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necessários para a obtenção do t́ıtulo de
Doutor em Engenharia de Teleinformática.
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ment of the requirements for the degree of
Doctor of Philosophy in Teleinformatics En-
gineering. Research area: Signals and Sys-
tems.

Approved in: 28/03/2018.

THESIS COMMITTEE

Prof. Dr. Charles Casimiro Cavalcante (Advisor)
Federal University of Ceará (UFC)
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RESUMO

Propomos, neste trabalho, modelo de seleção de carteiras de ativos financeiros via um

critério de média-divergência, adaptado a retornos com distribuições dadas por exponen-

ciais deformadas. Fixado o retorno esperado desejado, trata-se de minimizar o prêmio

de risco definido em termos de uma divergência estat́ıstica. No caso de retornos gaus-

sianos, a abordagem proposta reduz-se ao clássico modelo de média-variância concebido

por H. Markowitz. Na sequência, reformulamos o método de apreçamento por projeções

ortogonais desenvolvido por Luenberger para o contexto de mı́nima divergência, o que

nos permite propor modelos de fator único, dentre os quais uma variante do CAPM com

betas dependendo de uma matriz de covariância generalizada. Os valores principais dessa

matriz nos permitem, por fim, definir e aplicar uma noção estendida de curvas principais,

o que adapta os conceitos desenvolvidos por Hastie e Stuetzle ao caso de exponenciais

deformadas e divergências de Bregman.

Palavras-chave: Seleção de carteiras. Modelos de fator único. Exponenciais deformadas.

Divergências estat́ısticas. Curvas principais.



ABSTRACT

In this work, we propose a portfolio selection model based on a mean-divergence crite-

ria, adapted to financial returns distributed according deformed exponential probability

densities. Fixed a desired expected return, the method reduces to the minimization of a

risk premium defined in terms of a statistical divergence, In the particular case of Gaus-

sian returns, we recover the classical mean-divergence model by H. Markowitz. Next, we

reformulate the projection pricing theory by Luenberger in the context of divergences as

risk measures. This allowed us to define single factor models, including a variant of the

CAPM whose beta coefficients depend on a Fisher metric that plays the role of a gene-

ralized covariance matrix. The eigenvalues of this matrix are used to define an extended

notion of principal curves that adapts the work by Hastie and Stuetzle to the case of

deformed exponentials and their correspondent Bregman divergences.

Keywords: Portfolio selection. Single factor models. Deformed exponentials. Statistical

divergences. Principal curves.



LIST OF FIGURES

Figure 1 – Temporal evolution of weights α1, . . . , α4 for the q-portfolio method. . . . 74

Figure 2 – Cumulated returns for proposed method (q-portfolio) and Markowitz’s

portfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 MODERN FINANCE THEORY: A SHORT REVIEW . . . . . 14

2.1 Utility and equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Optimal portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Mean-variance analysis . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Projection pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Beta models and Capital Asset Pricing Model . . . . . . . . . . 38

3 FUNDAMENTALS OF INFORMATION THEORY . . . . . . 41

3.1 Statistical divergences and Fisher metric . . . . . . . . . . . . . 45

3.2 Deformed exponentials . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Some technical computations . . . . . . . . . . . . . . . . . . . . 51

4 MEAN-DIVERGENCE PORTFOLIO SELECTION . . . . . . . 64

4.1 Generalized HARA utility functions . . . . . . . . . . . . . . . . 64

4.2 Generalized mean-divergence model . . . . . . . . . . . . . . . . 65

4.3 Generalized Markowitz portfolio selection . . . . . . . . . . . . . 67

4.4 A natural gradient search . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Numerical examples and analysis . . . . . . . . . . . . . . . . . . 73

4.6 A technical appendix . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 SOME GENERALIZATIONS OF CAPM . . . . . . . . . . . . . 79

5.1 The space of financial assets . . . . . . . . . . . . . . . . . . . . . 79

5.2 Deformed exponentials and optimal φ-portfolios . . . . . . . . . 80

5.3 Notation and main results . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Geometry of statistical divergences . . . . . . . . . . . . . . . . . 85

5.5 Minimum divergence portfolio . . . . . . . . . . . . . . . . . . . . 92

6 PRINCIPAL CURVES AND PORTFOLIOS . . . . . . . . . . . 99

6.1 Statistical divergences and principal curves . . . . . . . . . . . . 99

6.2 The space of financial assets . . . . . . . . . . . . . . . . . . . . . 102

6.3 Generalized beta pricing models and CAPM . . . . . . . . . . . 107

6.4 Generalized PCA and applications to Finance . . . . . . . . . . 109

7 CONCLUSION AND DEVELOPMENTS . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



10

1 INTRODUCTION

The formulation of a non-extensive Statistical Physics by C. Tsallis (35),

(36) and collaborators has been developed along the last two decades in a wide range

of applications to complex systems, particularly in Finance (37), (38), (7), (40). In this

work, we propose a model of portfolio selection of financial assets that explores the non-

additivity and non-normality aspects of Tsallis’ Thermostatistics.

As highlighted by J. Naudts, deformed exponentials play a central role in the

foundations of that Generalized Thermostatistics. Indeed, Naudts’ work established deep

and fruitful connections between Statistical Physics and Information Geometry, (24), (25),

(26), (27). For instance, both Rényi’s and Tsallis’ entropies are described by Naudts in

terms of statistical divergences in the family of q-exponential distributions that includes

q-Gaussian distributions, defined in details by A. Plastino and C. Vignat (32), (33), (27),

(28), (29). The analytic and geometric features of deformed exponentials suggest that

they are well suited to model non-normally distributed returns of financial assets. In

this direction, for instance, a non-Gaussian option pricing theory has been successfully

proposed in terms of diffusion processes associated to q-Gaussian distributions (7), (8),

(9), (40), (22). Other related developments are summarized in (38), (39).

Up to our knowledge, however, a systematic theory of portfolio optimization

in the context of deformed exponentials has not yet been fully formalized. One of the cor-

nerstones of the modern Finance Theory, the classical Markowitz’s mean-variance model

of portfolio selection relies on the assumptions that the returns of assets are normally dis-

tributed and that the investor preferences are described by constant risk aversion utility

functions, see Section 2.1.

The traditional criticism to the normality assumption in Markowitz’s theory

raises the need of alternative models for dealing with non-Gaussian distributions. This

question has been addressed since the earlier developments of the Quantitative Finance

under different methods. In (30), (31), R. Nock et al. extended the Markowitz’s mo-

del to the wider family of exponential distributions, replacing the mean-variance by a

mean-divergence model. Bregman divergences replace the variance as risk measures for

non-Gaussian distributions, eventually encompassing information from higher order mo-

menta. On the other hand, since statistical divergences define geometric measures on the

statistical manifold of exponential distributions, their method has a geometric interpre-

tation in terms of a steepest descent by the natural gradient of the risk premium (1),

(3).

For the reader’s benefit, we have collected basic fundamental facts on Finance

Theory and Information Theory in Chapters 2 and 3, respectively. The notation in these

chapters is fixed in order to be consistent with the presentation of the original material in

the subsequent chapters.The third chapter presents a brief but essentially self-contained
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presentation of the Classical Portfolio Selection Theory, needed to guarantee a precise

statement of our results. In Chapter 4 we extend the mean-divergence model in (30), (31)

to deformed exponentials families. This part of the thesis is structured as follows. Earlier

in Section 3.2 we recall basic notions and facts on the statistical manifold of deformed

exponentials. We refer the reader to (1) for a comprehensive mathematical description of

these manifolds. We also briefly describe in Section 4.1 a generalized family of hyperbolic

risk aversion (HARA) functions as the natural choice of utility functions associated to

returns with deformed exponential distributions. The mean-divergence model is presented

in Section 4.2 as an extension of both Markowitz and R. Nock el al. models. Theorem

4.1 in Section 4.3 states that the optimal portfolio for the generalized mean-divergence

model is given by a closed expression involving the information metric, that is, the Hessian

of the cumulant function of the deformed exponential family. In the particular case of

q-Gaussian distributions, the optimal portfolio is explicitly given by

α =
Σ−1
q 1

1>Σ−1
q 1

,

where Σq stands for the q-Gaussian variance, which corresponds to the variance-covariance

matrix in the Gaussian case. This theorem motivates the steepest descent algorithm by

the natural (Riemannian) gradient of the risk premium in Section 4.4. Our method differs

from the one in (30), (31) in some relevant aspects. For instance, the iterations in the

search algorithm are indeed defined in terms of the projection of the natural gradient

on the simplex of admissible portfolios. Moreover, we stress the fact that this machine

learning procedure stems naturally from the generalized Markowitz’s formula in Theorem

4.1 what provides an analytical justification that was not entirely evident in (30), (31).

Some empirical support to the proposed method is discussed in Section 4.5. There we

compare the cumulated returns and the evolution of the divergence for optimal portfolios

according to the mean-divergence model and the classical one by Markowitz. Chapter 4

finishes with a brief discussion of prospective empirical tests and theoretical developments.

Chapter 5 is a natural sequel of Chapter 4 in the sense that we propose a

generalization of beta pricing models adapted to a mean-divergence portfolio selection

(34), (17), (23). In particular, we present an extension of Capital Asset Pricing Model

(CAPM) flexible enough to be applied for financial returns with deformed exponential

distributions. Our method relies on a geometric approach to the classical mean-variance

analysis developed by S. LeRoy and J. Werner (16) and D. Luenberger (19), see also

(13). We refer the reader to (6) to a precise and comprehensive exposition of the classical

CAPM model.

This chapter begins with the definition in sections 5.1 and 5.2 of the geometric

setting of the space of contingent claims M and the subspace of traded financial assets

M′ in terms of statistical manifolds of probability distributions as the manifold of φ-
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deformed exponentials. Some geometric features of that manifold are summarized in

Section 5.4. Following (16), we define expectation and price kernels in terms of a Bregman

statistical divergence in M. These two distinguished assets span the mean-divergence

efficient frontier inM′. As in (30), (31) and (10), the underlying idea is that the divergence

defined a novel risk measure that replaces the variance in the case of normal distributions.

Taking this into account, we deduce in Section 5.5 an expression of a minimum

divergence portfolio in the efficient frontier. Roughly speaking, the efficient frontier is the

set of tradable assets with the minimum risk among those with the same expected return.

As in the classical beta pricing models, the proportions of market portfolio and risk-free

assets in this optimal portfolio are dictated by a linear regression coefficient

β = − g(Rq −Re, Re)

g(Rq −Re, Rq −Re)
, (1)

where Rq and Re correspond to the market return and risk-free return in the standard

beta pricing equation. Here, g stands for the Riemannian metric in M′ given by the

Hessian of the cumulant function K of the deformed exponential probability density. In

the classical case of Gaussian distributions, we have a flat metric given by the variance.

In our general approach, the Riemann curvature of M′ encodes third and fourth order

moments of the distribution as follows from equation (300). Using this machinery, one

can obtain further developments for applications of the theoretical model deduced in this

work. Some prospective directions are related to estimation techniques of the generalized

beta factors, specially useful for valuation models in Corporate Finance.

Now, we briefly discuss the contents of Chapter 6. In their seminal paper

(14), T. Hastie and W. Stuetzle proposed a notion of principal curves as an elegant and

geometric non-linear generalization of factor models as the principal component analysis.

A principal curve has the property of self-consistence in the sense that it pass through the

middle of the data set representing a sample of some random variable. More precisely,

any point of the curve coincides with the expected value of the data projected on it. This

is a direct consequence of the fact that a principal curve f is critical for the variance of

the Euclidean distance between the data and any locally defined perturbation of f . In

particular, a straight line is a principal curve if and only if its direction is an eigenvector

of the covariance matrix of z.

The original idea by Hastie and Stuetzle has been developed into relevant

improvements, applications and extensions. We point out however that most of the times

the criticality of a principal curve is defined in terms of the Euclidean distance. Hence,

although f itself could represent non-Euclidean features of the model, some underlying

least-squares approach is still in force. Our main contribution here is to rephrase the

notion of principal curves (and, more generally, of principal p-dimensional submanifolds)

in terms of a general statistical divergence which replaces the Euclidean divergence, that
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is, the variance used in the original definition.

Considering statistical divergences as Kullback-Leibler or Bregman divergence

allows us to deal with random variables whose probabilities are given by exponencial

and deformed exponential distributions. In the context of exponential and φ-exponential

statistical families, straight lines are replaced by affine geodesics and the Hessian of the

cumulant function plays the role of a generalized covariance.

Chapter 6 is organized as follows. In Section 6.1, we define the generalized

notion of principal curve and principal submanifold in the geometric context of a given

statistical divergence. The earlier contributions for portfolio selection and asset pricing

in the case of financial returns distributed according deformed exponential probability

densities are schematically resumed in Section 6.2. In Section 6.4, we apply the generalized

notion of principal submanifolds and the correspondent version of the principal component

analysis to obtain an explicit expression of optimal principal portfolios.
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2 MODERN FINANCE THEORY: A SHORT REVIEW

Financial assets, more precisely their payoffs at a fixed time, say t = 1, are represented

by random variables of the form

z = z(s),

where s are the states of the world with probability distribution specified by some density

p(s;ϑ). Here, ϑ is the distribution parameter of a family of probability distributions

whose densities define a n-dimensional statistical manifold

S = {p(s,ϑ) : ϑ ∈ U ⊂ Rn},

with ϑ = (ϑ1, . . . , ϑn) taking values in some open subset U of the n-dimensional Euclidean

space Rn. Given a time series of payoffs {z(i)(s)}Ti=0 one defines the returns of the asset

as the percentual ratio

r(i+1)(s) =
z(i+1)(s)− z(i)(s)

z(i)(s)
(2)

for i = 0, . . . , T − 1.

Example 2.1 It is an usual however possibly unrealistic assumption that the returns of a

financial asset are (log)-normally distributed. This means that the random variable r(s)

has a Gaussian distribution whose density is of the form

p(s, µ, σ) =
1

(2π)
1
2σ

exp

(
− 1

2
(r− µ)2 1

σ2

)
,

where µ ∈ R and σ2 ∈ R+ are, respectively, the mean and variance of the distribution.

If one considers N financial assets, then it is commonly supposed that their returns are

distributed according to a multivariate Gaussian distribution with density given by

p(s,ϑ) = p(s, µ,Σ) =
1

(2π)
N
2 |Σ| 12

exp

(
− 1

2
(r− µ)TΣ−1(r− µ)

)
.

Note that in those examples the parameters ϑ = (ϑ,Θ) ∈ RN ×M(N,R) are explicitly

given by

ϑ = Σ−1µ ∈ RN

and

Θ =
1

2
Σ−1 ∈M(N,R),

where µ ∈ RN and Σ ∈M(N,R) are, respectively, the mean and the covariance matrix of

the distribution.

In sum, multivariate Gaussian distributions are a family of probability distribu-

tions parameterised by their mean and variance. We will see later that those distributions
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determine a subset of a larger family of probability distributions, namely an exponential

family.

We refer the reader to (6) and (12) as comprehensive and formal presentations

of the main aspects of Finance Theory.

One of the fundamental principles in Modern Finance Theory is the No Ar-

bitrage Theorem whose far reaching consequences encompass the whole theory of asset

pricing. As a simpler version of the No Arbitrage Theorem, we restrict ourselves to con-

sider a risky asset with payoff z(s), an option c(s) whose underlying asset payoff is z and

a risk-free asset 1. This last notation indicates that this asset yields the same risk-free

return, say r, in every state of the world, that is, under any circumstances. On the con-

trary, both z(s) and c(s) are by definition sensitive to the effect of distinct states of the

world. Supposing by the sake of simplicity that there are two different states of the world,

we can arrange all the possible payoffs in a matrix as

D =

 1 + r 1 + r

z(1)(down) z(1)(up)

c(1)(down) c(1)(up)


Let Q be the vector of current market values (at time t = 0) of these securities, that is,

Q =

 1

z(0)

c(0)


The possible returns of z are given by

r(down) =
z(1)(down)− z(0)

z(0)
and r(up) =

z(1)(up)− z(0)

z(0)
·

We distinguish between these two scenarios declaring that

r(down) < r(up).

Suppose that

r < r(down) < r(up). (3)

In this case, an investor could get a long position in the asset z buying shares of it with

money borrowed at a risk-free rate r, a sort of financial leverage. Even in the worst

scenario, (3) implies that the investor would obtain positive returns at time t = 1. Now,

under the assumption that

r(down) < r(up) < r, (4)

an investor could have positive returns in both scenarios getting a short position in z, that
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is, selling shares of z and investing in the risk-free security. We conclude that if either

(3) or (4) are valid, then there are arbitrage possibilities in the market: in both cases, it

is characterized the existence of a portfolio composed by the risky asset and the risk-free

security that costs nothing to the investor and, in spite of that, yields positive returns.

Those arbitrage opportunities are ruled out by imposing that

r(down) < r < r(up). (5)

This condition has important implications on the pricing of the risky assets as we will

see in the sequel. We would like to prove the existence of a state-price vector π =

(π(down), π(up)), that is, a vector with positive components for which it holds that

Q = Dπ,

that is,  1

z(0)

c(0)

 =

 1 + r 1 + r

z(1)(down) z(1)(up)

c(1)(down) c(1)(up)

[ π(down)

π(up)

]
.

Then we would like to guarantee the existence of positive solutions to the system of linear

equations  (1 + r)π(down) + (1 + r)π(up) = 1

z(1)(down)π(down) + z(1)(up)π(up) = z(0),
(6)

or, equivalently,  (1 + r)π(down) + (1 + r)π(up) = 1

(1 + r(down))π(down) + (1 + r(up))π(up) = 1,
(7)

with π(down) > 0, π(up) > 0. Subtracting the first equation from the second, we have

(r(down)− r)π(down) + (r(up)− r)π(up) = 0

Hence, in order to get positive solutions, a sufficient and necessary condition is

r(down) < r < r(up),

a no-arbitrage condition with strict inequalities. Hence, it follows that in the absence of

arbitrage opportunities, there is a well-defined state-price vector π.
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Note that the first equation in 6 implies that the components

π̂(down) = (1 + r)π(down), π̂(up) = (1 + r)π(up) (8)

can be interpreted as set of probabilities, referred to as the risk-neutral probabilities. The

second equation in 6 may be written in terms of this notation as

z(0) =
1

1 + r

(
z(1)(down)π̂(down) + z(1)(up)π̂(up)

)
,

that is,

z(0) = Eπ̂
[

1

1 + r
z(1)

]
. (9)

This last equation asserts that the current market value of a risky asset is given, in the

absence of arbitrage opportunities, as the expected value of the payoffs of this asset,

discounted at a risk-free return data, where the expectation is calculated with respect to

risk-neutral probabilities π̂.

Note that, intuitively, z(s) does not behave as in (9) if one considers actual

subjective probabilities since the expected return of a risky asset must exceed the risk-free

return, that is,

z(0) < E
[

1

1 + r
z(1)

]
if the expectation is computed with respect to some set of subjective probabilities. This

last inequality means that the discounted (with respect to a risk-free rate r) expected

subjetive return of a risky asset must be positive in order to motivate an investment

decision.

We have ignored so far the consequence of the existence of a state-price vector

π on the option pricing. It follows from our earlier considerations that c(s) also satisfies

the condition

c(0) = Eπ̂
[

1

1 + r
c(1)

]
. (10)

This is the starting point of the binomial method of option pricing proposed by Cox,

Ross and Rubinstein. In the limit, that binomial process restores the celebrated Black-

Scholes-Merton formula for option pricing in the context of time continuous stochastic

processes.

Now we state the No Arbitrage Theorem in a more general setting. We par-

tially follow here the terms and notations in (12). In the general case of N securities

z1(s), . . . , zN(s), a portfolio is defined by an allocation vector

α = (α1, . . . , αN) ∈ RN (11)

This means that an investor allocates αi shares of her initial endowment (at time t = 0,
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say) on the asset zi. Supposing that we have only a finite set of states of the world

Ω = {s1, . . . , sK}, we denote the payoff N ×K matrix by

D =


z1(s1) . . . z1(sK)

...
. . .

...

zN(s1) . . . zN(sK)


The payoff portfolio is given by the random variable

αD =
[
α1z1(s1) + . . .+ αNzN(s1) . . . α1z1(sK) + . . .+ αNzN(sK),

]
where the possible payoffs correspond to the time 1. The set of payoffs available via trades

in security markets is the linear span of a basis of traded assets z1, . . . , zN , that is,

M = {z ∈ RK : z = αD}. (12)

A market is said to be complete ifM = RK , that is, every possible payoff z ∈ RK can be

replicated by a traded portfolio. This is equivalent to the condition that the rank of D is

exactly K. In particular, N ≥ K.

If the rank of D is N (in particular N ≤ K), there are no redundant portfolios:

if there exist two portfolios in M with the same payoff, they are equal. Indeed, given α

and α′ such that

αD = α′D

then

(α−α′)D = 0.

Since the rank of D is N , it defines an injective linear map and then

α = α′.

Given the current value market, that is, the price vector of all the traded assets

Q =


z

(0)
1
...

z
(0)
N


the price of a portfolio α is

〈Q,α〉 =
N∑
i=1

z
(0)
i αi.

Definition 2.1 An arbitrage portfolio α ∈ RN satisfies by definition one of the following

conditions:
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i. 〈Q,α〉 ≤ 0 and αD(s) > 0 for every s ∈ Ω.

ii. 〈Q,α〉 < 0 and αD(s) ≥ 0 for every s ∈ Ω.

According to this definition, the arbitrage portfolioα can be purchased without

(respectively, negative) costs and guarantees some positive (respectively, nonnegative)

return in all states of the world.

Theorem 2.1 (Fundamental Theorem of Finance Theory) There is no arbitrage

if and only if there is a state-price vector π(s) > 0 such that

Q = Dπ. (13)

For a proof of this theorem, we refer the reader to (12), p. 10.

As above we define risk-neutral probabilities from the state-price vector: de-

note

π0 = π1 + . . . .+ πN

and set

π̂ =
1

π0

π

in such a way that π̂i > 0 and

π̂1 + . . .+ π̂N = 1.

Hence

Qi =
N∑
j=1

πjDij =
1

π0

N∑
j=1

π̂jDij = Eπ̂
[

1

π0

Di

]
,

recovering the fact that, using risk-neutral probabilities, the current price of an asset zi

is given by the expected payoff, discounted at a risk-free rate π0. Indeed, if there exists a

risk-less asset 1 with same payoff in every state of the world s ∈ Ω, then

1 · π1 + . . .+ 1 · πN = expected future value of 1 = 1 + r,

where r is the rate of return of the risk-less asset. Hence,

π0 = 1 + r.

