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RESUMO

Um dos principais aspectos da simulação composicional de reservatórios são os algoritmos, ou

formulações, utilizadas para a solução das equações de fluxo. A pesquisa na literatura mostra

o desenvolvimento de diversos métodos nas últimas décadas, sempre focados na melhoria de

precisão dos resultados e de performance. A escolha das variáveis primárias e o nível de implici-

tude são dois meios fundamentais pelos quais tais formulações diferenciam-se. Modelos Implicit

Pressure, Explicit Composition tratam uma única variável implícita, reduzindo o tempo de

computação por passo de tempo, tornando-se, simultaneamente, mais vulnerável à instabilidade

numérica. Em contraposição, os modelos Fully Implicit avaliam todas as variavéis primárias

acopladas na matrix Jacobiana, de forma a alcançar grande estabilidade numérica. O tamanho

dos sistemas lineares, no entanto, é muito maior, requerendo maior esforço computacional por

passo de tempo. É desenvolvido uma metodologia que incorporar as duas formulações para

produzir um método adaptativo com diferentes níveis de implicitude ao longo das simulações.

Isso é possível identificando as fontes de instabilidade no reservatório e avaliando-as em um

procedimento dinâmico. Dois critérios de seleção são aplicados para estabelecer a correta

quantidade de variáveis implícitas por volume da malha e para conduzir as devidas trocas de

formulação. Adicionalmente, o Adaptive Implicit Method (AIM) é combinaddo com a técnica

EbFVM para malhas não estruturadas, possibilitando o uso para reservatórios com geometrias

complexas. A precisão do AIM é comparada com os métodos IMPEC e Fully Implicit para

vários casos de estudo em termos de curvas de produção de óleo e gás, e através dos tempos de

computação para comparação de desempenho.

Palavras-chave: simulação de reservatório, Adaptive Implicit Method, formulaçoes, EbFVM



ABSTRACT

One of the main aspects of compositional reservoir simulation concerns the algorithms, or

formulations, to solve flow equations. A literature survey shows that several approaches have

been developed in the last decades, always aiming increasing the accuracy of results and run

performances. The choice of primary variables and applied implicitness level are two of the

fundamental ways in which these methods differentiate themselves. Implicit Pressure, Explicit

Composition models treat a single variable implicit, reducing the run time for each time step

while becoming more vulnerable to numerical instabilities. On the other hand, Fully Implicit

schemes evaluate all primary variables coupled within the Jacobian matrix, which confers great

stability, but produces much larger linear systems and are, therefore, more expensive per time step.

Herein, we develop a model that incorporates both formulations to produce an adaptive method

with variable level of implicitness throughout the simulation. This is achieved by identifying

the sources of instabilities in a reservoir and setting them implicit in a dynamic procedure. Two

switching criteria are applied into establishing the correct amount of implicit unknowns for each

grid volume and performing the required shifts. Additionally, this Adaptive Implicit Method

(AIM) is combined with the EbFVM scheme for unstructured meshes, enabling the handling of

more complex reservoir geometries. The accuracy of the Adaptive Implicit Method is compared

with both IMPEC and Fully Implicit formulations for several case studies in terms of oil and gas

production rate curves, while the CPU run times are applied into verifying performance.

Keywords: reservoir simulation, Adaptive Implicit Method, formulations, EbFVM
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Ñi Shape function

P Pressure

Pc Capillary pressure

qi Component molar flow rate

Q j Phase volumetric flow rate

R Universal gas constant

S j Phase saturation

T Temperature



Ti j Transmissibility

~u j Phase velocity

Vp Pore volume

Vt Total fluid volume

WI Well index

xi j Component phase molar fraction

Z Compressibility factor

ρ j Phase mass density

ξ j Phase molar density

µ j Phase viscosity

µ i j Chemical potential

λ j Phase mobility

φ Porosity

Φ j Phase hydraulic potential

ν Molar volume

ω Acentric factor



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Reservoir Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Chapters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Numerical Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Adaptive Implicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Griding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 PHYSICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Material Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Thermodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Phase Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Phase Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Molar and Mass Densities . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Relative Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Capillary Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.5 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Source Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 NUMERICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 EbFVM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Discretized Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Interpolation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 THE ADAPTIVE IMPLICIT METHOD . . . . . . . . . . . . . . . . . . 55

5.1 Jacobian Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Switching Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Threshold Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 CFL-based Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 64



6.1 Choice of Tested Grids Nodes . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Case study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.2 Case study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Stable CFL Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Case study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Case study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Comparison Between AIM, IMPEC and FI . . . . . . . . . . . . . . . . 72

6.3.1 QOFS-3comp 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 QOFS-6comp 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.3 QOFS-6comp 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.4 2D Irregular reservoir-6comp . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.5 3D Irregular reservoir-6comp . . . . . . . . . . . . . . . . . . . . . . . . 85

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APÊNDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDIX A – Implicitness Level Influence on Jacobian Matrix Equations 97

APPENDIX B – Threshold Optimization Procedure . . . . . . . . . . . . 99

B.1 QOFS-3comp 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 QOFS-6comp 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

APPENDIX C – Newton-Raphson Convergence Criteria . . . . . . . . . . 106

ANEXOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



17

1 INTRODUCTION

This introductory chapter aims to present a general view of reservoir engineering

and the related numerical simulation. Afterwards, the main objectives and importance of the

work are presented, and a brief summary of the chapters is described.

1.1 Reservoir Simulation

The importance of the oil and gas industry is a commonly known fact. Its final

products are applied in large scale on an enormous variety of fields, which explains the size of

this market. For instance, in 2016, the Brazilian production went up to 2.144 million barrels

per day (ECONOMIA, 2017). In the US, an average of 12.704 millions barrels per day were

produced in 2015 (STATISTA, 2017). An expected consequence of theses number is the impact

on global markets. For decades, the economy has been profoundly affected by the result of

political events on oil prices.

Given this scenario, it is no surprise that oil production has attracted the attention

of companies and research groups in a continuous effort to improve efficiency and reduce risks.

Evaluating the entire petroleum chain, extracting oil is likely the most uncertainty prone step.

The advent of computational simulators produced a huge impact on this field, since these tools

enabled a much faster increase on effectiveness in a few decades than observed before. Reservoir

simulation has become a key instrument for companies evaluating new and old prospects, as well

as academic researches studying new production processes.

Most reservoir simulators currently available have reached a good level of accuracy

and ability to handle several recovery processes, from the most traditional ones to the most

recent developed propositions. Then, a large amount of effort has been directed into efficiency.

Simulating real field applications demands large amounts of processing power and storage

capacity, leading to large computation times. The present work means to tackle this issue on a

simulator already equipped with several formulations. Our approach consists in combining two

of these algorithms into a new method for a performance improvement requiring few changes on

the simulator framework.
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1.2 Research Objectives

The first goal of this work is to implement and verify the advantages of an Adaptive

Implicit Method (AIM) when compared with other methods. The new model is born from

the combination of the ACS et al. (1985) Implicit Pressure, Explicit Composition and the

FERNANDES (2014) formulations. These are also the techniques against which the comparison

is performed.

Achieving this objective requires the evaluation of production curves accuracy and

performance in terms of CPU time. Several two and three-dimensional case studies, mainly gas

flooding problems, are applied in multiple reservoir geometries. We should note the different

fluids produce very distinct problems concerning the phase behavior, giving a chance to see how

the scheme performs.

Another major aspect considered is the role of switching criterion for the AIM. A

weak shifting algorithm can effectively undermine any performance improvement and produce

instabilities. Therefore, a complementary objective of the present study is to implement two

already reportedly used criteria. All comparisons are done for both approaches in order to

understand their behavior in various situations.

Finally, we aim at combining the AIM with Element-based Finite Volume Method

unstructured grids. This represents the chief scientific contribution of the research, since there are

not many studies concerning the association of these methodologies. All these points combined

can produce a new, faster and reliable formulation.

1.3 Chapters Overview

Chapter 2 provides an analysis on the state of art in reservoir simulation. The focus

lies first on numerical formulations, the different approaches and increasing complexity. In

sequence, an evaluation of the adaptive methods is presented. Finally, griding techniques are

reviewed aiming specifically unstructured meshes.

Following, Chapter 3 shows the mathematical model behind the implemented for-

mulation. The chapter sections investigate the material balances (flow equations), constraint

relations and phase behavior description for a compositional scheme.

In Chapter 4, the implemented Adaptive Implicit Method is presented in detail. The

basic formulation aspects are described, such as the Jacobian matrix handling, as well as the
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THOMAS; THURNAL (1982) and COATS (2001) switching criteria.

The results and discussion are shown in Chapter 5. Accuracy and performance

analysis are performed for several 2D and 3D cases studies in different reservoir geometries. The

proposed model is compared with the previously validated IMPEC and FI models.
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2 LITERATURE REVIEW

This chapter is dedicated to review the main aspects discussed in this work as an

effort to verify contributions to the state of art on reservoir simulation. Three sections explore

each specific matter: the development of numerical formulations; the advent and evolution of the

Adaptive Implicit approach; and griding techniques, with special focus on unstructured meshes.

2.1 Numerical Formulations

Petroleum reservoir simulation is a relatively recent area of study. The theoretical

basis behind multiphase flow in porous media was known for quite some time. However,

the model’s complexity, composed of several equations and unknowns, made its application

prohibitive. Before the second half of the 20th century, most models were extremely simple and

based on analytic solutions for overall material balances or one-dimensional problems (COATS,

1982). These were far from reproducing actual field applications and limited to very specific

analysis. For instance, one of the first applied techniques was proposed by Buckley e Leverett

(1942). Their analytical model described incompressible and immiscible flow up to two phases.

The advent of computers and their rapid advancement allowed for the development of more

sophisticated numerical methods which led to a surge on the amount of works published in the

matter (COATS, 1982). These simulators, developed around the 1960’s, also presented some

limitations. Most methods focused on two-phase and three-phase black oil problems, as well as

recovery methods associated to depletion or pressure maintenance. Most field applications were

actually well described by theses models, posing no serious issues.

The scenario dramatically changed in the next decade. The 1973 Oil Crisis was

the first of a series of politically motivated embargoes that caused a fast rise of oil prices

on the international market (GUARDIAN, 2011), which in turn allowed for the widespread

implementation of enhanced oil recovery (EOR) processes. More complex simulators were

developed in order to describe phenomenons such as miscible flow, chemical injection and CO2

injection, as well as handle more elaborate equilibrium calculations. Kazemi et al. (1978) was

one of the first to propose a compositional formulation for three-dimensional reservoir with up

to three fluid phases, while still evaluating phase equilibrium calculations through correlations.

As a consequence, phase related properties calculation generated relevant convergence issues.

Fussel e Fussel (1979) applied the Redlich e Kwong (1949) equation of state (EOS)
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into their simulator , and showed how it improves the convergence rates. From this point on,

most models proposed in the literature also will lay hand of advantages of using EOS. However,

before we proceed further, there should be a deeper investigation on the concept of formulation

in order to better differentiate the studies mentioned in this work. Describing flow in porous

medium requires the evaluation of several variables, specially if we are dealing with multiphase

and multicomponent fluids. Computing all these unknowns in an iterative procedure leads to a

huge computational effort, therefore many algorithms, or formulations, have been proposed to

optimize performance and guarantee stability. It is important to note not all properties must be

computed in order to define a system, as expressed by the Gibb’s phase rule:

F = n+2−np (2.1)

The above expression calculates the minimum amount of intensive properties re-

quired to describe a thermodynamic state (F), also called degrees of freedom, as a function of

both the number of phases (np) and components (n) in equilibrium. Once these unknowns are

evaluated, all remaining properties are computed afterwards. It is important to highlight applying

this expression assumes the local equilibrium condition, meaning every point in the reservoir

must be in phase equilibrium. Additionally, adjustments are required for the reservoir production

specific case. First, the methodology developed in this work, in accordance with several studies

in the literature, is isothermal, meaning one less intensive property to be determined. Following,

another usual procedure applied here is to remove water from the flash calculations. This requires

two modifications on Eq. (2.1): replacing n for the number of hydrocarbon components (nc), and

np for np−1. Finally, the evaluation of phase flow demands the calculation of phase saturations,

adding another np−1 degrees of freedom, since the saturation constraint can be used to compute

the remaining saturation.

np

∑
j=1

S j = 1 (2.2)

All theses changes implemented make Eq. (2.1) assume the form:

F = nc +1 (2.3)

Equation (2.3) represents the amount of primary variables in a reservoir simulators.

As already mentioned, this set of unknowns is enough to portray a thermodynamic state. The
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remainder of properties, called secondary variables, are all computed as a functions of them.

Additionally, the extensive state is defined if we include a single more degree of freedom, like, for

instance, a hydrocarbon component amount of moles. The definition of primary and secondary

variables is relevant mainly because all reservoir simulations models apply them into their scope.

For instance, Fussel e Fussel (1979) applies a dynamic primary variables selection. Apart from

pressure, the remaining state defining unknowns are chose according to the predominant phase

in each grid block. Should more gas phase moles be present in a given control volume, the

amount of oil phase moles per pore volume and nc− 1 oil phase compositions are selected.

The procedure is analogous for oil phase predominant volumes. From these variables, only the

pressure is treated implicit, yielding an Implicit Pressure/ Explicit Composition (IMPEC) model.

The first Fully Implicit model for compositional simulation was proposed by Coats

(1980). The Redlich e Kwong (1949) EOS is used to describe phase behavior. Additionally, the

author chooses to account for capillary, gravity and viscous forces. Only physical dispersion

is neglected. As the name suggests, this approach means to treat all primary variables implicit.

Initially, each Jacobian matrix entry has a 2nc + 4 size, accounting for oil and gas phases

molar fractions, all saturations and pressure. A Gaussian elimination decouples the secondary

unknowns from the linear system, yielding nc +1 sized entries. We should note the remaining

primary variables are dependent on the amount of phases present in each grid block. For the

case the two hydrocarbon phases exist, the gas phase pressure, both saturations and nc−2 gas

compositions are chosen. If only the gas phase is encountered, the pressure, saturation and nc−1

compositions for the gas phase are the primary unknowns. The choice is analogous for volumes

containing only the oil phase. The author reports stable runs even for thermodynamic conditions

close to the critical point, while noting significant numerical dispersion. The FI method, as

largely reported in the literature, served as the counterpoint for the IMPES, since it guarantees

great stability at the cost of larger Jacobian matrix. This concept is further developed later on

this chapter.

Nghiem et al. (1981) developed an IMPEC model based on Kazemi et al. (1978).

Two main differences can be highlighted First, the authors inserted the Peng e Robinson (1976)

EOS into the model, mitigating convergence issues. Second, weighting factors are used on

the flow equations in order to obtain the pressure expression. This change is performed to

guarantee the linear system is symmetric and diagonal dominant. The model was compared with

experimental data for CO2 displacement showing great agreement. However, the authors were
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not able to attain quadratic convergence. Young e Stephenson (1983) also proposed changes to

IMPEC model. The authors modified the Jacobian matrix structure from Fussel e Fussel (1979),

reordering equations in an effort to improve efficiency and facilitate the insertion of new fluid

properties correlations. As for the primary variables, there is no dependence on the number

of existing phases. The chosen parameters are pressure, gas phase amount of moles per pore

volume, and nc−1 gas phase compositions.

A new IMPEC approach was shown by Acs et al. (1985). A volume constraint is

the basis for the pressure equation. This feature itself is not innovative. Both Kazemi et al.

(1978) and Nghiem et al. (1981) used this notion. The difference, however, lies in the procedure.

Starting from the assumption the total fluid volume must equal the pore volume, both terms are

expanded by a Taylor series truncated in the first order term. The equation generated from this

development is unique for it is completely decoupled from phase behavior calculations and its

discretized version is linear. This produces an important consequence. Since no non-linearities

exist, there is no need for an Newton iterative procedure. Another significant change is on

the primary variables. The authors argue phase saturations, as volumetric ratios, are not usual

thermodynamic parameters. Instead, pressure and the nc component masses are selected. It

should be noted, however, the method presents two rather undesirable features. First, obtaining

the pressure equation requires computing total fluid volume derivatives, a complex task not

describe in Acs et al. (1985). Following, the truncation on the first order term demands a

volumetric error term to be placed into the equation. This addition, however described as a

means to maintain the volumetric error stable and allow large time steps, not always produces

the desired effect (WONG et al., 1990).

Chien et al. (1985) designed a variation from the Coats (1980) model. The parameters

are decoupled from the linear system in the same manner. However, the authors opted for a

different set of primary variables. Pressure, nc(np− 1) phase equilibrium ratios, water and

nc−1 hydrocarbon components overall molar fraction are selected. This group yields nc(np−1)

extra variables than required by Eq. (2.3). The pivotal unknowns, as named by the authors,

are removed from the matrix. Finally, only pressure and the overall molar fractions are solved

implicit.

The dichotomy between IMPEC and FI models was then broken by Watts (1986). The

author noted the shortcoming in both approach and proposed a new model with an intermediate

level of implicitness. Basically, the pressure is still solved implicit as in Acs et al. (1985).
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Following the np−1 phase saturations are also implicitly computed. This requires an evaluation

of phase velocities between the two steps, meaning more np implicit parameters. Goods results

are reported while highlighting the method presents inherit inconsistencies generated from the

phase velocities evaluation and the molar fractions treatment. The author does not discusses this

matter beyond mention, and notes no relevant errors were observed.

Later, Quandalle e Savary (1989) addressed these matters. They verified two main

sources for the already mentioned inconsistencies. One of them is related to the relative perme-

abilities and capillary pressures. When solving the pressure linear system, these properties are

treated explicit. Nevertheless, computing saturations demands an implicit evaluation of the same

parameters. The second issue is observed by the fact nc +1 flow equations are able to provide a

solution for nc +2 unknowns. As a consequence, the gas phase saturation is evaluated in two

different ways: a secondary variable obtained as a result of the flash calculations and, at the

same time, an input parameter for calculating the implicit relative permeabilities and capillary

pressures. The authors define extra nc−2 compositional parameters for the flow equations. A

set of primary variables is built by these new unknowns, the oil phase pressure, gas and water

phases saturations. Further, the relative permeabilities and capillary pressures are submitted to

an implicit approximation in the event of computing the interblock flow terms in the pressure

equation.

