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RESUMO

O estudo de sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento.

Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não

passíveis de serem explicados por equações derivadas de leis físicas e estruturas conhecidas.

Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas

não lineares, por meio da qual são obtidos modelos diretamente Os modelos de regressão

por vetores-suporte via mínimos quadrados (LSSVR) e LSSVR de tamanho fixo (FS-LSSVR)

são alternativas interessantes à regressão por vetores-suporte (SVR). Aqueles são derivados

de funções custo baseadas em soma dos erros quadráticos (SSE) e restrições de igualdade,

diferentemente do modelo SVR, cujo o problema de programação quadrática associado não

apresenta bom desempenho em problemas de maior escala, além de consumir tempo considerável

de processamento. Os problemas de otimização dos modelos LSSVR e FS-LSSVR tornam-se

mais simples por permitir a solução de um sistema linear pelo método dos mínimos quadrados.

Para o modelo LSSVR, contudo, a solução assim encontrada não é esparsa, implicando na

utilização de todos os dados de treinamento como vetores-suporte. Por sua vez, a formulação do

modelo FS-LSSVR é baseada no problema de otimização primal, que conduz a uma solução

esparsa (i.e. uma parcela dos dados é usada pelo preditor). Entretanto, há aplicações em

identificação de sistemas e processamento de sinais em que a estimação online de parâmetros

é requerida para cada nova amostra. Neste sentido, a aplicação de funções de kernel a filtros

lineares ajudou a estabelecer um campo de pesquisa emergente, o de filtragem adaptativa

kernelizada para processamento não linear de sinais. Um algoritmo pioneiro nesse campo

é o estimador de mínimos quadrados recursivo kernelizado (KRLS). Uma das contribuições

desta tese consiste em utilizar o algoritmo KRLS para transformar o modelo LSSVR em um

modelo adaptativo e esparso. Além da questão da esparsidade da solução, as contribuições

adicionais deste trabalho foram motivadas pelo tratamento adequado de ruído não gaussiano e

outliers. Assim como os modelos LSSVR e FS-LSSVR, o modelo KRLS é também construído

com base em uma função de custo SSE, o que garante desempenho ótimo apenas para ruído

branco gaussiano. Em outras palavras, o desempenho daqueles modelos tende a degradar-se

consideravelmente quando tal condição não é observada. Isto posto, nesta tese são desenvolvidas

ainda quatro abordagens robustas para os modelos LSSVR, FS-LSSVR e KRLS. O arcabouço

de estimação robusta de parâmetros conhecido como estimação-M é utilizado para este fim.

Para o modelo LSSVR, uma abordagem mais heurística é seguida, em que uma versão robusta,



porém não esparsa, é obtida simplesmente trocando-se o método de estimação dos mínimos

quadrados pelo algoritmo RLM (versão robusta do RLS). Para os modelos FS-LSSVR e KRLS,

abordagens de cunho mais teórico são seguidas, em que se alteram as funções custo originais

para se chegar aos modelos robustos propostos. Os desempenhos dos modelos propostos são

avaliados e discutidos em tarefas de identificação robusta de sistemas com conjuntos de dados

artificiais e reais em cenários com predição de k-passos a frente e simulação livre.

Palavras-chave: Modelo LSSVR. Modelo FS-LSSVR. Modelo KRLS. Esparsidade. Outliers.

Estimação-M. Robustez. Identificação de Sistemas.



ABSTRACT

The Least Squares Support Vector Regression (LSSVR) and Fixed Size LSSVR (FS-LSSVR)

models are interesting alternatives to the Support Vector Regression (SVR). Those are derived

from cost functions based on the sum-of-squared-errors (SSE) and equality constraints, unlike

the SVR model, whose associated quadratic programming problem does not scale up well, and

besides consumes considerable processing time. The optimization problems of the LSSVR and

FS-LSSVR models become simpler because they rely on the ordinary least squares method

to find a solution. For the LSSVR model, nevertheless, the solution thus found is non-sparse,

implying the use of all training data as support vectors. In turn, the formulation of the FS-LSSVR

model is based on the primal optimization problem, which leads to a sparse solution (i.e. a

portion of the training data is used by the predictor). However, there are applications in system

identification and signal processing in which online parameter estimation is required for each new

sample. In this sense, the application of kernelization to linear filters has helped to establish an

emerging field, that of kernel adaptive filtering for nonlinear processing of signals. A pioneering

algorithm in this field is the Kernel Recursive Least Squares (KRLS) estimator. One of the

contributions of this thesis consists in using the KRLS algorithm to transform the LSSVR model

into an adaptive and sparse model. Beyond the question of the sparsity of the solution, the

additional contributions of this work are motivated by the appropriate treatment of non-Gaussian

noise and outliers. As the LSSVR and FS-LSSVR models, the KRLS model is also built upon

an SSE cost function, which guarantees optimal performance only for Gaussian white noise. In

other words, the performance of those models tend to considerably degrade when that condition

is not observed. That said, four robust approaches for the LSSVR, FS-LSSVR and KRLS models

are developed in this thesis. The framework of the robust parameter estimation known as the

M-estimation is used for this purpose. For the LSSVR model, a more heuristic approach is

followed, in which a robust, but non-sparse, is simply obtained by replacing the least squares

estimation method by the RLM algorithm (a robust version of the RLS). For the FS-LSSVR and

KRLS models, more theoretical approaches are developed, in which their original cost functions

are changed in order to obtaining the proposed robust models. The performances of the proposed

models are comprehensively discussed in robust system identification tasks with synthetic and

real-world datasets in scenarios with k-steps ahead prediction and free simulation.

Keywords: LSSVR Model. FS-LSSVR Model. KRLS Model. Sparsity. Outliers. M-Estimation.
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ŵwwr Robust solution for ŵww
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1 INTRODUCTION

“Work gives you meaning and purpose and life is empty without it.”

(Stephen Hawking)

Nonlinear phenomena are commonly encountered in most practical problems in

areas such as Engineering, Physics, Chemistry, Biology, Economy, etc. This nonlinear nature

can be revealed by several sources of non-linearity, including harmonic distortion, chaos, limit

cycle, bifurcation and hysteresis (ZHANG; BILLINGS, 2015). Therefore, the data analysis in

these cases often requires nonlinear regression methods to detect the kind of dependencies that

allow for the successful prediction of properties of interest (HOFMANN et al., 2008).

In this scenario, the kernel-based methods have been proven to be suitable tools to

deal with nonlinear regression problems. Inspired by the statistical learning theory (VAPNIK,

1995; VAPNIK, 1998), the Support Vector Regression (SVR) (SMOLA; VAPNIK, 1997) and

Least Squares Support Vector Regression (LSSVR) (SUYKENS et al., 2002b; SAUNDERS

et al., 1998) non-parametric models, among others, have achieved acceptable performance in

several regression tasks, including function approximation, time series prediction and system

identification.

The basic idea behind the kernel methods is that they build a linear model in the

so called feature space, where the original pattern inputs are transformed by means of a high-

dimensional or even infinite-dimensional nonlinear mapping φφφ . Then, the problem is converted

from the primal space to the dual space by applying Mercer’s theorem and a positive kernel

function (SCHÖLKOPF; SMOLA, 2002), without the need for explicitly computing the mapping

φφφ . This appealing property of the kernel-based methods is referred to as the kernel trick.

It should be noted that the term kernel may assume different meanings, depending

on the nonlinear modeling paradigm. In Volterra series models (ZHANG; BILLINGS, 2017), for

example, the kernel can be regarded as a higher-order impulse response of the dynamic system.

In reproducing kernel Hilbert spaces (RKHS)-based techniques, such as the ones followed in the

current thesis, the kernel per se does not have a signal processing connotation. It is related to

Mercer-type kernels for nonlinear transformation on Machine Learning algorithms, popularized

by Vapnik (1998) via the Support Vector Machine (SVM) classifier. In such kernels, there are no

memory (i.e. dynamical) issues involved. It is a purely static transformation.

Notwithstanding the differences between the SVR and LSSVR techniques with
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respect to the sparsity of the solution, since in the LSSVR model all the training examples are

used as support vectors in order to make new predictions, the learning process in both kernel-

based models is carried out in batch mode. This means that all training samples are stored in

computer memory for building the kernel (Gram) matrix used during the parameter optimization

phase. If computer memory cannot hold all of the training data, one can resort to disk storage,

but it tends to slow down the learning speed. In addition, if a new data sample is to be added

to the model, the kernel matrix computation and the respective parameter optimization process

have to be carried out again.

From the 2000s decade, much attention has been focused on developing LSSVR

derived methods in order to obtain sparse solutions and, consequently, achieve greater scal-

ability in the inherent batch learning. This problem was addressed, for example, by using

pruning (SUYKENS et al., 2002a) and fixed-size approaches (SUYKENS et al., 2002b). The

latter, called the Fixed-Size LSSVR (FS-LSSVR) model, provides an alternative solution for the

LSSVR formulation in the primal space, which is sparse since it relies on a selected subsample of

pattern inputs. The FS-LSSVR model has been widely used to solve static (DE-BRABANTER et

al., 2010; MALL; SUYKENS, 2015) and dynamical (DE-BRABANTER et al., 2009a; CASTRO

et al., 2014; LE et al., 2011) regression problems.

However, in several specific application domains, such as time series prediction,

control systems, system identification and channel equalization, online (i.e. sample-by-sample)

learning strategies are required, where the predictor model is modified following the arrival of

each new sample. It should be noted that those are classical signal processing applications, but

online learning has also gained increasing attention in recent years from the Machine Learning

community, due to its inherent ability to handle the demands of big data applications (HOI et al.,

2014; SLAVAKIS et al., 2014) and also data nonstationarity (DITZLER et al., 2015).

Strongly motivated by the success of the SVR/LSSVR models in nonlinear regression,

the application of the kernelization philosophy to linear adaptive filters has produced powerful

nonlinear extensions of well-known signal processing algorithms (ROJO-ÁLVAREZ et al., 2014),

including the Least Mean Squares (LMS) (LIU et al., 2008; CHAUDHARY; RAJA, 2015), the

Normalized LMS (SAIDE et al., 2015), and the Recursive Least Squares (RLS) (ENGEL et al.,

2004; LIU et al., 2009b; ZHU et al., 2012; SAIDE et al., 2013; FAN; SONG, 2013) algorithms.

These contributions have helped to establish another emerging field, that of Kernel Adaptive

Filtering (KAF) for nonlinear signal processing (LIU et al., 2009a; SAIDE et al., 2015).
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In essence, the KAF algorithms are online kernel-based methods that aim to recover

a signal of interest by adapting their parameters as new data become available. In this work,

the term “online" means that the learning process can be updated one-by-one, without re-

training using all the learning data when a new input sample becomes available (LI et al., 2013).

Furthermore, the number of computations required per new sample must not increase (and

preferably be small) as the number of samples increases (ENGEL et al., 2004).

Of particular interest to this thesis is the work of Engel et al. (2004), who introduced

the Kernel Recursive Least-Squares (KRLS) algorithm as a kernelized version of the famed

RLS algorithm (HAYKIN, 2013; LI et al., 2014), based on an online sparsification method

called approximate linear dependence (ALD) (ENGEL et al., 2002), that sequentially admits

into a dictionary of kernel representation only those samples that cannot be approximately

represented by a linear combination of samples that were previously admitted as support vectors

(SVs). In summary, the ALD criterion, as well as other sparsification rules, aims at identifying

kernel functions whose removal is expected to have negligible effect on the quality of the model

solution (RICHARD et al., 2009).

Regarding the discussion above, a common characteristic of the batch LSSVR and

FS-LSSVR models, and of the online KRLS algorithm, is that they are built upon sum of squared

errors (SSE) cost functions. Then, their optimality is guaranteed only for normally distributed

errors1 and, consequently, the performance of its solution can drastically degrades or even

completely breaks down when the evaluated data is corrupted with outlier-like2 samples, e.g.

impulsive disturbances (SUYKENS et al., 2002b; SUYKENS et al., 2002a; PAPAGEORGIOU

et al., 2015; ZOUBIR et al., 2012).

In this scenario, M-estimation is a broad robust statistics framework (HUBER;

RONCHETTI, 2009; ROUSSEEUW; LEROY, 1987) successfully used for parameter estimation

in signal processing problems (ZHANG et al., 2014; ZOUBIR et al., 2012), when the Gaussianity

assumption for the prediction errors (i.e. residuals) does not hold. According to this framework,

robustness to outliers is achieved by minimizing another function than the sum of the squared

errors.

Although M-estimators have been widely used to robustify the standard dual LSSVR
1The least squares estimate is the best linear unbiased estimate of the true parameters of a model if the noise

is white. This means that the covariance matrix of the estimated parameters is the smallest of all possible linear
unbiased estimators. If the white noise is also Gaussian, then there does not even exist a better nonlinear unbiased
estimator (NELLES, 2001).

2Although there is no universal definition of outlier (HODGE; AUSTIN, 2004), in this thesis we consider an
outlier as an observed output y that differs markedly from the other observations of the sample which it belongs.
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model (SUYKENS et al., 2002a; DE-BRABANTER et al., 2009b; DEBRUYNE ANDREAS CHRIST-

MANN; SUYKENS, 2010; DE-BRABANTER et al., 2012; DEBRUYNE et al., 2008), the

adopted robust strategies usually modify the original LSSVR loss function applying weighted

procedures. In addition, the LSSVR derived models have been little used for robust system

identification tasks, and generally only in one-step ahead prediction scenarios (FALCK et al.,

2009; LIU; CHEN, 2013a; LIU; CHEN, 2013b). Regarding the primal LSSVR formulation, the

development of robust strategies for the FS-LSSVR model is still an entirely open issue.

As before mentioned, the KRLS model inherits from the RLS algorithm its high

sensitivity to outliers. It is then desirable for the KRLS algorithm to be endowed with some

inherent mechanism to handle outliers smoothly. One may argue that the simplest approach

would be to employ some of the robust strategies used for the linear RLS-based models in

the KRLS algorithm. However, such direct transfer is not always straightforward because the

resulting KRLS algorithm must satisfy the following three requirements: (i) it must be capable

of handling nonlinearities; (ii) it must be suitable for online learning; and (iii) it must provide a

sparse solution to the parameter vector. Preferably, the sparsification and online learning issues

should be unified in the same framework.

Due to these requirements, strategies for building outlier-robust kernel adaptive

filtering algorithms are not widely available yet, despite their importance to real-world applica-

tions. An important attempt in this direction has been recently introduced by Wu et al. (2015),

who developed a robust kernel adaptive algorithm based on the maximum correntropy criterion

(MCC) (LIU; WANG, 2007). MCC is built upon information theoretic concepts and aims at

substituting conventional 2nd-order statistical figures of merit, such as Mean Squared Error

(MSE), in order to capture higher-order statistics and offer significant performance improvement,

especially when data contain large outliers or are disturbed by impulsive noises.

Despite the rapidly growing number of successful applications of the aforementioned

kernel-based online learning models, their use for nonlinear online system identification has not

been fully explored yet. This is particularly true for scenarios contaminated with outliers and/or

non-Gaussian errors, where just a few works can be found (WU et al., 2015; SANTOS et al.,

2015; LIU; CHEN, 2013b; QUAN et al., 2010; TANG et al., 2006; SUYKENS et al., 2002a).

However, most of these previous works (SANTOS et al., 2015; LIU; CHEN, 2013b; QUAN et

al., 2010; SUYKENS et al., 2002a) cannot be applied to online nonlinear system identification

because they do not simultaneously offer sparse solutions under a recursive parameter estimation
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scheme. In other words, they use all the available training input-output pairs for model building

purposes. Sparse solutions, when offered, are achieved via post-training pruning procedures

(SUYKENS et al., 2002a).

Finally, an additional difficulty in dealing with (online) system identification prob-

lems in the presence of outliers is due to the own dynamic nature of the adopted model. In this

case, even considering a possible contamination of outliers only in the output variables y, their

previously values are used to build the regressor vectors that will be used as input samples for the

next time iterations, and so on. Then, the effect of outliers may be felt in both input and outputs

of the system. In this scenario, one can conclude that the system identification task becomes

even more difficult.

1.1 General and Specific Objectives

In a broader sense, the overall objective in this thesis is to propose novel robust

and/or online kernel-based approaches for dynamic system identification tasks in the presence

of outliers. Furthermore, one expects that the proposed models, which are derived from the

M-estimators theory and kernel adaptive filtering algorithms, achieve suitable performances in

terms of generalization capacity when compared to classical methods of the state-of-the-art. In

order to accomplish that, we may specifically follow the next steps:

• Propose robust versions (based on the M-estimators) of the LSSVR model in batch learning

mode, following its standard dual formulation and the primal space formulation of the

FS-LSSVR model;

• Present a novel robust kernel adaptive filtering model, based on the M-estimators and

derived from the original KRLS model, for online signal processing in the presence of

outliers;

• Propose a sparse and online version of the standard LSSVR model, based on the original

KRLS learning procedure;

• Evaluate all the proposed approaches in robust system identification tasks, in scenarios

with long-term prediction, using synthetic and real-world datasets, from SISO and MIMO

systems, and a large-scale dataset.
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1.2 The System Identification Problem

The framework of mathematical modeling involves strategies in developing and

implementing mathematical models of real systems. According to Billings (2013), a mathe-

matical model of a system can be used to emulate this system, predict its outputs for given

inputs and investigate different design scenarios. However, these objectives can only be fully

achieved if the model of the system is perfectly known. This case corresponds to the white-box

modeling (SJÖBERG et al., 1995), where it is possible to construct the original model entirely

from prior knowledge and physical insight.

