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Abstract: In this work we analyze the zero mode localization and resonances of 1/2−spin

fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-

like, domain walls and deformed domain walls membranes. Beyond the influence of the

spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa

coupling with the scalar field and parameter η1, (ii) a Yukawa-dilaton coupling with two

parameters η2 and λ and (iii) a dilaton derivative coupling with parameter h. Together

with the deformation parameter s, we end up with five free parameter to be considered.

For the zero mode we find that the localization is dependent of D, because the spinorial

representation changes when the bulk dimensionality is odd or even and must be treated

separately. For case (i) we find that in odd dimensions only one chirality can be localized

and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii)

and (iii) we find that for some values of the parameters, both chiralities can be localized

in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is

trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii)

by using the transfer matrix method. We find that, for deformed defects, the increasing

of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find

that the resonances can show up by changing the spacetime dimensionality. For example,

the same case in D = 5 do not induces resonances but when we consider D = 10 one peak

of resonance is found. Therefore the introduction of more dimensions, diversely from the

bosonic case, can change drastically the zero mode and resonances in fermion fields.
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1 Introduction

The world where we live is described by two important theories, the General Relativity and

Standard Model. These theories were originally formulated in a four-dimensional space-

time and successfully predict most of the physical quantities that we are able to measure.

General Relativity is a classical theory that includes gravitational interactions by requiring

invariance under general spacetime coordinate transformations. The Standard Model is

the formulation of the quantum non-gravitational interactions as a consequence of a local
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invariance principle, generalizing the gauge invariance of electrodynamics [1]. These theo-

ries are incompatible since a quantum theory of gravitation is not known. The unification

of these theories has always been the will of physicists throughout history. The first model

that aimed the unification of theories as electromagnetism and gravity, through a compact

single extra dimension, was Kaluza-Klein model [2]. Although it does not exist any experi-

mental evidence for the existence of extra dimensions, universes with higher dimension are

important. This is the case of supersymmetric theories, for example String Theory [3].

In this context at the end of the last century, Lisa Randall and Raman Sundrum pro-

posed a model that would satisfactorily solve the Higgs hierarchy problem, called Randall-

Sundrum Model (RSM). The setup of RSM assumes the existence of a single extra dimen-

sion and therefore spacetime is five-dimensional (D = 5). This model is subdivided into

two: RSM-I and RSM-II. In RSM-I the extra dimension is compactified on a circle whose

upper and lower halves are identified. Formally, this means that we work in S1/Z2 orb-

ifold, where S1 is the one-dimensional sphere (i.e., the circle) and Z2 is the discrete group

{−1, 1}. This construction entails two fixed points, one at the origin φ = 0 and one at the

other extremity of the circle φ = π. On each of these boundaries stands a four-dimensional

world, like the one we live in. By analogy with membranes enclosing a volume, these worlds

with 3+1 dimensions have been called 3-branes. The RSM-I explains how a exponential

hierarchy between mass scales can be generated [4]. The RSM-II assumes that the extra

dimension is large (called y) and only one 3-brane, localized in y = 0, exists. It shows how

the gravity is confined in the 3-brane and explains how as the gravity in 4D emerges in the

newtonian limit becoming an alternative to compactification [5].

Since in RSM-II the extra dimension is not compact all the matter fields, and not only

gravity, must be trapped on the brane to provide a realistic model. Therefore after the

conception the RSM-II, several works studied the field localization problem. This problem

concerns the creation of a mechanisms for trapping various spin fields over the membranes.

If S(D) is the action for the field in D-dimensional spacetime and the brane has dimension

(D − 1) it is always possible to write

S(D) = S(D−1)
∫ +∞

−∞
dy|φ(y)|2 = S(D−1)I, (1.1)

S(D−1) is the effective action and φ(y) is a function of extra dimension y [6]. A field is said

to be localized if the integral I is finite, i.e., the function φ(y) is square integrable. Thus, it

is possible to a use the Schrödinger picture of non-relativistic quantum mechanics to study

brane models.

The D-dimensional localizations problems with only one extra dimension are called

co-dimension one problems. The work [7] treats the field localization problem for D = 5

in RSM-II context and shows that beyond zero mode gravity, the zero mode of scalar

fields (0-spin) are localizable on the 3-brane. However, the same work also shows that the

zero mode of gauge fields (spin 1) and the zero mode of fermionic fields (spin 1/2) are no

localized over the membrane. In another direction localization models based in RSM-II has

a singularity due to the presence of delta-like membranes, what motivated appearance of

smooth brane models [8]. In this model a scalar field is introduced responsible for generating
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the brane dynamically. In this context, beyond gravity and scalar fields, also left handed

fermions (or right, but no both) are localized by a Yukawa coupling with the scalar field, but

gauge fields continue non-localizable. Recently, the problem of gauge fields localization was

solved in two ways: (i) introducing a new degree of freedom in gravitation action, called

dilaton [8], or (ii) introducing non-minimal coupling called geometrical coupling [9–12],

where no news degrees of freedom are necessary. However, all these works considers only

D = 5 and by then nobody had studied the conditions for localization of zero modes of

these fields, except for q-forms [13, 14].

The case of Spinorial fields has been considered in D = 5, 6 braneworld models [15–

19]. In the RSM-II framework Dirac’s fermions are not localized, as mentioned previously.

Thus, according [20] the zero mode of left handed fermions is localized when a interaction

of fermions with a scalar field φΨΨ is introduced. In smooth RSM-II, zero mode of chiral

massless spinorial field is localized [8]. When the dilation is add the spinoral fields are

localized, choosing rightly dilaton coupling constant. The authors of the paper [21] showed

that a Yukawa potential can localize fermions because the coupling between the fermion

and the background scalar field is an odd function of extra dimension. However, the same

authors showed also that, if the scalar is an even function of the extra dimension, this

mechanism does not work anymore, and we need to introduce a new localization mechanism.

It is worth mentioning that in [22] the authors showed that geometrical derivative coupling

gives localized fermions on the branes. We should point that the above mentioned works

treat the localization problem only in D = 5, 6.

In another direction, even if the zero mode is not localized it is important to analyze the

possible appearance of unstable massive modes. For this we need to find the Schrödinger

like equation that drives the massive modes. Therefore, as mentioned previously, our prob-

lem can be addressed as if we were dealing with an one dimensional quantum mechanical

problem with potential given by U(z), as in the refs. [23–25]. The unstable modes can

be found by looking for resonances of the effective potential. The potentials in this work

satisfy the condition

lim
z→±∞

U(z) = 0, (1.2)

and therefore, according to elementary quantum mechanics, does not exist a discrete spec-

trum for m > 0. Also, the wave function is not normalizable because any solution for

positive m is a plane wave asymptotically. The conclusion is that the zero mode is the only

possible eigenstate of the Schrödinger like equation localizable on the membrane.