Almost simultaneously, two works offered new insights into the volume-based

models, such as Acs et al. (1985). The first one, Wong et al. (1987), presented the total fluid

volume derivatives calculations. The authors also reported these methods, even without requiring

Newton iterations, did not present meaningful advantages in terms of accuracy and performance

when compared with other IMPEC models. Wong et al. (1990) went further and addressed

the specifics on this matter. Two types of formulations were delineated. The first one was the

Newton-Raphson models (NR), composed of approaches with non-linear pressure equations and

therefore requiring an iterative procedure within each time step. Some examples of this kind are

the works of Fussel e Fussel (1979), Coats (1980) and Young e Stephenson (1983). The Volume

Balance (VB) techniques were their opposite in this specific matter. Their principal example

was Acs et al. (1985), also followed by Kazemi et al. (1978), Nghiem et al. (1981) and even

Watts (1986). The analysis highlights the VB models main feature does not necessarily produces

better performances, for evaluating the volume derivatives adds significant computation time to

the simulation. Beyond that, the volumetric error treatment, as mentioned earlier, sometimes
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leads to smaller maximum time steps, also effecting run CPU times. The authors also found

many similarities between the two sets of formulations, such as in the Jacobian matrix. This is

also verified in the computed derivatives. While VB methods obtain it through direct analytic

calculations, the same values appear as a consequence of the Gaussian elimination in NR

techniques.

Watts et al. (1991) proposed a Fully Implicit variation of Acs et al. (1985) for

thermal simulation. The authors argue this approach was necessary to handle thermal recovery

processes, once the level of implicitness of Acs et al. (1985) and Watts (1986) was not enough to

handle the high flow rates near wells and the strong coupling between energy and flow equations.

Comparison with commercial packages revealed competitive results. Also on modified models,

Branco e Rodriguez (1996) presented an approach with a implicitness degree between FI

formulations and Watts (1986). Within an iterative step, compositions are fixed and all unknowns

but pressure and np−1 phase saturations are decoupled from the Jacobian matrix, yielding npxnp

sized entries. Only after the implicit parameters are computed, the evaluation of compositions

and remaining properties is performed.

Wang et al. (1997) aimed reducing the non-linearities in the fugacity equation and,

therefore, improve convergence. This was done by choosing pressure, nc amount of hydrocarbon

component moles and the nc equilibrium ratio logarithms on their FI formulation. It should be

noted, however, the ln(K) parameters are removed from the linear system through factorization

and solved only afterwards.

Later on, some authors conducted extensive comparative studies on some of the

previous mentioned methods. Santos (2013) implemented the Coats (1980), Branco e Rodriguez

(1996), and Wang et al. (1997) models and compared their performances. The author reports the

Coats (1980) model is generally faster than the others. Additionally, an IMPEC version of Branco

e Rodriguez (1996) was developed. Fernandes (2014) compared several techniques applied on

unstructured grids. Three new methods are also shown. The first one is a Fully Implicit version

of the Acs et al. (1985) model. The other two are variations of the Watts (1986) work. One of

them regards the application of the Buckley-Leverett form for computing phase velocities in the

saturation linear system solution. The other one defines an iterative procedure for the implicit

variables. After saturations are calculated, a new step begins by recomputing pressure with

updated relative permeabilities and capillary pressures. On convergence, all primary variables

use the same phase velocity values.
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2.2 Adaptive Implicit Methods

For several years, most simulators applied implicit pressure, explicit saturation

(IMPES) models or its variations, mainly because those were the only techniques capable of

handling field scale problems due to limited computational resources. Fully Implicit models

were limited to a few theoretical case studies. The memory and computational effort required

for this approach made the application on more complex problems prohibitive. At the same

time, explicit techniques imposed severe restrictions to time step size, specially for some specific

regions of the reservoir like well surroundings, as in coning studies (COLLINS et al., 1992)),

and saturation fronts.

Thomas e Thurnal (1983) and Thomas e Thurnal (1983)) set up the first black oil

Adaptive Implicit Method, which will also be referred as TT from now on, by acknowledging

there is no need to treat the entire simulation domain FI. At any given time step during a run,

some regions of the reservoir present potential sources of instability IMPEC methods are not able

to handle. The authors argue only these areas need the maximum level of implicitness. This way

only a certain amount of variables really need to be calculated into the linear system, reducing

the computational effort required and allowing large time steps. Each primary unknown was

computed implicit if its total variation over the previous time step exceeded a previously defined

threshold. This stability test is based on Peaceman (1977) with some extrapolation. The authors

note these property variation limit values do not hold any theoretical basis and each simulation

should be submitted to preliminary trial runs in order to achieve optimal thresholds.

Another variation, the Inexact Adaptive Newton (IAN) method, was presented by

Bertiger e Kelsey (1985), where the off-diagonal Jacobian matrix coefficients relating to the

explicit unknowns are only removed. This yields a linear system closer to the Fully Implicit

models, which, as argued by the authors, can produce more stable runs in comparison with

AIM. However, this approach is non-conservative in essence, causing a new possibly source of

instability. Tan (1988) addresses this issue by reintroducing the residual errors as source terms in

the respective equations in the next time step, reporting successful limitation the material errors.

Forsyth e Sammon (1986) were the first critics of the threshold switching algorithm.

They argued implicit grid blocks could observe large throughputs not accompanied by significant

saturation changes, rendering the backward switching (implicit to explicit) unreliable. The

proposed alternative was to set, at the event of a well opening, its neighboring blocks implicit,

while the remainder of the domain turns explicit. From this point, only forward switches (explicit
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to implicit) are allowed until another well becomes operational and the procedures starts again.

The authors reported stable runs and optimized CPU times in comparison with a FI model.

Another major modification concerned the evaluation of explicit unknowns. As proposed by

Thomas e Thurnal (1982), at each Newtonian iterative step, the explicit variables are updated

following the primary unknowns evaluation. This new approach first obtained the Newton-

Raphson iterative procedure convergence for the implicit unknowns. Only then, all explicit

properties were computed. Russel (1989) compared both methodologies, noting the AIM label

would better suit the latter, while TT actually provided a shortcut to the FI solution. We should

emphasize there is not an overall consensus about this matter.

Later, alternatives to the threshold switching criterion were the subject of many

works. Forsyth (1989) argued the original approach aimed to bound the model solution, which

does not necessarily guarantees stability. The author then proposed another threshold to preserve

monotonicity, which in term would lead to stable runs. Fung et al. (1989) developed an entirely

different numerical test for black oil simulations aiming to improve the AIM stability. The

principle was to predict whether numerical errors would increase in the next time step for each

grid volume, and then set implicit all primary variables in these blocks. The backward switching,

from implicit to explicit, followed an analogous procedure, and would leave only pressure

inside the Jacobian matrix, as in an IMPEC model. Similar results to the original threshold

criterion were found while avoiding the trial and error procedure. This procedure was, however,

too cumbersome to be applied in the entire grid. Therefore, only the blocks in the IMPES/FI

interface were tested every few time steps. At the same time, Grabenstetter et al. (1991) noted

the numerical criterion was develop to identify whether the entire domain was unstable. In turn,

Fung et al. (1989) simplify the method for single volumes stability check without profound

discussion on its merit.

Russel (1989) proposed the first Courant-Friedrichs-Lewis (CFL) condition based

switching criterion for black oil simulation. The model allows each primary unknown to be

switched independently of the other, observing the interval between IMPEC and FI methods. The

author also argues AIM simulations bounded by the CFL criterion reduces numerical dispersion

in comparison with FI, therefore producing more accurate solutions. Grabenstetter et al. (1991)

then presented a CFL based switching technique for compositional models. The author states the

test is not exactly rigorous, noting, for instance, the effect of non-hyperbolic variables on the

stability of the explicit unknowns is not properly accounted for. Still, the reported results show no
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relevant instability. It should be noted both Russel (1989) and Grabenstetter et al. (1991) methods

are advantageous in face of Fung et al. (1989) approach, for most required derivatives are already

computed on a simulator, greatly reducing the computational effort. The Grabenstetter et al.

(1991) formulation was studied by Collins et al. (1992), outperforming both IMPEC and FI

formulations. We should note Collins et al. (1992) decouples the flash calculations from the

primary equations, similar to Forsyth e Sammon (1986).

The CFL condition was also the subject of Young e Russel (1993). The authors

proposed a more robust mixed switching criterion. A CFL based criterion is written in such a way

to account for the influence of all downstream neighbors for any given block, and supported by a

complementary threshold. This addition is rendered necessary once the CFL criterion itself does

not guarantee stability in problems where strong nonlinearities occur. This set up, the authors

point, allows for the CFL limit to exceed the unity. Good results are reported in comparison

with Fully Implicit models. However, it is highlighted the comparative performance with IMPES

does not show significant enhancements. Meanwhile, the AIM approach was also evaluated

for thermal simulators by Farkas e Valko (1994). The authors observed that coupling mass and

energy constraint equations could impose even stricter time step size limitations. Hence, a direct

IMPES formulation, derived from the Acs et al. (1985) method, is proposed as the basis for a

adaptive technique.

Later, Coats (2001) introduced a CFL function able to compute IMPES models

largest time step size and act as switching criterion for AIM. The method is, at first, very similar

to the one proposed by Young e Russel (1993), however some differences must be highlighted.

First, the Coats (2001) criterion does not allow any implicitness level between Fully Implicit and

IMPEC. In contrast, the Young e Russel (1993) logic allows any configuration between these

two extremes. Second, the new model is added of a new CFL function designed specifically to

handle the effects of explicitly treating compositions. No threshold over properties is computed.

The author, however, notes the lack of theoretical basis of the new expression when both oil and

gas phases are mobile. The author also reports non-oscillatory stable runs when CFL=1. Higher

values for the criterion also generated stable runs in specific situations. Coats (2003) advances

further showing several cases may require stricter limitation, while coarse meshes may be able

to support values up to CFL=2. Moncorge e Tchelepi (1995) applied a similar analysis for their

TAIM (Thermal Adaptive Implicit Method). Their approach, also based on von Neumann error

growth analysis, reduces to the one presented by Coats (2001) for isothermal systems. The
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main difference lies on an exclusive CFL function for temperature, which in turn means three

implicitness degrees are possible.

The Coats (2001) stability test is used in Cao e Aziz (2002) for their new technique,

the IMPSAT based adaptive implicit model (IMPSAT-AIM). The authors argue the IMPSAT can

outperform both IMPEC and FI, given its intermediate level of implicitness. Hence, the new

adaptive approach admits a third evaluation for any given volume, yielding a combination of FI,

IMPES and IMPSAT formulations. The reported results indicate the new model can consistently

outperform the traditional AIM.

2.3 Griding

In order to implement all numerical formulations discussed in the previous sections

it is necessary the spacial discretization of the model equations. This procedure, which allows

problems to be evaluated at a discreet number of points, needs to be performed in a way to reduce

simulation errors. We should also note all methods can respond well to different discretization,

once their derivations are relatively grid independent. Still, for many decades all reservoir

numerical calculations were based on orthogonal Cartesian grids. Spatial derivatives are usually

described on the orthogonal system, which in turn makes it only "natural" to follow the same

approach in a simulator (WADSLEY, 1980). However, as observed by Fung et al. (1992), the

application of Finite-Volume Methods (FVM) in conjunction with Cartesian grids produces a

series of issues when attempting to describe complex geometries and discontinuities, which are

almost unanimously present in real field simulations. Furthermore, Pedrosa e Aziz (1986) noted

this type of mesh cannot satisfactorily represent near well flow.

The first alternative largely applied on reservoir simulators were the Boundary Fitted

(BF) meshes, also known as Corner Point (CP) grids. Their assessment is actually similar to

the Cartesian discretization. These are still structured orthogonal meshes. However, the BF

approach dictates the grid has to fit the domain boundaries, hence its name. Their application on

reservoir engineering dates the work of Sheldon e Dougherty (1961) on front-tracking simulation

for open pattern displacements. Hirasaki e O’Dell (1970) applied this method for simulations on

reservoir with changing dip and thickness, and stated the new approach presents a much more

accurate portrait of the geometry, leading to lower numerical errors. Similar results are reported

by Wadsley (1980).

Orthogonal boundary fitted grids were still limited to a certain level of distortion
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before also occurring on relevant numerical errors, causing accuracy issues. Leventhal et al.

(1985) was able to avoid this problem adjusting the grid lines tangent to match the streamlines

on a single phase flow solution. A Non-Orthogonal BF (NOBF) technique, a presented by

Chu (1971), proved to better address such cases. Nevertheless, this approach would only gain

notoriety after the study conducted by Thompson et al. (1974). Maliska e Raithby (1984) applied

the NOBF to fluid problems on varying cross-sectional ducts for two and three-dimensional

grids. The authors report the mesh layout greatly influences the linear system shape, defining the

number of points on the pressure equation. Later, the same approach was applied by Cunha et

al. (1994) for two-phase (water + oil) black oil simulations with 2D meshes. The results show

NOBF can mitigate grid orientation effects. Maliska et al. (1994) presented similar results for

black oil three-dimensional problems. Later, Maliska et al. (1997) combined the NOBF with

a black oil Fully Implicit approach using pressure and mass fractions as primary unknowns.

A well model is also proposed to address non-orthogonality. Edwards (1998) adopted another

approach, by retaining the same linear system bandwidth as in Cartesian grid discretization, and

inserting the cross-flux terms into the residual term. The author argues the method provides more

accurate results in comparison with orthogonal alternatives, while better handling full tensors.

Marcondes et al. (2005) expanded Maliska et al. (1997) for FI compositional simulation. Good

agreement was found for three-dimensional water flooding problems, while mesh orientation

effects were not reported. The authors also evaluated the Boundary Fitted method in conjunction

with parallel computing, obtaining good speedups for a relative large number of processors.

Regarding cross-flow terms, Marcondes et al. (2008) showed their absence in the linear system

can produce relevant discrepancies even for meshes with small distortion levels.

The boundary fit approach was not, however, the answer for the desire to represent

reservoirs and its particularities with ever growing precision. Unstructured grids, are in essence

capable of handling any geometry, also allowing boundary conditions to be easily evaluated in

any circumstance, what does not necessarily occur for NOBF meshes (HEINEMANN et al.,

1989). This flexibility was exclusive to the Finite Element Method (FEM), not widely applied

on reservoir simulation due to its non-conservative nature. Baliga e Patankar (1980) were able

to address this issue combining FEM and FVM into a conservative, flexible technique named

Control Volume Finite Element Method (CVFEM). This name, Maliska (2004) notes, produces

the false impression of a FEM based on the FVM. In reality, the CVFEM is a Finite Volume

Method added of the element concept and all the advantages it brings. Maliska (2004) then
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proposed the name Element-based Finite Volume Method (EbFVM). This nomenclature has

been increasingly adopted since then. In the present work, the author will also apply the EbFVM

label.

Unstructured grids in reservoir simulation first appeared on Heinemann e Brand

(1988), closely followed by Heinemann et al. (1989). The presented method generates the

Perpendicular Bisection (PEBI) grids. This approach requires the grid to be constructed in a

way all interfaces between two neighboring control volumes must be perpendicular to the line

segment composed by the center of these volumes. The consequence is only two points are taken

into account when evaluating fluxes though any given interface.

Rozon (1989) was the first to apply unstructured EbFVM meshes into reservoir

simulation. Its work was limited to single phase flow problems using meshes composed only of

quadrilateral elements. The author compares the method with an analytic solution, reporting a

good agreement. Forsyth (1990) used the EbFVM grids on local grid refinement. Consistent

computational time was observed for both FI and AIM. Fung et al. (1992) went further, applying

the EbFVM for multiphase flow problems in meshes of triangle elements. The results show the

unstructured discretization outperforms Cartesian grids while allowing for local grid refinement

without occurring on numerical errors. Darwish e Moukalled (2003) investigated Total Volume

Diminishing (TVD) interpolations functions, originally developed for Cartesian meshes, in

conjunction with unstructured grids. An extended analysis on this matter was performed by

Fernandes et al. (2003). The authors adapted the work of Darwish e Moukalled (2003) on TVD

schemes, implementing the MINMOD (ROE, 1986) and Koren (KOREN, 1993) flux limiters.

Other interpolation functions are applied on unstructured grids by Fernandes et al. (2003): the

Mass Weighted Upwind scheme (MAW) (Masson et al. (1994); Saabas e Baliga (1994a); Saabas

e Baliga (1994b)), the Hurtado et al. (2007) modified MAW, and a Streamline based Upwind

method (Swaminathan e Voller (1992a); Swaminathan e Voller (1992b)).

Still on EbFVM meshes, Cordazzo (2006) conducted an analysis of two-phase (oil

and water) flow for meshes composed of triangular and quadrilateral elements. The author

also combined this approach with a multigrid method. Many of the conclusions draw to local

grid refinement and performance show accordance with other mentioned works. The author

also highlights the severe reduction of grid orientation in comparison with structured models.

Marcondes e Sepehrnoori (2010) studied EbFVM meshes on two-dimensional heterogeneous and

anisotropic reservoirs in a Fully Implicit compositional simulator. The authors applied triangle
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and quadrilateral element meshes, noting a good agreement with the Cartesian discretization

while requiring a much smaller amount of grid blocks. Marcondes et al. (2013) expanded the

previous work for three-dimensional grids with hexahedron, tetrahedron, prism and pyramid

elements. Fernandes (2014) compared IMPEC, FI and Implicit Pressure and Saturations (IMP-

SAT) formulations using unstructured and Cartesian grids. Thermal recovery processes were

investigated by Marcondes et al. (2015) also on a FI compositional simulator. Later, Araujo et al.

(2016) performed an analysis similar to Marcondes et al. (2013) for an IMPEC simulator. The

present study relies on these works to use EbFVM grids for quadrilateral and triangular elements

2D grids, as well as 3D meshes of hexahedron, tetrahedron, prism and pyramid elements.
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3 PHYSICAL MODEL

As mentioned earlier, reservoirs are porous media in which various hydrocarbon

components are unevenly distributed over several fluid phases. The most usually observed phases

are water, oil, gas. Modeling such systems requires the evaluation of material balances, phase

behavior and constraint equations. The last two set of expressions arise from the necessity to

properly describe multiple fluid phases and the mass transfer between then.

The physical model applied in this work is built on a series of assumptions listed

below:

1. Isothermal system.

2. Slightly compressible porous medium.

3. No-flow reservoir boundaries.

4. Flow is described by the multiphase Darcy’s law.

5. Physical dispersion is neglected.

6. Local phase equilibrium.

7. No chemical reactions occur.

8. The mass transfer between the water and hydrocarbon phases is neglected.

9. There are a maximum of two hydrocarbon phases in equilibrium.

All of these simplification hypothesis are widely used on academic and commercial

simulators. Even so, we must discuss some of the listed items. First, the implications of the two

last assumptions are investigated. Both of them relate to the amount of phases in thermodynamic

equilibrium. For several applications, such hypothesis would not cause any concern. However,

the results for the proposed formulation are obtained using gas flooding case studies. Additionally,

these problems are characterized by CO2 rich injection fluids. Such conditions, combined with

the right thermodynamic state, may favor mass transfer between water and hydrocarbon phases,

as well as the appearance of an extra hydrocarbon phase. Also, the physical dispersion influence

might not be negligible for highly miscible phases. Nevertheless, we choose to maintain these

simplifications in order to avoid the additional numerical complexity which their evaluation

would produce. At the same time, the applied case studies have been severely tested with various

formulations, constituting effective means of validating the work.