2.1 Utility and equilibrium

An agent is characterized by an endowment e ∈ RK
+ and a differentiable strictly increasing

utility function

u : RK
+ → R

where

RK
+ = {c = (c1, . . . , cK) ∈ RK : ci ≥ 0}.
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Note that c is a random variable depending on the K states of the world and representing

the investor’s consumption choices. More generally, one may consider a utility function

depending on the investor’s choices (consumption plans) at two distinct times, say t = 0

and t = 1. In other terms, we consider an utility function defined in R+×RK
+ of the form

u(c(0), c(1)).

Here c(0) ≥ 0 and c(1) ≥ 0 are, respectively, the consumption plans of the investor at times

t = 0 and t = 1. Both e and c are modelled as random variables e = e(s) and c = c(s)

depending on the states of the world s ∈ Ω. We refer the reader to (6), (16), (18) for

further details on the notions and fundamental results in this section.

Given consumption plans c, c− and c+ one has by assumption that

u(c
(0)
− , c

(1)) < u(c
(0)
+ , c(1))

if c
(0)
− < c

(0)
+ and

u(c(0), c
(1)
− ) < u(c(0), c

(1)
+ )

if c
(1)
− < c

(1)
+ . The partial order for vectors (consumption bundles) in RK

+ is defined here

by

c− < c+ if and only if c−i < c+i,

for every i = 1, . . . , K. We then consider the following constrained optimization problem

max
c,α

u(c(0), c(1)) (14)

subject to the constraints

c(0) ≤ e(0) − 〈Q,α〉 (15)

c(1) ≤ e(1) +αD (16)

Theorem 2.2 If there is no arbitrage, then the problem (14), (15)-(16) has a solution,

that is, there exists an optimal consumption plan and optimal portfolio.

Proof. Without loss of generality, we may assume that there are no redundant portfolios.

Indeed redundant portfolios α and α′ have the same payoffs, that is,

αD = α′D.

Since there are no arbitrage portfolios, we conclude that α and α′ also have the same

prices:

〈Q,α〉 = 〈Q,α′〉.
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Then the maximization problem does not distinguish between redundant portfolios and

then we may take only a representative of possible redundant portfolios. In technical

terms, this means that we may consider the quotient space of the feasible set by kerD.

Since u is a continuous function, the optimization problem can be solved once

we prove that the constraints define a closed and bounded subset in RK
+ . Given admissible

sequences {cn} and {αn} of consumption plans and portfolio allocations, respectively, we

have

c(0)
n ≤ e(0) − 〈Q,αn〉 (17)

c(1)
n ≤ e(1) +αnD (18)

If cn → c and αn → α then {c,α} lies in the feasible set, that is,

c(0) ≤ e(0) − 〈Q,α〉 (19)

c(1) ≤ e(1) +αD (20)

Therefore, the feasible set is closed. In order to prove that it is also bounded, suppose by

contradiction that there exists an unbounded sequence {cn,αn} in the feasible set. This

implies that the sequence of portfolios {αn} is unbounded. Otherwise, the constraint

inequalities

c(0)
n ≤ e(0) − 〈Q,αn〉 (21)

c(1)
n ≤ e(1) +αnD (22)

would imply that {cn} would be bounded too. Hence, {αn} is unbounded in the sense

that

|αn| = (α2
1 + . . .+ α2

n)1/2 → +∞

as n → +∞. On the other hand, since the consumption plans are non-negative, that is,

c
(0)
n ≥ 0 and c

(1)
n ≥ 0, we have

〈Q,αn〉 ≤ e(0) (23)

−αnD ≤ e(1) (24)

Therefore, dividing both sides of the constraint inequalities by |αn| yields〈
Q,

αn
|αn|

〉
≤ 1

|αn|
e(0) (25)

− αn
|αn|

D ≤ 1

|αn|
e(1) (26)
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However a subsequence of
αn
|αn|

converges to some non-zero portfolio α ∈ RN . Taking limits on both sides of the inequa-

lities 25-26 above, one concludes that

〈Q,α〉 ≤ 0 (27)

−αD ≤ 0 (28)

Since α 6= 0 and due to the fact that only the trivial portfolio has zero payoff, we conclude

that

αD > 0

with 〈Q,α〉 ≤ 0 what means that α is an arbitrage portfolio. This contradiction proves

that the feasible set is closed and bounded. This is enough to ensure the existence of an

optimal solution, finishing the proof. �

Theorem 2.3 If there exist an optimal consumption plan and optimal portfolio for the

problem (14), (15)-(16), then there is no arbitrage portfolio.

Proof. Suppose by contradiction that there exists an arbitrage portfolio α0. Then, given

any feasible consumption plan and portfolio {c,α} one has

〈Q,α0〉 ≤ 0

(respectively, 〈Q,α0〉 < 0) and

α0D > 0

(respectively, α0D ≥ 0.) In both arbitrage cases, one gets

c(0) ≤ e(0) − 〈Q,α+α0〉 (29)

c(1) ≤ e(1) + (α+α0)D, (30)

that is,

c(0) + 〈Q,α0〉 ≤ e(0) − 〈Q,α〉 (31)

c(1) −α0D ≤ e(1) +αD, (32)

Since u is strictly increasing and at least one of the inequalities above is strict, we conclude

that the consumption plan (c(0)− 〈Q,α0〉, c(1)−α0D) is strictly preferred to the optimal

consumption plan (c(0), c(1)). This contradiction proves that there is no arbitrage portfolio,

finishing the proof. �

In sum, the no-arbitrage condition is necessary and sufficient to the existence
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of an optimal consumption plan and portfolio for investors whose utility functions are

strictly increasing with respect to both present and future consumption plans.

The constrained maximization problem 14, 15-16 may be formulated in terms

of the Lagrangian

L = u(c(0), c(1)) + λ(c(0) − e(0) + 〈Q,α〉) + µ(c(1) − e(1) −αD) (33)

It follows that the first-order conditions (at a regular maximum point) are given by

∂c(0)u+ λ = 0, (34)

∂c(1)u+ µ = 0, (35)

λQ− µD = 0. (36)

Combining these equations gives

Q = D
∂c(1)u

∂c(0)u
(37)

We conclude that the state-price vector π is given by the marginal rate of substitution,

that is,

π =
∂c(1)u

∂c(0)u
· (38)

Equations 34-36 are also sufficient conditions to the optimality of some feasible {c,α}
in the case when the utility function is differentiable and concave, see (12), p. 13. The

concavity assumption is also useful to guarantee the existence of a general equilibrium in

securities market, see Theorem 1.8.1 in (16).

Theorem 2.4 If each agent’s admissible consumption plans are restricted to be non-

negative, her utility function is strictly increasing and concave, her initial endowment is

strictly positive, and there exists a portfolio with strictly positive payoff, then there exists

an equilibrium in security markets.

An equilibrium in a market composed by M investors (u(`), e`), ` = 1, . . . ,M ,

and N assets with payoffs D is by definition a state-price vector π and individual optimal

allocations α`, ` = 1, . . . ,M , for (14), (15)-(16) such that

M∑
`=1

α` = 0 (39)

This expression means that a short position of an agent trading in the market corresponds

to a long position of other agent. The total sum of market operations, encoded in the

sum of individual portfolio allocations, is equal to zero.
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Expected utility

In this section, we restrict ourselves to the case of expected utility functions, a central

concept in von Neumann and Morgenstern theory of choice under uncertainty. A detailed

account of this theory and criticism may be found in (21) and (6). The theoretical appa-

ratus of von Neumann and Morgenstern relies on a list of axioms, the most controversial

being the independence axiom that states that consumption plans, represented by random

variables of the form

c = (c1, . . . , cK) ∈ RK ,

satisfy the preferences ordering relations

(c1, . . . , ci−1, x, ci+1, . . . , cK) % (c′1, . . . , ĉ
′
i−1, x, ĉ

′
i+1, . . . , c

′
K)

if

(c1, . . . , ci−1, ci, ci+1, . . . , cK) % (c′1, . . . , ĉ
′
i−1, c

′
i, ĉ
′
i+1, . . . , c

′
K)

for all c, c′ ∈ RK and x ∈ R. Here, A % B is a preference ordering that means that

“A is preferred to B”. Besides that, one of the main hypothesis in this theory is that

expectations are calculated with respect to given objective probabilities. Hence, a portfolio

is described in terms of a “gamble”

(
(c1, p1), . . . , (cK , pK)

)
,

that is, a given list of possible payoffs of the consumption plan and their respective

probabilities.

It follows from that axiomatic approach that rational optimization under un-

certainty could be modeled in terms of a particular form of the utility function that we

are going to use in the sequel. Indeed, we consider in what follows the case of an expected

utility function defined in terms of a set of probabilities {p1, . . . , pK} by

u(c(0), c(1)) = u0(c(0)) + E[u1(c(1))] = u0(c(0)) +
K∑
j=1

pju1(c(1)(sj)). (40)

This means that u is separated into two components, u0 and u1 that depend respectively

on the consumption plans at times t = 0 and t = 1. Note that the function u1 does not

depend on the parameter j, that is, does not depend on the states of the world sj ∈ Ω.

In this case, condition 37 reads as

Q =
1

∂c(0)u0

K∑
j=1

pjDu
′
1(c(1)(sj)),
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what implies that

Q =
1

∂c(0)u0

E[Du′1(c(1))]. (41)

For the sake of simplicity we will assume for a while that u0 ≡ 1. An agent is said to

be risk-averse if she prefers the expectation of any consumption plan to the consumption

plan itself, that is,

E[u1(c(1))] ≤ u1(E[c(1)]), (42)

for every consumption plan c. Intuitively, the right-hand side u1(E[c(1)]) is the utility of

the expected value of the lottery represented by the random variable c(1). This is the

risk-less position to the investor. The left-hand side E[u1(c(1))] is the expected utility of

the lottery. The inequality means that, in order to move from the risk-less position to a

riskier one, the risk-averse investor demands a positive risk premium that we are going to

define shortly afterwards. For risk neutral agents instead, we have

E[u1(c(1))] = u1(E[c(1)]), (43)

for every consumption plan c. It turns out that an agent is risk averse (respectively,

risk neutral) if and only if her von Neumann-Morgenstern utility function u1 is concave

(respectively, linear). This follows from Jensen’s inequality for concave functions. Indeed,

if u1 is concave we have

p1u1(c(1)(s1)) + . . .+ pKu1(c(1)(sK)) ≤ u1(p1c
(1)(s1) + . . .+ pKu

(1)(sK)),

that is,

E[u1(c(1))] ≤ u1(E[c(1)]).

The Jensen’s gap

J = u1(E[c(1)])− E[u1(c(1))]

increases with the concavity of the graph of u1. This indicates that the second derivative

of u1 encodes some information about the investor’s aversion to risk. Indeed, one of the

commonly used risk measures is the Arrow-Pratt absolute risk aversion coefficient defined

by

a = −u
′′
1(c(1))

u′1(c(1))
· (44)

We now define the risk premium, a notion that is closely related to Jensen’s

gap. Let c̄(1) be the mean of the random variable c(1), that is,

c̄(1) = E[c(1)]
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Setting

c(1) = c̄(1) + ε,

where ε is a random variable with zero mean, we define the risk premium Π by

E[u1(c̄(1) + ε)] = u1(c̄(1) − Π) (45)

The certainty equivalent is by definition

C = c̄(1) − Π. (46)

The risk premium Π can be regarded as the maximum amount the investor renounce in

order to avoid the “gamble” represented by the random factor ε. We have for an arbitrary

von Neumann-Morgenstern utility function the following approximation

u1(c̄(1) + ε) = u1(c̄(1)) + u′1(c(1))ε+
1

2
u′′1(c(1))ε2 +O(ε3) (47)

and since E[ε] = 0 one gets

E[u1(c̄(1) + ε)] ∼ u1(c̄(1)) +
1

2
u′′(c(1))E[ε2].

up to O(ε3) remainder. Recall that the variance of ε is given by

var[ε] = E[ε2]− (E[ε])2 = E[ε2].

Therefore

E[u1(c̄(1) + ε)] ∼ u1(c̄(1)) +
1

2
u′′(c(1))var[ε].

On the other hand

u1(c̄(1) − Π) ∼ u1(c̄(1))− u′(c̄(1))Π

up to second order terms in Π. Then, we obtain the approximation

Π ∼ −1

2

u′′(c̄(1))

u′(c̄(1))
var[ε] (48)

or, in terms of the risk aversion coefficient

Π ∼ −1

2
a var[ε] (49)

One deduces from (49) that

i. If u′′1(c(1)) > 0 then C > u(c(1)) and the investor prefers a greater certainty equivalent

on an uncertain investiment (that is, a “gamble”) than its expected value.
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ii. If u′′1(c(1)) < 0 then C < u(c(1)) and the investor prefers a lower certainty equivalent

on an uncertain investiment than its expected value.

iii. If u′′1(c(1)) = 0 then C = u(c(1)) and the investor has a certainty equivalent equal to

the expected return.

In the special case of a CARA (constant absolute risk aversion) utility function one has

u′′1(c̄(1))

u′1(c̄(1))
= −a

for some constant a. Hence u can be taken as

u1(c̄(1)) = − exp(−ac̄(1)). (50)

In this case we have

u1(c̄(1) − Π) = − exp(−ac̄(1) + aΠ) = − exp(−ac̄(1)) exp(aΠ).

We obtain in a similar way that

u1(c̄(1) + ε) = − exp(−ac̄(1)) exp(−aε)

from what follows that

E[u1(c̄(1) + ε)] = − exp(−ac̄(1))E[exp(−aε)]

Comparing both expressions, one obtains

exp(aΠ) = E[exp(−aε)].

At this point, suppose that the random deviations ε are normally distributed with mean

µ and covariance matrix Σ. Using that E[ε] = 0 and denoting σ2 = var[ε] one has

E[exp(−aε)] =
1

(2π)
1
2σ

∫
exp

(
− aε− 1

2

1

σ2
ε2

)
dε

=
1

(2π)
1
2σ

∫
exp

(
− 1

2

(
1

σ
ε+ aσ

)2)
exp

(
1

2
a2σ2

)
dε

=
1

(2π)
1
2σ

∫
exp

(
− 1

2
t2
)

exp

(
1

2
a2σ2

)
σdt

= exp

(
1

2
a2σ2

)
1

(2π)
1
2

∫
exp

(
− 1

2
t2
)

dt = exp

(
1

2
a2σ2

)
We conclude that in the case of CARA utility functions and normally distributed incre-
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ments ε, we have exactly

Π =
1

2
a var[ε]. (51)

The certainty equivalent in this case is given by

C = µ− 1

2
aσ2, (52)

where

µ = E[c(1)].

2.2 Optimal portfolios

We refer the reader to (6), (16), (18) for further details on the notions and fundamental

results in this section.

Suppose that c(0) = 0. We recast the optimization problem 14, 15-16 in the

context of expected utility function as

max
α′

E[u1(c(1))] (53)

subject to

e(0) = 〈Q,α′〉, (54)

c(1) = e(1) +α′D. (55)

Suppose that the endowment at time t = 1 lies in the asset spanM. Then there exists a

portfolio α0 such that

e(1) = α0D.

and the price of this portfolio generating e(1) is given by

〈Q,α0〉.

Denoting

α′ = α−α0

we write 54 and 55 respectively as

e(0) + 〈Q,α0〉 = 〈Q,α〉

and

c(1) = α0D +α′D = (α0 +α′)D = αD.
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In this case, we define the wealth of the investor by

w(0) = e(0) + 〈Q,α0〉 (56)

and recast the problem 53, 54-55 as

max
α

E[u1(αD)] (57)

subject to

w(0) = 〈Q,α〉. (58)

According to this formulation of the problem, we can regard the portfolio payoff αD as

the investor’s wealth at time t = 1, that is,

w(1) = αD. (59)

The Lagrangian associated to 57-58 is of the form

L = E[u1(αD)]− λ(〈Q,α〉 − w(0)).

The first-order condition may be formally written as

E[u′1(w(1))Di] = λQi (60)

for all i. Since
Di −Qi

Qi

= ri =: Ri − 1

after dividing both sides by λQi one gets

E
[

1

λ
u′1(w(1))Ri

]
= 1 (61)

for all i. Therefore, given two assets with returns Ri and Rj we have

0 = E
[

1

λ
u′1(w(1))Ri

]
− E

[
1

λ
u′1(w(1))Rj

]
= E

[
1

λ
u′1(w(1))(Ri −Rj)

]
.

It follows that

E
[

1

λ
u′1(w(1))(Ri −Rj)

]
= 0.

Choosing one of the assets to be risk-free, say setting Rj = Rf , the risk-free return rate,

and obtain

E
[

1

λ
u′1(w(1))(Ri −Rf)

]
= 0 (62)
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The random variable Ri −Rf is the excess return of the asset zi compared with the risk-

free return. Applying 60 to a risk-free asset with return Rf (that is, setting Ri = Rf in

60) one has

Rf E
[
u′1(w(1))

]
= E

[
u′1(w(1))Rf

]
= λ

This determines λ in 60. Hence, considering again the expression 60 for an arbitrary Ri

gives

E
[

1

λ
u′1(w(1))D

]
= Q (63)

is a stochastic version of the price law

Dπ = Q.

Then we refer to

m :=
1

λ
u′1(w(1)) =

1

Rf

u′1(w(1))

E
[
u′1(w(1))

]
as a stochastic discount factor playing a role similar to the state-price vector π. It follows

from 61 that

E[mRi] = 1. (64)

On the other hand

E[mRi] = E[m]E[Ri] + cov[m,Ri]. (65)

Applying 64 to Ri = Rf one has

E[m]Rf = 1,

that is,

E[m] =
1

Rf
·

This determines E[m] in terms of Rf . Replacing this expression in 65 yields

1

Rf
E[Ri] + cov[m,Ri] = 1.

Rearranging terms, one obtains

E[Ri]−Rf = −Rf cov[m,Ri] (66)

In order to fix ideas, we are going to perform some explicit calculation in the case of CARA

utility function and normally distributed returns. We have in this particular setting that

u1(c(1)) = u1(w(1)) = − exp(−aαD).

where we have used 50 and 59. We denote the expected payoff of the portfolio and its
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variance respectively by µ and σ2. Then

µ = E[αD] = αD̄ and σ2 = αΣα>,

where D̄ and Σ are, respectively, the mean vector and the covariance matrix of the payoffs

D. Denoting αD = z one has as above

E[u1(w(1))] = E[− exp(−aαD)]

= − 1

(2π)
1
2σ

∫
exp(−az) exp

(
− 1

2

1

σ2
(z − µ)2

)
dz

= − 1

(2π)
1
2σ

∫
exp

(
− 1

2

(
z − µ
σ

+ aσ

)2)
exp

(
1

2
a2σ2 − aµ

)
dz

= − 1

(2π)
1
2σ

∫
exp

(
− 1

2
t2
)

exp

(
1

2
a2σ2 − aµ

)
σdt

= − exp

(
1

2
a2σ2 − aµ

)
1

(2π)
1
2

∫
exp

(
− 1

2
t2
)

dt = − exp

(
1

2
a2σ2 − aµ

)
= − exp

(
− a
(
µ− 1

2
aσ2

))
= u1

(
µ− 1

2
aσ2

)
.

We conclude that the certainty equivalent of the random wealth w(1) is given by

C = µ− 1

2
aσ2, (67)

that is,

C = αD̄ − 1

2
aαΣα>, (68)

where Σ is the covariance matrix of the payoffs of the basic assets z1, . . . , zN . Hence the

risk premium is completely determined by the variance of the portfolio and the absolute

risk aversion coefficient:

Π =
1

2
aαΣα>. (69)

More importantly, we deduce that maximizing the CARA expected utility is equivalent

to maximizing the utility of the certainty equivalent, which amounts to be equivalent to

maximizing C itself. The corresponding first order condition is

D̄ − aαΣ = 0.

Therefore, the optimal portfolio is given by

α =
1

a
Σ−1D̄. (70)
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2.3 Mean-variance analysis

The earlier computations motivate the problem of maximizing the certainty equivalent. As

we have seen, under the assumption of CARA utility function and normally distributed

returns this problem reduces to the mean-variance criterion for the choice of optimal

portfolios:

max
α

(
αD̄ − 1

2
aαΣ α>

)
(71)

Then we consider the mean-variance problem formulated by Harry Markowitz (20):

min
α
αΣα> (72)

subject to

〈α, D〉 = µ∗ (73)

〈α,1〉 = 1, α ≥ 0, (74)

where µ∗ is the desired expected return for the portfolio. Note that here we are represen-

ting D as a N -dimensional random vector (depending on K states of the world instead

of a N ×K matrix. The second constraint implies that

α ∈ SN−1 ⊂ RN

where SN−1 is the (N − 1)-dimensional simplex defined by

SN−1 =

{
α = (α1, . . . , αN) ∈ RN : 0 ≤ αi ≤ 1 and

N∑
i=1

αi = 1

}

First, we consider the Lagrangian

Lµ =
1

2
αΣα> − λ(〈α, D〉 − µ∗) (75)

subject to the restriction

〈α,1〉 =
N∑
i=1

αi = 1. (76)

The first order condition is

αi = λ(DΣ−1)i =: λψi.

Then, considering the restriction 76 one has

λ

N∑
i=1

ψi =
N∑
i=1

αi = 1.
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Therefore

λ =
1∑N
i=1 ψi

·

We conclude that the optimal portfolio is given by

αµ =
DΣ−1

〈DΣ−1,1〉
· (77)

Next, we define the Lagrangian

L1 =
1

2
αΣα> − ν(〈α,1〉 − 1) (78)

subject to the constraint of prescribed expected portfolio return:

〈α, D〉 = µ∗. (79)

Now, the first order condition is

αi = ν(1Σ−1)i =: νφi.

Note that as before

ν
N∑
i=1

φi =
∑
i=1

αi = 1

from what follows that the optimal portfolio for L1 is

α1 =
1Σ−1

〈1Σ−1,1〉
· (80)

In view of the restriction 79 one obtains

ν〈φ, D〉 = 〈α, D〉 = µ∗

what implies that

〈1Σ−1, D〉 ν = µ∗ (81)

Similarly one gets

〈DΣ−1, D〉λ = µ∗. (82)

It follows that an optimal portfolio for the full Lagrangian

L =
1

2
αΣα> − λ(αD − µ∗)− ν(〈α,1〉 − 1)

can be expressed as

α = λ̃αµ + ν̃α1, (83)
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that is,

α = λ̃
DΣ−1

〈DΣ−1,1〉
+ ν̃

1Σ−1

〈1Σ−1,1〉
(84)

where the coefficients λ̃ and ν̃ are solutions of the system

λ̃+ ν̃ = 1, (85)

λ̃
〈DΣ−1, D〉
〈DΣ−1,1〉

+ ν̃
〈1Σ−1, D〉
〈1Σ−1,1〉

= µ∗ (86)

Arbitrary choices of λ̃ and ν̃ determine the mean-variance frontier. For instance, both

portfolios αµ and α1 are in the mean-variance frontier since they correspond to set λ̃ = 1,

ν̃ = 0 and λ̃ = 0, ν̃ = 1, respectively.

