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RESUMO

Um dos requisitos para os sistemas de quinta geração (5G) é o aumento da capacidade de
transmissão em até 1000 vezes ao longo da próxima década. Para atingir esse objetivo, as redes
celulares devem se tornar mais densas (relays,picocells, femtocells) e menores (diminuição da
área de cobertura), o que pode provocar um aumento da interferência entre células, diminuindo o
ganho de taxa esperado. Outra característica presente em redes da próxima geração é o aumento
da largura de banda das sub-portadoras, o que abre espaço para o uso da duplexação por divisão
temporal (TDD) devido à sua flexibilidade no uso do espectro. Desta forma, o TDD dinâmico é
a escolha mais natural, pois cada base pode escolher sua configuração baseada em seu próprio
tráfego, adaptando-se às necessidades de seus usuários em cada célula. Entretanto, caso duas
células transmitam em direções distintas, além das interferências intra e intercelular, dois outros
tipos de interferência ocorrem: downlink (DL)-uplink, entre bases, e UL-DL, entre usuários.
Desta forma, deve existir algum tipo de gerência de interferência para que a performance do
sistema não seja degradada. Neste contexto, esta tese aborda as técnicas de beamforming (BF),
controle de potência (CP) e alocação de streams para gerenciamento de interferência em redes
celulares na busca de responder aos seguintes questionamentos: “Como gerenciar a interferência

em redes com TDD dinâmico de forma distribuída?”, “Para sistemas com múltiplas antenas,

como determinar a melhor alocação de streams para cada usuário?”. Para que estas perguntas
sejam respondidas, este trabalho é dividido em três partes. A primeira parte se refere a um
estudo do estado da arte em que algoritmos clássicos de BF e CP são comparados a algoritmos
existentes na literatura através de simulações computacionais a fim de motivar o uso de soluções
distribuídas e mais efetivas para gerência de interferência. Já a segunda parte deste trabalho
aborda redes que operam com TDD dinâmico, em que são propostos dois novos algoritmos de
BF distribuídos baseados na abordagem de preço (pricing). Os algoritmos são comparados com
as abordagens clássicas descritas na primeira parte da tese para usuários com uma antena (MISO)
ou múltiplas antenas (MIMO). Também é apresentada uma análise de sinalização, convergência
e complexidade para os algoritmos propostos. Por fim, a última parte aborda redes MIMO em
que um novo algoritmo baseado na abordagem gananciosa (greedy) para resolver o problema de
alocação de streams é proposto. É mostrado através de simulações que o algoritmo proposto é
melhor do que qualquer esquema fixo de seleção e apresenta um desempenho muito próximo da
solução ótima, possuindo menor complexidade.

Palavras-chave: Beamforming, Gerência de Interferência, TDD dinâmico



ABSTRACT

The next fifth generation (5G) systems expect a traffic volume around 1,000 times greater
than fourth generation (4G) systems. In order to reach this requirement, the cellular networks
need to be denser and smaller which can lead to a high intercell interference, reducing the
expected performance gains. Another feature for next generation networks is the increasing of
sub-carriers bandwidth , which motivates the use of time division duplexing (TDD) approach
due the flexibility in the use of the available spectrum. Therefore, the dynamic TDD is a
natural choice for such networks due the capability of each base station (BS) to choose its own
transmission direction adapting to users’ traffic fluctuations. However, if two BSs transmit in
opposite directions in addition of intra and intercell interference there will be downlink (DL)-
uplink(UL) interference, between BSs, and UL-DL interference between users. Thus, it must
exist some kind of interference management to prevent the system performance loss due the
presence of interference. In this context, this thesis considers the beamforming (BF), power
control (PC) and stream allocation techniques for interference management in order to answer the
following questions “How to manage with the interference in dynamic TDD networks?”, “How
to determine the best stream allocation for multiple-input multiple-output (MIMO) systems?”.
To answer these questions we divided this works in three parts. The first part studies the BF state
of art where we compare the classical BF and PC algorithms with some approaches existing in
literature in order to motivate the usage of distributed solutions for interference management.
The second part addresses the interference problem for dynamic TDD networks, where we
propose two novel distributed algorithms based on pricing approach. We compare our proposed
algorithms with the classical BF approaches for multiple-input single-output (MISO) and MIMO
systems. We also present an analysis regarding to signalization, convergence and complexity
aspects. The last part addresses the stream allocation problem for MIMO networks where we
present a novel greedy based algorithm which finds the best stream allocation that outperforms
any fixed scheme and has a small performance gap when compared to the optimum solution,
with less complexity.

Keywords: Beamforming, Interference Management, Dynamic TDD
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1 INTRODUCTION

This is an introductory chapter where we present the context on this thesis in Section
1.1. After that, we present the overview and our main contributions in Section 1.2, followed by
the thesis products on Section 1.3. Finally, on Section 1.4, we present the notation that we will
use through this thesis.

1.1 Thesis Context

Mobile wireless networks will experience in the next years a large growth in numbers
of devices and data rate. For 5th generation (5G) networks, it is estimated that the number of
devices will be around 50 billion [1] and the expected traffic volume will be 1,000 times greater
than nowadays [2].

With these requirements, the networks become smaller (decreasing its coverage) and
denser in space (relays, picocells, femtocells) or frequency (full channel reuse for e.g.). This
leads to a traffic load imbalance between users, as the signal transmitted to a specific user is
received by the others within the transmission range, due to the broadcast nature of the channel.

To this end, dynamic time division duplexing (TDD) cellular systems are used
to adapt the number of uplink and downlink time slots in each cell to dynamically change
cell-specific traffic demands [3]. The long-term evolution (LTE) systems standardized by the
3rd generation partnership project (3GPP), for example, support the so-called enhanced inter-
ference mitigation and traffic adaptation (eIMTA) schemes to enable the dynamic allocation of
subframes to uplink (UL) and downlink (DL) transmissions [4]. Such dynamic TDD systems
better support asymmetric and fluctuating traffic demands than systems with fixed subframe
allocations in both homogeneous and heterogeneous environments [5]. This gain increases as the
traffic asymmetry increases, and can reach up to 200 percent packet throughput gains in a 10
MHz LTE system under realistic assumptions [6].

The use of dynamic TDD has influence in the network dynamics giving rise to
common types of interference including base station (BS)-to-BS and UE-to-UE interference
mainly due to conflicting TDD configurations in neighbor cells, synchronization errors, and also
due to the lack of synchronicity among neighbor cells [6, 7], which limit the network throughput
[8]. Recognizing the inherent tradeoff between adapting the dynamic time division duplex
(DTDD) configuration to the prevailing traffic demands and causing new types of interference in
neighbor cells, the 3GPP has specified measurement reporting and signaling support for eIMTA
schemes in urban, rural and indoor environments [3, 4].

In this context, some key aspects on interference management arise, among them we
can cite power control (PC), beam design and interference aligment (IA). Optimize the power
consumption of BSs and UEs is one of the main keys to enhance the network performance [9].
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For a downlink transmission perspective, the great benefit is to mitigate the interference, since
the received power for the unintended users is reduced. For the uplink point of view, besides
reducing the interference, PC saves the user’s battery which is a strong constraint for high data
applications.

The beam design, also referred as beamforming [10], is a powerful tool for interfer-
ence management using multiple antennas features. It seeks to increase the signal force into a
desired direction while suppressing signal power for the other directions which increases the
data rate and reduces or even eliminates interferences.

The IA [11, 12] is another technique that aims to eliminate the interference which
takes advantage of MIMO systems. It seeks to divide the transmission space into two subspaces:
in one subspace it tries to confine the most part of the interference where the other is (almost)
interference free for user transmission.

Therefore, the interference management plays a crucial role for guaranteeing the
quality of service (QoS) for different users and applications, given that the cellular networks are
expected to be strongly interference-limited.

1.2 Thesis Overview and Contributions

Developing algorithms and strategies to deal with interference is a topic of interest
for 5G networks, since it limits the amount of data that can be transmitted over a channel. In this
thesis, we aim to present and develop solutions and algorithms for interference mitigation in such
systems, in special by exploring beamforming techniques for IA and dynamic TDD systems.
The outline of each chapter is presented as follows.

In Chapter 2, we address the beamforming problem. We present a background about
beamforming, including the state-of-art and its strategies, which is divided into two parts. The first
one takes into account the classical beamforming strategies: maximum ratio transmission (MRT),
zero-forcing (ZF) and minimum mean square error (MMSE). The second part presents three
centralized beamforming optimization problems: power minimization, sum-rate maximization
and an energy efficiency (EE) beamforming. Evaluations comparing some of these techniques
are provided and a discussion is presented where we conclude that distributed beamforming
techniques are the best option for interference management.

In Chapter 3, we address the dynamic TDD problem. We start with a description
about the dynamic TDD networks by presenting the motivation behind it and comparing with
the classical TDD networks. We also introduce the interference problem related to such kind of
networks, where we come up with a state-of-the-art in interference management area. We present
the dynamic TDD multi-user multi-cell multiple-input single-output (MISO) system model and
we describe the downlink beamforming (BF) problem related to this scenario. We show that the
UL users are strongly affected by DL transmission, then, to cope with that, we make the use of
interference pricing where we penalize the DL users by the amount of interference they cause
in all network users, including the downlink ones. To this end, we developed two algorithms,
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a nearly optimal approach where we relax the rank constraint that can run either in parallel or
sequential way solved with the help of the CXV routine and a sub-optimal heuristic which still
achieves a better performance than the zero-forcing (ZF) BF, converging in less iterations than
the first considered approach. We present results showing the benefits of the proposed approaches
and we include a section where we discuss about the convergence, complexity and signaling
overhead issues.

In Chapter 4, we address the dynamic TDD MIMO problem. We extend the problem
in Chapter 3 by considering multiple antennas at the UE side. We rewrite all the system model,
equations and the optimization problem for the MIMO scenario. We present simulations results
where we vary the number of antennas at the UE and we show the benefits of a multiple antenna
UE for the dynamic TDD scenario.

In Chapter 5, we address the IA problem. We present the classical strategies to
perform the beamforming for K-user MIMO systems: closed-form solution, MMSE and max-
signal-to-interference-plus-noise ratio (SINR). We also address the degrees of freedom (DoF)
and feasibility issues which still are an open problem. Based on that information, we come up
with a greedy stream selection algorithm (GSSA), where it is a less complex alternative to the
exhaustive search to determine the best stream allocation, and, consequently, the number of
DoF for the IA problem. The developed algorithm is a suboptimal approach, but we show by
simulations that it approximates the best solution with less complexity.

In Chapter 6, we summarize the main conclusions obtained along the thesis. Fur-
thermore, we point out the main research directions that can be considered as an extension of the
study performed in this thesis.

1.3 Thesis Products

The first part of this thesis which is related to Chapters 2 and 5 was developed under
the context of Ericsson/UFC technical cooperation projects

• UFC.35: Interference Alignment Techniques for Wireless Networks, August/2012 -
July/2014;

• UFC.42: Interference Management for Super Dense Scenarios, October/2014 -
September/2016,

in which a number of three technical reports, one in UFC.35 and two in UFC.42 have been
delivered and the following conference paper was produced:

• F. R. V. Guimarães, D. C. Moreira, W. C. Freitas Jr., Y. C. B. Silva, and F. R. P.
Cavalcanti, “Greedy algorithm for stream selection in a MIMO interference channel,
in Proc. Simpósio Brasileiro de Telecomunicações, Sep. 2015.
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The second part of this thesis is related to Chapters 3 and 4 which includes a five-
months Ph.D. internship at KTH/Ericsson Research, Stockholm/Kista where we developed under
the context of the following Ericsson/UFC technical cooperation projects

• UFC.42: Interference Management for Super Dense Scenarios, October/2014 -
September/2016,

• Internship Report, Pricing-based Algorithm for dynamic TDD Networks - Au-
gust/2016.

• TIDE5G: Dynamic Time Division Duplexing Evolution for 5G Systems Novem-
ber/2016 - October/2018,

in which a number of three technical reports, one in UFC.42 and two in TIDE5G have been
delivered and the following journal paper was produced:

• F. R. V. Guimarães, G. Fodor, W. C. Freitas Jr., and Y. C. B. Silva, “Pricing-based
distributed beamforming for dynamic time division duplexing systems, IEEE Trans-

actions on Vehicular Technology, vol. 67, no. 4, pp. 3145-3157, April 2018. doi:
10.1109/TVT.2017.27 77477

1.4 Notation

Throughout this thesis, bold lowercase letters (a) represent a vector and bold upper-
case letters (A ∈Ci×j) are used to denote a matrix drawn from the i× j matrix space defined on the
complex field. AH represents the Hermitan of a matrix A, A[?k] is used to denote the k-th column
of a matrix A, R{·} corresponds to the real part of a number. |A| is the cardinality of a set A.
E[·] and Tr[·] are the expectation and trace operators, respectively, while dom(a) represents the
domain of a function a and diag(·) creates a block-diagonal matrix. Finally, N(0, N0) represents
a Gaussian distribution with zero mean and variance N0.
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2 COORDINATED BEAMFORMING OVERVIEW

In this chapter our focus is to present an overview of some coordinated beamforming
(CBF) strategies, from which we gain some insights for developing novel algorithms or strategies
for interference management in the next chapters. First, we present a general system model for
the MISO-interference channel (IC) in Section 2.2. After that, in Section 2.3.1 we describe the
classical BF approaches (MRT, ZF and MMSE), which we will make user in next chapters. Then,
three different beamforming approaches are discussed where, for each one, we present their
corresponding problem formulation, algorithm description and some illustrative results. The
strategies are mainly characterized by their optimization objectives, which are based on power
minimization, in Section 2.3.2, sum-rate maximization, in Section 2.3.3, and energy efficiency,
in Section 2.3.4. Finally, some conclusions and perspectives are presented in Section 2.4.

2.1 Introduction

As mentioned in Chapter 1 that the interference management plays a crucial role for
5G systems, given that the cellular networks are expected to be strongly interference-limited. In
order to achieve performance gains, in this kind of scenario, some techniques were studied in the
literature to increase the transmit data rates, save power consumption or maintain a certain QoS
level for the network users.

Among these techniques we can cite the dirty paper coding (DPC) [13, 14, 15] and
beamforming [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The DPC technique performs
a pre-cancellation of the known interference to achieve system capacity. However, DPC is a
complex approach and several strategies have been studied to overcome this issue. Multi-user
beamforming, then, has been widely studied because it can provide a good system performance
but with lower complexity than DPC.

Beamforming refers to a spatial filtering applied on transmitter and/or receiver in
order to favor some directions over others [10]. Hence, the interference in a MIMO-IC can
be mitigated and system performance can be increased. The beamforming techniques can be
classified into two main groups, namely coordinated and uncoordinated [29]. In the uncoordinated

beamforming techniques, the beams are calculated in each transmitter without any cooperation
among them. This approach leads to a low complexity algorithm but it does not yield the best
solution.

With coordinated beamforming (CBF) there are multiple cells containing multiple
antennas, which jointly optimize their respective beamformers to improve the overall system
performance. In particular, the data stream for each user only needs to be (pre-)processed at its
own BS (and not across all BSs as it would be the case with joint processing). Furthermore, the
BSs do not need to be symbol-synchronized, as required with signal-level coordination. For 5G
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scenarios, where the cells have smaller radius and become denser, the cooperation among BSs is
the best choice to fulfill the system specifications.

Figure 2.1 shows how the transmit beamforming process occurs. The user’s data is
multiplied by a pre-determined weight,wn, in each antenna, also referred as precoders, before
it is sent over the channel. This multiplication creates a constructive interference in the user’s
desired direction and a destructive interference to the unintended directions.

Figure 2.1 – Beamforming process.

Data

Source: Created by the author.

In the literature there have been some misconceptions regarding the definitions of
the different approaches of CBF. In order to make it clear throughout the present thesis, we shall
define each approach as follows

Definition 1 A centralized CBF approach refers to a central node1 that collects all channel

information from the coordinated nodes (via back-haul link, for example) and then performs all

precoder calculations for all transmitters in the network. Afterwards, it sends to all transmitter

nodes their respective beamforming vectors, which will be used for transmission.

Definition 2 A decentralized CBF approach refers to the idea that each BS calculates its own

precoders taking into account the global channel gains, i.e., the channel gains from the UEs to

their own BSs, also known as global channel state information (CSI) [30].
1 This node can be a cloud radio access network architecture [22].
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Definition 3 In a distributed CBF approach, each BS calculates its own precoders but it only

uses local information, i.e., information concerning interfering links are not shared among BSs.

Distributed algorithms are the practical solution for next generation networks, since
they only require local CSI and can be performed in a distributed way by each BS. Many works
have designed beamforming algorithms for co-channel interference mitigation. The works differs
from each other in terms of optimization problem and algorithm design. The beamforming
schemes for the interference channel can be categorized as follows:

• Power Minimization [16, 17];

• Rate Maximization [18, 19, 20];

• Energy Efficiency (EE) [21, 22];

• Interference Alignment (IA) [23, 24, 25, 26, 27];

• Other optimization problems [28].

In power minimization beamforming schemes, the main objective is to design the
precoders which will minimize the network consumed power subject to some constraints. The
work in [16] shows the relationship between downlink and uplink to design a beamforming
based on power constraints per antenna for a minimum SINR threshold. The authors in [17] have
extended this work by developing an efficient algorithm that finds the global optimal through a
jointly optimization which can also be implemented in a distributed way if TDD is considered.

The rate-maximization algorithms aim to design the beamforming in order to maxi-
mize the network throughput. The authors in [18] have proposed a coordinated linear beamform-
ing for the multi-cell downlink interference channel. By having a set of coordinated BSs, the
authors have found the optimum beamforming vectors that maximize the instantaneous weighted
sum-rate. Even though they have not considered a distributed algorithm on their work, they have
shown that the proposed algorithm could be implemented in a distributed way. The works in [19,
20] maximize the network throughput based on the pricing idea where the users are penalized by
the amount of interference they cause on each other. The authors in [19] developed a sub-optimal
approach that outperforms both MRT and ZF in terms of sum-rate while the authors in [20]
proposed a decentralized beamforming that reduces the amount of exchanged information among
the network nodes.

Works in [21, 22] aim to maximize the energy efficiency for MISO networks. In
[21] the authors have investigated an EE coordinated beamforming in a decentralized way per
BS while the work in [22] designed a suboptimal procedure based on the Karush-Kuhn-Tucker
(KKT) conditions to optimize the global EE.

IA algorithms have the objective to separate the user signal and the interference
into two different subspaces. The authors in [23] were the first to propose a beamforming
approach for the IA problem by designing a closed-form solution for the 3-user pair interference
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channel. Motivated by the work in [23], Shen et al. have investigated the application of ZF and
MMSE precoders for a 2-user pair MIMO system in [24]. The K-user MIMO networks were also
widely studied by [25, 26, 27], where each of these works have proposed different beamforming
approaches for this kind of scenario. The SINR maximization algorithm was studied in [25] and
[26] while [27] proposed a beamforming design via alternating minimization algorithm.

As for [28], the authors have designed a distributed beamforming in order to maxi-
mize the utility function and solve the rate outage constrained problem for a MISO channel
assuming only channel distribution information (CDI) known to the transmitters.