The goal of this paper is to study the localization of zero modes and resonances of

fermions in co-dimension one braneworlds generated by delta-like branes as well as smooth

versions of it. For this we consider Yukawa, dilaton and dilaton derivative couplings. This

work is organizaded as follows: in section 2 we review the main aspects of (D−2)-Branes in

D−dimensional Randall-Sundrum models. In section 3 we review the constrution spinorial

representation in arbitrary dimensions, in section 4 we discussed the zero mode fermions

localization and in section 5 we show and discussed the arbitrary case of resonance pattern

in massive modes. Finally, in section 6, some final remarks.
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2 Review of Randall-Sundrum model

In this section we will review some aspects of co-dimension one Randall-Sundrum

braneworld scenarios. We will consider delta-like, domain walls and deformed domain

walls membranes.

2.1 The delta-like brane

The thin brane model can be defined by action [26]

S = 2Mp

∫
dDx
√
−g(R− Λ)− V

∫ √
−g(B)dD−1x, (2.1)

where p ≡ D − 2, Mp is fundamental scale of energy of theory, Λ is a D-dimensional

cosmological constant, V is tension of the brane and g(B) is the induced metric determinant

on the p-brane, which obeys the boundary condition gµν(x, y = 0) = g
(B)
µν (x).

The ansatz for the space-time metric in this setup, is

ds2 = e2A(y)ηµνdx
µdxν + dy2, (2.2)

where ηµν = diag(−1, 1, . . . , 1) is the metric of p-brane. The Einstein equations for this

model are

pA′′(y) +
p(p+ 1)

2
A′2(y) + Λ =

V

4Mp
δ(y), (2.3)

p(p+ 1)

2
A′2(y) + Λ = 0. (2.4)

The solution for the function A(y) is A(y) = −kp|y|, where kp ≡
√
−2Λ/p(p+ 1). As we

can see the solution respects the orbifold symmetry, i.e., invariance under the transforma-

tion y → −y. Therefore the interval (2.2) becomes [26]

ds2 = e−2kp|y|ηµνdx
µdxν + dy2. (2.5)

In this way the interval is determined, specifically, the bulk cosmological constant Λ. Note

that the RSM-II consist of one flat p-branes imbedded discontinuously in a larger space.

In the next subsection we will consider a version smooth of the RSM-II.

2.2 The thick brane case

In the thick brane case we consider branes as topological defects, in particular domain wall.

This is represented by a real scalar field that depends only on the extra dimension. The

ansatz for the metric is the same as (2.2). But the action for this model is

S =

∫
dD−1x

∫
dy
√
−g
[
2MpR− 1

2
∂Mφ∂

Mφ− V (φ)

]
, (2.6)

where φ is a real scalar field that generates the p-brane and V (φ) introduces bounce like

solutions. The energy-momentum tensor of real scalar field is [27]

TMN = ∂Mφ∂Nφ− gMN

[
1

2
∂Aφ∂

Aφ+ V (φ)

]
, (2.7)
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and equations of motion are given by

A′′(y) +
(p+ 1)

2
A′2(y) = − 1

4pMp

[
1

2
φ′2 + V (φ)

]
, (2.8)

(p+ 1)

2
A′2(y) =

1

4pMp

[
1

2
φ′2 − V (φ)

]
, (2.9)

φ′′ + [(p+ 1)A′(y)]φ′ =
∂V

∂φ
. (2.10)

The solution of these equations can be obtained through the superpotential method, accord-

ing to [6, 8, 28], introducing the superpotencial W (φ) by φ′ =
∂W

∂φ
. Therefore, choosing

φ(y) = a tanh(by) the superpotencial W (φ) is given by

W (φ) = abφ

(
1− φ2

3a2

)
. (2.11)

After determining the superpotential W (φ), the scalar potential V (φ) can be written as

V (φ) =
1

2

(
∂W

∂φ

)2

− (p+ 1)

8pMp
W 2. (2.12)

Thus, the superpotential definition leads to

A′(y) = − 1

4pMp
W. (2.13)

Finally we get

A(y) = −βp
[
ln cosh2(by) +

1

2
tanh2(by)

]
, (2.14)

where βp ≡ a2/4pMp. Note that just as in the of RSM-II case, here A(y) also represents a

localized and smooth metric warp factor. We will consider a = 1 and M = 1 for resonances

analyzes of 1/2-spin fields. In the next subsection we will consider the braneworld scenario

with a new degree of freedom: the dilaton.

2.3 Dilaton coupling

As already mentioned in the introduction, the dilaton field is commonly used in localization

of gauge fields in D = 5, for example see [8, 13, 29, 30]. This new degree of freedom is

represented for π. We propose the following action for this setup:

S =

∫
dDx
√
−g
[
2MpR− 1

2
(∂Mφ∂

Mφ+ ∂Mπ∂
Mπ) + V (φ, π)

]
. (2.15)

The ansatz for the space-time interval with dilaton coupling is

ds2 = e2A(y)ηµνdx
µdxν + e2B(y)dy2. (2.16)
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The jacobian for this case is
√
−g = e(p+1)A(y)+B(y), that, as expected, depends on the

dimensionality of space-time. The equations of motion resulting from the action (2.15) are

A′′(y) +
(p+ 1)

2
A′2(y)−A′(y)B′(y) = − 1

4pMp

[
1

2
φ′2 +

1

2
π′2 + e2B(y)V (φ, π)

]
, (2.17)

(p+ 1)

2
A′2(y) =

1

4pMp

[
1

2
φ′2 +

1

2
π′2 − e2B(y)V (φ, π)

]
, (2.18)

φ′′(y) + [(p+ 1)A′(y)−B′(y)]φ′(y) =
∂V

∂φ
, (2.19)

π′′(y) + [(p+ 1)A′(y)−B′(y)]π′(y) =
∂V

∂π
. (2.20)

We use again the superpotencial method with

V (φ, π) = exp

(√
r

pMp
π

)[
1

2

(
∂W

∂φ

)2

− (p+ 1− r)
8pMp

W 2

]
, (2.21)

where r is a real positive constant. The solutions for the above system of equations are

given by (2.14) and

B(y) = rA(y) = −1

2

√
r

pMp
π(y). (2.22)

Now, according [31] we will investigate the values that the constant r can assume. For

this, we will analyze the energy density of the system T00(y). With the solution (2.22), it

is given by

T00(y) = −4pMp

[
A′′(y) +

(
p+ 1− 2r

2

)
A′2(y)

]
e2(1−r)A(y). (2.23)

Asymptotically, when y → ±∞, we have A(y) → −2βp|y|, and therefore the tensor T00
becomes

T00(y)→ 8bpMpβp [2δ(y)− (p+ 1− 2r)b] e−2(1−r)bβp|y|, (2.24)

where δ(y) is the Dirac’s delta. Therefore the behavior of T00 when y → ±∞ is

T00(|y| → ∞) =



0, 0 < r < 1

−8b2pMpβp(p− 1), r = 1

−∞, 1 < r < (p+ 1)/2

0, r = (p+ 1)/2 > 1

∞, r > (p+ 1)/2

. (2.25)