It follows from (83) and (85)-(86) that

λ̃(〈αµ, D〉 − 〈α1, D〉) + 〈α1, D〉 = µ∗.

Hence

λ̃ =
µ∗ − 〈α1, D〉

〈αµ, D〉 − 〈α1, D〉
· (87)

Note that the variance of α is given by

σ2 = αΣα> = (λ̃αµ + ν̃α1)Σ(λ̃αµ + ν̃α1)>

= λ̃2 〈DΣ−1, D〉
〈DΣ−1,1〉2

+ 2λ̃(1− λ̃)
〈D,1Σ−1〉

〈DΣ−1,1〉〈1Σ−1,1〉
+ (1− λ̃2)

1

〈1Σ−1,1〉

Denoting

A = 〈DΣ−1, D〉, B = 〈1Σ−1, D〉, C = 〈1Σ−1,1〉 (88)

one has

σ2 =
A− 2Bµ∗ + Cµ2

∗
AC −B2

.

Therefore, the mean-variance frontier is parameterized in terms of λ̃ as the geometric

locus (
µ∗, σ

2 =
A− 2Bµ∗ + Cµ2

∗
AC −B2

)
.

Fixed a desired expected return µ∗, the minimum variance efficient portfolio is determined

differentiating the expression above for σ2 with respect to λ̃. We obtain

µ∗ =
B

C
=
〈1Σ−1, D〉
〈1Σ−1,1〉
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what means that λ̃ = 0 and that the minimum variance efficient portfolio is indeed

α1 =
1Σ−1

〈1Σ−1,1〉
(89)

with return µ∗, the optimal return rate in Markowitz’s portfolio selection theory.

2.4 Projection pricing

We refer the reader to (6), (12), (16), (18), (19) for further details on the notions and

fundamental results in this section. The formalism below relies on orthogonal projections

in a vector space and provides a geometric setting to the pricing theory of financial assets.

Let Z = Z(s) be an arbitrary contingent claim, depending on s ∈ Ω but not

necessarily contained in the asset span M. We may define the orthogonal projection

z = z(s) of Z onto M using the L2-inner product

(Z,Z ′) = E[ZZ ′],

which is well-defined for any random variables Z,Z ′ with finite variance, that is, whenever

E[Z2] < +∞, E[Z ′2] < +∞.

Since z ∈M there exists α ∈ RN such that

z = αD =
N∑
i=1

αizi.

Hence,

(Z −αD, zj) = 0

for every j = 1, . . . , N , what implies that

αi =
N∑
j=1

g−1
ij (Z,Zj),

where the matrix g is given by

gij = (zi, zj) = E[zizj]

and it is suppose to be invertible. Hence,

z =
N∑
j=1

g−1
ij (Z, zi)zj (90)
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and

Z = z + ε,

where

(ε, zj) = E[εzj] = 0,

for every j = 1, . . . , N . We may verify that z is the solution of the least squares problem

min
z∈M

(Z − z, Z − z) = min
z∈M

E[(Z − z)2].

We now consider the particular case when Z = m, a stochastic discount factor. Recall

that this means that the price of an arbitrary asset Z is given by

Q(z) = E[mZ] = (m,Z).

In this case,

(m, zi) = Qi

is the price of the basic asset zi and the projection of m onto the asset span is given by

kq =
N∑
j=1

g−1
ij Qizj (91)

We obviously have

Q(z) = E[kqz] = (kq, z), (92)

for every z ∈ M. We refer to kq as a pricing kernel. In mathematical terms, this means

that kq is the vector in M correspondent to the price functional Q(z) through the inner

product g.

Now, we determine the projection ke onto M of a risk-free asset 1. We have

for any contingent claim Z that

E[Z] = E[Z1] = (Z,1)

and

var[Z] = E[(Z − E[Z])2] = (Z − (Z,1)1, Z − (Z,1)1).

We conclude that the variance of Z is the squared norm of the projection of Z onto the

subspace orthogonal to 1 whereas the component of Z in the direction of 1 is the expected

value of Z. Since

(1, zi) = E[zi]



37

we have

ke =
N∑
j=1

g−1
ij E[zi]zj

and

E[z] = E[kez], (93)

for every z ∈M. In what follows we refer to ke as the expectation kernel.

The theorem below highlights the importance of both pricing and expectation

returns.

Definition 2.2 A traded asset z ∈M is in the mean-variance frontier if there exists no

z′ ∈M such that

E[z] = E[z′], Q(z) = Q(z′) (94)

and

var[z] > var[z′]. (95)

Theorem 2.5 The mean-variance frontier payoff is spanned by the expectation and pri-

cing kernels.

Proof. Let E be the (one or two-dimensional) linear space spanned by the expectation

kernel ke and pricing kernel kq. Given z ∈M, we have the orthogonal decomposition

z = zE + ε,

where zE is a linear combination of the kernels {ke, kq} and

0 = (ke, ε) = E[keε] = E[ε]

0 = (kq, ε) = E[kqε] = Q(ε)

This implies that

E[z] = E[zE ],

Q(z) = Q(zE).

Moreover,

E[z2] = (z, z) = (zE + ε, zE + ε) = (zE , zE) + (ε, ε) = E[(zE)2] + (ε, ε)

and

(E[z])2 = (E[zE ])2.

Therefore

var[z] = E[z2]− (E[z])2 = E[(zE)2)− (E[zE ])2 + (ε, ε)



38

what implies that

var[z] = var[(zE)2] + (ε, ε), (96)

with equality if and only if ε = 0, that is, if and only if z ∈ E . �

Note that the price and return of the pricing kernel are respectively given by

Q(kq) = E[kqkq] = E[k2
q] (97)

and

Rq =
kq

Q(kq)
=

kq
E[k2

q]
, (98)

whereas the price and returns of the expectation kernel are given by

Q(ke) = E[kqke] = E[kekq] = E[kq]

and

Re =
ke

E[kq]
,

respectively.

2.5 Beta models and Capital Asset Pricing Model

In what follows, we propose a version of the Capital Asset Pricing Model adapted to

non-Gaussian distributions. The model described below relies essentially on a geometric

definition of generalized beta coefficients. These betas are related to the Fisher metric

defined by the Hessian of the cumulant function that plays the role of the variance in the

case of non-Gaussian returns.

We refer the reader to (6), (12), (16), (18), (19) for introductory expositions

of the classical Capital Asset Pricing Model (CAPM).

We have proved thet E = span{kq, ke} is the mean-variance frontier in M.

Suppose that E is indeed a two-dimensional linear space. Now we address the problem of

minimizing the variance among points in z ∈ E , that is,

min
z∈E

var[z], (99)

Any point z ∈ E is of the form

z = akq + bke,

for some a, b ∈ R. The price of this portfolio is

Q(z) = E[mz] = aE[mkq] + bE[mke] = aQ(kq) + bQ(ke) (100)
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Fixing the constraint that the price of the portfolio is Q(z) = 1, we denote

β = aQ(kq)

and therefore

1− β = bQ(ke).

Therefore the portfolios with unit price are parameterized by

z = β
kq

Q(kq)
+ (1− β)

ke
Q(ke)

= βRq + (1− β)Re = Re + β(Rq −Re) (101)

with β ∈ R. Here Rq and Re are the returns of kq and ke, respectively. We conclude from

(99) that the optimal portfolio with unit price is determined by

β0 := − (Rq −Re)
>ΣRe

(Rq −Re)>Σ(Rq −Re)
(102)

Note that the expected return of this portfolio is

E[z0] = E[Re] + β0 E[Rq −Re] (103)

We have in the case when the risk-free asset 1 with riskless return Rf is an element inM
that

ke = 1

and Re = Rf . We have in this case

E[z0] = Rf + β0 (E[Rq]−Rf). (104)

In that way, we recover the classical beta pricing equation.

Generalized beta pricing

Recall that we are assuming that E has dimension two. It is then convenient to restate

the results above using two linearly independent assets other than ke and kq. We fix such

assets, say kλ and kν , with respective returns

rλ = Re + λ(Rq −Re)

and

rν = Re + µ(Rq −Re)

in such a way that

cov(rλ, rν) = 0. (105)
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Hence, ν is given by

ν = − cov(Re, Re) + λ cov(Rq −Re, Re)

cov(Rq −Re, Re) + λ cov(Rq −Re, Rq −Re)
(106)

Note that ν is well-defined if and only if λ 6= β0 in (102), that is, if kλ is not the minimum

variance portfolio in E .

Given an asset z ∈M with unit price we have the decomposition

z = zE + ε

where

zE = akλ + bkν

with ε ⊥ E and ke(ε) = E[ε] = 0. It follows that

E[z] = aE[kλ] + bE[kµ] = aq(kλ)E[rλ] + bq(kν)E[rν ]

=: E[rν ] + β(E[rλ]− E[rν ])

with β = aq(kλ). Denoting by r the return of z one obtains

r = z = aq(kλ)rλ + bq(kν)rν + ε = rν + β(rλ − rν) + ε

from what follows that

cov(r, rλ) = cov(rµ, rλ) + β cov(rλ − rν , rλ) + cov (ε, rλ)

= cov(rµ, rλ) + β cov(rλ − rν , rλ)

= β cov (rλ − rν , rλ).

We conclude that

β =
cov(r, rλ)

cov(rλ − rν , rλ)
=

cov(r, rλ)

cov(rλ, rλ)
.

In sum, we have obtained a generalized beta pricing equation

E[z] = E[rν ] + β(E[rλ]− E[rν ]) (107)

for assets in z ∈ M. If the risk-free asset 1 with return Rf lies in the asset span M, we

fix rν = Rf . With this choice, (107) reduces to

E[z] = Rf + β(E[rλ]−Rf), (108)

a generalized beta pricing equation written in terms of an asset kλ instead of the pricing
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kernel kq as in (104).

In a market of M investors, the market payoff is by definition the projection

of the aggregate endowment at time t = 1

e :=
M∑
`=1

e
(1)
`

and the market return rm is the market payoff divided by the equilibrium price of the

market portfolio (that is, the portfolio that replicates in M the projection of e.)

An agent has mean-variance preferences if his utility function u1(c1) is strictly

increasing and has the representation

u1(c(1)) = v(E[c(1)], var[c(1)]) (109)

where v is strictly increasing and concave with respect to the the second variable, that is,

with respect to variance.

As a consequence of the existence of a market equilibrium (for mean-variance

preferences), we have the central theorem of the Capital Asset Pricing Model (CAPM),

that defines the market security line

Theorem 2.6 The equilibrium prices for efficient assets z with returns r in a market

with agents’ preferences described by an utility function of the form (109) are given by

E[r]− E[rν ] = βm(E[rm]− E[rν ]), (110)

where rm is the return of the market portfolio and

βm =
cov(r, rm)

cov(rm, rm)
· (111)

The coefficient β measures the asset return’s sensitivity to fluctuations in the

market return: it is a measure of the systematic risk of the asset, that risk component

that cannot be suppressed by diversification.

3 FUNDAMENTALS OF INFORMATION THEORY

The entropy, more precisely, Shannon’s entropy, of a probability distribution P with

density p(s,ϑ) is defined by

H(P ) = −
∫

Ω

p(s) log p(s,ϑ) ds = E[− log p] (112)

where ds is some fixed measure in the sample space Ω of states of the world. Here, ϑ

stands for the statistical parameters of the distribution p. If Ω = {s1, . . . , sK} and P is a
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discrete probability function defined by

P (si) = pi

for every i = 1, . . . , K, then the entropy reduces to

H(P ) = −
K∑
i=1

log(pi) pi = E[− log p]

Note that H(P ) ≥ 0 in both cases.

Intuitively, Shannon’s entropy is a measure of average uncertainty in a random

variable r with probability distribution P , represented in the discrete case as the number

of bits needed to describe it.

In order to fix ideas, we will discuss a couple of examples. For instance, given

an uniform distribution supported in C = [a1, b1]× . . .× [aK , bK ] we have

p(s) =

 1
|C|1, if s ∈ C,

0, otherwise,

where

|C| = volumeC = (b1 − a1) · . . . · (bK − aK).

Then

H(P ) = −
∫
C

1

|C|
log
( 1

|C|

)
ds = −|C|

|C|
log
( 1

|C|

)
= − log

( 1

|C|

)
= log |C|.

In the discrete case, one easily verifies that the uniform distribution has the greatest

entropy among discrete probability distributions in a finite sample space. We also have

H(P ) ≤ log |Ω| = logK

with the upper bound attained for the uniform distribution.

Now, given a multivariate normal distribution with density

p(r, µ,Σ) =
1

(2π)
N
2 |Σ| 12

exp

(
− 1

2
(r− µ)Σ−1(r− µ)>

)
one has

log p = −N
2

log(2π)− 1

2
log |Σ| − 1

2
(r− µ)Σ−1(r− µ)>
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Setting Σ−1 = AA> and denoting w = r− µ one computes

H(P ) =

∫
−p log p dr =

(
N

2
log(2π) +

1

2
log |Σ|

)∫
p dr

+
1

(2π)
N
2 |Σ| 12

∫
1

2
(r− µ)Σ−1(r− µ)> exp

(
1

2
(r− µ)Σ−1(r− µ)>

)
dr

=
N

2
log(2π) +

1

2
log |Σ|+ 1

(2π)
N
2 |Σ| 12

∫
1

2
wAA>w> exp

(
1

2
wAA>w>

)
dw

=
N

2
log(2π) +

1

2
log |Σ|+ 1

(2π)
N
2 |Σ| 12

∫
1

2
wAA>w> exp

(
1

2
wAA>w>

)
dw.

Now, considering the change of variables z = wA one gets

H(P ) =
N

2
log(2π) +

1

2
log |Σ|+ 1

(2π)
N
2

∫
1

2
|z|2 exp

(
1

2
|z|2
)

dz

=
N

2
log(2π) +

1

2
log |Σ|+ 1

2

(
var[z] + E[z]2

)
=
N

2
log(2π) +

1

2
log |Σ|+ 1

2
var[z] =

N

2
log(2π) +

1

2
log |Σ|+ N

2
·

Hence, we conclude that the entropy of a multivariate Gaussian distribution depends on

its covariance matrix:

H(P ) =
N

2
(1 + log(2π)) +

1

2
log |Σ|. (113)

Moreover, it holds that the Gaussian distribution has the greatest entropy among the

distributions with zero mean and covariance Σ, see (24).

Given a random variable r with distribution probability P , we refer to H(P )

also as the entropy of the random variable itself and denote

H(r) = H(P )

is a slight abuse of notation. Hence, given two random variables (r, r′) whose joint distri-

bution has density p, we define the joint entropy by

H(r, r′) = −
∫ ∫

p(s, s′) log p(s, s′) ds ds′. (114)

In its discrete version, this expression reads as

H(r, r′) = −
K∑
i=1

K∑
j=1

p(si, s
′
j) log p(si, s

′
j).

Therefore, using the decomposition of the total probability in conditional probabilities,
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one has

H(r, r′) = −
K∑
j=1

( K∑
i=1

p(si, s
′
j) log

(
p(si|s′j)p(s′j)

))

= −
K∑
j=1

( K∑
i=1

p(si, s
′
j)
(

log p(si|s′j) + log p(s′j)
))

= −
K∑
j=1

K∑
i=1

p(si, s
′
j) log p(si|s′j)−

K∑
j=1

log p(s′j)

( K∑
i=1

p(si, s
′
j)

)
.

However, the last term between parenthesis is the marginal probability of r′. Hence,

H(r, r′) = −
K∑
j=1

K∑
i=1

p(si, s
′
j) log p(si|s′j)−

K∑
j=1

log p(s′j)p(s
′
j)

= −
K∑
j=1

K∑
i=1

p(si, s
′
j) log p(si|s′j) +H(r′).

Defining the conditional entropy by

H(r|r′) = −
K∑
j=1

K∑
i=1

p(si, s
′
j) log p(si|s′j) (115)

which is natural since the expression involves the conditional probabilities, one obtains

H(r, r′) = H(r|r′) +H(r′). (116)

Next, we define the mutual information

I(r, r′) = H(r)−H(r|r′). (117)

Alternatively, I(r, r′) can be regarded as the relative entropy between the joint probability

distribution p(r, r′) and the product of the marginal distributions p(r)p(r′), that is,

I(r, r′) =
K∑
i=1

K∑
j=1

p(si, s
′
j) log

(
p(si, s

′
j)

p(si)p(s′j)

)
·

In particular, if r and r′ are independent random variables, then

I(r, r′) = 0.

It turns out that

I(r, r′) ≥ 0
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with equality only in the case of independent random variables.

In general, if we intuitively take H as a measure of uncertainty of the random

variable, I(r, r′) represent how much information about r comes out from the knowledge of

r′: knowing r′ may reduce the ignorance about r from the level H(r) to a possibly lower

level of uncertainty H(r|r′). This content of information is quantified by the mutual

information.

More generally, one defines the relative entropy between random variables r, r′

(to be precise, between their probability distributions p and p′, respectively) by

D(r||r′) =
K∑
i=1

K∑
j=1

p(si) log

(
p(si)

p(s′j)

)
(118)

We also refer to this quantity as Kullback-Leibler statistical divergence. Since

D(r||r′) ≥ 0

with equality if and only if p(si) = p(s′i) for every i = 1, . . . , K, it seems suggestive to

consider the Kullback-Leibler divergence as a distance between probability distributions.

We will discuss this point of view in further details in the following section.

3.1 Statistical divergences and Fisher metric

A statistical manifold can be thought of as a set S of probability distributions whose

densities p(s,ϑ), s ∈ Ω ds, depend on a list of parameters ϑ = (ϑ1, . . . , ϑn) varying along

an open subset U ⊂ Rn. Formally, we have a parametrization

ϑ ∈ U 7→ p(s,ϑ) ds ∈ S.

Precise definitions may be found for instance in (1), (15).

The geometry in a statistical manifold can be introduced through the notion

of a distance between probability distributions: the relevant notion here is that of a

statistical divergence

D(P ||P ′) = D(ϑ||ϑ′) (119)

between probability distributions P and P ′ in S with respective densities given by p(s,ϑ)

and p(s,ϑ′) for some ϑ,ϑ′ in U .

A trivial yet fundamental example is the Euclidean divergence that is, up to

a constant, merely the Euclidean norm in U , that is,

Deuc(P ||P ′) =
1

2
|ϑ− ϑ′|2 =

1

2

n∑
i=1

(ϑi − ϑ′i)2. (120)
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Another well-known example is the Kullback-Leibler divergence or relative entropy we

have defined above

DKL(P ||P ′) = EP
[

log
p(·,ϑ)

p(·,ϑ′)

]
=

∫
p(s,ϑ) log

p(s,ϑ)

p(s,ϑ′)
ds (121)

Some important statistical manifolds are defined in terms of a convex real function K :

U ⊂ Rn → R. This is the case of the exponential family whose densities are of the form

p(r;ϑ) = exp(〈r,ϑ〉 −K(ϑ)) p0(r), ϑ ∈ U, (122)

where p0 is a fixed reference density. Note that K is the moment-generating function of

the distribution. Indeed, for each i = 1, . . . , n we have

E[ri] =

∫
rip(r;ϑ) dr

=

∫
ri exp(〈r,ϑ〉 −K(ϑ))po(r) dr

=

∫ (
∂

∂ϑi
p(r,ϑ) +

∂K

∂ϑi
p(r,ϑ)

)
dr

=
∂

∂ϑi

∫
p(r,ϑ) dr +

∂K

∂ϑi

∫
p(r,ϑ) dr =

∂K

∂ϑi
,

where we used the fact that ∫
p(r;ϑ) dr = 1.

We conclude that

E[r] = ∇K(ϑ). (123)

Similarly, one computes

cov(ri, rj) =
∂2K

∂ϑi∂ϑj

and so on. The natural divergence in the case of such a family is the Bregman divergence

defined in terms of K by

D(P ||P ′) = D(ϑ||ϑ′) = K(ϑ)−K(ϑ′)− 〈∇K(ϑ′),ϑ− ϑ′〉 (124)

The Taylor expansion of an arbitrary divergence has the form

D(ϑ||ϑ′) =
1

2

n∑
i=1

n∑
j=1

gij(ϑ)(ϑi − ϑ′i)(ϑj − ϑ′j) +O(|ϑ− ϑ′|3). (125)

The positive-definite matrix (gij)
n
i,j=1 is the Fisher information metric defined by K and

then associated to the Bregman divergence (124) as the second order term in the Taylor

expansion of D.
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The parameters ϑ = (ϑ1, . . . , ϑn) ∈ U define coordinates in the statistical

manifold S. An associated dual system of coordinates is provided by

η = ∇K(ϑ) =

(
∂K

∂ϑ1

, . . . ,
∂K

∂ϑn

)
. (126)

At this point, it is worth to define the dual functionK∗(η) given by the Legendre transform

of K:

K∗(η) = max
ϑ

(
〈ϑ,η〉 −K(ϑ)

)
(127)

Differentiating the right-hand side at a maximum point we recover (126). The dual

Bregman divergence is given by

D∗(η||η′) = K∗(η)−K∗(η′)− 〈∇K∗(η′),η − η′〉.

It is easy to verify that

D(ϑ||ϑ′) = D∗(η′||η) (128)

if

η = ∇K(ϑ), η′ = ∇K(ϑ′).

It also follows that the primal Bregman divergence may be written as

D(ϑ||ϑ′) = K(ϑ) +K∗(η)− 〈ϑ,η〉. (129)

Straight lines of the form

γ(t) = ϑ′ + t(θ − ϑ′) (130)

and

γ∗(t) = η′ + t(η − η′) (131)

define locally shortest paths in S by means of the parameterizations given by ϑ and η,

respectively. Those shortest curves are called, respectively, geodesics and dual geodesics.

A geodesic and a (dual) geodesic intersect orthogonally at a point p = γ(0) = η(0) if their

velocity tangent vectors satisfy

〈γ′(0), η′(0)〉 = 0,

that is,
n∑
i=1

n∑
j=1

gij(p)γ
′
i(0)η′j(0) = 0.

Now, we may state the fundamental Pytaghorean theorem in the context of the Informa-

tion Geometry of statistical divergence.