The following subsections present and develop the concepts behind the equations

mentioned above.
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3.1 Material Balance Equations

Compositional models imply several hydrocarbon components (or pseudo-components)

which may be present in several phases. This way, the material balance equation for each of

the hydrocarbon components are described as in Chang (1990). After neglecting the physical

dispersion term, they are given by

∂

∂ t

(
φ

np

∑
j=2

ξ jS jxi j

)
+~∇ ·

(
np

∑
j=2

ξ jxi j~u j

)
+

q̇i

Vb
= 0, i = 1, ...,nc (3.1)

where φ stands for the medium porosity, ξ j denotes the phase molar density, S j is the phase

saturation, xi j is the i− th component molar fraction in the j− th phase, ~u j denotes the phase

velocity vector, qi is the i− th component source/sink term and Vb is the bulk volume. This

equation is also written in similar fashion for water:

∂

∂ t
(φξwSw)+~∇ · (ξw~uw)+

q̇w

Vb
= 0 (3.2)

where the w subscript denotes all the above mentioned properties are evaluated for the water

phase. The first term on both balance equations represents the number of component moles

variation with respect to time. This can be shown defining the total amount of moles for the

i− th hydrocarbon component, as well as for water.

Ni =Vbφ

np

∑
j=2

ξ jS jxi j, i = 1, ...,nc (3.3)

Nw =VbφξwSw (3.4)

Replacing Eqs. (3.3) and (3.4) respectively into Eqs. (3.1) and (3.2) yields the

modified material balances equations after some manipulation.

1
Vb

∂Ni

∂ t
+~∇ ·

(
np

∑
j=2

ξ jxi j~u j

)
+

q̇i

Vb
= 0, i = 1, ...,nc (3.5)

1
Vb

∂Nw

∂ t
+~∇ · (ξw~uw)+

q̇w

Vb
= 0 (3.6)

Equations (3.5) and (3.6) require the evaluation of ~u j. From assumption (4.), the

phase velocities are computed by the Darcy’s law for multiphase flow, written as

~u j =−
1
µ j

⇒
K j ·~∇Φ j, j = 1, ...,np (3.7)
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where µ j is the phase viscosity, Φ j denotes the phase hydraulic potential, and
⇒
K j is the effective

permeability tensor. The last two parameters are described by the following expressions:

Φ j = Pj−ρ jgD, j = 1, ...,np (3.8)

⇒
K j = kr j

⇒
K, j = 1, ...,np (3.9)

In Eqs. (3.8) and (3.9) Pj is the phase pressure, ρ j denotes the phase mass density, g

is the gravity acceleration and D stands for the depth (positive in the downward direction), kr j

is the j− th phase relative permeability with respect to the reference phase, and
⇒
K denotes the

formation absolute permeability tensor. Computing the phase pressures requires the evaluation of

the capillary pressure relations. From a reference phase, set as the oil in UTCOMP, the capillary

pressure relations with the remaining phases are computed.

Pj = Pr +Pc jr, j = 1, ...,np (3.10)

where Pc jr stands for the capillary pressure between the j− th and the reference phase. These

material balances yield the first nc +1 primary equations. Previously, it was noted the system

definition in intensive terms demands one more equation. The remaining expression is presented

in the next section for it derives from a physical constraint condition.

3.2 Constraint Equations

The material balances shown require some physical constraints. It is important

to notice these restrictions arise from the very definitions of some properties, such as phase

saturations and molar fractions, as follows:

np

∑
j=1

S j = 1 (3.11)

nc

∑
i=1

xi j = 1, j = 1, ...,np (3.12)

Equation (3.11) can also be interpreted as a volume constraint. As such, it is possible

to rewrite this expression in terms of pore volume and total fluid volume. This analysis leads to
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the pressure equation as described by Acs et al. (1985). Its development start with Eq. (3.13)

below:

Vt

(
P,~N

)
=Vp (P) (3.13)

This equation basically states the total fluid volume Vt needs to be precisely the same

as the pore volume Vp. It also assumes the left hand side of the equation to be a function of both

pressure and the total amount of moles of each component ~N = (N1, ...,Nnc ,Nnc+1). As for the

right hand side, the pore volume is taken solely as a pressure function. Deriving both sides of the

equation with respect to time, and applying the chain rule yields the following expression:(
∂Vt

∂P

)
Ni

∂P
∂ t

+
nc+1

∑
i=1

[(
∂Vt

∂Ni

)
P,Nk(k 6=i)

∂Ni

∂ t

]
=

∂Vp

∂P
∂P
∂ t

(3.14)

Before we advance further, it is convenient to develop the left hand side of Eq. (3.14)

defining the partial molar volume, V ti, as described in Eq. (3.15).

V ti =

(
∂Vt

∂Ni

)
P,Nk(k 6=i)

(3.15)

Another important step on obtaining the pressure equation is to specify the pore

volume as a pressure function. This can be achieved defining Vp:

Vp = φVb (3.16)

In Eq. (3.16), the bulk volume is, for the purposes of this work, a constant and

porosity, from assumption (2.), is a function of pressure described as

φ = φ
0 [1+C f

(
P−P0)] (3.17)

where C f is the rock compressibility, and φ 0 is the formation porosity at a P0

reference pressure. Inserting Eqs. (3.15), (3.16) and (3.17) into Eq. (3.14) and rearranging the

terms leads to[
φ

0C f −
1

Vb

(
∂Vt

∂P

)
Ni

]
∂P
∂ t

=
1

Vb

nc+1

∑
i=1

(
V ti

∂Ni

∂ t

)
(3.18)

Finally, the Ni derivatives with respect to time can be obtained from Eqs. (3.5) and

(3.6) simply by rearranging the equations. Once replaced into Eq. (3.18), the final pressure

equation takes the form[
φ

0C f −
1

Vb

(
∂Vt

∂P

)
Ni

]
∂P
∂ t

+V tw~∇ · (ξw~uw)+

nc

∑
i=1

V ti

np

∑
j=2

~∇·
(
ξ jxi j~u j

)
+

nc+1

∑
i=1

V ti
qi

Vb
= 0

(3.19)



37

Equation (3.19) completes the set of primary equations. The complete model,

however, still requires phase behavior and physical properties evaluation, both of which are

explored in the next sections.

3.3 Thermodynamic Equations

Handling multi-phase systems requires the evaluation of phase equilibrium and

thermodynamic states in order to compute several physical properties. The next sub-sections

develop how these issues are tackled in the simulator.

3.3.1 Phase Equilibrium

At a given state (fixed temperature and pressure), the phase equilibrium is achieved

when the total Gibbs free energy GT , described in Eq. (3.20), reaches a minimum.

GT =
np

∑
j=2

nc

∑
i=1

ni jµ i j (3.20)

where ni j and µ i j are respectively the amount of moles and the chemical potential of component

i in phase j. The latter can be defined as follows:

µ i j = µ
0
i j +RT ln

fi j

fi j
0 , i = 1, ...,nc, j = 2, ...,np (3.21)

In Eq. (3.21) the superscript 0 means properties are evaluated at a reference state,

and fi j denotes the i− th component fugacity in phase j. This expression is simplified setting

the chemical potential at the reference state as zero and fugacity as unity.

µ i j = RT ln fi j, i = 1, ...,nc, j = 2, ...,np (3.22)

Replacing Eq. (3.22) into Eq. (3.20) and deriving the latter with respect to ni j yields

the total Gibbs free energy minimization condition as presented below:

ln fi j = ln fir, i = 1, ...,nc, j = 2, ...,np( j 6= r) (3.23)

where the r subscript indicates the reference phase for comparison, set as the oil on UTCOMP.

Regardless of the reference phase, Eq. (3.23) states the fugacity of any given component must

be the same in every phase if phase equilibrium is to be achieved.
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3.3.2 Phase Behavior

Once equilibrium between the hydrocarbon fluid phases is established, phase related

properties need to be computed. Even though UTCOMP models phase behavior through various

equations of state, only the Peng e Robinson (1976) EOS (PREOS), as implemented by Perschke

(1988), is taken into account on the course of this study.

P =
RT

v−b
− a

v(v+b)+b(v−b)
(3.24)

where parameters a and b are computed for pure substance as shown below:

a = Ωa
α(RTc)

2

Pc
(3.25)

b = Ωb
RTc

Pc
(3.26)

The subscript c in Eqs. (3.25) and (3.26) denotes temperature and pressure are

evaluated at the critical point, and R is the universal gas constant. The Ωa and Ωb parameters are

constant, and α is a function of the component and temperature. All three terms are presented as

follows:

Ωa = 0.45724; Ωb = 0.0778 (3.27)

α =

{
1+m

[
1−
(

T
Tc

)0.5
]}2

(3.28)

where m is computed as

m =

0.37464+1.54226ω−0.26992ω2, f or ω ≤ 0.49

0.379642+1.48503ω−0.164423ω2 +0.016666ω3, f or ω > 0.49
(3.29)

In Eq. (3.29), ω denotes the acentric factor.

Equation (3.24) describes a simple one-component, two-phase system. For multi-

phase/multicomponent problems, the PREOS assumes the following form:

P =
RT

v j−b j
−

a j

v j
(
v j +b j

)
+b j

(
v j−b j

) (3.30)
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The a and b parameters are now phase related and obtained applying the mixing rule,

yielding the results below:

a j =
nc

∑
i=1

nc

∑
k=1

xi jxk jaik, j = 2, ...,np (3.31)

b j =
nc

∑
i=1

xi jbi, j = 2, ...,np (3.32)

where aik is computed as

aik = (1−κik)(aiak)
0.5 (3.33)

Equation (3.33) basically allows for the binary iteration coefficients κik influence

to be accounted for on the phase behavior. The PREOS can also be described in terms of

compressibility factor Z. This way, Eq. (3.30) admits the following form:

Z3
j −
(
1−B j

)
Z2

j +
(
A j−3B2

j −2B j
)

Z j−
(
A jB j−B2

j −B3
j
)
= 0 (3.34)

where the parameters A j and B j are calculated as

A j =
a jP

(RT )2 (3.35)

B j =
b jP
RT

(3.36)

It is important to note all above mentioned equations are solved regarding P as the

oil phase pressure. Additionally, the solution of Eq. (3.34) can produce more than one real

compressibility factor value. In this case, the real Z j value providing the lower Gibbs free energy

is chosen for each phase.

The phase modeling presented in this section works generally as tool to obtain a

series of quantities necessary to evaluate the transport equations, such as phase and overall molar

fractions, and hydrocarbon phase amounts. This procedure is usually called flash calculation. A

profound analysis on this matter, as well as others, such as phase appearance and disappearance,

is not on the scope of the present work and will not be discussed. Chang (1990) and Perschke

(1988) provide more detailed insights on UTCOMP phase modeling.
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3.4 Physical Properties

In this section we present the equations applied to the fluid properties evaluation.

These parameters are mainly modeled through EOS or correlations. Listed below are models for

molar and mass densities, phase saturation, relative permeability, capillary pressure and viscosity.

3.4.1 Molar and Mass Densities

For the hydrocarbon phases, molar density is computed from the EOS compressibility

factor:

ξ j =
P

Z jRT
, j = 2, ...,np (3.37)

The water phase is assumed slightly compressible, therefore a simple pressure

function as follows:

ξw = ξ
0
w
[
1+Cw

(
P−P0)] (3.38)

where ξ 0
w is the water molar density at the P0 reference pressure, and Cw is the water com-

pressibility. As for the mass densities, the expression for hydrocarbon phases goes as below.

ρ j = ξ j

nc

∑
i=1

xi jMW i (3.39)

In Eq. (3.39), MWi is the i− th component molar mass. Analogously, the water mass

density is computed as

ρw = ξwMW w (3.40)

3.4.2 Saturation

For hydrocarbon and water phases the saturations are respectively given by:

S j = (1−Sw)
L j/ξ j

∑
np
m=2 Lm/ξm

, j = 2, ...,np−1 (3.41)

Sw =
Nwνw

Vp
(3.42)

where L j stands for the phase mole fractions and νw is the water phase molar volume.
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3.4.3 Relative Permeability

The UTCOMP has various relative permeability models implemented. For this work,

only the modified Stone II approach (STONE, 1973) is taken into account. For a two-phase flow,

the expressions are shown below:

krw = k0
rw

(
Sw−Swr

1−Swr−Sor

)ew

(3.43)

kro = k0
ro

(
So−Sor

1−Swr−Sor

)eo

(3.44)

where krw is the end-point permeability, Sr denotes the residual saturation and e is a model

parameter.

A three-phase system version the model takes the form:

krw = k0
rw

(
Sw−Swr

1−Swr−Sorw

)ew

(3.45)

krg = k0
rg

(
Sg−Sgr

1−Sgr−Swr−Sorg

)eg

(3.46)

kro = k0
row

[(
krow

k0
row

+ krw

)(
krog

k0
row

+ krg

)
− (krw + krg)

]
(3.47)

where k0
row denotes the end-point relative permeability for oil in water, Sorw and Sorg are the

residual oil saturations in water and gas, respectively. Additionally, the relative permeabilities of

oil in water and gas are described as follows:

krow = k0
row

(
1−Sw−Sorw

1−Swr−Sorw

)eow

(3.48)

krog = k0
rog

(
1−Sg−Swr−Sorg

1−Swr−Sgr−Sorg

)eog

(3.49)

The terms on Eqs. (3.48) and (3.49) are analogous to the ones previously described.

Lastly, on a four-phase flow both krw and krg are computed as in Eqs. (3.45) and (3.46). For the

oil and second hydrocarbon liquid (l) phases, the following expressions apply:

kro = k0
row

So

So +Sl

[(
krow

k0
row

+ krw

)(
krog

k0
row

+ krg

)
− (krw + krg)

]
(3.50)

krl = k0
row

Sl

So +Sl

[(
krow

k0
row

+ krw

)(
krog

k0
row

+ krg

)
− (krw + krg)

]
(3.51)
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3.4.4 Capillary Pressure

Leverett (1941) describes the capillary pressures as a function of interfacial tension,

permeability, porosity and saturations. For the three-phase flow problem, the model assumes the

form:

Pcwo =−Cpcσwo

√
φ

ky

(
1−Sw

)Epc (3.52)

Pcog =−Cpcσog

√
φ

ky

(
Sw

So +Sg

)Epc

(3.53)

where Cpc and Epc are parameters evaluated through experimental data matching, and σ values

denote the interfacial tension of the water and gas phases with respect to the oil phase. Addition-

ally, the S parameters are the normalized phase saturations. For the purposes of this work, these

properties are computed following the relative permeability Corey model (COREY, 1986), also

implemented in UTCOMP. Their expressions follow:

Sw =
Sw−Swr

1−Swr−Sorw−Sgr
(3.54)

So =
So−Sor

1−Swr−Sorw−Sgr
(3.55)

Sg =
Sg−Sgr

1−Swr−Sorw−Sgr
(3.56)

Finally, the interfacial tension between water and the hydrocarbon phases is constant

and should be provided as part of the user input. On the other side, for the interfaces between two

hydrocarbon phases, the σi j is calculated by the Macleod-Sugden correlation, Macleod (1923)

and Sugden (1924), as a function of molar fractions, phase mole densities and the component

parachor (ψk).

σ
0.25
i j = 0.016018

nc

∑
k=1

ψk
(
ξixki−ξ jxk j

)
, i = 2, ...,np, j = 2, ...,np (3.57)

3.4.5 Viscosity

Four evaluation methods are implemented on UTCOMP for viscosity: the Lohrenz

correlation, look-up tables and both linear and quarter-power mixing rules. Only the first approach
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is applied on this work. We begin the procedure evaluating the low-pressure, pure-component

viscosity according to the Stiel e Thodos (1961) correlation.

µ̃i =
3.4x10−4T 0.94

r,i

ζi
f or Tr,i ≤ 0.15, i = 1, ...,nc (3.58)

or

µ̃i =
1.776x10−4(4.58Tr,i−1.67)5/8

ζi
, f or Tr,i > 0.15, i = 1, ...,nc (3.59)

where Tr,i denotes the reduced temperature and ζi is a parameter computed as

ζi =
5.44T 1/6

c,i

MW 1/2
i P2/3

c

, i = 1, ...,nc (3.60)

The subsequent step is to apply the µ̃i in computing the low-pressure mixture

viscosity as proposed by Herning e Zipperer (1936).

µ
∗
j =

nc

∑
i=1

xi jµ̃i
√

MW i/
nc

∑
i=1

xi j
√

MW i, j = 1, ...,np (3.61)

Following, the phase viscosities are evaluated using the (Jossi) correlation:

µ j = µ
∗
j +2.5x10−4 ξ jr

η j
f or ξ jr ≤ 0.18, j = 1, ...,np (3.62)

or

µ j =
µ∗j +

(
χ4

j −1
)

104
η j

f or ξ jr > 0.18, j = 1, ...,np (3.63)

where ξ jr is the reduced phase molar density, η j and χ j are equation parameters. These three

terms are calculated as follows:

ξ jr = ξ j

nc

∑
i=1

xi jνc,i (3.64)

η j = 5.44

(
nc

∑
i=1

xi jTc,i

)1/6

/

( nc

∑
i=1

xi jWi

)1/2( nc

∑
i=1

xi jPc,i

)2/3
, j = 1, ...,np (3.65)

χ j = 1.023+0.23364ξ jr +0.58533ξ
2
jr−0.40758ξ

3
jr +0.093324ξ

4
jr, j = 1, ...,np (3.66)
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3.5 Source Term

The well fluxes described in Eqs. (3.5) and (3.6) require a deeper evaluation. In this

work, the Well Index (WI) approach is applied. Although several models are implemented, we

only take advantage of the Peaceman (1978) and Peaceman (1983) method for WI calculation,

adapting it to EbFVM meshes as reported by Fung et al. (1992). Additionally, from the supported

operation conditions in UTCOMP, the constant surface volumetric rate for injection wells and

the constant bottom hole pressure (BHP) for both injection and producer wells are taken into

account. We now discuss the source term form for each one of these conditions. Before, however,

it is important to properly define the Well Index.