The main objective of this chapter is to present an overview about the beamforming
strategy by describing the most known approaches in literature MRT, ZF and MMSE and
optimization problems related to beamforming design: power minimization [17], sum-rate
maximization [18] and energy efficiency [22]. For the last three, we present the algorithm
description for each of them and we present simulation results which we compare with the
MRT approach. From these results, we can draw some insights for the next chapters where we
make use of a classical beamforming approach, on Chapter 5, and develop new beamforming
algorithms, on Chapters 3 and 4, to deal with interference and maximize the network capacity.

2.2 Beamforming Scenario

The considered scenario for CBF is a MISO system composed by M coordinated
cells, where each BS m, with m = 1, 2..., M, is equipped with NBS antennas to simultaneously
transmit its information to the users. We also consider that each cell has K users, where (m, k)
represents the k-th user in cell m. This scenario is illustrated in Figure 2.2, where we have 7 cells
and 3 users as an example.

Further, we define a set containing all usersK , {(m, k), k ∈ {1, . . ., K}, m ∈ {1, . . ., M}}.
By assuming that the channels are constant during a certain time interval, the received signal at
user (m, k) is written as

ym,k =h(m,k),mwm,kxm,k︸               ︷︷               ︸
desired signal

+

K∑
j=1, j,k

h(m,k),mwm, jxm, j︸                      ︷︷                      ︸
intracell interference

+

M∑
d=1,d,m

K∑
j=1

h(m,k),dwd, jxd, j︸                           ︷︷                           ︸
intercell interference

+ zm,k︸︷︷︸
noise

, (2.1)

where h(m,k),m ∈ C1×NBS represents the channel vector from transmitter m to user (m, k), zm,k ∈ C
denotes circular complex white Gaussian noise with distribution N(0, σ2

m,k), and xm,k represents
the complex signal data sent to user (m, k) using the transmit precoder wm,k ∈ C

NBS×1.
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Figure 2.2 – Multi-cell multi-user scenario. In this figure, there are 7 cells with 3 users each.

Source: Created by the author.

Then, the SINR for user k connected to a BS m can be given as

γm,k =
|h(m,k),mwm,k |

2∑
j, j,k
|h(m,k),mwm, j |2+

∑
d,d,m

∑
j
|h(m,k),dwd, j |2+σ

2
m,k

. (2.2)

For simplicity of notation we have omitted the lower and upper sum limits in (2.2),
since we consider throughout this chapter that k, j ∈ {1, . . ., K} while m, d ∈ {1, . . ., M}.

The beamforming design problem is related to optimizing a given function under
certain constraints. We will next present three different problems, which are formulated and
solved using centralized beamforming approaches found in the literature.

2.3 Overview of Beamforming Techniques

In this section we review and describe the most common linear beamforming ap-
proaches in literature to deal with interference in the system model described in Section 2.2.

2.3.1 Classical Beamforming Approaches

2.3.1.1 Maximum Ratio Transmission (MRT)

The MRT, also called as matched channel, maximizes the received signal-to-noise
ratio (SNR) for each user, it means:

max
wMRT

m,k

|h(m,k),mwMRT
m,k |

2. (2.3)
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Then, the MRT transmit precoder for user (m, k), wMRT
m,k , can be defined as [31]:

wMRT
m,k =

hH
(m,k),m

αp
, (2.4)

where αp = h(m,k),mhH
(m,k),m.

2.3.1.2 Zero Forcing (ZF)

The main goal of the ZF beamforming is to eliminate the intra-cell interference,
without taking into account the noise. For a given user, it is done by making all the other users in
the null space of the precoder. This is written in a mathematically way as

h(m, j),mwZF
m,k = 0 , ∀j , k. (2.5)

Using a matrix notation, this condition is equivalent to

HmWZF
m = diag(

√
pm), (2.6)

with

Hm , [hT
(m,1),m, h

T
(m,2),m, · · · , h

T
(m,K),m]

T, (2.7a)

Wm , [wm,1, wm,2, · · · , wm,K], (2.7b)
√

pm , [
√
pm,1,

√
pm,2, · · · ,

√
pm,K], (2.7c)

where pm,k is the transmit power for user (m, k), respecting the power constraint, with Tr[wm,kwH
m,k]=

pk, ∀k connected to m. Therefore, the ZF precoder for the user (m, k), wZF
m,k, can be obtained as

[32]:

wZF
m,k =

hH
(m,k),m[HmHH

m]
−1

αp
, (2.8)

where alphp = |hH
(m,k),m[HmHH

m]
−1 |2.

2.3.1.3 Minimum Mean Square Error (MMSE)

The MMSE beamforming seeks to minimize the mean square error (MSE) which is
the difference between the received and decoded symbols described as

MSE =
∑
k

∑
m

E[‖ym,k− xm,k‖2]. (2.9)
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Replacing (2.1) in (2.9), we have

MSE =
∑
k

∑
m

E

‖h(m,k),mwm,kxm,k+
∑
j, j,k

h(m,k),mwm, jxm, j+

∑
d,d,m

∑
j

h(m,k),dwd, jxd, j+ zm,k− xm,k‖2
]
. (2.10)

Hence, the MMSE optimization problem for a user (m, k) is given by

min
wm,k

∑
j, j,k

|h(m,k),mwm, j |
2+

∑
d,d,m

∑
j

|h(m,k),dwd, j |
2+σ2

m,k− |h(m,k),mwm,k |
2

subject to wH
m,kwm,k ≤ pm,k.

(2.11)

Hence, the MMSE precoder, wMMSE
m,k , is given by [33]:

wMMSE
m,k =

(
M∑

m=1

∑K
k=1 hH

(m,k),mh(m,k),m+ Iσm,k

)−1
hH
(m,k),m

αp
, (2.12)

where αp =

�����( M∑
m=1

∑K
k=1 hH

(m,k),mh(m,k),m+ Iσm,k

)−1
hH
(m,k),m

�����2.

2.3.2 Power Minimization

2.3.2.1 Problem Formulation

In the power minimization problem, proposed and solved by [17], the objective is to
coordinate the BSs across multiple cells in a multi-antenna beamforming system. Hence, they
can jointly optimize their respective beamformers to improve the overall system performance.
The used criterion is to minimize the weighted total transmit power under SINR constraints. The
problem can be written mathematically as:

argmin
wm,k

∑
m

∑
k

αm,kwH
m,kwm,k

s.t γm,k ≥ Γ̂m,k, ∀k ∈ K, (2.13)

where Γ̂m,k represents the SINR (signal-to-interference-plus-noise ratio) target for user k in cell
m and αm,k is the weight factor.

The constraints in (2.13) is non-convex. However, they can be transformed into a
second-order-cone constraint, so the problem can be solved by convex optimization.

In order to solve the optimization problem the downlink-uplink duality is used.
According to the duality theorem, the same amount of power used to achieve a given SINR value
for the downlink is exactly the same for the uplink, considering the same set of SINRs, where
the uplink channels are found by reversing the inputs and outputs.
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The Lagrangian dual of the optimization problem in (2.13) can be written as:

argmin
λm,k

∑
m

∑
k

λm,kσ
2
m,k

s.t Λm,k ≥ Γ̂m,k, ∀k ∈ K, (2.14)

where

Λm,k =max
ŵm,k

λm,k |h(m,k),mŵm,k |
2∑

d

∑
j, j,k

λd, j |h(d, j),mŵm,k |2+αm,k‖ŵm,k‖2
. (2.15)

The vector ŵm,k is the receiver precoder of the dual uplink formulation, and it is a
scaled version of the optimal wm,k. The variable λm,k is the corresponding dual uplink power
associated to the constraints in (2.13).

2.3.2.2 Algorithm Description

The main idea for the algorithm to find the best precoders is to solve the dual uplink
problem in order to find λm,k, then the corresponding ŵm,k. First, we write the Lagrangian of
(2.14) as

L(wm,k,λm,k) =
∑
m

∑
k

λm,kσ
2
m,k+

∑
m

∑
k

wH
m,k·[

αm,kI−

(
1+

1
Γ̂m,k

)
λm,khH

(m,k),mh(m,k),m+
∑
d

∑
j

λd, jhH
(d, j),mh(d, j),m

]
wm,k. (2.16)

The next step is to take the gradient of (2.16) with respect to wm,k and set it to zero.
Then, we have[

αm,kI−

(
1+

1
Γ̂m,k

)
λm,khH

(m,k),mh(m,k),m+
∑
d

∑
j

λd, jhH
(d, j),mh(d, j),m

]
wm,k = 0. (2.17)

Thus

Σm,kwm,k =

(
1+

1
Γ̂m,k

)
λm,khH

(m,k),mh(m,k),mwm,k, (2.18)

with
Σm,k , αm,kI+

∑
d

∑
j

λd, jhH
(d, j),mh(d, j),m. (2.19)

Then, a necessary condition for λm,k can be obtained

λm,k =
1(

1+ 1
Γ̂m,k

)
h(m,k),mΣ−1

m hH
(m,k),m

. (2.20)

Solving the problem in (2.14) will lead us to find the receiver precoder of the dual
uplink. The optimal beamforming vector wm,k, then, is found by scaling ŵm,k as follows

wm,k =
√
δm,kŵm,k. (2.21)

The δm,k values can be found by a procedure described in [16]. The iterative algo-
rithm has its global convergence guaranteed and it can be summarized in Algorithm 1.
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Algorithm 1 Power Minimization Algorithm for Problem (2.13)
1: repeat
2: Find the optimal uplink power allocation λm,k using (2.20).
3: Find the optimal uplink receive beamformers.

ŵm,k =

(∑
d

∑
j

λd, jσ
2
d, jh

H
(d, j),mh(d, j),m+σ2

m,kαm,kI

)−1

hH
(d, j),m. (2.22)

4: Find the optimal precoders using (2.21).
5: until converge

Table 2.1 – Simulation Parameters.

Parameter Value

Number of transmission time intervals (TTIs) 200
Number of antennas at each BS 3

Number of antennas per user 1
Number of users per cell 2

Minimum allowed distance between BS-user 10 m
User position randomly placed inside BS radius

Base Station radius 250 m
Noise Power N0 = −116.4 dBm

Transmission Power 20 dBm
Path Loss [34] 128.1 + 37.6 log10(d) (dB) d in km

Source: Created by the author.

2.3.2.3 Results

In this section we present simulation results to illustrate the performance of the
Power Minimization algorithm. The scenario is composed by 3 BSs, each one equipped with 3
transmit antennas. For each cell we have 2 single antenna users, forming, therefore, a multi-user
MISO system. The simulation parameters are described in Table 2.1.

For comparison, we include simulation results for MRT, which only cares about the
direct link. The MRT precoders are given by (2.4). For each user we set the power minimization
SINR target as the SINR achieved for this user if the MRT precoder is used, then we can make a
fair comparison between both approaches.

As the SINR from both strategies is the same, we only plot the total consumed power,
which can be seen in Figure 2.3. The plot shows the cumulative distribution function (CDF) of the
total power consumed in all BSs for both strategies. It can be seen that the power minimization
algorithm utilizes less power to achieve the same SINR target when compared to the matched
channel filter, which always uses all available power. This result was expected because the BSs
in the considered algorithm work in a coordinated way to mitigate their interference while they
keep the same level of SINR.
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Figure 2.3 – CDF plot of the total consumed power in all BS for power minimization algorithm
versus MRT.
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In Figure 2.4 we plot the total power consumed while the number of users per BS
changes. From the plot, it can be seen that when the number of users per cell increases, the
total power needed for achieving the same SINR also increases. This is due to the fact that the
interference is proportional to the number of users, therefore, more users will result in more
interference. Another reason is that now we have more users per BS to be served, therefore each
BS will need to use more power to satisfy the QoS constraints.

2.3.3 Sum-Rate Maximization

2.3.3.1 Problem Formulation

The second problem of our interest is related to rate maximization. This is a classic
optimization problem proposed and solved by various authors in the literature. We will use [18]
as a reference to present a CBF centralized solution for the rate maximization problem. The
parameters are described in Table 2.1

The system model is the same described in Section 2.2 and the optimization prob-
lem aims to maximize the weighted system sum-rate under power constraints. Then it can be
formulated in the following way:

argmax
wm,k

∑
m

∑
k

αm,k log2(1+γm,k)

s.t
∑
k

wH
m,kwm,k ≤ Pm, for m = 1, . . ., M , (2.23)
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Figure 2.4 – Power consumed versus SINR target for Power Minimization Algorithm.
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where Pm is the maximum power that can be consumed at BS m and αm,k is the weight factor
which reflects on the priority of the user.

The main objective of the work in [18] is to develop a low-complexity algorithm for
solving (2.23). Then a centralized approach is the best choice is this case.

As done in the previous section, we can take the Lagrangian of the dual problem
in (2.23) with respect to sum-power constraints. Let T represent the set of all precoders to be
optimized and λλλ the set of all Lagrange multipliers, then we have:

L(T , λλλ) =
∑
m

∑
k

αm,k

ln2
ln(1+γm,k)+

∑
m
λm

[
Pm−

∑
k

‖wm,k‖
2

]
. (2.24)

By setting (2.24) to zero, we obtain:

(Lm,k+ λm ln2I)wm,k =
αm,khH

m,k(m)hm,k(m)wm,k

1+wH
m,kh

H
(m,k),mh(m,k),mwm,k+Im,k

, (2.25)

where Lm,k is the leakage matrix for user (m, k) and it is defined by

Lm,k ,
∑
d

∑
j

Pd, jhH
(d, j),mh(d, j),m− Pm,khH

(m,k),mh(m,k),m, (2.26)

with
Pd, j ,

αd, j)γd, j

1+
∑
m

∑
k

wH
m,kh

H
(m,k),mh(m,k),mwm,k

, (2.27)

and Im,k is the total co-channel interference power received at user (m, k), which is given by

Im,k =
∑
n

∑
j

wH
d, jh

H
(m,k),dh(m,k),dwd, j−wH

m,kh
H
(m,k),mh(m,k),mwm,k (2.28)
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By adding the complementary slackness conditions

λm

[
Pm−

∑
k

wH
m,kwm,k

]
= 0, for m = 1, . . ., M , (2.29)

then we form a set of first-order conditions named KKT conditions.

2.3.3.2 Algorithm Description

The main idea of the algorithm proposed in [22] is to solve the KKT conditions. A
central node is assumed, which has the knowledge of the CSI of all nodes.

Proposition: Let Bm,k = Lm,k+ (λm ln2)I. Then the optimal precoders for problem (2.23) have
the following form2

wm,k = βm,kB†m,kh(m,k),m, (2.30)

where λm ≥ 0 and βm,k ≥ 0 are constants to be determined. If λm = 0 the feasibility is only
guaranteed if h(m,k),m ∈ range {Lm,k}.

Otherwise, if wm,k , 0 and λm , 0, by (2.25) it is implied that h(m,k),m ∝ (Lm,k +

λm ln2I)wm,k. Hence, the optimal precoder has the form wm,k ∝ (Lm,k+ λm ln2I)−1h(m,k),m.
If wm,k , 0, by plugging (2.30) in (2.24) and (2.30) in (2.23) we have the set of

equations

αm,kh(m,k),mB†m,kh
H
(m,k),m = 1+Im,k+ | βm,k |2 |hm,k(m)B†m,kh

H
(m,k),m |

2, (2.31)∑
k
‖ βm,kB†m,kh

H
(m,k),m‖

2 ≤ Pm, for m = 1, . . ., M. (2.32)

In order to solve the KKT conditions, we assume that we have an initial set of
precoders w̃m,k, thus Im,k and Lm,k can be easily computed. Then, we have now an updated
expression for βm,k, which is

| βm,k |
2 =
(αm,kh(m,k),mB†m,kh

H
(m,k),m−Im,k−1)+

|hm,k(m)B†m,kh
H
(m,k),m |

2
, (2.33)

where x+ =max(x, 0). In [18], the authors say that λm can be calculated by solving (2.32) with
equality via bisection method. If λm > 0 cannot be found, its value is set to zero. The algorithm
for centralized CBF is then summarized in Algorithm 2.

2.3.3.3 Results

In this section we present simulation results to illustrate the performance of the
Iterative CBF Sum-Rate Maximization algorithm. The scenario is the same described in Section
2.3.2.3 which is presented in Table 2.1.
2 (·)† represents the pseudo-inverse operation.



Chapter 2. Coordinated Beamforming Overview 33

Algorithm 2 Rate Maximization Algorithm for Problem (2.23)
1: Initialize lin,max,lout,max and wm,k, ∀k ∈ K
2: lout = 0
3: repeat
4: Compute Lm,k according to (2.26), ∀k ∈ K
5: lin = 0
6: repeat
7: Compute Im,k according to (2.28), ∀k ∈ K
8: for m = 1, . . ., M do
9: Compute λm and βm,k, for i = 1, . . ., K , according to (2.32) and (2.33).

10: Update wm,k, for i = 1, . . ., K , according to (2.30).
11: end for
12: lin = lin+1
13: until not converged or lout < lout,max
14: lout = lout+1
15: until not converged or lin < lin,max

In Figure 2.5 we present a CDF plot comparing the sum capacity for Iterative CBF
Sum-Rate Maximization and MRT. It is assumed that the precoder powers of the considered
algorithm is the same as that of the MRT strategy, which means that both algorithms use all
available power at the BSs. It can be seen that the studied algorithm outperforms the matched
channel in terms of rate, leading to a significant improvement of the network capacity by
optimizing the beam direction in order to mitigate intracell and intercell interference, as proposed
by the algorithm.

Figure 2.5 – CDF plot of sum capacity for Sum-Rate Maximization algorithm versus MRT.
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2.3.4 Energy Efficiency (EE)

2.3.4.1 Problem Formulation

In Sections 2.3.2 and 2.3.3 our objective was to minimize the total consumed power
and maximize the total achievable rate, respectively. In this section these two problems will be
combined into another problem that aims to maximize the energy efficiency of the system.

By using the work in [22] as a reference for this optimization problem, we define
global energy efficiency (GEE) as the ratio between the sum of all users’ rates (SUM-R) and the
total consumed power in the network (SUM-P), including the losses in the amplifier and feeding.
Then, mathematically, the optimization problem can be written as

argmax
wm,k

GEE

s.t
∑
k

wH
m,kwm,k ≤ Pm, for m = 1, . . ., M (2.34)

where the GEE is defined by
GEE = Sum-R/Sum-P, (2.35)

with
Sum-R =

∑
m

∑
k

αm,k log2(1+γm,k), (2.36)

and

Sum-P =
∑
m

(
θm+

∑
k

wH
m,kwm,k

)
, (2.37)

where θm accounts for the losses in power such as signal processing and battery backup.
The problem in (2.34) is clearly a constrained non-convex optimization. Hence, its

hard to solve and find a global maximum. The same approach used in the previous section can
be used to find a suboptimal solution for the beamforming vectors. The algorithm will explore
the KKT conditions for solving the optimization problem and it will run in a central node. This
node has the CSI from all the coordinated BSs, so it calculates all the beamforming vectors and
transmits them to the BSs.