Theorem 3.1 Given three points P, P ′ and Q in S such that the dual geodesic connecting
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P and P ′ is orthogonal to the geodesic connecting P ′ and Q, we have

D(P ||Q) = D(P ||P ′) +D(P ′||Q). (132)

The dual theorem is stated as follows

Theorem 3.2 Given three points P, P ′ and Q in S such that the geodesic connecting P

and P ′ is orthogonal to the dual geodesic connecting P ′ and Q, we have

D∗(P ||Q) = D∗(P ||P ′) +D∗(P ′||Q). (133)

3.2 Deformed exponentials

In this section we fix some notation and recall basic notions and facts about deformed ex-

ponentials and logarithms. We consider a strictly positive, nondecreasing and continuous

real function φ : (0,+∞)→ (0,+∞) and define the φ-logarithm as

logφ t =

∫ t

1

ds

φ(s)
, t > 0. (134)

Therefore logφ is invertible and its inverse is denoted by expφ. We refer to the function

expφ as the deformed exponential defined by φ. Following (26) we also define

ψ(t) = φ
(

expφ(t)
)
. (135)

In the case of φ(t) = tq with q > 0 we obtain the q-exponential (25) as

expq(t) =
(
1 + (1− q)t

) 1
1−q . (136)

This q-exponential function is suitable to describe non-additive processes since

expq(t) expq(t
′) = expq(t+ t′ + (1− q)tt′).

This motivates the definition of the q-sum

t⊕ t′ = t+ t′ + (1− q)tt′. (137)

The usual exponential function may be recovered as the limit of expq as q → 1. Other

examples of deformed exponentials in the literature are the Kaniadakis exponential given

as

expk(t) = exp

∫ t

0

dς√
1 + q2ς2

, for 0 ≤ q ≤ 1, (138)
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and the Newton exponential

expn(t) =

(
1 + qt

1− qt

)1/2q

, for − 1

q
< x <

1

q
and 0 ≤ q ≤ 1. (139)

Another model was proposed by Vigelis and Cavalcante where the Naudts’

model for deformed exponential was extended to a generic reference density. We refer the

reader to (1), (24), (40), (7) and references therein for a detailed account on the analytical

properties and applications of φ-exponentials and logarithms.

Example 3.1 Our definitions and conventions for q-Gaussian multidimensional distri-

bution follow closely the ones presented in (25), (33). Given a vector µ ∈ RN and a

positive definite N ×N matrix Σ, a q-Gaussian multivariate distribution with parameters

(µ,Σ) is defined by

p(r;µ,Σ) =
1

Γq
expq

(
− 1

2γq
(r− µ)Σ−1(r− µ)>

)
, (140)

with

γq =
1

2

(
(N + 4)− (N + 2)q

)
,

and

Γq = Kq,N

√
|Σ|,

where

Kq,N =


Γ( 1

q−1
−N

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for 1 < q < N+4

N+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+N
2

)

(
1

1−q

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for q < 1,

(141)

and |Σ| denotes the determinant of Σ.

Geometry of deformed exponentials

Now we briefly digress on the geometry of statistical manifolds of deformed exponentials.

An overview of the key concepts on Information Geometry of deformed exponentials is

useful to set up the notation and to provide some geometric intuition. Indeed, in what

follows we will describe our strategy of portfolio diversification in terms of Information

Geometry invariants. More precisely, we will propose in this work a search algorithm for

portfolios which maximizes the certainty equivalent under the assumption of q-Gaussian

probability densities for returns on assets. In particular, this will require the notion of

natural gradient associated to a statistical manifold (1).

Probability densities modeled upon φ-exponential functions determine a sta-
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tistical manifold

S = {p(· ;ϑ) : ϑ ∈ Rn}, (142)

where n = N +N2, whose points are probability density functions locally parameterized

in terms of n statistical parameters ϑ ∈ Rn by the map

p(r;ϑ) = expφ(〈T (r),ϑ〉 −K(ϑ)) p0(r), ϑ ∈ Rn, (143)

where p0 is a fixed reference probability density and K is the moment-generating function.

In what follows, the random variable r : S → RN represents the returns of a portfolio

with N assets which randomly depend on a set of states of the world. We define the

sufficient statistics T (r) by

T (r) = (r, r ⊗ r) ∈ RN ×M(N,R)

where r ⊗ r is the tensor with components rirj.

In order to define a Fisher information metric tensor and a statistical diver-

gence in S we consider the escort distribution (25) given by

p̂(r;ϑ) =
1

hφ(ϑ)
φ
(
p(r;ϑ)/p0(r)

)
p0(r) =

1

hφ(ϑ)
ψ
(
〈T (r),ϑ〉 −K(ϑ)

)
p0(r),

with

hφ(ϑ) =

∫
φ(p(r;ϑ)/p0(r))p0(r)dr. (144)

This permits to generalize the notion of statistical divergence for deformed exponential

families as follows

Dφ[ϑ′||ϑ] = Ep̂(r;ϑ)[logφ p(r;ϑ)/p0(r)− logφ p(r;ϑ′)/p0(r)], (145)

where the φ-expectation operator is given by

Eφ[u] := Ep̂(r;ϑ)[u] =
1

hφ(ϑ)

∫
u(r)p̂(r;ϑ) dr. (146)

Using the fact that Ep̂(r;ϑ)[r] = ∇K(ϑ) we write the Amari-Ohara divergence (145) as a

Bregman divergence which can be written as

Dφ[ϑ||ϑ′] = K(ϑ)−K(ϑ′)− 〈∇K(ϑ′),ϑ− ϑ′〉. (147)

In geometric terms, (147) yields two sets of dual affine coordinates for S. The dual
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relations are η = ∇K(ϑ) and the duality between K and K∗ is given by

K∗(η) = max
ϑ

(〈ϑ,η〉 −K(ϑ)) (148)

and then ϑ = ∇K∗(η). We have

Dφ[ϑ||ϑ′] = K(ϑ) +K∗(η)− 〈η,ϑ〉, (149)

what implies that Dφ is the canonical divergence associated to the dual system {ϑ,η}
and to the convex function K. We observe that the dual potential function is given by

K∗(η) = Eφ[logφ p(r;ϑ)/p0(r)], (150)

a relative negative entropy.

We refer to (1) and (15) as comprehensive presentations of the mathematical

background on Information Geometry.

3.3 Some technical computations

In this section we denote, for notational convenience, the dimension of the random variable

r by n instead of N .

Proposition 3.1 The q-Gaussian multivariate distributions belong to the statistical ma-

nifold of q-exponential distributions. Indeed, the density

p(r;µ,Σ) =
1

Γq
expq

(
− 1

2γq
(r− µ)>Σ−1(r− µ)

)
(151)

may be written as

p(r,ϑ) = expq
(
〈T (r),ϑ〉 −K(ϑ)

)
(152)

where

T (r) = (r, r⊗ r) ∈ Rn ×M(n,R) (153)

and the moment-generating function is given by

K(ϑ) =
1

4
ϑTΘ−1ϑ− logq(Jq|Θ|

1
2+(1−q)n ) (154)

The statistical parameters ϑ = (ϑ,Θ) ∈ RN ×M(N,R) are defined by

ϑ = Σ−1
q µ, and Θ =

1

2
Σ−1
q . (155)

Here, Jq is the constant

Jq = (2γq)
n

2+(1−q)nK
−2

2+(1−q)n
q,n . (156)
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Proof. A φ-Gaussian multivariate distribution ((25), (33) and references therein) can be

defined by

p(r;µ,Σ) =
1

Γφ
expφ

(
− 1

2γφ
(r− µ)>Σ−1(r− µ)

)
(157)

where Γφ, γφ are normalizing constants to be fixed in the sequel and Σ is a positive-definite

matrix. More precisely, multivariate q-Gaussian densities can be defined as follows. For

1 < q < n+4
n+2

we set

p(r;µ,Σ) =
1

Γq
expq

(
− 1

(n+ 4)− (n+ 2)q
(r− µ)>Σ−1(r− µ)

)
, (158)

that is

p(r;µ,Σ) =
1

Γq

(
1− (1− q) 1

(n+ 4)− (n+ 2)q
(r− µ)>Σ−1(r− µ)

) 1
1−q

(159)

where Σ is the usual covariance matrix of r,

Γq =
Γ( 1

q−1
− n

2
)
√
π

Γ( 1
q−1

)

(
1

q − 1

(
(n+ 4)− (n+ 2)q

))n
2√
|Σ| (160)

and

γq =
1

2

(
(n+ 4)− (n+ 2)q

)
. (161)

In the case q < 1 we set

p(r;µ,Σ) =
1

Γq
expq

(
− 1

(n+ 4)− (n+ 2)q
(r− µ)>Σ−1(r− µ)

)
+

, (162)

(where + denotes the positive part of the function) that is

p(r;µ,Σ) =
1

Γq

(
1− (1− q) 1

(n+ 4)− (n+ 2)q
(r− µ)>Σ−1(r− µ)

) 1
1−q

+

(163)

where

Γq =
Γ(2−q

1−q )
√
π

Γ(2−q
q−1

+ n
2
)

(
1

1− q
(
(n+ 4)− (n+ 2)q

))n
2√
|Σ| (164)

and

γq =
1

2

(
(n+ 4)− (n+ 2)q

)
. (165)

In order to express these densities in terms of φ-exponential parameters we

consider the linear change of coordinates

z = A(r− µ),
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where the matrix A is given by

A>A = Σ−1.

We have

− 1

2γφ
(r− µ)>Σ−1(r− µ) = − 1

2γφ
(r− µ)>A>A(r− µ) = − 1

2γφ
z>z

with

dr = |A−1|dz =
√
|Σ| dz.

Hence ∫
Rn

expφ

(
− 1

2γφ
(r− µ)TΣ−1(r− µ)

)
dr =

√
|Σ|
∫
Rn

expφ

(
− 1

2γφ
zTz

)
dz

=
√
|Σ|
∫
Rn

expφ

(
− 1

2γφ
|z|2
)

dz =
√
|Σ||Sn−1|

∫ ∞
0

expφ

(
− 1

2γφ
r2

)
rn−1dr.

In the particular case of q-exponentials when φ(t) = tq, we have

∫
Rn

expq

(
− 1

2γq
(r− µ)TΣ−1(r− µ)

)
dr =

√
|Σ|
∫
Rn

(
1− (1− q) 1

2γq
|z|2
) 1

1−q

dz

=
√
|Σ||Sn−1|

∫ ∞
0

(
1− 1

2γq
(1− q)r2

) 1
1−q

rn−1dr = Γq.

Therefore

Γq = Iq
√
|Σ|

where

Iq =

∫
Rn

(
1− (1− q) 1

2γq
|z|2
) 1

1−q

dz = |Sn−1|
∫ ∞

0

(
1− 1

2γq
(1− q)r2

) 1
1−q

rn−1dr

= γ
n
2
q |Sn−1|

∫ ∞
0

(
1− 1

2
(1− q)τ 2

) 1
1−q

τn−1 dτ

The normalizing constant fixed above is

γq =
1

2

(
(n+ 4)− (n+ 2)q

)
and with this choice

Γq = Iq
√
|Σ| = Kq,n

√
|Σ| (166)
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where

Kq,n =


Γ( 1

q−1
−n

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for 1 < q < n+4

n+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+n
2

)

(
1

1−q

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for q < 1.

(167)

We conclude that

|Sn−1|
∫ ∞

0

(
1− 1

2
(1− q)τ 2

) 1
1−q

τn−1 dτ =


Γ( 1

q−1
−n

2
)
√
π

Γ( 1
q−1

)

(
2
q−1

)n
2 , for 1 < q < n+4

n+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+n
2

)

(
2

1−q

)n
2 , for q < 1.

Now we rewrite (151) for φ(t) = tq as a q-exponential distribution as follows. We have

p(r;µ,Σ) = expq

(
logq

1

Γq

)
expq

(
− 1

2γq
(r− µ)>Σ−1(r− µ)

)
= expq

(
− 1

2γq
(r− µ)>Σ−1(r− µ)⊕ logq

1

Γq

)
.

However

− 1

2γq
(r− µ)>Σ−1(r− µ)⊕ logq

1

Γq

= − 1

2γq
(r− µ)>Σ−1(r− µ)

(
1 + (1− q) logq

1

Γq

)
+ logq

1

Γq

= − 1

2γq
(r− µ)>Σ−1(r− µ)

(
expq

(
logq

1

Γq

))1−q

+ logq
1

Γq

= − 1

2γq
(r− µ)>Σ−1(r− µ)

1

Γ1−q
q

+ logq
1

Γq
·

Since

Γq = Iq
√
|Σ|,

we write

− 1

2γq
(r− µ)>Σ−1(r− µ)⊕ logq

1

Γq
= −1

2
(r− µ)>Σ−1

q (r− µ) + logq
1

Γq
,

where

Σq = γqI
1−q
q |Σ|

1−q
2 Σ. (168)

Hence we denote

T (r) =
[

ri −rirj

]
, ϑ =

 (Σ−1
q µ)i︸ ︷︷ ︸
=ϑi

1

2
(Σ−1

q )ij︸ ︷︷ ︸
=Θij

 .
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We obtain

p(r;µ,Σ) = p(r;ϑ) = expq

(
〈T (r),ϑ〉 − 1

4
ϑ>Θ−1ϑ+ logq

1√
|Σ| Iq

)
.

Indeed,

−1

2
(r− µ)>Σ−1

q (r− µ) = ri(Σ
−1
q )ijµ

j − 1

2
ri(Σ

−1
q )ijr

j − 1

2
µi(Σ

−1
q )ijµ

j

=
[

ri −rirj

] [ (Σ−1
q µ)i

1
2
(Σ−1

q )ij

]
− 1

2
µ>Σ−1

q µ = 〈T (r),ϑ〉 − 1

2
µ>Σ−1

q µ,

However

Iq
√
|Σ| = γ

−n
2+(1−q)n
q I

2
2+(1−q)n
q |Σq|

1
2+(1−q)n = (2γq)

−n
2+(1−q)n I

2
2+(1−q)n
q |Θ|

−1
2+(1−q)n .

Therefore

K(ϑ) =
1

4
ϑ>Θ−1ϑ− logq

1√
|Σ|Iq

=
1

4
ϑTΘ−1θ − logq((2γq)

n
2+(1−q)n I

−2
2+(1−q)n
q |Θ|

1
2+(1−q)n ).

Denoting

Jq = (2γq)
n

2+(1−q)nK
−2

2+(1−q)n
q,n (169)

one has

K(ϑ) =
1

4
ϑTΘ−1ϑ− logq(Jq|Θ|

1
2+(1−q)n ). (170)

This finishes the proof. �

Proposition 3.2 For a q-Gaussian multivariate distribution, the gradient of the cumu-

lant function is given by

∇K(ϑ) =
(1

2
Θ−1ϑ,− 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n Θ−1 − 1

4
(Θ−1ϑ)>(Θ−1ϑ)

)
(171)

Proof. It follows from Proposition 3.1 that for q = 1 it holds that

K(ϑ) =
1

4
(Θ−1)rsϑrϑ

s − 1

2
log det Θ +

n

2
log π. (172)

Given a curve of matrices of the form

Θ(s) = Θ + sA,

we compute

d

ds

∣∣∣
s=0

det Θ(s) = det Θ
d

ds

∣∣∣
s=0

det(I + sΘ−1A) = det Θ tr Θ−1A.
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Setting A as the matrix whose only non-zero element is 1 at the i and column j and using

Einstein summation convention on repeated indices in the sequel, one gets

tr Θ−1A =
∑
k,`

(Θ−1)k`A
`
k =

∑
`

(Θ−1)j`A
`
j = (Θ−1)ji

On the other hand, this choice of A yields

d

ds

∣∣∣
s=0

det Θ(s) =
∂

∂Θi
j

det Θ.

We conclude that
∂

∂Θi
j

det Θ = det Θ (Θ−1)ji

and
∂

∂Θi
j

log det Θ = (Θ−1)ji . (173)

Now, differentiating both sides in

Θ−1(s)Θ(s) = I

with respect to s, we obtain

d

ds

∣∣∣
s=0

(Θ−1)rkΘ
k
` + (Θ−1)rk

d

ds

∣∣∣
s=0

Θk
` = 0

what implies
d

ds

∣∣∣
s=0

(Θ−1)rs = −(Θ−1)rk
d

ds

∣∣∣
s=0

Θk
` (Θ

−1)`s.

In particular, choosing A as above gives

d

ds

∣∣∣
s=0

Θk
` =

∂Θk
`

∂Θi
j

= δki δ
j
`

and
∂

∂Θi
j

(Θ−1)rs = −(Θ−1)rkδ
k
i δ

j
` (Θ

−1)`s = −(Θ−1)ri (Θ
−1)js

In sum,
∂

∂Θi
j

(Θ−1)rs = −(Θ−1)ri (Θ
−1)js (174)

We conclude that

∂

∂Θi
j

(Θ−1)rsθrθ
s = −(Θ−1)ri θr (Θ−1)jsθ

s.
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Hence,
∂K

∂Θi
j

= −1

4
(Θ−1)ri θr (Θ−1)jsθ

s − 1

2
(Θ−1)ji (175)

Moreover, we have
∂

∂θi
(Θ−1)rsϑrϑ

s = (Θ−1)isϑ
s + (Θ−1)riϑr.

Therefore
∂K

∂ϑi
=

1

2
(Θ−1)riϑr. (176)

We conclude that

∇K(ϑ,Θ) =
(1

2
Θ−1ϑ,−1

2
Θ−1 − 1

4
(Θ−1ϑ)>(Θ−1ϑ)

)
(177)

Note that we have

∇K(ϑ) =
(
µ,−Σ− µTµ

)
(178)

in terms of the original parameters (µ,Σ),

Now, we consider the case q 6= 1 when

K(ϑ) =
1

4
(Θ−1)rsϑrϑ

s − logq
(
Jq|Θ|

1
2+(1−q)n

)
. (179)

Using the expressions deduced above, one obtains

∂

∂Θi
j

logq
(
Jq|Θ|

1
2+(1−q)n

)
=

1

Jqq |Θ|
q

2+(1−q)n

Jq
1

2 + (1− q)n
|Θ|

1
2+(1−q)n (Θ−1)ji

=
1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji .

Therefore

∂K

∂Θi
j

= −1

4
(Θ−1)riϑr (Θ−1)jsϑ

s − 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji . (180)

Moreover
∂K

∂ϑi
=

1

2
(Θ−1)riϑr. (181)

In sum

∇K(ϑ) =
(1

2
Θ−1ϑ,− 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n Θ−1 − 1

4
(Θ−1ϑ)>(Θ−1ϑ)

)
(182)

Recall that

Jq = (2γq)
n

2+(1−q)n I
− 2

2+(1−q)n
q , (183)

where

2γq = (n+ 4)− (n+ 2)q (184)
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and

Iq = Kq,n =


Γ( 1

q−1
−n

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for 1 < q < n+4

n+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+n
2

)

(
1

1−q

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for q < 1.

(185)

Hence, we have in terms of the original parameters (µ,Σq) that

∇K(ϑ) =

(
µ,− 2

2
2+(1−q)n

2 + (1− q)n
|Σq|

q−1
2+(1−q)n Σq − µTµ

)
(186)

where

Σq = γqI
1−q
q |Σ|

1−q
2 Σ

and Σ is the variance-covariance matrix. This finishes the proof. �

Proposition 3.3 Given α = (α,A) ∈ Rn ×M(n,R), the solution of the system

∇K(ϑ) = α (187)

is given by

Θ> = (2 + (1− q)n)
(q−1)n−2

2 J
(1−q)(1+(1−q)n

2
)

q | − A − α>α|
q−1
2 (−A− α>α)−1

θ = 2α>Θ

Proof. We first consider the case q = 1 when (187) reduces to

1

2
(Θ−1)ri θr = αi (188)

−1

4
(Θ−1)ri θr (Θ−1)jsθ

s − 1

2
(Θ−1)ji = Aij. (189)

Replacing the first equation in the second, one gets

−1

2
(Θ−1)ji = Aij + αiαj.

Hence,

Θi
j = −1

2

(
(A+ α>α)−1

)j
i
, (190)

that is,

Θ> = −1

2
(A+ α>α)−1. (191)

Moreover

θi = 2Θj
iαj,
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that is,

θ = 2α>Θ. (192)

For the case q 6= 1, given

α = (α,A),

the system

∇K(θ) = α

is written as

1

2
(Θ−1)ri θr = αi (193)

−1

4
(Θ−1)ri θr (Θ−1)jsθ

s − 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji = Aij. (194)

Replacing the first equation in the second, one gets

− 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji = Aij + αiαj.

Therefore

|Θ|
1−q

2+(1−q)n (Θ−1)ji = (2 + (1− q)n)Jq−1
q (−Aij − αiαj).

In particular

|Θ|−
2

2+(1−q)n = (2 + (1− q)n)nJ (q−1)n
q | − A − α>α|,

from what follows that

|Θ|
1−q

2+(1−q)n = (2 + (1− q)n)(q−1)n
2 J

(q−1)2 n
2

q | − A − α>α|
q−1
2

Hence,

(Θ−1)ji = (2 + (1− q)n)1+(1−q)n
2 J

(q−1)(1+(1−q)n
2

)
q | − A − α>α|

1−q
2 (−Aij − αiαj)

that is,

Θ> = (2 + (1− q)n)
(q−1)n−2

2 J
(1−q)(1+(1−q)n

2
)

q | − A − α>α|
q−1
2 (−A− α>α)−1 (195)

Moreover,

θi = 2Θj
iαj,

that is,

θ = 2αTΘ. (196)
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Then, α = (α,A) determines the parameters ϑ = (ϑ,Θ) via

Θ> = (2 + (1− q)n)
(q−1)n−2

2 J
(1−q)(1+(1−q)n

2
)

q | − A − α>α|
q−1
2 (−A− α>α)−1

θ = 2α>Θ.

This finishes the proof of the proposition �

Proposition 3.4 The dual cumulant function K∗ is given in the case of q-exponential

distributions in terms of the negative relative q-entropy:

K∗(η) = Eq[logq(p(r;ϑ)/p0(r))], (197)

that is,

K∗(η) =
1

1− q

(
1

hq(ϑ)
− 1

)
, (198)

where hq is given by 144.