As an alternative to white-box modeling, system identification emerges as an impor-

tant area that studies different modeling techniques, where no physical insight is available or used.

These techniques are referred to as black-box modeling, wherein the challenge of describing

the dynamic behavior of the systems consists of searching for a mathematical description from

empirical data or measurements in the system (SJÖBERG et al., 1995). Therefore, the black-box

modeling framework corresponds to the focus of this thesis.

System identification is a regression-like problem where the input and output ob-

servations come from time series data. In other words, information about the dynamics (i.e.

temporal behavior) of the system of interest must be learned from time series data. When

nonlinear dynamics has to be captured from data, many modeling paradigms are available in

the literature, including neural networks (NARENDRA; PARTHASARATHY, 1990), kernel-

based models (ROJO-ÁLVAREZ et al., 2004; CAI et al., 2013; GRETTON et al., 2001), fuzzy

systems (TAKAGI; SUGENO, 1985), neuro-fuzzy systems (JANG, 1993), Volterra series repre-

sentation (ZHANG; BILLINGS, 2017), Hammerstein-Wiener models (WILLS et al., 2013), and

Chebyshev polynomials approximation (ZHANG et al., 2013), in addition to others.

Mathematically, the representation of a typical nonlinear system identification prob-

lem can be expressed, for the sake of simplicity and without loss of generality, by a single-input

single-output (SISO) dynamic system from a finite set of N pairs of observed measurements

D = {ut ,yt}N
t=1, where ut ∈ R is the t-th input and yt ∈ R is the output at time t. Then, the

input-output discrete time relationship can be given by

yt = g(xxxt)+nt = gt +nt , (1.1)

where gt ∈ R is the true (noiseless) output of the system, g(·) is the unknown, and usually

nonlinear, target function and {nt}N
t=1 corresponds to a noise sequence which is assumed to be
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Process ∑

∑Model

xxxt gt

nt

yt = gt +nt

ŷt −

et = yt− ŷt

Figure 1 – Example of a system identification problem, where a model is adapted in order to
represent the unknown process behavior.

independent and identically distributed (i.i.d.) with zero mean and finite variance. xxxt denotes the

regression vector at sampling time t and its components are given as a function of the relevant

variables of the system at a previous time.

An example of a system identification problem for a SISO system is illustrated in

Fig. (1), where the model predictions should represent the dynamical behavior of the process as

closely as possible. The model performance is typically evaluated in terms of a function of the

error et between the noisy process output yt and the model output ŷt . Then, this error is used to

adjust the parameters of the model.

1.2.1 Classes of Models

In order to construct or select models in system identification scenarios, the first step

is determining a class of models within which the search for the most suitable model is to be

conducted. For this purpose, a number of different linear models have been proposed (LJUNG,

1999; BILLINGS, 2013; AGUIRRE, 2007), such as Auto-Regressive (AR), Auto-Regressive with

eXogenous inputs (ARX), Moving Average (MA), Auto-Regressive Moving Average (ARMA),

Auto-Regressive Moving Average with eXougenous inputs (ARMAX), Output Error (OE), Finite

Impulse Response (FIR) and Box-Jenkis (BJ). One should note that the respective nonlinear

versions follow a similar nomenclature of these linear models.

Among the nonlinear dynamic models, the Nonlinear Auto-Regressive with eXoge-

nous inputs (NARX) covers a wide class of nonlinear systems and it is normally the standard

approach pursued in most engineering applications (NELLES, 2001). Because of this and since
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the major goal in this thesis is not to find the best model for a given application, but rather,

evaluate the performance of parameter estimation techniques for kernel-based models, the NARX

dynamic model will be used for all the applications in system identification throughout this work.

The NARX model can be defined by rewriting Eq. (1.1) as (BILLINGS, 2013;

AGUIRRE, 2007; NELLES, 2001)

yt = g(yt−1, . . . ,yt−Ly ,ut−τd , . . . ,ut−Lu)+nt , (1.2)

whose regression vector is given by

xxxt = [yt−1, . . . ,yt−Ly,ut−τd , . . . ,ut−Lu]
>, (1.3)

where it is assumed that the random noise nt in Eq. (1.2) is i.i.d. and is purely additive to the

model. The Lu ≥ 1 and Ly ≥ 1 values are the maximum lags for the system input and output,

respectively, denoting their memory orders. The target nonlinear function g(·) : RLy+Lu → R is

assumed to be unknown and τd is a time delay, also called dead time, typically set to τd = 1.

In the next step, the observed data in the form of input-output time series should be

used to build an approximating model f (·) for the target function g(·), which is expressed by

ŷt = f (yt−1, . . . ,yt−L̂y
,ut−1, . . . ,ut−L̂u

), (1.4)

where L̂u and L̂y are estimates of the real system memory. Clearly, the regressors xxxt , and

consequently the model f (·), depend on L̂u and L̂y, but these dependencies have been omitted in

order to simplify the notation, as was done by SOUZA-JÚNIOR (2014).

The techniques for developing nonlinear mappings f (·) strategies, derived from

kernel-based models, and their required procedures for parameter estimation are the main

purpose of this thesis and, therefore, they will be discussed in detail throughout next chapters.

1.2.2 Model Validation

In order to assess model performance in system identification tasks, a commonly used

practice involves splitting the available data samples into two parts: one for model estimation

or training (or model building), which is referred to as the training dataset, and another part

for model testing (or validation), which is referred to as the test dataset. Therefore, the model

obtained from the training dataset must be evaluated over an independent test dataset, whose

samples are unknown by the model so far. In other words, one wants to know if the obtained
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a) OSA prediction. (b) Free simulation.
Figure 2 – Scenarios of predictions for model validation - adapted from Nelles (2001).

model serves to explain another observed dataset of the same system (AGUIRRE, 2007). This

strategy is used to measure the generalization capacity of the model.

Since the model was properly obtained, it may be used to simulate the dynamical

output of the identified system through iterative predictions. In this sense, there are two possible

scenarios: prediction and simulation. Prediction means that, on the basis of previous inputs

ut−i (for i = 1, . . . , L̂u) and outputs yt− j (for j = 1, . . . , L̂y), the model predicts one or several

steps into the future, while simulation means that the model simulates future outputs only on the

basis of previous inputs ut−i (NELLES, 2001). Simply stated, prediction uses previous values

of inputs and observed outputs to predict the current output, whereas simulation uses previous

values of inputs and predictions (rather than observed outputs) to predict the current output.

The simplest concept in prediction scenarios is that of One-Step Ahead (OSA)

prediction, in which the vector of regressors xxxt−1 at time instant t− 1 is first built, based on

previous values of observed outputs and inputs, only to compute the predicted output ŷt for the

next time instant t. However, it is noteworthy that this prediction ŷt is not used to obtain the next

OSA prediction ŷt+1. The output given by Eq. (1.4) is considered as a OSA prediction, because

ŷt is computed from measured outputs up to time instant t−1. Fig. (2a) illustrates the task of

one-step ahead prediction.

Although OSA predictions are customarily used in certain applications, such as

short term stock market and weather forecasts (NELLES, 2001), where the current state of

the system can be measured, they do not correspond to a proper representation of the true

system (BILLINGS, 2013). In this sense, Aguirre (2007) states that OSA predictions are not

a good test to validate a model, since “bad" models normally present “good" OSA predictions.

Based on practical examples, Billings (2013) shows how misleading model validation based on

OSA predictions can be, because even though the model is incorrect, the OSA predictions over
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Figure 3 – Example of 2-steps ahead prediction task - adapted from Nelles (2001).

the test samples can be almost perfect. Therefore, it can be concluded that OSA predictions are

not appropriate to explain the dynamic behavior of the identified system.

In contrast to OSA, in simulation scenarios the previous predictions are used to build

the vector of regressors in order to continue making predictions. Thus, the vector of regressors is

expressed as

xxxt = [ŷt−1, . . . , ŷt−L̂y
,ut−1, . . . ,ut−L̂u

]>, (1.5)

where the process inputs ut−i, for i = 1, . . . , L̂u, are always available, as in the case of OSA. The

output simulated according to Eq. (1.5) is called free simulation or infinite-steps ahead prediction,

and it is illustrated in Fig. (2b).

Free simulation tasks are often required for applications in optimization, control,

system identification and fault detection, where in some circumstances it becomes difficult

(or even impossible) to measure the process outputs. In free simulation, as may be inferred,

predictions rely on previous predictions and, consequently, the prediction errors tend to propagate

through nonlinear transformations. This makes the modeling and identification phase harder, and

requires additional care in order to ensure the stability of the model (NELLES, 2001). Even in

this hostile scenario, free simulation is, unlike the OSA predictions, a suitable way to test if the

model can explain the measured observations (AGUIRRE, 2007).

Regarding the discussion above, one can say that the prediction scenarios of OSA

and free simulation are two extreme cases. Nevertheless, there is an intermediate case when

more than one step is to be predicted into the future. This case is called the multiple-steps ahead

or k-steps ahead prediction, which consists of using the obtained model as a free predictor only

for k sampling intervals, restarting it immediately afterward with measured data (AGUIRRE,

2007). The number of steps predicted into the future k denotes the prediction horizon.

Based on Eq. (1.4) for OSA prediction, it can be used to predict a further step

ahead by replacing t− 1 for t and utilizing the result ŷt−1 from the previous prediction step.
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This procedure can be repeated k times in order to predict k steps ahead altogether. Then, for

k = 2,3, . . ., the k-step prediction is recursively computed by (ZHANG; LJUNG, 2007)

ŷ(k)t = f (ŷ(k−1)
t−1 , . . . , ŷ(k−1)

t−L̂y
,ut−1, . . . ,ut−L̂u

), (1.6)

where ŷ(1)t , ŷt , as defined by Eq. (1.4). One should note that the sequence ŷ(1)t (for t = 1, . . . ,N′),

where N′ denotes the number of test samples used for model validation, must be first computed

before ŷ(2)t be computed. Then, ŷ(3)t is computed, and so on. Therefore, the predicted output ŷ(k)t ,

computed with the recurrent expression in Eq. (1.6), can be viewed as a k-steps ahead prediction

of yt . This scenario is illustrated in Fig. (3) for k = 2.

Among the prediction scenarios, it is worth mentioning that k-steps ahead prediction

task is equivalent to free simulation when the prediction horizon approaches infinity (k→+∞).

In this thesis, we do not apply OSA predictions for model validation. For this purpose, we only

use k-steps ahead prediction and, in most applications, free simulation.

Finally, a common and useful choice in the quantification of predictions is the Root

Mean Squared Error (RMSE), calculated between the predicted outputs and the real observations

over the whole test dataset. Mathematically, the RMSE value is given by

RMSE =

√√√√ 1
N′

N′

∑
t=1

(yt− ŷt)2. (1.7)

In principle, the smaller the RMSE value, the better the reconstruction of the system dynamics.

Next, some additional remarks are presented in order to clarify and facilitate the

understanding about the system identification problems treated throughout this thesis. For

more details in the framework of system identification, the reference text-books by Billings

(2013), Ljung (1999), Aguirre (2007), Nelles (2001) and Söderström and Stoica (1989) are

recommended.

1.2.3 Additional Remarks

Remark 1 - The first step, and probably the most important (mainly for black-box modeling),

when dealing with system identification tasks is collecting data from the real system to be

identified. This phase includes important decisions, such as on the choice of excitation

signals of (control) input and output, and on the choice of the sampling time. The chosen

estimation dataset should be suitable to represent the dynamics behavior of the system.
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Otherwise, the obtained model will not be able to produce reliable predictions of this

system.

Regarding the sampling time, a value that is too small (oversampling) causes successive

data samples to be very similar, so that the data become redundant. If a sampling time

that is too large (undersampling) is chosen, then successive data points tend to become

independent from each other so that the dynamical information about the original system

is lost (ZHANG et al., 2013).

In this thesis, we abstract away from these particular issues because we use benchmarking

datasets for the computational experiments. In this case, we assume that the available

estimation datasets are sufficiently representative of the system of interest and, besides

that, the sampling rate is suitably chosen and normalized, so that we can treat the systems

of interest as intrinsically nonlinear discrete-time systems.

Remark 2 - Several nomenclatures commonly used in system identification and control theories

have synonyms somewhat different in the field of Machine Learning. Therefore, in order to

avoid confusion with some of them, we provide a glossary of terms (as done in Sjöberg et

al. (1995), SOUZA-JÚNIOR (2014)) that are used interchangeably with their equivalents

in this thesis:

• estimate = train, learn, model building, structure selection;

• validate = test, generalize;

• estimation dataset = training dataset, model building dataset;

• validation dataset = test dataset, generalization dataset.

1.3 Scientific Production

Throughout the development of this work, a reasonable number of articles have been

published by the author and respective co-authors. Among them, the published articles related to

the thesis are:

1. José Daniel A. Santos and Guilherme A. Barreto, Novel Sparse LSSVR Models in

Primal Weight Space for Robust System Identification with Outliers. Journal of

Process Control, to appear (http://doi.org/10.1016/j.jprocont.2017.04.001), 2017.

2. José Daniel A. Santos and Guilherme A. Barreto, A Regularized Estimation Framework

for Online Sparse LSSVR Models. Neurocomputing, vol. 238, 114-125, 2017.

3. José Daniel A. Santos and Guilherme A. Barreto, An Outlier-Robust Kernel RLS Al-
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gorithm for Nonlinear System Identification. Nonlinear Dynamics, vol. 90, issue 3,

1707-1726, 2017.

4. José Daniel A. Santos and Guilherme A. Barreto, A Novel Recursive Solution to LS-SVR

for Robust Identification of Dynamical Systems. In Lecture Notes in Computer Science:

Intelligent Data Engineering and Automated Learning - IDEAL 2015, K. Jackowski, R.

Burduk, K. Walkowiak, M. Wozniak and H. Yin Eds., vol. 9375, 191-198, 2015.

5. José Daniel A. Santos, César Lincoln C. Mattos and Guilherme A. Barreto, Performance

Evaluation of Least Squares SVR in Robust Dynamical System Identification. In

Lecture Notes in Computer Science: International Work Conference on Artificial Neural

Networks - IWANN 2015, I. Rojas, G. Joya and A. Catala Eds., vol. 9095, 422-435, 2015.

Furthermore, the following published articles were produced during the thesis period

as result of research collaborations:

1. César Lincoln C. Mattos, José Daniel A. Santos and Guilherme A. Barreto, An Empirical

Evaluation of Robust Gaussian Process Models for System Identification. In Lecture

Notes in Computer Science: Intelligent Data Engineering and Automated Learning -

IDEAL 2015, K. Jackowski, R. Burduk, K. Walkowiak, M. Wozniak and H. Yin Eds., vol.

9375, 172-180, 2015.

2. José Daniel A. Santos and Guilherme A. Barreto, Uma Nova Solução Recursiva para LS-

SVR em Identificação Robusta de Sistemas Dinâmicos. In: XII Simpósio Brasileiro de

Automação Inteligente (SBAI 2015), Natal (Brazil), 25-28 October 2015, p. 642-647.

3. César Lincoln C. Mattos, José Daniel A. Santos and Guilherme A. Barreto, Uma Avali-

ação Empírica de Modelos de Processos Gaussianos para Identificação Robusta de

Sistemas Dinâmicos. In: XII Simpósio Brasileiro de Automação Inteligente (SBAI 2015),

Natal (Brazil), 25-28 October 2015, p. 712-717.

4. José Daniel A. Santos, César Lincoln C. Mattos and Guilherme A. Barreto, A Novel Re-

cursive Kernel-Based Algorithm for Robust Pattern Classification. In Lecture Notes

in Computer Science: Intelligent Data Engineering and Automated Learning - IDEAL

2014, E. Corchado, J. A. Lozano, H. Quintián and H. Yin Eds., vol. 8669, 150-157, 2014.

5. César Lincoln C. Mattos, José Daniel A. Santos and Guilherme A. Barreto, Improved

Adaline Networks for Robust Pattern Classification. In Lecture Notes in Computer Sci-

ence: International Conference on Artificial Neural Networks - ICANN 2014, S. Wermter,

C. Weber, W. Duch, T. Honkela, P. Koprinkova-Hristova and S. Magg Eds., vol. 8681,
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579-586, 2014.

6. Davi N. Coelho, Guilherme A. Barreto, Cláudio M. S. Medeiros and José Daniel A. Santos,

Performance Comparison of Classifiers in the Detection of Short Circuit Incipient

Fault in a Three-Phase Induction Motor. In: IEEE Symposium on Computational

Intelligence for Engineering Solutions (IEEE-CIES 2014), Orlando (EUA), 9-12 December

2014, vol. 01, p. 42-48.