In the section 4 we will mainly discuss the effect of the parameter r on the localization of

spinorial field.
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2.4 Deformed brane

The last case of our interest, is the deformed brane, approached in [24]. The deformation

method is based in modifications of the potential of models containing solitons in order to

produce new and unexpected solutions [32]. Now we introduce the deformation parameter,

called s, that controls the kind of deforming topological defect, in order to simulate different

classes of branes. For this case the interval can be written as

ds2 = e2As(y)ηµνdx
µdxν + e2Bs(y)dy2. (2.26)

As in subsections 2.2 and 2.3 we will use the superpotential method to solve the system of

equations

Vs(φs, πs) = exp

(√
r

pMp
πs

)[
1

2

(
∂Ws

∂φs

)2

− (p+ 1− r)
8pMp

W 2
s

]
. (2.27)

The superpotential chosen is

Ws(φs) = bφ2s

[
s

2s− 1

(
a

φs

)1/s

− s

2s+ 1

(
φs
a

)1/s
]
, (2.28)

and

φs(y) = a tanhs
(
by

s

)
, (2.29)

As(y) = −βs,p tanh2s

(
by

s

)
− 2sβp,s

2s− 1

[
ln cosh

(
by

s

)
−

s−1∑
n=1

1

2n
tanh2n

(
by

s

)]
, (2.30)

where βp,s ≡ a2

4pMp
s

2s+1 . Note that, for s = 1, the undeformed solutions are reproduced.

In the next sections, we will use the above backgrounds to study the localization and

resonances of spinor fields in arbitrary dimensions.

3 Dimensional reduction and mass equation for fermions in arbitrary

dimensions

As mentioned in the introduction, the mass spectrum of the fields in RSM-II is driven by

a Schrödinger like equation. In this section we derive this equation for an arbitrary space-

time dimension. We will see that the cases with odd and even dimensions needs to treated

separately. As a starting point, we will consider the D−dimensional action for massless

Dirac fermion in a curved background given by

S1/2 =

∫
dDx
√
−g Ψ[ΓMDM − F (φ, π)− ΓM∂MH(φ, π)Γ]Ψ, (3.1)

where F (φ, π), H(φ, π) are interaction terms which involves the scalar field φ and dilation π

and DM = ∂M +ωM is the covariant derivate and ωM is the spin connection. The equation

of motion resulting from the action (3.1) is[
ΓMDM − F (φ, π)− ΓM∂MH(φ, π)Γ

]
Ψ(x, y) = 0. (3.2)
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In a curved space-time, the Clifford algebra reads {ΓM ,ΓN} = 2gAB, where gMN =

eA
MeB

NηAB is the curved space metric and eA
M are the vierbeins. The index A,B,C, . . . , J

are Lorentz index and L,M,N, . . . , Z are curved space index. The spin connection is de-

fined by

ωM =
1

4
eAL(∂Me

BL + ΓLMNe
BN )ΓAΓB. (3.3)

The nonzero spin connection components for the metric (2.2) are

ωµ =
1

2
A′(y)eA(y)−B(y)ΓµΓy, (3.4)

where greek index represents the coordinates in the brane. Therefore, the equation (3.2)

can be written as(
γµ∂µ+eA(y)−B(y)

[
∂y+

(p+1)

2
A′(y)

]
Γy−eA(y) [F (φ,π)+∂yH(φ,π)]

)
Ψ(x,y) = 0. (3.5)

Now, we need a better understanding of fermion representations in arbitrary dimensions

since the behavior of this fields are different in odd or even dimensions. This is the topic

of next section.

3.1 Review of spinors in arbitrary dimensions

The spinorial representations of SO(1, D−1) group changes depending on the dimensional-

ity of space-time [33]. There is a very instructive way to build the 1/2 spin representations

in arbitrary dimensions [34], which is very common in String Theory. The Clifford algebra,

the starting point to build spinorial representation of Lorentz group, is given by

{ΓA,ΓB} = 2ηAB, (3.6)

where ΓA are Dirac matrices and ηAB = diag(−1, 1, 1 . . . , 1) is the Minkowski metric. We

first consider that the dimensionality D of space-time is even, i.e., D = 2k + 2, where k

is a positive integer number. It is known that there is a relationship between the rotation

and the Lorentz groups. The spin idea is introduced through the generators

ΣAB ≡ − i
4

[ΓA,ΓB], (3.7)

satisfying the Lie algebra of Lorentz group. The Dirac representation is not irreducible, and

can be broken in two disjunct subspaces, called Weyl representation. In this representation

we define the matrix

Γ ≡ i−k
D−1∏
l=0

Γl = i−kΓ0Γ1 . . .ΓD−1, (3.8)

which has the properties

(Γ)2 = 1, {Γ,ΓA} = 0, [Γ,ΣAB] = 0. (3.9)

– 8 –
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The eigenvalues of Γ, called chirality, are ±1. The 2k states with Γ eigenvalue +1 form a

Weyl representation of the Lorentz algebra, and the 2k states with eigenvalue −1 form a

second, inequivalent, Weyl representation.

In two-dimensions, one can take the Pauli matrices σ1, σ2 and σ3 as gamma matrices,

i.e., Γ0 = iσ2 and Γ1 = σ1. Also Γ = σ3. In D = 2k + 2 dimensions, the gamma matrices

can be written as [35]

Γ(α) = γ(α) ⊗ σ1, ΓD−2 = γ ⊗ σ1, ΓD−1 = 1⊗ σ3, (3.10)

where (α) = 0, 1, 2, . . . , D − 3 and γ(α), γ and 1 are 2k × 2k Dirac matrices, chirality and

identity in D − 2 dimensions.

For an odd dimension, i.e, D = 2k + 3, the matrix Γ = ΓD is included in the Clifford

algebra, due to the (3.9), and does not exists chirality in this dimensionality. Now, we have

the necessary mathematical tools for perform the dimensional reduction of the mass Dirac

equation (3.5).

