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Closed hypersurfaces of S4
with two constant symmetric curvatures(*)

SEBASTIÃO CARNEIRO DE ALMEIDA(1)
and

FABIANO GUSTAVO BRAGA BRITO(2)

RÉSUMÉ. - Dans cet article comme dans ([ABl], [AB2]) nous etudions
les hypersurfaces closes dans la 4-sphere unite, dont deux fonctions
symetriques de courbure sont constantes. Si l’une est la courbure scalaire
et est non negative, alors l’hypersurface est isoparametrique. Il y a un
resultat analogue pour les hypersurfaces dont la courbure moyenne et celle
de Gauss-Kronecker sont constantes.

ABSTRACT. - In this paper as in ([ABl], [AB2]) we are concerned with
the study of closed hypersurfaces in the unit 4-sphere with two constant
symmetric curvature functions. If one of the assumptions refers to the
scalar curvature of the hypersurface M as a non-negative constant then
M must be isoparametric. There is a similar result for hypersurfaces with
constant mean curvature and constant Gauss-Kronecker curvature.

1. Introduction

Let M be a closed hypersurface of the 4-dimensional Euclidean sphere
54 with scalar curvature In a recent paper [AB2], we considered the
class ~’ of closed oriented 3-dimensional hypersurfaces with constant mean
curvature and constant scalar curvature immersed into the standard sphere
54. It was shown that if M E F and ~~ > 0 then M is isoparametric. For
future reference, we state this result explicitly.
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THEOREM 1.1 [AB2] . Let M be a closed hypersurface of the 4-sphere
,54. Suppose in addition that M has constant mean curvature Hand

constant scalar curvature ~ > 0. Then M is isoparametric

Recently, S. Chang [C] exhibited the following result.

THEOREM 1.2 [C].2014 Let M3 be a closed hypersurface of constant scalar
curvature 03BA in S‘4. . If M has constant mean curvature then h > 0.

Remark l. - If one combines Theorem l.l together with the non-
existence result in [C] one obtains a complete classification of the family ~’.

This paper is a continuation of our work in ([AB1], [AB2]) where we try
to characterize closed hypersurfaces of 54 with given geometric properties.
We recall that the second fundamental form of a hypersurface M3 C 54
is locally represented by a symmetric 3 x 3 matrix A. In this particular
case the second fundamental form is completely determined by the three
symmetric curvatures

j?i = trace A

H2 = H21 
- trace A2 2 

(1.1)

H3 = det A.

The functions Hi and H3 are called the mean curvature and the Gauss-
Kronecker curvature respectively. The function H2 is, up to a constant, the
scalar curvature of M. The hypersurface M is said to be isoparametric if
HI, H2 , H3 are constant. If we suppose that just one of these functions is a
constant then it is possible, in general, to find non isoparametric examples.
One way of getting those examples is to use equivariant geometry methods

[H]. The natural question at this point is what can be said about the family
r  s, of closed hypersurfaces M C S‘4 that satisfy = dHs = 0.

The case where Hi and H2 are constant functions was completely solved in

([AB2], ~C~ ) . This leaves open the following.

PROBLEM 1.2014 Determine for (r, s) ~ (1, 2).

In this direction we have established the following results.

THEOREM 1 .3. - Let M be a closed oriented 3-dimensional hypersurface
immersed in the standard 4-sphere. Suppose in addition that M has constant
Gauss-Kronecker K and constant scalar curvature 03BA > 0. Then M is

isoparametric.



THEOREM 1 .4. - Let M be a closed oriented 3-dimensional hypersurface
immersed in the standard 4-sphere with constant mean curvature Hand
constant Gauss-Kronecker curvature ~~ ~ 0. Suppose in addition that

- 3  H/K. Then M is isoparametric.

In Theorem 1.4 we have assumed that Hi and H3 were constant func-
tions. This case was partially treated in ([AB1], [R]). Using Theorem 1.4
we retrieved the following result.

THEOREM 1.5 [AB1].2014 Let M3 C 54 be a closed minimally immersed
hupersurface of ,S4 with constant Gauss-Kronecker ~i ~ 0. Then M is the
minimal Clifford torus

s2 ( ~/3) X s1 ( 1/3 C s4 .