7. César Lincoln C. Mattos, José Daniel A. Santos and Guilherme A. Barreto, Classificação

de Padrões Robusta com Redes Adaline Modificadas. In: Encontro Nacional de In-

teligência Artificial e Computacional (ENIAC 2014), São Carlos (Brazil), 19-23 October

2014.

8. Edmilson Q. Santos Filho, José Daniel A. Santos and Guilherme A. Barreto, Estudo

Comparativo de Métodos de Extração de Características para Classificação da Qual-

idade de Peles de Caprinos com Opção de Rejeição. In: XI Simpósio Brasileiro de

Automação Inteligente (SBAI 2013), Fortaleza (Brazil), 13-17 October 2013, p. 01-06.

1.4 Thesis Structure

The remainder of this thesis is organized as follows.

Chapter 2 presents a brief framework of the kernel-based methods, more specifically,

the support vector theory applied to nonlinear regression problems. Besides containing the

basic ideas of the SVR model, it discusses in more detail the theoretical development of the

LSSVR model in its standard dual formulation and in the primal space, which is referred to as the

FS-LSSVR model. Finally, a comparative framework, with the main features of each evaluated

kernel-based model: SVR, LSSVR and FS-LSSVR, is presented.

Chapter 3 is dedicated to outlier robustness. It discusses the theoretical foundation of

M-estimators, which are presented as an alternative to least squares methods for linear regression

problems. Next, some strategies in splice M-estimators to standard LSSVR formulation, giving

rise its robust versions W-LSSVR and IR-LSSVR models, are discussed. Moreover, a compu-

tational experiment of outliers influence using the above LSSVR derived models is presented.

Finally, a brief state-of-the-art about some robust LSSVR approaches is described.

Chapter 4 briefly covers an overview of kernel adaptive filtering models, which are

implementations of linear adaptive filters in feature space. Initially, a basic notion of linear

adaptive filters, focusing on classical LMS and RLS algorithms, is presented. Then, their
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respective kernelized versions KLMS and KRLS are discussed in the sequence. Afterwards,

a description of the family of kernel affine projection algorithms (KAPA) and some other

sparsification criteria, different from ALD of the KRLS model, are presented.

Chapter 5 introduces the first part of the proposed approaches of this thesis, namely

the RLM-SVR, RFS-LSSVR and R2FS-LSSVR models, which correspond to robust kernel-based

methods derived from the LS-SVR and FS-LSSVR standard models and based on M-estimators.

This chapter also reports the performance results of the novel proposals in several system

identification tasks using synthetic, real-world, large-scale and MIMO datasets in the presence

of outliers.

Chapter 6 presents the second part of the contributions of this thesis, which comprises

two novel kernel adaptive filtering methods derived from the original KRLS model. The first

proposal is called ROB-KRLS and corresponds to a robust version of the KRLS model based

on M-estimators. The second one, called the OS-LSSVR model, is based on the standard

LSSVR formulation and is solved according to the KRLS learning procedure. This chapters also

encompasses the results of computational experiments with the proposed approaches in several

regression/system identification tasks using synthetic, real-world and large-scale datasets.

Chapter 7 is dedicated to the conclusions of this work as well to the directions for

future research on issues related to the thesis.

Appendix A provides a step-by-step mathematical formulation for the ROB-KRLS

proposed approach.

Appendix B provides a step-by-step mathematical formulation for the OS-LSSVR

proposed approach.

Appendix C presents a study of the generalization error bound applicable to the

proposed OS-LSSVR model.
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2 SUPPORT VECTOR REGRESSION MODELS

“Things don’t have to change the world to be important.”

(Steve Jobs)

This chapter covers the kernel-based models theory, with an emphasis on support

vector machines, when applied in nonlinear regression problems. Initially, Section 2.1 makes

some considerations on the topics that are treated throughout the chapter. Then, Section 2.2 briefly

discusses the basic ideas of Support Vector Regression (SVR), which was the pioneer among the

kernel-based methods. Next, the theoretical foundations of the Least Squares Support Vector

Regression (LSSVR) (Section 2.3) and Fixed Size Least Squares Support Vector Regression (FS-

LSSVR) (Section 2.4) models are developed in detail, since they directly provide the backgrounds

for some contributions of this thesis. Finally, Section 2.5 presents the final remarks of the chapter.

2.1 Introduction

The Support Vector Machines (SVM) framework comprises a powerful class of

learning algorithms, derived from the results of the statistical learning theory (VAPNIK, 1995).

Its development was first presented as a nonlinear generalization of the Generalized Portrait

algorithm (VAPNIK, 1963; VAPNIK; CHERVONENKIS, 1964) to solve pattern recognition

problems (VAPNIK; CHERVONENKIS, 1974; BOSER et al., 1992). Later, it was extended

by Smola and Vapnik (1997) to the domain of regression problems, which will be referred to

as Support Vector Regression (SVR) from now on.

The SVR model works with a constrained quadratic optimization problem, which

minimizes a combination of the empirical risk (employed by the conventional neural networks,

e.g.) and a regularization term responsible for the smoothness of the model solution. This

solution is obtained by solving a convex quadratic programming (QP) problem in dual space

and, thus, has the noteworthy advantage of being a global and sparse solution. By sparseness,

one means that the final regressor can be written as a combination of a relatively small number of

training patterns, called the support vectors (SVs). Therefore, the SVR intrinsic characteristics,

resulting from its strong conceptual formulation, have made it achieve satisfactory performance

in a wide variety of regression problems (BAO et al., 2014; KARTHIK et al., 2016; KAZEM et

al., 2013; CHEN; YU, 2014).

In spite of success in regression applications, the SVR model solutions have been
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empirically shown to be not maximally sparse (BURGES; SCHÖLKOPF, 1997; DOWNS et

al., 2001). In addition, an SVR optimization problem involves twice as many variables as the

number of training samples and, moreover, the methods to solve the QP problem do not have

a trivial implementation. In general, these methods present a super-linear dependence on the

computation time of the number of available patterns and require repeated access to the training

samples, making them suitable only for batch learning (ENGEL et al., 2002).

In this context, the Least Squares Support Vector Regression (LSSVR) model (SAUN-

DERS et al., 1998; SUYKENS et al., 2002b) was proposed as a simpler alternative method to

the standard Vapnik’s SVR model, since learning in LSSVR relies on an SSE cost function and a

set of equality constraints, instead of the original QP problem in SVR. Consequently, the model

solution in LSSVR problem is easier to obtain by solving a set of linear equations in its dual

formulation. In addition, the LSSVR model inherits from the SVR technique the convexity of

the optimization problem and the global solution. On the other hand, the sparsity common to the

SVR model is lost in the LSSVR problem, since every training sample contributes to the model

solution as an SV.

At present, the LSSVR model has been widely applied to regression tasks, such as

time series forecasting (ORMÁNDI, 2008; GESTEL et al., 2001; MELLIT et al., 2013; CHEN;

LEE, 2015), control (SUYKENS et al., 2001; KHALIL; EL-BARDINI, 2011; ZHANG et al.,

2014) and dynamical system identification (FALCK et al., 2012; LAURAIN et al., 2015; CAI et

al., 2013).

A key property behind the SVR and LSSVR models is that they apply kernel

functions, which only require the evaluation of inner products between pairs of pattern inputs.

Replacing inner products with a Mercer kernel provides an efficient way to implicitly map the

data into a high, even infinite, dimensional RKHS (SCHÖLKOPF; SMOLA, 2002) by means of

a nonlinear feature map φφφ . Then, the calculations are carried out without making direct reference

to the mapping of the input vectors, a property referred to as the kernel trick.

Although the LSSVR model is mostly solved in the dual formulation through the

kernel trick, its optimization problem can also be solved in the primal space by estimating the

feature map φφφ . This attempt was introduced by Suykens et al. (2002b), resulting in a parametric

and sparse representation called the Fixed-Size Least Squares Support Vector Regression (FS-

LSSVR) model. In this method, an explicit expression of φφφ or an approximation to it is required,

which can be found using the Nyström approximation (WILLIAMS; SEEGER, 2001).
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In the FS-LSSVR model, it is possible to compute sparse and approximated model

solution by using only a subset of selected support vectors, also called prototype vectors (PVs),

from the entire training data. One distinct advantage of this approach is that it can easily handle

nonlinear estimation problems that require large amounts of data. Successful applications of

the FS-LSSVR model can be found in De-Brabanter et al. (2009a), Espinoza et al. (2006),

De-Brabanter et al. (2010) and Castro et al. (2014).

Finally, one should consider that the LSSVR and FS-LSSVR models serve as basis

for some contributions of this thesis. Therefore, they are treated in detail throughout this chapter.

On the other hand, the SVR theory is presented as a brief discussion, because of its importance

in the development of the area of support vector methods and also for a better understanding in

developing the LSSVR and FS-LSSVR models.

2.2 Support Vector Regression - A Brief Discussion

This section presents a brief discussion on linear and nonlinear SVR model, in which

the origins of the derivation of the LSSVR formulation will be highlighted. Further details on

SVR theory can also be found in Smola and Schölkopf (2004), Basak et al. (2007), Schölkopf

and Smola (2002), Bishop (2006), Cherkassky and Mulier (2007) and Vapnik et al. (1996).

2.2.1 SVR for Linear Regression

Consider an estimation/training dataset D = {(xxx1,y1), . . . ,(xxxN ,yN)} formed by N

pairs of inputs xxxn ∈ Rd and corresponding outputs yn ∈ R, for n = 1, . . . ,N. In a regression

problem, the goal is to search for a function f (·) that approximates the outputs yn for all instances

of the available data. Initially, for the linear case, f (·) usually takes the form

f (xxxn) = www>xxxnnn +b, (2.1)

where www ∈ Rd is a parameter vector and b ∈ R is a bias term. In order to seek flatness in Eq.

(2.1), minimizing the Euclidean norm ‖ · ‖2, or simply ‖ · ‖, of www is required (SMOLA, 1998;

SCHÖLKOPF; SMOLA, 2002). Then, the optimal parameters of the linear function f (·) are

searched by minimization of the following constrained functional:

min
www,b

Jp(www) =
1
2
‖www‖2, (2.2)
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subject to

 yn−www>xxxn−b≤ ε, for n = 1, . . . ,N,

www>xxxn +b− yn ≤ ε, for n = 1, . . . ,N.
(2.3)

The convex optimization problem in Eq. (2.2) with the inequality constraints in Eq. (2.3) is

feasible in cases where the function f (·) exists and has, at most, ε deviation from all the training

outputs yn and, at the same time, is as smooth as possible. However, sometimes errors are

allowed in introducing slack variables, which describe the penalty for the training patterns lying

outside the ε boundary. Therefore, the formulation in Eqs. (2.2), (2.3) becomes

min
www,b,ξξξ ,ξξξ ∗

Jp(www,ξξξ ,ξξξ
∗
) =

1
2
‖www‖2 + γ

N

∑
n=1

(ξn +ξ
∗
n ), (2.4)

subject to


yn−www>xxxn−b≤ ε +ξn,

www>xxxn +b− yn ≤ ε +ξ ∗n ,

ξn,ξ
∗
n ≥ 0,

(2.5)

for n = 1, . . . ,N. The values of ξn and ξ ∗n are slack variables corresponding to the points for

which f (xxxn)− yn > ε (points above the curve) and yn− f (xxxn) > ε (points below the curve),

respectively. The constant γ > 0 is a regularization parameter that establishes a trade-off

between the smoothness of f (·) and the amount up to which deviations larger than ε are

tolerated. This corresponds to dealing with a so called ε-insensitive loss function, or Vapnik loss

function (VAPNIK, 1995), described by

|ξ |ε :=

 0, if |ξ |< ε

|ξ |− ε, otherwise,
(2.6)

and illustrated on the right side of Fig. (4). One should note that only the points outside the

ε-insensitive zone contribute to the cost function, as can be seen in the blue point close to the

symbol ξ , on the left size of Fig. (4) .

The parametric formulation in Eq. (2.4) with the inequality constraints in Eq. (2.5) is

an optimization problem in the primal weight space, also referred to as a the primal problem, since

it is defined in the original space Rd of the input data xxxn and the parameter vector www. The solution

of this primal problem can be achieved by constructing a Lagrange function (FLETCHER, 2013)
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Figure 4 – Illustration of the SVR regression curve with the ε-insensitive zone and the slack
variables (left); Vapnik ε-insensitive loss function (right).

from Eqs. (2.4) and (2.5), as follows:

L (www,b,ξξξ ,ξξξ ∗;ααα,ααα∗,ζζζ ,ζζζ ∗) :=
1
2
‖www‖2 + γ

N

∑
n=1

(ξn +ξ
∗
n )−

N

∑
n=1

αn(www>xxxn +b− yn + ε +ξn)

−
N

∑
n=1

α
∗
n (yn−www>xxxn−b+ ε +ξ

∗
n )−

N

∑
n=1

(ζnξn +ζ
∗
n ξ
∗
n ), (2.7)

where αn≥ 0,α∗n ≥ 0,ζn≥ 0,ζ ∗n ≥ 0 are the Lagrange multipliers and L denotes the Lagrangian,

whose saddle point is characterized by

max
(ααα,ααα∗,ζζζ ,ζζζ ∗≥0)

min
(www,b,ξξξ ,ξξξ ∗)

L (www,b,ξξξ ,ξξξ ∗;ααα,ααα∗,ζζζ ,ζζζ ∗), (2.8)

where the gradients related to the primal variables are set to zero, according to Karush-Kuhn-

Tucker (KKT) conditions for optimality (KARUSH, 1939; KUHN; TUCKER, 1951), such as:

∂L
∂www = 000⇒ www = ∑

N
n=1(αn−α∗n )xxxn,

∂L
∂b = 0⇒ ∑

N
n=1(αn−α∗n ) = 0,

∂L
∂ξn

= 0⇒ γ−αn−ζn = 0,

∂L
∂ξ ∗n

= 0⇒ γ−α∗n −ζ ∗n = 0.

(2.9)
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Using the results of Eqs. (2.9) to eliminate the corresponding variables from the

Lagrangian, a new optimization problem can be formulated by the maximization of

max
ααα,ααα∗

Jd(ααα,ααα∗) =−1
2

N

∑
n=1

N

∑
m=1

(αn−α
∗
n )(αm−α

∗
m)xxx
>
n xxxm− ε

N

∑
n=1

(αn +α
∗
n )+

N

∑
n=1

(αn−α
∗
n )yn,

(2.10)

subject to


∑

N
n=1(αn−α∗n ) = 0,

0≤ αn ≤ γ,

0≤ α∗n ≤ γ,

(2.11)

for n = 1, . . . ,N. The problem in Eqs. (2.10) and (2.11) corresponds to the formulation of a

quadratic programming (QP) problem in the dual weight space, and can also be referred to as

the dual problem. The term “dual" is used because now the problem is solved in the space of 2N

dual variables αn and α∗n , instead of www in the primal space. Using Eq. (2.1) and the expression

for www in Eq. (2.9), the SVR model solution is given by

f (xxx∗) =
N

∑
n=1

(αn−α
∗
n )xxx
>
n xxx∗+b. (2.12)

An important property of the QP problem in Eqs. (2.10), (2.11) is that many resulting

values of αn,α
∗
n are equal to zero. Hence, the obtained solution is sparse, i.e. the sum in Eq.

(2.12) should be taken only over non-zero values of (αn−α∗n ), instead of all training patterns.

The input examples xxxn, for which the corresponding Lagrange multipliers are not null, are

the support vectors. In addition, note that, unlike the primal space solution in Eq. (2.1), the

expressions in Eqs. (2.10)-(2.12) are independent of the parameter vector www. Therefore, one

should say that the SVR dual problem corresponds to a non-parametric model, although its

original formulation in Eqs. (2.4) and (2.5) corresponds to a parametric model.

2.2.2 SVR for Nonlinear Regression

The majority of regression problems in machine learning are essentially nonlinear.