3.2 Reduction of mass equation in odd dimensions

By using the results of the last section now we can consider the dimensional reduction for

the cases with odd dimensions. In this case we perform the decomposition

Ψ(x, y) = e−
(p+1)

2
A(y)

∑
n

[ψn+(x)fn+(y) + ψn−(x)fn−(y)] , (3.11)

where we defined γψn+(x) = ψn+(x) and γψn−(x) = −ψn−(x) as the left and right-handed

fermion fields in D − 1 dimensions, respectively. The equations for massive field D − 1

dimensions are

γα∂αψn+(x) = mnψn−(x), (3.12)

γα∂αψn−(x) = mnψn+(x). (3.13)

Thus, replacing (3.11) in (3.5), the equation of motion for extra dimension becomes{
∂y + eB(y) [F (φ, π) + ∂yH(φ, π)]

}
fn−(y) = mne

B(y)−A(y)fn+(y), (3.14){
∂y − eB(y) [F (φ, π) + ∂yH(φ, π)]

}
fn+(y) = −mne

B(y)−A(y)fn−(y). (3.15)

These equations can be transformed in equations of the type[
− d2

dy2
+ P ′(y)

d

dy
+ V (y)

]
Φ(y) = m2Q(y)Φ(y). (3.16)

The best way to study this equation is to transform it in a Schrödinger like equation[
− d2

dz2
+ U(z)

]
Φ̄(z) = m2Φ̄(z), (3.17)

dz

dy
= f(y), Φ(y) = Ω(y)Φ̄(z), (3.18)
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through the transformations [23]

f(y) =
√
Q(y), Ω(y) = exp

[
P (y)

2

]
Q(y)−1/4, (3.19)

and

U(z) =
V (y)

f(y)2
+
P ′(y)Ω′(y)− Ω′′(y)

Ω(y)f(y)2
, (3.20)

where the prime is a derivative with respect to y. The effective potentials are

U±(z) = e2A(y) [F (φ, π) + ∂yH(φ, π)]2 ± e−B(y)

2
∂y{e2A(y) [F (φ, π) + ∂yH(φ, π)]}, (3.21)

where the changing of variables is defined by dz/dy = eB(y)−A(y).

3.3 Reduction of mass equation in even dimensions

For the case where the dimensionality is even, the separation of variables is

Ψ(x, y) = e−
(p+1)

2
A(y)

∑
n

ψn(x)⊗ ξn(y), (3.22)

where ψ(x) is a 2k-dimensional Dirac’s spinor and ξn(y) is a two dimensional spinor.

Replacing Γy = 1⊗ σ3 the Dirac operator ΓMDMΨ(x, y) becomes

ΓMDMΨ(x, y) = e−
(p−3)

2
A(y)

∑
n

ψn(x)⊗
[
mnσ

1 + eA(y)−B(y)σ3∂y

]
ξn(y). (3.23)

So replacing (3.22) in (3.5), the equation for massive modes in the extra dimension is

dξn(y)

dy
− eB(y)

{
[F (φ, π) + ∂yH(φ, π)]σ3 −mne

−A(y)iσ2
}
ξn(y) = 0. (3.24)

The matrix σ3 is the chirality matrix in two dimensions, where Γ0 = iσ2 and Γ1 = σ1 are

Dirac matrices. So we can write the two dimensional spinor ξn(y) as

ξn(y) =

[
ξn+(y)

ξn−(y)

]
, (3.25)

where ξn+(y) and ξn−(y) are complex functions. Therefore replacing (3.25) in the equa-

tion (3.24), we obtain the following differential equations{
∂y + eB(y) [F (φ, π) + ∂yH(φ, π)]

}
ξn−(y) = mne

B(y)−A(y)ξn+(y), (3.26){
∂y − eB(y) [F (φ, π) + ∂yH(φ, π)]

}
ξn+(y) = −mne

B(y)−A(y)ξn−(y). (3.27)

These equations are identical to those related the odd dimensionality, i.e., equations (3.14)

and (3.15). Therefore, the potentials and the Schrödinger’s equation are the same however,

here, it is possible choose ξn+(y) 6= 0 and ξn−(y) = 0 or ξn+(y) = 0 and ξn−(y) 6= 0. This
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choice implies that not exists massive modes in the membrane. In even dimensions it is

possible because this procedure is equivalent to take Weyl spinors

Ψ+(x, y) =
∑
n

ψn(x)⊗

[
ξn+(y)

0

]
, Ψ−(x, y) =

∑
n

ψn(x)⊗

[
0

ξn−(y)

]
, (3.28)

from the beginning in the equations of motion. This procedure is not true for odd dimen-

sions because in this case, according to section 3.1, chirality is not defined. These results

will be used to study the zero mode localization and resonances of fermions in arbitrary

space-time dimensions.

4 The zero mode localization

In this section we will analyze the localization of zero modes over the membrane. The

condition for localization is that we can obtain a well defined (D− 1)−dimensional action.

Therefore we look for solutions such that the integral (1.1) is finite, which is like the

square integrable condition of quantum mechanics. Together with transformations (3.19)

we obtain a standard Schrödinger-like equation problem. According to the subsection 3.1,

the Dirac matrix representation change when the bulk dimension is odd or even. First we

will attack the zero mode localization problem when the dimensionality is odd, after the

case where it is even.

4.1 General case

For the case that the dimensionality is odd, the equations (3.14) and (3.15) for the zero

mode reduces to

f ′±0(y)∓ eB(y) [F (φ, π) + ∂yH(φ, π)] f±0(y) = 0. (4.1)

The solutions to these equations are

f±0(y) = C± exp

{
±
∫
y
dy′eB(y′)

[
F (φ(y′), π(y′)) + ∂yH(φ(y′), π(y′))

]}
, (4.2)

where the positive signal refers to right, the negative signal to left handed spinors and C±
are arbitrary constants. We note that, in this scenario, the interaction term is fundamental

for the localization of spinorial fields. Replacing (3.11) in the action (3.1) for the zero mode,

the effective (D − 1)-dimensional action becomes

S1/2 =

∫
dD−1x ψ0+γ

µ∂µψ0+

[∫ +∞

−∞
dye−A(y)+B(y)|f0+(y)|2

]
+

+

∫
dD−1x ψ0−γ

µ∂µψ0−

[∫ +∞

−∞
dye−A(y)+B(y)|f0−(y)|2

]
(4.3)

The localization of the zero mode will depend on the finitude of the integrals

Iodd± =

∫ +∞

−∞
dye−A(y)+B(y)|f0±(y)|2 (4.4)
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which, by using the solution (4.2), becomes

Iodd± =

∫ +∞

−∞
dy exp

{
−A(y) +B(y)± 2

∫
y
dy′eB(y′) [F (φ, π) + ∂yH(φ, π)]

}
. (4.5)

Now we turn our attention to even dimensions. In this case the equations (3.26)

and (3.27) for m = 0 becomes

ξ′0±(y)∓ eB(y) [F (φ, π) + ∂yH(φ, π)] ξ0±(y) = 0, (4.6)

with solution

ξ0±(y) = ξ̄± exp

{
±
∫
y
dy′eB(y′)

[
F (φ(y′), π(y′)) + ∂yH(φ(y′), π(y′))

]}
, (4.7)

where ξ̄± are arbitrary complex constants. Replacing (3.22) in the action (3.1), the effective

(D − 1)−dimensional action for the zero mode is

S1/2 =

∫
dD−1x ψ0γ

µ∂µψ0

∫ +∞

−∞
dye−A(y)+B(y)