WI j =
q̇ j

Pw−Pj
, j = 1, ...,np (3.67)

where Pw denotes the well pressure at the point of evaluation. The Peaceman (1978) model, for

vertical wells, computes the well index as below:

WI j =

√
kxky∆zλr j

25.14872ln
(

r0
rw

) , j = 1, ...,np (3.68)

In Eq. (3.68), the r0 denotes the equivalent well radius, evaluate as follows:

r0 = 0.28

[(
ky
kx

) 1
2
∆x2 +

(
kx
ky

) 1
2
∆y2
] 1

2

(
ky
kx

) 1
4
+
(

kx
ky

) 1
4

(3.69)

Concerning the operational conditions, for a constant surface volume injection regime

the component mole flow rates are calculated at surface conditions. These rates must then be

distributed among the well segments, as described below:

q̇k,s =

[
WIs

np

∑
j=1

λ j,s/

(
ns

∑
l=1

WIl

np

∑
j=1

λ j,l

)]
q̇k,T , s = 1, ...,ns, k = 1, ...,np (3.70)

where the subscript s denotes the evaluation at each segment, ns is the total number of segments

and q̇k,T the total mole flux for well. At the same time, we are able to compute the phase

volumetric flow rates Q̇ j,s as follows:

Q̇ j,s = λ j,sWIs
(
Pj,s−Pw,s

)
, s = 1, ...,ns, j = 1, ...,np (3.71)
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Still treating injection wells, the constant BHP condition leads to the following

expressions for the hydrocarbon and water molar rates respectively:

q̇k,s = zk,in j
1−WF

νT,in j

np

∑
j=1

Q̇ j,s, s = 1, ...,ns, k = 1, ...,nc (3.72)

q̇w,s = zw,in j
WF

νT,in j

np

∑
j=1

Q̇ j,s, s = 1, ...,ns (3.73)

where WF is the water fraction, zk,in j stands for the k− th component overall mole fraction, and

νT,in j is the total molar volume, all evaluated for the injection fluid.

As mentioned before, only the constant BHP regime is considered for producer

wells. In this case, Eqs. (3.74) and (3.75) describe the molar flow rates for both hydrocarbon

components and water.

q̇k,s =
np

∑
j=2

xk j,sξ j,sQ̇ j,s, s = 1, ...,ns, k = 1, ...,nc (3.74)

q̇w,s = ξw,sQ̇w,s (3.75)
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4 NUMERICAL MODEL

It is known the set of equations developed in the previous chapter, even though fully

describing the main aspects of multiphase fluid flow in porous media, cannot be inserted into a

reservoir simulator before a discretization procedure. The Element-based Finite Volume Method

(EbFVM), our choice in this work, is described in detail for two and three-dimensional meshes

on the next section. Following, the discretized version of the model equations are shown, as well

as the advection terms treatment.

4.1 EbFVM Approach

Different from the Cartesian discretization, meshes are first divide in elements on

the EbFVM approach. These entities can assume triangular and quadrilateral shapes for two-

dimensional grids. For 3D meshes four elements are possible: hexahedron, tetrahedron, prism

and pyramid. Figure (1) presents an example 2D grid with both element types.

Figure 1 – EbFVM mesh sample.

As the approach name suggests, the elements are not entities over which the material

constraint is enforced. First, each element is split into sub-elements according to their number

of nodes. For example, triangle elements have three sub-elements, and the quadrilateral ones

present four. These entities are also called sub-control volumes (SCV) for the material balances

and pressure equation are integrated over them. Finally, a single grid block is assembled by all

SCV sharing the same node. A representation of this procedure for the mesh in Fig. (1) follows:

Notice the control volume we focused on Fig. (2) is put together with parts of both

triangular and quadrilateral elements. This presents a huge difference from the cell-centered

Finite Volume Method based on structured grids, where combining different types of cells is an
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Figure 2 – Grid volume assembling in EbFVM mesh.

unusual and challenging practice.

Two main aspects need to be highlighted if we are to truly understand the EbFVM

capabilities. First, this dual-mesh, cell-vertex approach accounts all equations at the element

level, conferring the desired geometric flexibility. Second, all the grid elements we have seen so

far are in the physical plane. No matter how distorted the element might look, all of them assume

the same form when transported into the computational plane. This is shown for two-dimensional

elements below.

Figure 3 – Quadrilateral element transformation.

Figure 4 – Triangular element transformation.
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A practical note is in order at this moment. There is no theoretical maximum to the

level of distortion a element can reach. Experience, however, shows certain limits should be

imposed when handling crooked elements if numerical complications are to be avoided. These

limits are not clear and must be evaluated when describing irregular geometries, specially around

critical regions such as sharp edges. The relationship between the actual elements and their

computational plane version are established by the Ñi shape functions, which can be applied not

only for the spacial coordinates, but also for any required property. Equation (4.1) shows how to

evaluate an arbitrary φ parameter at any position inside an element.

φ (ξ ,η ,γ) =
nv

∑
i=1

Ñi (ξ ,η ,γ)Φi (4.1)

where ξ , η and γ are numerical plane coordinates, nv is the element total number of vertices and

Φi denotes the parameter value at the element nodes. This expression applies for 2D and 3D

grids, demanding only the specific shape functions in each case. For triangle and quadrilateral

the Ñi are respectively presented as follows:

Ñ1 (ξ ,η) = 1−ξ −η ; Ñ2 (ξ ,η) = ξ ; Ñ3 (ξ ,η) = η (4.2)

Ñ1 (ξ ,η) =
1
4
(1−ξ )(1−η) ; Ñ2 (ξ ,η) =

1
4
(1+ξ )(1−η)

Ñ3 (ξ ,η) =
1
4
(1+ξ )(1+η) ; Ñ4 (ξ ,η) =

1
4
(1−ξ )(1+η)

(4.3)

Using the shape functions we can also evaluate the gradients for two and three-

dimensional elements as below:

∂φ

∂x j
=

nv

∑
i=1

∂ Ñi

∂x j
Φi, x j = x,y,z (4.4)

Equation (4.4) requires us to compute the shape functions derivatives with respect to

x j. The expression for two-dimensional grids is written as follows:

∂ Ñi

∂x
=

1
det (Jt)

(
∂y
∂η

∂ Ñi

∂ξ
− ∂y

∂ξ

∂ Ñi

∂η

)
;

∂ Ñi

∂y
=

1
det (Jt)

(
∂x
∂ξ

∂ Ñi

∂η
− ∂x

∂η

∂ Ñi

∂ξ

)
(4.5)

where the det(Jt) is computed by the following expression:

det (Jt) =
∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

(4.6)

Finally, Figs. (4) and (3) present the integration points (ip), located at the sub-control

volumes interfaces within an element. These regions, represented by the dashed lines, also denote
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the many surfaces between a grid volume and its neighbors. Therefore, the material balance flux

terms are integrated over each integration point, located at the center of these interfaces, as a part

of the calculations for each control volume. Evaluating the flux, also requires us to know surface

area. For 2D elements, even though the integration points are given by straight lines, the area

designation still applies once the reservoir thickness h is defined.

d~A = h
(
dyî−dx ĵ

)
(4.7)

This ends the key EbFVM features and calculations for 2D meshes. The definitions

for three-dimension grids are analogous. Nevertheless, there are important specifics worth of

investigation. First, the already mentioned element types are presented as follows.

Figure 5 – Three-dimensional grid elements: a)Hexahedron, b)Tetrahedron, c)Prism, and
d)Pyramid.

(a) (b)

(c) (d)

For simplicity, only the computational plane versions of these elements are shown.

Some practical issues must be discussed before we advance further. Initially, it is possible to

generate 3D grids using only one of the elements shown in Fig. (5). However, most actual grids
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are composed mainly of hexahedrons and tetrahedrons. This happens because the former has

the largest number of nodes per element. The latter is specially useful for local grid refinement.

Following, it is not possible to generate mixed meshes of only two element types. There lies the

importance of prisms and pyramids, usually applied as intermediates between hexahedron and

tetrahedron elements.

After this discussion we can finally present the shape functions for hexahedron,

tetrahedron, prism and pyramid elements in that order:

Ñ1 (ξ ,η ,γ) =
1
8
(1+ξ )(1−η)(1+ γ) ; Ñ2 (ξ ,η ,γ) =

1
8
(1+ξ )(1−η)(1− γ)

Ñ3 (ξ ,η ,γ) =
1
8
(1−ξ )(1−η)(1− γ) ; Ñ4 (ξ ,η ,γ) =

1
8
(1−ξ )(1−η)(1+ γ)

Ñ5 (ξ ,η ,γ) =
1
8
(1+ξ )(1+η)(1+ γ) ; Ñ6 (ξ ,η ,γ) =

1
8
(1+ξ )(1+η)(1− γ)

Ñ7 (ξ ,η ,γ) =
1
8
(1−ξ )(1+η)(1− γ) ; Ñ8 (ξ ,η ,γ) =

1
8
(1−ξ )(1+η)(1+ γ)

(4.8)

Ñ1 (ξ ,η ,γ) = 1−ξ −η− γ; Ñ2 (ξ ,η ,γ) = ξ ;

Ñ3 (ξ ,η ,γ) = η ; Ñ4 (ξ ,η ,γ) = γ

(4.9)

Ñ1 (ξ ,η ,γ) = (1−ξ −η)(1− γ) ; Ñ2 (ξ ,η ,γ) = ξ (1− γ) ;

Ñ3 (ξ ,η ,γ) = η (1− γ) ; Ñ4 (ξ ,η ,γ) = γ (1−ξ −η) ;

Ñ5 (ξ ,η ,γ) = ξ γ; Ñ6 (ξ ,η ,γ) = ηγ

(4.10)

Ñ1 (ξ ,η ,γ) =
1
4

[
(1−ξ )(1−η)− γ +

ξ ηγ

1− γ

]
;

Ñ2 (ξ ,η ,γ) =
1
4

[
(1+ξ )(1−η)− γ− ξ ηγ

1− γ

]
;

Ñ3 (ξ ,η ,γ) =
1
4

[
(1+ξ )(1+η)− γ− ξ ηγ

1− γ

]
;

Ñ4 (ξ ,η ,γ) =
1
4

[
(1−ξ )(1+η)− γ− ξ ηγ

1− γ

]
;

Ñ5 (ξ ,η ,γ) = γ

(4.11)

Now the shape functions derivatives are computed by the following equations:

∂ Ñi

∂x
=

1
det (Jt)

[(
∂y
∂η

∂ z
∂γ
− ∂y

∂γ

∂ z
∂η

)
∂ Ñi

∂ξ
−
(

∂y
∂ξ

∂ z
∂γ
− ∂y

∂γ

∂ z
∂ξ

)
∂ Ñi

∂η
+(

∂y
∂ξ

∂ z
∂η
− ∂y

∂η

∂ z
∂ξ

)
∂ Ñi

∂γ

]
(4.12)
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∂ Ñi

∂y
=

1
det (Jt)

[(
∂x
∂η

∂ z
∂γ
− ∂x

∂γ

∂ z
∂η

)
∂ Ñi

∂ξ
+

(
∂x
∂ξ

∂ z
∂γ
− ∂x

∂γ

∂ z
∂ξ

)
∂ Ñi

∂η
−(

∂x
∂ξ

∂ z
∂η
− ∂x

∂η

∂ z
∂ξ

)
∂ Ñi

∂γ

]
(4.13)

∂ Ñi

∂ z
=

1
det (Jt)

[(
∂x
∂η

∂y
∂γ
− ∂x

∂γ

∂y
∂η

)
∂ Ñi

∂ξ
−
(

∂x
∂ξ

∂y
∂γ
− ∂x

∂γ

∂y
∂ξ

)
∂ Ñi

∂η
+(

∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

)
∂ Ñi

∂γ

]
(4.14)

where

det (Jt) =
∂x
∂ξ

(
∂y
∂η

∂ z
∂γ
− ∂y

∂γ

∂ z
∂η

)
− ∂x

∂η

(
∂y
∂ξ

∂ z
∂γ
− ∂y

∂γ

∂ z
∂ξ

)
+

∂x
∂γ

(
∂y
∂ξ

∂ z
∂η
− ∂y

∂η

∂ z
∂ξ

)
(4.15)

Finally, the interface areas for the three-dimensional elements are calculated as

below:

d~A =

(
∂y
∂m

∂ z
∂n
− ∂y

∂n
∂ z
∂m

)
dmdnî−

(
∂x
∂n

∂ z
∂m
− ∂x

∂m
∂ z
∂n

)
dmdn ĵ+(

∂x
∂m

∂y
∂n
− ∂x

∂n
∂y
∂m

)
dmdnk̂ (4.16)

This concludes our discussion on the basic aspects of EbFVM. These principles, we

must note, are applicable to any sort of problem, not only flow simulations.

4.2 Discretized Equations

In order to obtain the discretized model requires the integration of the material

balance equations over each sub-control volume and time. First, we integrate Eq. (3.5) over time

and volume, yielding the following expression:

∫
scv,t

1
Vb

∂Ni

∂ t
dV dt +

∫
scv,t

~∇ ·

(
np

∑
j=2

ξ jxi j~u j

)
dV dt +

∫
scv,t

q̇i

Vb
dV dt = 0, i = 1, ...,nc (4.17)

The three integral terms are present isolated because each one of them is evaluated in

a particular way. First of all, the second term on Eq. (4.17) can be rewritten applying the Gauss

theorem. The result is shown below:∫
scv,t

1
Vb

∂Ni

∂ t
dV dt +

∫
A

np

∑
j=2

ξ jxi j~u jd~Adt +
∫

scv,t

q̇i

Vb
dV dt = 0, i = 1, ...,nc (4.18)



52

This is a very important step, for it allows the fluxes to be evaluated at SCV interfaces,

the integration points. Further, the integrations in time and volume are performed. Replacing

the Darcy law definition, Eq. (3.7), into Eq. (4.18) and after some manipulation we arrive at the

following result:

Acci,k−Fi,k +Si,k = 0, i = 1, ...,nc, k = 1, ...,nv (4.19)

Equation (4.19) is the mole balance condensed form. The Acci,k denotes the ac-

cumulation term, Fi,k accounts for the net advective flux, and Si,k is the well term. Their full

expressions are given below:

Acci,k =
Vscvk

Vb,k

(
Nn+1

i,k −Nn
i,k

)
, i = 1, ...,nc, k = 1, ...,nv (4.20)

Fi,k = ∆t
∫

A

np

∑
j=2

ξ
m
j xm

i j
km

r j

µm
j

⇒
K ·~∇Φ

m
j ·d~Ak, i = 1, ...,nc, k = 1, ...,nv (4.21)

Si,k = ∆t
Vscvk

Vb,k
q̇i,k, i = 1, ...,nc, k = 1, ...,nv (4.22)

where n+1 and n denote the current and previous time steps respectively. There is still some

work remaining for Fi,m, since Eq. (4.21) is not yet ready for implementation. An accurate

approximation is to evaluate the surface integral as a sum of the advection terms in all integration

points. We should remember the ips are positioned at the center of each interface, hence the flux

properties are also computed at this point.

Fi,k = ∆t
nip

∑
l

np

∑
j=2

[
ξ

m
j xm

i j
km

r j

µm
j

⇒
K ·~∇Φ

m
j ·d~A

]
l

, i = 1, ...,nc, k = 1, ...,nv (4.23)

where nip is the total number of integration points in the i− th SCV. Here it is possible to see the

shape functions relevance. The gradient term in Eq. (4.23) is rewritten using Eq. (4.4) yielding

the expression as follows:

Fi,k = ∆t
nip

∑
l

np

∑
j=2

[
ξ

m
j xm

i j
km

r j

µm
j

⇒
K ·

nv

∑
h

~∇ÑhΦ
m
j,h ·d~A

]
l

, i = 1, ...,nc, k = 1, ...,nv (4.24)

We finally obtained Fm,i in terms of known expressions, as well as fluid and formation

properties. Still, some considerations regarding Eq. (4.24) are in order. The evaluation of
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simulation parameters in EbFVM is peculiar and not intuitive. This assertion is better explained

showing the discretized hydraulic potential equation at an arbitrary l integration point.

Φ
m
j,l = Pn+1

l +Pm
c jr,l−ρ

m
j,elemgDl, j = 1, ...,np (4.25)

Most terms in Eq. (4.25) are evaluated at the ip through an interpolation from the

mesh vertices, where these properties are stored. The phase mass density, however, has the

elem subscript. This means all SCV inside a single element use the same property value when

computing the flux term. The same happens for absolute permeability and formation porosity.

No harm comes from this dual-mesh approach because, as we mentioned, all calculations are

performed first at the sub-control volumes.

In analogous way, Eqs. (3.6) and (3.19), respectively the water balance and pressure

expressions, are submitted to discretization. Following the same structure as in Eq. (4.19), the

results are presented for water:

Accw,k =
Vscvk

Vb,k

(
Nn+1

w,k −Nn
w,k

)
, k = 1, ...,nv (4.26)

Fw,k = ∆t
nip

∑
l

[
ξ

m
w

km
rw

µm
w

⇒
K ·

nv

∑
h

~∇ÑhΦ
m
w,h ·d~A

]
l

, k = 1, ...,nv (4.27)

Sw,m = ∆t
Vscvk

Vb,k
q̇w,k, k = 1, ...,nv (4.28)

In turn, for the pressure equation we have:

AccP
k =

[
Vscvkφ

0
elemC f −

Vscvk

Vb,k

∂V n
T,k

∂P

](
Pn+1

k −Pn
k
)
−

Vscvk

Vb,k

(
V n

T,k−V n
p,k

)
, k = 1, ...,nv (4.29)

FP
k = ∆tV n

Tw,k

nip

∑
l

[
ξ

m
w

km
rw

µm
w

⇒
K ·

nv

∑
h

~∇ÑhΦ
m
w,h ·d~A

]
l

+

∆t
nc

∑
i=1

V n
Ti,k

nip

∑
l

np

∑
j=2

[
ξ

m
j xm

i j
km

r j

µm
j

⇒
K ·

nv

∑
h

~∇ÑhΦ
m
j,h ·d~A

]
l

, k = 1, ...,nv (4.30)

SP
k = ∆t

nc+1

∑
i=1

V n
Ti,k

Vscvk

Vb,k
q̇i,k, k = 1, ...,nv (4.31)
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So far, all presented development can be applied into both IMPEC and FI models.