Therefore, the linear formulation of the SVR model in Section 2.2.1 should be extended to the

nonlinear case. Then, given the estimation dataset D = {xxxn,yn}N
n=1, with xxxn ∈ Rd and yn ∈ R,

the function f (·) in Eq. (2.1) now takes the form

f (xxxn) = www>φφφ(xxxnnn)+b, (2.13)
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where www ∈ Rdh , b ∈ R and φφφ(·) : Rd → Rdh is a nonlinear map into a higher dimensional feature

space (whose dimensionality dh might be infinite), where the problem is linearly solvable. Then,

the nonlinear version of the SVR optimization problem in the primal space (Eqs. (2.4) and (2.5))

is given by

min
www,b,ξξξ ,ξξξ ∗

Jp(www,ξξξ ,ξξξ
∗
) =

1
2
‖www‖2 + γ

N

∑
n=1

(ξn +ξ
∗
n ), (2.14)

subject to


yn−www>φφφ(xxxn)−b≤ ε +ξn

www>φφφ(xxxn)+b− yn ≤ ε +ξ ∗n

ξn,ξ
∗
n ≥ 0, for n = 1, . . . ,N,

(2.15)

where the only difference between it and the previous linear formulation is the replacement of xxxn

by φφφ(xxxn) into the constraints of Eq. (2.15). Again, one can apply the Lagrangian in Eqs. (2.14)

and (2.15) to obtain the formulation of the dual (and QP) problem, as

max
ααα,ααα∗

Jd(ααα,ααα∗) =−1
2

N

∑
n=1

N

∑
m=1

(αn−α
∗
n )(αm−α

∗
m)k(xxxn,xxxm)− ε

N

∑
n=1

(αn +α
∗
n )+

N

∑
n=1

(αn−α
∗
n )yn,

(2.16)

subject to


∑

N
n=1(αn−α∗n ) = 0

0≤ αn ≤ γ

0≤ α∗n ≤ γ, for n = 1, . . . ,N,

(2.17)

where k(·, ·) is known as a kernel function, which is used to replace the inner product φφφ(·)>φφφ(·)

in the nonlinear versions of the optimality conditions in Eq. (2.9), without the need of explicitly

computing the mapping φφφ . The equality k(xxxn,xxxm) = φφφ(xxxn)
>φφφ(xxxm) for n,m = 1, . . . ,N, is an

appealing property of the kernel methods, referred to as kernel trick. This result is derived from

Mercer’s conditions (MERCER, 1909), given in the following theorem:

Theorem 2.1 (MERCER, 1909) Let the functions k(·) ∈ L2(C ) and g(·) ∈ L2(C ), where L2 is a

space of square integrable functions, C is a compact subset of Rd , and k(xxx,xxx′) describes an inner

product in some feature space and let the vectors xxx,xxx′ ∈ Rd . To guarantee that a continuous

symmetric function k(·, ·) has an expansion

k(xxx,xxx′) =
∞

∑
i=1

ciϕi(xxx)ϕi(xxx′)
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Table 1 – Examples of kernel functions.

Description

kernel Function Hiperparameters

Linear k(xxx,,,xxx′) = xxx>xxx′ -
Polynomial k(xxx,,,xxx′) = (xxx>xxx′+ τ)p p (degree) and τ .

Gaussian k(xxx,,,xxx′) = exp{−‖xxx−xxx′‖2
2

2σ2 } σ (bandwidth).
Sigmoid k(xxx,,,xxx′) = tanh{κ1xxx>xxx′+κ2} κ1, κ2.

with coefficients ci > 0, it is necessary and sufficient that the condition∫∫
C

k(xxx,xxx′)g(xxx)g(xxx′)dxxxdxxx′ ≥ 0

is valid for any square integrable function g(·).

Then, using the Mercer’s condition one can write k(xxx,xxx′) = ∑
n f
i=1
√

ciϕi(xxx)
√

ciϕi(xxx′), where

n f ∈ N or n f →+∞, and define φi(xxx) =
√

ciϕi(xxx) and φi(xxx′) =
√

ciϕi(xxx′), such that the kernel

function can be expressed as the inner product

k(xxx,xxx′) = φφφ(xxx)>φφφ(xxx′)⇒ kernel trick. (2.18)

Hence, if k(·, ·) is positive semidefinite, then the equality in Eq. (2.18) holds. Several functions

can be used as suitable kernel functions, among which some common choices are summarized in

Table 1.

For the kernel functions in Table 1, Mercer’s condition holds for all values of σ > 0

in Gaussian kernel and for τ ≥ 0 in polynomial cases, but not for all the possible choices of

κ1,κ2 in the sigmoid kernel (SUYKENS et al., 2002b). A further discussion about the kernel

functions can be found in Schölkopf and Smola (2002) and Burges (1998).

Finally, the predicted output of the nonlinear SVR model, for a novel incoming

vector xxx∗, is given by

f (xxx∗) =
N

∑
n=1

(αn−α
∗
n )k(xxxn,xxx∗)+b, (2.19)

where αn,α
∗
n are the solution of the QP problem in Eqs. (2.16) and (2.17), and b follows from

the complementary KKT conditions. As in the linear case, many values of αn,α
∗
n are null and,

therefore, the model solution is sparse and can be expressed only in terms of its SVs. Again, the

dual problem results in a nonparametric model, which does not depend on the dimensionality

d of the input data, but only on the number N of training samples. Then, the computational
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complexity of the SVR model is O(N3) and its memory demand is O(N2), because although its

solution is sparse, its algorithm starts by considering all training samples as potential SVs.

The next section discusses another important kernel-based method, the LSSVR

model, derived from the original SVR formulation through some modifications in its primal

optimization problem in Eqs. (2.14) and (2.15).

2.3 Least Squares Support Vector Regression

Despite being a powerful kernel method successfully applied to non-linear regression

problems, SVR works with a QP problem, which is complex and time-consuming, demanding

high computational resources for its implementation. In this context, the Least Squares SVR

(LSSVR) model, which was introduced by Suykens et al. (2002b) and is closely related to kernel

ridge regression (SAUNDERS et al., 1998), was proposed as an alternative kernel method to the

original Vapnik’s SVR model in order to simplify its formulation, while attempting to keep its

main advantages. Therefore, this section explores the development of the theoretical foundation

of the LSSVR model.

2.3.1 Estimation in the Dual Space

Consider again the nonlinear regression model, described in Eq. (2.13) and inserted

here for a better understanding, such as

f (xxxn) = www>φφφ(xxxnnn)+b, (2.20)

where www ∈ Rdh , b ∈ R, xxxn ∈ Rd , yn ∈ R, for n = 1, . . . ,N. φφφ(·) : Rd → Rdh is the mapping to the

high dimensional feature space, as previously defined in Section 2.2.2 for the SVR model.

Basically, there are two modifications that convert the SVR primal problem into

the LSSVR formulation. First, instead of using the ε-insensitive loss function in Eq. (2.6), one

may choose to use an SSE cost function. The second modification is replacing the inequality

constraints in Eq. (2.15) by equality constraints. Thereby, the primal optimization problem in

LSSVR model leads to minimize the following functional:

min
www,b,eee

Jp(www,eee) =
1
2
‖www‖2 + γ

1
2

N

∑
n=1

e2
n, (2.21)

subject to
{

yn = www>φφφ(xxxn)+b+ en, for n = 1, . . . ,N, (2.22)
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where en = yn− f (xxxn) is the error due to the n-th input pattern, which plays a similar role as

the slack variables ξn in the SVR formulation. γ > 0 is again a regularization parameter, whose

tuning involves finding a trade-off between the minimization of training errors and smoothness

of the estimation function. The problem in Eq. (2.21) with the equality constraints in Eq. (2.22)

was treated in the kernel ridge regression by Saunders et al. (1998), but without using a bias

term.

Regarding the case of nonlinear regression, one cannot exactly solve the primal

problem in Eqs. (2.21) and (2.22), since the dimension dh of www and φφφ is unknown (it might

even become infinite). However, it is possible to derive the dual problem by constructing the

Lagrangian, which is given by

L (www,b,eee,ααα) :=
1
2
‖www‖2 + γ

1
2

N

∑
n=1

e2
n−

N

∑
n=1

αn(www>φφφ(xxxn)+b+ en− yn), (2.23)

where, different from the SVR model, the Lagrange multipliers in Eq. (2.23) may assume positive

or negative values because of the equality constraints in Eq. (2.22). The next step to obtain

the solution of Eq. (2.23) is setting the gradients of the primal variables to zero, according to

Karush-Kuhn-Tucker (KKT) (FLETCHER, 2013) conditions for optimality, leading to

∂L
∂www = 000⇒ www = ∑

N
n=1 αnφφφ(xxxn),

∂L
∂b = 0⇒ ∑

N
n=1 αn = 0,

∂L
∂en

= 0⇒ αn = γen,

∂L
∂αn

= 0⇒ www>φφφ(xxxn)+b+ en− yn = 0,

(2.24)

for n = 1, . . . ,N.

In order to eliminate www and en from the optimization problem, it is possible to use

the first and third expressions in Eq. (2.24) to rewrite the last one as

N

∑
n=1

αnφφφ(xxxn)
>

φφφ(xxxn)+b+
1
γ

αn = yn. (2.25)

Moreover, the second equality in Eq. (2.24) and Eq. (2.25) can be arranged in corresponding

matrix forms, respectively, such as

111>N ααα = 0, (2.26)
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and

b111N +(KKK + γ
−1IIIN)ααα = yyy, (2.27)

where 1N ∈ RN is a vector of ones, IIIN ∈ RN×N is an identity matrix, ααα = [α1, . . . ,αN ]
>, yyy =

[y1, . . . ,yN ]
> and KKK ∈RN×N is a symmetric and positive semidefinite (or positive definite) matrix,

called kernel matrix (or Gram matrix), whose entries are

Ki, j := k(xxxi,xxx j) = φφφ(xxxi)
>

φφφ(xxx j), for i, j = 1, . . . ,N, (2.28)

where k(·, ·) is the chosen kernel function. The last equality in Eq. (2.28) is derived from the

kernel trick in Eq. (2.18).

Therefore, one can write Eqs. (2.26) and (2.27) as a system of N+1 linear equations

given by 0 111>N

111N KKK + γ−1IIIN


︸ ︷︷ ︸

ΩΩΩ

b

ααα


︸︷︷ ︸

αααo

=

0

yyy


︸︷︷︸

yyyo

, (2.29)

where the lagrange multipliers αn and the bias b are the unknown variables. The solution of the

linear system in Eq. (2.29) corresponds to the LSSVR model solution.

Alternatively, the linear system in Eq. (2.29) can be written as ΩΩΩαααo = yyyo, with

ΩΩΩ ∈ R(N+1)×(N+1),αααo ∈ RN+1 and yyyo ∈ RN+1, and can simply be solved by least squares

method, in its batch mode, as

αααo = ΩΩΩ
†yyyo, (2.30)

where ΩΩΩ
† = (ΩΩΩ>ΩΩΩ)−1ΩΩΩ

> is the Moore-Penrose inverse of the matrix ΩΩΩ (GOLUB; VAN LOAN,

2013). Then, the computational complexity in solving Eq. (2.30) is O(N3), and its memory

demand is O(N2).

Different methods can be used to calculate the Moore-Penrose generalized inverse

of a matrix, namely orthogonal projection, orthogonalization and singular value decomposition

(SVD) methods (HUANG, 2014). However, for large-scale datasets, the use of iterative methods

is recommended, such as successive over-relaxation (SOR), conjugate gradient (CG) and gener-

alized minimal residual (GMRES) (SUYKENS et al., 2002b). In this work, the SVD approach is

adopted.

Finally, the LSSVR model solution is expressed by

f (xxx) =
N

∑
n=1

αnk(xxx,xxxn)+b. (2.31)
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As in the SVR case, the dual problem in Eq. (2.29) has a global solution. In addition, it is

easier to compute, compared to the QP problem in SVR. However, a drawback of the LSSVR

simplified formulation is the lack of sparsity, which is immediately clear from the third condition

for optimality in Eq. (2.24), αn = γen, for n = 1, . . . ,N. Therefore, in the LSSVR model every

input sample is an SV since, normally, no αn will be exactly equal to zero. The LSSVR model is

summarized in the form of a pseudo-code in Algorithm 1.

Algorithm 1: - Pseudo-code for the LSSVR model.
Require: Set γ and the kernel hiperparameters (σ for the Gaussian kernel, for example)

From the estimation dataset D = {xxxn,yn}N
n=1:

Compute the kernel matrix KKK;
Build the linear system of Eq. (2.29);
Compute ααα and b from Eq. (2.30); % LSSVR solution

Next, an LSSVR derived approach will be considered - the so called FS-LSSVR

model - which, instead of solving the dual optimization problem in Eq. (2.29), searches for an

approximate solution of the primal problem in Eqs. (2.21) and (2.22).

2.4 Fixed Size Least Squares Support Vector Regression

As previously presented in Section 2.3, the standard LSSVR comprises a dual

optimization problem with a nonparametric model, resulting in a non sparse solution. However,

in some applications, especially for big data analysis, it is often advantageous to work in the

primal space solving the optimization problem in Eqs. (2.21) and (2.22), where the dimension

dh of the parameter vector www may be smaller compared to the dimension N of the vector ααα of

Lagrange multipliers.

Therefore, this section discusses a framework developed by Suykens et al. (2002b)

to solve the LSSVR problem in primal space. This approach is called Fixed Size LSSVR

(FS-LSSVR) model, which is of considerable relevance to this work.

2.4.1 Estimation in Primal Weight Space

A challenge that appears in solving nonlinear problems in primal space is that the

feature map φφφ may be not explicitly known. For instance, this is the case for the Gaussian

kernel, where the dimension dh of φφφ is infinite (VAPNIK, 1998). The ability to work in primal
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space requires either an explicit expression for φφφ (e.g. linear kernel) or an approximation to the

feature map φ̂φφ(·) : Rd → RM, based on a sampled set of M� N instances, the prototype vectors

(PVs), from the whole training dataset. This feature approximation is obtained by the Nyström

method (BAKER, 1977; WILLIAMS; SEEGER, 2001), as seen below.

2.4.1.1 Approximation to the Feature Map

Recalling the LSSVR primal problem in Eq. (2.21), it is possible to rewrite it as

min
www,b

Jp(www,b) =
1
2
‖www‖2 + γ

1
2

N

∑
n=1

(yn−www>φφφ(xxxn)−b)2, (2.32)

where the error variables were replaced by yn−www>φφφ(xxxn)−b = en, according to the constrains in

Eq. (2.22). As previously mentioned, it is necessary to find a finite approximation φ̂φφ(·) :Rd→RM

(in general, M� N) of φφφ to solve the primal optimization problem in Eq. (2.32).

Thus, let the input vector xxx be a random sample from an unknown probability

density p(xxx). Moreover, consider the following eigenfunction expansion of a kernel func-

tion (WILLIAMS; SEEGER, 2001):

k(xxx,xxx′) =
N f

∑
i=1

λ
′
i ϕi(xxx)ϕi(xxx′), (2.33)

where N f ≤ ∞, λ ′1 ≥ . . . ≥ λ ′N f
≥ 0 and ϕ1, . . . ,ϕN f denote, respectively, the eigenvalues and

eigenfunctions of the operator whose kernel function is k(·, ·), which is in agreement with the

Fredholm integral equation of the first kind∫
k(xxx,xxx′)ϕi(xxx)p(xxx)dxxx = λ

′
i ϕi(xxx′). (2.34)

The integral in Eq. (2.34) can be discretized on a finite and i.i.d. set of pattern inputs {xxxn}N
n=1,

where it is possible to rewrite it by replacing the integral over p(xxx) with an empirical average,

such as

1
N

N

∑
n=1

k(xxxn,xxx′)uuui(xxxn) = λ
s
i ui(xxx′), for i = 1, . . . ,N, (2.35)

where the eigenvalues λ ′i and eigenfunctions ϕi from the continuous problem can be approximated

by the sample eigenvalues λ s
i and eigenvectors uuui as (WILLIAMS; SEEGER, 2001)

ϕ̂i(xxx′)≈
√

Nuuui and λ̂
′
i ≈

1
N

λ
s
i , for i = 1, . . . ,N. (2.36)
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Furthermore, the matrix eigenproblem associated to the expression in Eq. (2.35) can be denoted

by

KKKUUU =UUUΛΛΛ, (2.37)

where KKK ∈ RN×N is the kernel matrix, UUU = [uuu1, . . . ,uuuN ] ∈ RN×N is a matrix of the eigenvectors

of KKK and ΛΛΛ = diag{λ s
n}N

n=1 ∈ RN×N is a diagonal matrix formed by the respective nonnegative

eigenvalues arranged in a decreasing order. Then, substituting the expressions of Eq. (2.36) into

Eq. (2.35), one obtains the Nyström approximation to the i-th eigenfunction (BAKER, 1977)

ϕ̂i(xxx′)≈
√

N
λ s

i

N

∑
n=1

(ui)nk(xxxn,xxx′), (2.38)

where (ui)n is the n-th element of the i-th eigenvector in Eq. (2.37). Thus, based on Nyström

approximation, one can write an expression for the i-th entry of the approximated finite feature

map φ̂φφ : Rd → RN as (DE-BRABANTER et al., 2010; SUYKENS et al., 2002b)

φ̂i(xxx′) =
√

λ̂ ′i ϕ̂i(xxx′) =
1√
λ s

i

N

∑
n=1

(ui)nk(xxxn,xxx′), for i = 1, . . . ,N. (2.39)

2.4.1.2 Imposing Sparseness and Subset Selection

Note that the approximation in Eq. (2.39) is carried out over all the N available input

samples. However, this can be a problem if one deals with a large-scale dataset, since the memory

demand and the computational complexity can become too large. Then, it is advantageous to

use only a subsample of M� N instances to compute the approximation φ̂φφ : Rd → RM for the

feature map, such as

φ̂i(xxx′) =
1√
λ̄i

M

∑
m=1

(ūi)mk(zzzm,xxx′), for i = 1, . . . ,M, (2.40)

where λ̄i and ūuui are, respectively, the eigenvalues and the eigenvectors of the reduced kernel

matrix K̄KK ∈ RM×M, with K̄i j = k(zzziii,zzz jjj). The vectors zzzi and zzz j belong to a subset of M training

instances, the PVs, randomly selected. One should note that in this methodology it is not

necessary to calculate the full kernel matrix KKK with all the training samples.