[
|ξ0+(y)|2 + |ξ0−(y)|2

]
. (4.8)

Similarly to the previous case, we must analyze the convergence of integral

Ieven =

∫ +∞

−∞
dye−A(y)+B(y)

[
|ξ0+(y)|2 + |ξ0−(y)|2

]
. (4.9)

Therefore, as previously case, replacing the equation (4.7) in the integral Ieven, it can be

written as

Ieven = Iodd+ + Iodd− . (4.10)

According to equation (4.10), the Dirac spinor ψ0(x) is localized only if both Iodd+ and

Iodd− are finite. In many cases, this condition is not obeyed simultaneously, compromising

the localization mechanism. This apparent problem can be solved, only for zero mode,

choosing appropriately the functions ξ0+(y) and ξ0+(y) such that they continue to satisfy

equations (3.26) and (3.27). We will choose ξ0+(y) 6= 0 and ξ0−(y) = 0 if the integral

Iodd− is divergent, and therefore the equation (4.10) becomes Ieven = Iodd+, or ξ0+(y) = 0

and ξ0−(y) 6= 0 if the integral Iodd+ is infinite, making the equation (4.10) in the form

Ieven = Iodd−.

4.2 Thin brane

First we are going to analyze fermions localization for the case of a delta-like brane.

Replacing, A(y) = −kp|y|, F (φ, π) = H(φ, π) = 0, B(y) = 0 in the equations (4.2)

and (4.7) we find f0(y) =constant and ξ0(y) = ξ0. For this case the localization inte-

gral for odd dimension is

Iodd+ = Iodd− = I ≡ |C|2
∫ +∞

−∞
dyekp|y| →∞. (4.11)

Therefore free Dirac fermions are not localized in both odd and even dimensions. It is

the same result obtained by [7] for D = 5. The localization is only successful for negative

tension brane (kp < 0). In order to localize 1/2-spin fermions in the RSM-II framework,

we will use, in the next sections, the method of localization propose by [8], which consists

of the introduction of an interaction of fermions with scalar and dilaton fields.
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4.3 Thick brane without dilaton coupling

When we consider smooth Randall-Sundrum model without dilaton coupling, A(y) is given

by (2.14) and can be written as

eA(y) =
exp

[
βp
2 tanh2(by)

]
[cosh(by)]2βp

. (4.12)

Considering a Yukawa interaction given by F (φ, π) = η1φ, we get

I± = |C±|2
∫ +∞

−∞
dy[cosh(by)]2(βp±aη1/b) exp

[
βp
2

tanh2 (by)

]
. (4.13)

The evaluation of localization integral is done asymptotically. For y → ±∞, the integrand

behavior is proportional to e2b|y|(βp±aη1/b) and the integral (4.13) will converge if

|η1| >
bβp
a
. (4.14)

Therefore, for odd dimensions, Weyl left fermions ψ0−(x) are localizable if the condition

η1 > 0 is satisfied. However, if η1 < 0 only Weyl right fermions ψ0+(x) are localizable

if the same condition on the η1 is true, as well the choice. We conclude that, in odd

dimensions, Weyl spinors with different chiralities are not localizable simultaneously. For

even dimensions not exist Weyl spinors on the p-brane, thus the signals ± are related

to complex functions ξ0±(y). Therefore according to section 3.1 and section 4.1 Dirac’s

fermions are localizable, for η1 > 0 if ξ0+(y) = 0 and ξ0−(y) 6= 0 and for η1 < 0 if

ξ0+(y) 6= 0 and ξ0−(y) = 0.

4.4 Thick brane with dilaton coupling

In the case of dilaton coupling with Yukawa interaction i.e., A(y) given by (2.14), B(y)

given by (2.22), F (φ, π) = η2φe
−λπ, and H(φ, π) = 0, the integral (4.5) becomes

Iodd±= |C±|2
∫ +∞

−∞
dy exp

[
(r−1)A(y)±2aη2

∫
y
dy′e(r+2λ

√
rpMp)A(y′) tanh(by′)

]
. (4.15)

Here we define αp ≡ r+ 2λ
√
rpMp, and there are two cases to be analyzed: (i) αp = 0 and

(ii) αp 6= 0.

4.4.1 Case 1: αp = 0

In this case, the localization integral (4.15) can be written as

Iodd± = |C±|2
∫ +∞

−∞
dye

[
βp(r−1)

2
tanh2(by)

]
[cosh(by)]2[βp(1−r)±aη2/b]. (4.16)

The evaluation of localization integrals (4.16) is done asymptotically. When y → ±∞,

we have

Iodd± ∝


∫ +∞

−∞
dy exp

(
±2aη2

b
|y|
)
, for r = 1;∫ +∞

−∞
dy exp {2 [βpb(1− r)± aη2] |y|}, for r 6= 1.

(4.17)
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Thus, similarly to the thick brane case, i.e., for r = 1, we can localized left (η2 > 0)

or right (η2 < 0) fermions in odd dimensions. In even dimensions Dirac fermions are

localizable if we choose ξ0+(y) = 0, ξ0−(y) 6= 0 and for η2 > 0 or if we choose ξ0+(y) 6= 0

and ξ0−(y) = 0 for η2 > 0. However, for r 6= 1, the analysis is more delicate, because of

the energy density (2.25) must be finite. In this case, the localization will be successful if

βpb(1− r)± aη2 < 0.

For 0 < r < 1, this condition can be written as |η2| > βpb(1 − r)/a and we conclude

that, in odd dimensions, if η2 > 0 left handed fermions are localizable, but if η2 < 0 only

right handed fermions are localizable. For even dimensions, the Dirac spinor ψ0(x) will

be localized for η2 > 0 if we choose ξ0+(y) = 0, ξ0−(y) 6= 0 and for η2 < 0 if we choose

ξ0+(y) 6= 0 and ξ0−(y) = 0.

For r = (p+1)/2 > 1, the localization condition can be written as |η2| < βpb(D − 3)/2a,

where D is the bulk dimensionality. Therefore, both η2 > 0 and η2 < 0, the Dirac spinor

ψ0(x) is localized for both odd and even dimensions. Beyond this, in this case, the local-

ization mechanism is improved with the increase of bulk dimensionality.

4.4.2 Case 2: αp 6= 0

In this case we define

I(y) ≡
∫
y
dy′eαpA(y

′) tanh(by′), (4.18)

and for y → ±∞ we have

I(y) ∝ − 1

2αp
e−αp|y|, (4.19)

and therefore the localization integral (4.15) becomes

Iodd± ∝


∫ +∞

−∞
dy exp

(
∓aη2
αp

e−αp|y|
)
, for r = 1;∫ +∞

−∞
dy exp

[
−(r − 1)βpb|y| ∓

aη2
αp

e−αp|y|
]
, for r 6= 1.