Proof. We have from the definition of the dual moment-generating function K∗ that

setting η = ∇K(ϑ) one obtains

K∗(η) = 〈ϑ,η〉 −K(ϑ) = 〈ϑ,∇K(ϑ)〉 −K(ϑ) = 〈ϑ,Ep̂(·;ϑ)[T (r)]〉 − Ep̂(·;ϑ)[K(ϑ)]

= Ep̂(·;ϑ)[〈ϑ, T (r)〉 −K(ϑ)] = Eq[logq(p(r;ϑ)/p0(r))]

=
1

hq(ϑ)

∫ (
〈ϑ, T (r)〉 −K(ϑ)

)(
1 + (1− q)(〈ϑ, T (r)〉 −K(ϑ))

) q
1−q p0(r) dr

=
1

hq(ϑ)

∫
1

1− q
(
(p(r;ϑ)/p0(r))1−q − 1

)(
p(r;ϑ)/p0(r)

)q
p0(r) dr

=
1

1− q
1

hq(ϑ)

∫ (
p(r;ϑ)/p0(r)− (p(r;ϑ)/p0(r))q

)
p0(r) dr

=
1

1− q
1

hq(ϑ)

∫
p(r;ϑ) dr− 1

1− q
1

hq(ϑ)

∫ (
p(r;ϑ)/p0(r))qp0(r) dr

=
1

1− q
1

hq(ϑ)
− 1

1− q
1

hq(ϑ)
hq(ϑ)

We conclude that

Hq(ϑ) = K∗(η) =
1

1− q

(
1

hq(ϑ)
− 1

)
(199)

where Hq is the relative q-entropy

Hq(ϑ) = Eq[logq(p(r;ϑ)/p0(r))]. (200)

Proposition 3.5 The gradient of the dual cumulant function K∗ in terms of affine dual

parameters

η = (η,N )
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is given in the case of q-exponential distributions by

∇K∗(η) =

(
C̃q,n|B|−

1−q
2 B−1η,

1

2
C̃q,n|B|−

1−q
2 B−1

)
(201)

where

C̃q,n = −(1− q)n2C
−Cq,n

2
q,n J

(1−q)Cq,n
2

q + C
−(1−q)n

2
q,n J

(1−q)Cq,n
2

q ,

with Cq,n = 2 + (1− q)n and

B = −N − ηTη = −N (I + ηTN−1η).

Proof. First, we deduce an explicit expression of K∗ in terms of the dual coordinate

system η. We have

〈ϑ,∇K(ϑ)〉 = ϑT∇K(ϑ) =
1

2
θi(Θ−1)ri θr −

1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n Θi

j(Θ
−1)ji

−1

4
Θi
j(Θ

−1)ri θr(Θ
−1)jsθ

s

=
1

2
θi(Θ−1)ri θr −

n2

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n − 1

4
θr(Θ

−1)rsθ
s

Therefore

K∗(η) = 〈ϑ,∇K(ϑ)〉 −K(ϑ) =
1

4
θi(Θ−1)ri θr −

n2

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n

−1

4
(Θ−1)rsθrθ

s + logq
(
Jq|Θ|

1
2+(1−q)n

)
Hence,

K∗(η) = − n2

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n + logq

(
Jq|Θ|

1
2+(1−q)n

)
(202)

Since

(η,N ) := η = ∇K(ϑ)

we have

1

2
(Θ−1)ri θr = ηi (203)

−1

4
(Θ−1)ri θr(Θ

−1)jsθ
s − 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji = N j

i (204)

Replacing the first equation in the second, one obtains

− 1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n (Θ−1)ji = N j

i + ηiη
j.
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Denoting

Bj
i := −N j

i − ηiηj, (205)

one concludes that (
1

2 + (1− q)n

)n
J (1−q)n
q |Θ|

(1−q)n
2+(1−q)n |Θ|−1 = |B|,

what implies that

|Θ|
−2

2+(1−q)n =

(
1

2 + (1− q)n

)−n
J−(1−q)n
q |B|

or

|Θ|
1−q

2+(1−q)n =

(
1

2 + (1− q)n

)(1−q)n
2

J
(1−q)2 n

2
q |B|−

1−q
2 .

Thus,

1

2 + (1− q)n
J1−q
q |Θ|

1−q
2+(1−q)n =

(
1

2 + (1− q)n

) 2+(1−q)n
2

J
(1−q)+(1−q)2 n

2
q |B|−

1−q
2

We conclude that

(Θ−1)ji =

(
1

2 + (1− q)n

)− 2+(1−q)n
2

J
−(1−q)−(1−q)2 n

2
q |B|

1−q
2 Bj

i (206)

and

θi = 2
n∑
j=1

Θj
iηj (207)

Moreover, we get

K∗(η) = K∗(η,N ) = −n2

(
1

2 + (1− q)n

) 2+(1−q)n
2

J
(1−q)+(1−q)2 n

2
q |B|−

1−q
2

+ logq

((
1

2 + (1− q)n

)n
2

J
2+(1−q)n

2
q |B|−

1
2

)
where

Bj
i = −N j

i − ηiηj.

Note that, when q = 1, we have

I1 = (2π)
n
2

and

J1 = 2
n
2 I−1

1 = π−
n
2 .
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In this case,

K∗(η) = −n
2

2
+ log

(
π−

n
2 |B|−

1
2

)
.

Using dual parameters η = (η,N ) and having in mind that

|B| = | − N ||I + ηTN−1η|,

one obtains

K∗(η) = −n
2

2
− n

2
log(2π)− 1

2
log | − N | − 1

2
log |I + ηTN−1η|.

Now, using the definition of B as

Bi
j = −N i

j − ηiηj,

one computes

∂

∂ηi
|B| = ∂

∂Bk
`

|B|∂B
k
`

∂ηi
= −|B|(B−1)`k(δ

k
i η` + ηkδ`i) = −2|B|(B−1)`iη`

and
∂

∂N i
j

|B| = ∂

∂Bk
`

|B|∂B
k
`

∂N i
j

= −|B|(B−1)`kδ
k
i δ

j
` = −|B|(B−1)ji .

Denoting

Cq,n := 2 + (1− q)n (208)

one concludes that

∂

∂ηi
K∗(η) = −2

1− q
2

n2C
−Cq,n

2
q,n J

(1−q)Cq,n
2

q |B|−
1−q
2 (B−1)`iη` + C

−(1−q)n
2

q,n J
(1−q)Cq,n

2
q |B|−

1−q
2 (B−1)`iη`.

Therefore

∂

∂ηi
K∗(η) =

(
− (1− q)n2C

−Cq,n
2

q,n J
(1−q)Cq,n

2
q + C

−(1−q)n
2

q,n J
(1−q)Cq,n

2
q

)
|B|−

1−q
2 (B−1)`iη`. (209)

We also have

∂

∂N i
j

K∗(η) = −1− q
2

n2C
−Cq,n

2
q,n J

(1−q)Cq,n
2

q |B|−
1−q
2 (B−1)ji +

1

2
C
−(1−q)n

2
q,n J

(1−q)Cq,n
2

q |B|−
1−q
2 (B−1)ji .

Hence,

∂

∂N i
j

K∗(η) =
1

2

(
− (1− q)n2C

−Cq,n
2

q,n J
(1−q)Cq,n

2
q +C

−(1−q)n
2

q,n J
(1−q)Cq,n

2
q

)
|B|−

1−q
2 (B−1)ji (210)
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Setting

C̃q,n = −(1− q)n2C
−Cq,n

2
q,n J

(1−q)Cq,n
2

q + C
−(1−q)n

2
q,n J

(1−q)Cq,n
2

q , (211)

one obtains

∇K∗(η) =

(
C̃q,n|B|−

1−q
2 B−1η,

1

2
C̃q,n|B|−

1−q
2 B−1

)
(212)

where

B = −N − ηTη = −N (I + ηTN−1η),

Replacing

η = α, N = A,

one obtains the correspondent value of the parameter ϑ, namely

∇K∗(α) = ϑ.

This finishes the proof. �

Proposition 3.6 The Hessian of K∗ with respect to the vector parameter η is given by

the q-Gaussian covariance matrix Σq.

Proof. We have

∂2K

∂θi∂θj
=

1

2

∂

∂θi
(
(Θ−1)rjθr

)
=

1

2
(Θ−1)rjδri =

1

2
(Θ−1)ji = (Σq)

j
i . (213)

The conclusion follows from the fact that the Hessian matrices of K and K∗, calculated

at correspondent values of the parameters, are inverses of each other. �

4 MEAN-DIVERGENCE PORTFOLIO SELECTION

4.1 Generalized HARA utility functions

As we commented earlier, portfolio selection models usually rely on a theory of choice

under uncertainty whose most traditional formulation is the expected utility theory by

J. von Neumann and O. Morgenstern (21). A suitable class of utility functions in the

context of deformed exponentials is given by generalized HARA (hyperbolic risk aversion)

functions of the form

u(w) = C0
1

ψ(aw)
, (214)

where C0 is a normalizing constant and a > 0 is a risk aversion parameter. In the

particular case of q-exponential we recover, up to some adjustment of constants, the

well-known HARA functions

u(w) = −1

q

(
1 + (1− q)aw

)− q
1−q .
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As expected, the limit case q → 1 yields the constant risk aversion (CARA) utility

functions u(w) = − exp(−aw). Note that the Arrow-Pratt absolute risk aversion for

generalized HARA functions is given by

−u
′′(w)

u′(w)
= a

(
φ̇(v)− φ̈(v)

φ̇(v)
φ(v)

)
, (215)

where v = expφ(aw). Here ′ and · denote, respectively, derivatives with respect to w and

v. This expression reduces to

−u
′′(w)

u′(w)
= a

in the case of exponential utility functions, an example of constant absolute risk aversion

utility function, whereas

−u
′′(w)

u′(w)
= awq−1

in the case of q-exponentials, that is, for φ(t) = tq. Up to a multiplicative constant,

HARA utility function (214) may be written in a form usually found in the literature

u(w) =
1− γ
γ

(
B +

A

1− γ
w

)γ
,

where γ = −q/(1− q). Taking B → 0 we recover a power utility function of the form

u(w) = Cwγ

for some constant C > 0. In this case, the coefficient of absolute risk aversion is given by

−u
′′(w)

u′(w)
=

1− γ
w

=
1

1− q
1

w
·

4.2 Generalized mean-divergence model

We now summarize the theory developed by R. Nock, B. Magdalou, E. Bryis and F.

Nielsen (30), (31) according to which Dφ(·||·) is a risk measure that is at the same time

more precise and general than the usual variance of the portfolio. Recall that in Markowitz

mean-variance model the optimal portfolio is determined by (20), (6)

max
α∈SN−1

(
E[〈r,α〉]− a

2
αΣα>

)
, (216)

where Σ is the variance-covariance matrix of the random variable r and

SN−1 = {α = (α1, . . . , αn) ∈ RN
+ : α1 + . . .+ αN = 1}
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is the set of weights for the assets on the portfolio.

The minimum variance portfolio for a prescribed expected return is specified

by the allocation vector

α =
Σ−11

1Σ−11>
. (217)

It turns out that in the particular case of CARA utility functions and Gaussian (more

generally, exponential) distributed returns the risk premium is explicitly given by

Π =
a

2
αΣα>, (218)

see (20). Hence (216) may be written in terms of the certainly equivalent

C = E[w]− Π

as

max
α

(
E[w]− Π

)
, (219)

where w = 〈r,α〉 is the wealth level corresponding to r. The term between parenthesis

in (219) is the certainty equivalent C.
In sum, in (30), (31) the authors proved that for exponential densities and

CARA utility functions the certainty equivalent C and the risk premium Π may be expli-

citly computed. Indeed, they obtain

C =
1

a

(
K(ϑ)−K(ϑ′)

)
(220)

and

Π =
1

a
D1[ϑ′||ϑ], (221)

where φ(t) = t (which corresponds to the usual exponential function, that is, to q = 1)

and ϑ′ = ϑ− aα. This implies that (219) may be written as

min
α

(
〈∇K(ϑ′),α〉+

1

a
D1[ϑ||ϑ′]

)
(222)

where D1 is the Bregman divergence associated to an exponential probability density of

the form

p(r;ϑ) = exp(〈T (r),ϑ〉 −K(ϑ)) p0(r), ϑ ∈ RN .

Motivated by this idea we can define (222) as the correct analog of the mean-variance

optimization problem for deformed exponentials and generalized HARA utility functions.

Hence we rephrase the mean-variance method in terms of a generalized mean-divergence

problem of the form

min
α

(
〈∇K(ϑ′),α〉+

1

aφ
Dφ[ϑ||ϑ′]

)
, (223)
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with

aφ = a

(
φ̇− φ̈

φ̇
φ

)
. (224)

We observe that even in the case of q-exponentials their non-additivity prevents us to

obtain a closed form for C and Π. However, since the utility function is modeled as a

generalized HARA function we may obtain an approximate expression for those quantities.

Indeed the expected utility is given by

Eφ[u] =
1

hφ(ϑ)

∫
1

ψ(〈T (r), aα〉)
ψ(〈T (r),ϑ〉 −K(ϑ))p0(r)dr.

In the case of q-exponentials, that is, setting φ(t) = tq we have

ψ(t)ψ(t′) = ψ(t⊕ t′),

where ⊕ stands for the q-sum operation

t⊕ t′ = t+ t+ (1− q)tt′.

Therefore

Eφ[u] =

∫
ψ(〈T (r),ϑ〉 −K(ϑ)⊕ 〈r,−aα〉)) p0(r) dr.

However, expanding ψ up to second order we obtain

Eφ[u] ' ψ(K(ϑ− aα)−K(ϑ)) +O(a2), (225)

which allows us to recover the analogs of (221) and (222) in the general case up to

quadratic remainder terms. This is important since we can then generalize the Markowitz

model for portfolio selection, as described in next section.

4.3 Generalized Markowitz portfolio selection

Motivated by (223) and (216) we consider the divergence Dφ as the counterpart of the

variance in the case of returns distributed according to a φ-exponential distribution. Fol-

lowing the classical mean-variance optimization model we search for an allocation α ∈ Sn
such that fixed some initial choice of the statistical parameter ϑ(t) at a time t we have

Dφ(ϑ(t)||ϑ− aα) = min
ϑ
Dφ(ϑ(t)||ϑ) (226)

subject to

〈1,α〉 = 1. (227)

Theorem 4.1 A portfolio allocation α1 solves the optimization problem (226)-(227) if
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and only if

α1(τ) =
1

1(∇2K(ϑ(τ)))−11>
(∇2K(ϑ(τ)))−11>. (228)

where ϑ(τ) is the statistical parameter at a time τ for which

min
τ
Dφ(ϑ(t)||ϑ(τ))

is attained.

Proof. We consider the following function from the Lagrangian model:

f(τ) = Dφ(ϑ(t)||ϑ(τ)) + λ(1− 〈1,α(τ)〉).

Since

Dφ(ϑ(t)||ϑ(τ)) = K(ϑ(t))−K(ϑ(τ))− 〈∇K(ϑ(τ)),ϑ(t)− ϑ(τ)〉,

the first-order condition reads as

−〈∇K(ϑ(τ)),ϑ′(τ)〉+ 〈∇K(ϑ(τ)),ϑ′(τ)〉 − ϑ′(τ)∇2K(ϑ(τ))(ϑ(t)− ϑ(τ))>

−λ〈1,α′(τ)〉 = 0,

that is,

−ϑ′(τ)∇2K(ϑ(τ))(ϑ(t)− ϑ(τ))> = λ〈1,α′(τ)〉. (229)

Assuming that

α′(τ) = −ϑ′(τ),

which assumes that updated forecasts on the parameters of the distribution are immedi-

ately followed by equal adjustments of the portfolio allocation (similarly to the strategy

of self-financing portfolio), one deduces the vectorial equation

∇2K(ϑ(τ))(ϑ(t)− ϑ(τ))> = λ1.

Therefore

ϑ(t)− ϑ(τ) = λ(∇2K(ϑ(τ)))−11>.

Taking traces, one obtains

〈ϑ(t)− ϑ(τ),1〉 = λ1(∇2K(ϑ(τ)))−11>.

For the setting

ϑ(τ) = ϑ(t)−α(τ)
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(which in particular yields α′(τ) = −ϑ′(τ)) we conclude that

1 = λ1(∇2K(ϑ(t)))−11>,

obtaining an explicit expression for λ, that is, for the shadow price (21). We have

α(τ) =
1

1(∇2K(ϑ(τ)))−11>
(∇2K(ϑ(τ)))−11>, (230)

as a generalized Markowitz formula. Recall that

∇K(ϑ(τ)) = η(τ) = Ep̂(·;ϑ(τ))[T (r)].

This finishes the proof of the theorem. �

As in the classical case, we may consider the following variant of the optimi-

zation problem:

Dφ(ϑ(t)||ϑ− aα) = min
ϑ
Dφ(ϑ(t)||ϑ) (231)

subject to the constraint

〈r,α〉 = µ∗ (232)

for a certain fixed expected portfolio return µ∗

Theorem 4.2 A portfolio allocation αµ solves the optimization problem (231)-(232) if

and only if

αµ(τ) =
1

1(∇2K(ϑ(τ)))−1r>
(∇2K(ϑ(τ)))−1r>. (233)

Proof. This time we consider the Lagrangian

f(τ) = Dφ(ϑ(t)||ϑ(τ)) + λ(µ∗ − 〈r,α(τ)〉).

Since

Dφ(ϑ(t)||ϑ(τ)) = K(ϑ(t))−K(ϑ(τ))− 〈∇K(ϑ(τ)),ϑ(t)− ϑ(τ)〉,

the first order condition is given by

−ϑ′(τ)∇2K(ϑ(τ))(ϑ(t)− ϑ(τ))> = λ〈r,α′(τ)〉. (234)

Assuming again that

α′(τ) = −ϑ′(τ),

one has

∇2K(ϑ(τ))(ϑ(t)− ϑ(τ))> = λr.
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Therefore

ϑ(t)− ϑ(τ) = λ(∇2K(ϑ(τ)))−1r>.

Taking traces, one obtains

〈ϑ(t)− ϑ(τ),1〉 = λ1(∇2K(ϑ(τ)))−1r>.

For the setting

ϑ(τ) = ϑ(t)−α(τ)

we conclude that

1 = λ1(∇2K(θ(t)))−1r>,

obtaining an explicit expression for λ, that is, for the shadow price (21). We have

α(τ) =
1

1(∇2K(ϑ(τ)))−1r>
(∇2K(ϑ(τ)))−1r>, (235)

finishing the proof of the theorem. �

Remark 4.1 These theorems and the mean-divergence problem in (223) motivate a geo-

metric steepest descent of the form

α(τk+1) = ϑ(t)− ϑ(τk+1) = ϑ(t) + γϑ(τk)(−µ∇Dφ(ϑ(τk); ·)) (236)

where γ is a step-size parameter.

Now we present some explicit expressions for (233) in the case of returns distri-

buted according a q-Gaussian probability density. First, it is worth to recall our definitions

and conventions for q-Gaussian multidimensional distribution presented in Section 3.2.

Definition 4.1 Given a vector µ ∈ RN and a positive definite N × N matrix Σ, a q-

Gaussian multivariate distribution with parameters (µ,Σ) is defined by

p(r;µ,Σ) =
1

Γq
expq

(
− 1

2γq
(r− µ)>Σ−1(r− µ)

)
, (237)

with

γq =
1

2

(
(N + 4)− (N + 2)q

)
,

and

Γq = Kq,N

√
|Σ|,

where

Kq,N =


Γ( 1

q−1
−N

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for 1 < q < N+4

N+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+N
2

)

(
1

1−q

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for q < 1,

(238)
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and |Σ| denotes the determinant of Σ.

In this case, recall that the parameter ϑ = (ϑ,Θ) ∈ RN ×M(N,R) is defined

in Proposition 3.1 by

ϑ = Σ−1
q µ, Θ =

1

2
Σ−1
q , (239)

where

Σq = γqK
1−q
q,N |Σ|

1−q
2 Σ. (240)

Hence

K(ϑ) = K(ϑ,Θ) =
1

4
ϑ>Θϑ− logq

(
Jq|Θ|

1
2+(1−q)N

)
, (241)

where

Jq = (2γq)
N

2+(1−q)NK
−2

2+(1−q)N

q,N (242)

we obtain

∇2K(θ, ·) = Σq.

From the result above we may conclude what is described as the following corollary.

Corollary 4.1 The optimal portfolio with respect to the mean-divergence problem (226)-

(227) under the assumption of returns q-Gaussian distributed is given by

α =
Σ−1
q 1

1Σ−1
q 1>

, (243)

where

Σq = γqK
1−q
q,N |Σ|

1−q
2 Σ.

is the q-Gaussian analog of the covariance matrix.

4.4 A natural gradient search

Recall that inspired by (30), (31) and the considerations above we have defined the risk

premium Π associated to a φ-exponential family as

Π(α;ϑ) =
1

aφ
Dφ[ϑ− aα||ϑ], (244)

where

aφ = a
φ̇2 − φ̈φ

φ̇
,

with derivatives evaluated at v = expφ(aEφ[w]). See expressions 223 and 224 above.

Given a fixed φ-expected value of the returns, maximizing the certainty equivalent is

equivalent to minimizing the risk premium. It follows directly from (244) that minimizing

the risk premium is equivalent to minimizing the divergence. So, the search method is

then developed according to this equivalence as described in the sequel.
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Let α(τ) be a curve in SN−1 with α(0) = α. It follows from (244) that the

gradient of Π with respect to the variable α is given by

∇Π(α;ϑ) =
a

aφ

(
∇K(ϑ)−∇K(ϑ− aα)

)
, (245)

with

∇K(ϑ) = η = Ep̂(·;ϑ)[r].

Then we consider a steepest descent algorithm of the form

α(tk+1) = α(tk)− γ∇SN−1Π(αtk ;ϑtk), (246)

where γ is the fixed step to each iteration and

ϑtk = ϑtk−1
− aαtk

and the differential operator ∇SN−1 indicates the natural gradient (with respect to α) in

the (N − 1)-dimensional simplex SN−1, whose expression is

∇SN−1Π(α;ϑ) =

(
∂Π

∂α1

− ν, . . . , ∂Π

∂αN−1

− ν,−ν
)

(247)

with

ν =
1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

)
.

The expression (247) is the projection of the Euclidean gradient that is tangent to the

simplex SN−1. In sum, we define the following natural gradient search algorithm: one sets

the initial allocation as

α0 = (r̄, IN×N)

where r̄ is the mean of the historical returns on the N assets. Hence, the initial approxi-

mation to the parameters ϑ0 = (ϑ0,Θ0) of the distribution is given by

Θ−1
0 = (2 + (1− q)N)

2+(1−q)N
2 J

− 1
2

(1−q)(2+(1−q)N)
q |M |

1−q
2 M,

ϑ0 = 2Θ0r̄,

where M is the N ×N matrix whose components are given as

Mij = −rirj − r̄ir̄j.

The iterative procedure is then defined by the following steps: at each iteration, set the
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iterated allocation vector αtk+1
= (αtk+1

, Atk+1
) as

αtk+1
= αtk − µ∇SN−1π(αtk ;ϑtk)

and Atk+1
= IN×N . Then, define the iterated adjusted parameter of the distribution by

∇K∗(αtk+1
) = ϑtk+1

,

where K∗ is the Legendre transform of K, that is, the dual cumulating function in (150).

In the case of an underlying q-Gaussian multivariate distribution one has

K∗(η) =
1

1− q

(
1

hq(ϑ)
− 1

)
,

= − N2

2 + (1− q)N
J1−q
q |Θ|

1−q
2+(1−q)N + logq

(
Jq|Θ|

1
2+(1−q)N

)
.