In order to perform a more suitable selection of the M prototype vectors instead of a

random selection, one can adopt an entropy based selection method, as proposed by Suykens et

al. (2002b). In this method, the quadratic Rényi’s entropy HR is used as (GIROLAMI, 2002)

HR =− log
∫

p(xxx)2dxxx, (2.41)
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which can be approximated by∫
p̂(xxx)2dxxx =

1
M2 111>MK̄KK111M, (2.42)

where 1M = [1, . . . ,1]>.

In general, the procedure to select the PVs begins with randomly choosing a fixed

size working set D pv = {xxxm}M
m=1 from the training data, and another set D1 with the N−M

remaining training samples. The next step is to randomly select a pattern xxxm from D pv and

replace it by a randomly selected pattern xxx∗ from D1. If the entropy increases by taking the

pattern xxx∗ instead of xxxm, then xxx∗ is accepted in D pv. Otherwise, it is rejected (and returns to D1)

and xxxm stays in the working set. This procedure continues until the change in entropy value is

very small or the maximum number of iterations Niter is achieved.

It is important to highlight that higher the entropy found in the selected subset

of the PVs, better it will represent the whole training dataset. Simply stated, the optimality

of this subset selection is related to the final accuracy that can be obtained by the model

predictions (ESPINOZA et al., 2004).

2.4.1.3 The FS-LSSVR Solution

As long as the PVs subset is properly selected and given the finite approximation

φ̂φφ of the feature map, the FS-LSSVR model solution is obtained by minimizing the following

functional in the primal space:

Jp(ŵww, b̂) =
1
2

ŵww>ŵww+ γ
1
2

N

∑
n=1

(yn− ŵww>φ̂φφ(xxxn)− b̂)2, (2.43)

where φ̂φφ(xxxn) = [φ̂1(xxxn), . . . , φ̂m(xxxn)]
> ∈ RM, ŵww ∈ RM and b̂ ∈ R are approximate solutions for www

and b, respectively.

In order to solve the primal problem in Eq. (2.43), it is necessary to compute the

gradient vectors, ∇ŵwwJp(ŵww, b̂) = ∂Jp(ŵww, b̂)/∂ ŵww and ∇b̂Jp(ŵww, b̂) = ∂Jp(ŵww, b̂)/∂ b̂, and set them to

zero. Then, one gets

∂Jp

∂ ŵww
= ŵww− γ

N

∑
n=1

[yn− (ŵww>φ̂φφ(xxxn)+ b̂)]φ̂φφ(xxxn) = 000M, (2.44)

and

∂Jp

∂ b̂
=−γ

N

∑
n=1

[yn− (ŵww>φ̂φφ(xxxn)+ b̂)] = 0, (2.45)
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where 000M ∈ RM is a vector of zeros. The expressions in Eqs. (2.44) and (2.45) can be arranged

in corresponding matrix forms, respectively, as

1
γ

ŵww+ Φ̂ΦΦ
>

Φ̂ΦΦŵww− Φ̂ΦΦ
>

yyy+ Φ̂ΦΦ
>

111N b̂ = 000M,

(
Φ̂ΦΦ
>

Φ̂ΦΦ+
1
γ

IIIM

)
ŵww+ Φ̂ΦΦ

>
111Nb = Φ̂ΦΦ

>
yyy, (2.46)

and

−111>N yyy+111>N Φ̂ΦΦŵww+111>N 111N b̂ = 0,

111>N Φ̂ΦΦŵww+111>N 111N b̂ = 111>N yyy, (2.47)

where Φ̂ΦΦ = [φ̂φφ(xxx1), . . . , φ̂φφ(xxxN)]
> ∈ RN×M is the approximated feature matrix for all the training

instances, which is given by

Φ̂ΦΦ =


φ̂1(xxx1) . . . φ̂M(xxx1)

... . . . ...

φ̂1(xxxN) . . . φ̂M(xxxN)

. (2.48)

Finally, the optimization problem in Eq. (2.43) can be solved by arranging Eqs. (2.46) and (2.47)

in the following linear system of M+1 equations:Φ̂ΦΦ
>

Φ̂ΦΦ+ 1
γ
IIIM Φ̂ΦΦ

>
111N

111>N Φ̂ΦΦ 111>N 111N

ŵww

b̂

=

Φ̂ΦΦ
>

yyy

111>N yyy

. (2.49)

Therefore, the corresponding FS-LSSVR model solution is given by

f̂ (xxx) = ŵww>φ̂φφ(xxx)+ b̂, (2.50)

where f̂ (·) is an approximate solution for f (·) of Eq. (2.20). The sparsity of the FS-LSSVR model

is previously ensured in the choice of the M prototype vectors. Consequently, its computational

complexity and memory demand are O(NM2) and O(NM) (DE-BRABANTER, 2011; MALL;

SUYKENS, 2013), respectively. The pseudo-code for the FS-LSSVR model is summarized in

Algorithm 2.
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Algorithm 2: - Pseudo-code for the FS-LSSVR model.
Require: M,γ,σ ,Niter;

Choose a working set D pv = {xxxm}M
m=1;

Select D1 with the N−M remaining training samples;
for i = niter : Niter, do

Compute HR of D pv from Eq. (2.42);
Randomly select xxxm from D pv;
Randomly select xxx∗ from D1;
Replace xxxm by xxx∗ in D pv;
Compute H∗R of D pv from Eq. (2.42);
if H∗R > HR, then

xxx∗ is accepted for D pv;
else

xxx∗ is rejected by D pv;
end if

end for
Compute Φ̂ΦΦ from Eq. (2.40) and Eq. (2.48);
Build the linear system of Eq.(2.49);
Compute ŵww and b̂ from Eq.(2.30); % FS-LSSVR solution

2.5 Concluding Remarks

This chapter has been an overview of support vector models, especially those used in

nonlinear regression tasks. Initially, a brief discussion about the SVR theory was presented, since

it was a pioneer among the kernel models and covers important aspects that make it a widely

used tool in solving regression problems. The SVR model is based on Vapnik’s ε-insensitive loss

function and solves a convex QP optimization problem, whose solution is a global minimum and

preserves sparseness. Moreover, the size of this QP problem does not depend on the dimension d

of the input space.

In addition, a framework of the LSSVR model was discussed, which is an alternative

kernel method to the standard SVR model, since it works with an SSE loss function instead the

ε-insensitive function of the SVR model. Also the inequality constraints of SVR are replaced by

equality constraints in the LSSVR formulation. Consequently, the global optimum in LSSVR

problem is easier to obtain by solving a set of linear equations. On the other hand, the sparsity

common to the SVR model is lost in the solution of the LSSVR problem.

Finally, the basis of the FS-LSSVR model was presented, which is derived from the

standard LSSVR formulation. However, instead of solving the dual optimization problem, it uses

an approximation to the feature map φφφ and solves the optimization problem in the primal space.

The feature approximation φ̂φφ was obtained using the Nyström method based on a subsample of
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Table 2 – Comparison of some important characteristics of the SVR, LSSVR and FS-LSSVR
models.

Models

Characteristics SVR LSSVR FS-LSSVR

Error cost function ε-insensitive SSE SSE

Obtaining the model solution QP problem Linear system Linear system

Number of model variables 2N +1 N +1 M+1

Computational complexity O(N3) O(N3) O(NM2)

Memory demand O(N2) O(N2) O(NM)

Model hiperparameters (for Gaussian kernel) ε,γ,σ γ,σ M,γ,σ

Sparsity solution YES NO YES

Parametric/Nonparametric model Nonparametric Nonparametric Parametric

M prototype vectors, which are responsible for the sparseness of the solution.

It is worth highlighting that specifically the LSSVR and FS-LSSVR models are

going to be further used for the contributions of this thesis. As an additional remark, Table 2

summarizes some of the main characteristics of the SVR, LSSVR and FS-LSSVR models,

discussed throughout this chapter.

Bearing in mind the kernel-based models theory, the next chapter will discuss the

application of robust strategies to the kernel models, specially to the LSSVR, in order to minimize

the effect of the presence of outliers in estimation data.
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3 ROBUSTNESS IN LSSVR DERIVED MODELS

“Education is not the learning of the facts,

but the training of the mind to think.”

(Albert Einstein)

This chapter discusses a framework of robust regression based on the M-Estimators

and applied to kernel-based models, specifically those ones derived from the LSSVR approaches.

First, Section 3.1 addresses the problem of the presence of outliers in estimation data, and some

strategies to overcome this issue. Next, Section 3.2 presents the theoretical fundamentals of

M-Estimators and, in Section 3.3, these estimators are used to develop robust versions of the

LSSVR model, namely, the Weighted LSSVR (W-LSSVR) and Iteratively Reweighted LSSVR

(IR-LSSVR) models. Then, Section 3.4 shows a computational experiment with outliers and

their influence in these LSSVR derived models. Section 3.3 presents a brief discussion about

different robust strategies applied to the LSSVR model. Finally, some important remarks of the

chapter are mentioned in Section 3.6.

3.1 Introduction

In real-world applications of parameter estimation for regression tasks, the available

data are often contaminated by random noise. Some of its main sources are due to mea-

surement errors, human mistakes, rounding errors, system failures and changes in the system

set-point (ROUSSEEUW; LEROY, 2005; HAMPEL et al., 2011), to name a few. In some ex-

treme situations, the noisy data may be of heavy-tail1, resulting in a different sample distribution

than the desired normal (or Gaussian) distribution.

According to Bamnett and Lewis (1994), these observations, which appear to be

inconsistent with the remainder of their original dataset, are called outliers. As defined by Barros

(2013), an outlier is an observation (scalar or vector) which differs markedly from other obser-

vations of the sample to which it belongs, as indicated by the chosen model to represent this

sample. Although there is no universal definition of outlier (HODGE; AUSTIN, 2004), the above

definition is suitable for robust regression problems and, therefore, is adopted from now on.
1Heavy-tailed or fat-tailed distributions are those whose density tails tend to zero more slowly than the normal

density tails (MARONNA; YOHAI, 2006).
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In general, Stevens (1984) distinguished two type of outliers; the first one, which

contaminates the independent variables xxx (inputs), is called leverage point (ROUSSEEUW;

LEROY, 1987). The second type usually contaminates the dependent variables y (outputs) and,

therefore, is the type of outlier that one should bear in mind when treating regression problems

in this thesis.

In order to fit an estimation model to contaminated data (either in xxx or y), one should

adopt one of the following strategies: regression diagnostic or robust regression (ROUSSEEUW;

LEROY, 2005). Diagnostic methods focus on detecting and removing the outliers to, in the next

step, fit the “good data" by applying the standard least squares technique, for example. However,

it would be misleading to always think of outliers as “bad data" (MARONNA; YOHAI, 2006),

since they can contain unexpected relevant information or even the most important samples in

the available data (BEN-GAL, 2005). Therefore, the action of simply removing them may not be

the most appropriate decision in many practical situations, such as in Kandel (1992).

On the other hand, the robust regression approach seeks to develop estimators that are

not so strongly affected by outliers. These estimators discover the outliers as those points which

possess large residuals from that robust solution (ROUSSEEUW; LEROY, 2005). From robust

regression, Huber et al. (1964) developed a class of estimators based on the robust statistics

framework, known as M-estimators, where M stands for maximum likelihood-type. Simply

stated, the M-estimators suggest minimizing a different cost function, instead of SSE, in order to

obtain more robust estimates in the presence of outliers. Other important contributions in the

field of robust regression, especially in M-estimators, are also found in the works developed

by Tukey (1960) and Hampel (1971).

Although the M-estimators were originally proposed for linear and parametric re-

gression tasks, their application in nonparametric kernelized models, e.g. LSSVR model, has

aroused interest of the scientific community in the last two decades (SUYKENS et al., 2002a;

DEBRUYNE et al., 2008; DE-BRABANTER et al., 2009b; CHRISTMANN; STEINWART,

2007; DEBRUYNE et al., 2010). These techniques apply weighting strategies (based on the

M-estimation) to the errors obtained in the initial stage, in order to minimize the effects of the

larger ones (caused by outliers) and, then, make their solutions robust. The LSSVR robust

models can be useful in nonlinear regression tasks, such as time series prediction, control and

system identification in the presence of outliers.



60

3.2 Fundamentals of the M-Estimators

Since linear regression is one of the most important statistical data analysis tools,

one may initially consider a sequence of observations {xxxn,yn}N
n=1, where xxxn ∈ Rd is the input

vector and yn ∈ R is the corresponding output. In order to understand how the outputs yn are

related to the inputs xxxn, one can adopt the linear model

yn = www>xxxn + τn, (3.1)

where www ∈ Rd is the unknown parameter vector and {τn}N
n=1 is a sequence of additive noise. An

estimator ŵww (for www) can be expressed by yn = ŵww>xxxn +en, where en = yn− ŷn is the error made in

approaching the real output yn by its prediction ŷn = ŵww>xxxn.

The most commonly used estimator for www is the Ordinary Least Squares (OLS)

criterion, initially proposed by Legendre (1805), then independently, by Gauss (1809). The OLS

estimate minimizes the sum of squared errors, according to the following functional:

J(ŵww) =
N

∑
n=1

e2
n =

N

∑
n=1

(yn− ŵww>xxxn)
2. (3.2)

Under the assumption that the additive noise τn in the regression model is normally distributed

with zero mean and unknown variance σ2
e , the OLS estimates are the most efficient unbiased

estimates of www. However, if this noise is not normally distributed, e.g. in the presence of

impulsive noise or outliers, the OLS performance significantly reduces, since a single outlier can

spoil its estimates completely.

The M-Estimation framework was proposed by Huber et al. (1964) as an alternative

to overcome this situation. In short, the M-estimators replace the cost function based on SSE by

a robust version that is not as vulnerable as the least squares to the presence of outliers. Then,

based on the Huber theory, a general M-estimator minimizes the following functional (FOX,

2002):

J(ŵww) =
N

∑
n=1

ρ(en) =
N

∑
n=1

ρ(yn− ŵww>xxxn), (3.3)

where the loss function ρ(·) computes a contribution of each prediction error en to the functional

J(·). One should note that the standard OLS estimator is achieved if one sets ρ(·) = ‖ · ‖2. A

reasonable choice for ρ(·) should have the following properties (FOX, 2002):

• ρ(e)≥ 0;

• ρ(0) = 0;
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• ρ(e) = ρ(−e);

• ρ(ei)≥ ρ(e j) for |ei|> |e j|.

In order to minimize J(ŵww) in Eq. (3.3), an optimal solution vector www is searched by

computing the gradient vector ∇ŵwwJ(ŵww) = ∂J(ŵww)/∂ ŵww and equaling it to zero, which is given by

∂J(ŵww)
∂ ŵww

=
N

∑
n=1

∂ρ(en)

∂en

∂en

∂ ŵww
=

N

∑
n=1

ψ(en)
∂en

∂ ŵww
= 000, (3.4)

where ψ(e) = dρ(e)/de is a bounded, continuous, differentiable and odd function, usually called

score function (DEBRUYNE ANDREAS CHRISTMANN; SUYKENS, 2010). In the OLS case,

ρ(e) = e2/2 and ψ(e) = e, i.e. the influence of certain data linearly increases with the magnitude

of its corresponding prediction error, which confirms the non-robustness of the least squares

estimation (ZHANG, 1997; FREIRE, 2015).

If one defines a weight function for each error en as

v(en) =
1
en

dρ(en)

de
=

ψ(en)

en
, (3.5)

where en = yn− ŵww>xxxn and, therefore, ∂en/∂ ŵww =−xxxn, it is possible to rewrite Eq. (3.4) as

N

∑
n=1

v(en)(yn− ŵww>xxxn)xxxn = 000. (3.6)

The system of equations in Eq. (3.6) corresponds to the weighted least squares problem, which

minimizes a weighted norm of the error (BJÖRCK, 1996; BEN-ISRAEL; GREVILLE, 2003),

expressed by

J(ŵww) = eee>VVV eee =
N

∑
n=1

vne2
n, (3.7)

where eee ∈ RN is a vector formed by the errors en, and VVV ∈ RN×N is a diagonal matrix with

the weights vn along its diagonal. Nevertheless, one should note that the weights depend upon

the errors, the errors depend upon the estimated coefficients, and the estimated coefficients

depend upon the weights (FOX, 2002). Consequently, a closed-form equation for estimating ŵww

is not available. Thus, an iterative solution, named Iteratively Reweighted Least Squares (IRLS)

algorithm (FOX, 1997), is required. The pseudo-code is shown in Algorithm 3, where ∆ is a

small convergence threshold.