2.3.4.2 Algorithm Description

As mentioned, the considered algorithm is based on the same KKT conditions found
in Section 2.3.3. Then, we can write the following set of equations

dL(T , λλλ)
dwm,k

= 0, ∀k ∈ K, (2.38)∑
k

wH
m,kwm,k ≤ Pm, for m = 1, . . ., M, (2.39)

λm ≥ 0, for m = 1, . . ., M, (2.40)

λm

[
Pm−

∑
k

wH
m,kwm,k

]
= 0, for m = 1, . . ., M. (2.41)
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Algorithm 3 EE Algorithm for Problem (2.34)
1: Initialize lin,max,lout,max and wm,k, ∀k ∈ K
2: lout = 0
3: while not converged or lout < lout,max do
4: Compute Sum-P, πm,k and Lm,k from (2.37), (2.43) and (2.26), ∀k ∈ K
5: lin = 0
6: while not converged or lin < lin,max do
7: Compute Im,k according to (2.28)
8: for m = 1, . . ., M do
9: Compute λm and βm,k, for i = 1, . . ., K, according to (2.41) and (2.32).

10: Update wm,k, for i = 1, . . ., K, according to (2.45).
11: end for
12: lin = lin+1
13: end while
14: lout = lout+1
15: end while

By using similar calculations as those in Section 2.3.3, the KKT condition in (2.38)
can be written as

[Lm,k+ (πm,k+ λm)I]wm,k =
αm,khH

(m,k),mh(m,k),mwm,k

1+wH
m,kh

H
(m,k),mh(m,k),mwm,k+Im,k

×
1

Sum-P ln2
, (2.42)

where a new variable πm,k is introduced. It represents the marginal decrease of GEE when there
is an increase in the power consumption. Then it can be interpreted as a price to pay when the
BS wants to use more power. It is defined by

πm,k , Sum-R/Sum-P2, (2.43)

where Lm,k is defined in (2.26) and the new Pd,m is

Pd, j ,
αm,kγm,k/(Sum-P ln2)

1+
∑
m

∑
k

wH
m,kh

H
(d, j),mh(d, j),mwm,k

. (2.44)

By the same reasons discussed in Section 2.3.3, the beamforming vectors must have
the form

wm,k = βm,kB†m,kh
H
m,k(m). (2.45)

The algorithm, therefore, works as follows: assuming the power consumption and
prices (interference and power) fixed, the beamforming vectors are computed. Then, the precoders
are fixed, and power and prices are updated. The algorithm is summarized in Algorithm 3.

2.3.4.3 Results

In this section we present simulation results to illustrate the performance of the EE
CBF algorithm. We consider, again, the same scenario in Section 2.3.2.3 which is described by
Table 2.1.
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Figure 2.6 – CDF plot of Sum Capacity for EE CBF versus MRT.
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Figure 2.7 – Energy Efficiency for low power levels at the BSs.
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From Figure 2.6 it can be seem that the EE CBF algorithm outperforms both MRT
and rate maximization in achievable sum capacity using the same amount of power. This happens
because the EE CBF works in a similar way to the Iterative CBF Rate Maximization algorithm
but it takes into account the marginal decrease of the efficiency, than it has a small improvement
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in system capacity.
In Figure 2.7 we compare the energetic efficiency for all three approaches. We vary

the BS transmission power from -5 dBm to 5 dBm per BS, so that we can compare the results in
a region where the interference is not so strong. As expected, the matched channel presents the
worst performance among all, because it only cares about the directed channel, so it does not
suppress any interference, therefore, it achieves less rate with the same amount of power. From
the plot, we can see that for low power levels the EECBF presents better performance.

However the performance gap gets lower when the power increases, which can be
seen in Figure 2.8, where we consider a moderate level of power at the BSs [22]. Both algorithms
have the same structure for finding the precoders and for allocating power, therefore the low
performance gap can be explained. In addition, we can see from the plot that, when we increase
the maximum available transmission power the EE decreases. It happens because the EE is a
ratio between rate and power, but the rate increases with only the log of the power.

Figure 2.8 – Energy Efficiency EE CBF for moderate power levels at the BSs.
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2.4 Concluding Remarks

In this chapter we presented an overview of the coordinated beamforming, where
we described the three BF classical approaches: MRT, ZF and MMSE and three different opti-
mization problems: power minimization [17], sum-rate maximization [18] and energy efficiency
[22], which were formulated and solved by using methods known in the literature and assuming
a centralized solution.
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The centralized approach used by these three works is useful when there is a central
unity that can measure all the channels between the BSs and their users. It does not utilize local
BS processing, so it saves power at the BSs but requires the CSI from all nodes.

The distributed beamforming approach would be the most suitable choice for the
emerging 5G networks, since it takes into account only the local information at each cell for
finding the precoders and receive filters.

The decentralized approach is like a medium term between centralized and distributed
since a central unity is not required. The precoders are all computed at each BS, but it still needs
all interference links among all users to find the optimal solution, which makes the decentralized
approach not suitable for 5G.

Therefore, as we are interested in solutions for the next generation of cellular
networks, in the next chapters we will explore the distributed beamforming algorithms.
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3 PRICING-BASED DISTRIBUTED BEAMFORMING FOR DYNAMIC TIME DIVI-
SION DUPLEXING SYSTEMS

Multi-cell dynamic time division duplexing (TDD) systems make it possible to adapt
the number of UL and DL time slots in each cell to the prevailing cell-wide traffic demand.
Although dynamic TDD systems can be advantageously deployed in scenarios in which the
UL and DL traffic demands are asymmetric and time-varying, dynamic TDD systems give
rise to BS-to-BS interference and UE-to-UE interference that negatively impact the system
performance.

In this chapter, we propose employing a distributed beamforming scheme to mitigate
the BS-to-BS interference and thereby to improve the uplink performance. Specifically, the
proposed scheme uses interference pricing to find the appropriate precoder vectors at the BSs,
which also improves the SINRs performance in the DL. We compare the performance of the
PBA BF scheme with that of ZF BF in an outdoor picocell environment specified by the 3GPP
using a realistic system simulator.

We find that the proposed pricing-based (PB) scheme boosts the SINRs in the UL at
the expense of a small degradation of the DL SINRs compared with the ZF scheme. On the other
hand, the PB BF approach can significantly reduce the DL transmit power levels and thereby
improve the overall energy efficiency of the system.

This chapter is structured as follows. In Section 3.1 we present an introduction about
dynamic TDD systems. Section 3.2 discusses related works and the contributions of this chapter.
The dynamic TDD system model is described in Section 3.3. Section 3.4 formulates the the
BF optimization problem and proposes a PBA to solve this problem. An analysis about the
convergence, signaling overhead and complexity is also provided. In Section 3.5 we propose a
suboptimal approach for the PB problem which converges in less iterations and does not utilize
an optimization routine. Simulation results are shown and discussed in Section 3.6 while, finally,
in Section 3.7 we present the conclusions for the presented chapter and some perspective for
future works.

3.1 Introduction

Multi-cell dynamic TDD systems make it possible to adapt the number of UL
and DL time slots in each cell to the prevailing cell-wide traffic demand [3]. LTE systems,
standardized by the 3GPP, for example, support the dynamic allocation of subframes to UL and
DL transmissions [4]. Such dynamic TDD systems better support asymmetric and fluctuating
traffic demands in both homogeneous and heterogeneous environments than systems with fixed
subframe allocations [5, 35]. As it is intuitively clear, this gain increases as the traffic asymmetry
increases and can reach up to 200 percent packet throughput gains in a 10 MHz system with
reasonably realistic assumptions [6].
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Next 5G systems will, among another requirements, demand more carrier bandwidth
in order to accommodate high data volume. In this case, the frequency division duplex (FDD) may
not be the best choice due to the necessity of allocation for both direct and reverse links, therefore,
TDD can be the natural solution for next generation networks having a better performance when
a large amount of data is transmitted [36].

In order to accommodate the network traffic fluctuations, LTE release 12 has intro-
duced the eIMTA concept [37]. According to this release of 3GPP, there are 7 different available
UL-DL configurations on TDD LTE, as shown in Table 3.1. The ‘D’ and ‘U’ subframes refer to
a DL and UL subframe, respectively, and ‘S’ is a special subframe related to the guard interval,
which can sometimes be used for DL transmission.

Table 3.1 – Dynamic TDD UL-DL configuration on TDD LTE.

UL - DL
configuration

Subframe Number
0 1 2 3 4 5 6 7 8 9

0 D S U U U D S U U U
1 D S U U D D S U U D
2 D S U D D D S U D D
3 D S U U U D D D D D
4 D S U U D D D D D D
5 D S U D D D D D D D
6 D S U U U D S U U D

Source: Created by the author.

When classic TDD is applied, all BSs within a region choose the same configuration.
This strategy works well when the traffic conditions among the BSs are similar, which is not the
case for 5G systems. In such systems there are different types of devices, with different types of
traffic and requirements for nearby BSs. Therefore, dynamic TDD can be used to improve the
network throughput performance when compared to the classic TDD approach [38].

In eIMTA dynamic TDD, the BS can select one of the available configurations (the
DL/UL ratio varying from 40/60 to 90/10, depending on the selected mode [4]) for adjusting the
UL-DL rate for data transmission. This choice, for a given cell or in a specific subframe, is up to
the Operator/Vendor and it can be done based on a smart adaptation to varying traffic loads or in
order to mitigate the possible interference between adjacent cells [39].

Table 3.2 summarizes the eIMTA configurations. There are, at least, one subframe
for UL and four subframes for DL (if the special subframes are used for DL), and five flexible
subframes, ‘F’, which can be used either for DL or UL transmission, depending on which
configuration the BS will choose.

This flexibility of choosing different configurations for nearby BSs leads to a high
interference scenario. In order to illustrate this impact, consider a two-cell system, each one with
a single user, as shown in Figures 3.1 and 3.2.

Figure 3.1 shows the classic TDD operation, where cell 1 and cell 2 choose configu-
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Table 3.2 – Summary of dynamic TDD configurations.

Subframe Number
0 1 2 3 4 5 6 7 8 9
D S U F F D S/D F F F

Source: Created by the author.

Figure 3.1 – Interference situation on TDD scenario at TTI
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Figure 3.2 – Interference situation on dynamic TDD scenario at TTI
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ration 4 in Table 3.1. By taking as reference the fifth transmission time interval (TTI), both cells
are performing DL transmission, a situation in which only one type of interference occurs. This
kind of problem has been exhaustively studied in the literature, leading to classic solutions for
dealing with interference as presented on Chapter 2.

On the other hand, dynamic TDD systems may give rise to more types of interference,
including BS-to-BS and UE-to-UE interference due to conflicting TDD configurations in neigh-
bor cells, synchronization errors, or a lack of synchronism among neighbor cells [6, 7], as shown
in Figure 3.2. In order to adapt the cell traffic, each one has chosen different TDD configurations
(#5 for cell 1 and #3 for cell 2) leading to downlink-to-uplink interference, between BSs, and
uplink-to-downlink interference, between users. As the power for DL transmission is usually
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larger than that of the UL mode, the UL suffers more from DL interference. Therefore, the UL is
often the bottleneck of the network [40].

Recognizing the engineering tradeoff between adapting the TDD configuration to the
current traffic demands and causing more interference in neighbor cells, the 3GPP is currently
working on eIMTA schemes [3, 4]. Also, previous works have proposed multi-cell coordination,
assisted either by centralized or distributed algorithms to mitigate intercell interference, including
BS-to-BS and UE-to-UE interference [6, 35, 41]. However, these works do not make use of the
evolving multiple antenna capabilities, including full dimension and massive MIMO transceivers
at BSs and the emerging multi-antenna capabilities at UEs.

A related line of research suggests that, in multi-cell MIMO systems, coordinated BF
is an efficient technique to mitigate intercell interference and increase the SINR and achievable
capacity for cell edge users. Coordinated BF is attractive because it does not require sharing
the data symbols across multiple transmission points, as opposed to coordinated multipoint
transmissions. Recently, low overhead distributed coordinated BF schemes have been proposed
that accurately approximate the performance of centralized algorithms [42, 43]. An alternative
and promising approach to designing distributed algorithms for interference management in
MIMO systems, based on interference pricing, was proposed by [44]. According to this approach,
each receiver announces an interference price, defined as the marginal decrease in capacity due
to an increase in interference. Given the interference prices announced by neighboring receivers,
and also given knowledge of the corresponding cross-channel matrices, each transmitter can
update the transmit power levels and precoding matrices to maximize a utility function that
incorporates the own capacity and the cost of the caused interference. However, the overall
UL/DL system performance under asymmetric traffic load situations or unequal cell loads has
not been studied in these works.

On the other hand, the results reported in [45, 46] indicate that when perfect channel
state information at the transmitter (CSIT) is available at the BSs of a massive MIMO system,
simple fully distributed per-cell BF schemes can offer performance similar to a more complex
centralized or distributed multi-cell optimization. While this is good news for system designers,
since it reduces the need for multi-cell coordination, this result is not directly applicable to
dynamic TDD and eIMTA systems that need to manage BS-to-BS and UE-to-UE interference,
in addition to the multi-cell interference present in both traditional and dynamic TDD systems.

3.2 Related Works and Contribution of the Chapter

Interference management specifically in dynamic TDD systems has been addressed
by both the research and system developer communities since the standardization of eIMTA
schemes started in the 3GPP [3, 37]. The strategies to deal with dynamic TDD specific interfer-
ence situations can be categorized as follows:

• Cell clustering based schemes [47, 48, 49];
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• PC based schemes [35, 50, 51, 52, 53, 54];

• Interference cancellation and IA based approaches [55];

• Resource allocation [56];

• Coordinated BF algorithms for co-channel interference mitigation [18, 21, 28];

• Interference PB schemes to penalize interference [19, 20, 57, 58, 59, 60, 61];

• Combinations of the above [5].

In cell clustering schemes, neighboring cells are organized in a cluster, such that
cells within the cluster choose the same TDD configuration and avoid dynamic TDD interference
within the cluster [47, 48, 49]. The 3GPP Technical Report [47] refers to cell clustering as a
potential scheme for interference mitigation, but it does not determine what metric should be
considered to form the clusters.

In [48], the authors present a centralized clustering algorithm combined with the
configuration of DL and UL TDD directions. In [49], the clusters are formed based on a
fixed coupling loss and dynamic traffic requirement criteria which are compared with the
dynamic cluster based interference mitigation and traffic adaptation scheme. While clustering
schemes effectively avoid BS-to-BS and UE-to-UE interference, they limit the capability of
traffic adaptation and suffer from border effects between clusters.

PC based schemes developed for dynamic TDD systems employ two distinct ap-
proaches to mitigating intercell interference [35, 50, 51, 52, 53, 54]. The first approach allocates
higher UL power levels to mobile stations [50], so that they can compensate for the BS-to-BS
interference suffered from transmitting neighbor BSs. Obviously, this approach implies increased
power consumption at the mobile terminal that can be particularly severe for cell edge users. The
second approach reduces the transmit power at the BS side during a BS transmission [51, 52, 53],
when a mobile station is performing an UL transmission. The work in [51] proposed a downlink
power reduction from 24 dB to 20 dB in the flexible subframes. The authors in [52] propose an
adaptive DL PC for a macrocell scenario based on the distance between the BSs. However, this
scenario is not representative for next 5G networks in which the cells would be smaller. In [53]
the power control proposed scheme reduces the DL power with aperiodic almost blank subframe
patterns. A combination of these two approaches is also used in the literature [35, 54] to find the
best power allocation equilibrium for DL and UL transmissions. In [35] the authors consider a
phanton cell architecture where both DL and UL UEs perform an open loop PC scheme based
on a target SINR while in [54] the values for DL power reduction and UL power boost are fixed.

As it will be described on Chapter 5, the IA is a linear precoding technique which is
based on the idea of separating the useful signal and interference received in different subspaces.
The work in [55] applies joint IA BF to solve the interference problem for dynamic TDD
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networks. However, this work considers a three-cell TDD system, which is not a realistic model
of systems consisting of a great number of cells.

Another approach to mitigate the interference on dynamic TDD network is based on
resource allocation. Reference [56] proposes heuristics to coordinate the transmission among
multiple users in different cells without exploiting the spatial dimension to mitigate interference.

Recall from Chapter 2, BF refers to a spatial filtering applied at the transmitter
and/or receiver in order to favor some spatial directions over others. Hence, the interference in a
multi-antenna scenario can be mitigated by the spatial filter and the system performance can be
improved but none of them has considered a dynamic TDD scenario. Many works designed BF
algorithms for co-channel interference mitigation. Reference [18] proposes a coordinated linear
BF for the multi-cell BS interference channel. By having a set of coordinated BSs, the authors
have found the optimum BF vectors that maximize the instantaneous weighted sum-rate. Even
though they do not consider a distributed algorithm in their work, they show that the proposed
algorithm can be implemented in a distributed way. Reference [21] investigates coordinated BF
based on EE for multi-cell MISO systems, which can be applied in a decentralized way. In [28],
the authors design a distributed BF algorithm that maximizes the utility function and solves
the rate outage constrained problem for a MISO channel, assuming that CSI is known by the
transmitters.

Another approach for the MISO-interference channel (MISO-IC) is based on the
interference pricing idea, according to which users are penalized by the amount of interference
they cause which was explored in[19, 20, 57, 58, 59, 60, 61]. In [19], the interference pricing
is combined among the users in such a way that the transmitters can improve their own utility
functions, which is penalized by the interference caused to other users.

On the other hand, the work in [20] introduces the notion of interference equilibrium

in which an algorithm based on interference pricing, BF design and power allocation is proposed.
The proposed algorithm can be implemented in a distributed way and it was shown to converge
to an interference equilibrium point. References [57, 58] also have proposed a PB optimization
problem for the MISO-IC, but different from the previews works [57] have formulated a non-
cooperative PB game to maximize the for some popular network utilities while [58] have
considered an interference channel K par users network having the EE as the utility function. On
the other hand, the works in [59, 60, 61] have focused on applying the pricing in cognitive radio
networks, while [59] and [61] aim to maximize the MIMO secondary network performance by
finding the best set of precoders, [60] used the PB approach to find the best spectrum allocation
scheme.

In this chapter, we seek an answer to the question of whether interference PB multi-
cell BF can help to mitigate the UL and DL interference in dynamic TDD systems. Although
this question is highly relevant from a research and system development perspective, it has not
been adequately addressed by previous works, as discussed further in the next section. To this
end, we propose a distributed, interference PB optimization problem that takes into account the
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specific aspects of multi-cell dynamic TDD systems.
Specifically, we propose a distributed BF algorithm, according to which each BS

maximizes a utility function that is a linear combination of a utility function depending on
the achieved rate, and a penalty function that takes into account the caused interference at
neighboring BSs that are in receiving (UL) mode. The sensitivity of the own utility with respect
to the caused interference can be thought of as the ‘interference price’ that is periodically updated
by a coarse scale inter-BS signaling mechanism.

Unlike previous works, in the present chapter we consider a dynamic TDD MISO
network where the BSs operate in either DL or UL mode in the 3GPP picocell scenario [37]. We
assume perfect CSI at the nodes and assume that all the channels remain constant during a TDD
frame (block fading). In this scenario, the UL UEs suffer from interference caused primarily by
surrounding BS transmissions. Therefore, our main objective is to ensure a performance gain for
UL users by carefully choosing the BS precoders, without the need of increasing the power of UL
UEs. To this end, we formulate the problem as an optimization task that involves penalizing the
caused interference. To solve this problem, a distributed BF algorithm and associated signaling
support are proposed, which find the precoders for DL users. This scheme is tested in a realistic
system simulator. Numerical results indicate a performance boost for UL users and significant
power saving gains at the BSs at the expense of a small degradation in the DL capacity as
compared with the ZF and MRT BF schemes.