2. Preliminary results

The basic object of study in this note is a symmetric quadratic differential
form which satisfies an identity of Coddazi-Mainardi type. In this section
we will introduce this quadratic form, prove an algebraic lemma and fix the
notation used throughout the paper.

2.1 Notations

Let M be a compact 3-dimensional Riemannian manifold with metric g,
volume form vol and scalar curvature K. Suppose a is a smooth symmetric
tensor field on M of type (0,2) and let A be the tensor field of type (1,1)
corresponding to a via g. In this section we will always assume that:

(I) the field of type (0, 3) is symmetric;

(II) = 0, r = 2, 3.

Here, as usual : M -~ R, denote the elementary symmetric functions
of the eigenvalues a2  A3 of the tensor field A. In particular
cri = trace A, = and 73 = det A.

Let 03C3 be the permutation given by r(l) = 2, cr(2) = 3, cr(3) = 1. We
now define

(2.1)



where i’ = and i" = ~(i~). Obviously

~ c2 = p . (2.2)
iEI

The following identity can be found in [W] :

. y2 = -4~3 f 3 + ~2 f 2 + 18 ~2~’3 f - 27 0-3 - 4~’2 . (2.3)

In (2.3), 72, T3 are constants and f : M -~ I~8 is the C°° function given by

f = trace A .

2.2 The structure equations

Now we will take a look at the structure equations on the open subset

Y = {p EM: Ai(p)  A2(p)  As(p)}

of M. From now on we will assume that 0. Note that ~i is smooth on

DEFINITION 2.1.2014 We say that (U, w) is admissible if:

(i) U is an open subset of Y; 
’

(ii) w = (wi, w3) is a smooth orthonormal coframe field on U;

(iii) 03C91 n 03C92 n 03C93 = vol on U ;

(iv) a= 03BBi03C9i ~ 03C9i.

Suppose (U, w) is admissible. As is well known, there are smooth 1-forms
wij on U uniquely determined by the equations

3

dwi = - L wij , + = 0 , , i , j E I . (2.4)
j’=l

To simplify the notation we let

03B8i = 03C9i"i’ .

Therefore

dwi = - A , i E I . (2.5)



Let the functions E I, be determined by

= 9i~j A + L A w~~ . (2.6)
jEI

Note that

~ (2.7)
iEI

The covariant derivative of the tensor field a is given
by 

’

= L aijkWi ® ® wk

where

L aijk03C9k = daij - 03A3 aim03C9mj - 03A3amj03C9mi. (2.8)
k m m

We are assuming that (U, c~) is admissible. Therefore aij = ~i . We
obtain from 2.8 that

d03BBi = 03A3 aiik03C9k, i ~ I , (2.9)
kEI

ci03B8i = 03A3ai’i"k03C9k , i E 7. . (2.10)
kEI

Let the functions i, j E I be determined by

ei = 03A3tij03C9j . (2.11)
jEI

We obtain from (2.9), (2.10), (2.11) and the symmetry of ~a that

c1t11 = c2t22 = c3t33 (2.12)
citii’ = Ài’i" (2.13)

citii" = Ài"i’ (2.14)

where the functions Àij, j E I, are determined by

d03BBi = L 03BBij03C9j on U . (2 .15)
jEI



Now (2.12) gives
y ~ tiiti’i’ = ~ Ci" ,

iEI iEI

It follows that

03A3 tiiti’i’ = 0 . (2.16)
iEI

On the other hand, we know that each pair (x, E M x R satisfies

the polynomial equation P(x, A) = 0 where

Differentiating the equation P(x, 03BBi) = 0, i = 1, 2, 3, we obtain

~P ~03BB(x,03BBi)d03BBi = 03BB2i d/.

This gives the following identities

03B3 d03BBi = -ci03BB2i d/, , i E I . (2.17)

Therefore

03B303BBij = ci03BB2ifj (2.18)

where d f = fiwi. From (2.13), (2.14) and (2.18), we obtain

ci’ti’i" = - 
ci"03BB2i" fi 

, ci"ti"i’ = - 
fi 

.C~/6~// == y C~/~//~/ 
2014 

y
Therefore

ti’i"ti"i’ = 03BB2i’03BB2i"f2i 03B32 (2.19)

and

ti’i" - ti"i’ = 
(ci’03BB 2i’ ci" - ci"03BB2i"ci’) - f i 

.