Exactly for this reason, a key aspect regarding the time level evaluation has been ignored. Several

parameters on the previously shown equations are accompanied by the m superscript, which

basically states both n and n+1 time levels are applicable. The IMPEC approach is achieved

setting all undefined properties evaluation at the previous time step. The FI method, on the other

hand, would require m to always be replaced by n+ 1. In an Adaptive Implicit Method the

reservoir is split on IMPEC, or explicit, and FI, or implicit, regions. Once the implicitness degree

in every grid node is set, its properties are computed accordingly. This concept is expanded in

the next section and further detailed on the next chapter.

4.3 Interpolation Function

The flux terms as in Eqs. (4.24), (4.27) and (4.30) require properties to be computed

at the integration points. A first logical approach would be approximate their values by the

shape functions, as in Eq. (4.1). We are dealing, however, with advective fluxes. This sort of

interpolation, an unstructured version of a central differences scheme, causes severe numerical

oscillation, as noted by Maliska (2004). UTCOMP contains several more suitable interpolation

functions. In the present work, our choice is the upwind scheme. Let us take the ip1 interface in

Fig. (3) as an example. For an arbitrary phase related fluid property φ j, the interpolation function

follows:

φ j,ip1 =


φ j,1 i f

(
⇒
K ·~∇Φm

j ·d~A
)

ip1

> 0

φ j,2 i f
(
⇒
K ·~∇Φm

j ·d~A
)

ip1

≤ 0
, j = 1, ...,np (4.32)

The expression basically means an interface is interpolated on the upstream position

of the two surrounding nodes.
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5 THE ADAPTIVE IMPLICIT METHOD

As discussed earlier, UTCOMP has IMPEC and FI formulations already imple-

mented. These methods are also developed around the same physical modeling and discretization

method presented in the previous chapters. The main goal of the AIM is to combine the advan-

tages of both approaches while mitigating their shortcomings. In order to achieve this task, we

need a better understanding of the formulations advantages and issues.

As implemented by Chang (1990), the Acs et al. (1985) Implicit Pressure Explicit

Composition formulation presents a single implicit primary variable, yielding the smallest

possible linear system for a reservoir simulation, hence the lowest computational effort per time

step. Choosing to compute most primary unknowns explicitly is also the cause for the key issue

with the method: time step size related numerical instability. For various simpler case studies this

stability issue is not relevant, but, as noted by Collins et al. (1992) and Quandalle e Savary (1989),

the time step limitation makes IMPEC models frequently unsuitable for real field applications,

and enhanced recovery processes, such as coning studies. Fully Implicit methodologies, on

the other hand, are the most stable class of formulations. This is achieved solving all primary

unknowns implicitly, which eliminates the time step related instability. Coupling all unknowns

into the Jacobian matrix also generates much larger numerical requirements, which are not always

properly balanced by larger time steps. In the present work, we use the Fully Implicit model

proposed by Fernandes (2014). Applying this FI formulation facilitates the code integration,

once it is also based on the Acs et al. (1985) choice of primary equations and variables.

The advent of Adaptive Implicit Methods comes from the realization only a small

fraction of grid volumes require an implicit evaluation at any given time step ((FUNG et al.,

1989)). Usually the neighborhood of wells and the moving fluid front, where high phase velocities

occur, are the sources of instability in IMPEC models. Therefore, only these regions should be

calculated FI, while most of the reservoir can remain computed explicitly without any stability

loss. The Jacobian matrix then assumes an intermediate size, generally much smaller than a

Fully Implicit linear system, greatly reducing the computation demand for a simulation. At the

same time, once the sources of instability are set implicit, larger time steps are feasible. Note the

AIM addresses directly the main flaws of both IMPEC and FI, while taking advantage of their

most desirable features.

There are still some lingering practical issues. First, we should note the high flux

front moves with time, rendering the selection of implicit blocks dynamic. Another matter is
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how to identify, for any given time, which blocks to compute implicit without producing any

overkill or leave possible sources of instability unchecked. Finally, the Jacobian matrix is not

directly obtained in its final form. The reduction procedure has to be performed every time the

FI blocks distribution changes. All these points are discussed in the following sections.

5.1 Jacobian Evaluation

At any given point during an AIM run, there will be at least a single FI vertex, since

the wells, perennial sources of instability, should be treated implicitly along the entire run. Hence,

our system of equations is necessarily non-linear. A Newton-Raphson iterative procedure is

required in order to linearize our set of equations. Additionally, all primary expressions need to

be rewritten in residual form, which can be simply exemplified by modifying the hydrocarbon

material balance as presented in Eq. (3.5).

RNi =
1

Vb

∂Ni

∂ t
+~∇ ·

(
np

∑
j=2

ξ jxi j~u j

)
+

q̇i

Vb
, i = 1, ...,nc (5.1)

The same can be done for the water and pressure equations:

RNw =
1

Vb

∂Nw

∂ t
+~∇ · (ξw~uw)+

q̇w

Vb
(5.2)

RP =

[
φ

0C f −
1

Vb

(
∂Vt

∂P

)
Ni

]
∂P
∂ t

+V tw~∇ · (ξw~uw)+

nc

∑
i=1

V ti

np

∑
j=2

~∇·
(
ξ jxi j~u j

)
+

nc+1

∑
i=1

V ti
qi

Vb
(5.3)

The linearized equations for mole and pressure equations then assume the following

form, respectively:

nnbi

∑
j=1

[
∂RNi,k

∂Pj
δP j +

nc+1

∑
l=1

∂RNi,k

∂Nl, j
δNi, j

]
= RNi,k, i = 1, ...,nb, k = 1, ...,nc +1 (5.4)

nnbi

∑
j=1

[
∂RPi

∂Pj
δP j +

nc+1

∑
l=1

∂RPi

∂Nl, j
δNi, j

]
= RPi, i = 1, ...,nb (5.5)

where nnb denotes the number of neighboring vertices, including the i node itself, and δ stands

for the primary unknowns changes over an iterative step. This can also be presented in matrix
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form:
j1,1 · · · j1,nb
... . . . ...

jnb,1 · · · jnb,nb




x1
...

xnb

=


b1
...

bnb

 (5.6)

In Eq. (5.6) each term represents a sub-matrix as shown below:

ji,k =



∂RPi
∂Pk

∂RPi
∂N1,k

· · · ∂RPi
∂Nnc,k

∂RPi
∂Nw,k

∂RN1,i
∂Pk

∂RN1,i
∂N1,k

· · · ∂RN1,i
∂Nnc,k

∂RN1,i
∂Nw,k

...
... . . . ...

...
∂RNnc,1

∂Pk

∂RNnc,1
∂N1,k

· · · ∂RNnc,1
∂Nnc,k

∂RNnc,1
∂Nw,k

∂RNw,i
∂Pk

∂RNw,i
∂N1,k

· · · ∂RNw,i
∂Nnc,k

∂RNw,i
∂Nw,k


(5.7)

xi =



δPi

δN1,i
...

δNnc,1

δNw,1


(5.8)

bi =



−RPi

−RN1,i
...

−RNnc,1

−RNw,1


(5.9)

Notice all balance equations, as well as the pressure equation are included in the

linear system, independently of each unknown status. The linear system in Eq. (5.6) first

need reducing before being actually solved. This procedure is described for a simple EbFVM

mesh. Figure (6) shows the referred grid. From the mesh, only the first and last vertices are

computed implicit. In the previous chapter we highlighted the superscript m meant the time

step level in which a given property should be evaluated depended on whether each volume

was IMPEC or FI. For example, the primary equations written for vertex (1) account not only

for its own influence, but also of its neighbors impact through the advection term. However,

blocks (2), (3) and (4) are all IMPEC. This leads to the mole balance and pressure equations



58

Figure 6 – EbFVM mesh with 9 volumes.

assuming a form where m is n+1 to all volume (1) related properties, and n for the remaining

parameters. Notice the final shape of these expressions is dictated by the implicitness level of

the own volume and all the neighboring blocks. The appendix presents more details on this

matter. Applying the same logic to the entire mesh yields the Jacobian matrix different from

Eq. (5.6). For a 3 hydrocarbon pseudo-components reservoir fluid the resulting linear system

is shown in the following illustration. In Fig. (7), the x indicate the non-zero values. Notice

Figure 7 – Full Jacobian Matrix.

each element in the Jacobian is a (nc + 2)x(nc + 2) sub-matrix and all primary variables are

present. The reduction procedure takes place by removing the explicit unknowns equations and

rearranging the remaining coefficients. This leads to the linear system as shown in Fig. (8),
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where the deformed sub-matrices evidence the performed changes. The Jacobian shown above

Figure 8 – Reduced Jacobian Matrix.

is considerably smaller than Fig. (7), yielding a much smaller numerical effort. Following the

linear system calculations, the implicit variables are updated. The removed equations are now

used to compute the explicit primary unknowns independently. This approach, very similar to

the one presented by Thomas e Thurnal (1983), has little implementation requirements and can

also be used on methods with fixed degrees of implicitness, as in Drumond-Filho et al. (2015).

5.2 Switching Criteria

Until this point, this chapter has elucidated just how to mingle IMPEC and FI

volumes together in such a way to produce stable and accurate results. There is still the serious

matter of deciding which blocks to set implicit or explicit at every time step during a run. In

reality, even an efficient AIM framework is rendered useless if the simulator is not able to

precisely identifying whether or not each grid volume is unstable and act accordingly.

Several studies have been done in order to optimize the switching procedure, from

simple threshold methods, as in Forsyth e Sammon (1986), to complex based models based on

the Courant-Friedrichs-Lewy (CFL) condition, as exemplified by Russel (1989), Grabenstetter

et al. (1991) and Fung et al. (1989). For the purposes of this work, two switching criteria were

implemented. The first one is a threshold criterion suggested by Thomas e Thurnal (1983).

The second method comes from the CFL-based condition proposed by Coats (2001). Both are

presented in following sub-sections.
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5.2.1 Threshold Criterion

The threshold method implemented on this work differs from Thomas e Thurnal

(1983), called original threshold method (OTM) for the remaining of this study, in two main ways.

First, the OTM compare all primary variables (oil phase pressure and phase saturations) changes

over the previous time step against its respective thresholds. The proposed method compares

only the phase saturations against a variation limit regardless of being primary variables, which

is not the case in UTCOMP. This choice comes from the assumption saturation changes are fairly

accurate on identifying large throughputs and easier to compare, given their normalized nature.

Additionally, the implemented threshold criterion admits only two implicitness levels: IMPEC

or FI. This means whenever a single phase presents a large saturation variance, all the primary

variables are set implicit. The OTM, on the other hand, allows any implicitness level, for if any

given unknown change surpasses its threshold, only this variable turns implicit.

Evaluating thresholds requires nearly no computational effort, and there lies the

greatest advantage of this technique. On the other hand, there is no physical basis for defining the

threshold values, as stated by Thomas e Thurnal (1983). This leads to a series of trial-and-error

runs in order to verify an optimal values for each case study. The figure below illustrates the

procedure for the threshold criterion implemented for a single time step. In Fig. (9), IMPEC

volumes where the test returns T RUE are switched, as well as FI blocks where test is FALSE.

5.2.2 CFL-based Criterion

Here the implementation follows the criterion developed by Coats (2001), in which

selected blocks are submitted to a stability test as shown in Eq. (5.10).

Fi∆t
Vp,i

< 1, i = 1, ...,nb (5.10)

The parameter Fi is a function of flow rates, reservoir and fluid properties. Two

functions are derived, each one addressing specific instability issues. The first one relates to the

explicit treatment of relative permeabilities and capillary pressures, both saturation-dependent

parameters. Its complete development is shown in detail on "(Appendix A)". The final equation

is shown below for a multidimensional three-phase flow:

Fi =
1
2

∣∣∣∣ f 11i + f 22i +

√
( f 11i + f 22i)

2−4det (Fi)

∣∣∣∣ , i = 1, ...,nb (5.11)
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Figure 9 – Threshold criterion flow chart.

where the f rsi parameters for a given volume are a sum of terms over its neighboring vertices.

For example, f 11i is computed as

f 11i =
Ji

∑
j=1

f 11i j, i = 1, ...,nb (5.12)

In Eq. (5.12), Ji is the total number of neighbors for a block, and the f 11i j are the

terms on the i/ j interfaces. The same logic applies for the remaining parameters. Computing Fi

then requires evaluating the interface terms as follows:

f 11i j =
Ti j

λt

[
(λo +λg)λ

′
ww |∆Φw|−λwλ

′
ow |∆Φo|−λw (λo +λg)

(
P
′
cwo,i +P

′
cwo, j

)]
(5.13)

f 12i j =−
Ti j

λt

[
λwλ

′
og |∆Φo|+λwλ

′
gg
∣∣∆Φg

∣∣− (λo +λg)λ
′
wg |∆Φw|

+λwλg

(
P
′
cgo,i +P

′
cgo, j

)] (5.14)

f 21i j =−
Ti j

λt

[
λgλ

′
ww |∆Φw|+λgλ

′
ow |∆Φo|−λgλw

(
P
′
cgo,i +P

′
cgo, j

)]
(5.15)
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f 22i j =
Ti j

λt

[
−λgλ

′
og |∆Φo|+(λw +λo)λ

′
gg
∣∣∆Φg

∣∣−λgλ
′
wg |∆Φw| +λg (λo +λw)

(
P
′
cgo,i +P

′
cgo, j

)]
(5.16)

Additionally, the last term in Eq. (5.11) is calculated by the following expression:

det (Fi) = f 11i f 22i− f 12i f 21i (5.17)

Two classes of terms are still left unknown at this point. They are the phase mobility

and capillary pressure derivatives with respect to phase saturations, λ
′
jk and P

′
c jk,i, respectively

computed as

λ
′
jk =

∂λ j

∂Sk
, (5.18)

P
′
c jk,i =

∂Pc jr,i

∂Sk,i
. (5.19)

We should note Eq. (5.18) is applied at the interfaces and Eq. (5.19) at the vertices.

Finally, the f rsi j are stored at the gas phase upstream vertex should λg be greater than zero. If

this is not the case, the terms are stored at the water phase upstream block position. Notice most

properties and derivatives present in this approach are already evaluated on UTCOMP. This

means there is actually little additional computational effort, despite any previous assumptions.

The second Fi function deals with the compositions explicit treatment, and assumes the form

described in Eq. (5.20) for a three-phase flow.

Fi = Max(k)
Qoρoxok +Qgρgxgk

Soρoxok +Sgρgxgk
, k = 1, ...,nc (5.20)

where Qo and Qg are the total flow rates through all interfaces for the oil and gas phases

respectively.

The CLF condition is evaluated computing Fi by both methods and applying the

larger value in Eq. (5.10). Should the criterion be met, the vertex is set IMPEC. Otherwise,

the FI approach is advisable. Coats (2001) has also tested CFL conditions for values up to 2.0,

obtaining stable runs for some case studies. Such analysis was not performed on this work.

The remaining matter concerning the AIM on UTCOMP is deciding which blocks to

test for possible formulation switching and when to perform it. The initial assumption would be
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all vertices should be checked. This approach, however, proves to be highly demanding, specially

for the CFL-based criterion. Besides, at a given time level, it is known most volumes will not be

changed. Collins et al. (1992) proposes all implicit blocks, explicit blocks neighboring implicit

ones, and blocks where a mobile phase first appears should be the only ones tested. A comparison

of both approaches is conducted in the next chapter.

As for the moment to perform the checking, test vertices every time step can also

prove to be cumbersome. From time levels n to n+ 1, few vertices are expect to undergo a

switching, even though a large amount for volumes are tested. Usually performing the checking

procedure every few time steps. This is specially true for recently turned implicit blocks (FUNG

et al., 1989). Regarding the Newton-Raphson iterative procedure within a time step, Grabenstetter

et al. (1991) has observed checking the stability condition at every iterative level highly increases

the computational effort demand and the amount of iterations required for convergence. Hence,

our approach is to check the selected blocks only at the beginning of the time step.
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6 RESULTS AND DISCUSSION

In this chapter, we evaluate the AIM for both switching criteria methods discussed

in the previously. The proposed model is compared with the IMPEC and FI formulations already

present in UTCOMP and validated in previous studies. This comparison is performed in terms of

oil and gas production rate curves, degree of implicitness, and overall computation time for two

and three-dimensional grids. Before presenting these results, we dedicate the first two sections to

investigate some aspects of the Adaptive method. First, the choice of grid nodes to be tested for

formulation switching is the focus of our analysis. Two approaches to this matter are compared.

Following, inspired by similar works in the literature, we verify the actual CFL value stable

limits for two case studies.

6.1 Choice of Tested Grids Nodes

As mentioned in the previous chapter, there are two ways of selecting which blocks

will undertake the formulation check procedure. We summarize them below:

• All grid blocks are tested (TestAll)

• All implicit nodes, explicit nodes on the neighborhood of implicit volumes and nodes

where a new mobile phase first appears (TestSome)

The first approach, TestAll, is obvious choice at first. The TestSome way, on the other

hand, is proposed by Collins et al. (1992). The comparison between these methods is undertaken

for a single 7,021 nodes two-dimensional mesh composed of quadrilateral elements with two

case studies. The problem follows a quarter of five-spot configuration. Figure (10) shows the

applied grid and each case study is detailed in the following sub-sections. The blue and red dots

on the grid represent the injector and producer wells, respectively.

6.1.1 Case study 1

The first case investigated in this section is a gas flooding problem. The reservoir

fluid is a light oil composed of three pseudo-components. Initially, only oil and water phases

are present. The latter is immobile throughout the run. The injection fluid is responsible for the

appearance of the gas phase. We are going to designate this case as QOFS-3comp from now on.

More details on the reservoir, fluids and operational conditions are given in the following tables.

Additionally, the binary interaction coefficients and relative permeability data are
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Figure 10 – Two-dimensional quadrilateral grid composed of 7,021 nodes.

Table 1 – Reservoir data for case QOFS-3comp.

Property Value

Length, width and thickness 170.68 m, 170.68 m, 30.49 m
Porosity 0.30
Initial water saturation 0.25
Initial pressure 20.68 MPa
Permeability in x, y and z directions 9.86x10−14 m2, 9.86x10−14 m2, 9.86x10−15 m2

Formation temperature 299.82 K

Table 2 – Fluid composition data for case QOFS-3comp.

Component Initial Reservoir Composition Injection Fluid Composition

CO2 0.01 0.95
C1 0.19 0.05

nC16 0.80 0.00

Table 3 – Component data for case QOFS-3comp.

Component Pc (MPa) Tc (K) vc (m3/kmol) MW (kg/kmol) Ac. Factor

CO2 7.39 304.21 9.40x10−2 44.01 0.225
C1 4.60 190.60 9.99x10−2 16.04 0.022

nC16 1.74 734.68 8.17x10−1 222.00 0.684

presented in order to better describe the problem.