We summarize the main contributions of this chapter as follows.

• We describe a system model for multi-user multi-cell MISO dynamic TDD networks
and we formulate an optimization problem on which the BS transmission is penalized
by the interference caused on UL users;

• We present a PB distributed BF (PBA) for DL BSs to solve this optimization problem
which works in two modes, sequential and parallel. We have proved the convergence
of sequential approach, we also have detailed the signaling overhead and the complex-
ity analysis for both operation modes. In addition, we have presented the sufficient
conditions when the semidefinite relaxation problem yields the rank-one solution;

• It is shown that the UL performance can be improved by the right choice of BS BF
and we compare the presented algorithm with the classical MRT and ZF solutions;

• We show that, when increasing the number of antennas, the performance of MRT
does not approach ZF in the case of MISO dynamic TDD systems.

3.3 System Model

We consider a multi-cell multi-user MISO network operating in dynamic TDD mode.
Each cell has one BS equipped with NBS antennas. BSs operate in either DL or UL mode, and
each one serves K single antenna users.
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Let D andU be the set of BSs, which are in DL and UL mode, respectively, in a
given time slot, with D∩U = ∅. Furthermore, K , {1, 2, · · · ,K} represents the set of users
inside a cell. Our underlying assumption is that the sets D andU are formed by some suitable
scheduling mechanism executed prior to the dynamic TDD transmission and reception. With this
assumption, for a given cell m ∈ D, the DL received signal for a given user k is given by:

yDL
m,k =

√
pm,kh(m,k),mwm,kxm,k︸                       ︷︷                       ︸

useful signal

+
∑
j∈K
j,k

√
pm, jh(m,k),mwm, jxm, j

︸                           ︷︷                           ︸
DL Intracell Interference

+

+
∑
d∈D
d,m

∑
j∈K

√
pd, jh(m,k),dwd, jxd, j

︸                              ︷︷                              ︸
DL Intercell Interference

+
∑
u∈U

∑
l∈K

√
qu, lb(m,k), (u, l)xu, l︸                          ︷︷                          ︸

UE-to-UE Interference

+ zm,k︸︷︷︸
noise

, (3.1)

where h(m,k),d ∈ C1×NBS is the channel gain between a BS d and a UE k served by a BS m,
wd, j ∈ C

NBS×1 is the DL transmit BF vector of BS d for DL UE j, xd, j is the data symbol
transmitted between nodes d and j (BS-UE or UE-BS depending on the link direction), with
E[|wd, jxd, j |2] = 1, b(m,k), (u, l) is the interference channel gain between UL UE l belonging to BS u
and DL UE k served by BS m, p{·} is the transmission power to a DL user, q{·} is the transmission
power of an UL user, zm,k is the additive white Gaussian noise (AWGN) with zero mean and
variance σ2

k.
Let us consider, without loss of generality, Wm,k = pm,kwm,kwH

m,k, therefore the
achievable rate in the DL direction for a user k in a cell m is given by the Shannon formulation

CDL
m,k(Wm,k) = B log2(1+γ

DL
m,k(Wm,k)) bps, (3.2)

where B is the system bandwidth and γDL
m,k(Wm,k) is the DL SINR, which is defined by

γDL
m,k(Wm,k) =

SDL
m,k(Wm,k)

IDL
m,k+σ

2
m,k

, (3.3)

where

SDL
m,k(Wm,k) = h(m,k),mWm,khH

(m,k),m, (3.4a)

IDL
m,k =

∑
j∈K
j,k

h(m,k),mWm, jhH
(m,k),m+

∑
d∈D
d,m

∑
j∈K

h(m,k),dWd, jhH
(m,k),d +

∑
u∈U

∑
l∈K

qu, l |b(m,k), (u, l) |2. (3.4b)

On the other hand, for cell n operating in UL mode, the received signal related to a
given UL UE r can be expressed as:



Chapter 3. Pricing-based Distributed Beamforming for Dynamic Time Division Duplexing Systems 47

yUL
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noise

, (3.5)

where vn, r ∈ C
NBS×1 is the receiver BF vector of BS n for UL UE r, Gn,d ∈ C

NBS×NBS is the
channel gain between BS n and BS d and zn, r ∈ CNBS×1 is a vector with independent AWGN
noise.
The capacity for an UL UE r in a cell n is given by:

CUL
n, r (vn, r) = B log2(1+γ

UL
n, r (vn, r)) bps, (3.6)

where γUL
n, r (vn, r) is the UL SINR expressed by

γUL
n, r (vn, r) =

vH
n, rS

UL
n, r (vn, r)vn, r

vH
n, r(IUL

n, r + Inσ2
n, r)vn, r

, (3.7)

where

SUL
n, r (vn, r) = qn, rhH

n, (n, r)hn, (n, r), (3.8a)

IUL
n, r =
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qn, lhH
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n, (u, l)hn, (u, l)+
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j∈K

Gn,dWd, jGH
n,d . (3.8b)

3.4 Pricing-Based Algorithm (PBA)

3.4.1 Beamforming Problem

In dynamic TDD networks, due to the BS-to-BS interference, the UL reception is
strongly affected by the DL transmission of nearby BSs. As we are considering a MISO network,
the formulation of the associated optimization problem has to take into account the following
requirement: the DL BSs should adjust their beam directions and transmit power in order to limit
the BS-to-BS interference.

To this end, we will make use of interference pricing [62]. The main idea of this
strategy is to enable BSs, that are in DL mode, to take into account the interference they cause
at neighbor BSs. This is achieved by penalizing the DL user’s utility by the following penalty
factor:

πi, j = −
∂Ci, j

∂Ii, j
=

B
log2

(
1
Ii, j
−

1
Ii, j+ si, j

)
, (3.9)
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where πi, j is the interference pricing associated to the user j connected to the BS i. If i, j is in DL
mode, then

Ci, j ,CDL
i, j (Wi, j), (3.10a)

si, j ,SDL
i, j (Wi, j), (3.10b)

Ii, j ,IDL
i, j +σ

2
i, j. (3.10c)

Otherwise, the user i, j is in the UL mode, then

Ci, j , CUL
i, j (vi, j), (3.11a)

si, j , vH
i, jS

UL
i, j (vi, j)vi, j, (3.11b)

Ii, j , vH
i, j(I

UL
i, j + Inσ2

i, j)vi, j. (3.11c)

3.4.2 Optimization Problem

In our BF design we are interested in increasing the UL transmission rate and
preserving a reasonable performance for DL UEs by reducing the BS-to-BS interference. A
natural and intuitive metric to capture this trade-off is setting the capacity in (3.2) such that
the utility function is maximized. By doing this, the prices represent the marginal decrease
in the users’ capacity relative to the marginal increase in their received DL interference. As a
consequence, even if we do not directly formulate at the BS an optimization problem for UL UEs,
the prices control the amount of interference received by those users, improving UL performance.
Therefore, the PB scheme works in a similar way in the DL as the closed loop PC standardized
for LTE [63] works in the UL.

By applying this pricing approach, our main goal is to enforce the DL users to take
into account the interference they cause on UL users. The BF vectors are, thus, calculated to
find the best balance between the power used to transmit and the caused interference. To capture
the trade-off between the useful signal strength in the own cell and the caused interference in
neighbor cells, we introduce the system-wide weight parameter 0 ≤ µ ≤ 1, with the help of which
the optimization problem for BS m can be written as:

maximize
Wm,k

(1−µ)CDL
m,k(Wm,k)−µIm,k.

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

rank(Wm,k) = 1;Wm,k < 0,

(3.12)

where

Im,k =
∑
d∈D

∑
j∈K

πd, jTr[Wm,kLm, (d, j)]− πm,kTr[Wm,kLm, (m,k)]+
∑
u∈U

∑
l∈K

πu, lTr[Wm,kTm,u],

(3.13)
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where H(d, j),m , hH
(d, j),mh(d, j),m and Tm,u , GH

m,uGm,u are Gramian matrices of the interference
channels to DL UE j (in BS d) and UL BS u, respectively, due to the DL transmission from BS
m to user k.

The optimization problem in (3.12) is complex to solve due to the presence of the
rank-1 constraint. Therefore, we consider a modified problem, in which the rank-1 constraint is
relaxed, as follows:

maximize
Wm,k

(1−µ)CDL
m,k(Wm,k)−µIm,k;

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

Wm,k < 0.

(3.14)

Then, the problem can be solved by CVX optimization tool [64, 65] using SDPT3
solver [66], since the capacity is a concave function with respect to Wm,k, and Tr(Wm,k) is
convex (see the proof in Appendix A). For problems which involves logarithm, the CVX uses a
successive approximation method which approximates the logarithm function by a polynomial
function, then the SDPT3 solves the optimization problem via an infeasible primal-dual interior-
point al algorithm1. These tools, therefore, allow us to find the optimal solution for the suboptimal
problem in (3.14). The rank-relaxed problem is optimized over one user at one BS per time,
having only one constraint. Therefore (3.14) is not just a relaxation of (3.12) but its tight, i.e.,
solving the relaxed problem (3.14) is the same to solve the rank-constrained problem (3.12),
which will always lead to rank(Wm,k) = 1 [68].

The main idea of the proposed algorithm is to iteratively calculate the BF vectors in
a distributed way in each BS until convergence or the algorithm reaches the maximum number of
iterations set as an input parameter. The proposed PBA runs either in sequential or parallel mode,
if the former is selected, only one BS updates its user precoder per time, while if parallel approach
is chosen all the DL BSs update their user’s precoder at simultaneously. At the beginning of each
iteration, the DL BSs choose a set of random precoders respecting the power constraint. Next, if
sequential updating is performed a given BS selects one user and solve the optimization problem
in (3.14), otherwise all BSs select one user and (3.14) at the same time. Those steps are repeated
until convergence or the algorithm reaches the maximum number of predetermined iterations.
The distributed BF price based algorithm is summarized in Algorithm 4.

3.4.3 Algorithm Analysis

3.4.3.1 Convergence

Before the convergence analysis, notice the proposed PBA can run either in sequential
or parallel mode. For the parallel implementation, all DL BSs solve the optimization problem at
the same based on the previous reported interference prices. For the sequential implementation,
1 For a detailed description about how the algorithm works, please see [67].



Chapter 3. Pricing-based Distributed Beamforming for Dynamic Time Division Duplexing Systems 50

Algorithm 4 Pricing-based distributed BF algorithm.
1: Initialization: each BS d, with d ∈ D, chooses a set of random precoders, respecting power

constraints. Set iter = 0 and a maximum number o iterations itermax
2: while not converge or iter < itermax do
3: Updating DL prices:
4: for d = 1, · · · , |D| do
5: for j = 1, · · · , K do
6: DL UE d, j calculates πd, j according with (3.9).
7: end for
8: end for
9: Updating UL prices:

10: for u = 1, · · · , |U| do
11: for l = 1, · · · , K do
12: UL BS u calculates πu, l according to (3.9).
13: end for
14: end for
15: Price exchange:
16: Prices are sent to the DL BSs.
17: Updating Precoders:
18: BS d selects a user j, based on some criteria, and solves (3.14).
19: wd, j is updated.
20: iter = iter+1
21: end while

Figure 3.3 – Signaling exchange between UEs and BSs. In this figure, BS1 and BS2 are on DL
mode while BS3 is on UL mode.
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Source: Created by the author.

a BS updates it user’s precoder by solving the optimization problem in (3.14) while the other
precoders vectors are fixed. After this calculation, the new prices must be updated and exchanged
before the new BS performs its update.

The convergence under parallel iterations cannot be proved in a mathematical way
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[59], even if simulations show the algorithm converges under some convergence criteria. However,
the sequential implementation converges and the proof is shown in Appendix C.

3.4.3.2 Signaling Overhead

To run the PBA, three main steps are needed: (1) measurement of the DL and UL
interference prices, (2) interference price exchange between BSs and (3) update the precoder of
a given DL UE (m, k).

For step (1) both DL and UL prices are measured at their receivers. For each receiver
(i, j), a UE for DL transmission and a BS for UL transmission, two quantities have to be measured,
the useful signal power, si, j, and the interference plus noise power (IPNP), Ii, j. The later is easily
measured by the receiver while the former can be obtained by measuring the SINR at the receiver
side, then this quantity is multiplied by Ii, j.

For step (2), the prices measured at the receivers must be forwarded to the DL BS
which will solve the optimization problem, this step occurs in two time instances, as illustrated
in Figure 3.3. At T1, the prices are measured according to step (1) for each receiver and at T2

they are send to the target DL BS. If the algorithm runs in a sequential mode, only the target BS
needs to collect the interference prices, if the parallel approach is used, then all the DL BSs must
collect the broadcasted interference prices, as illustrated by the Figure 3.3.

Finally, the step (3) consists on run the PBA BF for a given BS m is to solve
the optimization problem. The BS will select a user, say (m, k) and it will try to find the
best precoder to maximize the user’s utility. To this end, the BS m needs the direct channel,
hm, (m,k), IPNP, Im,k, and the leakage matrix ∆DL

m,k ,
∑K

j=1
∑|D|

d=1 πd, jHm, (d, j) − πm,kHm, (m,k) and
∆UL
m,k ,

∑K
l=1

∑|U|
u=1 πu, lTm,u. The direct channel can be easily estimated by using the downlink-

uplink reciprocity, as we are assuming dynamic TDD scenario. The IPNP is measured at step (1)
and the leakage matrix are composed by two terms: the interference prices, already available
after step(2), and the channel information. The leakage matrix is composed by two channel terms,
the BS-toUE channel, hm, (d, j), (d, j) , (m, k), and the BS-to-BS channel, Gm,u. The former can
be estimated, as the direct channel, by the downlink-uplink reciprocity, while the Gm,u matrix
can be reported by backhaul, for example, after the pilots.

In terms of algorithm implementation, the sequential approach leads to a greater
signaling overhead compared with the parallel one. This is due the need to update and exchange
the new prices after each BS calculates the new precoder vector, therefore, for each iteration new
prices are measured and exchanged |D| times. For the parallel mode, the interference prices are
updated and exchanged just at the end of each iteration.

3.4.3.3 Complexity Analysis

For the PBA, the main complexity relies on the solution of the optimization problem
by the CVX. Even if we cannot predict exactly the complexity of the considered problem,
according to [66, 67] the SDPT3 solver uses primal-dual interior point algorithm to solve the
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problem. Therefore, the most complex operation done is O(N3
BS), hence the total complexity of

the considered PBA BF is approximately O(NiterN3
BS), where Niter is the number of iterations the

algorithm needs to converge.

3.5 Sub-optimal Distributed Pricing-Based Algorithm (SPBA)

By applying a PB approach, our main goal is to enforce the DL users to take into
account the interference they cause on UL users. The BF vectors are, thus, calculated to find the
best balance between the power used to transmit and the caused interference.

However, the considered algorithm is still complex in terms of signaling exchanging,
iterations to converge and running time. To deal with some of these issues, we propose a SPBA
to solve the optimization problem in (3.14) without using the CVX routine to find the precoders
and the power allocation for the users.

For a DL UE (m, k), the optimization problem in (3.14) can be written as:

maximize
wm,k, pm,k

(1−µ)CDL
m,k(wm,k, pm,k)−µpm,kwH

m,kLm,kwm,k.

subject to pm,k ≤ Pmax
m,k ,

| |wm,k | |
2 = 1,

(3.15)

where

Lm,k =
∑
d∈D

∑
j∈K

πd, jhH
(d, j),mh(d, j),m− πm,khH

(m,k),mh(m,k),m+
∑
u∈U

∑
l∈K

πu, lGH
m,uGm,u, (3.16)

is the leakage matrix for the user (m, k).
As the number of interference links are larger than the number of users, the leakage

matrix Lm,k has full rank. Therefore, we introduce a new beamforming vector w̃m,k = L1/2
m,kwm,k

and h̃(m,k),m = L−1/2
m,k h(m,k),m. Now the problem in (3.12) can be written as:

maximize
w̃m,k, pm,k

(1−µ)CDL
m,k(w̃m,k, pm,k)−µpm,kw̃H

m,kw̃m,k.

subject to 0 ≤ pm,k ≤ Pmax
m,k ,

w̃m,kL−1
m,kw̃

H
m,k = 1,

(3.17)

where

CDL
m,k(w̃m,k, pm,k) = log2

(
1+

pm,kh̃(m,k),mw̃m,kw̃H
m,kh̃

H
(m,k),m

Im,k

)
. (3.18)

The problem in (3.17) is an optimization problem that consists on finding the best
precoder, w̃m,k, and the best power allocation, pm,k, for the user (m, k) in a jointly way. The
proposed heuristics consists on solving the optimization problem in a suboptimal way in two
steps, first by finding the best beam direction, then, giving the precoders, find the optimal power
allocation.
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For the beam direction, the approach is to maximize the capacity in (3.18). Therefore,
the chosen precoder corresponds to the matched filter, which is w̃m,k = h̃H

(m,k),m/| |h̃
H
(m,k),m | |.

After finding the precoder, the new optimization problem is reduced to:

maximize
pm,k

(1−µ) log2

(
1+

pm,kTr[H̃m, (m,k)W̃m,k]

Im,k

)
−µpm,kw̃H

m,kw̃m,k.

subject to 0 ≤ pm,k ≤ Pmax
m,k .

(3.19)

The best power allocation can be found by the bisection method since the first
derivative of the cost function is monotonic in terms of pm,k. The presented heuristic is described
in Algorithm 5.

Algorithm 5 sub-optimal pricing-based algorithm.
1: Initialization: each BS d, with d ∈ D, chooses a set of random precoders, respecting power

constraints. Set iter = 0 and a maximum number of iterations itermax
2: while not converge or iter < itermax do
3: Update DL prices as Algorithm 4
4: Update UL prices as Algorithm 4
5: Price exchange:
6: Prices are sent to the DL BSs.
7: Updating Precoders and Power:
8: BS d selects a user j, based on some criteria
9: Update the user’s precoder as wd, j = L−1

m,kh
H
(m,k),m.

10: Find the power allocation according to Algorithm 6.
11: iter = iter+1
12: end while

Algorithm 6 Bisection method for power allocation.
1: set pmin = 0, pmax = Pmax

m,k and p = (pmin+ pmax)/2.
2: while |pmin− pmax | > ε do
3: Xmin = (1−µ) log2

(
1+ pminTr[H̃m, (m,k)W̃m,k]

Im,k

)
−µpminw̃H

m,kw̃m,k.

4: Xmax = (1−µ) log2

(
1+ pmaxTr[H̃m, (m,k)W̃m,k]

Im,k

)
−µpmaxw̃H

m,kw̃m,k.

5: Xp = (1−µ) log2

(
1+ pTr[H̃m, (m,k)W̃m,k]

Im,k

)
−µpw̃H

m,kw̃m,k.
6: if (Xmin− Xp)/(pmin− p) > (Xmax− Xp)/(pmax− p) then
7: pmax = p.
8: else
9: pmin = p.