An elementary computation gives 

ti’i" - ti"i’ = c2i(03BBi03C32 - 303C33)fi 03B32. 



2.3 The 2-form ~

As in [AB2] there is one and only one 2-form ~ on Y such that if (!7,~)
is admissible then

on U .

~~~

Suppose (!7,~) is admissible. Using equations (2.6) and (2.7) we obtain

A = ~~ A A - ~-/ A ~ A ~~ - A ~- A + /~- vol.

Therefore

d03C8 = 03BA 2 vol - 03A303C9i A 03B8i’ ^ 03B8i".

~

Using (2.11) we get

== - 
~ 

~67

We also obtain from (2.11) that

d f = ~ vol

~7

so (2.16), (2.19), (2.20) gives

d03C8 = 03BA 2 vol + 03BB2i’03BB2i" f2i 03B32 vol
(2.21)

dl = 03A3 c2if2i 03BBi03C32-303C33 03B32 vol . (2.22)
~=7 ~

2.4 An algebraic lemma

The following result is the key point in our proof of Theorem 1.3

LEMMA 2.2. - Let M be a compact 3-dimensional Riemannian manifold
with metric g, volume form vol and scalar curvature 03BA ~ 0. Suppose a is a
smooth symmetric tensor field on M of type (0,2) and let A be the tensor
field of type (1,1) corresponding to a via g. Suppose in addition that:



~I~ the field of type (0, 3) is symmetric;

(II) d03C32 = d03C33 = 0;

~III~~3~0.

Then d03C31 = 0.

Proof of Lemma ~. ~

Without loss of generality we will assume that 0-3 = -1. From equation
(2.3) we may write

y2 = (~? o f > 0 (2.23)

where Q is the polynomial given by

Q(x) = 4x3 + ~2x2 - 18 T2.r - 4~2 - 27. .

0, then f(M) = and Lemma 2.2 will follow from the

continuity of f. . We will therefore assume that y ~ 0. We shall give the
proof of Lemma 2.2 in two different steps.

Step 1. . - ~y-1 {0) _ 
Using equation (2.21) and Stokes’ theorem we get

M (03BA 2 + |A-1(~f) 03B3| 2)vol= 0 .

Since 03BA ~ 0 it follows that d f = 0 on M and f = R is a constant

function.

Step 2. - -y-1 (0) ~ ~.
The discriminant of the polynomial is given by

D = 42 (~2 - 27) 3 .
We begin by assuming that 72  3. With this hypothesis the polynomial

has only one real root ,Q. Since Q o f > 0, it follows that f > ,C3 on M .
An easy computation shows that

Àl  0  a2  a3 . . (2.24)

For each 6; > 0 sufficiently small we set

X~=f 1~~~~+~]~ (2.25)



Obviously, .

Note that Yo 5~ 0. For each e > 0, we will choose a C°° function
: Il~ -~ II8 such that :

(a) r~~>0,0r~~l,
(b) = 0 if t  ,(~ + e/3,
(c) r~~ {t ) = 1 if t > ,t3 + ~,

and then we apply Stokes’theorem to

d ~(~lE ° - (~I~ ° f ) + ° f ) df n ~

to obtain

Y0 (~~ o f) d03C8 + / (~’~ o f) df = 0. (2.26)

From (2.21), (2.22) we get

{2.27)

dl 03C8 = 03A3 c2if2i 03BBi03C32+3 03B32 vol. (2.28)
iEI ~

It is easy to see that for i = 2, 3 and ~ ~ 0 sufficiently small

+3~1 1 on 

It follows from (2.26), (2.27) and (2.28) that

0 ~ Y0 (~~ o f ) d03C8 ~ - / (~’~ o f ) c2103BB103C32f21 03B32 vol. (2.29)

An argument analogous to one given in [AB2] shows that

lim / o f ) d03C8 = 0 . (2.30)

From this it follows that f : M ~ R is a constant function which is a
contradiction.

We next assume that = 3. In this case the polynomial is given
by Q(x) = 4(x + 3)2(~ - ~3), where ,~3 = 15/4. Since y2 = 0 it follows



that f > ,Q on M. The proof proceeds exactly as before and also leads to a
contradiction.

The remaining case ~2 > 3 is analogous and will not be done here.

3. Proof of Theorem 1.3

Let : M ~ S4 be an isometric immersion of M into the standard 4-

sphere. We suppose in addition that M has constant scalar curvature K > 0
and constant Gauss-Kronecker curvature K. Choose a unit normal vector

field v along x, and denote by h the second fundamental form associated
to v. If the Gauss-Kronecker curvature ~~ ~ 0, Theorem 1.3 will follow