In this case, one obtains

Θ−1
tk+1

= (2 + (1− q)N)
2+(1−q)N

2 J
− 1

2
(1−q)(2+(1−q)N)

q |Btk+1
|
1−q
2 Btk+1

,

ϑtk+1
= 2Θtk+1

αtk+1
,

where

Btk+1
= −Atk+1

− αtk+1
⊗ αtk+1

.

The procedure is iterated a number of times determined by the choice of parameters a

and µ.

4.5 Numerical examples and analysis

In this section we describe some numerical experiments that support the generalized

mean-divergence for q-exponential distributions as a valuable alternative to the classical

mean-variance strategy. Here our aim is twofold: (i) to compare performance measures of

optimal allocation portfolios according to both methods, and; (ii) to collect some evidence

of how the parameter q affects the performance of optimal portfolios, particularly in what

concerns their divergence.

The experiments also allowed us to recover the optimal allocation obtained

directly from (243) by a learning procedure that adjusts the optimal portfolio at each

iteration. In this way, it is not mandatory to previously choose an estimator for the

deformed variance-covariance matrix Σq. In other terms, the iterative algorithm can be

applied even without defining an estimator for the Hessian of the cumulant function as

needed to apply directly the formula (233). However, it turns out that the numerical
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results give some indirect evidence of theoretical estimators as, for instance,

Σ̂q = γqK
1−q
q,N |Σ̂|

1−q
2 Σ̂.

Our preliminary dataset is composed by weekly USD total arithmetic returns of four

market indices on the years 2000–2016, namely: (i) Russell 2000, benchmark of a stock

market index of small caps mutual funds; (ii) Euronext 100, a blue chip index of the

largest and most liquid stocks traded on Euronext; (iii) Hang Seng, stock market index

that comprises the largest companies of the Hong Kong stock market; and (iv) Nikkei,

the most widely quoted average of Japanese equities. It is obvious that other choices are

allowed. It remains the important question about the robustness of our findings with

respect to different choices of market indices.

In order to determine the initial optimal portfolio weights α we run the natural

gradient search algorithm described in Section 4.4 considering the estimation window with

the data from the first five years. The optimal portfolios, chosen relatively to a choice

of the parameter q, are evaluated in the next twelve months. The estimation window is

then shifted twelve months and then the same procedure is applied. In this way, we have

registered the performance evolution of risk measures as the evolution of the Bregman

divergences in a total of 12 out-of-sample annual rolling windows.
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Figura 1: Temporal evolution of weights α1, . . . , α4 for the q-portfolio method.

The evolution of the weights for the assets in the portfolio (values of each

element of α) across the iterations of the gradient method is shown in Figure 1. The

components of α illustrated in this figure correspond to the initial allocation portfolio

obtained by the iterative gradient descent starting with the data of the first five years.
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As one can easily see, the method converges fast enough to track the stationary points

within a short time interval. In this figure, alphai is the weight for the i-th asset. Figure

1 above shows the outcomes of the numerical algorithm starting from a naive allocation

of 1/4 to each one of the four indices and then converging after a relatively small number

of iterations (numbered at the horizontal axis) to the optimal allocation (shown at the

vertical axis) found by the steepest descent. The coloured lines describe the proportion

of each one of the four indices at each iteration.

Figure 2 shows the cumulated returns from two different portfolios choices: the

blue line stands for the cumulated returns of the mean-divergence portfolio modeled by the

assumption of q-Gaussian distribution for returns whereas the cumulated returns of the

Markowitz’s mean-variance portfolio are plotted in red. The horizontal axis displays the

time measured in weeks whereas the vertical axis corresponds to the cumulated returns.

Figura 2: Cumulated returns for proposed method (q-portfolio) and Markowitz’s
portfolio.

One can easily see that both methods have a similar performance in the initial

period (up to ∼150 weeks) when the proposed method (q-portfolio) is outperformed by

the Markowitz’s method. However, the q-portfolio is more suitable to learn from the

system presenting a much faster and consistent recovering of the returns, presenting then

a much greater result in terms of the cumulative returns. This indicates the ability of the

proposal to deal with heavy tail distributions, usually observed in crisis periods.

Table 1 summarizes the performance of the q-portfolio in every twelve-months

windows compared with the Markowitz’s classical portfolio. The first (respectively, se-

cond) row in the table gives the annual cumulative returns of a q-portfolio determined
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once and for all from the first five years sample (respectively, rebalanced with respect to

the moving five years windows) whereas the third row lists the returns of the Markowitz’s

portfolio with annual recompositions. In sum, the cumulative returns corresponding to

the first (respectively, second) q-portfolio obtained by the steepest descent algorithm for

the mean-divergence method outperform that resulting from the mean-variance portfolio

in 9 of the 12 (respectively, in 10 of the 12) annual periods under analysis.

It is worth remarking in particular that the out-of-sample performance of the

q-portfolios is better in comparison with the Markowitz’s classical portfolio in the years

of economic recovery after the financial crisis of 2007-2008.

Tabela 1: Annual performance comparison for portfolio selection methods.

Annual Return (%) 2005 2006 2007 2008 2009 2010 2011 2012
q-portfolio (fixed) 19.91 12.12 -5.22 -22.02 -8.39 1.29 -9.36 9.43

q-portfolio (rebalanced) 19.91 16.03 -3.60 -4.35 16.50 9.59 -11.04 9.67
Markowitz 18.56 11.82 -3.59 -5.66 -21.6 -9.71 -8.62 -15.03

Annual Return (%) 2013 2014 2015 2016
q-portfolio (fixed) 40.98 7.55 3.92 8.72

q-portfolio (rebalanced) 40.34 8.72 3.46 17.63
Markowitz 27.04 1.16 1.12 1.03

In what concerns risk measures, we refer to Table 2 that displays the Bregman

divergences of the first q-portfolio and the Markowitz’s portfolio in two different periods.

Tabela 2: Risk measures: Bregman divergences.

Divergence 2007-2008 2008-2009 2010-2011 2011-2012
q-portfolio 0.2373 0.1920 0.0072 0.0435
Markowitz 0.0459 0.0053 0.0364 0.1263

The statistical divergences measure in what extent the portfolios were reba-

lanced from one year to another: by definition, higher divergences correspond to higher

differences between successive portfolios. The table indicates that the Markowitz’s port-

folio would have been only slighted rebalanced along the critical years from 2007 to 2009

and considerably modified on the recovery period from 2010 to 2012. In terms of returns,

this reinforces the fact that the Markowitz’s strategy would allow to earn smaller returns

in the recovery years than the q-portfolio. The higher q-divergences of the q-portfolio are

an evidence that its allocation strategy is more responsive to riskier scenarios even taking

into account initial losses.

.
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4.6 A technical appendix

Proposition 4.1 The natural gradient of the risk premium Π as a function defined in

the (N − 1)-dimensional simplex SN−1 is given by

∇SN−1Π(α;ϑ) =

(
∂Π

∂α1

− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

)
, . . . ,

∂Π

∂αN−1

− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

)
,− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αn−1

))
. (248)

Proof. Recall that inspired by (30) and the considerations above we have defined the risk

premium associated to a φ-exponential family as the quantity

Π(α;ϑ) =
1

aφ
Dφ[ϑ− aα||ϑ],

where

aφ = a
φ̇2 − φ̈φ

φ̇

with derivatives evaluated at v = expφ(aEφ[w]). Given a fixed φ-expected value of the

returns, maximizing the certainty equivalent is equivalent to minimizing the risk premium.

It turns out that minimizing the risk premium is equivalent to minimizing the divergence.

Let α(τ) be a curve in SN−1 with α(0) = α. Then the gradient of Π with

respect to the variables α is given by

〈∇Π(α;ϑ), α′(τ)〉 =
1

aφ

d

dτ

∣∣∣
τ=0

Dφ[ϑ− aα(τ)||ϑ]

=
1

aφ

(
〈∇K(ϑ− aα(τ)),−aα′(τ)〉 − 〈∇K(ϑ),−aα′(τ)〉

)
from what we conclude that

∇Π(α;ϑ) =
a

aφ

(
∇K(ϑ)−∇K(ϑ− aα)

)
. (249)

Note that

∇K(ϑ) = η = Ep̂(·;ϑ)[r].

Then we consider a steepest descent algorithm of the form

α(tk+1) = α(tk)− µ∇SN−1Π(αtk ;ϑtk), (250)

where

ϑtk = ϑtk−1
− aαtk

and the differential operator ∇SN−1 standing for the natural gradient (with respect to α)



78

in the (N − 1)-dimensional simplex

SN−1 = {α = (α1, . . . , αN−1, αN) ∈ RN : α1 + . . .+ αN = 1, 0 ≤ αi ≤ 1}. (251)

whose expression is

∇SN−1Π(α;ϑ) = ∇Π− 1

N
〈∇Π, (1, . . . , 1, 0)〉(1, . . . , 1, 1)

where ∇Π is the Euclidean gradient of Π as a function defined in the (N −2)-dimensional

simplex

FN = {(α1, . . . , αN−1, 0) ∈ RN : α1 + . . .+ αN−1 ≤ 1, αi ≥ 0}.

Note that

αN = 1− α1 − . . .− αN−1

if and only if (α1, . . . , αN−1, αN) ∈ SN−1 with (α1, . . . , αN−1, 0) ∈ FN . This means that

we are describing SN−1 as the graph of the function

αN = f(α1, . . . , αN−1) = 1− α1 − . . .− αN−1

defined em FN . Hence, for a fixed ϑ,

∇Π =

(
∂P
∂α1

, . . . ,
∂P

∂αN−1

, 0

)
,

and

∇SN−1Π(α;ϑ) =

(
∂Π

∂α1

, . . . ,
∂Π

∂αN−1

, 0

)
− 1

N

(
∂P
∂α1

+ . . .+
∂Π

∂αN−1

)
(1, . . . , 1, 1). (252)

In other terms

∇SN−1Π(α;ϑ) =

(
∂Π

∂α1

− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

)
, . . . ,

∂Π

∂αN−1

− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

)
,− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αn−1

))
(253)

This finishes the proof of the proposition. �

Note that in order to have each new iteration in (250) yielding a new point in

SN−1 we impose for a fixed ϑ that

0 ≤ αi − µ
(
∂Π

∂αi
− 1

N

(
∂Π

∂α1

+ . . .+
∂Π

∂αN−1

))
≤ 1. (254)



79

It is enough to assume that

µ ≤ αi(
∂Π
∂αi
− 1

N

(
∂Π
∂α1

+ . . .+ ∂Π
∂αN−1

)) , (255)

the derivatives taken at α, and

µ ≥ αi − 1(
∂Π
∂αi
− 1

N

(
∂Π
∂α1

+ . . .+ ∂Π
∂αN−1

)) . (256)

5 SOME GENERALIZATIONS OF CAPM

5.1 The space of financial assets

Following (16) and (19), one models the setM spanned by financial assets as a subspace

of a linear space H of contingent claims. More precisely, every point in M corresponds

to the payoff z of a contingent claim at a fixed time, say t = 1, that is, a random variable

z = z(s),

where s are the states of the world with probability distribution specified by some density

p(s;ϑ). Here, ϑ is the distribution parameter of a family of probability distributions

whose densities define a n-dimensional statistical manifold

S = {p(s,ϑ) : ϑ ∈ U ⊂ Rn},

where ϑ = (ϑ1, . . . , ϑn) takes values in some open subset U of the n-dimensional Euclidean

space Rn.

Example 5.1 Suppose that M is spanned by finitely many assets and that the space of

states of the world is also finite-dimensional. Then each z ∈ M is determined by their

possible payoffs in distinct and also finitely many states of the world, say, {s1, . . . , sL}.
In other terms, each z ∈M is described by a L-dimensional vector

z = (z(s1), . . . , z(sL)).

The discrete probability distribution of the states of the world is denoted by pi = p(si;ϑ),

i = 1, . . . , L, where ϑ only indicates the parameters of this distribution.

In sum, a point z ∈ M corresponds to the possible payoffs of a given asset

under the distinct states of the world. The probability distribution of these states is given

by a probability density in a statistical manifold.

For the sake of simplicity, in what follows we will restrict ourselves to a finite-

dimensional asset span M. The case of infinite-dimensional linear (Hilbert) spaces can
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be handled with some notational and technical adjustments.

5.2 Deformed exponentials and optimal φ-portfolios

In order to fix ideas, we are going to consider a statistical manifold of φ-exponential

probability densities of the form

p(s,ϑ) = expφ(〈T (s),ϑ〉 −K(s,ϑ)) p0(ϑ), ϑ ∈ Rn,

where T is a sufficient statistics of the random variable z(s) and K is the moment-

generating function. Here, p0 is a fixed reference density and expφ is the φ-exponential

defined as the inverse function of the φ-logarithm (24), (25)

logφ(t) =

∫ t

1

1

φ(s)
ds,

where φ : (0,+∞) → (0,+∞) is a strictly positive, nondecreasing and continuous real

function. A particular case of this deformed exponential is given by the q-exponential

function

expq(t) = (1 + (1− q)t)
1

1−q

with q > 0, what corresponds to set φ(t) = tq, Hence, the q-logarithm is defined by

logq(t) =

∫ t

1

1

s
ds =

1

1− q
(t1−q − 1).

The cumulant function K defines a Bregman divergence given by

D(z||w) = K(ϑ)−K(ϑ′)− 〈∇K(ϑ′),ϑ− ϑ′〉.

where the probability distributions of z(s) and w(s) are respectively given by the densities

p(s,ϑ) and p(s,ϑ′).

Setting φ(t) = t one gets the family of exponential distributions, in particular

multivariate Gaussian distributions. For this family, R. Nock, B. Magdalou, E. Bryis and

F. Nielsen (30), (31) represented the key concepts of Portfolio Selection theory in terms

of the cumulant function and the associated Bregman divergence. More precisely, they

proved that for CARA utility functions the certainty equivalent and risk premium of risky

assets are respectively given by

C =
1

a

(
K(ϑ)−K(ϑ′)

)
and

Π =
1

a
D[ϑ|ϑ′],
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where a > 0 is a risk-aversion parameter. Hence they extended the classical mean-variance

portfolio selection to a general mean-divergence model for which an optimal allocation α

is a solution of the minimization problem

min
α

(
〈∇K(ϑ− aα),α〉+

1

a
Dφ(ϑ||(ϑ− aα)

)
.

In the particular case of Gaussian distributed returns, one recovers the classical Mar-

kowitz’s optimal portfolio allocation vector

α =
Σ−11

1TΣ−11
, (257)

where Σ is the covariance matrix of the returns on the assets.

As summarized in Chapter 4, C. Cavalcante, I. Guerreiro and A. F. Rodri-

gues extended in (10) this approach to φ-exponential distributions, in particular to q-

exponential distributions. They proved that the optimal portfolio for their extended

mean-divergence model is given in terms of the cumulant function by

α =
∇2K(ϑ)−11

1T∇2K(ϑ)−11
· (258)

Note that the Hessian of the moment-generating (convex) function is positive-definite and

plays the role of the variance-covariance matrix in the Gaussian case. In the particular

case of q-Gaussian distributions (32), the optimal allocation portfolio is given by

α =
Σ−1
q 1

1TΣ−1
q 1

(259)

where

Σq = γqK
1−q
q,N |Σ|

1−q
2 Σ (260)

with

γq =
1

2

(
(N + 4)− (N + 2)q

)
(261)

and

Kq,N =


Γ( 1

q−1
−N

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for 1 < q < N+4

N+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+N
2

)

(
1

1−q

)N
2
(
(N + 4)− (N + 2)q

))N
2 , for q < 1.

(262)

Here |Σ| is the determinant of Σ. We refer the reader to (32) for further details in q-

multivariate Gaussian distributions. It is evident that one reobtains the Markowitz’s

portfolio for q = 1 in (259).

In view of (257), we have elaborated in Chapter 4 a steepest descent algorithm
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by the natural (Riemannian) gradient of the risk premium. Some empirical support to

the proposed method is provided by comparing the cumulated returns and the evolution

of the divergence for optimal portfolios according to the mean-divergence model and the

classical one by Markowitz. The numerical evaluations in (10) show the proposal is able

to yield better tracking of deep changes in the stock market, such as the ones present in

crisis scenarios, and yet produce a higher return than the classical mean-variance strategy.

5.3 Notation and main results

In (16) and (19), S. LeRoy, J. Werner and D. Luenberger have developed a geometric

approach to the mean-variance analysis in terms of a vector space geometry of projections

onto a mean-variance efficient frontier. From this approach, they easily deduce an elegant

geometric interpretation of CAPM and factor pricing models.

In what follows, we extend their geometric methods to divergence geometries

in M instead of the Hilbert space norm.

Before stating our main results, we fix some notation and basic definitions.

Let K∗ be the Legendre transform of K, that is, the dual cumulant function

K∗(η) = max
ϑ

(
〈ϑ,η〉 −K(ϑ)

)
given by the relative negative φ-entropy (4)

K∗(η) = Eφ[logφ p(s,ϑ)/p0(s)]

where η is the dual affine coordinate defined by

η = ∇K(ϑ).

In the case of q-exponential distributions one has

K∗(η) =
1

1− q

(
1

h(ϑ)− 1

)
with

h(ϑ) =

∫ (
p(s,ϑ)/p0(s)

)q
p0(s) ds.

Since K is a strictly convex function its Hessian is positive-definite and then defines a

Riemannian metric in M, that is, for each z ∈ M, we define an inner product in the

tangent space TzM by

g|TzM = ∇2K(ϑ), (263)

where ϑ is the statistical parameter of the distribution p(s,ϑ) of the payoff z = z(s).

This metric can be expanded in local coordinates around a fixed reference point o ∈ M
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as

g ∼ ∇2K(o) + o(|z|2), (264)

where quadratic terms are determined in terms of the Riemann curvature of the Rieman-

nian manifold (M, g), see (15).

Let M′ be a finite dimensional subspace of M spanned by N traded assets.

Denote by ke the expectation kernel, that is, an asset in M′ that yields the expected

payoffs of the assets in M. More precisely

g(ke, z) = E[z]

for any z ∈M. We define the pricing kernel kq as an asset in M′ that gives the price of

any contingent claim z ∈M as the expected discounted payoff

g(kq, z) = E[mz] = Q(z),

where m is a stochastic discount factor. Here Q : M → R is the price functional, that

is, the present value of the expected returns of the asset, discounted at rate m. Since

the expectation is not necessarily taken with respect to risk-neutral probabilities, m is a

risk-adjusted discount rate, possibly distinct from the risk-free return rate (6), (16).

The Riemannian metric g in (264) is defined in such a way that it is possible to

obtain precise expressions for both kernels in terms of the Bregman divergence associated

to K, at least for assets in the finite-dimensional subspace M′.

Theorem 5.1 The expectation and pricing kernels in a N-dimensional subspace M′ of

contingent claims in M are respectively given by

ke = g−1
(√

D(z1|o), . . . ,
√
D(zN |o)

)
(265)

and

kq = g−1
(
Q(z1), . . . , Q(zN)

)
(266)

where M′ = span{z1, . . . , zN}.
Denote by E the subspace in M′ spanned by ke and kq. The projection zE of

z ∈M′ onto E is defined by

D(zE |z) = min
w∈E

D(w|z).

It follows from the generalized Pytaghorean Theorem for divergences (Theorem 5.4 below)

that fixed a reference point o ∈M′ one has

D(z|o) = D(zE |o) +D(z|zE), z ∈M′. (267)
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If we consider the divergence given by the Euclidean L2-norm in M

Deuc(z|w) =
1

2
|z − w|2

expression (267) reduces to the Euclidean decomposition

|z|2 = E[z]2 + var[z], (268)

where

var[z] = E[(z − E[z])2]

is the variance, the classical risk measure in Portfolio Theory (20), (6).

Motivated by the analogy between (267) and (268), we propose in the sequel

the projection

P(z) = D(z|zE)

as a novel risk measure for assets z ∈M′ that encodes higher moments of the probability

distributions.

The next result states that the two reference assets ke and kq determine the

efficient frontier for portfolios of assets in M′. Indeed we have

Theorem 5.2 Let E = span{ke, kq} the subspace in M′ spanned by the expectation and

pricing kernels. Given z ∈M′ we have

E[z] = E[zE ]

and

P [zE ] ≤ P [z]

where zE is the projection of z onto E.

Denote by Re and Rq the returns of ke and kq, respectively. We prove

Theorem 5.3 The mimimum divergence portfolio in M′ is given by

z = Re + (1− β)(Rq −Re)

where

β = − g(Rq −Re, Re)

g(Rq −Re, Rq −Re)

with

g = ∇2K(z).

In the case when there is a risk-free asset 1 in M with return Rf we obtain a
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generalized CAPM expression

E[z] = Rf + β(E[Rq]−Rf). (269)

Those expressions extend the classical CAPM formula. For instance, if we suppose that

the returns of traded assets are distributed accordingly a q-Gaussian distributions it holds

that

g|z = ∇2K(z(·,ϑ)) = Σq

for every z ∈M′, where the q-variance matrix Σq is defined in Section 5.2.

Corollary 5.1 Suppose that the traded financial assets in M′ are distributed according

to a q-Gaussian distributions. Hence the minimum divergence portfolio given by

z = Re + (1− β)(Rq −Re)

where

β = − g(Rq −Re, Re)

g(Rq −Re, Rq −Re)

with

g = Σq,

the q-variance matrix defined in (332)-(334).

In Section 5.5 we prove that similar beta pricing equations are still valid if one

replaces the returns of the expectation and pricing kernels by the returns of two assets in

the mean-divergence efficient frontier that are orthogonal with respect to g. This is the

case of assets with zero correlation in the classical setting.

Theorem 5.5 in Section 5.5 establishes a generalized CAPM equation based on

the maximization of an utility function describing the preferences of a risk averse agent

that is strictly decreasing with respect to the risk measure. For such utility functions,

it is possible to prove that the market equilibrium portfolio lies on the mean-divergence

efficient frontier.

5.4 Geometry of statistical divergences

Motivated by the discussion above, we fix a statistical divergence D on M. Denoting

by 〈·, ·〉 the inner product in M induced from H, we can assume that D is a Bregman

divergence of the form

D(z|w) = K(z)−K(w)− 〈∇K(w), z − w〉 (270)

for some convex function K :M→ R. Here ∇K is the Fréchet differential of K on M,

what corresponds to the usual gradient in the case whenM is finite-dimensional and 〈·, ·〉
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is the Euclidean inner product.

A trivial example is the Euclidean divergence given by the L2-norm itself

Deuc(z|w) =
1

2
|z − w|2, z, w ∈M.

In the sequel we are going to consider more general examples, not necessarily quadratic.