10: end if
11: p = (pmin+ pmax)/2.
12: end while



Chapter 3. Pricing-based Distributed Beamforming for Dynamic Time Division Duplexing Systems 54

3.6 Numerical Results

We consider a multi-cell dynamic TDD network consisting of 19 cells, out of which
10 cells operate in DL mode and 9 cells operate in UL mode. The system parameters are
set according to the recommendations of the 3GPP and correspond to an outdoor picocell
environment deployed in 5 MHz bandwidth [47].

The simulation parameters and the BS-to-BS, BS-to-UE and UE-to-UE propagation
conditions, including line-of-sight (LoS) and non-line-of-sight (NLoS) conditions are specified in
Table 3.3 and Table 3.4 [69]. Table 3.4 shows two distinct propagation scenarios that correspond
to LoS and NLoS situations respectively.

We are interested in the UL and DL performance of the system in terms of SINR
distribution and overall capacity when the BS takes advantage of MRT and ZF BF and when
the system employs the proposed distributed PBA BF. Specifically, we are interested in the
achievable performance gains of deploying multiple antennas at the BSs as compared with the
performance of a multi-cell single-input single-output (SISO) network. To this end, we consider a
scenario with 19 cells and 2 users per cell (a similar approach can be observed in [20]), resulting
in 38 users sharing the same resource block within a cluster. Consequently, we can capture the
impact of relevant interfering links, including intra-cell, inter-cell and cross-link interferences.

Table 3.3 – Simulation Parameters

Parameter Value
Number of Cells 19

Users per Cell (K) 2
Cell radius (R) 100 meters

Number of BS Antennas (NBS) [1,4,16]
Number of UE Antennas 1

Downlink Power 24 dBm
Uplink Power 23 dBm
Antenna Gain 0 dB

DL cells 10
UL cells 9

UL receiver Filter MMSE
Bandwidth (B) 5 MHz

Source: Created by the author.

In order to illustrate and motivate the necessity of protecting the UL BSs from DL
interference, consider Figure 3.5. This figure shows the received interference power (averaged
over the central UL BS) terms and compares it with the interference power received from
surrounding BSs and surrounding UEs considering the first and second interference rings in a 19
cells scenario as a function of the number of users per cell. For DL transmission we consider
the ZF BF to illustrate that the conventional beamforming strategy is not enough to manage the
BS-to-BS interference in the dynamic TDD scenario. The UL receiver is chosen to be the MMSE
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Table 3.4 – Propagation Characteristics.

Outdoor Pico BS to outdoor Pico BS

LOS:
if R < 2/3km: PL(R) = 98.4 + 20log10(R), R km
if R ≥ 2/3km: PL(R) = 101.9 + 40log10(R), R km

Outdoor Pico BS to UE and UE to Outdoor Pico BS

LOS:
PL(R) = 103.8 + 20.9log10(R), R km

NLOS:
PL(R) = 145.4 + 37.5log10(R), R km

ProbLOS(R) = 0.5−min(0.5, 5exp(−0.156/R))
+min(0.5, 5exp(−R/0.03)).

UE to UE

If R < 50m: PL(R) = 98.45 + 20log10(R), R km
If R ≥ 50m: PL(R) = 55.78 + 40log10(R), R m.

Source: Created by the author.

Figure 3.4 – Interference situation on TTI 5.
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to mitigate the interference received by the central cell. This figure indicates that the average
BS-to-BS interference is stronger than the UE-to-BS, even for 8 users per cell. This happens
due two main reasons, (i) in the 3GPP pico-cell scenario, the average path-loss between BSs is
smaller than the average path-loss between a UE and a BS, (ii) the DL transmit power is greater
than the UL transmit power. Those two combined reasons lead to a greater interference coming
from the DL BSs than the UL UEs.
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Figure 3.5 – Interference behavior for UL users in a dynamic TDD scenario with 19 cells and 8
antennas in each BS. DL BSs use ZF BF and UL BSs use the MMSE receiver filter.
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3.6.1 Classical Pricing Problem (µ = 0.5)

In this subsection we consider the case µ = 0.5, which corresponds to a fixed pricing
scheme in which the capacity of the own link and the caused interference are equally weighed.

Figure 3.6 presents the CDF of the DL SINR, The baseline for this result is the
case in which all 19 cells operate in DL mode using ZF BF (“All DL"). In the dynamic TDD
case, as expected, the worst performance is experienced when the BSs do not employ BF. As
it can be seen in Figure 3.6, enabling the dynamic TDD operation without BF is basically not
a viable option: dynamic TDD causes around 20 dB performance loss to the median user and
only about 20% of the users reach higher than 5 dB DL SINR. Applying MRT improves the
DL performance, but the SINR is still poor as compared with the case in which all cells operate
in DL mode. This result confirms the intuitive expectation that MRT is not a viable option in
interference limited situations.

The performance of the PB distributed BF and the ZF approaches is superior not
only to the MRT case, but also to the baseline case (“All DL"). This is a very promising result
and suggests that even with a low number of BS antennas, dynamic TDD can be a feasible
alternative to traditional TDD networks. To understand why both approaches can effectively
deal with the negative effects of the new types of interference in dynamic TDD systems, and
also to understand the performance difference between ZF and distributed pricing, recall that the
objective of ZF is to cancel the intracell interference. In contrast, according to the PB strategy,
the BSs take into account the interference that they cause both to the UEs that are in reception
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Figure 3.6 – Comparison of donwlink SINR for different BF strategies in a dynamic TDD
scenario. The “All DL" curve represents the system behavior if all users were
operating on DL mode.
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mode and to neighbor BSs. In other words, the distributed PB strategy takes into account the
BS-to-BS interference when selecting the DL precoder vector, which makes precoder selection
slightly inferior to that of ZF precoding.

Figure 3.7 compares the UL SINR performance of the BF schemes discussed above.
In this figure, the baseline is when all users are in UL mode (“All UL"). As expected, without BF
at the BSs, also the UL performance suffers from the aggressive interference that is inherently
present in dynamic TDD systems (“No Beamforming"). When BSs apply the PBA scheme, the
UL SINR significantly improves compared with using ZF. This is due to the ability of the pricing
algorithm to take into account the interference that the DL BSs transmissions cause in the UL.
With distributed pricing, the DL power is reduced, which increases the UL performance.

Figure 3.8 compares the power consumption for DL transmissions with distributed
PBA and ZF BF approaches. ZF BF always uses full power to perform DL transmissions, since
using full power is beneficial for maximizing the own cell performance [70]. In contrast, the
distributed PBA scheme tends to reduce the transmit power to limit the caused interference.

Notice that the PB scheme occasionally uses less than 28 dBm of power, and can use
up to the maximum sum power (34 dBm). This fluctuation is due to the closed loop interference
PB PC: At some iterations, the interference channel can be severe, causing the pricing algorithm
to reduce the transmission power to limited the associated penalty. The opposite can be inferred
when the DL BSs use close to the maximum power level: when the interference channel is weak,
high transmit power is used to increase the DL utility.
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Figure 3.7 – Comparison of UL SINR for different BF strategies in a dynamic TDD scenario.
The “All UL" curve represents the system behavior if all users were operating on
UL mode.
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Figure 3.8 – Comparison of total consumed power in DL for PBA and ZF strategies.
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To gain insight about the relation of the transmit power and achieved DL capacity,
Figure 3.9 shows an energy efficiency plot which is defined by the ratio (in bits per second)
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Figure 3.9 – Energy efficiency CDF in bits/Joule for both PBA and ZF BF approaches.
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between the achievable rate and the consumed power (in Joules) at a BS [21]. The distributed
PBA achieves higher capacity per Joule of energy compared with ZF BF. The reason for this is
that the pricing approach reduces the interference by using less transmit power, while maintaining
high capacity for DL UEs.

Figure 3.10 and Figure 3.11 show capacity results as a function of the number of
BS antennas. In the DL, as expected, ZF achieves higher transmission rates than the PB scheme,
since the pricing algorithm has the characteristic of improving the performance of UL UEs at the
expense of a somewhat reduced DL performance. An important insight is that the performance
of MRT does not approach that of ZF as the number of antennas increases. This is due to the
MISO dynamic TDD scenario, in which interference at DL UEs coming from single antenna UL
UEs is not mitigated.

For UL transmissions, with a small number of BS antennas, the PB approach boosts
the capacity for UL UEs by adjusting the DL precoders. However, this gap tends to decrease
when the number of antennas gets higher, this phenomenon happens due the increasing of the
degrees of freedom for the ZF BF and the MMSE filter design. When the number of antennas at
BSs gets high, the BSs have enough degrees of freedom to perform close-to-optimum DL BF
and UL receiving filter. Since there are only 2 users per cell in our simulations, when the number
of antennas at BSs is higher than 12, the UL performance gap tends to disappear. onsequently,
ZF BF is a viable option.

Figure 3.12 and Figure 3.13 show the impact of the number of users when the
number of antennas at BSs is 16. For the DL capacity, Figure 3.12, it can be observed the PB
strategy has a performance gap when compared with ZF BF. As the number of users gets near to
the number of antennas, the degrees of freedom decrease and the interference cannot be fully
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Figure 3.10 – Mean DL capacity in bps for DL BF strategies when the number of BS antennas
increases.
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Figure 3.11 – Mean UL capacity in bps for DL BF strategies when the number of BS antennas
increases.
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mitigated. Therefore, the PB approach approximates the ZF performance. For the UL case, as
Figure 3.13 shows, the opposite occurs. When the degrees of freedom is high enough, the PB
and ZF strategies have similar performance, and both approach the “All UL" case, since the
minimum mean square error receiver can effectively cancel the interference. When the number
of users increases, the degrees of freedom decreases, and the UL performance for PB approach
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Figure 3.12 – Mean DL capacity in function of number of users per cell for 16 antennas BS.
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Figure 3.13 – Mean UL capacity in function of number of users per cell for 16 antennas BS.
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outperforms ZF. This is true until the number of users start to reach the same number of antennas.
With lower number of degrees of freedom, ZF BF performs similarly to the considered PB
scheme.

The convergence behavior of proposed PB algorithm for both implementations is
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Figure 3.14 – Number of iterations to PBA converges for a 19 cells scenario, where 10 cells
are in the DL transmission mode while 9 cells are in the UL mode. The BSs are
equipped with 8 antennas.
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showed in Figure 3.14. For an algorithm to converge, the normalized difference in terms of
objective function between two consecutive iterations should be less than a predetermined
threshold ε. In our simulations we set ε = 1%. It can be observed that, even if the convergence
for the parallel implementation of the proposed PB cannot be proved, it converges faster than the
sequential precoders updating.

3.6.2 Impact of Interference Pricing Adjustment

Recall from (3.12), that the penalty term µ determines the weight of the caused
interference as compared with the DL utility. Therefore, when µ is set to a low value (close to 0),
the BSs tend to ignore the caused interference, including BS-to-BS and BS-to-UE interference,
and try to maximize the own cell capacity. On the other hand, when µ is set to a high value (close
to 1), the BSs aim at minimizing the caused interference at the expense of the capacity achieved
in the own cell.

To gain insight in the impact of setting µ on both the DL and UL capacity and the
number of antennas, Figure 3.15 plots the DL and UL mean SINR as a function of µ. Intuitively,
as µ increases from a low value, the BSs reduce their transmit power levels, and adapt their beams
to avoid causing interference to receiving BSs and UEs. The effect of reducing the interference
is visible on both the DL and the UL capacity curves.

Notice that as µ increases beyond around 0.5, the DL SINR starts decreasing, since
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Figure 3.15 – DL and UL capacity behavior when the µ parameter varies from 0 to 1.
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the system aims at minimizing the caused interference and it effectively becomes noise limited.
On the other hand, since the UL SINR always benefits from penalizing the BS-to-BS interference.

3.6.3 SPBA Results

Table 3.5 presents the simulation run time results, in seconds, for the PBA and SPBA
per algorithm iteration over 1,000 simulations. We used a Intel(R) Core(TM) i5-2450M CPU @
2.50GHz machine to run each algorithm with the same channel realizations. For the PBA, the
rum time was calculated as the total time to run the CVX optimization tool while for the SPBA it
was calculated as the total time to find both precoders and power allocation.

Table 3.5 – Run time, in seconds, for PBA and SPBA.

Minimum run time Maximum run time Mean run time
PBA 1.0781 2.6766 1.4755

SPBA 0.0016 0.0034 0.0027

Source: Created by the author.

As expected, the SPBA runs faster than the optimum PBA since the precoders are
found by a closed form solution and the bisection method does not evolve any complex operation.
As discussed in Section 3.4.2, the CVX uses a primal-dual interior point algorithm which involves
more calculations, then more time to run, than the proposed heuristic method.

Figure 3.16 and 3.17 show the downlink and uplink SINR performance, respectively,
using three different BF approaches: the classical ZF, the proposed PBA and the proposed SPBA.
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In terms of downlink, the proposed heuristic achieves almost the same performance of the PBA
and ZF BF. This result can be explained by the choice of the beam direction which tries to
maximize the user’s capacity but it also takes into account the leakage interference matrix to
the other users which balances the user’s maximization and interference minimization on the
downlink. In terms of uplink, the heuristic uplink performance is worse than the PBA but it is still
better than the ZF approach. This can also be explained by the choice of the beam direction. The
best precoder for the SPBA takes into account the leakage matrix which contains the interference
terms, therefore it has a better performance than ZF since it does not care about the uplink
interference. However, the transmit downlink precoders is not optimized to avoid interference
to other users since it consider the direct channel to find the precoders, which leads a worse
performance than the PBA scheme.

Figure 3.16 – Comparison of downlink SINR for different BF strategies in a dynamic TDD
scenario.
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To analyze the impact of the power allocation method Figures 3.18 and 3.19 show
the total consumed power and the energy efficiency for the three considered BF schemes. For the
ZF scheme, we use a total power constraint to perform DL transmissions, since using full power
is beneficial for maximizing the own cell performance [70]. In contrast, the distributed PBA
scheme tends to reduce the transmit power to limit the caused interference, due to the pricing
mechanism and the heuristic calculates the transmit power by Algorithm 6. As expected, the
heuristic utilizes more power than the PBA scheme since the optimal beamforming is not done
but it still has a power saving comparing to the ZF leading to a better performance also in terms
of energy efficiency for downlink users.
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Figure 3.17 – Comparison of uplink SINR for different BF strategies in a dynamic TDD scenario.
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Figure 3.18 – Comparison of total consumed power in DL for PBA BF, ZF BF and the SPBA
strategies.
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The convergence behavior of the proposed SPBA approach is shown in Figure 3.20
and Figure 3.21 where the ε = 1% threshold was used for convergence criterion. It can be
observed that the SPBA converges faster than both PBA approaches due the suboptimal scheme
adopted when the number of users is greater than one. With one user, the parallel approach takes
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Figure 3.19 – Energy efficiency CDF in bits/Joule for PBA BF, ZF BF and heuristic approaches.
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into account all the users in each iteration, which makes the algorithm to converge fast. For more
than two users, the number of possible choices increases for the parallel approach leading to
more iterations for convergence.

Figure 3.20 – Mean number of iterations for DL capacity convergence (Nt = 8).
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Figure 3.21 – Convergence behavior for a given channel realization (Nt = 4).
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3.7 Concluding Remarks

In this chapter, we have considered a multi-cell multi-user MISO dynamic TDD
network and proposed PB BF to mitigate the inherent BS-to-BS and UE-to-UE interference in
such networks. We formulated an optimization problem that captures the dynamic TDD specific
interference situations and proposed a distributed algorithm to solve this problem.

The major findings of this chapter are as follows:

• The proposed distributed PBA BF, which penalizes the DL transmission, is an
effective way of improving the UL performance at the cost of minor degradation in
the DL performance.

• We proposed a signaling scheme that enables the DL BSs to solve a local optimization
problem, which leads to an overall system performance improvement.

• The proposed PBA reduces the DL consumed power at the BSs, while improves the
UL SINR.

• To deal with the complexity of the PBA, we proposed the SPBA which solves
the optimization problem in a sub-optimum way and converges in less iterations.
The SPBA has a similar behavior to the PBA for DL direction while on UL it is
outperformed by the PBA but yet having a better performance than the ZF BF.

Our results appear to suggest that ZF and PBA BF outperforms MRT, even when
increasing the number of antennas, because both ZF and PBA BF can better deal with the new
type of interference situations
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4 PRICING-BASED BEAMFORMING FOR MIMO DYNAMIC TDD SCENARIO

This chapter aims to extend the results of the previous dynamic TDD MISO problem
for multi-antenna UEs. We rewrite the system model and the optimization problem and we show
the equivalence between the single stream MIMO problem and the previous MISO scenario. We
also show some plots to illustrate the impact on the system behavior when the UEs have multiple
antenna capabilities at the consider dynamic TDD scenario.

It is organized as follows. In Section 4.1 a brief introduction about MIMO networks
is presented. Section 4.2 presents the considered system model while the PB beamforming for
MIMO systems is described in Section 4.3. The SPBA for MIMO networks is described in
Section 4.4 while Section 4.5 presents the obtained results bot both PBA and SPBA strategies.
Finally, in Section 4.6 we present a conclusion and possible future works.

4.1 Introduction

It is well known in the scientific community that MIMO systems achieve more
spectral efficiency with the same power consumption when compared to SISO and MISO
systems [71, 72, 73]. For a single cell single user scenario, the capacity of a NBS×NUE increases
linearly with min(NBS, NUE) regarding to SNR values [74].

With multiple antennas on both BS and UE sides, one can take advantage of spatial
gain due the multiple paths created by the MIMO scenario which reduces the fading sensitivity
and increases the system capacity, reliability and its coverage. This MIMO feature is refereed as
spatial diversity in the literature [30].

In order to recover the transmitted signal through the multi-path transmission and
eliminate any other effects produced by the wireless channel, a receiver filter based on the
channel properties and transmit CSI can be implemented at the receive side.

Therefore, the precoders and receiver filter can be jointly designed at the BSs based
on some optimization criterion. The most common approaches are the MMSE criterion [75, 76,
77], ZF constraints [77, 78] and SNR maximization [79, 80]. The joint optimization, however,
leads to two main problems: the high complexity of filters computation and low potential for
simplify one of the communication sides [81].

Another possible strategy is to optimize the precoders and receive filters in a sepa-
rated way. However, this not lead to an optimal solution since they are both part of a coupled
optimization problem.

Then, the most used solution is to optimize the transmit precoders and the receiver
filters in a iterative way, where one of them is fixed while the other is optimized based on some
optimization criterion. When the optimum value for the former is found, it is fixed and the
latter can be optimized. This procedure is done until reach some convergence criterion. This
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procedure can be implemented in a distributed way, since each BS needs to calculate its own
transmit/receive filter pairs. Another advantage is the possibility for all calculations to be done at
BS side where the reverse CSI can be obtained via pilot training sequences from the uplink users
by taking advantage of reciprocity on TDD systems [45, 82].

In this chapter, differently from the previous, we consider a multi-cell multi-user
MIMO network operating in dynamic TDD mode. Each cell has one BS equipped with NBS

antennas which transmits a single stream. BSs operate in either DL or UL mode, and each one
serves K users equipped with NUE antennas.