directly from Lemma 2.2. Suppose now that !{ == 0. With the notation of
section 2, we have

.~’2 - ~2 (. f 2 ’_ 40’2 ) ] ~ .

The equality is reached only at points p ~ Y, where as in section 2

Y = {p C M Ai  A2  As} .

We will assume first that 0  ~  6. In this case y2 ~ 0 and M = Y.
Using (2.21) and Stokes’s theorem we get

~ = 0 = /2 . (3.1)

Let :r* : ~Vf -~ 54 be the associated Gauss map of x. It is defined pointwise
as the image of the unit normal translated to the origin of R~. Since K = 0
we have that ~2 - 0 and ÀIÀ3 = -3. Therfore x* is a map of rank two.

It follows that the image x*(M) is a regular surface ~2 C S4 . Using (2.8)
and the fact that ~2 = 0 it is not difficult to see that M is foliated by great
circles C ,S‘4. These great circles are the lines of curvatures associated
to the principal curvature À2 = 0. One can see easily that M3 is the tube
of geodesic radius over ~2 in 5‘~ . We have the following commuting
diagram 

’



Here 7r is the natural projection, N1 is the unit normal bundle of £ and
03A6 is the polar mapping given by 03A6(p, v) = v (see [L]). Let (p, v) E N103A3 and
denote by v), i = 1, 2, the principal curvatures of ~2 in the normal
direction v. Since = M3 it follows that

03BA1(p,03BD) = 1 03BB1(03BD), 03BA2(p,03BD) = 1 (v) 
By a standard argument we can find a normal direction v E such

that /~i + /c2 = 0. Therefore Ai = -B/3 and ~3 = ~/3. To finish this part
of the proof of the theorem we note that from (3.1) it follows that f 2 = 0.
This implies that Ai and A3 are constant in each leaf. It follows that Ai
and A3 are constant on M. Therefore M is Cartan’s minimal hypersurface
of S4.

We will assume now that ~ > 6. With this assumption it is easily seen
that M is not an isoparametric hypersurface and 0-2 > 0. Therefore

,f 2 - ~2 ~ o

where 0  ~3 = Without loss of generality we will assume that f > ~3.
This gives in particular that 0 = Ai  a2  a3- Using (2.22) we see that
for any C°° function ~ : R ~ IR:

d ((~ o = (o .f ) + f ) 2 
’l vol. (3.2)

iEI ~

Since f (M) ~ ~~3~ we may choose a sufficiently small 6; > 0 and 0  r~  1
so that:

(a) ~’>-o~~~f~o~
(b) = 0 if t  ,Q + ~/3;
(c) 

Applying Stokes’ theorem to (3.2) we get a contradiction.

Finally we will assume now that x M --~ S’~ is an isometric immersion
with scalar curvature - 6. Using Ricatti type equation coming from
Codazzi equations it is possible to prove the impossibility of foliating (even
locally) M3 by totally geodesic 2-spheres. This reduces the case 03C32 = K = 0
to totally geodesic 3-spheres (see for example [BD]).



4. Proof of Theorem 1.4

Let x M 2014~ ~‘~ be an immersion into the standard 4-sphere S4 satisfying
the hypothesis of Theorem 1.4 and let x* : N~ --~ 54 be its associated Gauss

map. The principal curvatures of a?* are given by k*i = i = 1, 2, 3,
where k1, k2 and k3 are the principal curvatures of M [L]. The scalar
curvature and the Gauss-Kronecker curvature of x* are constant and given
by:

03BA* = 6 + 2H , >o, K* = 
1 
,. (4.1)

It follows from Theorem 1.3 that the mean curvature H* = (K - 6) /2K of
x* is a constant and M is isoparametric.

5. Examples and further comments

The results presented in this work in some sense characterize the isopara-
metric hypersurfaces of the 4-dimensional sphere ,S4. From well known

results we know that in 54 there are only three families of isoparametric
hypersurfaces. We will now describe explicitly those hypersurfaces.

Example 1 (Spheres). - Let x : ,S’3{r) -~ S4 be the isometric immersion