3.2.1 Objective and Weigthing Functions

In order to apply the M-estimators in regression problems, many weight functions

have been proposed in the literature, especially for linear regression (ROUSSEEUW; LEROY,
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Algorithm 3: - Pseudo-code for the IRLS algorithm.

Require: Initial least square estimate ŵww(0) from Eq. (2.30);
Set the convergence threshold ∆;

while max(|ŵww(i)− ŵww(i−1)|)> ∆ do
for n = 1 : N, do

Compute e(i−1)
n = yn− ŵww(i−1)>xxxn and the respective v(i−1)

n ;
end for
Compute ŵww(i) = [XXX>VVV (i−1)XXX ]−1XXX>VVV (i−1)yyy;
i=i+1;

end while
Output ŵww.

1987). As they are fundamental to this work, five of these functions, OLS, Huber, Hampel,

Logistic and Myriad, are shown in Table 3, with the corresponding loss functions ρ(·), weight

functions v(·) and their respective graphics.

Analyzing the weight functions in Table 3, one can easily see that the OLS estimator

assigns unit weight to each prediction error. Therefore, its performance significantly decreases in

the presence of outliers because, although the errors caused by the outliers are larger than those

ones caused by the other input samples, the former are treated with the same importance as the

latter. On the other hand, for the Huber function (HUBER et al., 1964), for instance, the weight

values decrease when the errors lie beyond a certain threshold, |e|> ŝ. In this case, the Huber

estimator reduces the weights of the errors caused by the outliers and, consequently, decreasing

their influence. In addition, the errors within the defined threshold (|e| ≤ ŝ) are treated exactly as

the OLS estimator.

The above mentioned ŝ is a positive parameter to be adjusted, and is known as the

error (outlier) threshold or tunning constant. Smaller values of ŝ produce more resistance to

outliers, but at the expense of lower efficiency when the errors are normally distributed (FOX,

2002; BARROS; BARRETO, 2013). According to Fox (2002), this tunning constant is usually

chosen to give reasonable high efficiency in the normal case. For example, one has ŝ = 1.345σe

for the Huber function and ŝ = 1.960σe for the Hampel function (ROUSSEEUW; LEROY,

1987; DAVID, 1998), where σe is the standard deviation of the errors, in order to produce 95%

of efficiency when the errors are normally distributed, while still offering protection against

outliers (FOX, 1997).

In practical situations, it is necessary to compute a robust estimate for the standard
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Table 3 – Examples of the objective ρ(·) and weight v(·) functions for the M-estimators: OLS,
Huber, Hampel, Logistic and Myriad.

Functions

Objective Weight
M-estimators ρ(e) v(e)

e2

2 1
OLS

{
e2/2, |e/ŝ| ≤ 1,

ŝ|e|− 1
2 ŝ2, |e/ŝ|> 1.

{
1, |e/ŝ| ≤ 1,

ŝ/|e|, |e/ŝ|> 1.
Huber


e2/2, |e/ŝ| ≤ c1,

c2|e/ŝ|2−|e/ŝ|3
c2−c1

, c1 < |e/ŝ| ≤ c2,

10−4, |e/ŝ|> c2.


1, |e/ŝ| ≤ c1,

c2−|e/ŝ|
c2−c1

, c1 < |e/ŝ| ≤ c2,

10−4, |e/ŝ|> c2.

Hampel

tanh(e)
e e tanh(e)

Logistic

δ 2

δ 2+e2 log(δ 2 + e2)

Myriad
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deviation of the error variables en as

ŝ =
MAR
0.6745

, (3.8)

for the Huber function, where MAR is the median of the absolute values of the errors. Already,

for the Hampel function, one gets

ŝ =
IQR

1.3490
, (3.9)

where the interquatile range IQR is the difference between the 75-th percentile and the 25-th

percentile. The ŝ estimate takes into account how much the estimated error distribution deviates

from a Gaussian distribution. The constant values 0.6745 (for the Huber function) and 1.3490

(for the Hampel function) make ŝ an unbiased estimate for Gaussian errors (BARROS, 2013).

Another feasible robust estimation of the standard deviation is ŝ = 1.483MAD(eee), where MAD

stands for the median absolute deviation (HAMPEL et al., 2011).

Besides the robust estimate ŝ, there are two additional parameters, c1 and c2, for the

Hampel objective function, as can be seen in Table 3. According to Rousseeuw and Leroy (1987),

the values c1 = 2.5 and c2 = 3.0 are reasonable choices, whereas for a Gaussian distribution,

there will be very few values larger than 2.5ŝ (SUYKENS et al., 2002a). Another possibility is

computing c1, c2 from a density estimation of the en distribution.

The last two objective functions shown in Table 3 are the Logistic and Myriad.

The Logistic function is often used in regression problems (ROUSSEEUW; LEROY, 2005;

DEBRUYNE et al., 2008), but with no tunning parameters. In general, it is a good choice

between convergence and robustness (DE-BRABANTER et al., 2009b). In turn, the Myriad

function with parameter δ ∈ R+
0 has been proposed in the field of statistical nonlinear signal

processing (ARCE, 2005). It is derived from the maximum likelihood estimation of a Cauchy

distribution and is used as a robust location estimator in stable noise environments. When

the noise is Gaussian, large values of the parameter δ can provide the optimal performance

associated with the sample mean, whereas for highly impulsive noise statistics, the resistance

of mode-type estimators can be achieved by setting low values of δ (DE-BRABANTER et al.,

2009b).

Some other common choices of the weight functions for M-estimators, such as

Andrews, Bisquare, Cauchy, Fair, Talwar and Welsch can be found in Barros (2013). From the

next section moving forward, the M-estimators theory will be applied to the standard LSSVR

model in order to robustify its solution in the presence of outliers.
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3.3 Robustness in LSSVR Models

As outlined in Section 3.2 for the OLS estimates, instead of using robust cost

functions, one can also obtain a robust estimate of the LSSVR model based upon its previous

solution and a suitable weighting procedure. In this sense, considering again the training data

{(xxxn,yn)}N
n=1, with xxxn ∈ Rd and yn ∈ R, Suykens et al. (2002a) proposed the Weighted LSSVR

(W-LSSVR) model, which is formulated by the minimization of the following functional:

min
www,b,eee

Jp(www,eee) =
1
2
‖www‖2 + γ

1
2

N

∑
n=1

vne2
n, (3.10)

subject to
{

yn = www>φφφ(xxxn)+b+ en, for n = 1, . . . ,N, (3.11)

where www is the parameter vector, γ is the regularization parameter, φφφ is the nonlinear map and

b is the bias. The only difference between the robust formulation in Eqs. (3.10)-(3.11) and the

standard LSSVR model in Eqs. (2.21)-(2.22), is that the error variables en from the unweighted

LSSVR are now weighted by a vector vvv = [v1, . . . ,vN ]
>, computed in this case according to the

Hampel’s function, as shown in Table 3.

The equivalent dual problem for the primal formulation in Eqs. (3.10)-(3.11) is

obtained by constructing the Lagrangian as

L (www,br,eee,αααr) :=
1
2
‖www‖2 + γ

1
2

N

∑
n=1

vne2
n−

N

∑
n=1

α
r
n(www

>
φφφ(xxxn)+br + en− yn), (3.12)

where αr
n denote the Lagrange multipliers of the robust solution and br is its bias. As in the

LSSVR formulation (see Chapter 2), from the Karush-Kuhn-Tucker (KKT) (FLETCHER, 2013)

conditions for optimality and elimination of www and eee, one gets the following linear system of

equations: 0 1>N
1N KKK + γ−1V

br

αααr

=

0

yyy

, (3.13)

where αααr = [αr
1, . . . ,α

r
N ]
>, yyy = [y1, . . . ,yN ]

> and KKK ∈ RN×N is the kernel matrix. The diagonal

matrix V ∈ RN×N is given by

V = diag
{

1
v1
, . . . ,

1
vN

}
, (3.14)

where each weight vn is determined based on the error variables en = αn/γ , from the original

(unweighted) LSSVR model.
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Finally, the linear system in Eq. (3.13) can be solved by the Moore-Penrose inverse

using Eq. (2.30). Then, the W-LSSVR model solution is given by

f (xxx) =
N

∑
n=1

α
r
nk(xxx,xxxn)+br. (3.15)

As in the LSSVR case, the W-LSSVR solution is not sparse, since all the training samples are

used as support vectors to make new predictions. Furthermore, the computational complexity of

the W-LSSVR model is O(N3) and its memory demand is O(N2), which are the same ones as

those in the standard LSSVR model. The W-LSSVR model is summarized in Algorithm 4.

Algorithm 4: - Pseudo-code for the W-LSSVR model.
Require: Set γ and the kernel hiperparameters (σ for the Gaussian kernel, for example)

Compute the kernel matrix KKK;
Build the linear system of Eq. (2.29);
Compute ααα , b from Eq. (2.30), and en = αn/γ; % unweighted LSSVR solution
Compute ŝ from the en distribution in Eq. (3.9);
Determine vn from the Hampel’s function in Table 3;
Build the linear system of Eq. (3.13);
Compute αααr and br from Eq. (2.30);
Output αααr, br % W-LSSVR solution.

3.3.1 The IR-LSSVR Model

In practice, Suykens et al. (2002a) claim that one single additional weighted LSSVR

step is often sufficient in most cases. However, in order to also obtain a robust estimate, this

weighting procedure can be iteratively repeated, giving rise to the Iteratively Reweighted LSSVR

(IR-LSSVR) model (DE-BRABANTER et al., 2009b). At each iteration i, one can weight the

error variables e(i)n = α
(i)
n /γ , for n = 1, . . . ,N. Again, the weights v(i)n are calculated based upon

e(i)n /ŝ, using the Hampel function.

Thus, one solves the linear system in Eq. (3.13) for each iteration i as 0 1>N
1N KKK + γ−1V(i)

br(i)

αααr(i)

=

0

yyy

, (3.16)

where

VVV (i) = diag

{
1

v(i)1

, . . . ,
1

v(i)N

}
. (3.17)
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The resulting model after the i-th iteration is given by

f (i)(xxx) =
N

∑
n=1

α
r(i)
n k(xxx,xxxn)+br(i). (3.18)

Following, one sets i = i+1 and the new weights v(i+1)
n , the vector αααr(i+1) and the bias br(i+1)

are calculated. This iterative procedure should continue until maxn(|αr(i)
n −α

r(i−1)
n |)≤ ∆, where

∆ is a convergence threshold pre-established by the user. This seeks to ensure that consecutive

estimates α
r(i−1)
n and α

r(i)
n are sufficiently close to each other ∀n = 1, . . . ,N. The pseudo-code

for the IR-LSSVR model is summarized in Algorithm 5.

3.4 Example of the Influence of Outliers

In order to verify the outliers influence over the model estimation in nonlinear

regression, one considers now an example of the 1-dimensional sinc function y = sin(πx)/πx,

defined on the interval [−5,5]. The training outputs were corrupted by additive Gaussian noise

with zero-mean and a standard deviation of 0.05, as illustrated by the blue circles in Fig (5a).

Moreover, the predicted output for the standard unweighted LSSVR model (red curve) also can

be seen in Fig (5a), where one may observe that its generalization performance is, in general,

appropriate for this case.

In the next step, the training outputs were purposely contaminated with two outliers,

which are represented by the black asterisks in Fig (5b). Due to the addition of these outliers,

the difference between the LSSVR performances in Figs. (5a) and (5b) is remarkable. In other

words, the outliers produce large prediction errors and, consequently, draw the regression curve

towards them. This effect distorts the LSSVR predictions regarding the other training samples, as

can be seen in Fig. (5b) by the data points below both outliers and the LSSVR predicted output.

The robustness of the W-LSSVR and IR-LSSVR approaches are presented in

Figs. (5c) and (5d), respectively, considering the scenario with the outliers. Observing these

figures, it is clear that the generalization performance obtained by the standard LSSVR model

was further improved by applying the weighted procedure. This can be explained by the fact

that, for the robust models (W-LSSVR and IR-LSSVR), the large errors are compensated with

weights of small magnitude, minimizing the effect of the outliers. For this case, it is also possible

to see in Figs. (5c) and (5d) that the W-LSSVR and IR-LSSVR models achieved performances

close to each other.
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Algorithm 5: - Pseudo-code for the IR-LSSVR model.
Require: γ,∆,σ (for the Gaussian kernel);

Compute e(0)n = α
(0)
n /γ from the standard unweighted LSSVR model;

while maxn(|αr(i−1)
n −α

r(i)
n |)> ∆, do

Compute ŝ = 1.483MAD(e(i)n ) from the e(i)n distribution;
Determine vn from the Hampel’s function in Table 3;
Build the linear system of Eq. (3.13);
Compute αααr(i) and br(i) from Eq. (2.30);
Set i = i+1;

end while
Output αααr(i), b(i) % IR-LSSVR solution.

(a) LSSVR - data without outliers. (b) LSSVR - data with outliers.

(c) W-LSSVR - data with outliers. (d) IR-LSSVR - data with outliers.
Figure 5 – Comparison between the standard LSSVR, W-LSSVR and IR-LSSVR models for

estimating the sinc function in the presence of outliers.

3.5 Some Other Robust LSSVR Approaches

When observing the W-LSSVR and IR-LSSVR strategies, it is clear that robustness

in the nonparametric LSSVR model can be achieved by using the least squares cost function

by means of weighting or iterative reweighting procedures. Thus, besides working with a

convex optimization problem solved by a simple linear system of equations, it was showed

by Debruyne et al. (2010) that this reweighting methodology does not only improve robustness
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against outliers, but also improves the stability of the LSSVR derived models, especially at heavy

tailed distributions.

In this context, some authors have devoted attention to developing weighted LSSVR

models to mitigate the influence of outliers. For instance, Chen et al. (2015) presented a two-stage

robust weighted LSSVR approach based first on the Least Trimmed Squares (LTS) technique,

in order to obtain simulation results at the cost of losing statistical efficiency to some extent.

Then, in the second stage, a weighted LSSVR model is employed to optimize these simulation

results. Wen et al. (2008) already proposed an iterative and heuristic weight setting algorithm,

derived from the idea of outlier mining, independent of the unweighted standard LSSVR model

at an early stage.

Following the same line of the weighting procedure, Quan et al. (2010) designed

a robust algorithm for nonlinear time series prediction using the W-LSSVR strategy and local

models. In the methodology proposed by Valyon and Horváth (2006), a geometric view of the

LSSVR was presented in order to obtain a sparse solution and reduce the effect of non Gaussian

noise, with the aid of the weighted LSSVR model.

Many researchers argued that first the outliers should be filtered out, by some

advanced techniques, and then the standard LSSVR should be used to train the remaining data

samples. In this sense, Wen et al. (2010) implemented a qualitative criterion derived from the

LTS algorithm, based on robust linear regression, for eliminating the outliers within a recursive

framework. Similarly, Cui and Yan (2009) combined strategies of outlier detection and adaptive

weighted LSSVR algorithm for the training samples. Motivated by the Vapnik’s theory (VAPNIK,

1998), Chuang and Lee (2011) proposed a hybrid strategy with which to treat outliers, where a

data preprocessing stage is performed, by using the SVR model to filter out the outliers in the

training dataset. Then, a standard LSSVR model is used with the data samples without outliers.

In order to avoid setting weights, some authors preferred to use robust cost functions.

For example, Yang et al. (2014) presented a robust LSSVR variant based on a truncated least

squares loss function, which is neither differentiable nor convex. Therefore, the authors proposed

an iterative algorithm based on the concave-convex procedure (CCCP) (YUILLE; RANGARA-

JAN, 2003) and the Newton algorithm (CHAPELLE, 2007) to solve the resulting optimization

problem. On the other hand, Wang et al. (2014) proposed an absolute deviation loss function to

derive a robust regression model termed as Least Absolute Deviation SVR (LAD-SVR). Since

its proposed loss function is not differentiable, it was necessary to approximate it by constructing
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a smooth function and developing a Newton algorithm to solve the optimization problem.

Derived from the information theoretic learning (ITL) (PRÍNCIPE, 2010), Chen et al.

(2012) built a regression model in the kernel space based on the maximum correntropy criterion

and regularization technique. An iterative algorithm derived from the half-quadratic optimization

was developed to solve the problem with theoretically guaranteed convergence. Feng et al. (2015)

conducted a detailed analysis of the connections between the regression model associated with

the correntropy induced loss and the least squares regression model, as well as the study of its

convergence property.

3.6 Concluding Remarks

The present chapter presented an overview about robust regression techniques applied

to parameter estimation problems. These evaluated techniques are based on the M-estimators

theory, which replace the SSE cost function by a more general version, that minimizes the effect

of outliers by assigning to them small weights for their large errors. In addition, the W-LSSVR

and IR-LSSVR models were discussed, since they are the state-of-the-art in robust approaches

derived from the standard LSSVR model and the M-estimators. Some possible choices for their

objective and weight functions, such as OLS, Huber, Hampel, Logistic and Myriad, were briefly

described throughout the chapter.

