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INTRODUCTION
Chitin is a linear and water-insoluble polysaccharide constituted by 
N-acetyl-β-D-glucosamine (GlcNAc) units linked through β-1,4 linkages.  
This polymer is the most abundant amino polysaccharide in nature and 
after cellulose, is the second most plentiful biopolymer on earth. It is an 
important structural component of the cell wall of many fungi and the 
exoskeleton of arthropods, such as insects and crustaceans, like crabs,  
shrimps and lobsters. Chitin is also found in the shell and radula of  
mollusks and the cuticle and egg shell of nematodes.1 Recently, Tang and 
co-workers have obtained evidences that chitin is endogenously produced  
in non-mammalian vertebrates, including fishes and amphibians.2 
Chitinases (EC 3.2.1.14) are glycoside hydrolases (GHs) that catalyze 
the cleavage of the β-1,4 glysosidic bonds between the GlcNAc residues 
that form the chitin chains. Based on the similarities of their amino acid  
sequences, most chitinases are grouped into the GH18 and GH19 families  
according to the current classification of the Carbohydrate-Active  
Enzymes (CAZy; http://www.cazy.org) database.3,4 Chitinases are found  
in a wide range of organisms including humans, seed plants, insects, 
bacteria and fungi. These enzymes are involved in a variety of biological  
processes, such as the remodeling of chitin in the cell walls of fungi and 
the exoskeleton of arthropods during the periods of growth and devel-
opment,5 the utilization of chitin as a source of carbon and nitrogen  
by many bacteria 6 and participation in defense mechanisms against 
pathogens.7 In plants, for example, besides being expressed in different 
tissues and organs during the regular growth and development, some  
chitinases act as pathogenesis-related proteins, whose expression is  
upregulated in response to chitin-containing pathogens. The hydrolytic 
action of these induced chitinases on the chitin fibers of the pathogen’s 

cell wall impairs its growth and spread, whereas the chitin oligomers 
released are recognized by plant chitin receptors, which trigger other  
defense reactions.8 In carnivorous plants, some chitinases also play a  
digestive role, being used along with other hydrolytic enzymes to digest 
caught prey in their pitchers.9

The great interest in the study of chitinases primarily relies on their  
enzymatic action on chitin. Endo-chitinases, for example, randomly 
cleave chitin chains at internal sites, producing low molecular mass  
chito-oligomers with 2 to 6 GlcNAc units, whereas exo-chitinases catalyze  
the progressive release of N,Nʹ-diacetylchitobiose [(GlcNAc)2] or 
N,Nʹ,Nʺ-triacetylchitotriose [(GlcNAc)3] from the chitin chains.10 Some 
exo-type chitinases attack the chitin chains at the non-reducing end, but  
others cleave the polymer at the opposite end.11 Due to their ability to  
degrade chitin, many chitinases can cause damages to the cell walls of 
fungi and cuticles of insects. The antifungal and insecticidal activities 
of these enzymes have attracted the attention of the biotechnologists, 
which has led to the development of transgenic crops with enhanced  
resistance to fungal pathogens and insect pests.12 Chitinases with toxic 
effects towards plant-parasitic nematodes have also been investigated as 
an alternative strategy to protect crops from the serious damages these 
organisms cause in many parts of the world.13 The nematicidal effect of 
chitinases is also due to their degradative activity on chitin chains, which 
causes destruction of the nematode’s cuticle, intestine and egg shell.14 
Furthermore,  it is also well documented that N-acetyl-chitooligosaccha-
rides, which can be obtained from chitin by treatment with chitinases,  
have antibacterial, antifungal, metastasis suppression and other biological  
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that mytichitin-CB is derived from the processing of a chitotriosidase/
chitinase precursor with 446 amino acid residues. Nevertheless, no anti-
bacterial activity of the chitotriosidase/chitinase itself was demonstrated, 
and this work was not included in the present analysis.

DISCUSSION
Very few works have reported the characterization of chitinases with  
antibacterial activity (Table 1), contrary to their antifungal activity, 
which has been documented since 1980s.23 Unlike fungi, bacteria cell 
walls do not contain chitin. Although genes encoding chitin synthase 
(CHS; EC 2.4.1.16), which catalyzes the elongation of chitin, have been 
recently discovered in some bacterial genomes,24 species containing CHS 
genes represent only 0.9% of the 1218 bacterial genomes analyzed and 
to date there is no experimental evidence that chitin occurs in these few 
species. This is probably the main reason why many researchers have 
neglected bacterial species as possible targets for the action of chitinases. 
However, it has been shown that some chitinases from diverse sources, 
besides being able to cleave the O-glycosidic bonds in chitin chains, also 
have lysozyme activity.25,26,27 Hevamine, a GH18 chitinase firstly purified  
from the latex of Hevea brasiliensis, is probably the better known chitinase 
with lysozyme activity.28,29