given by x(p) = (p, s), where s2 + r2 = 1. It is not difficult to see that

M = S‘3 (r) is all umbilic with principal curvatures l~i = s/r, i = 1, 2, 3.
An elementary computation shows that the mean curvature (H), the scalar
curvature (K) and the Gauss-Kronecker curvature satisfy the following
relations:

H = 3K1/3, 03BA = 6(1 + K2/3) = 6 + 2H2 3 . (5.1)

Example 2 (Clifford tori). - Let x S’2(r) x S’1 (s) -~ 54 be the isometric
immersion given by X(p, q) = (p, q). It has principal curvatures given by
k1 = -r/s, k2 = k3 = s/r. The mean curvature (77), the scalar curvature K
and Gauss-Kronecker curvature Ii of the immersion x satisfy the equations:

H=_2~ + ~> 1 > ~=2(1+A~)=3+~~~~. . (5.2)



Example 3 (Cartan’s isoparametric family). We must consider first the
minimal immersion ~ : 5~(B/3) -~- 5’~ given by

~ ( x ~ y~ z ) - 1 ( xz > y z ~ 1 2 12 2 ~ 1 ( x2 + y 2 - 2) .
This defines an imbedding of the real projective plane into 54. This real

projective plane embedded in 54 is called the Veronese surface. Let N1 {~)
denote the unit normal sphere bundle of the Veronese surface E. We can
express Nl {~) as

~Vi(E) == .

At {x, v) E Nl {~) the principal curvatures of the Veronese surface are
given by v) = -~2 {x, v) = ~/3. Therefore the Veronese surface
is a minimal submanifold of 54. We now take the polar mapping ~L~:

~ : N1 { ~ ) -~ ,5‘4

given by ~(x, v) = v. The principal curvatures of the immersion ~ are
- 0, B/3. Finally, we define the isoparametric family ~t : N1 {~) ~ ,S’4
by

v) = cost ~{x, v) + sint x .

The principal curvatures of the immersion ~t are:

3 + tan t 1 - 3 tan t, 

tan t - 3 1 + 3 tan t
, tan t (5.3)

An easy computation shows that the mean curvature (Ht), the scalar
curvature Kt and Gauss-Kronecker curvature fo the immersion ~t
satisfy the following interesting relations:

, . (5.4)

In [CDK], Chern-do Carmo-Kobayashi asked whether the value of the
scalar curvature K M of a closed minimal hypersurface M C would
determine the hypersurface up to a rigid motion of ,5‘n+1. In their conjecture
they assumed that ~~ was a constant function. They also asked if the values
of the scalar curvature ~~ was a discrete set of real numbers. To solve the

conjecture of Chern-do Carmo-Kobayashi for 3-dimensional hypersurfaces



one just has to combine Theorem 1.1 together with the non-existence result
in [C].

~=s+3H2 ’

8

"~ ~=3-1-4 (Hz~~I 8+~I ~
2

K=0

- 4 -2 ~ 0 2 H 4

Fig. 1 

Remark 2. - Figure 1 shows the possible values for the mean curvature

(H) and for the scalar curvature ~~) of a closed hypersurface M E 

For fixed n 2:: 3, we still denote by the colection of all closed

hypersurfaces M C having dHr = dHs = 0. The conjecture above is
a particular case of the following more general question. _

Question 1. . - Determine for all r ~ s.

In this note we considered only the case n = 3. It is interesting to note

that, even in this particular case, Question 1 is not completely solved.

2s

~~~ 2a ~‘s(I-t-K2~3~

B ~~/~ x = 2 (1 + K2)
"’""’" ~==0

- 4 -2 ~ 0 2 K 4

Fig. 2 (K, r~~



Remark 3. . - Figure 2 shows the possible values for the Gauss-Kronecker
curvature and for the (unnormalized) scalar curvature (K) of a closed
hypersurface M E ~’2,3 when ~ > 0.

H=_3K H=3Kl/3

Fig. 3 , H)

Remark 4. - Figure 3 shows the possible values for the Gauss-Kronecker
curvature and for the mean curvature (H) of a closed hypersurface
M E ~’1,3. Only the shaded region was not considered in Theorem 1.4.
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