For instance, we may fix the Kullback-Leibler divergence

DKL(z(·,ϑ)|w(·,ϑ′)) =

∫
p(s,ϑ) log

(
p(s,ϑ)

p(s,ϑ′)

)
ds

or, more generally, the relative φ-entropy

Dφ(z(·,ϑ)|w(·,ϑ′)) = Ep̂(·,ϑ)

[
logφ p(·,ϑ)/p0 − logφ p(·,ϑ′)/p0

]
,

where p̂(s,ϑ) is the escort distribution (24), (25) given by

p̂(s,ϑ) =
1

h(ϑ)
ψ
(
〈T (z),ϑ〉 −K(ϑ)

)
p0(s)

with

h(ϑ) =

∫
φ
(
p(s,ϑ/p0(s)

)
ds

and

ψ(t) = φ
(

expφ(t)
)
.

Note that DKL corresponds to Dφ for the particular choice of φ(t) = t.

The Hessian of the cumulant function K defines a Riemannian metric g inM
whose contravariant version g∗ is the Hessian of the Legendre transform K∗ of K. In the

particular case of φ(t) = t that corresponds to the exponential family of distributions we

have

g|z(s) = var[z],

the variance taken with respect to the probability density

p(s,ϑ) = exp(〈T (s),ϑ〉 −K(s,ϑ)) p0(ϑ)

In general, the metrics g and g∗ define a dually flat structure with affine connections

whose geodesics are Euclidean lines in terms of the coordinates ϑ,η in M. We refer the

reader to (1), (5) for a comprehensive account of those concepts in terms of Information

Geometry.
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Projections and risk measures

One of the fundamental results in Information Geometry is the Pythagorean Theorem

that can be stated as follows

Theorem 5.4 (Theorem 1.2 and Theorem 1.3, (1)) Given o, z, w ∈ M such that

the dual affine geodesic connecting z and w is orthogonal to the affine geodesic connecting

w and o, the following generalized Pythagorean relation holds

D(z|o) = D(w|o) +D(z|w). (271)

Similarly, if the affine geodesic connecting z and w is orthogonal to the dual affine geodesic

connecting w and o we have the dual relation

D∗(z|o) = D∗(w|o) +D∗(z|w), (272)

where D∗ is the dual Bregman divergence

D∗(z|w) = K∗(z)−K∗(w)− 〈∇K∗(w), z − w〉. (273)

Now, letM′ be a finite-dimensional (more generally, a closed) subspace ofM
and consider the following minimization problem: given z ∈M to find z′ ∈M′ such that

D(z|z′) = min
w∈M′

D(z|w). (274)

Fixed an arbitrary reference point o ∈M′ it follows from Theorem 5.4 that

D(z|o) = D(z′|o) +D(z|z′). (275)

Suppose that the minimization problem (274) has a unique solution z′ that we denote by

z′ = πM′(z), (276)

the projection of z onto M′. Note that in the case of the Euclidean divergence

Deuc(z|w) =
1

2
|z − w|2

we have

|z|2 = 〈z,1〉2 + |z⊥|2 = E[z]2 + var[z], (277)

where z⊥ = z − 〈z,1〉1. Hence the projection of z onto the subspace M′ orthogonal to
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the vector 1 is given by

PM′(z) = var[z].

The vector 1 corresponds to an asset whose payoffs are the same for every state of the

world, that is, it represents a risk-less asset. We are not assuming that 1 belongs to the

finite-dimensional asset span M′.

Comparing (275) and (277) we define expected value and risk premium res-

pectively by

EM′ [z] =
√
D(z′|o) (278)

and

PM′(z) = D(z′|z). (279)

Note that the risk premium is the variance in the particular case of normally distributed

asset returns.

It follows from (278) that the distribution of probabilities (p1, . . . , pk) for

payoffs z′ = (z′(s1), . . . , z′(sL)) ∈ M′ is determined, up to a scaling, by the Bregman

divergence D. For any i = 1, . . . , L, let ei ∈M′ the asset with payoff 1 at the state of the

world si and 0 for any sj with j 6= i. Then, up to a scaling,

pi =
√
D(ei|o), i = 1, . . . , L.

Expectation and price kernels

From now on, we restrict ourselves to the N -dimensional subspaceM′ where, as we have

seen, the expected values could be determined up to scaling in terms of the divergence D.

We are going to prove the existence of payoff vectors ke and kq in M′ repre-

senting the expectation and price functionals defined respectively by

e(z) = EM′ [z] (280)

and

Q(z) = EM′ [mz], (281)

for any z ∈M′, wherem is a stochastic discount factor. In sum, we search for a expectation

kernel ke in M′ such that

(ke, z)TzM′ = EM′ [z] =
L∑
i=1

piz(si) (282)

for some inner product (·, ·)TzM′ in the tangent space TzM′ of M′ at the point z ∈ M′.
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In the same way the pricing kernel kq ∈M′ must satisfy

(kq, z)TzM′ = EM′ [mz] =
L∑
i=1

pim(si)z(si) (283)

Those expressions indicate that we can also determine the inner product (·, ·)TzM′ at TzM′

only in terms of the divergence D.

In order to do this, we restart the minimization problem (274) above, this

time projecting fromM′ to the (one or two-dimensional) span E of {ke, kq} inM′. More

precisely, given z ∈M′ the problem now is to find zE ∈ E such that

D(z|zE) = min
w∈E

D(z|w). (284)

Fixed an arbitrary point o ∈M′ it follows again from Theorem 5.4 that

D(z|o) = D(zE |o) +D(z|zE), (285)

that is,

D(z|o) = EM′ [z]2 + P(z), z ∈M′. (286)

where

P(z) = D(z|zE). (287)

This last relation implies that E is the mean-divergence frontier for payoffs inM′, in the

sense that given z ∈M′ it holds that

EM′ [z] = EM′ [zE ] (288)

and

P(zE) ≤ P(z) (289)

with equality if and only if z = zE . We denote zE = πE(z).

We now deduce an infinitesimal version of the condition (284) in the case when

D is a Bregman divergence with cumulating function K. Fixed z ∈M′ and a curve w(t)

in E with w(0) = zE we have

0 =
d

dt

∣∣∣
t=0
D(z|w(t)) =

d

dt

∣∣∣
t=0

(
K(z)−K(w(t))− 〈∇K(z), z − w(t)〉)

= −〈∇K(zE), w′(0)〉+ 〈∇K(zE), w′(0)〉 − w′(0)>∇2K(zE)(z − zE),

where the superscript a> denotes the transpose of a. We conclude that

w′(0)>∇2K(zE)(z − zE) = 0 (290)



90

for an arbitrary w′(0) ∈ TzEE . Therefore, denoting by ε the returnless asset

ε = z − zE (291)

and denoting

g|zE = ∇2K(zE), (292)

a inner product in TzEE due to the convexity of K, we conclude that

ε ⊥g|
zE
TzEE = E . (293)

where in the last equality we have used that E is a vector space. In particular, it follows

that

0 = g|zE (ε, ke) = g|zE (z, ke)− g|zE (zE , ke)

and

0 = g|zE (ε, kq) = g|zE (z, kq)− g|zE (zE , kq)

Therefore

g|zE (z, ke) = g|zE (zE , ke) (294)

and

g|zE (z, kq) = g|zE (zE , kq) (295)

for any z with projection zE (that is, z of the form zE + tε). Expressions (294) and (295)

mean that expected values and prices should be the same for payoffs in M′ with same

projection on E .

Comparing (282), (288) and (294) suggests that g|zE in (292) is the natural

choice for a inner product (·, ·)TzM′ in the Hilbert tangent space TzM′ for any z ∈ M′

with projection zE . This means that the resulting Riemannian metric in M′ is invariant

with respect to translations in directions ε perpendicular to E . In other terms, we have

a Riemannian product M = E × F , where F is ruled by Euclidean lines of the form

zE + tε, t ∈ R, with zE ∈ E and ε ⊥g|
zE
TzEE . In particular, the Riemannian curvature of

M is determined by the Gaussian curvature of E in the case when ke and kq are linearly

independent and M is a two-dimensional vector space.

From now on, we assume that E is two-dimensional. Hence, setting

(·, ·)TzM′ = g|zE (296)

for z = zE + tε, t ∈ R, we determine ke solving the linear system

(ke, z)TzM′ = g|zE (ke, z) = EM′ [z] =
L∑
j=1

pjz(sj).
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Denoting the components of g|ze by gij the expectation kernel has components given by

the solution of the system

N∑
j=1

gij(ke)j = (ke, zi)TzM′ =
L∑
j=1

pjzi(sj) = EM′ [zi] =
√
D(zi|o)

for every i = 1. . . . , N . Therefore, we consider the solution of the system of equations

N∑
j=1

gij(ke)j =
√
D(zi|o),

that is given by

ke =
(
g|zE

)−1(√
D(z1|o), . . . ,

√
D(zN |o)

)
(297)

where

g|zE = ∇2K(zE). (298)

The kernel pricing is determined in a similar way. Hence we have

kq =
(
g|zE

)−1(
Q(z1), . . . , Q(zN)

)
, (299)

where Q(zi) is the current market price of the basic asset zi, that is,

Q(zi) =
k∑
j=1

m(sj)
√
D(ej|o)zi(sj).

Note that if K is quadratic, as is the case for the Euclidean divergence Deuc, we have

∇2K(zE) = ∇2K(o),

where o ∈M′ is the arbitrarily fixed reference point. In this case,

g = ∇2K(o)

and M′ is a flat Riemannian manifold. In the general case we have an expansion of the

form

∇2K(zE) ' ∇2K(o) + o(|z|2),

where the quadratic remainder encodes the Riemannian curvature of M′ and its cova-

riant derivatives. In statistical terms, these curvature terms can be associated to the

contribution of higher moments of the underlying probability distributions. For instance,

considering a local coordinate system given by the principal directions of ∇2K(zE), one
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has that the Gaussian cuvature of E at zE is given by

K|zE = − 1

2
√
λ1λ2

(
∂1

(
∂1λ2√
λ1λ2

)
+ ∂2

(
∂2λ1√
λ1λ2

))
, (300)

where λ1, λ2 > 0 are the eigenvalues of ∇2K(zE). Note that the curvature involves third

and fourth moments of the distributions p(s,ϑ) ds.

5.5 Minimum divergence portfolio

We have proved that E = span{kq, ke} is the mean-divergence frontier in M′. Now we

address the problem of minimizing the risk measure

P(z) = D(z|o)

among points in z ∈ E only, that is,

min
z∈E

D(z|o), (301)

where o ∈M′ is an arbitrarily fixed reference point. Any point z ∈ E is of the form

z = akq + bke,

for some a, b ∈ R. The price of this portfolio is

Q(z) = EM′ [mz] = aEM′ [mkq] + bEM′ [mke] = aQ(kq) + bQ(ke) (302)

Fixing the constraint that the price of the portfolio is Q(z) = 1, we denote

β = aQ(kq)

and therefore

1− β = bQ(ke).

Therefore the portfolios with unit price are parameterized by

z = β
kq

Q(kq)
+ (1− β)

ke
Q(ke)

= βRq + (1− β)Re = Re + β(Rq −Re) (303)

with β ∈ R. Here Rq and Re are the returns of kq and ke, respectively. Then, minimizing

the risk premium among payoffs in E with unit price turns out to be equivalent to the

one-dimensional minimization problem

min
β
D(Re + β(Rq −Re)|o),
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whose first order necessary condition is

0 =
d

dβ
D(Re + β(Rq −Re)|o)

= −(Rq −Re)
>∇2K(Re + β(Rq −Re))(Re + β(Rq −Re)).

We conclude that the optimal portfolio with unit price is determined by

β = − (Rq −Re)
>∇2K(Re + β(Rq −Re))Re

(Rq −Re)>∇2K(Re + β(Rq −Re))(Rq −Re)
· (304)

Considering the approximation

∇2K(Re + β(Rq −Re)) ' ∇2K(o),

we fix an approximate value of β that determines the choice of optimal portfolio z0 ∈ E
with unit price by

β0 := − (Rq −Re)
>∇2K(o)Re

(Rq −Re)>∇2K(o)(Rq −Re)
(305)

Note that the expected return of this portfolio is

EM′ [z0] = EM′ [Re] + β0 E[Rq −Re] (306)

We have in the case when the risk-free asset 1 with risk-less return Rf is an element in

M that

ke = πM′(1)

and Re = EM′(πM′(1)) = Rf . We have in this case

EM′ [z0] = Rf + β0 (E[Rq]−Rf), (307)

what is similar to the classical beta pricing equation in the case of the Euclidean divergence

where ∇2K(o) = var.

Generalized beta pricing

Recall that we are assuming that E has dimension two. It is then convenient to restate

the results above using two linearly independent assets other than ke and kq. We fix such

assets, say kλ and kν , with respective returns

rλ = Re + λ(Rq −Re) (308)

and

rν = Re + ν(Rq −Re) (309)
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in such a way that

g|o(rλ, rν) = 0. (310)

Hence, ν is given by

ν = − g|o(Re, Re) + λg|o(Rq −Re, Re)

g|o(Rq −Re, Re) + λg|o(Rq −Re, Rq −Re)
(311)

Note that ν is well-defined if and only if λ 6= β0 in (305), that is, if kλ is not the (appro-

ximate) minimum divergence portfolio in E .

Given an asset z ∈M′ with unit price we have the decomposition

z = zE + ε

where

zE = akλ + bkν

with ε ⊥ TzEE and e(ε) = EM′ [ε] = 0. It follows that

E[z] = aEM′ [kλ] + bEM′ [kν ] = aq(kλ)EM′ [rλ] + bq(kµ)EM′ [rν ]

=: EM′ [rν ] + β(EM′ [rλ]− EM′ [rν ])

with β = aq(kλ). Denoting by r the return of z one obtains

r = z = aQ(kλ)rλ + bQ(kν)rν + ε = rν + β(rλ − rν) + ε

from what follows that

g|zE (r, rλ) = g|zE (rν , rλ) + βg|zE (rλ − rν , rλ) + g|zE (ε, rλ)

= g|o(rν , rλ) + o(|z|2) + βg|zE (rλ − rν , rλ)

= βg|zE (rλ − rν , rλ) + o(|z|2).

We conclude that

β =
g|zE (r, rλ)

g|zE (rλ − rν , rλ)
+ o(|z|2) =

g|o(r, rλ)
g|o(rλ − rν , rλ)

+ o(|z|2) =
g|o(r, rλ)
g|o(rλ, rλ)

+ o(|z|2),

where g|o = ∇2K(o). In sum, we have obtained a generalized beta pricing equation

EM′ [z] = EM′ [rν ] + β(EM′ [rλ]− E[rν ]) (312)

for assets in z ∈ M′, where the generalized beta coefficient is approximated (up to
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quadratic remainder terms) by

β =
g|o(r, rλ)
g|o(rλ, rλ)

· (313)

If the risk-free asset 1 with return Rf lies in the space of contingent claims M, we fix

rν = πM′(1). With this choice, (312) reduces to

EM′ [z] = Rf + β(EM′ [rλ]−Rf), (314)

a generalized beta pricing equation written in terms of an asset kλ instead of the pricing

kernel kq as in (307).

Efficient market portfolio and generalized CAPM

As in the classical CAPM, we can take rλ as the market return rm since it is possible to

prove under some assumptions that rm is in the mean-divergence efficient frontier. In this

case, both (312) and (314) define a generalized security market line (16), (18).

Suppose that every agent in the market has consumption preferences given by

a time-separable utility function of the form

u(c(0), c(1)) = u0(c(0)) + u1(EM′ [c(1)], g|πM′ (c(1))(πM′(c
(1)), πM′(c

(1)))) (315)

where u1 is strictly decreasing with respect to the second variable. Here c(0) is the agent’s

consumption plan at time t = 0 and c(1) = c(1)(s) is a random variable inM that describes

the consumption plan of the agent at time t = 1. Here πM′ stands for the projection onto

M′.

The optimal agent’s consumption plan is a solution of the constrained optimi-

zation problem

max
c(0),c(1),α

u(c(0), c(1))

subject to the constraints

c(0) ≤ w(0) −α ·mz,

c(1) ≤ w(1) +α · z

where z is a portfolio of risky traded assets inM′, α is the portfolio allocation vector and

w(0) and w(1) are, respectively, the agent’s endowments at time t = 0 and t = 1 which we

have denoted earlier by e(0) and e(1), respectively. If we suppose for the sake of simplicity

that we have an interior optimal solution then the first-order condition reads as

mz =
∂c(1)u

∂c(0)u
z,
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where the ratio on the right hand side is the marginal rate of substitution for the utility

function u, see (21). Taking expected values on both sides one gets

Q(z) = EM′
[
∂c(1)u

∂c(0)u
z

]
for the optimal agent’s consumption plan c(1).

We now prove that the tradable projection πM′(c
(1)) lies in the mean-divergence

frontier E . We consider the orthogonal decomposition

πM′(c
(1)) = πE(πM′(c

(1))) + πM′(c
(1))⊥

where

g|πM′ (c(1))(πM′(c
(1))⊥, E) = 0.

Then we define an alternative consumption plan by

c̃(1) = πE(πM′(c
(1))) + (c(1) − πM′(c(1))),

where the second summand is the non-tradable component of c(1). Suppose by contradition

that πM′(c
(1))⊥ > 0. We conclude that

c̃(1) − w(1) < c(1) − w(1).

Moreover since Q(πM′(c
(1))⊥) = E(πM′(c1)⊥) = 0 we have

Q(c̃(1) − w(1)) = Q(c(1) − w(1))

and

E(c̃(1) − w(1)) = E(c(1) − w(1)).

We also have πE(πM′(c
(1))) = πE(πM′(c̃

(1))) and

g|πM′ (c̃(1))(πM′(c̃
(1)), πM′(c

(1))) ≤ g|πM′ (c(1))(πM′(c
(1)), πM′(c

(1))).

Since the agent’s preferences are described by an utility function that is strictly increasing

with respect to the risk measure (the second variable), we conclude that c̃(1) is strictly

preferred to c(1). This contradicts the optimality of the consumption plan c(1). From this

contradiction, we conclude that πM′(c
(1)) ∈ E for every agent. Since the market payoff zm

is by definition the sum over agents of the tradable components of agents’ consumption

plans, the market return lies on the mean-divergence frontier as well.

In view of the above, we now deduce a generalized CAPM equation.
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Theorem 5.5 The equilibrium prices for efficient assets z with returns r in a market

with agents’ preferences described by an utility function of the form (315) are given by

E[r]− E[rν ] = β̃(E[rm]− E[rν ]), (316)

where rm is the return of the market portfolio and

β̃ =
g(r, rm)

g(rm, rm)
· (317)

and rν is the return of one of the assets spanning the efficient frontier fixed in (309) and

(310).

Proof. Since c(1) − w(1) = α · z ∈ M′ we have c(1) − πM′(c(1)) = w(1) − πM′(w(1)). We

have proved that the tradable component of the optimal consumption plan lies in the

mean-divergence efficient frontier. Then for each agent, labeled by ` = 1, . . . ,M , we have

c
(0)
` ≤ w

(0)
` −Q(α`) · z − b`,

where the portfolio α` · z lies in the mean-divergence frontier and satisfies g(α` · z, rν) = 0

for every ` = 1, . . . ,M . The component b` stands for the total amount invested in the

asset with return rν which plays the role of a risk-free asset in the classical CAPM. Hence

c
(1)
` ≤ w

(1)
` +α` · z + b`rν .

Since Q(α` · z) = α` ·mz we have

EM′ [c(1)
` ] = EM′ [πM′(c(1)

` )] = (w
(0)
` − c

(0)
` )E[rν ] +α` · (E[z]−mE[rν ])

and using that g(α` · z, rν) = 0 we have

g(πM′(c
(1)
` ), πM′(c

(1)
` )) = g(α` · z,α` · z) + b2

`g(rν , rν).

Differentiating u(`) (the utility function for the preferences of the `-th agent) at an equili-

brium portfolio with respect to the allocation parameter α one obtains the vector equation

∂1u(`)(E[zi]−miE[rν ]) + 2∂2u(`)

N∑
j=1

αj(`)g(zi, zj) = 0

from what follows that the optimal allocation for each agent is given by

αj(`) = −
∂1u(`)

∂2u(`)

N∑
i=1

g(zi, zj)
−1(E[zi]−miE[rν ])
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Summing up on ` = 1, . . . ,M , one gets

γ−1

N∑
i=1

g(zi, zj)
−1(E[zi]−miE[rν ]) = 1

where

γ = −
( M∑

`=1

∂1u(`)

∂2u(`)

)−1

Denoting gij = g(zi, zj) one concludes that the market equilibrium price for each asset zi

is given by

mi =
1

E[rν ]

(
E[zi]−

N∑
j=1

γgij1
j

)
Hence we have

E[ri] =
1

mi

E[zi] = E[rν ] +
γ

νi

N∑
j=1

gij1
j = E[rν ] + γg

(zi
νi
,
∑
i

zi

)
= E[rν ] + γg

(zi
νi
, zm

)
.

We conclude that

E[ri]− E[rµ] = γµmg(ri, rm)

where µm = zm/rm is the value of the market payoff at t = 0. Denoting

β̃i =
g(ri, rm)

g(rm, rm)
(318)

one obtains

E[ri]− E[rµ] = γβ̃iµmg(rm, rm).

In particular,

E[rm]− E[rν ] = γµmg(rm, rm).

Therefore

E[ri]− E[rν ] = β̃i(E[rm]− E[rν ]). (319)

This finishes the proof. �

We finish pointing out that 316 is indeed an asset pricing formula. In fact

denoting by P the price of the asset one has by definition that

r =
Q− P
P

Hence,

E[Q] = P (1 + E[r]).
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Therefore

P =
E[Q]

1 + E[rν ] + β̃(E[rm]− E[rν ])
· (320)

Taking, for instance, rν as the risk-free return, we conclude that the price is the expected

future value of the asset discount at a rate adjusted to risk :

P =
E[Q]

1 + r + β̃(E[rm]− r)
· (321)

6 PRINCIPAL CURVES AND PORTFOLIOS

6.1 Statistical divergences and principal curves

LetM be a space of random variables z = z(s) whose probability distributions are given

by densities lying into a n-dimensional statistical manifold

S = {p(s,ϑ) : ϑ ∈ U ⊂ Rn},

where ϑ = (ϑ1, . . . , ϑn) are statistical parameters ranging in some open subset U of the

n-dimensional Euclidean space Rn. Let D be a given statistical divergence in S. Given

a curve f : Λ ⊂ R → M, a projection of z on the trace of f is a point f(λ∗), for some

λ∗ ∈ Λ, such that

D(z|f(λ∗)) = inf
λ∈Λ

D(z|f(λ)). (322)

In what follows we suppose that such a projection exists and it is unique for any curve

f : Λ→M we are going to consider. Under this assumption, we denote

πf (z) = f(λ∗). (323)

Fixed this notation, we propose the following variational notion of principal curve relati-

vely to D

Definition 6.1 A curve f : Λ→M is a principal curve in (M, D) if

D(z|πf (z)) = inf
s∈(−ε,ε)

D(z|πfs(z)) (324)

for all one-parameter family of curves fs : Λ→M, s ∈ (−ε, ε), such that f0 = f .