(4.20)

For r = 1, we will analyze two situations: αp < 0 and αp > 0. When αp < 0, accord-

ing (4.20), for odd dimensions right handed fermions ψ0+(x) are localized if η2 > 0 or left

handed fermions are localized if η2 < 0, but Weyl spinors with different chiralities are not

localizable simultaneously. In even dimensions the Dirac spinor ψ0(x) will be localized if

we choose ξ0+(y) 6= 0, ξ0−(y) = 0 for η2 > 0 or we choose ξ0+(y) = 0, ξ0−(y) 6= 0 for

η2 < 0. When αp > 0, the first integral of the equation (4.20) is always divergent, and

therefore can not possible localize spinors both in odd as even dimensions.

For 0 < r < 1, we will also analyze αp < 0 and αp > 0. When αp < 0, we have

the localization integral Iodd± asymptotically identical to case r = 1, providing the same

results. When αp > 0, the integral Iodd± becomes

Iodd± =

∫ +∞

−∞
dye(1−r)βpb|y| →∞. (4.21)

Thus, can not possible localize spinors both in odd as even dimensions.
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For r = (p + 1)/2 > 1, we obtained the same results from the case r = 1 if αp < 0.

However, for αp > 0, we have

Iodd± ∝
∫ +∞

−∞
dye−

(D−3)
2

βpb|y| <∞, (4.22)

and we conclude that the Dirac spinor ψ0(x) is localized for both odd and even dimensions,

independent of the parameter η2.

4.4.3 Dilaton derivate coupling

Finally, we will analyze the localization for F (φ, π) = 0 and H(φ, π) = hπ(y), where h is a

real coupling constant. In this case, the localization integral (4.5) becomes

Iodd± = |C±|2
∫ +∞

−∞
dy exp

[
(r − 1)A(y)∓ 4h

√
pMp

r
erA(y)

]
. (4.23)

To verify the convergence of this integral, we must again evaluate it asymptotically,

Iodd± ∝


∫ +∞

−∞
dy exp

(
∓4h

√
pMpe−2bβp|y|

)
, for r = 1;∫ +∞

−∞
dy exp

[
−2bβp(r − 1)|y| ∓ 4h

√
pMp

r
e−2bβpr|y|

]
, for r 6= 1.

(4.24)

For r = 1, the integral Iodd± diverge, because e−2bβp|y| → 0 when y → ±∞, and

therefore ∓4h
√
pMpe−2bβp|y| → constant. Thus, we conclude that spinorial fields are not

localizable in odd and even dimensions.

For 0 < r < 1, the integral Iodd± becomes

Iodd± ∝
∫ +∞

−∞
dye2bβp(1−r)|y| →∞. (4.25)

Therefore we have that Dirac’s fermions are not localized in odd or even dimensions.

For r = (p+ 1)/2 > 1, we have

Iodd± ∝
∫ +∞

−∞
dye−2bβp

(D−3)
2
|y| <∞, (4.26)

showing that Dirac spinor are localizable for both odd and even dimensions.

5 Resonances

Now let us turn our attention to the massive modes of Dirac equation. We are interested

only in the study of resonant modes and must use the transfer matrix method. They

depend strongly of the form of the potential and, therefore, of the model considered. Here

we will study the model similar to that found in [8].
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Figure 1. The double potential barrier.

z

U(z)

Figure 2. Potential approximation by barrier.

5.1 Review of the transfer matrix method

Here we will give the details of the program used to compute the transmission coefficients

by transfer matrix [23–25]. First, we write the equation of motion for massive modes as a

Schrödinger like equation, as demonstrated in (3.17). Due to similarity with usual quantum

mechanics, we calculate the transmission coefficient, but numerically. For this, we will use

the transfer matrix method. This method is based on the concept of potential barrier. The

solutions before and after the potential barrier are plane waves, and using this fact it is

possible to approximate this type of solution in each barrier.

We consider as an example the simple case given by the double well barrier as shown

in figure 1. The solution of the Schrödinger equation for each region is given by

Φ̄j(z) = Aje
ikjz +Bje

ikjz, kj ≡
√

2(E − Uj), j = 1, 2, 3, 4, 5. (5.1)

The idea therefore is to apply the results above to a more general case. For this

purpose the potential can be approximated by a series of barriers showed in the figure 2.

The Schrödinger equation must be solved for each interval zj−1 < z < zj , where we have
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approximate the potential by

U(z) = U(z̄j−1) = Uj−1, z̄j−1 = (zj + zj−1)/2. (5.2)

The solution in this interval is

Φ̄j−1(z) = Aj−1e
ikj−1z +Bj−1e

ikj−1z, kj−1 ≡
√
m2 − Uj−1. (5.3)

The continuity of the Φ̄j−1(z) and Φ̄′j−1(z) at z = zj give us(
Aj
Bj

)
= Mj

(
Aj−1
Bj−1

)
. (5.4)

In the above equation we have that

Mj =
1

2kj

[
(kj + kj−1)e

−i(kj−kj−1)zj (kj − kj−1)e−i(kj+kj−1)zj

(kj − kj−1)ei(kj+kj−1)zj (kj + kj−1)e
i(kj−kj−1)zj

]
, (5.5)

and performing this procedure iteratively we reach(
AN
BN

)
= M

(
A0

B0

)
, (5.6)

where,

M = MNMN−1 . . .M2M1. (5.7)

The transmission coefficient is therefore given by

T =
1

|M22|2
. (5.8)

This expression must be a function of m2. To obtain the numerical resonance values we

choose the zmax to satisfy U(zmax) ∼ 10−4 and m2 runs from Umin = U(zmax) to Umax (the

maximum potential value). We divide 2zmax by 104 or 105 such that we have 104 + 1 or

105 + 1 transfer matrices.

5.2 The case F (φ, π) = η2φe
−λπ and H(φ, π) = 0

In this subsection we will analyze the resonances for the potential F (φ, π) = η2φe
−λπ and

H(φ, π) = 0, with r = 1, η2 = 1 and for the dimensionalities D = 5, 10, for s = 1, s = 3

and s = 5 for two cases, λ = 0, 4 and λ = 1/
√
pMp.

In the case where λ = 0, 4, we will analyze left and right handed resonance fermions (for

odd dimensions) and Dirac spinor (even dimensions). We show in figure 3 the plots for the

potentials and of the transmission coefficient for left fermions (odd dimensions) and Dirac

spinor (even dimensions, using the function ξn−(y)). Particularly, for even dimensions, if

the transmission coefficients of ξn+(x) or ξn−(x) show peaks for m2 ≤ Umax, it is sufficient

for that to be found resonance modes in Dirac’s fermions. This fact is a consequence of

decomposition (3.22), that is different of odd case (3.11).
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Figure 3. Potentials U(z) and Transmission coefficient T (m2) for massive left fermions (odd

dimensions) and Dirac fermions (even dimensions choosing ξn−(x)) with λ = 0, 4 for D = 5 (line)

and D = 10 (dotted), with η = 1 and s = 1 (a, d), s = 3 (b, e) and s = 5 (c, f).