4.1.1 Related Works

We also have pointed in Chapter 3 the advantages of using dynamic TDD systems for
new 5G networks. However, for the best of our knowledge, there are only few works which apply
a MIMO beamforming strategy for such systems. The work in [83] proposes a decentralized
beamforming in order to maximize the network weighed sum rate. The proposed framework,
however, did not considerate the impact of BS-to-BS interference, where we have shown on
Chapter 3 that is greater than the UE-to-UE interference on 3GPP pico-cell scenario. As also
discussed on Chapter 3, the work in [55] has considered a MIMO dynamic TDD scenario,
however, the proposed solution is restricted to a 3-users scenario, limiting the number of cases
that the proposed technique can be applied. A more recent work done by [84] has proposed a
decentralized approach to minimize BS power transmission while keep the DL users above a
predetermined SINR level.

Different from other MIMO works, in this chapter we analyze a multi-antenna UE
performance for the PB algorithm described on Chapter 3. We formulate a system model for the
single stream MISO problem and we show an equivalence of the solution for the MIMO and
MISO problems.

4.2 System Model

Making the same assumptions of Chapter 3, for a given cell m ∈ D, the post processed
DL received signal for a given user k is given by:

yDL
m,k =

√
pm,kvH

m,kH(m,k),mwm,kxm,k︸                              ︷︷                              ︸
useful signal

+vH
m,k

∑
j∈K
j,k

√
pm, jH(m,k),mwm, jxm, j

︸                                  ︷︷                                  ︸
DL Intracell Interference

+

+vH
m,k

∑
d∈D
d,m

∑
j∈K

√
pd, jH(m,k),dwd, jxd, j

︸                                     ︷︷                                     ︸
DL Intercell Interference

+vH
m,k

∑
u∈U

∑
l∈K

√
qu, lB(m,k), (u, l)wl,uxu, l︸                                       ︷︷                                       ︸

UE-to-UE Interference

+

+vH
m,k zm,k︸︷︷︸

noise

, (4.1)
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where B(m,k), (u, l) ∈ CNUE×NUE is the interference channel matrix between UL UE l belonging to
BS u and DL UE k served by BS m.

Let us consider, without loss of generality, Wm,k = pm,kwm,kwH
m,k for downlink and

Wl,u = ql,uwl,uwH
l,u for uplink, therefore the capacity in the DL direction for a user k in a cell m

is given by the Shannon formulation in (3.2), where γDL
m,k(Wm,k) for a MIMO system is given by

γDL
m,k(Wm,k) =

SDL
m,k(Wm,k)

vH
m,k I

DL
m,kvm,k+σ

2
m,k

, (4.2)

where

SDL
m,k(Wm,k) = vH

m,kH(m,k),mWm,kHH
(m,k),mvm,k, (4.3a)

IDL
m,k =

∑
j∈K
j,k

H(m,k),mWm, jHH
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d∈D
d,m

∑
j∈K

H(m,k),dWd, jHH
(m,k),d +

∑
u∈U

∑
l∈K

B(m,k), (u, l)Wu, lBH
(m,k), (u, l).

(4.3b)

On the other hand, for cell n operating in UL mode, the received signal related to a
given UL UE r can be expressed as:

yUL
n, r =vH

n, r HH
n, (n, r)
√
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noise

, (4.4)

where Gn,d ∈ C
NBS×NBS is the channel gain between BS n and BS d. Therefore, the UL capacity

is given by (3.6) where the UL SINR for the MIMO system is expressed as:

γUL
n, r (vn, r) =

SUL
n, r (vn, r)

vH
n, r(IUL

n, r + Inσ2
n, r)vn, r

, (4.5)

where

SUL
n, r (vn, r) = vH

n, rHH
n, (n, r)Wn, rHn, (n, r)vn, r, (4.6a)

IUL
n, r =

∑
l∈K
l,r

HH
n, (n, l)Wn, rHn, (n, l)+

∑
u∈U
u,n

∑
l∈K

HH
n, (u, l)Wu, lHn, (u, l)+

∑
d∈D

∑
j∈K

Gn,dWd, jGH
n,d . (4.6b)

4.3 Pricing-Based Beamforming for MIMO system

4.3.1 Optimization Problem

Based on the interference pricing idea used on the previous chapter where the users
are penalized by the amount of interference they cause on other users, we will design the
downlink beamforming for the dynamic TDD MIMO network.
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According to this approach, each receiver announces an interference price, defined
as the marginal decrease in the user’s capacity due to an increase in perceived interference. Given
the interference prices announced by neighboring receivers, and also given knowledge of the
corresponding cross-channel matrices, each transmitter can update the transmit power levels and
precoding matrices to maximize a utility function. The pricing equations for the MIMO case can
be written as:

πi, j = −
∂Ci, j

∂Ii, j
=

B
log2

(
1
Ii, j
−

1
Ii, j+ si, j

)
, (4.7)

where πi, j is the interference pricing associated to the user j connected to the BS i. If i, j is in the
DL mode, then

Ci, j ,CDL
i, j (Wi, j), (4.8a)

si, j ,SDL
i, j (Wi, j), (4.8b)

Ii, j ,vH
i, j I

DL
i, j vi, j+σ

2
i, j. (4.8c)

Otherwise, the user i, j is in the UL mode, then

Ci, j , CUL
i, j (vi, j), (4.9a)

si, j , SUL
i, j (vi, j), (4.9b)

Ii, j , vH
i, j(I

UL
i, j + Inσ2

i, j)vi, j. (4.9c)

As only one stream is considered for each user, the optimization problem for the
MIMO problem can be written in the same way as the previous chapter. Therefore, the MIMO
optimization problem is

maximize
Wm,k

(1−µ)CDL
m,k(Wm,k)−µIm,k.

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

rank(Wm,k) = 1;Wm,k < 0,

(4.10)

where

Im,k =
∑
d∈D

∑
j∈K

πd, jTr[Wm,kL(d, j),m]−

− πm,kTr[Wm,kLm, (m,k)]+
∑
u∈U

∑
l∈K

πu, lTr[Wm,kTm,u], (4.11)

where L(d, j),m , H(d, j),mHH
(d, j),m and Tm,u , Gu,mGH

u,m are Gramian matrices of the interference
channels to the DL UE j (in BS d) and the UL BS u, respectively, due to the DL transmission
from BS m to user k.
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Here, due the complexity of problem (4.10), we relax the rank-1 constraint as done
in the previous chapter. Then, the modified problem, can be written as follows:

maximize
Wm,k

(1−µ)CDL
m,k(Wm,k)−µIm,k;

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

Wm,k < 0.

(4.12)

As we are interested on calculating the best precoder (beam direction and power
allocation) for downlink users, the UL precoders and the receive filters for DL and UL are
fixed. The optimization problem, then, is the same as that of (3.14). Therefore, the beamforming
algorithm for the MIMO case is similar to Algorithm 4 in Chapter 3. The main difference is
that the UL receive filters can be updated during the DL beamforming calculation or after the
DL convergence on the PBA for MISO case. The algorithm for the MIMO case is based on
the iterative approach where we must update, at least, the DL receive filters for each algorithm
iteration due the pricing calculation. Therefore, the DL beamforming is calculated while the
receive filter is fixed and, at the end of each iteration, the updated precoder is fixed while the DL
receive filter is updated.

4.3.2 Algorithm Analysis

4.3.2.1 Signaling Aspects

The pricing signaling for the MIMO case follows the same procedure of the previous
MISO discussed on Chapter 3. The discussion about the parallel and sequential implementation
also holds for the MIMO case in terms of signaling.

The key point on signaling for the MIMO PBA is the knowledge of the interfering
channels (L and G) and receive filters vm,k for a DL BS m to update prices and beamformers,
and the transmit precoders wm,k for UE k in order to update its receive filter. In order to have all
these informations available on their respective node, we consider that all network nodes (BS or
UE) use orthogonal training sequences1 in forward and backward direction [83, 85].

This procedure, together with the channel reciprocity, allows the knowledge of the
effective channels information, i.e., the precoded pilots after sending by the channel, at each
node of interest2.

4.3.2.2 Complexity Analysis

For the MIMO PBA, the main complexity relies on the solution of the optimization
problem by the CVX as on the MISO case in Chapter 3. As the BS estimates the effective
1 Also known as pilot symbols.
2 The number of orthogonal pilots sequence for this procedure depends on the number of UEs and the number of

antennas in each one [83].
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channel (which is a vector due the one stream transmission), the most complex operation is
only dependent on the number of BS antennas. Therefore, as the MISO case, the most complex
operation done is O(N3

BS) [66, 67], hence the total complexity of the considered PBA BF for
MIMO system is approximately O(NiterN3

BS), where Niter is the number of iterations the algorithm
needs to converge.

4.4 Sub-optimal Distributed Pricing-Based Algorithm (SPBA) for MIMO systems

As done in the previous section for the PBA, now we will analyze the MIMO
formulation for the proposed SPBA. The problem we want to solve is (4.12) for a single stream
transmission per user.

Once again, we are only interested to find the best set of precoders and power
allocation for the DL transmission, therefore the UEs receive filter is kept fixed for the MIMO
SPBA algorithm. By using the same approach of the previous chapter, for a DL UE (m, k), the
optimization problem in (4.12) can be written as:

maximize
wm,k, pm,k

(1−µ)CDL
m,k(wm,k, pm,k)−µpm,kwH

m,kLm,kwm,k.

subject to pm,k ≤ Pmax
m,k ,

| |wm,k | |
2 = 1,

(4.13)

where

Lm,k =
∑
d∈D

∑
j∈K

πd, jHH
(d, j),mH(d, j),m− πm,kHH

(m,k),mH(m,k),m+
∑
u∈U

∑
l∈K

πu, lGH
m,uGm,u, (4.14)

is the leakage matrix for the user (m, k).
Following the same steps as previous chapter, we introduce a new beamforming

vector w̃m,k = L1/2
m,kwm,k and h̃(m,k),m = L−1/2

m,k vH
m,kH(m,k),m, where vH

m,k is the fixed DL receive
filter. Therefore, the DL precoders are chosen the same way as for the MISO case, i.e., w̃m,k =

h̃H
(m,k),m/| |h̃

H
(m,k),m | | and the power pm,k is found via bisection method.
As we have to calculate the equivalent channel, vH

m,kH(m,k),m, to update the DL
precoders, the DL receive filters need to be updated at each iteration of the MIMO SPBA.
Therefore, we can use the Algorithm 5 to update the DL precoders for MIMO systems where we
only introduce a new step (DL receive filter update) at the end of each iteration.

4.5 Results

The considered scenario is the same used in the previous chapter: a dynamic TDD
network with 19 cells (10 cells operating in DL mode and 9 cells operation in UL mode) with 2
users sharing the same frequency resource. The simulation parameters are described on Tables
3.3 and 3.4. The precoders and receiver filter for both DL and UL are summarized on Table 4.1.
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Table 4.1 – Precoders and receiver filter for MIMO dynamic TDD simulations.

Precoder Receiver Filter
DL PB BF MMSE
UL MRT MMSE

Source: Created by the author.

4.5.1 PBA results

Figures 4.1 and 4.2 show the DL and UL performance, respectively, when the number
of UE antennas increases. From both plots, we can see the performance of the considered PB
scheme increases with the number of UE antennas. This happens due to the addition of the
MMSE receiver filter on the DL UEs, which mitigates part of the interference that was not
suppressed by the pricing algorithm.

For the UL case, the addition of more antennas on the UE side, combined with the
MRT precoder, results in a directive beam from the user to the BS, increasing the received SNR.
The interference that the MRT cause can cause to other UL users is compensated by the MMSE
receivers and the PBA.

Figure 4.1 – Comparison of PBA downlink SINR for different UE antenna configurations.
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Figure 4.3 shows the power consumption for different UE antenna configurations.
As expected, when the number of antennas at the UE side increases, the BSs use less power for
the DL transmission due the MMSE receive filters at the UE side, which increases the network
spectral efficiency.
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Figure 4.2 – Comparison of PBA uplink SINR for different UE antenna configurations.
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Figure 4.3 – Comparison of consumed power for different UE antenna configurations.
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4.5.2 SPBA results

In this section we present the MIMO results for the SPBA. As observed for the PBA,
when the number of antennas at the UE side increases we have a performance gain of both DL
and UL transmissions as can be seen on Figures 4.4 and 4.5.

Figures 4.6 and 4.7 show a comparison between the PBA and SPBA for multi-
antenna UE. In Figure 4.6 the DL behavior for the MIMO dynamic TDD is shown where we
can see that the proposed heuristic has a tight gap to the optimal PBA. This happens because we
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Figure 4.4 – Comparison of SPBA downlink SINR for different UE antenna configurations.
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Figure 4.5 – Comparison of SPBA uplink SINR for different UE antenna configurations.
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design the DL precoders as the matched channel of the equivalent channel which increases the
DL SINR. We also take into account the leakage matrix to the DL users, where we reduce both
DL and UL interference, boosting the DL performance.

For the UL scenario, Figure 4.7, the gap between the PBA and SPBA increases when
the number of UE antennas gets high. The reason is the same that explains the low gap between
the two algorithms for the DL transmission. The DL precoder is not optimize to suppress the
DL-UL interference, even if we take into account the interference leakage matrix. As the number
of antennas
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Figure 4.6 – Comparison of downlink SINR between the two proposed price approaches for
different UE antenna configurations.
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Figure 4.7 – Comparison of uplink SINR between the two proposed price approaches for differ-
ent UE antenna configurations.
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4.6 Conclusions

In this chapter we have extended the results of previous PBA for MIMO systems.
When the UEs have multi-antenna capabilities, the network performance increases by exploiting
the spatial diversity. For one stream transmission, the MIMO problem is similar to the previous
pricing MISO optimization problem, since only the DL side is considered for the optimization
problem, while the UL precoders are chosen to be a previous fixed solution. The main difference
between the two algorithms (MISO and MIMO) is that, for MIMO systems, the DL receive
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filters need to be updated in each pricing algorithm iteration, leading to a new equivalent channel
for DL precoder which includes a new signaling step.

The obtained results are consistent with the considered scenario and they open a
branch for future works, where one can develop a complete framework which takes account both
DL and UL transmission for precoders and receive filters design.

Another possible next step is to consider a multiple stream scenario taking advantage
of the multiplex gain and, therefore, increasing the network throughput. However, the interference
will increase and another precoder/receive filter strategy should be considered to manage it
properly.



5 GREEDY ALGORITHM FOR STREAM SELECTION IN A MIMO INTERFER-
ENCE CHANNEL

In this chapter we continue the interference management for MIMO systems. We are
now interested on finding the maximum number of streams users in a MIMO network that can
be sent without loss at data rate transmission (throughput). We propose a GSSA (greedy stream
selection algorithm) for a M × N K-user MIMO-IC. The proposed algorithm tries to find the
“best stream” allocation by removing streams with low SINR until the system capacity cannot be
increased.

This chapter is organized as follows. Section 5.1 presents the state of art and the
objective of the present chapter. In Section 5.2 the IA problem and the considered system model
are presented. In Section 5.3 the degrees of freedom (DoF) and feasibility concepts are described
while in Section 5.4 the classical IA algorithms are presented. Section 5.5 presents the GSSA
and the motivation behind this algorithm. Section 5.6 provides the analysis of the considered
GSSA by comparing it with fixed IA solutions and exhaustive search by means of Monte Carlo
simulations. And, finally, in Section 5.7, some conclusions are drawn.

5.1 Introduction

We have seen on previous chapters that beamforming and power control are an
effective way to deal with interference. So far, we have analyzed a precoder design and power
control algorithms for dynamic TDD systems: a MISO scenario on Chapter 3 and a single stream
MIMO scenario on Chapter 4.

We now are interested on a multi-stream MIMO networks. For that kind of scenario,
an interference management strategy is to assume that the transmitters can cooperate with each
other by performing a joint transmission. By doing this, the whole system can be seen as a
multi-user MIMO scenario. A well-known algorithm for such case is block diagonalization
(BD) [86], which is employed in coordinated multi-point (CoMP) communications.

However, because BD is a joint transmission strategy it requires all transmitters to
have the data that must be sent to each receiver. The existence of a communication link is not
always possible, thus an approach that can send data without any transmitter interfering on each
other has emerged. The IA [11, 12] is a linear preconding technique which is based on the idea
that the multiple transmitters in a network try to align the interference at the unintended receivers
into a reduced dimensional subspace. The subspace orthogonal to the interference subspace is
free from interference and can be used for correctly decoding the desired information.

The DoF, by its turn, represents how the capacity of a system grows with the log of
the SNR [12]. For an IC, it can be seen as the total number of streams that can be sent by the
users, thus increasing the DoF of a system implies at higher throughput for the users. In order to
maximize the sum rate capacity of the interference channel, some works have exploit how to
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perform a stream selection strategy [87, 88, 89, 90]. In [87] the authors used a pricing method for
the stream allocation for the max-SINR algorithm. By their turn, in [88], the authors proposed a
stream allocation solution and a precoder design based on a procedure that selects the stream
with less interference by choosing the beams recursively. In [89] this work was extended by
modifying the algorithm presented in [88] for different initialization points. [90] has extended the
work on [89] by proposing a precoder/decoder design to reduce the amount of CSI exchanged by
the users pairs.

Different from previous chapter, we will make an use of an interference management
algorithm to develop a low-complexity algorithm for stream selection in a MIMO-interference
channel (MIMO-IC).

Let (M, N, d)K characterizes a K-user MIMO-IC network, where M is the number of
transmit antennas, N is the number of receive antennas and d is the number of DoF or streams
each user wants to send. We seek to answer the following question “given the (M, N, d)K MIMO-
IC, what is the best number of streams for each user to transmit which maximizes the network
throughput ?”

To this end, we have proposed a greedy algorithm to answer this question. The
proposed algorithm runs with the MMSE-IA precoder and its performance is compared with the
exhaustive search by Monte Carlo simulations in two different scenarios. The first scenario is
refereed as symmetric attenuation scenario which no path loss is considered among the network
nodes. In the second one, the signal strength is a function of the distance, thus more streams are
allowed to be transmitted.

The results show that the GSSA outperforms, in both scenarios, any fixed solution
and it achieves a good sum capacity performance when compared with the best stream allocation
(exhaustive search), but with less computational complexity.

5.2 Interference Alignment

In Section 5.1, we have defined the IA as a spatial filtering where we divide the
user’s space in two subspaces: one for the desired signal, named ‘desired signal subspace’, and
other for the interference, named ‘interference subspace’. It is done by designing properly the
precoders and receiver filters for each user in the network.

The way IA is applied is dependent on many variables such as scenario and domain
[91]. The scenario considered in this thesis is the M × N K-user MIMO-IC [11, 92, 93], as
shown in Figure 5.1. In our model, K is the number of interfering users that are sharing the same
resource and Hki ∈ C

N×M is the channel matrix between the transmitter i and receiver k. For each
user, the transmitter is equipped with M antennas and the receiver is equipped with N antennas.
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Figure 5.1 – System model for a M ×NK-user MIMO-IC.

Source: Created by the author.