This chapter also presented a numerical example of the influence of outliers in

nonlinear regression, specifically in function approximation, as proof of concept. For this

purpose, the sinc function was used, and was purposely contaminated with outliers. In this case,

the degradation of the standard LSSVR model when the training output were corrupted with

outliers can be seen. On the other hand, the W-LSSVR and IR-LSSVR models were less affected

in the presence of outliers, achieving satisfactory performances.

Finally, some other developed strategies to robustify the LSSVR model were com-

mented. Notably, some of them are first interested in filtering the outliers and training a non

robust model with the remaining data. Other models are based on weighting procedures similar

to those of W-LSSVR and IR-LSSVR models. Moreover, some of them prefer to use robust cost

functions instead of those based on SSE. The latter usually occurs in non convex optimization

problems, whose resolution procedures are quite tedious.

The next chapter will discuss the theory of the kernel adaptive filtering methods

applied to nonlinear signal processing problems.
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4 ONLINE KERNEL-BASED MODELS

“Have no fear of perfection, you’ll never reach it.”

(Salvador Dali)

This chapter presents an overview of kernel adaptive filtering models, which are direct

implementations of linear adaptive filters in feature space. Initially, Section 4.1 contextualizes

the issue of online learning for solving nonlinear problems, by using kernelized versions of linear

adaptive algorithms. Next, Section 4.2 presents a brief theory of linear adaptive filtering, with

an emphasis on the LMS and RLS algorithms. Then, the respective online kernel versions of

the LMS (KLMS) and RLS (KRLS) algorithms are treated in detail in Section 4.3. Section 4.4

discusses some sparsification criteria, different from the approximate linear dependency (ALD)

procedure, as defined for the KRLS model. Next, Section 4.5 briefly describes the family of the

Kernel Affine Projection Algorithms (KAPA), as an alternative to the original KLMS and KRLS

models. Finally, the chapter is concluded in Section 4.6.

4.1 Introduction

The kernel-based models, as SVR (VAPNIK, 1995; VAPNIK, 1998), LSSVR (SAUN-

DERS et al., 1998; SUYKENS et al., 2002b) gaussian processes (RASMUSSEN, 1996) and

regularization networks (GIROSI et al., 1995), have achieved considerable success in nonlinear

regression problems in the batch learning scenario, i.e., when all of the training data are available

in advance.

However, batch learning is a limiting factor impairing widespread use of the above

models to suitably handle the challenges when, for instance, the amount of data is too high to

apply batch algorithms, where the respective solution has to be updated sequentially to account

for all processed data. A second example is when the scenario that requires online updating of

the solution occurs in dynamic environments, where the model solution changes over time.

In this scenario, the field of Kernel Adaptive Filtering (KAF) has become a powerful

tool in solving nonlinear signal processing problems (LIU et al., 2009a), since it consists of

the application of the kernelization strategy, common to the support vector theory, to linear

adaptive filters producing their nonlinear versions, including the Kernel Least Mean Squares

(KLMS) (LIU et al., 2008), Kernel Recursive Least Squares (KRLS) (ENGEL et al., 2004),
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Figure 6 – Basic configuration of a linear adaptive filter system.

EXtended Kernel Recursive Least Squares (EX-KRLS) (LIU et al., 2009b; ZHU et al., 2012)

and Kernel Affine Projections Algorithms (KAPA) (LIU; PRÍNCIPE, 2008).

Those KAF algorithms generalize the classical linear adaptive filters in RKHS, thus,

combining the adaptive characteristics of these linear filters with the capabilities of the kernel

methods in solving nonlinear problems by means of a convex learning process with no local

minima. In addition, they aim to sequentially search a function f (·) that maps a series of input

patterns {xxxt}N
t=1 onto their respective desired images {yt}N

t=1, where N is the amount of available

training instances, maintaining its computational load as moderate during each iteration t. This

means that the amount of computations required per new sample must not necessarily increase

as the number of samples increases.

4.2 Linear Adaptive Filtering

In general, the problem in linear filtering consists of adjusting the parameters of

the filter as time advances, in order to adapt their performance according to some prespecified

criterion (cost function), mostly driven by an error signal. Adaptive filters that use the mean

squared-error (MSE) as cost function are the most common in practice, since the involved

mathematical complexities are relatively easy to handle. In addition, according to Haykin (2013),
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a filter is said to be linear if the filtered, smoothed or predicted quantity at the output of the

device is a linear function of the observations applied to the filter input.

The basic configuration of a linear adaptive filter is illustrated in Fig. (6), where the

index t denotes the time step, xxxt ∈ Rd is the input signal, y′t ∈ R is the true (noiseless) output

signal and yt ∈ R is the observed output signal, which is contaminated with an additive source

of noise nt . Moreover, the signal ŷt = xxx>t ŵwwt ∈ R is the adaptive filter output and ŵwwt ∈ Rd is the

unknown parameter vector at time t. The prediction error is given by et = yt− ŷt and it acts, in

turn, as a guide to adapt the weights of ŵwwt by an incremental adjustment. Therefore, the values

of the transversal filter ŵwwt are computed by an adaptive weight-control mechanism, according

to the MSE criterion. Normally, the algorithm starts with an initial guess of ŵwwt , which may be

based on some available information about the system and, then, refines its solution in successive

iterations, such that each refinement tends to improve its performance in terms of the chosen

cost function.

4.2.1 Wiener Filter

Initially, consider an adaptive linear filter of length d, whose output at the instant t is

given as

ŷt =
d−1

∑
i=0

ŵ(i)
t xt−i = ŵww>t xxxt , (4.1)

where xxxt = [xt ,xt−1, . . . ,xt−d+1]
> and ŵwwt = [ŵ0

t , ŵ
1
t , . . . , ŵ

d−1
t ]>. Then, the prediction error

et = yt− ŷt is used to minimize the following MSE cost function:

Jŵwwt (et) = E[e2
t ], (4.2)

where E[·] denotes the statistical expectation operator. Also considering a filter with fixed

coefficients in a stationary environment, the functional in Eq. (4.2) can be rewritten as (DINIZ,

2008)

Jŵwwt (et) = E[(yt− ŵww>t xxxt)
2],

= E[y2
t −2ytŵww>t xxxt + ŵww>t xxxtxxx>t ŵwwt ],

= E[y2
t ]−2E[ytŵww>t xxxt ]+E[ŵww>t xxxtxxx>t ŵwwt ],

= E[y2
t ]−2ŵww>t E[ytxxxt ]+ ŵww>t E[xxxtxxx>t ]ŵwwt ,

= E[y2
t ]−2ŵww>t pppt + ŵww>t RRRtŵwwt , (4.3)
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where pppt = E[ytxxxt ] ∈ Rd is a vector of cross-correlation coefficients between the desired output

and input signals, and RRRt = E[xxxtxxx>t ] ∈ Rd×d is the input signal correlation matrix. In order to

search for the optimal vector wwwopt
t , that minimizes the functional in Eq. (4.3), one should compute

the gradient vector of Jŵwwt as

∇ŵwwt Jŵwwt (et) =
∂Jŵwwt (et)

∂ ŵwwt
=−2pppt +2RRRtŵwwt . (4.4)

By setting the gradient vector in Eq. (4.4) to zero and assuming that RRRt is nonsingular, the optimal

solution is given by

wwwopt
t = RRR−1

t pppt , (4.5)

where wwwopt
t is called the Wiener solution. One should note that, to obtain the Wiener solution in

Eq. (4.5), it is necessary to know exactly the matrix RRR−1
t and the vector pppt . However, in practice,

one does not have access to the statistics E[·] to compute them, since only sample values of the

input xxxt and the output yt signals are available. An alternative to overcome this issue is solving

the filtering problem iteratively, by applying the steepest descent method (HAYKIN, 2013) as

ŵwwt+1 = ŵwwt−µ∇∇∇ŵwwt Jŵwwt (et),

= ŵwwt +2µ(p̂ppt− R̂RRtŵwwt), (4.6)

where p̂ppt and R̂RRt are estimates for pppt and RRRt , respectively, and µ is the step-size parameter

(or learning step) for updating the weights of ŵwwt . This parameter determines the stability,

convergence speed and steady-state misalignment of the algorithm.

4.2.2 Least Mean Square Algorithm

The simplest and most commonly choice for linear adaptive filtering is the LMS

algorithm (WIDROW; HOFF, 1960), which replaces the MSE cost function in Eq. (4.2) with

another version, based on the instantaneous squared error, expressed in an online manner by

Jŵwwt (et) = e2
t . (4.7)

This means that the LMS solution is adapted one step at a time when a new data sample (xxxt ,yt)

becomes available.
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As before mentioned, the statistical variables RRRt and pppt are usually unknown. Then,

the LMS algorithm uses their instantaneous estimates, respectively, as follows:

R̂RRt = xxxtxxx>t , (4.8)

p̂ppt = ytxxxt . (4.9)

Thus, substituting the estimates of Eqs. (4.8) and (4.9) into Eq. (4.6), one gets the update rule for

the LMS algorithm as

ŵwwt+1 = ŵwwt +2µ(p̂ppt− R̂RRtŵwwt),

= ŵwwt +2µxxxt(yt− xxx>t ŵwwt),

= ŵwwt +2µxxxtet , (4.10)

where xxxtet represents an instantaneous estimate of the gradient, and ŵwwt is an iterative approxima-

tion of the Wiener solution wwwopt
t . One can easily observe that, unlike the Wiener filter, the LMS

algorithm avoids the computation of the inverse matrix of RRRt .

Examining the operations in Eq. (4.10), it is possible to see the simplicity of the

LMS algorithm, whose computational complexity is O(d). However, its main limitation is

the relatively slow rate of convergence (HAYKIN, 2013). To minimize this effect, one should

choose a relatively large value of µ . Finally, the resulting LMS pseudo-code is summarized in

Algorithm 6.

Algorithm 6: - Pseudo-code for the LMS algorithm.
Require: Set µ;

ŵww0 = 000;
for t = 1,2, . . . do

ŷt = xxx>t ŵwwt−1;
et = yt− ŷt ;
ŵwwt = ŵwwt−1 +2µetxxxt ;

end for
Output ŵwwt .

4.2.3 Recursive Least Squares Algorithm

A suitable alternative to overcome the slow rate of convergence of the LMS algorithm

is the classical RLS algorithm (HAYKIN, 2013; DINIZ, 2008). Although both the LMS and

RLS present a criterion of weight adaptation based on the error-correction learning, there is



76

a substantial difference relative to their cost functions. While the LMS algorithm minimizes

the instantaneous squared error in Eq. (4.7), the RLS algorithm aims at minimizing the sum of

squared estimation errors up to and including the current time step t.

Therefore, the resulting cost function for the RLS algorithm is defined by

Jŵwwt (et) =
t

∑
i=0

λ
t−i|ei|2,

=
t

∑
i=0

λ
t−i|yi− xxx>i ŵwwt |2, (4.11)

where the parameter 0� λ < 1 is called the forgetting factor, since the information of the distant

past has an increasingly negligible effect on the coefficients updating. In the special case when

λ = 1, one has the OLS algorithm, as seen in Chapter 3.

Thus, taking into account the gradient of Jŵwwt in Eq. (4.11), one gets

∇ŵwwt Jŵwwt (et) =
∂Jŵwwt (et)

∂ ŵwwt
=−2

t

∑
i=0

λ
t−ixxxi(yi− xxx>i ŵwwt). (4.12)

By setting the gradient in Eq. (4.12) to zero, it is possible to write

−
t

∑
i=0

λ
t−ixxxixxx>i ŵwwt +

t

∑
i=0

λ
t−ixxxiyi = 000, (4.13)

where 000 is a vector of zeros. Isolating ŵwwt in Eq. (4.13), the resulting expression for its optimal

value is given by

ŵwwt =

[
t

∑
i=0

λ
t−ixxxixxx>i

]−1 t

∑
i=0

λ
t−ixxxiyi. (4.14)

Defining analogous expressions to Eqs.(4.8) and (4.9), one has

R̄RRt =
t

∑
i=0

λ
t−ixxxixxx>i , (4.15)

p̄ppt =
t

∑
i=0

λ
t−ixxxiyi, (4.16)

where R̄RRt and p̄ppt are called the deterministic correlation matrix of the input signal and the

deterministic cross-correlation vector between the input and the desired signals, respectively.

Then, the resulting solution is given by

ŵwwt = R̄RR−1
t p̄ppt , (4.17)

where it was assumed in Eq. (4.14) that R̄RRt is nonsingular. Nevertheless, the recursive adaptation

of the RLS algorithm would face the problem in computing the inverse matrix R̄RR−1
t at each
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iteration. In order to avoid this costly procedure, the RLS algorithm makes use of the matrix

inversion lemma (see Lemma 4.1 below), which allows the calculation of the inverse matrix in a

recursive manner.

Lemma 4.1 (Matrix Inversion Lemma). Let AAA ∈ RL×L and BBB ∈ RL×L be two positive-definite

matrices satisfying

AAA = BBB−1 +CCCDDD−1CCCT ,

where DDD ∈ RM×M is positive-definite and CCC ∈ RL×M. Then, the inverse of the matrix AAA can be

expressed as

AAA−1 = BBB−BBBCCC(DDD+CCCT BBBCCC)−1CCCT BBB. (4.18)

This relationship is also referred to in the literature as Woodbury’s formula or the Sherman-

Morrison-Woodbury formula (GOLUB; LOAN, 2012; HAGER, 1989).

Thus, the expressions for R̄RRt and p̄ppt in Eqs. (4.15) and (4.16) can be developed,

respectively, as

R̄RRt = xxxtxxx>t +λ

t−1

∑
i=0

λ
t−i−1xxxixxx>i ,

= xxxtxxx>t +λ R̄RRt−1, (4.19)

and

p̄ppt = xxxtyt +λ

t−1

∑
i=0

λ
t−i−1xxxiyi,

= xxxtyt +λ p̄ppt−1. (4.20)

Considering the equalities AAA = R̄RRt , BBB = λ R̄RRt−1, CCC = xxxt and DDD = 1 in Eq. (4.19), defining SSSt , R̄RR−1
t

and applying the matrix inversion lemma of Eq. (4.18), one can write the expression

SSSt =
1
λ

(
SSSt−1−

SSSt−1xxxtxxx>t SSSt−1

λ + xxx>t SSSt−1xxxt

)
, (4.21)

with which it becomes possible to compute the inverse matrix of R̄RRt iteratively.

Therefore, the resulting RLS pseudo-code is summarized in Algorithm 7, where

a positive constant δ , weighting the identity matrix III, is required for the initialization of the

algorithm. According to Haykin (2013), a recommended choice of δ is that it should be small

compared to 0.01σ2
x , where σ2

x is the variance of xxxt .
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Notably, the convergence rate of the RLS algorithm is typically an order of magnitude

faster than the LMS algorithm (LIU et al., 2011). On the other hand, its performance is achieved

at the expense of a large increase in its computational complexity O(d2), since it propagates an

error-covariance matrix.

Algorithm 7: - Pseudo-code for the RLS algorithm.
Require: Set λ , δ ;

ŵww0 = 000, SSS0 = δ−1III, ppp0 = 000;
for t = 1,2, . . . do

SSSt =
1
λ

(
SSSt−1− SSSt−1xxxtxxx>t SSSt−1

λ+xxx>t SSSt−1xxxt

)
;

p̄ppt = λ p̄ppt−1 + xxxtyt ;
ŵwwt = SSSt p̄ppt ;
ŷt = ŵww>t xxxt ;
et = yt− ŷt ;

end for
Output wwwt .

For a more detailed analysis of the LMS and RLS algorithms and their main proper-

ties, such as convergence, stability, steady-state and transient behaviors, etc., one can consult the

references Haykin (2013), Diniz (2008), Bellanger (2001) and Farhang-Boroujeny (2013).

4.3 Kernel Adaptive Filtering

The most common existing approaches in the field of adaptive filtering focus on linear

models, due to their inherent simplicity in terms of concepts and implementations. However,

as previously mentioned, there are many real-world applications that require more expressive

hypothesis spaces than linear functions (LIU et al., 2011). In this sense, the KAF models have

dawned as suitable tools in solving nonlinear regression problems.

The general structure of a kernel adaptive filter system is illustrated in Fig. (7), where

the signals xxxt ∈Rd , nt , y′t and yt were already defined for the linear filter in Section 4.2. The cost

function of the kernel adaptive models is also based on the minimization of the MSE (as in the

linear case), but now the filter output is given by ŷt = www>t−1φφφ(xxxt), where φφφ(·) : Rd → Rdh is a

nonlinear map into a higher dimensional feature space, where the problem is linearly solvable

thanks to the kernel trick. Still, in Fig. (7), the learning algorithm denotes the technique for how

to search for the optimal solution, according to the cost function. Common choices for it are the

classical LMS and RLS algorithms, whose kernelized versions are treated below.
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Figure 7 – Basic configuration of a kernel adaptive filter system.