Recall that a statistical divergence D determines a dually flat structure inM
for which affine geodesics are parameterized as straight lines of the form

f(λ) = a + λu, λ ∈ Λ,

where a and u are constant vectors. By definition, the projection of the random variable z

on a principal curve f minimizes the divergence among the projections on curves close to f .
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Projections satisfy a Pytaghorean theorem, one of the fundamental results in Information

Geometry that can be stated as follows (see also Theorem 5.4)

Theorem 6.1 (Theorem 1.2 and Theorem 1.3, (1)) Given o, z, w ∈ M such that

the dual affine geodesic connecting z and w is orthogonal to the affine geodesic connecting

w and o, the following generalized Pythagorean relation holds

D(z|o) = D(w|o) +D(z|w). (325)

Similarly, if the affine geodesic connecting z and w is orthogonal to the dual affine geodesic

connecting w and o we have the dual relation

D∗(z|o) = D∗(w|o) +D∗(z|w), (326)

where D∗ is the dual divergence.

In view of this proposition, it is natural to draw our attention to one-parameter

families of affine geodesics in M.

Theorem 6.2 An affine geodesic in (M, D) is a principal curve with respect to one-

parameter families of affine geodesics if and only if its direction is an eigenvector of the

Fisher metric G = ∇2D associated to D.

Proof. Denote by ∇D and ∇2D, respectively, the differential and Hessian of D with

respect to the second variable. Hence, we have for a fixed s ∈ (−ε, ε) that

0 =
d

dλ
D(z|F(s, λ)) =

d

dλ
D(z|F(s, λ)) =

〈
∇D(z|F(s, λ)),

∂F

∂λ

〉
where the derivative is computed at the critical value λ = λ∗(s). Denote

c(s) = F(s, λ∗(s)), s ∈ (−ε, ε).

Note that

c′(s) =
∂F

∂s
(s, λ∗(s)) +

∂F

∂λ
(s, λ∗(s))

dλ∗
ds

Hence, we obtain

d

ds

〈
∇D(z|c(s)),

∂F

∂λ
(s, λ∗(s))

〉
=

〈
∇D(z|c(s)),

d

ds

∂F

∂λ
(s, λ∗(s))

〉
+c′(s)>∇2D(z|c(s))

∂F

∂λ
(s, λ∗(s)) =

〈
∇D(z|c(s)),

d

ds

∂F

∂λ
(s, λ∗(s))

〉
+

(
∂F

∂s
(s, λ∗(s)) +

∂F

∂λ
(s, λ∗(s))

dλ∗
ds

)>
∇2D(z|c(s))

∂F

∂λ
(s, λ∗(s)).

We may write

F(s, λ) = f(λ) + sv(λ) +O(s2),
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where

v(λ) =
∂F

∂s
(0, λ)

is the variational field that corresponds to F. Thus, we have

∂F

∂λ
(s, λ∗(s)) = f ′(λ∗(s)) + sv′(λ∗(s)) +O(s2)

and
d

ds

∣∣∣∣
s=0

∂F

∂λ
(s, λ∗(s)) = f ′′(λ∗)

dλ∗
ds

∣∣∣∣
s=0

+ v′(λ∗(s)).

If f = F(0, ·) is a critical curve we have

0 =
d

ds

∣∣∣∣
s=0

〈
∇D(z|c(s)),

∂F

∂λ
(s, λ∗(s))

〉
=

〈
∇D(z|f(λ∗)),

d

ds

∂F

∂λ
(0, λ∗)

〉
+

(
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f ′(λ∗)

)>
∇2D(z|f(λ∗))f

′(λ∗).

We conclude that (
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f ′(λ∗)

)>
∇2D(z|f(λ∗))f

′(λ∗)

+

〈
∇D(z|f(λ∗)), f

′′(λ∗)
dλ∗
ds

∣∣∣∣
s=0

+ v′(λ∗(s))

〉
= 0

Setting f ′′(λ) = 0 and v′(λ) = 0 one gets(
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f ′(λ∗)

)>
∇2D(z|f(λ∗))f

′(λ∗) = 0

Since v(λ∗) can be arbitrarily chosen in such a way that v(λ∗) and f ′(λ∗) are linearly

independent we conclude that f ′(λ∗) there exists µ ∈ R such that

∇2D(z|f(λ∗))f
′(λ∗) = µf ′(λ∗). (327)

This means that f ′(λ∗) is an eigenvector of the Fisher information metric at the point

f(λ∗)

Gf(λ∗) = ∇2D(z|f(λ∗)) (328)

associated to the divergence D. This finishes the proof. �

A result concerning principal submanifolds similar to Theorem 6.2 follows ea-

sily as a scholia of its proof: we may consider the projection of the random variable z

onto a p-dimensional affine submanifold in M locally parameterized by a smooth map

f : Λ ⊂ Rp → M whose differential has rank p. The submanifold f(Λ) is principal with
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respect to families of affine submanifolds if and only if it is spanned by p geodesics whose

velocities are linearly independent and are eigenvectors of the Hessian matrix G = ∇2D

at the projection point.

A fundamental example of divergence is the Euclidean L2-norm

Deuc(z|w) =
1

2
|z − w|2, z, w ∈M

on which is based both the least-squares method and the principal component analysis.

In their seminal work (14), Hastie and Stuetzle proved that an Euclidean straight line is a

principal curve with respect to their definition if and only if its direction is an eigenvector

of the covariance matrix of the random variable z.

Now, we obtain an extension of this result by Hastie and Stuetzle valid in the

context of non-Euclidean statistical divergences. In our setting, the role of the covariance

matrix is played by its non-Euclidean and non-Gaussian counterpart, namely the Hessian

matrix ∇2K.

Corollary 6.1 Let K be a convex function in S and D be the Bregman divergence in

M determined by K. Then an affine geodesic is a principal curve with respect to one-

parameter families of affine geodesics in M if and only if its direction is an eigenvector

of the Hessian of K.

Proof. This follows directly from Theorem 6.2 once we have observed that the Fisher

metric in this case coincides with the Hessian of K. This is however a well-known fact

that may be deduced easily from the definition of the Bregman divergence itself as

D(z|w) = K(z)−K(w)− 〈∇K(w), z − w〉. (329)

For details, we refer the reader to (1). �

In the sequel we are going to consider more general examples, not necessarily

quadratic. For instance, we may fix the Kullback-Leibler divergence

DKL(z(·,ϑ)|w(·,ϑ′)) =

∫
p(s,ϑ) log

(
p(s,ϑ)

p(s,ϑ′)

)
ds

or, more generally, the relative φ-entropy associated to φ-exponential distributions.

6.2 The space of financial assets

In this section, we summarize the results obtained in Chapters 4 and 5.

From now on, M stands for the linear span of financial assets traded in a

security market. More precisely, every point in M corresponds to the payoff z of a
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contingent claim at a fixed time, say t = 1, a random variable

z = z(s),

where s are the states of the world with probability distribution specified by some density

p(s;ϑ). Recall that ϑ is the distribution parameter of a family of probability distributions

in a n-dimensional statistical manifold S.

In what follows, we will recall the statistical manifold of φ-exponential proba-

bility densities defined in Section 3.2 by

p(s,ϑ) = expφ(〈T (s),ϑ〉 −K(s,ϑ)) p0(ϑ), ϑ ∈ Rn,

where T is a sufficient statistics of the random variable z(s) and K is the moment genera-

ting function. Here, p0 is a fixed reference density and expφ is the φ-exponential defined

as the inverse function of the φ-logarithm (24), (25)

logφ(t) =

∫ t

1

1

φ(s)
ds,

where φ : (0,+∞) → (0,+∞) is a strictly positive, nondecreasing and continuous real

function. A particular case of this deformed exponential is given by the q-exponential

function

expq(t) = (1 + (1− q)t)
1

1−q

with q > 0, what corresponds to set φ(t) = tq, Hence, the q-logarithm is defined by

logq(t) =

∫ t

1

1

s
ds =

1

1− q
(t1−q − 1).

The moment generating function K defines a Bregman divergence given by

D(z|w) = K(z)−K(w)− 〈∇K(z), z − w〉.

where the probability distributions of z(s) and w(s) are respectively given by the densities

p(s,ϑ) and p(s,ϑ′).

Deformed exponentials and portfolio selection

Setting φ(t) = t one gets the family of exponential distributions, in particular multiva-

riate Gaussian distributions. For this family, R. Nock, B. Magdalou, E. Bryis and F.

Nielsen (30), (31) represented the key concepts of Portfolio Selection theory in terms of

the moment generating function and the associated Bregman divergence. More precisely,

they proved that for CARA utility functions the certainty equivalent and risk premium
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of risky assets are respectively given by

C =
1

a

(
K(z(·,ϑ))−K(w(·,ϑ′))

)
and

Π =
1

a
D[z(·,ϑ))|w(·,ϑ′)],

where a > 0 is a risk-aversion parameter. Hence they extended the classical mean-variance

portfolio selection to a general mean-divergence model for which an optimal allocation α

is a solution of the minimization problem

min
α

(
〈∇K(ϑ− aα),α〉+

1

a
Dφ(ϑ|(ϑ− aα)

)
.

In the particular case of Gaussian distributed returns, they easily recover the classical

Markowitz’s optimal portfolio allocation vector

α =
Σ−11

1>Σ−11
,

where Σ is the variance-covariance matrix of the returns on the assets.

In (10), C. Cavalcante, I. Guerreiro and A. F. Rodrigues extended this ap-

proach to φ-exponential distributions, in particular to q-exponential distributions. They

proved that the optimal portfolio for their extended mean-divergence model is given in

terms of the cumulanf function by

α =
∇2K(ϑ)−11

1>∇2K(ϑ)−11
· (330)

Note that the Hessian of the (convex) function K is positive-definite and plays the role of

the variance-covariance matrix in the Gaussian case. In the particular case of q-Gaussian

distributions (32), the optimal allocation portfolio is given by

α =
Σ−1
q 1

1>Σ−1
q 1

(331)

where

Σq = γqC
1−q
q,n |Σ|

1−q
2 Σ (332)

with

γq =
1

2

(
(n+ 4)− (n+ 2)q

)
(333)
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and

Kq,n =


Γ( 1

q−1
−n

2
)
√
π

Γ( 1
q−1

)

(
1
q−1

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for 1 < q < n+4

n+2
,

Γ( 2−q
1−q

)
√
π

Γ( 2−q
q−1

+n
2

)

(
1

1−q

)n
2
(
(n+ 4)− (n+ 2)q

))n
2 , for q < 1.

(334)

Here |Σ| is the determinant of Σ. We refer the reader to (32) for further details in q-

multivariate Gaussian distributions. It is evident that one reobtains the Markowitz’s

portfolio for q = 1 in (331).

In view of (330), the authors have elaborated in (10) a steepest descent algo-

rithm by the natural (Riemannian) gradient of the risk premium. Some empirical support

to the proposed method is provided by comparing the cumulated returns and the evolu-

tion of the divergence for optimal portfolios according to the mean-divergence model and

the classical one by Markowitz. The numerical evaluations in (10) show the proposal is

able to yield better tracking of deep changes in the stock market, such as the ones pre-

sent in crisis scenarios, and yet produce a higher return than the classical mean-variance

strategy.

Mean-divergence efficient frontier

In Markowitz’s model the optimal portfolio allocation lies in the mean-variance efficient

frontier that bounds the feasible set of allowed returns and risks of traded risky portfolios.

In (16) and (19), S. LeRoy, J. Werner and D. Luenberger have developed a geometric

approach to the mean-variance analysis in terms of the geometry of orthogonal projections

onto a mean-variance efficient frontier. From this approach, they easily deduce an elegant

geometric interpretation of the celebrated Capital Asset Pricing Method (CAPM) as well

as other factor pricing models.

In (11), the authors have extended the geometric pricing method to general

divergence geometries in M instead of the Hilbert space L2-norm.

Since K is a strictly convex function its Hessian is positive-definite and then

defines a Riemannian metric in M, that is, for each z ∈ M, we define an inner product

in the tangent space TzM by

Gz = ∇2K(z), (335)

This metric can be expanded in local coordinates around a fixed reference point o ∈ M
as

Gz ∼ ∇2K(o) + o(|z|2), (336)

where quadratic terms are determined in terms of the Riemann curvature of the Rieman-

nian manifold (M, g), see (15).

Denote by ke the expectation kernel, that is, an asset in M that yields the
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expected payoffs of the assets in M. More precisely

Gz(ke, z) = E[z]

for any z ∈ M. We define the pricing kernel kq as an asset in M that gives the price of

any contingent claim z ∈M as the expected discounted payoff

g(kq, z) = E[mz] = Q(z),

where m is a stochastic discount factor. Here Q : M → R is the price functional, that

is, the present value of the expected returns of the asset, discounted at rate m. The

existence of this functional is one of the consequences of the Fundamental Theorem of

Finance Theory whose key assumption is that there are no arbitrage portfolios inM. For

a comprehensive treatment of those fundamentals on Finance, we refer the reader to (6),

(16).

Denote by E the subspace in M spanned by ke and kq. The projection zE of

z ∈M onto E is defined by

D(zE |z) = min
w∈E

D(w|z).

It follows from the generalized Pytaghorean Theorem for divergences (Theorem 6.1 above)

that fixed a reference point o ∈M one has

D(z|o) = D(zE |o) +D(z|zE), z ∈M′. (337)

In the case of the divergence given by the Euclidean L2-norm in M

Deuc(z|w) =
1

2
|z − w|2

expression (337) reduces to the Euclidean decomposition

|z|2 = E[z]2 + var[z], (338)

where

var[z] = E[(z − E[z])2]

is the variance, the classical risk measure in Portfolio Theory (20), (6).

Motivated by the analogy between (337) and (338), the authors proposed in

(11) the projection

Π(z) = D(z|zE)

as a novel risk measure for assets z ∈M. Since it depends on the whole information about

the probability densities p(s,ϑ), this measure encodes higher moments of z instead only
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the variance. Moreover, one easily verifies that Π is the variance in the case of normally

distributed returns and Euclidean divergence. Hence, we have defined a risk measure that

embodies non-normality and non-Euclidean features of the returns of financial assets and

the estimation of their statistical parameters, respectively.

The main result in (11) is that the two reference assets ke and kq determine the

efficient frontier for portfolios of assets in M with respect to the risk measure Π. Indeed

we have

Theorem 6.3 (Theorem 2 in (11)) Let E = span{ke, kq} the subspace in M spanned

by the expectation and pricing kernels. Given z ∈M we have

E[z] = E[zE ]

and

Π(zE) ≤ Π(z)

where zE is the projection of z onto E.

Since the efficient frontier is spanned by two assets, this last result can be re-

garded as a non-Gaussian and non-Euclidean version of the two-fund spanning theorem in

Finance. Generalizing the mean-variance case, we can prove in the case of φ-exponentials

that the efficient mean-divergence frontier for portfolio selection is spanned by two port-

folios

α1 =
(∇2K)−11

1>(∇2K)−11
and αµ =

(∇2K)−1µ

1>(∇2K)−1µ
,

where µ is the desired expected return of the portfolio.

6.3 Generalized beta pricing models and CAPM

Denote by Re and Rq the returns of ke and kq, respectively. In (11), the authors have

proved that the mimimum divergence portfolio in M is given by

z = Re + (1− β)(Rq −Re)

where

β = − g(Rq −Re, Re)

g(Rq −Re, Rq −Re)

A similar expression holds replacing the basic assets ke and kq by two efficient assets kλ

and kν in E such that

G(rλ, rν) = 0. (339)

These zero-covariance pair of assets is given by

rλ = Re + λ(Rq −Re)
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and

rν = Re + ν(Rq −Re)

where ν is given by

ν = − G(Re, Re) + λG(Rq −Re, Re)

G(Rq −Re, Re) + λG(Rq −Re, Rq −Re)
(340)

Note that ν is well-defined if and only if kλ is not the minimum divergence portfolio in E .

We have obtained in (11) a generalized beta pricing equation involving kλ and

kν

E[z] = E[rν ] + β(E[rλ]− E[rν ]) (341)

for assets in z ∈M, where the generalized beta coefficient is given by

β =
G(r, rλ)

G(rλ, rλ)
· (342)

If there exists a risk-free asset 1 with return Rf in M, we fix rν = 1 reducing (341) to

E[z] = Rf + β(E[rλ]−Rf). (343)

As in the classical CAPM, we can take rλ as the market return rm since it is possible to

prove under some assumptions that rm is in the mean-divergence efficient frontier. More

precisely, this is the case when every agent in the market has consumption preferences

given by a time-separable utility function of the form

u(c0, c1) = u0(c0) + u1(E[c1],G|c1(c1, c1)) (344)

where u1 is strictly decreasing with respect to the second variable. Here c0 is the agent’s

consumption plan at time t = 0 and c1 = c1(s) is a random variable in M that describes

the consumption plan of the agent at time t = 1.

Under this assumption, we have obtained in (11) a generalized CAPM equation

E[r]−Rf = β̃(E[rm]−Rf), (345)

where rm is the return of the market portfolio and

β̃ =
G(r, rm)

G(rm, rm)
(346)

is the generalized beta market. This coefficient measures the generalized covariance

between the risk of the asset or portfolio and the market risk. Note that both (341)

and (345) define a generalized security market line (16), (18).
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The Fisher information metric G plays the role here of the covariance matrix.

In the particular case when the returns of traded assets are distributed accordingly a

q-Gaussian distributions it holds that

Gz = ∇2K(z) = Σq

for every z ∈M, where the q-variance matrix Σq is defined in Section 5.2.

6.4 Generalized PCA and applications to Finance

The results we have quoted in Sections 6.2 and 6.3 indicate that the Hessian information

matrix

G = ∇2D (347)

plays a central role in the extension of portfolio selection and asset pricing models in

the case of non-Gaussian returns. Even under the assumption of normality of the asset

returns, G can provide a more accurate risk measure since it is sensitive to higher moments

of the underlying probability distributions.

A portfolio composed by N risky assets z1, . . . , zN in M is determined by an

allocation vector α = (α1, . . . , αN) ∈ RN

αD, (348)

where D is the vector of payoffs (z1, . . . , zN)>. We assume that the payoffs have probabi-

lities distributions given by densities p(s,ϑi) ∈ S, i = 1, . . . , N . The expected return of

this portfolio is

µ = αE[D] =
N∑
i=1

αiE[zi]

whereas its generalized covariance is given by

π = G(αD,αD) =
N∑

i,j=1

αiG(zi, zj)αj.

The matrix

Gij := G(zi, zj) (349)

is referred to as the generalized covariance matrix of the assets z1, . . . , zn. Thus, we

consider the optimization problem

min
α
π (350)

subject to the constraint

αα> = 1. (351)
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Setting the Lagrangian

L = π − λ1(αα> − 1),

one easily verifies that the first order necessary condition for the optimal portfolio F (1) is

N∑
j=1

GijF (1)
j = λ1F

(1)
i , (352)

that is, F (1) is an eigenvector of the generalized covariance matrix G relative to the eigen-

value λ1. Supposing the G has N distinct eigenvalues and iterating this same optimization

procedure in subspaces orthogonal to the span of the already given eigenvectors one ob-

tains the principal directions F (1), . . . , F (N) correspondent to the eigenvalues

λ1 > . . . > λN > 0.

We then define a matrix R by

zj =
N∑
i=1

RijF
(i)

in such a way that arbitrary portfolio’s payoffs may be rewritten as

αD =
N∑
j=1

( N∑
i=1

αjRij

)
F (i) =:

N∑
i=1

βiF
(i).

Next, we restrict ourselves to the projections of portfolios onto the (totally geodesic)

affine subspace spanned by the first p < N principal directions F (1), . . . , F (p), taken as

the most significant ones due to the fact they represent the largest p diagonal elements in

the generalized covariance matrix in diagonal form, that is,

Gdiag = R−1GR.

Hence, we obtain a multi-factor linear model of the form

αD =

p∑
i=1

βiF
(i) + ε, (353)

where

ε =
N∑

i=p+1

βiF
(i)

satisfies

G
(
ε,

p∑
i=1

βiF
(i)

)
= 0.
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The expected return of the p-principal portfolio

p∑
i=1

βiF
(i)

is
p∑
i=1

βiE[F (1)]

and its generalized variance is given by

p∑
i=1

λiβ
2
i

We claim that the p-principal portfolio with expected return µ∗ and minimum generalized

variance is determined by the weights

βi =

( p∑
j=1

E[F (j)]√
λj

)−1E[F (i)]

λi
(354)

To prove this claim, we denote

β̃i =
√
λiβi, Ri =

1√
λi
E[F (i)]

and then we set the Lagrangian

1

2

p∑
i=1

β̃2
i − ν

( p∑
i=1

β̃iRi − µ∗
)

with a constraint given by
p∑
i=1

1√
λi
β̃i = 1.

The first order condition is

β̃i = νRi,

for all i = 1, . . . , p. Taking traces and using the constraint condition one gets

ν

p∑
i=1

Ri√
λi

= 1.

We conclude that

βi =

( p∑
j=1

Rj√
λj

)−1
Ri√
λi

(355)

as claimed. In sum, we have proved
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Theorem 6.4 The p-principal portfolio with minimum generalized variance is given by

βi =

( p∑
j=1

E[F (j)]√
λj

)−1E[F (i)]

λi
(356)

where E[F (i)] and λi, i = 1, . . . , p, are, respectively, the expected return and the generalized

variance of the first p eigenvectors F (1), . . . , F (p) of the generalized covariance matrix

G = ∇2D. This portfolio coincides with the projection of the random variable z = αD

over the principal p-dimensional submanifold spanned by the eigenvectors.

7 CONCLUSION AND DEVELOPMENTS

We present in this work a portfolio selection method when considering the

returns as q-exponentially distributed. The proposed method is shown to generalize the

classical Markowitz framework. The numerical evaluation show the proposal is able to

provide better tracking of deep changes in the stock market, such as the ones present in

crisis scenarios, and yet provide a higher return than the classical strategy provided by

Markowitz’s model.

As further directions for our research we envisage evaluating the performance

of the proposed portfolio selection considering an estimator for the covariance matrix

which may degrade the performance of the used strategies. In this sense, an analysis for

the most relevant assets in large portfolio is also a problem that deserves attention since

dimensionality may play a key role in the performance of the estimator and thus methods

for reducing it, such as PCA, are of great interest. In this direction, we intend to run some

numerical experiments in order to apply the generalized principal component analysis we

have formulated.

Finally, the derivation in this thesis of a variant of Capital Asset Pricing Model

(CAPM) for deformed exponentials suggests some natural follows-ups. For instance, we

can apply the proposed definition of generalized beta coefficients to valuation problems

in Corporate Finance, developing new tools to decision-making strategies.
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