ISSN 0005-1098.



82

RAO, A. S.; CHIDAMBARAM, M. Analytical design of modified smith predictor in a
two-degrees-of-freedom control scheme for second order unstable processes with time delay.
ISA Trans, v. 47, n. 4, p. 407–419, 2008.

RAO, A. S.; RAO, V. S. R.; CHIDAMBARAM, M. Set point weighted modified smith predictor
for integrating and double integrating processes with time delay. ISA Trans, v. 46, n. 1, p.
59–71, 2007.

SANTOS, T. L. M.; BOUTURA, P. E. A.; NORMEY-RICO, J. E. Dealing with noise in unstable
dead-time process control. J Process Control, v. 20, n. 7, p. 840–847, 2010.

SEURET, A.; GOUAISBAUT, F.; FRIDMAN, E. Stability of discrete-time systems with
time-varying delays via a novel summation inequality. IEEE Transactions on Automatic
Control, v. 60, n. 10, p. 2740–2745, Oct 2015. ISSN 0018-9286.

SHAO, H.; HAN, Q. L. New stability criteria for linear discrete-time systems with interval-like
time-varying delays. IEEE Transactions on Automatic Control, v. 56, n. 3, p. 619–625,
March 2011. ISSN 0018-9286.

SKOGESTAD, S.; POSTLETHWAITE, I. Multivariable Feedback Control: Analysis and
Design. [S.l.]: Wiley, 2005. ISBN 047001167X.

SMITH, O. J. M. Closed control of loops with dead-time. Chem Eng Progress, v. 53, p.
217–219, 1957.

SONTAG, E. D. An algebraic approach to bounded controllability of linear systems. Int. J.
Control, v. 39, n. 1, p. 181–188, 1984.

SUN, J.; CHEN, J. A survey on lyapunov-based methods for stability of linear time-delay
systems. Frontiers of Computer Science, v. 11, n. 4, p. 555–567, Aug 2017. ISSN 2095-2236.

TARBOURIECH G. GARCIA, J. M. G. d. S. J. I. Q. S. Stability and Stabilization of Linear
Systems with Saturating Actuators. London: Springer, 2011. 19-20 p.

TARBOURIECH, S.; TURNER, M. Anti-windup design: an overview of some recent advances
and open problems. IET Control Theory Applications, v. 3, n. 1, p. 1–19, January 2009. ISSN
1751-8644.

TORRICO, B. C.; CAVALCANTE, M. U.; BRAGA, A. P. S.; ALBUQUERQUE, A. A. M.;
NORMEY-RICO, J. E. Simple tuning rules for dead-time compensation of stable, integrative,
and unstable first-order dead-time processes. Ind Eng Chem Res, v. 52, p. 11646–11654, 2013.

TORRICO, B. C.; CORREIA, W. B.; NOGUEIRA, F. G. Simplified dead-time compensator for
multiple delay siso systems. ISA Transactions, v. 60, p. 254–261, 2016.

TURNER, G. H. M. C.; POSTLETHWAITE, I. Advanced Strategies in Control Systems with
Input and Output Constraints. Berlin: Springer, 2007. 127-128 p.

WESTON, P. F.; POSTLETHWAITE, I. Linear conditioning for systems containing saturating
actuators. Automatica, v. 36, n. 9, p. 1347 – 1354, 2000. ISSN 0005-1098.

XIE, L. Output feedback h∞ control of systems with parameter uncertainty. International
Journal of Control, Taylor & Francis, v. 63, n. 4, p. 741–750, 1996.



83

YANG, Y.; SONTAG, E. D.; SUSSMANN, H. J. Global stabilization of linear discrete-time
systems with bounded feedback. Systems & Control Letters, v. 30, n. 5, p. 273 – 281, 1997.
ISSN 0167-6911.

ZHANG, B.; XU, S.; ZOU, Y. Improved stability criterion and its applications in delayed
controller design for discrete-time systems. Automatica, v. 44, n. 11, p. 2963 – 2967, 2008.
ISSN 0005-1098.

ZHANG, M.; JIANG, C. Problem and its solution for actuator saturation of integrating process
with dead time. ISA Trans., v. 47, p. 80–84, 2008.

ZHOU, K.; DOYLE, J. C.; GLOVER, K. Robust and Optimal Control. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1996. ISBN 0-13-456567-3.

ZHU, X.-L.; YANG, G.-H. Jensen inequality approach to stability analysis of discrete-time
systems with time-varying delay. In: 2008 American Control Conference. [S.l.: s.n.], 2008. p.
1644–1649. ISSN 0743-1619.



84

APPENDIX A – DEMONSTRATION OF LINEAR AND NONLINEAR LOOPS

DECOUPLING

Obtaining Figure 12 (Section 4.1)

In order to find an equivalent representation of Figure 11 which decouples the linear

and nonlinear loops, signals j, y, x and u are defined as

j = Ssat(u), (A.1)

y = P[sat(u)+q]+n, (A.2)

x = j+V y, (A.3)

u = Krre f − x = Krre f − j−V y. (A.4)

Then,

y = P[sat(Krre f − j−V y)+q]+n, and (A.5)

j = Ssat(Krre f − j−V y). (A.6)

Since it is desired to separate the linear and the nonlinear loops, the following

identities must hold true

y = ylin− ynl, and (A.7)

j = jlin− jnl, (A.8)
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where subscripts lin and nl denote the linear and nonlinear components of y and j, respectively.