First we compare the oil and gas production curves in Figs. (11) and (12) using the

CFL and threshold criteria. The results show great agreement between all the curves, regardless
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Table 4 – Operational conditions for case QOFS-3comp.

Operational condition Value

Fixed gas rate injection 5.66x105 m3/d
Producer’s bottom hole pressure 20.68 MPa

Table 5 – Binary interaction coefficient data for case QOFS-3comp.

Component CO2 C1 nC16

CO2 - 0.12 0.12
C1 0.12 - -

nC16 0.12 - -

Table 6 – Relative permeability data for case QOFS-3comp.

Parameter Value

Model Modified Stone II
End point rel. permeabilities (k0

rw, k0
row, k0

rog, k0
rg) 1.00, 1.00, 1.00, 1.00

Residual saturations (Swr, Sorw, Sorg, Sgr) 0.25, 1x10−6, 1x10−6, 0.00
Exponents (ew, eow, eog, eg) 1.00, 1.00, 1.00, 1.00

of the switching criterion or testing approach. Following, Tab. (7) shows the comparison for

the CPU time, degree of implicitness and other run parameters. Herein it can be observed the

effects of testing all grid volumes are insignificant for the Threshold criterion, while producing

an important increase of implicit blocks, and CPU time as a consequence, for the CFL criterion.

This behavior was already expected, since testing more nodes will most likely generate some

overkill. The Threshold method behavior, although desirable, is unexpected. The following

case study data should be verified before drawing any conclusions. We also note all threshold

values presented in this work have already undergone the preliminary runs phase, meaning we

are comparing runs with optimal thresholds.

Table 7 – Simulation data for case QOFS-3comp.

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM CFL (TestSome) 0.018 800 2.117 5024.454
AIM CFL (TestAll) 0.017 800 16.418 7000.965

AIM Threshold (TestSome)* 0.019 800 0.028 4867.840
AIM Threshold (TestAll)* 0.019 800 0.028 4929.408

*The threshold is set to 0.01.
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Figure 11 – Oil production rates for Case study 1 (QOFS-3comp).

Figure 12 – Gas production rates for Case study 1 (QOFS-3comp).

Before we proceed, an explanation is in order. The STEP parameter on Tab. (7)

designates the number of time steps between two formulation checks. We choose to highlight it

for its importance on the CPU time.

6.1.2 Case study 2

The second case study is similar to the first one. Again, we have a gas flooding

problem in a quarter of five-spot reservoir configuration. The main difference lies on the reservoir

fluid, lighter than the previous one, and the injection fluid, not rich in CO2. Additionally, the

three phases (oil, gas and water) are present in the reservoir at the simulation starting point.

Once again water is immobile. We name this case QOFS-6comp. All case data is shown in the

following tables:

The comparison study performed is analogous to the previous case. First, the plot

for both oil and gas production rates is shown in Figs. (13) and (14). The curves are nearly

overlapping, verifying no accuracy issue arises from neither switching criteria as a result of
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Table 8 – Reservoir data for case QOFS-6comp.

Property Value

Length, width and thickness 170.68 m, 170.68 m, 30.49 m
Porosity 0.35
Initial water saturation 0.17
Initial pressure 10.34 MPa
Permeability in x, y and z directions 9.86x10−15 m2, 9.86x10−15 m2, 9.86x10−15 m2

Formation temperature 344.26 K

Table 9 – Fluid composition data for case QOFS-6comp.

Component Initial Reservoir Composition Injection Fluid Composition

C1 0.50 0.77
C3 0.03 0.20
C6 0.07 0.01
C10 0.20 0.01
C15 0.15 0.005
C20 0.05 0.005

Table 10 – Component data for case QOFS-6comp.

Component Pc (MPa) Tc (K) vc (m3/kmol) MW (kg/kmol) Ac. Factor

C1 4.60 190.60 9.99x10−2 16.04 0.022
C3 4.25 369.83 2.00x10−1 44.10 0.152
C6 3.01 507.44 3.70x10−1 86.20 0.301
C10 2.10 617.67 6.30x10−1 142.30 0.488
C15 1.38 705.56 1.04 206.00 0.650
C20 1.12 766.67 1.34 282.00 0.850

Table 11 – Operational conditions for case QOFS-6comp.

Operational condition Value

Fixed gas rate injection 2.83x104 m3/d
Producer’s bottom hole pressure 8.96 MPa

the different implicitness levels. Second, the simulation data is compared. There we see a

very different result from the previous case. Testing all grid volumes, as seen in Tab. (14), has

generated a much higher degree of implicitness regardless of the switching criteria. The much

larger amount of implicit nodes during the run causes a significant decrease in performance.

We conclude this analysis verifying the case studies present a tendency to increase
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Table 12 – Binary interaction coefficient data for case QOFS-6comp.

Component C1 C3 C6 C10 C15 C20

C1 - - - - 0.05 0.05
C3 - - - - 0.005 0.005
C6 - - - - - -
C10 - - - - - -
C15 0.05 0.005 - - - -
C20 0.05 0.005 - - - -

Table 13 – Relative permeability data for case QOFS-6comp.

Parameter Value

Model Modified Stone II
End point rel. permeabilities (k0

rw, k0
row, k0

rog, k0
rg) 0.40, 0.90, 0.90, 1.00

Residual saturations (Swr, Sorw, Sorg, Sgr) 0.30, 0.10, 0.10, 0.00
Exponents (ew, eow, eog, eg) 3.00, 2.00, 2.00, 2.00

Figure 13 – Oil production rates for Case study 2 (QOFS-6comp).

Figure 14 – Gas production rates for Case study 2 (QOFS-6comp).
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Table 14 – Simulation data for case QOFS-6comp.

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM CFL (TestSome) 0.279 200 30.810 4272.871
AIM CFL (TestAll) 0.284 200 98.206 7134.949

AIM Threshold (TestSome)* 0.278 200 10.728 3741.849
AIM Threshold (TestAll)* 0.283 200 87.072 6464.071

*The threshold is set to 10−5.

the number of implicit blocks if every checking procedure is performed in the entire grid.

Whenever a node located far from the most stability critical regions is tested, there is a chance

an unnecessary switch might take place, once both criteria are designed with some level of

approximation. This way, it is most likely more FI volumes should appear. The choice of tested

blocks has been implemented as an user input, however the author recommends the TestSome

option generally.

6.2 Stable CFL Limit

In this section we investigate whether the CFL limit should be fixed at unity. This

analysis is mainly based on Coats (2001) and Cao e Aziz (2002), whose works report stable runs

for values higher than CFL=1. The case studies used employ the same data from the previous

section. Several runs are conducted for different CFL values. They are compared in terms of

conformity and performance.

6.2.1 Case study 1

Here we have the QOFS-3comp case. All data from Tab. (1) to (6) applies. The

comparison for the oil and gas rates is given below. The results show overlapping curves and do

not indicate any instabilities has occurred. The simulation data shown in Tab. (15) reveals a clear

tendency. Higher CFL values, meaning looser stability limits, produce lower implicitness levels

and faster runs, even though the total range of variation was not large for this case.

6.2.2 Case study 2

The same evaluation is conducted for the QOFS-6comp case. All parameters remain

the same. The production curves are given in Fig. (17) and (18). Once more they show clear
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Figure 15 – Oil production rates for various CFL values (QOFS-3comp).

Figure 16 – Gas production rates for various CFL values (QOFS-3comp).

Table 15 – Simulation data for various CFL values (QOFS-3comp).

AIM Avg. DT (d) Step FI% CPU time (s)

CFL = 0.50 0.019 500 3.393 4984.567
CFL = 1.00 0.019 500 3.371 4978.475
CFL = 1.50 0.019 500 3.200 4973.866
CFL = 2.00 0.019 500 2.817 4915.875
CFL = 3.00 0.019 500 2.105 4870.132

agreement for the different CFL limits. The same trend is verified in terms of how the degree of

implicitness affects CPU time, only now the influence seems stronger.

Neither of the cases has shown oscillatory instability for high CFL values. Simul-

taneously, we observe clear advantages to applying larger stability limits to the CFL criterion.

Therefore, it was decided to turn the CFL condition to user input data. Note this is a brief study

on stability limits for the CFL. Further conclusions require a deeper analysis.
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Figure 17 – Oil production rates for various CFL values (QOFS-6comp).

Figure 18 – Gas production rates for various CFL values (QOFS-6comp).

Table 16 – Simulation data for various CFL values (QOFS-6comp).

AIM Avg. DT (d) Step FI% CPU time (s)

CFL = 0.50 0.280 150 55.342 4986.659
CFL = 1.00 0.280 150 51.398 4874.960
CFL = 1.50 0.277 150 47.457 5057.100
CFL = 2.00 0.279 150 45.611 4677.064
CFL = 3.00 0.278 150 42.284 4582.134

6.3 Comparison Between AIM, IMPEC and FI

Up to this point, we have performed some studies on specific AIM features. In this

section we aim at the main scope of the present work: verify how the Adaptive approach behaves

in comparison with the IMPEC and FI formulations. Several case studies are evaluated for

various 2D and 3D reservoirs. The results for the threshold criterion AIM are already optimized.

The data on the preliminary trial runs is presented in Appendix B. As for the CFL stability test,

all data below concerns the CFL=1 limit.
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6.3.1 QOFS-3comp 2D

Here we compare all formulations for three meshes representing the same quarter

of five-spot configuration. The first grid was already presented in Fig. (10). The other two are

respectively a 7,449-nodes triangular mesh and a 7,942-nodes mesh composed of both triangular

and quadrilateral elements. The figure below better describes them:

Figure 19 – Two-dimensional meshes: (a) 7,449 nodes with triangular elements and (b) 7,942
nodes with mixed elements.

(a) (b)

First we present the results for the QOFS-3comp case. Figures (20) and (21) show

the production curves for the quadrilateral grid overlap, testifying for the AIM accuracy. As for

the performance, Tab. (17) highlights a significant enhancement when compared to both original

methods. This is easily observed in the last column, where all CPU times are normalized using

the IMPEC time as the reference. It is also important to note the IMPEC outperforms the Fully

Implicit formulation. The phase behavior in this case does not allow for large time steps, which

in turn affects the FI performance. Additionally, it is easy to see the average time steps for the

case are small when compared with real field applications. As mentioned before, we are dealing

with simple problems designed for this kind of comparison. The reservoirs shown in Fig. (10)

and (19) have small dimensions, resulting in small grid volumes. In these conditions, larger time

steps are not advisable even for FI runs.

Before we advance into the other two presented meshes, there should be an analysis

on the production rates. As observed in Fig. (20) and (21), both curves are constant up to 100

days. Afterwards, the oil production sharply decreases, while the gas rate greatly increases,
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Figure 20 – Oil production rates comparison for the 7,021 nodes quadrilateral mesh
(QOFS-3comp case).

Figure 21 – Gas production rates comparison for the 7,021 nodes quadrilateral mesh
(QOFS-3comp case).

Table 17 – Simulation data comparison for 7,021 nodes quadrilateral mesh (QOFS-3comp).

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.004 - 0.00 11264.971 1.00
FI 0.019 - 100.0 16033.326 1.42

AIM Threshold* 0.019 800 0.028 4874.232 0.43
AIM CFL 0.019 800 2.117 5024.454 0.44

Note: The threshold is set to 0.1.

indicating the breakthrough is reached. A better description of this stage is presented below.

Following, the results for the 7,449 vertices triangular grid are displayed. Here, the

IMPEC presents the worst performance mainly because a smaller average time step was required

to maintain stability. Again, the adaptive formulation produces much faster runs while retaining

stability and accuracy.

Closing this sub-section are the data for the 7,942 volumes mixed mesh. Similar

results to the previous grids are encountered. We should also note the two switching criteria
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Figure 22 – Gas saturation profile at 100 days for Case 1.

Figure 23 – Oil production rates comparison for the 7,449 nodes triangular mesh (QOFS-3comp
case).

Figure 24 – Gas production rates comparison for the 7,449 nodes triangular mesh
(QOFS-3comp case).

produce similar performances so far. Despite the theoretical and practical limitations highlighted

for the threshold approach, the literature presents corroborating results such as in Fung et al.
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Table 18 – Simulation data comparison for 7,449 nodes triangular mesh (QOFS-3comp).

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.002 - 0.00 24789.224 1.00
FI 0.013 - 100.0 18829.308 0.76

AIM Threshold 0.007 1000 0.028 14001.243 0.56
AIM CFL 0.007 1000 0.958 14164.964 0.57

Note: The threshold is set to 10−4.

(1989) Grabenstetter et al. (1991).

Figure 25 – Oil production rates comparison for the 7,942 nodes mixed mesh (QOFS-3comp
case).

Figure 26 – Gas production rates comparison for the 7,942 nodes mixed mesh (QOFS-3comp
case).

6.3.2 QOFS-6comp 2D

The same grids are now applied for the QOFS-6comp case. The problem is defined

as in Tab. (8) to (13). For the mesh composed of quadrilateral elements, the production rates are



77

Table 19 – Simulation data comparison for 7,942 nodes mixed mesh (QOFS-3comp).

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.004 - 0.00 13328.208 1.00
FI 0.019 - 100.0 19647.748 1.47

AIM Threshold 0.019 900 0.025 5818.987 0.44
AIM CFL 0.019 900 1.105 5769.724 0.43

Note: The threshold is set to 0.1.

displayed in Figs. (27) and (28), showing great agreement between all formulations. As for the

performance data, this time the FI is clearly better than IMPEC. Still, the adaptive formulation

manages to be nearly twice as fast than the implicit approach. Once more, the time step size is

limited by the reservoir dimensions. Now, however, the time step constantly increases along the

runs. Even so, its maximum is only reached close to the end of simulation.

Figure 27 – Oil production rates comparison for the 7,021 nodes quadrilateral mesh
(QOFS-6comp case).

Figure 28 – Gas production rates comparison for the 7,021 nodes quadrilateral mesh
(QOFS-6comp case).
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Table 20 – Simulation data comparison for 7,021 nodes quadrilateral mesh (QOFS-6comp).

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.029 - 0.00 11186.323 1.00
FI 0.284 - 100.0 7467.998 0.67

AIM Threshold 0.278 200 10.728 3741.849 0.33
AIM CFL 0.279 200 30.810 4272.871 0.38

Note: The threshold is set to 10−5.

The productions curves show very different shapes when compared to Case 1. First,

right at the beginning of the runs we see a quick decrease in both oil and gas rates. Revisiting

Tab. (8) and (11), it is possible to identify a initial pressure gradient between the reservoir and

the production well. Once the wells are opened, this gradient leads to some primary production.

The gas influx, however, is not enough to maintain such pressure difference. Therefore, the

production rates rapidly decrease. As for the change on the curves around 1300 days, the

explanation, again, falls to moment of breakthrough. Figure (29) illustrates this better.

Figure 29 – Gas saturation profile at 1300 days for Case 2.

For the triangular mesh, similar results are obtained. The main difference is the FI

and AIM formulations manage to be even faster compared to the IMPEC.

Table 21 – Simulation data comparison for 7,449 nodes triangular mesh (QOFS-6comp).
Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.019 - 0.00 18959.361 1.00
FI 0.288 - 100.0 7205.306 0.38

AIM Threshold 0.282 200 3.550 4036.892 0.21
AIM CFL 0.282 200 15.742 4183.801 0.22

Note: The threshold is set to 10−5.
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Figure 30 – Oil production rates comparison for the 7,449 nodes triangular mesh
(QOFS-6comp).

Figure 31 – Gas production rates comparison for the 7,449 nodes triangular mesh
(QOFS-6comp case).

Closing this sub-section are the QOFS-6comp results for the 7,942 volumes mixed

mesh. The same trends are also reported here. As shown in Figs. (32) and (33), the AIM is

accurate when compared to the original methods. At the same time, the CPU time comparison

testifies again for the new formulation efficiency. We should at this point also highlight the

threshold criterion has consistently produced the best results, achieving not only faster runs, but

also smaller implicitness levels when compared with the CFL switching technique. One of the

main reasons behind this lies on the severely tight thresholds applied, achieved after several test

runs.

Table 22 – Simulation data comparison for 7,942 nodes mixed mesh (QOFS-6comp).
Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.019 - 0.00 19131.263 1.00
FI 0.282 - 100.0 9011.515 0.47

AIM Threshold 0.274 200 0.074 4053.413 0.21
AIM CFL 0.276 200 22.275 4623.373 0.24

Note: The threshold is set to 10−4.
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Figure 32 – Oil production rates comparison for 7,942 nodes mixed mesh (QOFS-6comp).

Figure 33 – Gas production rates comparison for 7,942 nodes mixed mesh (QOFS-6comp).

6.3.3 QOFS-6comp 3D

The next step is to compare the formulations for three-dimensional grids. The first

one applied is a 19,004 nodes mesh composed solely of hexahedron elements. The reservoir and

fluid data are the same of Tab. (8) to (13). Figure (34) illustrates the geometry and its dimensions.

The configuration is a quarter of five-spot, with single producer and injector wells.

The data comparison, as before, is shown in Fig. (35) and (36). All curves nearly

overlap, testifying for the AIM accuracy. It should be noted no IMPEC run attempt produced a

reasonable performance. This run was then considered failed, hence its absence. In Tab. (23),

the normalized time column, now with respect to the FI CPU time, show the adaptive approach

is much faster. This time, we also present the average molar balance errors for the successful

runs. This data shows, even thought the AIM produces larger errors than the FI formulation, they

are still not significant.

Before we proceed, it is important to have a better understanding of the shape

assumed by the production rate curves. Figure (37) presents the saturation profile around 150



81

Figure 34 – Three-dimensional 19,044 volumes grid composed of hexahedron elements.

Figure 35 – Oil production rates comparison for the 19,044 nodes hexahedron elements mesh.

Figure 36 – Gas production rates comparison for the 19,044 nodes hexahedron elements mesh.

days, when the breakthrough is reached. This explain the rapid decrease of oil production and

the surge on produced gas.
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Table 23 – Simulation data comparison for 19,044 nodes hexahedron elements mesh.

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC - - 0.00 FAILED -
FI 0.049 - 100.0 237248.843 1.00

AIM Threshold* 0.049 300 0.095 135620.562 0.57
AIM CFL 0.049 300 45.07 149813.468 0.63

Note: The threshold is set to 0.01.

Table 24 – Molar balance error data for 19,044 nodes hexahedron elements mesh.