The potential for left handed and Dirac fermions for s = 1 is very similar to a double

barrier and we should expect the existence of resonant modes [23–25]. But for right handed

fermions, when s = 1 this will not be true, because the potential in this case is a single

barrier. We observe that, in this case, the deformed topological defects are responsible

for the appearance of resonance peaks. The number of resonance peaks is very similar to

the previous case but not their positions. The table 1 shows the values of the peaks of

resonance. We observed that, for D = 5, 10 and s = 1, although the potential takes the

form of a double barrier, no resonance peaks were found.

For right handed fermions (odd dimensions) and Dirac fermions (even dimensions,

using the function ξn+(y)), the potentials and transmission coefficient are showed in figure 4.

We observed that, in this case, the potentials do not have the form of a double barrier and

therefore there are no resonant modes. For this reason we do not find peaks of probability

for massive fermions coupled with the dilaton when λ = 0, 4, as shown in figure 4(d).

The results obtained enforces the previous affirmation that the resonances are strongly

dependent on the topological defect parameter s. The table 2 shows the peaks of resonance.
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Topological Defects Resonances Peaks (m2)

s = 1 – – – – – –

s = 3 0,35 – – 0,32 1,5 –

s = 5 0,36 0,75 – 1,75 2,3 2,85

Dimensionality D = 5 D = 10

Table 1. Peaks of resonances for massive left handed fermions (odd dimension) or Dirac fermions

(even dimensions choosing ξn−(x)) for λ = 0, 4.
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Figure 4. Potentials U(z) and Transmission coefficient T (m2) for massive right fermions (odd

dimensions) and Dirac fermions (even dimensions choosing ξn+(x)) with λ = 0, 4 for D = 5 (line)

and D = 10 (dotted), with η = 1, M = 1 and s = 1 (a, d), s = 3 (b, e) and s = 5 (c, f).

As said previously, the peaks of resonances are strongly dependent on the s. For D = 5,

if the potential looks like the double well barrier, we can observe resonances. But, other

hand, if the potential is a one single barrier we cannot observe resonances. For this reason

we only plot the potentials and transmission coefficient for left handed (odd dimensions)

and Dirac (even dimensions, using function ξn−(y)) fermions for the case λ = 1/(2
√
p)
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Topological Defects Resonances Peaks (m2)

s = 1 – – – –

s = 3 0,63 – 0,65 1,9

s = 5 0,48 0,9 1,4 1,9

Dimensionality D = 5 D = 10

Table 2. Peaks of resonances for massive right handed fermions.
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Figure 5. Potentials U(z) and Transmission coefficient T (m2) for massive left fermions (odd

dimensions) and Dirac fermions (even dimensions, choosing the function ξn−(x)) with λ = 1/(2
√
p))

for D = 5 (line) and D = 10 (dotted), with η = 2 and s = 1 (a, d), s = 3 (b, e) and s = 5 (c, f).

(figure 5). However, we discovered in this case that in D = 10 and s = 1 we find resonant

modes for Dirac fermions, in even dimensions. In other words, we discovered that the

resonance peaks are dependent of the bulk dimensionality. The table 3 shows resonance

peak in m2 ' 10, 5, when D = 10, while for D = 5 no resonant peaks appear.
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Topological Defects Resonances Peaks (m2)

s = 1 – – – 10,5 – –

s = 3 0,4 1,5 – 2,8 4,0 –

s = 5 0,8 1,2 1,7 3,0 3,6 4,2

Dimensionality D = 5 D = 10

Table 3. Peaks of resonances for massive left handed fermions.

Topological Defects Resonances Peaks (m2)

s = 1 – – – –

s = 3 0,16 – 0,65 –

s = 5 0,02 0,17 0,15 –

Dimensionality D = 5 D = 10

Table 4. Peaks of resonances for massive right handed fermions.

5.3 The case F (φ, π) = 0 and H(φ, π) = hπ

Here we consider the next important case, which is known as coupling with dilaton deriva-

tive, F (φ, π) = 0 and H(φ, π) = hπ. These cases has already been studied in [21] for

D = 5. But we will generalize it to the case with co-dimension one and in the light of the

Transfer Matrix Method.

We show in figure 6(a) the graphics of the left handed fermion potential with the

coupling H(φ, π) = hπ. In figure 6(d) we show the transmission coefficient, when D = 5, 10

and s = 1. In figures 6(b), (c) and 6(e), (f) we show the graphics of the potential and

transmission coefficient with s = 3, 5, respectively. Here we note that the increase of the

dimensionality leads a decrease in height, which on the other hand is compensated by a

gain in the potential width. Also we note that, in this case the resonance peaks occur

at a lower energy scale. For example, in case F (φ, π) = ηφe−λπ and H(φ, π) = 0, s = 3

and D = 5 (table 3), the first peak of resonance occur at m2 ' 0, 4, while for this case

(figure 6(d)) the same occur in m2 ' 0, 15.

For right handed fermions, the potentials and transmission coefficient are showed in

figure 7. In figures 7(a) and 6(d) we show the potential and transmission coefficient for

s = 1, when D = 5, 10. The figures 7(b), (c) and 6(e), (f) we show the graphics of potential

and transmission coefficient with s = 3, 5, respectively. Here we note that the increase of

bulk dimensionality does not contribute to the appearance of resonance peaks. Thus we

conclude that only s = 3, 5 topological defects induces the appearance of resonance peaks

for the case with derivative coupling.

6 Conclusion

In this work we have analyzed the localization of zero mode and resonances of 1/2-spin

fermions in co-dimension one Randall-Sundrum-like models. This matter has already been

studied before for many authors, but adopting the bulk with five or six dimensions. There-
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Figure 6. Potentials U(z) and Transmission coefficient T (m2) for massive left fermions for D = 5

(line) and D = 10 (dotted), with η = 1 and s = 1 (a, d), s = 3 (b, e) and s = 5 (c, f) in derivate

dilaton setup.

Topological Defects Resonances Peaks (m2)

s = 1 – – – –

s = 3 1.6 – 0,6 –

s = 5 0,02 0,17 0,15 –

Dimensionality D = 5 D = 10

Table 5. Peaks of resonances for massive right handed fermions.

fore the authors generalize the study of fermions localization to consider the influence of

space-time dimension. We discovered that the zero mode localization as well as the reso-

nances depends strongly on this. The results of the localization of zero modes are given in

the tables 6 and 7.