Most bacterial cells are encased by a cell wall constituted mainly by a 
mesh-like layer of peptidoglycan (PG), also known as murein, which 
guarantees cell integrity and shape. PG macromolecule is constituted 
by glycan chains cross-linked by short peptides. These glycan chains are 
composed of alternating residues of GlcNAc and N-acetylmuramic acid 
(MurNAc) linked by β-1,4 bonds.30,31 MurNAc is the ether of lactic acid 
and GlcNAc, in which a D-lactate residue is attached to the C-3 atom of 
the glucopyranoside ring. Indeed, the first step during PG biosynthesis is 
the conversion of UDP-GlcNAc to UDP-MurNAc.32 
Lysozymes (muramidases) (EC 3.2.1.17), are glycoside hydrolases that  
cleave the β-1,4 linkages in murein, causing bacterial cell lysis, as first  
observed by Alexander Fleming.33 Besides their direct bacteriolytic action,  
these proteins also have an immunomodulatory function in the host’s 
response to infection.34

Three (ChiS, FI and FII) out of the 6 antibacterial chitinases listed in 
Table 1 showed lysozyme activity which could be related to their bacte-
ricidal properties. ChiS is a GH18 enzyme, like hevamine, but the amino 
acid sequences of FI and FII were not reported, and the GH families to 
which they belong are not known. GH18 members adopt a conserved 
(β/α)8-barrel fold that do not share similarity with the lyzosyme-type 
fold. Furthermore, the cleavage specificities of hevamine and lysozymes 
for PG are distinct: hevamine hydrolyzes the linkage between the C-1 
of GlcNAc and the C-4 of MurNAc,35 whereas lysozymes cleave the PG  
chains between the C-1 of MurNAc and the C-4 of GlcNAc.36,37,38,39  
Considering the conservation of the three-dimensional structure  
of GH18 members from diverse taxa,40 one can speculate that GH18 
chitinases which are able to hydrolyze PG molecules exhibit a cleavage  
specificity similar to that reported for hevamine. In summary, the  
denomination of these bifunctional GH18 enzymes as chitinases/pepti-
doglycan hydrolases seems to be more appropriate than the term chitin-
ases/lysozymes.
CpCHI, a GH19 papaya chitinase, exhibited antibacterial activity towards 
E. coli, but the authors did not investigate if the enzyme had lysozyme  
activity.20 Besides GH18 enzymes with hydrolytic activity on PG,  
bacterial and plant GH19 chitinases with the same activity have been also 
found.26,41 GH19 chitinases, chitosanases (E.C. 3.2.1.132; family GH46) 
and lysozymes (families GH22, GH23 and GH24) share a similar fold, 
and are classified in the lysozyme superfamily.42 Therefore, CpCHI and 
other GH19 chitinases probably hydrolyze PG chains, which causes bac-
terial cell lysis, through the same molecular mechanism as lysozymes.  

activities, thus showing great biotechnological potential in areas as  
diverse as food technology, human health and agriculture.15

The aim of this study was to search the scientific literature for works  
describing chitinases with antibacterial activity and summarize their 
main findings, discussing the probable mechanisms responsible for the 
antibacterial activity of these proteins and their potential applications.

MATERIALS AND METHODS
Searches were performed on the following bibliographic databases: 
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), Web of Science 
(https://apps.webofknowledge.com/) and Scopus (http://www.scopus.
com). Full-text articles, published until November 2017 and containing 
the words “chitinases” and “antibacterial” in their titles or abstracts were 
selected for further analysis. The appropriate papers were selected based 
on 2 criteria: (a) the reported antibacterial tests were performed using 
pure protein samples, as evidenced by denaturing gel electrophoresis, for  
example; and (b) the tested protein was a genuine chitinase, able to  
degrade chitin or chitin derivatives, as demonstrated by experimental data.