Formulation Average percent molar balance error

IMPEC FAILED
FI 4.43x10−2

AIM Threshold 2.84x10
AIM CFL 2.91

Figure 37 – Gas saturation field at 150 days for the QOFS-6comp 3D case.

6.3.4 2D Irregular reservoir-6comp

So far, only very simple reservoir configurations have been applied. Verifying the

AIM behavior requires more complex geometries to be evaluated in conditions closer to an actual

production field. Hence, the mesh in Fig. (38), composed of triangular elements, is selected for

this task. The recovery process is conducted by two production wells, positioned close to the

east and west extremities, while a single well, close to the center of the geometry, injects CO2

rich gas. Additionally, the reservoir contains heterogeneous porosity and permeability fields, as

displayed in Fig. (39) and (40).

Besides porosity and permeability, all data fluid and reservoir data are in accordance

with Tab. (8) to (13). The oil and gas production rates, as well as the performance data are
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Figure 38 – Two-dimensional irregular reservoir grid composed of 27,271 nodes.

Figure 39 – Porosity field for two-dimensional irregular reservoir grid composed of 27,271
nodes.

Figure 40 – X and Y permeability field for two-dimensional irregular reservoir grid composed of
27,271 nodes.
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presented below. No IMPEC run attempt succeeded, despite several attempts to adjust time step

control parameters, therefore no curve is shown in Fig. (41) and (42). The comparison with FI,

however, still shows faster runs while displaying nearly overlapping curves. We should note

there was no optimization process for the threshold value, given the large computation time

required for each run. The chosen value was arbitrarily defined.

Figure 41 – Oil production rates comparison for the 27,271 nodes mixed elements mesh.

Figure 42 – Gas production rates comparison for the 27,271 nodes mixed elements mesh.

Table 25 – Simulation data comparison for 27,271 nodes mixed elements mesh.

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC - - 0.00 FAILED -
FI 0.005 - 100.0 274476.750 1.00

AIM Threshold* 0.005 1500 0.011 152444.312 0.55
AIM CFL 0.005 1500 11.32 163030.718 0.59

Note: The threshold is set to 0.01.

The production curves show a decrease on oil rates at the early stages of the run. An
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Table 26 – Molar balance error data for 27,271 nodes mixed elements mesh.

Formulation Average percent molar balance error

IMPEC FAILED
FI 1.72x10−6

AIM Threshold 2.09x10−1

AIM CFL 2.09x10−1

evaluation of the saturation profile is in order to understand this behavior. Figure (43) shows the

gas saturation distribution at 150 days. It is possible to see the gas front has nearly reached both

wells. As a consequence, the inclination of the curves changes.

Figure 43 – Gas saturation field at 150 days for two-dimensional irregular reservoir grid
composed of 27,271 nodes.

6.3.5 3D Irregular reservoir-6comp

The last case study evaluated in this work also concerns a three-dimensional reservoir.

There are, however, two main differences from the previous case. First, we are not dealing

with a quarter of five-spot configuration. This time the reservoir geometry presents an irregular

shape and the production is performed by multiple wells, as shown in Fig. (44). Following,

an evaluation on the effects of a full permeability tensor are investigated. So far, all problems

contained only null off-diagonal terms. Now, a full tensor is applied as shown in Tab. (27).

We should also mention, even though most conditions are identical to the ones

describe in the two-dimensional QOFS-6comp case, the wells operational situation is given by

Tab. (28).
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Figure 44 – Three-dimensional 19,928 volumes grid composed of hexahedron, tetrahedron and
pyramid elements.

Table 27 – Permeability tensor for 3D irregular reservoir-6comp case.

X Y Z

X 9.87x10−14 1.97x10−14 1.97x10−14

Y 1.97x10−14 9.87x10−14 1.97x10−14

Z 1.97x10−14 1.97x10−14 9.87x10−15

Table 28 – Operational conditions for the Irregular grid-6comp case.

Operational condition Value

Fixed gas rate injection 1.69x105 m3/d
Producer’s bottom hole pressure 8.96 MPa

The results are then displayed in Fig. (45) and (46). The curves show total agreement

between the IMPEC, FI and AIM CFL runs, while the adaptive method using the threshold

criterion produces a different result, specially for the oil production rates. Table (29) indicates

the AIM Threshold simulation presented severe convergence issues, since its total CPU time

was many times larger than the other formulations. Additionally, the AIM CFL was not able

to attain a significant better performance than FI. This is likely due to the extremely high level

of implicitness. The main point of discussion is, however, the inability of the more implicit

formulations to surpass the IMPEC performance, even considering the much smaller average

time step. Given previous similar case studies for 2D and 3D meshes did not report similar

results, we can establish a relationship between the full permeability tensor and the inability for

FI and AIM to produce stable and fast runs.

Before we further analyze this data and it connection with the use of a full permeabil-
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Figure 45 – Oil production rates comparison for the 19,928 volumes mesh.

Figure 46 – Gas production rates comparison for the 19,928 nodes mesh.

Table 29 – Simulation data comparison for 19,928 nodes mesh.

Formulation Avg. DT (d) Step FI% CPU time (s) Norm. time

IMPEC 0.09 - 0.00 8370.930 1.00
FI 1.61 - 100.0 14465.112 1.73

AIM Threshold* 0.88 5 2.75 66527.476 7.95
AIM CFL 1.61 5 92.36 13793.797 1.65

Note: The threshold is set to 0.001.

ity tensor, let us investigate the production curves shape. Figure (47) displays the gas saturation

profile at 700 days, close to end of the run. It basically shows there is a clear separation between

the oil and gas phases. There is no indication of a gas front or achieved breakthrough. Even so,

the steady gas production is in accordance with such behavior.
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Figure 47 – Gas saturation field at 700 days for the 19,928 volumes mesh.
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7 CONCLUSIONS

This work has implemented a Adaptive Implicit Formulation in a compositional

simulator with EbFVM unstructured grids. The model is the product of a combination of the

IMPEC ACS et al. (1985) and the FI FERNANDES (2014) models. Two criteria for formulation

switching, based on the works of THOMAS; THURNAL (1982) and COATS (2001) are tested.

Primarily, some aspects of the AIM were investigated. Regarding the approaches

for shifting between explicit and implicit evaluation, two test were conducted. The first one

aimed at the which grid volumes required to undergo this procedure. The data shows verifying

both criteria in all blocks produced higher levels of implicitness and slower runs for the two

gas flooding problems investigated. Further, an analysis on CFL stable limits highlighted looser

restriction can be applied without necessarily causing numerical instability. We should note these

tests are not conclusive. They serve as a guide for future applications of the simulator.

The comparison with the IMPEC and FI formulations is then conducted in terms of

accuracy and performance. First, the oil and gas production curves analysis for gas flooding

problems in 2D and 3D meshes reveals great accuracy in comparison with IMPEC and FI. For all

case studies, it is observed the curves nearly overlap. Next, the performance evaluation reveals

the adaptive method repeatedly succeeded to obtain faster runs, even while coping with time

step size limitations or high levels of implicitness. This data is obtained for different reservoir

configurations, from simple homogeneous quarter of five-spots to irregular geometries combined

with heterogeneous porosity and permeability fields. A single case study does not agree with this

trend. The 3D irregular reservoir problem shows the adaptive method unable to outperform the

explicit formulation.

An additional conclusion can be drawn from these cases regarding the switching

criteria. For most problems, both CFL and Threshold approaches displayed very similar results

in terms of CPU time. However, evaluating the average implicitness degree in each run shows the

CFL criterion consistently produces more implicit volumes. These results partially contradict the

literature on the matter, for the CFL switching method is widely regarded as more efficient. Part

of the explanation lies with the already mentioned choice of threshold value. The runs for 2D

meshes required several runs until the optimal limit was selected. For the 3D grids simulations,

as well as the irregular geometry two-dimensional mesh, the large amount of CPU time required

in each run made such procedure impracticable. Therefore, arbitrary values were chosen.
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7.1 Future work

Several future steps and studies can be drawn from these conclusions. The first one

concerns an investigation on the switching criteria and its performance for problems surrounded

of different conditions, such as recovery by water injection. Evaluating the effects of a full per-

meability tensor on the AIM efficiency also presents a great opportunity at better understanding

the adaptive approach. Finally, this study can be expanded to verify how some of the physical

model assumptions, such as the neglected physical dispersion and water mass transfer, affect

production curves and relative performance.



91

BIBLIOGRAPHY

ACS, G.; DOLESCHALL, S.; FARKAS, E. General purpose compositional model. Society of
Petroleum Engineers Journal, v. 25, p. 543–553, 1985.

ARAUJO, A. L.; FERNANDES, B. R.; FILHO, E. P. D.; ARAUJO, R. M.; LIMA, I. C.;
GONçALVES, A. D.; MARCONDES, F.; SEPEHRNOORI, K. 3d compositional reservoir
simulation in conjuction with unstructured grids. Brazilian Journal of Chemical Engineering,
v. 33, p. 347–360, 2016.

BALIGA, B. R.; PATANKAR, S. V. A new finite-element formulation for convection-diffusion
problems. Numerical Heat Transfer Journal, v. 3, p. 393–409, 1980.

BERTIGER, W. I.; KELSEY, F. J. Inexact adaptive newton methods. Proceedings of the SPE
Reservoir Simulation Symposium, Dallas, USA, February 10-13, 1985.

BRANCO, C. M.; RODRIGUEZ, F. A semi-implicit formulation for compositional reservoir
simulation. SPE Advanced Technology Series, v. 4, p. 171–177, 1996.

BUCKLEY, S. E.; LEVERETT, M. C. Mechanism of fluid displacement in sands. Proceedings
of the AIME, v. 146, 1942.

CAO, H.; AZIZ, K. Performance of impsat and impsat-aim models in compositional simulation.
Proceedings of the SPE Annual Technical Conference, San Antonio, USA, September 29-
October 2, 2002.

CHANG, Y. B. Development and Application of an Equation of State Compositional
Simulator. Tese (Doutorado) — Department of Petroleum and Geosystems Engineering, The
University of Texas at Austin, 1990.

CHIEN, M. C. H.; LEE, S. T.; CHEN, W. H. A new fully implicit compositional simulator.
Proceedings of the SPE Reservoir Simulation Symposium, Dallas, USA, February 10-13,
1985.

CHU, W. H. Development of a general finite difference approximation for a general domain.
Journal of Computational Physics, v. 8, p. 392–408, 1971.

COATS, K. H. An equation of state compositional model. Society of Petroleum Engineers
Journal, v. 20, p. 363–376, 1980.

COATS, K. H. "Reservoir Simulation", Petroleum Engineering Handbook. [S.l.]: Society
of Petroleum Engineers, 1982.

COATS, K. H. Impes stability: The stable step. Paper SPE 69225, proceedings of the SPE
Symposium on Reservoir Simulation, Houston, TX, February 11-14, 2001.

COLLINS, D. A.; NGHIEM, L. X.; LI, Y. K.; GRABENSTETTER, J. E. An efficient approach
to adaptive-implicit compositional simulation with an equation of state. SPE Reservoir
Engineering Journal, v. 7, p. 259–264, 1992.

CORDAZZO, J. Petroleum Reservoir Simulation Using the EbFVM Method and Algebric
Multigrid (In Portuguese). Tese (Doutorado) — Department of Mechanical Engineering,
Federal University of Santa Catarina, 2006.



92

COREY, A. T. Mechanics of Immiscible Fluids in Porous Media. [S.l.]: Water Resources
Publications, 1986.

CUNHA, A. R.; MALISKA, C. R.; SILVA, A. F.; LIVRAMENTO, M. A. Two-dimensional
two-phase petroleum reservoir simulation using boundary-fitted grids. Journal of the Brazilian
Society of Mechanical Sciences, v. 16, p. 423–429, 1994.

DARWISH, M. S.; MOUKALLED, F. Tvd schemes for unstructured grids. International
Journal of Heat and Mass Transfer, v. 46, p. 599–611, 2003.

DRUMOND-FILHO, E. P.; FERNANDES, B. R.; MARCONDES, F.; SEPEHRNOORI, K.
Specified adaptive implicit method for unstructured grids in compositional reservoir simulation.
Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, Rio
de Janeiro, Brazil, December 6-11, 2015.

ECONOMIA iG. Produção de petróleo sobe 0,75http://economia.ig.com.br/2017-01-
11/producao-recorde.html. Accessed on 07/06/2017 at 08:53, 2017.

EDWARDS, M. G. Cross flow tensors and finite volume approximation with by deferred
correction. Computer Methods in Applied Mechanics and Engineering, v. 151, p. 143–161,
1998.

FARKAS, E.; VALKO, P. A direct impes-type volume balance technique for adaptive implicit
steam models. SPE Reservoir Engineering Journal, v. 2, p. 88–94, 1994.

FERNANDES, B. R. Implicit and Semi-Implicit Techniques for the Compositional
Petroleum Reservoir Simulation Based on Volume Balance. Dissertação (Mestrado) —
Department of Chemical Engineering, Federal University of Ceará, 2014.

FERNANDES, B. R.; MARCONDES, F.; SEPEHRNOORI, K. Investigation of several
interpolation functions for unstructured meshes in conjunction with compositional reservoir
simulation. Numerical Heat Transfer, Part A: Applications, v. 64, p. 974–993, 2003.

FORSYTH, P. A. Adaptive implicit criteria for two-phase flow with gravity and capillary
pressure. Journal of Scientific and Statistical Computing, v. 10, p. 227–252, 1989.

FORSYTH, P. A. A control-volume, finite-element method for local mesh refinement in thermal
reservoir simulation. SPE Reservoir Engineering Journal, v. 5, p. 561–566, 1990.

FORSYTH, P. A.; SAMMON, P. H. Practical considerations for adaptive implicit methods in
reservoir simulation. Journal of Computational Physics, v. 62, p. 265–281, 1986.

FUNG, L. S.-K.; COLLINS, D. A.; NGHIEM, L. X. An adaptive-implicit switching criterion
based on numerical stability analysis. SPE Reservoir Engineering Journal, v. 4, p. 45–51,
1989.

FUNG, L. S.-K.; HIEBERT, A. D.; NGHIEM, L. X. Reservoir simulation with a control-volume
finite-element method. SPE Reservoir Engineering Journal, v. 7, p. 349–357, 1992.

FUSSEL, L. T.; FUSSEL, D. D. An iterative technique for compositional reservoir models.
Society of Petroleum Engineers Journal, v. 19, p. 211–220, 1979.



93

GRABENSTETTER, J.; LI, Y. K.; COLLINS, D. A.; NGHIEM, L. X. Stability-based
switching criterion for adaptive-implicit compositional reservoir simulation. Paper SPE 21225,
proceedings of the SPE Symposium on Reservoir Simulation, Anaheim, CA, February
17-20, 1991.

GUARDIAN, T. The guardian. environment. energy. background: What caused the 1970s oil
price shock? https://www.theguardian.com/environment/2011/mar/03/1970s-oil-price-shock.
Accessed on 01/04/2017 at 15:20, 2011.

HEINEMANN, Z. E.; BRAND, C. Gridding techniques in reservoir simulation. Proceedings of
the 1st International Forum on Reservoir Simulation, Apbach, AUS, 1988.

HEINEMANN, Z. E.; BRAND, C.; MUNKA, M.; CHEN, Y. M. Modeling reservoir geometry
with irregular grids. Proceedings of the SPE Symposium on Reservoir Simulation, Houston,
USA, February 6-8, 1989.

HERNING, F.; ZIPPERER, L. Calculation of viscosity of technical gas mixtures from the
viscosity of individual gases. Gas and Wasserfach, v. 79, p. 49–54, 1936.

HIRASAKI, G. J.; O’DELL, P. M. Representation of reservoir geometry for numerical
simulation. Society of Petroleum Engineers Journal, v. 10, 1970.

HURTADO, F. S.; MALISKA, C. R.; SILVA, A. F. da; CORDAZZO, J. A quadrilateral
element-based finite volume method formulation for the simulation of complex reservoirs. SPE
Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Arg,
April 15-18, 2007.

KAZEMI, H.; VESTAL, C. R.; SHANK, G. D. An efficient multicomponent numerical
simulator. Society of Petroleum Engineers Journal, v. 18, p. 355–368, 1978.

KOREN, B. A robust upwind discretization method for advection, diffusion and source terms.
Numerical Methods for Advection-Diffusion Problems, p. 117–138, 1993.

LEVENTHAL, S. H.; KLEIN, M. H.; CULHAM, W. E. Curvilinear coordinate systems for
reservoir simulation. Society of Petroleum Engineers Journal, v. 25, p. 893–901, 1985.

LEVERETT, M. C. Capillary behavior in porous solids. Transactions of the AIME, v. 142, p.
152–169, 1941.

MACLEOD, D. B. On a relation between surface tension and density. Transactions of the
Faraday Society, v. 19, p. 38–41, 1923.

MALISKA, C. R. Computational Heat Transfer and Fluid Dynamics (In Portuguese). [S.l.:
s.n.], 2004.

MALISKA, C. R.; CUNHA, A. R.; LIVRAMENTO, M. A.; SILVA, A. F. Tridimensional
petroleum reservoir simulation using generalized curvilinear grids. Proceedings of the ENCIT,
São Paulo, Brazil, p. 363–366, 1994.

MALISKA, C. R.; RAITHBY, G. D. A method for computing three dimensional flows using
non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical Methods
in Fluids, v. 4, p. 519–537, 1984.



94

MALISKA, C. R.; SILVA, A. F.; CZESNAT, A. O.; LUCIANETTI, R. M.; JR., C. R. M.
Three-dimensional multiphase flow simulation in petroleum reservoirs using the mass fractions
as dependent variables. Proceedings of the 5th Latin American and Caribbean Petroleum
Engineering Conference, Rio de Janeiro, Brazil, August 30- September 3, 1997.

MARCONDES, F.; HAN, C.; SEPEHRNOORI, K. Implementation of corner point mesh into
parallel, fully implicit, equation of state compositional reservoir simulation. Proceedings of the
18th International Congress of Mechanical Engineering, Ouro Petro, Brazil, November
6-11, 2005.

MARCONDES, F.; HAN, C.; SEPEHRNOORI, K. Effect of cross derivatives in discretization
schemes in structured non-orthogonal meshes for compositional reservoir simulation. Journal
of Petroleum Science and Engineering, v. 63, p. 53–60, 2008.

MARCONDES, F.; SANTOS, L. S.; VARAVEI, A.; SEPEHRNOORI, K. A 3d hybrid
element-based finite-volume method for heterogeneous and anisotropic compostional reservoir
simulation. Journal of Petroleum Science and Engineering, v. 108, p. 342–351, 2013.