We found that in the delta-like braneworld, both the odd and even dimensions, the

zero mode of fermions are not localized, except for negative tension brane (kp < 0). For
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Figure 7. Potentials U(z) and Transmission coefficient T (m2) for massive left fermions for D = 5

(line) and D = 10 (dotted), with η = 1 and s = 1 (a, d), s = 3 (b, e) and s = 5 (c, f) in derivate

dilaton setup.

thick brane without dilaton but with Yukawa coupling F (φ) = η1φ, the zero mode is

localized for one chirality for odd dimensions, if the condition |η1| > βpb/a is satisfied. In

this situation, for odd dimensions left chirality is localized if η1 > 0 or right chirality if

η1 < 0. However, for even dimensions, we discovered that Dirac spinor is localizable if

ξ0+(y) = 0 and ξ0−(y) 6= 0 for η1 > 0 or ξ0+(y) 6= 0 and ξ0−(y) = 0 for η1 < 0. In the

dilaton scenario, F (φ, π) = η2φe
−λπ, the zero mode localization in co-dimension one for

Dirac fermions is divided into two cases: αp = 0 and αp 6= 0, whose localization depends

on the parameters η2 and r to be successful (tables 6 and 7). In the case αp = 0, for η2 > 0

(η2 < 0) and 0 < r < 1 or η2 > 0 (η2 < 0) and r = 1 we have that left (right) handed

fermions ψ0− (ψ0+) are localized for odd dimensions and Dirac spinor ψ0(x) is localized

if ξ0−(y) 6= 0 (ξ0+(y) 6= 0) and ξ0+(y) = 0 (ξ0−(y) = 0). In the case αp 6= 0, right (left)

handed fermions ψ0+(x) (ψ0−(x)) are localized in the cases η2 > 0 (η2 < 0) 0 < r < 1 and

r = 1 if αp < 0. For r = (p + 1)/2 Dirac spinor is localized independently of αp, both

odd and even dimensions and also independent of the signal of η2. Lastly, in the derivate
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Setup Parameters Result

Thin brane
kp > 0 – ψ0±(x) is not localized

kp < 0 – ψ0±(x) localized

Thick brane without dilaton
η1 > 0 – ψ0−(x) is localized

η1 < 0 – ψ0+(x) is localized

Thick brane with dilaton (αp = 0)

η2 > 0

0 < r < 1
ψ0−(x) is localized

r = 1

r = (p+ 1)/2 ψ0±(x) are localized

η2 < 0

0 < r < 1
ψ0+(x) is localized

r = 1

r = (p+ 1)/2 ψ0(x) is localized

Thick brane with dilaton (αp 6= 0)

η2 > 0

0 < r < 1
ψ0+(x) is localized if αp < 0

r = 1

r = (p+ 1)/2 ψ0± are localized

η2 < 0

0 < r < 1
ψ0−(x) is localized if αp < 0

r = 1

r = (p+ 1)/2
ψ0−(x) is localized if αp < 0

ψ0(x) is localized if αp > 0

h 6= 0

0 < r < 1 ψ0±(x) is not localized

Dilaton derivate r = 1 ψ0±(x) is not localized

r = (p+ 1)/2 ψ0±(x) is localized

Table 6. Summary of results of zero mode fermions localization in odd dimensions. The ψ0(x) and

ψ0±(x) are Dirac and Weyl spinors on the brane, respectively.

dilaton coupling case, H(φ, π) = hπ, the parameter h does not influence in the localization

mechanism and Dirac’s fermions are localizable only if r = (p+ 1)/2 > 1.

For the study of resonances in undeformed and deformed Randall-Sundrum Models,

we used the transfer matrix method. In all Randall-Sundrum-like models the issue of

localization is studied through an associated one dimensional Schrödinger equation with

a respective potential. In general, the results obtained enforces the previous affirmation

that the resonances are strongly dependent on value of parameter η2 and h. Beyond this,

both cases are strongly dependent on s. The authors of this paper also observed that,

when λ = 1/2
√
pMp, specifically for D = 10 (p = 8), the resonance peaks are dependent

of the bulk dimensionality, as shown in figure 5(d) and table 5. However, the same does

not occur for the cases with s = 3, 5, where these topological defects are responsible for

the appearance of resonance peaks. Another interesting aspect is the displacement of the

resonance peaks with the increase of the bulk dimensionality. This happens in the figures

(s = 5, figures 3(f) and 4(f)) and figures (s = 3, 5, figures 5(e) and (f)). Phenomenologically,

this fact can be interpreted as an increase of the energy scale. In the derivate coupling

case, for left handed fermions the inverse occurs: in the cases s = 3, 5, the numbers of

– 24 –



J
H
E
P
0
2
(
2
0
1
8
)
0
1
8

Setup Parameters Result

Thin brane
kp > 0 – ψ0(x) is not localized

kp < 0 – ψ0(x) localized

Thick brane without dilaton
η1 > 0 – ψ0(x) is localized if ξ0+(y) = 0

η1 < 0 – ψ0(x) is localized if ξ0−(y) = 0

Thick brane with dilaton (αp = 0)

η2 > 0

0 < r < 1
ψ0(x) is localized if ξ0+(y) = 0

r = 1

r = (p+ 1)/2 ψ0(x) are localized

η2 < 0

0 < r < 1
ψ0(x) is localized if ξ0−(y) = 0

r = 1

r = (p+ 1)/2 ψ0(x) is localized

Thick brane with dilaton (αp 6= 0)

η2 > 0

0 < r < 1 ψ0(x) is localized if αp < 0

r = 1 and ξ0−(y) = 0

r = (p+ 1)/2 ψ0(x) are localized

η2 < 0

0 < r < 1 ψ0(x) is localized if αp < 0

r = 1 and ξ0+(y) = 0

r = (p+ 1)/2
ψ0(x) is localized if αp < 0

and ξ0+(y) = 0

ψ0(x) is localized if αp > 0

h 6= 0

0 < r < 1 ψ0(x) is not localized

Dilaton derivate r = 1 ψ0(x) is not localized

r = (p+ 1)/2 ψ0(x) is localized

Table 7. Summary of results of zero mode fermions localization in even dimensions. The ψ0(x) is

the Dirac spinor on the brane.

resonance peaks diminish with increasing bulk dimensionality for left handed fermions

(odd dimensions) and for Dirac fermions (even dimensions, choosing the function ξ−n(y))

(see figures 6(e) and (f) and table 4). The same is not true for right handed fermions (odd

dimensions) or for Dirac Fermions (even dimensions choosing ξ+n(y)).

Finally, we can conclude that both the localization of the zero mode and the appearance

of unstable resonant modes are affected by space-time dimensionality. For example, we note

the possibility of localizing both chiralities and the appearance of new peaks and shifts of

these peaks in domain walls when the dimensionality increase. We can summarize the main

results of this work as follows:

1. For even dimensions the zero mode of Dirac spinor can be localized, prohibiting

massive modes.

2. For odd dimensions only one zero mode chiralities can be localized.

3. The localization of zero mode depends strongly on the coupling constants and the

parameter r.

4. The resonance peaks for massive modes are displaced with increasing dimensionality.
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