RESULTS
By searching the scientific literature, we have identified only 5 works 
that reported the purification and partial characterization of chitinases 
with antibacterial activity (Table 1). These chitinases included 3 proteins 
from bacterial species, ChiS from Bacillus pumilus SG2 16 and FI and  
FII from Pseudomonas aeruginosa K-187,17 2 proteins from fungi species,  
Aspergillus terreus 18 and Monascus purpureus CCRC31499,19 and one 
protein (CpCHI) from papaya (Carica papaya).20 In most of these papers 
(4 out of 5), the antibacterial activity of the protein was determined using 
the agar disk-diffusion method, whereas in one of them,20 the authors 
used a dilution method. The chitinases FI and FII from P. aeruginosa  
K-187 showed a large spectrum of antibacterial effect, being able to  
inhibit the growth of different Gram-positive and Gram-negative species.17  
In all these works, the chitinolytic nature of the purified proteins was 
demonstrated using enzymatic assays, in which their ability to degrade 
either colloidal chitin or glycol chitin was verified. For ChiS and CpCHI,  
the authors also reported the amino acid sequences of the studied  
proteins, as deduced from their DNA coding sequences, which confirmed  
their identities as chitinases, belonging to the GH18 (ChiS) and GH19 
(CpCHI) families. Three (ChiS, FI and FII) out of these 6 antibacterial 
chitinases had lysozyme activity, which was measured by the ability of  
the tested proteins to cause bacterial cell lysis, as evidenced by the  
decrease in optical density of a cell suspension of the target microorgan-
ism exposed to the enzyme. The M. purpureus chitinase did not show 
lysozyme activity, when tested towards a cell suspension of Micrococcus 
lysodeikticus, whereas for CpCHI and the chitinase from A. terreus, this 
biochemical activity was not investigated.
Besides the reports listed above, Wang and co-workers 21 described 
the purification of Hypotin, a protein from peanut (Arachis hypogaea)  
seeds which showed antifungal activity towards a variety of fungi species  
as well as antibacterial activity towards Staphylococcus aureus. The clas-
sification of Hypotin as a chitinase was based on the similarity of its 
N-terminal amino acid sequence with already known plant chitinases.  
However, those authors did not show any experimental evidence on the 
ability of Hypotin to degrade chitin or chitin derivatives, and their work 
was not included in our analysis.  
It is noteworthy to mention that we also identified one paper that  
described the purification of a 55-amino acid residues peptide from the 
marine mussel Mytilus coruscus, which was named mytichitin-CB, that 
showed antifungal as well as antibacterial activity towards Gram-positive  
species.22 Cloning of the cDNA encoding mytichitin-CB revealed  
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One antibacterial chitinase, purified from the fungus M. purpureus, did  
not show lysozyme activity, when tested towards cell suspensions of  
M. lysodeikticus.19 Fleming was the first scientist to isolate M. lysodeikticus,  
and due to its high susceptibility to lysozyme, he used this Gram-positive  
species in his pioneer work,33 and the same microorganism has been used 
until today in lysozyme activity assays. Wang et al. used M. lysodeikticus  
to determine if the M. purpureus chitinase had lysozyme activity, but the 
antibacterial tests were performed using different Gram-positive and  
Gram-negative bacteria. Bacteria can evolve efficient mechanisms  
which protect them from the lytic activity of lysozyme,43 including  
M. lysodeikticus.44,45 Therefore, the absence of lysozyme activity of  
M. purpureus chitinase should be carefully interpreted and re-examined,  
using the same species to which the protein exhibited antibacterial  
effects. Moreover, large variations in the PG fine structure exist between 
species, which may occur even within the same species, as a function of  
medium composition and culture age.31 This may explain previous results  
in which ChiS chitinase showed lysozyme activity towards 6 bacterial 
species, but only 2 of these species were killed by the same enzyme.16

Concerning the potential exploitation of antibacterial chitinases as anti-
microbial agents, the GH18 enzymes are particularly interesting, because 
they are likely to degrade bacterial cell walls using a mechanism that is  
distinct from that used by lysozymes. This possibility seems very  
attractive when we consider that some human pathogenic bacteria, such  
S. aureus and other species, are resistant to lysozyme.46 

CONCLUSION
Only a few chitinases have been investigated as potential antibacterial 
proteins. However, a growing number of publications have reported that 
many of these chitinolytic enzymes, besides being able to degrade chitin, 
also have the ability do cleave peptidoglycan chains, thus promoting the 
lysis of bacterial cells. The peptidoglycan hydrolase activity of chitinases 
should be investigated in more detail, as their antibacterial activities 
could be exploited to control pathogenic bacteria.
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ABBREVIATIONS
GlcNAc: N-acetyl-β-D-glucosamine; GHs: glycoside hydrolases; CAZy: 
Carbohydrate-Active Enzymes; (GlcNAc)2: N,Nʹ-diacetylchitobiose; 
(GlcNAc)3: N,Nʹ,Nʺ-triacetylchitotriose; CHS: chitin synthase; PG: 
peptidoglycan; MurNAc: GlcNAc and N-acetylmuramic acid residues.
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