MARCONDES, F.; SEPEHRNOORI, K. An element-based finite-volume method approach
for heterogeneous and anisotropic compositional reservoir simulation. Journal of Petroleum
Science and Engineering, v. 73, p. 99–106, 2010.

MARCONDES, F.; VARAVEI, A.; SEPEHRNOORI, K. An eos-based numerical simulation
of thermal recovery process using unstructured meshes. Brazilian Journal of Chemical
Engineering, v. 32, p. 247–258, 2015.

MASSON, C.; SAABAS, H. J.; BALIGA, B. R. Co-located equal-order control-volume
finite-element method for two-dimensional axisymmetric incompressible fluid flow.
International Journal for Numerical Methods in Fluids, v. 18, p. 1–26, 1994.

MONCORGE, A.; TCHELEPI, H. Stability criteria for thermal adaptive implicit compositional
flows. Society of Petroleum Engineers Journal, v. 14, p. 311–322, 1995.

NGHIEM, L. X.; FONG, D. K.; AZIZ, K. Compositional modeling with an equation of state.
Society of Petroleum Engineers Journal, v. 21, p. 687–698, 1981.

PEACEMAN, D. W. A nonlinear stability analysis for difference equations using semi-implicit
mobility. Society of Petroleum Engineers Journal, v. 17, p. 79–91, 1977.

PEACEMAN, D. W. Interpretation of well-block pressures in numerical reservoir simulation.
Society of Petroleum Engineers Journal, v. 18, p. 183–194, 1978.

PEACEMAN, D. W. Interpratation of well-block pressure in numerical reservoir simulation with
nonsquare grid blocks and anisiotropic permeability. Society of Petroleum Engineers Journal,
v. 23, p. 531–543, 1983.

PEDROSA, O.; AZIZ, K. Use of a hybrid grid in reservoir simulation. SPE Reservoir
Engineering Journal, v. 1, p. 611–621, 1986.

PENG, D. Y.; ROBINSON, D. B. A new two-constant equation of state. Industrial
Engineering Chemestry Fundamentals, v. 15, p. 59–64, 1976.



95

PERSCHKE, D. Equation of State Phase Behavior Modeling For Compositional
Simulation. Tese (Doutorado) — Department of Petroleum and Geosystems Engineering, The
University of Texas at Austin, 1988.

QUANDALLE, P.; SAVARY, D. An implicit in pressure and saturations approach to fully
compositional simulation. Paper SPE 18423, Proceedings of the SPE Symposium on
Reservoir Simulation, Houston, USA, February 6-8, p. 197–206, 1989.

REDLICH, O.; KWONG, J. N. S. On the thermodynamics of solutions. v. an equation of state.
fugacities of gaseous solutions. Chemical Reviews, v. 44, p. 233–244, 1949.

ROE, P. L. Some characteristic-based schemes for the euler equations. Annual Review of Fluid
Mechanics, v. 18, p. 337–365, 1986.

ROZON, B. J. A generalized finite volume discretization method for reservoir simulation.
Proceedings of the SPE Symposium on Reservoir Simulation, Houston, USA, February
6-8, 1989.

RUSSEL, T. F. Stability analysis and switching criteria for adaptive implicit methods based
on the cfl condition. Paper SPE 18416, proceedings of the SPE Symposium on Reservoir
Simulation, Houston, TX, February 6-8, 1989.

SAABAS, H. J.; BALIGA, B. R. Co-located equal-order control-volume finite-element method
for multidimensional, incompressible, fluid flow - part 1: Formulation. Numerical Heat
Transfer - Part B: Fundamentals, v. 26, p. 381–407, 1994.

SAABAS, H. J.; BALIGA, B. R. Co-located equal-order control-volume finite-element method
for multidimensional, incompressible, fluid flow - part 2: Verification. Numerical Heat
Transfer - Part B: Fundamentals, v. 26, p. 409–424, 1994.

SANTOS, L. O. S. Development of a Multi-Formulation Compositional Simulator. Tese
(Doutorado) — Department of Petroleum and Geosystems Engineering, The University of Texas
at Austin, 2013.

SHELDON, J. W.; DOUGHERTY, E. D. The approximation of secondary recovery projects
using moving interfaces. Proceedings of the 36th SPE Annual Fall Meeting, Dallas, USA,
1961.

STATISTA. Statista. fossil fuels. oil production in barrels per day - top fifteen countries
2015. https://www.statista.com/statistics/237115/oil-production-in-the-top-fifteen-countries-in-
barrels-per-day/. Accessed on 05/06/2017 at 12:20, 2017.

STIEL, L. I.; THODOS, G. The viscosity of nonpolar gases at normal pressure. AIChE Journal,
v. 7, p. 611–615, 1961.

STONE, H. L. Estimation of three-phase permeability and residual oil data. Journal of
Canadian Petroleum Technology, v. 12, p. 53–61, 1973.

SUGDEN, S. A relation between surface tension, density, and chemical composition. Journal
of Chemical Society, v. 125, p. 1177–1189, 1924.

SWAMINATHAN, C. R.; VOLLER, V. R. Streamline upwind scheme for control-volume finite
elements, part 1: Formulations. Numerical Heat Transfer - Part B: Fundamentals, v. 22, p.
95–107, 1992.



96

SWAMINATHAN, C. R.; VOLLER, V. R. Streamline upwind scheme for control-volume finite
elements, part 1: Implementation and comparison with supg finite-element scheme. Numerical
Heat Transfer - Part B: Fundamentals, v. 22, p. 109–124, 1992.

TAN, T. B. Implementation of an improved adaptive-implicit method in a thermal compositional
simulator. Society of Petroleum Engineers Journal, v. 3, p. 1123–1128, 1988.

THOMAS, G. W.; THURNAL, D. H. The mathematical basis of the adaptive implicit method.
Proceedings of the 6th SPE Symposium on Reservoir Simulation, New Orleans, USA,
January 31- February 3, 1982.

THOMAS, G. W.; THURNAL, D. H. Reservoir simulation using an adaptive implicit method.
Society of Petroleum Engineers Journal, v. 23, p. 759–768, 1983.

THOMPSON, J. F.; THAMES, F. C.; MASTIN, C. W. Automatic numerical generation
of body-fitted curvilinear coordinate system for field containing any number of arbitrary
two-dimensional bodies. Journal of Computational Physics, v. 15, p. 299–319, 1974.

WADSLEY, W. A. Modelling reservoir geometry with non-rectangular coordinate grids.
Proceedings of the 55th SPE Annual Fall Technical Conference, Dallas, USA, September
21-24, 1980.

WANG, P.; YOTOV, I.; WHEELER, M.; ARBOGAST, T.; DAWSON, C.; PARASHAR,
M.; SEPEHRNOORI, K. A new generation eos compositional reservoir simulator: Part i -
formulation and discretization. Proceedings of the SPE Reservoir Simulation Symposium,
Dallas, USA, June 8-11, 1997.

WATTS, J. W. A compositional formulation of the pressure and saturation equations. SPE
Reservoir Engineering Journal, v. 1, p. 243–252, 1986.

WATTS, J. W.; MIFFLIN, R. T.; WEISER, A. A fully coupled, fully implicit reservoir simulation
for thermal and other complex reservoir processes. Proceedings of the SPE Symposium on
Reservoir Simulation, Anaheim, USA, February 17-20, 1991.

WONG, T. W.; FIROOZABADI, A.; AZIZ, K. Relationship of the volume-balance method of
compositional simulation to the newton-raphson method. SPE Reservoir Engineering Journal,
v. 5, p. 415–422, 1990.

WONG, T. W.; FIROOZABADI, A.; R.NUTAKKI; AZIZ, K. A comparison of two approaches
to compositional and black oil simulation. Proceedings of the SPE Symposium on Reservoir
Simulation, San Antonio, USA, February 1-4, 1987.

YOUNG, L. C.; RUSSEL, T. F. Implementation of an adaptive implicit method. Proceedings
of the 12th SPE Symposium on Reservoir Simulation, New Orleans, USA, February 28-
March 3, 1993.

YOUNG, L. C.; STEPHENSON, R. E. A generalized compositional approach for reservoir
simulation. Society of Petroleum Engineers Journal, p. 727–742, 1983.



97

APPENDIX A – IMPLICITNESS LEVEL INFLUENCE ON JACOBIAN MATRIX

EQUATIONS

Here we develop our discussion over the reduced Jacobian matrix equation, once

more following Fig. (6). The focus now is set around the grid element composed by the (1), (2),

(4) and (3) nodes, shown in detail below:

Figure 48 – Grid element formed by the (1), (2), (3) and (4) vertices.

On chapter 5 it was stated vertex (1) was FI and the remaining nodes on Fig. (48)

were IMPEC. Developing the complete discretized equations for each of theses volume would be

to cumbersome. The analysis here is limited to the first node, which is conveniently formed by a

single sub-control volume. Equation (4.19) can then be rewritten in residual form as follows:

RNi,1 = Acci,1−Fi,1 +Si,1, i = 1, ...,nc (A.1)

The accumulation and source terms do not require further consideration, for both are

related solely to properties evaluated at the vertex. The advective portion of Eq. (A.1), on the

other hand, is precisely where a relationship between neighboring blocks can be observed. In the

current analysis, we have:
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Both terms in Eq. (A.2) are still evaluated at the integration points. Let us assume,

for the sake of this discussion, vertex (1) is upwind only in respect to ip1. This yields Fi,1 is
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written below:
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Notice the fluid properties, once defined the upstream vertices, assume the time step

level accordingly. Now writing the summation over nv for the element in study and after some

manipulation yields:
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Finally, it becomes clear how each surrounding vertex affects node (1) hydrocarbon

mole equation through their hydraulic potentials. This leads to a pressure dependence, regardless

of the level of implicitness. Remembering Eq. (4.25) we see whenever a volume is evaluated

implicit, its capillary pressure and phase mass density are computed at the current n+1 time

level. An implicit relationship then arises with the neighbor amount of component moles. This

does not occur in Eq. (A.4) because (2), (3) and (4) are all explicit. As a consequence, the

derivatives with respect to these nodes amount of moles can be decoupled from the Jacobian

matrix. For the same 3 hydrocarbon components reservoir fluid problem we have:

∂RNi,1

∂P1
δP1 +

nc

∑
j=1

∂RNi,1

∂N j,1
δN j,1 +

∂RNi,1

∂Nw,1
δNw,1+

∂RNi,1

∂P2
δP2 +

∂RNi,1

∂P3
δP3 +

∂RNi,1

∂P4
δP4 =−RNi,1, i = 1, ...,nc (A.5)

The expressions for water and pressure are developed in the same manner. We should

note Eq. (A.5) describes a simple case. More complex meshes and inner domain vertices will

produce much more complex equations.
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APPENDIX B – THRESHOLD OPTIMIZATION PROCEDURE

Here are presented all trial runs used to obtain the optimized results shown in

section 6.3. A comparison for the production curves as well as the data concerning the level of

implicitness and CPU time.

B.1 QOFS-3comp 2D

The first data presented regards the 7021 volumes mesh composed of quadrilateral

elements. Figures (49) and (50) show the three different threshold values do not produce

variations on the production rates. This fact is verified analyzing the similar implicitness degrees

and CPU times in Tab. (30). The three simulations basically yield the same results, leading to

the choice of the largest threshold as optimal.

Figure 49 – Threshold AIM Oil production rates comparison for the 7,021 nodes quadrilateral
elements mesh (QOFS-3comp case).

Figure 50 – Threshold AIM Gas production rates comparison for the 7,021 nodes quadrilateral
elements mesh (QOFS-3comp case).
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Table 30 – Threshold AIM simulation data comparison for 7,021 nodes quadrilateral elements
mesh (QOFS-3comp)

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.019 800 0.028 4874.232

AIM Thr.=0.01 0.019 800 0.028 4867.840

AIM Thr.=0.001 0.019 800 0.028 4872.452

Next, the results for the 7449 volumes constituted of triangular elements are displayed

in Fig. (51) and (52), as well as Tab. (31). Once more, the diverging threshold values lead

to the same amount of implicit volumes along the runs. This, in turn, produces very similar

computation times. The largest value, 0.1, is then chosen the ideal criterion.

Figure 51 – Threshold AIM Oil production rates comparison for the 7,449 nodes triangular
elements mesh (QOFS-3comp case).

Figure 52 – Threshold AIM Gas production rates comparison for the 7,449 nodes triangular
elements mesh (QOFS-3comp case).
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Table 31 – Threshold AIM Simulation data comparison for 7,449 nodes triangular elements
mesh (QOFS-3comp).

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.007 1000 0.027 14001.243

AIM Thr.=0.01 0.007 1000 0.027 14194.767

AIM Thr.=0.001 0.007 1000 0.027 14011.559

Closing this section are the data of the runs using the 7942 volumes of mixed

elements. As in the previous meshes, the implicitness level does not change for the tested

thresholds, all runs behave equally and the CPU time is very similar. In this context, the largest

threshold value is set to be compared with the remaining formulations.

Figure 53 – Threshold AIM Oil production rates comparison for the 7,942 nodes mixed
elements mesh (QOFS-3comp case).

Figure 54 – Threshold AIM Gas production rates comparison for the 7,942 nodes mixed
elements mesh (QOFS-3comp case).

As concluding remarks for this case, we should highlight the QOFS-3comp problem
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Table 32 – Threshold AIM Simulation data comparison for 7,942 nodes mixed elements mesh
(QOFS-3comp).

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.019 900 0.025 5818.987

AIM Thr.=0.01 0.019 900 0.025 5792.901

AIM Thr.=0.001 0.019 900 0.025 5871.129

is able to achieve accurate results requiring very few implicit grid nodes without occurring on

instabilities issues. Therefore, as observed, large threshold values are enough to obtain good

performances.

B.2 QOFS-6comp 2D

Following, we analyze the effect of the threshold criterion on the AIM for the QOFS-

6comp problem with 2D meshes. As before, the first evaluated mesh is the quadrilateral elements

one. This time, the wide range of threshold values produces very different results. Figures

(55) and (56) show increasingly disagreement between the production curves as the threshold

criterion becomes larger. At the same time, Tab. (33) display a tendency for higher CPU times

and lower levels of implicitness as the threshold limit increases. These results indicate looser

switching criterion limits are allowing numerical instability to occur. This is specially easy to

see for the AIM Thr.=0.01 production rates, as they display oscillatory behavior around 1500

days. Given these considerations, the optimized threshold is set to 10−5.

Figure 55 – Threshold AIM Oil production rates comparison for the 7,021 nodes quadrilateral
mesh (QOFS-6comp case).

Proceeding, the 7449 volumes mesh results are displayed below. No major difference
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Figure 56 – Threshold AIM Gas production rates comparison for the 7,021 nodes quadrilateral
mesh (QOFS-6comp case).

Table 33 – Threshold AIM Simulation data comparison for 7,021 nodes quadrilateral mesh
(QOFS-6comp).

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.243 200 0.028 10927.447

AIM Thr.=0.01 0.243 200 0.028 10947.308

AIM Thr.=0.001 0.246 200 0.031 10348.358

AIM Thr.=10−4 0.265 200 0.173 5905.665

AIM Thr.=10−5 0.279 200 10.728 3741.849

between the curves is observed this time. The relationship between the threshold value and the

amount of FI nodes, however, is the same. Looser criteria lead to fewer implicit blocks. The

increasing computation time indicates, once again, a certain implicitness degree is required in

order to enhance performance. This way, the final threshold is set to 10−5.

Figure 57 – Threshold AIM Oil production rates comparison for the 7,449 nodes triangular
elements mesh (QOFS-6comp case).



104

Figure 58 – Threshold AIM Gas production rates comparison for the 7,449 nodes triangular
elements mesh (QOFS-6comp case).

Table 34 – Threshold AIM Simulation data comparison for 7,449 nodes triangular elements
mesh (QOFS-6comp).

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.276 200 0.027 5296.194

AIM Thr.=0.01 0.276 200 0.027 5234.471

AIM Thr.=0.001 0.277 200 0.029 4776.302

AIM Thr.=10−4 0.279 200 0.079 4285.803

AIM Thr.=10−5 0.282 200 3.550 4036.892

Finally, we show the 7942 volumes mesh results. Figures (59) and (60) testify for the

agreement between all curves, pointing no major accuracy issues arrive from the very different

criterion values. The same can not be said about performance. As in the previous meshes,

the larger thresholds are associated with slower runs. This time, however, the optimal value,

regarding both accuracy and performance, is 10−4.
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Figure 59 – Threshold AIM Oil production rates comparison for the 7,942 nodes mixed
elements mesh (QOFS-6comp case).

Figure 60 – Threshold AIM Gas production rates comparison for the 7,942 nodes mixed
elements mesh (QOFS-6comp case).

Table 35 – Threshold AIM Simulation data comparison for 7,942 nodes mixed elements mesh
(QOFS-6comp).

Formulation Avg. DT (d) Step FI% CPU time (s)

AIM Thr.=0.1 0.271 200 0.025 4766.653

AIM Thr.=0.01 0.271 200 0.025 4761.381

AIM Thr.=0.001 0.272 200 0.027 4541.203

AIM Thr.=10−4 0.274 200 0.074 4053.413

AIM Thr.=10−5 0.275 200 4.294 4133.210
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APPENDIX C – NEWTON-RAPHSON CONVERGENCE CRITERIA

This appendix is dedicated to present the Newton-Raphson convergence criteria

applied in all case studies. Tables (36) and (37) show the same values were used for the FI and

AIM formulations. It is important to highlight these are very restrictive tolerances chosen to

guarantee accuracy and stability. These limits do not necessarily reproduce advisable values for

real field application studies.

Table 36 – Fully Implicit (FI) convergence criteria for all case studies

Case study RP tol. Pres. var. tol. RN tol. Mole var. tol.

QOFS-3comp 2D 10−3 10−3 10−3 10−3

QOFS-6comp 2D 10−3 10−3 10−3 10−3

2D irr. 6comp 10−3 10−3 10−3 10−3

QOFS-6comp 3D 10−2 10−2 10−2 10−2

3D irr. 6comp 10−3 10−3 10−3 10−3

Table 37 – Adaptive Implicit Method (AIM) convergence criteria for all case studies

Case study RP tol. Pres. var. tol. RN tol. Mole var. tol.

QOFS-3comp 2D 10−3 10−3 10−3 10−3

QOFS-6comp 2D 10−3 10−3 10−3 10−3

2D irr. 6comp 10−3 10−3 10−3 10−3

QOFS-6comp 3D 10−2 10−2 10−2 10−2

3D irr. 6comp 10−3 10−3 10−3 10−3
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