For a given user k, the received signal yk can be written as

yk =

K∑
i=1

HkiWixi+nk

= HkkWkxk︸     ︷︷     ︸
usefull signal

+

K∑
i=1
i,k

HkiWixi

︸        ︷︷        ︸
interference

+nk, (5.1)

where xk ∈ C
dk×1 is the transmit signal of the k-th user, and dk is the number of degrees of

freedom allocated for the user k (number of streams that the user k will transmit to its receiver).
Wk ∈ C

M×dk is the precoder of the k-th transmitter and zk ∈ CN×1 is the complex white Gaussian
noise vector with distribution CN(0, N0I) at the k-th receiver.

By applying a receiver filter Vk ∈ C
dk×N at the received signal, we have

VH
k yk = VH

k HkkWkxk+

ϕ︷             ︸︸             ︷
VH

k

K∑
i=1
i,k

HkiWixi+VH
k nk. (5.2)

It can be noted in (5.2) that ϕ represents the interference from the unintended users.
If the summation term is in the null space of Vk, ϕ will be equal to zero. Thus, the interference
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alignment condition can then be mathematically written as

VH
k HkiWi = 0, ∀k , i, (5.3a)

rank(VH
k HkkWk) = dk. (5.3b)

For an example, consider a 3-user MIMO-IC scenario, where each user has 2 antennas
illustrated in Figure 5.2. For this case, the precoders have to satisfy the following equations

Figure 5.2 – System model for 2 × 2 3-user MIMO-IC.

Source: Created by the author.

span(H12W2) = span(H13W3) (5.4a)

span(H32W2) = span(H31W1) (5.4b)

span(H21W1) = span(H23W3) (5.4c)

where span(X) indicates the subspace spanned by the columns of a matrix X. Each of those
equations correspond a condition of alignment, i.e., the separation of the desired signal and the
interference signal in two different subspaces for each receiver, where is illustrated by Figure 5.3,
where Uk represents the desired signal subspace for user k and Ik represents the interference
subspace for this same user.

It is important to note that, if each user has N antennas, then dk represents the
dimension of the desired signal subspace and N−dk is the dimension of the interference subspace.
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Figure 5.3 – After applying the precoders and receive filters, the receive space is divided into
desired signal subspace, U, and interference subspace, I.

Source: Created by the author.

5.3 Degrees of Freedom and IA Feasibility

5.3.1 Degrees of Freedom

The DoF can be understood as the maximum multiplex gain of a MIMO system [94],
which can be viewed as how many data streams can be sent by an user. When IA is applied in a
MIMO-IC, part of the dimensions available is used for align the unintended signal, therefore the
DoF does not represent min(M, N) as a point-to-point MIMO communication.

In the example of Figure 5.3, there is one dimension for the interference and one for
the desired user signal, therefore, the total do DoF is equal to one. However, for more general
scenarios, determinate how many DoF is available is still an open problem [91].

For an M ×N MIMO-IC, the work in [95] has provided an inner bound and outer
bound for the total of DoF that can be achieved. This number is related to the following ratio

R = b
max(M, N)
min(M, N)

c, (5.5)

where bÛc is the floor operator. This work shows if K ≤ R, the total number of DoF is equal to
Kmin(M, N), otherwise it is Kmin(M, N) R

R+1 , which is achievable by IA.

5.3.2 IA Feasibility

The feasibility of an IA system is related to find an IA solution such it can separate
the desired signal and the interference into two different subspaces. Finding whenever the IA
problem is feasible or not helps to draw some informations about the DoF for a MIMO-IC. It
was presented on Section 5.2 that finding an IA solution is related to solve Equations (5.3a)
and (5.3b). Therefore, the IA problem can be seen as a system of equations and the feasibility
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problem can be solved by comparing the number of equations and the number of variables in
this system [96, 97].

To determine the number of equations for IA, consider the Equations (5.3a) and
(5.3b) rewritten in the following way(

v[m]k

)H
Hkiw[n]i = 0, ∀k , i, ∀n ∈ {1, 2, · · · , di} and ∀m ∈ {1, 2, · · · , dk}, (5.6)

where w[n]i and v[m]k are the transmit and receive beamforming, respectively for each stream.
Therefore, the number of equations, Ne can be determined as [97]

Ne =
∑
i,k
i,k

didk. (5.7)

Applying the precoder w[n]i produces d[k](M[k]− d[k]) variables while applying the
receiver filter v[m]k produces d[k](N [k]−d[k]) variables [97], therefore the total number of variables,
Nv is

Nv = d[k](M[k]+N [k]−2d[k]). (5.8)

If symmetric systems (M, N, d)K are taken into consideration, the IA is feasible if
these conditions are satisfied [97, 98]:

Nv ≥ Ne (5.9a)

M +N −(K +1)d ≥ 0. (5.9b)

If any of these cannot be satisfied, the system is infeasible and an IA solution cannot
be found.

5.4 IA Algorithms

In the literature, there are many works that have developed algorithms to solve the
interference alignment problem such as [11, 24, 25, 99, 100, 101, 102, 103, 104]. Next we will
describe the IA classical algorithms.

5.4.1 Closed-Form Solution

The closed-form solution for the IA problem only exists for few cases [91]. For
the 3-user case, the close-form solution is known and it is determined when the Equations
(5.4a)-(5.4c) are satisfied an then it is applied the proper receive filter [100, 101]. As there are
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many possibilities to solve (5.4a)-(5.4c), we need to restrict the solutions. To this end, the new
set of equations to be satisfied can be written as

span(H12W2) = span(H13W3) (5.10a)

H32W2 =H31W1 (5.10b)

H21W1 =H23W3 (5.10c)

These equations are equivalent to [101]

span(W1) = span(EW1) (5.11a)

W2 =H−1
32 H31W1 (5.11b)

W3 =H−1
23 H21W1, (5.11c)

where E = H−1
31 H32H−1

12 H13H−1
23 H21. Therefore, V1 is any combination of n eigenvectors of E

and W2 and W3 can be found by solving (5.11b) and (5.11c), respectively.
The next step is to calculate the receive filters Vk. This is done by applying a ZF

such as

V1 = null([H12W2]) = null([H13W3]) (5.12a)

V2 = null([H21W1]) = null([H23W3]) (5.12b)

V3 = null([H31W1]) = null([H32W2]), (5.12c)

where, null(X) represents the null space of a matrix X.

5.4.2 IA-MMSE

A pure IA algorithm that solves (5.3a) and (5.3b) is considered suboptimal for low
SNR values, since it takes account only the rank of the equivalent channel. The MMSE algorithm
seeks a more general objective where IA is just a part of it. For the considered IA problem the
MSE is given by

MSE =
K∑

k=1
E‖VH

k yk−xk‖
2. (5.13)

Replacing (5.2) in (5.13), we have

MSE =
K∑

k=1
E‖VH

k

(
HkkWkxk+

K∑
i=1, i,k

HkiWixi+nk

)
−xk‖

2. (5.14)

Hence, the MMSE optimization problem is given by

min
{Vk};{Vk}

K∑
k=1

tr (VH
k (

K∑
i=1

HkiViWH
i HH

ki+N0I)Vk)−2R{tr (VH
k HkkWk)}

subject to tr(WH
i Wi) ≤ Pi; ∀i ∈ {1, . . ., K}, (5.15)
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where Pi is the power for each transmitter.
Following the solution for this optimization problem given in [99], the receive filter

Vk can be calculated as

Vk =

(
K∑
i=1

HkiWiWH
i HH

ki+N0I

)−1

HkkWk, (5.16)

and the precoder Vi is given by

Wi =

(
K∑

k=1
HH

kiVkVH
k Hki+µiI

)−1

HH
ii Vi, (5.17)

where µi > 0 is the Lagrangian multiplier and it can be found via Newton iterations [105]. This
approach is clearly an iterative procedure, thus, in practice, the transmitters first initialize their
precoders considering the constraint in (5.15), then they use (5.16) and (5.17) to calculate the
precoders and receiver filters until convergence.

5.4.3 Max-SINR

Differently from the previous IA-MMSE, the max-SINR proposed in [25] seeks to
maximize the post-processed SINR. This algorithm is based on the TDD reciprocity, where the
direct and reverse links have the following relationship:

−→

Wk = Vk (5.18a)
−→

V k =Wk (5.18b)
−→

H k, i =HH
k, i ∀k, i ∈ {1, 2, · · · , K}, (5.18c)

where
−→

X indicates the reverse direction for a matrix X.
The SINR for the `-th stream of the k-th user is given by:

SINRk` =
V[?`]Hk HkkW[?`]k W[?`]Hk HH

kkV
[?`]
k

V[?`]Hk Bk`V[?`]k

, (5.19)

where Bk` is the interference-plus-noise covariance matrix, which is given by

Bk` =

K∑
i=1

di∑
d=1

(
HkiW[?d]i W[?d]Hi HH

ki−HkkW[?`]k W[?`]Hk HH
kk+σ

2
nINk

)
. (5.20)

If the precoder Wk is fixed, the receive filter Vk which maximizes (5.19) is [25]

V[?`]k =
Bk`HkkW[?`]k

‖Bk`HkkW[?`]k ‖
. (5.21)

The max-SINR is summarized in Algorithm 7.
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Algorithm 7 IA max-SINR algorithm.
1: Initialize the precoders Wk respecting power constraints for all k ∈ K.
2: Calculate Bk` for all k and `, according with (5.20).
3: Find the receive filters using (5.21).
4: Reverse the transmission directions using (5.18a)-(5.18c).

5: Calculate
−→

B k` for all k and `.

6: Calculate
−→

V k` for all k and `.
7: Reverse all links and update Wk using (5.18b).
8: Repeat all the steps until convergence.

5.5 Greedy Stream Selection Algorithm (GSSA)

As aforementioned in Section 5.1, there are many efforts for increasing the rate of the
users. In a MIMO scenario, we can take advantage of the multiple antennas and transmit multiple
streams as many as the number of antennas available. However, in a interference scenario,
transmitting more streams means to increase the level of interference in the whole system which
can lead to a decreasing of the total throughput instead of get more data rate if the interference
caused is too high.

The choice, then, is to set a fixed stream allocation that leads to a feasible solution
or try to find the best stream allocation by performing an exhaustive search by trying all the
possibilities and choose the best one. In the first strategy, even if we find the best number of
streams that can be transmitted by checking the feasibility conditions of the system, it does
not take account the time changes of the channel, thus this leads to a perform losses when the
channel varies along the time. In a scenario with many transmitter/receiver pairs, find the best
stream allocation by performing an exhaustive search is not recommended, due the high number
of possibilities of choice. In this section, therefore, we present an algorithm with low complexity
that can find a good stream allocation for the scenario described at Figure 5.1 which outperforms
the fixed strategy solution and approximates to the best allocation one.

5.5.1 Algorithm Description

In order to find a good “stream allocation” we have developed a greedy algorithm,
whose main idea is to remove streams based on the post-processing SINR value. In other words,
we compare all streams of all users, remove the worst one, and then repeat the process until the
sum capacity of the system is no longer increased by this process. Each time a stream is removed,
the previous IA solution is used as a starting point and a new IA solution is found for the new
stream configuration.

The algorithm is initialized by setting the number of streams for each user to the
maximum allowed value1. After running the IA algorithm for the first time, we will have the set
1 This value can be at most min (M, N) streams, but in this chapter we will use min (M −1, N −1) to leave at least

one dimension where the interference from the unintended transmitters can be aligned.
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of precoders and receiving filter and thus we will be able to compute the post-processing SINR.
After calculating the post-processing SINR of all streams of all users we can calculate

the sum capacity of the whole system. The stream with the lowest SINR is then removed and the
corresponding precoder is updated by removing the column related with the removed stream.

These resulting precoders are used as initialization for the next run of the IA algo-
rithm, which will likely converge faster than the previous run. This stream reduction continues
until each user has only one stream left or the sum capacity of the system does not improve after
the removal of the lowest SINR stream, in which case the solution before the last stream removal
is used. The GSSA is summarized in Algorithm 8.

Algorithm 8 GSSA (greedy stream selection algorithm).
1: Initialization: Set the maximum number of streams equal to min (M −1, N −1) for each

user and set the precoders for the users, respecting the power constraints.
2: Run the IA algorithm;
3: Store for each user: the number of streams, SINR for each stream (Eq. (5.19)), precoders

(Eq. (5.17)), receiver filters (Eq. (5.16)), and the sum capacity of the system;
4: Remove the user stream with lower SINR;
5: if user has only one stream then
6: Remove the lowest SINR among the remaining users.
7: if all the users have only one stream then
8: End the algorithm.
9: end if

10: end if
11: Run the IA algorithm (now the initialization is done with the resulting precoders of step 4)

and store the new configuration (as in step 3);
12: while New Sum Capacity > Old Sum Capacity do
13: Repeat step 4;
14: Repeat step 11;
15: end while

5.5.2 Algorithm Analysis

5.5.2.1 Signaling Aspects

To run the GSSA algorithm, two main steps are needed: (1) the IA algorithm and
(2) the stream selection. For the former, the information needed to be exchange is dependent on
the algorithm used to perform the alignment. For the latter, the BS needs to store the number of
streams, precoders and receiver filter for its user and the SINR for each stream for all the network
users to decide which BS needs to remove one user’s stream and also to calculate the system
sum capacity. Hence, each BS needs to send a vector containing the SINR for each stream of its
user which decreases at each iteration, since one stream is removed.
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5.5.2.2 Complexity

In order to motivate the use of the greedy approach, we compare the number of
iterations needed to determine the best stream allocation for the optimal and the proposed GSSA.
The exhaustive search needs to evaluate all the possible stream configurations, then the number
of iterations needed to find the best solution is O(min(M, N)K). The proposed GSSA eliminates
some stream configurations during its execution, then, the maximum number of iterations is
O((min(M, N))× K).

5.6 Numerical Results

In this section we present simulation results to illustrate the performance of the
proposed GSSA. For comparison, we include simulation results for different fixed stream
allocation as well as the “best stream allocation” result, which is selected by running the IA
algorithm for each possible configuration and choosing the one that yields the highest sum
capacity.

The scenario is composed by K = 3 transmitter/receiver pairs2, as can be seen in
Figure 5.4. Each transmitter is placed at the center of a cell and its corresponding receiver is
placed at a random position in the same cell. The numbers between brackets in the plots represent
the number of streams for each user, e.g., [1 2 1] represents one stream for user 1, two streams
for user 2 and one stream for user 3. The simulation parameters are summarized in Table 5.1.

Table 5.1 – Simulation Parameters.

Parameter Value

Number of Monte Carlo Simulations 10,000
Cell Radius 1 km

Number of antennas 3 or 5 at each node
User position randomly placed inside its cell
Modulation 4-PSK

Path Loss Model (in dB with d in km) 128.1+37.6log10(d)
Noise Power N0 = −116.4 dBm

Transmission Power
Adjusted to match SNR
at the border of the cell

Source: Created by the author.

2 Best stream allocation can be found by an exhaustive search here because we are limiting the simulation to only
3 transmitter/receiver pairs.
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Figure 5.4 – 3 cells scenario. Each cell has one transmit/receiver pair. The dots represent the
users that are randomly placed within the cell. The transmitters are placed in the
center of each cell.

1 2

3

Source: Created by the author.

5.6.1 No Path Loss Case

Initially we simulate the case where all links, direct and interfering links, have similar
path losses3. More specifically, we do not include path loss calculation in the simulation and
each link is modeled as a random Gaussian matrix with zero mean and an identity covariance
matrix. Since all interfering links have similar power with respect to the direct channel this
case corresponds to the fully connected interference alignment in the literature and maximum
performance is attained (at the high SNR regime) when the total number of streams respects the
feasibility conditions addressed in [106, 107].

Figure 5.5 shows the sum capacity versus SNR for the different streams configura-
tions when each node has 3 antennas. It can be seen that the proposed GSSA outperforms the
case of best fixed solution [1 1 2]4. The reason is that the fixed solution is an average of the sum
capacity over the realizations for each SNR value, whereas the proposed algorithm tries to find
the best solution at each channel realization.

Table 5.2 shows the percentages for which each stream configuration was chosen by
the GSSA. The noise is the main concern in the low SNR regime (from 0 dB to 10 dB), thus the
proposed algorithm often chooses the [1 1 1] solution (over than 80% of choice) as the one with
better capacity, as can be seen more clearly in Figure 5.6 (represented by 3 streams bar plot),
which is a feasible solution according to (5.9b). Sending more streams turns the IA solution
unfeasible since for transmit more streams a user needs to divide its limited transmit power
among the streams used for transmission.

On the other hand, for high SNR regime (from 10 dB to 30 dB), the interference
3 This configuration does not represent a realistic scenario. It corresponds, for instance, to a scenario that all the

transmitters are close from each other and all receivers have the same distance to its transmitter.
4 In this scenario with 3 users and 3 antennas at each node IA is feasible if two users transmit one stream and one

user transmit two streams, but no more. On average, performance of [1 1 2], [1 2 1] and [2 1 1] are the same.
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Figure 5.5 – Sum capacity versus SNR for the case with no path loss and 3 transmit/receive
antennas.
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Table 5.2 – Selection percentage for each configuration in No Path Loss case for Tx = Rx = 3
antennas.

Streams
SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

[111] 83.5% 64% 41.6% 20.2% 6.5% 1.7% 0.9%
[112] 4.7% 10.7% 18.4% 26.2% 31.5% 33.6% 33%
[121] 4.7% 11.5% 19.2% 25.8% 30% 32% 32.5%
[211] 5.4% 11.4% 19.1% 27.3% 31.9% 32.6% 33.6%
[221] 0.7% 0.7% 0.4% 0.1% 0.06% 0.02% 0%
[212] 0.7% 0.9% 0.4% 0.2% 0.02% 0.02% 0%
[122] 0.7% 0.7% 0.4% 0.2% 0% 0.01% 0%
[222] 0.2% 0.1% 0.5% 0% 0.02 0.05% 0%

Source: Created by the author.

is the main concern, since the transmit power is much higher than the noise power. Therefore,
the GSSA avoids any stream allocation which would send more streams than what is possible
while keeping IA feasible. That means the [1 1 1] configuration could be the best choice5 in
the high SNR regime. However, note that Equation (5.9b) only holds for full symmetric system
(all users having the same transmit and receive antennas and number of streams sent), therefore
when d = 2, where each user transmit two streams (the [2 2 2] case), the IA solution is unfeasible.
Figure 5.6 indicates that an asymmetric stream transmission, with one user sending two streams
5 Note from Equation (5.9b), the feasibility constraint for a symmetric system indicates that the IA solution for

this case would be [1 1 1] with d = 1 stream per user.
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Figure 5.6 – Percentage of choice for the total number of streams sent for the no path loss case
with 3 transmit/receive antennas.
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while the others send just one (total of 4 streams transmitted), is preferable than the symmetric
case. It happens because the transmit power is greater than the noise power, so the user can still
split its power into two streams and achieve a good rate, while it keeps one dimension to align
the interference because other users use only one stream. If another user wants to transmit two
streams, the one dimensional subspace will not be enough to align the interference and it will
make the system unfeasible.