Using the identity in Equation 2.85, one can rewrite Equations (A.7) and (A.8) as

y = P[(Krre f − j−V y)−Dz(Krre f − j−V y)+q]+n, and (A.9)

j = S[(Krre f − j−V y)−Dz(Krre f − j−V y)]. (A.10)

By substituting Equations (A.7) and (A.8) into the right side of Equations (A.9) and

(A.10), it is obtained

y = P[(Krre f − jlin−V ylin)+q]+n−P[dz(Krre f − jlin−V ylin + jnl +V ynl)− (V ynl + jnl)]

(A.11)

and

j = S[(Krre f − jlin−V ylin)]−S[dz(Krre f − jlin−V ylin + jnl +V ynl)− (V ynl + jnl)]. (A.12)

By defining

ulin = Krre f − jlin−V ylin, (A.13)

ylin = P[ulin +q]+n, (A.14)

ud =−( jnl +V ynl), (A.15)

ũ = Dz(ulin−ud), (A.16)

ynl = P(ũ+ud), (A.17)
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jlin = Sulin, and (A.18)

jnl = S(ũ+ud), (A.19)

the decoupled structure in Figure 24 is obtained.

Figure 24 – Decoupling between linear and nonlinear loops - simplified generic case.
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Source: The author.

Using the definition of S(z) (Equation (3.15)) the nonlinear loop, defined by the

mapping from ylin to ynl , can be redrawn as in Figure 25.

Notice that when P(z) = Pn(z) (for the nominal analysis) signal e(k) = 0 and the

structure in Figure 25 can be further simplified to the structure in Figure 26.

From Figure 26 note that, in the nominal case, the nonlinear loop depends only upon

FIR filters R(z) and F(z) and the process model Pn(z). Robustness filter V (z) only impacts the

nonlinear loop in the case of uncertainties in the process model.
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Figure 25 – Decoupling between linear and nonlinear loops - non simplified generic case.
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Finally, in order to obtain the structure presented in Figure 12 (Section 4.1) note that

M1(z) =
yd

ũ
=

Gn(z)
1+R(z)+Gn(z)F(z)

, and (A.20)

M2(z) =
ud

ũ
=− R(z)+Gn(z)F(z)

1+R(z)+Gn(z)F(z)
. (A.21)

Demonstration of mapping τpn : ulin→ yd (Section 4.1)

From Figure 26 the following state space equations to describe the mapping τpn :

ulin→ yd are initially written

xn(k+1) = Apxn(k)+Bp(ũ+ud)

yd(k) =Cpxn(k)
(A.22)
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Figure 26 – Decoupling between linear and nonlinear loops - nominal case.

+

+

-

ulin ylin

y

u~

ud

S

Kr

+

-

+

+

P

V

+

+ +
ref(k)

q(k) n(k)
+

-1

R

Gn

F

ynl-

+
+

+

-

z-dn

yd

ur uf

Source: The author.

x f (k+1) = AFx f (k)+BFyd

u f (k) =CFx f (k)+DFyd

(A.23)

xr(k+1) = ARxr(k)+BR(ũ+ud)

u f (k) =CRxr(k)+DR(ũ+ud)

(A.24)

Note that ud =−u f −ur. Then, using the definitions for u f , ur and yd

ud =−∆CFx f −∆DFCpxn(k)−∆CRxr−∆DRũ, (A.25)

where ∆ =
[
I−DR

]
. Then, by substituting Equation (A.25) into xn(k+1) and xr(k+1), it is

obtained

xn(k+1) = (Ap−Bp∆DFCp)xn(k)−Bp∆CFx f −Bp∆CRxr +(Bp−Bp∆DR)ũ, and (A.26)
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xr(k+1) = (AR−BR∆CR)xr(k)−Br∆DFCpxn−BR∆CFx f +(BR−BR∆DR)ũ. (A.27)

In addition, substitution of yd into x f (k+1) leads to

x f (k+1) = AFx f +BFCpxn. (A.28)

Finally, by defining x(k) =
[
xn(k)T x f (k)T xr(k)T

]T
the the mapping τpn : ulin→

yd is obtained as

τpn ,



x(k+1) = Āx(k)+ B̄ũ

ud = C̄2x(k)+ D̄2ũ

yd = C̄1x(k)

ũ = Dz(ulin−ud)

(A.29)

where

Ā =


Ap−Bp∆DFCp −Bp∆CF −Bp∆CR

BFCp AF 0

−BR∆DFCp −BR∆CF AR−BR∆CR

 ,

B̄ =


Bp−Bp∆DR

0

BR−BR∆DR

 ,

C̄1 =
[
Cp 0 0

]
, C̄2 =

[
−∆DFCp −∆CF −∆CR

]
,

D̄2 =
[
−∆DR

]
, ∆ =

[
I−DR

]
.
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