5.6.2 Path Loss Case

In practice, heterogeneous path loss between the users and BSs induces a scenario
between the fully connected interference topology and the partially connected interference

topology in [108, 109]. The users can take advantage of this configuration by sending more
streams, thus improving the system capacity. In order to analyze the performance of the proposed
GSSA in the presence of heterogeneous path loss we simulate the symmetric case with 3 and
5 transmit/receive antennas and an asymmetric case where the transmitter is equipped with 5
antennas and the receiver is equipped with 3 antennas. The results are illustrated, respectively, in
Figure 5.7, Figure 5.9 and Figure 5.11 where we show the system capacity versus SNR values.

Compared with Figure 5.5, a configuration with a total of 5 or even 6 streams can
work well in the heterogeneous path loss case, while in the previous case with uniform path loss
they would perform badly. From the plot, we can conclude that the proposed GSSA reaches again
a performance closer to the upper bound. Table 5.3 shows the percentages for which each stream
configuration was chosen by the GSSA and can be used to explain the behavior in Figure 5.7.

Interestingly, the results in Table 5.3 seem like the opposite of the results in Table 5.2.
In this scenario, as the transmit power is low and there is path loss among the interfering links, the
interference caused by the unintended transmitters, at a given receiver, is much smaller than no
path loss case. Thus, for low SNR regime, all the users can use the maximum number of allowed
streams, two in our simulation here, and still achieve good performance, therefore, the full stream
case (6 transmitted streams) is selected in more than 80% of simulations as shown in Figure 5.8.
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Figure 5.7 – Sum capacity versus SNR for path loss case and 3 transmit/receive antennas.
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Table 5.3 – Selection percentage for each configuration in Path Loss case for Tx = Rx = 3
antennas.

Streams
SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

[111] 0% 0% 0% 0% 0% 0% 0%
[112] 0.05% 0.05% 0.04% 0.3% 2% 6.8% 11.5%
[121] 0.07% 0.01% 0.03% 0.3% 1.6% 7.3% 16.1%
[211] 0.1% 0.04% 0.03% 0.3% 1.7% 7.8% 16.5%
[221] 2.1% 1.7% 2.3% 5% 8.6% 7.7% 5.6%
[212] 4% 4% 7.2% 14.7% 22.5% 19.8% 12.2%
[122] 2.6% 1.8% 2.5% 5.3% 9% 8.1% 5.5%
[222] 91% 92.4% 87.9% 74.1% 54.6% 42.5% 32.6%

Source: Created by the author.

On the other hand, as the SNR gets higher, the transmission power and the interference increase.
However, the relative difference in terms of path losses does not change, since it only depends
on the distances between the nodes. As the interference gets high, the choice percentage for the
[2,2,2] case by the GSSA algorithm decreases since there must be a free dimension to perform
the align. This phenomenon is shown in Figure 5.8 where we can see the increase of choices for
4 and 5 streams cases. Then, the [2 1 1], [1 2 1] and [1 1 2] solutions are choose more often for
high SNR regime.

This behavior can also be seen in Figure 5.9 and in Table 5.4, where now we
have 5 transmit/receive antennas. From Table 5.4, it can be observed that the GSSA chooses
configurations with high number of streams (at least 6 streams), due the low transmit power
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Figure 5.8 – Percentage of choice for the total number of streams sent for the path loss case with
3 transmit/receive antennas.
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which leads small interference among the users as in 3 antenna case.
The GSSA is a suboptimal approach, then, sometimes, it does not choose a good

stream configuration as for the case when the SINR is 30 dB. For the considered scenario, (5
transmit/receive antennas), the best pattern of streams to transmit cannot be determined, since
the path loss between all three users has to be taken into account to determinate how many
interference links are strong and have influence on the received SINR.

However, its performance is always better or, at least, equal to any fixed solution, as
observed in Figure 5.9. Therefore, the behavior of the algorithm goes towards the behavior in the
homogeneous path loss case, which can be considered a kind of a lower bound on the number of
streams that can be sent in the non-homogeneous path loss case.

Figure 5.9 – Sum capacity versus SNR for path loss case and 5 transmit/receive antennas.
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Table 5.4 – Selection percentage for each configuration in Path Loss case for Tx = Rx = 5
antennas.

Streams
SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

[223] 0% 0% 0% 0% 0.5% 3.4% 9.3%
[232] 0% 0% 0% 0% 0.5% 5.4% 13.5%
[233] 0% 0% 0% 0% 2.7% 4.5% 4%
[234] 0% 0% 0% 0% 0.3% 0.7% 1.5%
[242] 0% 0% 0% 0% 0% 0% 1%
[244] 0% 0% 0% 0% 0% 0% 1%
[322] 0% 0% 0% 0% 0.7% 4.2% 13.5%
[323] 0% 0% 0% 1% 2.3% 3.3% 3%
[324] 0% 0% 0% 0% 0.5% 0.6% 1.1%
[331] 0% 0% 0% 0% 0% 0% 1%
[332] 0% 0% 0% 2.3% 10.5% 16.3% 9.1%
[333] 20.4% 10.3% 13.9% 19.5% 19.9% 16.3% 10%
[334] 8.6% 5.7% 5.3% 5.3% 5.5% 5% 3.1%
[342] 0% 0% 1% 2.6% 5.5% 3.8% 4.5%
[343] 14.2% 11.8% 12.4% 14.3% 11.1% 8.6% 7%
[344] 9.5% 8.7% 7% 4% 3% 3% 2%
[422] 0% 0% 0% 0% 0% 0% 1%
[423] 0% 0% 0% 0% 0.9% 0.8% 0.5%
[432] 0% 0% 0% 2.4% 5.4% 4% 4%
[433] 11.1% 10.9% 10.8% 14% 10.7% 7.8% 5%
[434] 8.4% 8.3% 5.6% 3% 3.2% 3.4% 1.4%
[442] 0% 0.8% 1.7% 4% 4.5% 3.8% 2%
[443] 14.4% 21.1% 27.9% 19% 10.4% 4.3% 1.5%
[444] 13.4% 22.4% 14.4% 8.6% 1.9% 0.8% 0%

Source: Created by the author.

Figure 5.10 – Percentage of choice for the total number of streams sent for the path loss case
with 5 transmit/receive antennas.
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In order to illustrate that the proposed GSSA works for any case of antenna con-
figuration, we present in Figure 5.11 a simulation where we consider an asymmetric scenario
with 5 antennas at the transmitter side and 3 antennas at the receiver side and in Table 5.5 the
percentage of choice for each stream configuration over 10000 simulations.

Figure 5.11 – Sum capacity versus SNR asymmetric case. The transmitter has 5 antennas while
the receiver is equipped with 3 antennas.
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Figure 5.12 – Percentage of choice for the total number of streams sent for the path loss asym-
metric case with 5 transmit antennas and 3 receive antennas.
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As observed in the other configurations, the proposed GSSA outperforms any fixed
stream allocation and it presents a performance close to the optimum case. As the number of
streams is limited by the min(M, N), the [3 3 3] is the highest stream configuration that can be
used.
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Table 5.5 – Selection percentage for each configuration in Path Loss case for Tx = 5 and Rx = 3
antennas.

Streams
SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

[122] 0% 0% 0% 0% 0% 1% 5%
[123] 0% 0% 0% 0% 0% 2% 4%
[132] 0% 0% 0% 0% 1% 2% 3.5%
[212] 0% 0% 0% 0% 0% 2% 4.5%
[213] 0% 0% 0% 0% 0% 2% 3%
[221] 0% 0% 0% 0% 0% 1.5% 4%
[222] 6% 3% 4% 8.5% 21% 30% 29%
[223] 5% 4% 4% 8.5% 11% 9.5% 7.5%
[231] 0% 0% 0% 0% 2% 3% 3%
[232] 7% 5.5% 7.5% 10% 11% 6% 3%
[233] 10% 8% 10% 9% 10% 8.5% 6%
[312] 0% 0% 0% 0% 1% 1.5% 3%
[321] 0% 0% 0% 0% 1% 2.5% 3.5%
[322] 8% 6% 8% 11% 10% 5.5% 3.5%
[323] 11% 10% 10% 10% 8.5% 6.5% 6.5%
[331] 0% 0% 0% 1% 1% 0.5% 0.5%
[332] 19% 21.5% 21.5% 17% 12.5% 10% 7%
[333] 34% 42% 35% 25% 10% 6% 3.5%

Source: Created by the author.

For low SNR regime, we can see from Table 5.5 and Figure 5.12 that the best choices
are the full stream configuration ([3 3 3]) or 8 streams in total ([3 3 2] or [3 2 3]), which is in
accordance with the previous results, since the path loss existence reduces a major part of the
interference between the users, therefore users can use full multiplex gain. For high SNR regime,
the number of streams needs to be reduced due the increasing of interference between the users,
therefore the GSSA selects the [2 2 2] (6 streams in total) stream configuration more often than
the others, while the percentage of choices for the [3 3 3] case is drastically reduced.

5.7 Concluding Remarks

The IA is a powerful technique to deal with the interference problem because it
separates the useful signal and the interference into two orthogonal subspaces, so the user can
transmit its signal without any interference.

One of the problems for the IA technique is how to determine the DoF. The DoF is
related to the multiplexing gain of a MIMO system and it can be translated by the number of
streams that can be sent for each user in the network. Even [95] has determined an inner and an
outer bound for the number of streams that can be sent over the IA channel, the exactly value
cannot be determined and it is related to the channel properties.

In practical scenarios, the path loss is non homogeneous which relaxes the size of the
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interference subspace needed to perform the alignment, without a floor at the high SNR regime.
This allows the transmission of more streams than would normally be possible in a way similar
to what is discussed in [108, 109].

Therefore, a GSSA was proposed in order to select the best stream allocation that
maximizes the system throughput by taking into account the channel particularities. By com-
paring the proposed GSSA with an exhaustive search, we illustrated that the greedy algorithm
outperforms any fixed solution and it can achieve a good performance compared with the best
solution, but with less computational complexity for symmetric and asymmetric scenarios. Thus,
the proposed GSSA can determine the DoF for the IA.
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6 CONCLUSIONS AND FUTURE WORKS

In this thesis we have addressed the interference management aspects for 4th Genera-
tion (4G) cellular networks and beyond. We saw that the interference is one of the major problems
for cellular network and it needs to be mitigate in order to maximize the system throughput
and guarantee QoS for network users. The problems of interest were those of precoding design,
power allocation and stream selection to improve system’s capacity. Specific conclusions for
each chapter are given below.

In Chapter 2, an overview about CBF was done where we have compared the classic
BF approaches (MRT, ZF and MMSE) with three different centralized solutions [17, 18, 22] each
one with respect to a particular optimization problem. Those works achieve the optimum solution
of their respective problem by assuming a central unity that knows the CSI of the network links
and calculates the respective BF and power allocation. However, for 5G networks, these kind
of solutions are not suitable due the number of network nodes and the amount of information
needed to be feedback to the BSs and UEs. Therefore, we concluded that distributed algorithms
would be the best solution for next generation network and we made use of this information on
the next chapters.

In Chapter 3, a BF solution for a multi-cell multi-user MISO dynamic TDD network
was proposed. We have shown by simulation plots that the BS-to-BS interference, which affects
the UL transmission is more prejudicial than the UE-to-UE which affects the DL transmission.
To combat the BS-to-BS and protect the UL transmission, we came up with two distributed
algorithms for DL transmission based on the pricing idea which penalizes the user according to
the amount of interference it causes at others users: the PBA which solves a relaxed optimization
problem via CVX solver and the SPBA, a less complex heuristic, which solves the same problem
in less iterations with a small performance loss. The proposed algorithms have gains on power
saving for DL and throughput for UL when compared to the classical MRT and ZF BF. The
main findings of this chapter also include a signaling scheme so the problem can be treated and
solved in a distributed way.

In Chapter 4, we have extended the results on Chapter 3 for MIMO systems. We
have formulated the dynamic TDD pricing interference problem for a single stream transmission
and we found a similar optimization framework to the previous chapter. From the results, we
have seen that equipping the UEs with multiple antennas increases both DL and UL performance
while saving power for DL transmission when the proposed PBA is applied.

In Chapter 5, we saw that, for interference limited scenarios in IA problems, there
is a trade-off between the number of streams sent by users and the network total throughput since
more streams indicates more date rate but it also increases the interference. Therefore, we have
proposed a GSSA which finds the best stream configuration in order to maximize the network
capacity. Our algorithm is less complex than the optimal solution (exhaustive search) with a tight
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performance gap and it outperforms any fixed solution for symmetric and asymmetric scenarios.

Future Research

In our thesis, we have considered that each cell chooses its transmission direction
based on a previous schedule for dynamic TDD networks. One can investigate and propose novel
schedule schemes based on some metric such as QoS or throughput requirements and comparing
with the fixed schemes. With this regard, some questions emerge, such as:

• What is the impact on signaling and complexity for the transmission selection
algorithm?

• How the cells can shift their directions? What is the impact of this shifting?

• Is the seven eIMTA DL-UL configuration enough to meet new QoS requirements?

• Does the schedule affects the interference management?

It is known that multi-antenna UE will be used on 5G networks jointly with massive
MIMO on BSs. Therefore, one can consider another metric of optimization or include QoS
constraint such as user’s satisfaction. Also, one can investigate the system behavior for millimeter
wave channel. With this regard, some questions emerge, such as:

• What is the gain of massive MIMO on dynamic TDD scenarios?

• What is the impact of the number of streams on dynamic TDD scenarios?

• Does the GSSA work for dynamic TDD systems?

• How tight is the gap for the GSSA algorithm and the optimum solution for dynamic
TDD systems?

• Since DL and UL users have different requirements, how many antennas are neces-
sary to keep a certain QoS for DL and UL users?

Regarding the IA approach, it is still to be applied in 5G scenarios [110, 111],
therefore one can explore classical IA algorithms for new 5G networks and propose new IA
solutions.
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APPENDIX A – CONVEXITY OF TRACE FUNCTION

A given function f (x) is convex if f ((1− λ)x1+ λx2) ≤ (1− λ) f (x1)+ λ f (x2) for all
x1,x2 ∈ dom( f ) and λ ∈ (0, 1) [112]. Notice that Tr(Wm,k) = Tr(wm,kwH

m,k) and Tr(wm,kwH
m,k) =∑

i |{wm,k}ii |
2, where {wm,k}ii is the element of i-th row and i-th column of wm,k. Let Wm,k and

Wm′,k′ be two precoder matrices. Then:

Tr
(
(1− λ)Wm,k+ λWm′,k′

)
(A.1)

=
∑
i

(
(1− λ)|{wm,k}ii |+ λ |{wm′,k′}ii |

)2 (A.2)

≤ (1− λ)
∑
i

|{wm,k}ii |
2+ λ

∑
i

|{wm′,k′}ii |
2 (A.3)

= (1− λ)Tr(Wm,k)+ λTr(Wm′,k′). � (A.4)
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APPENDIX B – RANK ONE PROOF FOR LOW SINR

For low values of x, log2(1+ x) ≈ x/(log(2)). Therefore, problem (3.14) can be
reformulated as:

minimize
Wm,k

µIm,k−(1−µ)Tr(H̃m, (m,k)Wm,k)

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

Wm,k < 0.

(B.1)

where H̃m, (m,k) = hm, (m,k)hH
m, (m,k)/(log(2)× Im,k).

By setting Θm,k ,
∑

d∈D

∑
j∈K

πd, jHm, (d, j)+
∑

u∈U

∑
l∈K

πu, lTm,u− πm,kHm, (m,k), (B.1) can be

rewritten as:

minimize
Wm,k

µTr(Θm,kWm,k)− (1−µ)Tr(H̃m, (m,k)Wm,k)

subject to
∑
k

Tr[Wm,k] ≤ PDL
max,

Wm,k < 0.

(B.2)

The rank-relaxed problem (B.2) is a quadratically constrained quadratic program
(QCQP) optimized over one user at one BS at a time, having only one constraint. Therefore, for
low SINR values, although (3.14) is a relaxation of (3.12), solving the relaxed problem of (3.14)
is equivalent to solving the rank-constrained problem (3.12), which always leads to rank(Wm,k)
= 1 [68]. �
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APPENDIX C – CONVERGENCE PROOF OF SEQUENTIAL IMPLEMENTATION

For the sequential implementation, only one user updates its precoders while the
others keep their precoders fixed. The objective of our optimization problem is to maximize the
follow cost function, Um,k, for one user in each downlink cell,

Um,k = (1−µ)CDL
m,k(Wm,k)−µIm,k. (C.1)

Now, let W∗m,k = pm,kw∗m,kw
∗H
m,k, where w∗m,k is the updated beam-vector for user

(m, k) while the other beam-vectors are fixed. Hence,

K∑
j=1

|D|∑
d=1

U(t+1)
d, j (Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t+1)
u, l (Wd, j) (C.2)

= U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

U(t+1)
d, j (Wd, j)

+

K∑
l=1

|U|∑
u=1

CUL(t+1)
u, l (Wd, j), (C.3)

where, without loss of generalization we consider only the rate of the UL UEs,
CUL(t)
u, l (Wd, j), to characterize the utility for the uplink, since there is not any updating at the UL

UEs. At this point, note that the utility function, for the DL, and the capacity function, for the
UL are both convex with respect to the total interference:

∂2Ui, j(Wi, j)

∂I2i, j
=
∂2CUL

i, j (Wi, j)

∂I2i, j

=
B

log2

[(
1
Ii, j

)2
−

(
1

Ii, j+ si, j

)2
]
≥ 0, (C.4)

Hence, we have:

U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

U(t+1)
d, j (Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t+1)
u, l (Wd, j) (C.5)

≤ U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

©­«U(t)d, j(Wd, j)+
∂U(t)d, j
∂Id, j
(I(t+1)

d, j − I
(t)
d, j)

ª®¬+
+

K∑
l=1

|U|∑
u=1

©­«CUL(t)
u, l (Wd, j)+

∂CUL(t)
u, l (Wd, j)

∂Iu, l
(I(t+1)
u, l − I

(t)
u, l)

ª®¬ (C.6)
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= U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

U(t)d, j(Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t)
u, l (Wd, j)−

−

K∑
j=1
j,k

|D|∑
d=1
d,m

πd, j(I
(t+1)
d, j − I

(t)
d, j)−

K∑
l=1

|U|∑
u=1

πu, l(I
(t+1)
u, l − I

(t)
u, l) (C.7)

= U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

U(t)d, j(Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t)
u, l (Wd, j)−

−w∗m,k∆
DL
m,kw

∗H
m,k+wm,k∆

DL
m,kw

H
m,k−w∗m,k∆

UL
m,kw

∗H
m,k+wm,k∆

UL
m,kw

H
m,k (C.8)

≤ U(t+1)
m,k (W

∗
m,k)+

K∑
j=1
j,k

|D|∑
d=1
d,m

U(t)d, j(Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t)
u, l (Wd, j)−

−wm,k∆
DL
m,kw

H
m,k+wm,k∆

DL
m,kw

H
m,k−wm,k∆

UL
m,kw

H
m,k+wm,k∆

UL
m,kw

H
m,k (C.9)

=

K∑
j=1

|D|∑
d=1

U(t+1)
d, j (Wd, j)+

K∑
l=1

|U|∑
u=1

CUL(t+1)
u, l (Wd, j), (C.10)

Where (C.9) holds because U(t+1)
m,k (W

∗
m,k) ≥ U(t)m,k(Wm,k). As the sum rate is bounded

from above, the sequential approach must converge. �
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