4.3.1 Kernel LMS Algorithm

If the mapping between the inputs xxxt’s and the corresponding outputs yt’s is nonlinear,

it is expected that the performance of the linear algorithms (e.g. the LMS algorithm) considerably

decreases. In order to overcome this limitation in the LMS algorithm, Liu et al. (2008) proposed

the Kernel LMS (KLMS) algorithm, which provides a sample-by-sample update for an adaptive

filter in RKHS.

The KLMS algorithm uses the gradient descent method to search for the optimal

solution, by minimizing the instantaneous cost function

Jwww(et) = e2
t

= ‖yt−www>t−1φφφ(xxxt)‖2, (4.22)

where et = yt −www>t−1φφφ(xxxt) is the prediction error at the time step t. Then, using the LMS

algorithm to update wwwt , one gets

wwwt = wwwt−1 +µetφφφ(xxxt). (4.23)

Note that the vector wwwt is of the same dimensionality dh as the map φφφ . However, this dimension-

ality dh is very high, and can be even infinite in the case of Gaussian kernel. Thus, although
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the KLMS algorithm uses the stochastic gradient in the training phase, as it is still an online

algorithm, it loses the original LMS simplicity due to the inability to work directly with the

weights in the RKHS (LIU et al., 2008). Then, it is necessary to have an alternative for carrying

out the iterative procedure. It is possible to repeatedly apply Eq. (4.23) as follows:

wwwt = wwwt−1 +µetφφφ(xxxt),

= (wwwt−2 +µet−1φφφ(xxxt−1))+µetφφφ(xxxt),

= wwwt−2 +µ(et−1φφφ(xxxt−1)+ etφφφ(xxxt)),

...

= www0 +µ

t−1

∑
n=1

enφφφ(xxxn),

= µ

t−1

∑
n=1

enφφφ(xxxn), (4.24)

assuming www0 = 000. Thus, the output ŷt of the KLMS algorithm for an input xxxt can be expressed by

ŷt = www>t φφφ(xxxt) =

[
µ

t−1

∑
n=1

enφφφ(xxxn)
>

]
φφφ(xxxt),

= µ

t−1

∑
n=1

en

[
φφφ(xxxn)

>
φφφ(xxxt)

]
. (4.25)

According to the kernel trick, the output in Eq. (4.25) can be computed in the input space by

kernel evaluations, such as

ŷt = µ

t−1

∑
n=1

enk(xxxn,xxxt). (4.26)

One should note in Eq. (4.26) that the present output is determined by the sum of all

the previous predicted errors weighted by the kernel evaluations on the previously received train-

ing inputs. Therefore, the KLMS algorithm creates a growing network, since their complexity

and memory storage increase linearly with each incoming sample. However, KLMS is a simple

recursive algorithm, whose computational complexity and memory demand are O(N), resulting

in reliable convergence without the hassles of local minima (POKHAREL et al., 2007). The

standard KLMS algorithm is summarized in Algorithm 8.

4.3.2 Kernel RLS Algorithm

Following the same line of a kernelized adaptive filter as the KLMS algorithm, the

Kernel RLS (KRLS) model, developed by Engel et al. (2004), can be understood as a technique
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Algorithm 8: - Pseudo-code for the KLMS algorithm.
Require: Set µ;

e1 = y1, ŷ1 = µe1;
for t = 2,3, . . . do

ŷt = µ ∑
t−1
n=1 enk(xxxn,xxxt);

et = yt− ŷt ;
end for
Output ŷt , et .

for performing the standard RLS algorithm in feature space. Therefore, the KRLS model is

capable of efficiently solving least squares prediction problems in a recursive and online manner.

This section discusses in detail, the KRLS overview, due to its importance for this thesis.

Firstly, consider a sequential stream Dt = {(xxx1,y1),(xxx2,y2), . . . ,(xxxt ,yt)} of input-

output training pairs. Then, the KRLS algorithm assumes a functional form f (xxxt) = φφφ
>(xxxt)www

and minimizes, at each instant t, the cost function

J(www) =
t

∑
i=1

(yi− f (xxxi))
2,

= ‖yyyt−ΦΦΦ
>
t www‖2, (4.27)

where φφφ(·) : Rd → Rdh , www ∈ Rdh , ΦΦΦt = [φφφ(xxx1), . . . ,φφφ(xxxt)] ∈ Rdh×t is a matrix storing all the

projected vectors and yyyt = [y1, . . . ,yt ]
> ∈ Rt is the vector of outputs. Ordinarily, the solution of

the minimization of J(www), in Eq. (4.27), with respect to www is given by

wwwt = argminwww‖yyyt−ΦΦΦ
>
t www‖2,

= (ΦΦΦ>t )
†yyyt , (4.28)

where (·)† is the pseudo-inverse matrix (see Eq. (2.30)).

As previously mentioned, the feature map φφφ may be of very high dimension, making

the manipulation of the matrix ΦΦΦt difficult, or even impracticable in some situations, such as

when using the Gaussian kernel. An alternative to overcome this problem is to express the

optimal vector wwwt as (ENGEL et al., 2004)

wwwt =
t

∑
i=1

αiφφφ(xxxi) = ΦΦΦtααα t , (4.29)

where ααα t = [α1, . . . ,αt ]
> ∈ Rt is a vector of coefficients. Because of its analogy with the vector

of Lagrange multipliers in SVR (Section 2.2) and LSSVR (Section 2.3) dual formulations, the

same symbol ααα to denote the vector of coefficients is used in this work. Thus, the cost function
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in Eq. (4.27) can be rewritten as

J(ααα t) = ‖yyyt−KKKtααα t‖2, (4.30)

where KKKt = ΦΦΦ
>
t ΦΦΦt is the kernel matrix built up the instant t, whose entries are calculated by a

kernel function as KKKt(i, j) = k(xxxi,xxx j). Theoretically, the analytic solution for the minimization

of J(ααα t) in Eq. (4.30) is given by ααα t = KKK−1
t yyyt . However, in order to avoid recomputation of

the inverse matrix KKK−1
t at each time step t, ααα t may be calculated recursively applying the RLS

algorithm.

Nevertheless, a problem arises in this sequential updating scenario. Each new incom-

ing pair (xxxt ,yt) must be incorporated into KKKt and yyyt , respectively, increasing their dimensions and,

by extension, increasing the complexity of the KRLS algorithm. An elegant way to overcome

this shortcoming, coping with limited resources of memory/computation for online operation

and requiring that the computational cost per sample does not necessarily increase with the size

of the dataset, involves the use of the sparsification procedure based on the approximate linear

dependency (ALD) criterion, introduced by Engel et al. (2002).

The basic idea behind online sparsification methods, especially the ALD criterion,

consists in, at any point in time, the model verifying and deciding whether to add the current

sample to its representation, or discard it (ENGEL et al., 2003). Then, one assumes that at

a time step t (2 ≤ t ≤ N), after having sequentially observed t− 1 training samples {xxxi}t−1
i=1,

one has collected a support vector (SV) dictionary comprised of a subset of training inputs

D sv
t−1 = {x̃xx j}mt−1

j=1 . The symbol ∼ is used from now on in this thesis to refer to the vectors and

matrices of the dictionary patterns.

When a new incoming sample xxxt is available, one must verify if φφφ(xxxt) is approxi-

mately linearly dependent on the dictionary vectors. If the test reveals that φφφ(xxxt) is independent

on the dictionary vectors, xxxt must be added to the dictionary. Thus, to test if a training vector

xxxt should be added or not to the dictionary, it is necessary to estimate a vector of coefficients

aaa = [a1, . . . ,amt−1]
> satisfying the ALD criterion

δt := min
aaa

∥∥∥∥∥mt−1

∑
m=1

amφφφ(x̃xxm)−φφφ(xxxt)

∥∥∥∥∥
2

≤ ν , (4.31)

where ν is the sparsity level parameter. Developing the minimization in Eq. (4.31) and using

k(xxxi,xxx j) = 〈φφφ(xxxi),φφφ(xxx j)〉, one can write

δt = min
aaa
{aaa>K̃KKt−1aaa−2aaa>k̃kkt−1(xxxt)+ ktt}, (4.32)
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where K̃KKt−1 ∈ Rmt−1×mt−1 is the kernel matrix calculated with the dictionary samples, k̃kkt−1(xxxt) ∈

Rmt−1 and ktt = k(xxxt ,xxxt) ∈ R. The (i, j)-th entry of K̃KKt−1 is computed as [K̃KKt−1]i, j = k(x̃xxi, x̃xx j),

while the i-th component of k̃kkt−1(xxxt) is computed as (k̃kkt−1(xxxt))i = k(x̃xxi,xxxt), for i, j = 1, . . . ,mt−1.

The solution of Eq. (4.32) is given by

aaat = K̃KK−1
t−1k̃kkt−1(xxxt), (4.33)

for which one gets

δt = ktt− k̃kkt−1(xxxt)
>aaat ≤ ν . (4.34)

If otherwise δt > ν , the current dictionary must be expanded by adding xxxt . Thus, D sv
t =

D sv
t−1∪{xxxt} and mt = mt−1 +1.

From the above exposed and from Engel et al. (2004), it is possible to rewrite the

problem of Eq. (4.30) as

J(α̃αα t) = ‖yyyt−AAAtK̃KKtα̃αα t‖2, (4.35)

where AAAt = [aaa1 aaa2 . . . aaat ]
> ∈ Rt×mt and α̃αα t ∈ Rmt is a reduced vector of mt coefficients. Thus,

the optimal solution vector α̃αα t , which is searched by computing the gradient vector ∇α̃ααt J(α̃αα t) =

∂J(α̃αα t)/∂ α̃αα t and equaling it to zero, is given by

α̃αα t = K̃KK−1
t (AAA>t AAAt)

−1AAA>t yyyt . (4.36)

By defining a matrix PPPt as

PPPt = (AAA>t AAAt)
−1, (4.37)

one finally gets

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt . (4.38)

The next step requires the iterative computation of the inverse matrices in Eqs. (4.37)

and (4.38) to estimate the vector α̃αα t . For this purpose, there are two possible situations, which

are described below.

4.3.2.1 Case 1 - Unchanged Dictionary

In this case, δt ≤ ν , meaning that φφφ(xxxt) is approximately linearly dependent on the

dictionary vectors. Hence, xxxt is not added to the dictionary and the kernel matrix is not changed.

Mathematically, D sv
t = D sv

t−1 and K̃KKt = K̃KKt−1.
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Since aaat needs to be computed by Eq. (4.33) to determine δt , the matrix AAAt is

iteratively built by inclusion of aaat , i.e. AAAt = [AAA>t−1 aaat ]
>. Therefore, AAA>t AAAt = AAA>t−1AAAt−1 +aaataaa>t .

Then, one can use the standard RLS algorithm based on the matrix inversion lemma (see

Eq. (4.18)) to recursively compute the matrix PPPt as

PPPt = (AAA>t AAAt)
−1 = PPPt−1−

PPPt−1aaataaa>t PPPt−1

1+aaa>t PPPt−1aaat
. (4.39)

A gain vector qqqt is defined as

qqqt =
PPPt−1aaat

1+aaa>t PPPt−1aaat
, (4.40)

and consequently

PPPt = PPPt−1−qqqtaaa
>
t PPPt−1. (4.41)

Finally, using the fact that AAA>t yyyt = AAA>t−1yyyt−1+aaatyyyt , the KRLS update rule for α̃αα t can

be written by

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt ,

= K̃KK−1
t (PPPt−1−qqqtaaa

>
t PPPt−1)(AAA>t−1yyyt−1 +aaatyt),

= α̃αα t−1 + K̃KK−1
t (PPPtaaatyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t (qqqtyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t qqqt(yt− k̃kkt−1(xxxt)

>
α̃αα t−1), (4.42)

where the last equalities are based on qqqt = PPPtaaat and k̃kkt−1(xxxt) = K̃KKtaaat .

4.3.2.2 Case 2 - Updating the Dictionary

In this case, one gets δt > ν , i.e. the projection of the current input vector cannot be

written as a linear combination of the projections of the support vectors in the dictionary. This

implies that xxxt must be added to the dictionary, i.e. D sv
t = D sv

t−1∪{xxxt} and mt = mt−1 +1. As a

consequence of this inclusion, the kernel matrix must be updated accordingly.

The challenge here is to compute K̃KKt (and hence K̃KK−1
t ) recursively using K̃KKt−1 and

the information provided by the new sample. For this purpose, based on Golub and Loan (2012),

one computes the matrices K̃KKt and K̃KK−1
t as

K̃KKt =

 K̃KKt−1 k̃kkt−1(xxxt)

k̃kkt−1(xxxt)
> ktt

 , (4.43)
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and

K̃KK−1
t =

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 . (4.44)

Consider that, for Case 2, not only does the dimension of the kernel matrix K̃KKt

increases due to the inclusion of sample xxxt in the dictionary, but also the dimensions of the

matrices AAAt and PPPt . Hence, one can write

AAAt =

 AAAt−1 000

000> 1

 , (4.45)

AAA>t AAAt =

 AAA>t−1AAAt−1 000

000T 1

 , (4.46)

and

PPPt = (AAA>t AAAt)
−1 =

 PPPt−1 000

000> 1

 , (4.47)

where 000 is a vector of zeros. Then, Eqs. (4.44)-(4.47) are used to calculate α̃αα t as

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt ,

= K̃KK−1
t

 (AAA>t−1AAAt−1)
−1AAA>t−1yyyt−1

yt

 ,
=

 α̃αα t−1− aaat
δt
(yt− k̃kkt−1(xxxt)

>α̃αα t−1)

1
δt
(yt− k̃kkt−1(xxxt)

>α̃αα t−1)

 , (4.48)

where for the final equality one uses aaa>t K̃KKt−1 = k̃kkt−1(xxxt)
>. Since the parameter vector α̃αα t has

been updated, the sparse solution for the KRLS model is given by

ŷt = f (xxx) =
mt

∑
m=1

α̃mk(xxx,xxxm) = k̃kkmt (xxx)
>

α̃αα t . (4.49)

As a final remark, the computational complexity of the KRLS algorithm is bound

by O(m2
t ) and its memory demand is O(Nmt). The KRLS pseudo-code is summarized in

Algorithm (9).
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Algorithm 9: - Pseudo-code for the KRLS model.
Require: ν ,σ (for Gaussian kernel);

Set: K̃KK1 = k11; K̃KK−1
1 = 1/K̃KK1; PPP1 = 1; α̃αα1 = y1/k11; AAA1 = 1; m1 = 1;

for t = 2 : N, do
Get new sample (xxxt ,yt) and compute k̃kkt−1(xxxt);
aaat = K̃KK−1

t−1k̃kkt−1(xxxt);
δt = ktt− k̃kkt−1(xxxt)

>aaat ;
if δt > ν then

D sv
t = D sv

t−1∪{xxxt}; % add xxxt to the dictionary

Compute K̃KK−1
t from Eq. (4.44);

Compute PPPt from Eq. (4.47);
Compute α̃αα t from Eq. (4.48);
mt = mt−1 +1;

else
D sv

t = D sv
t−1; % unchanged dictionary

Compute qqqt from Eq. (4.40);
Compute PPPt from Eq. (4.41);
Compute α̃αα t from Eq. (4.42);

end if
end for
Output α̃αα t , D sv

t .

4.4 Other Sparsification Criteria

As discussed in Section 4.3.2, the ALD criterion corresponds to an online construc-

tive sparsification procedure. This means that the algorithm starts with an empty representation,

in which, initially, there are no coefficients, and gradually adds input samples to the dictionary

according to some criterion. On that note, there are several sparsification techniques available in

the literature to obtain sparse solutions in kernel adaptive filters. Among them, the following

should be noted:

1. Novelty Criterion - The novelty criterion (NC) was proposed by Platt (1991) in order to

find a compact representation for resource-allocating networks. It corresponds to a simple

procedure that, first, computes the distance of the present input sample xxxt to the dictionary,

such as

dis1 = min
xxx j∈D sv

t−1

‖xxxt− xxx j‖, (4.50)

where D sv
t−1 is the dictionary built up the time step t− 1. Then, if dist1 < δ1, the input

xxxt should not be added to the dictionary. Otherwise, one computes the prediction error

et = yt− ŷt and, only if |et |> δ2, xxxt should be accepted for the dictionary. The parameters
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δ1 and δ2 should be previously selected.

2. Coherence Criterion - The coherence parameter was introduced as a quantity of heuristic

for matching pursuit (MALLAT; ZHANG, 1993). Later, Richard et al. (2009) proposed a

coherence criterion to control the number of selected inputs in kernel models as well as

limiting the size of the kernel matrix. Mathematically, the coherence parameter is defined

as

δc = max
i 6= j
|k(xxxi,xxx j)|, (4.51)

where, in this case, k(·) is a unit-norm kernel function1, that is, k(xxxi,xxxi) = 1 for all value

of i. The parameter δc is the largest absolute value of the off-diagonal entries in the

kernel matrix, which reveals the largest cross-correlations in the dictionary. Therefore, this

criterion suggests that an input xxxt be inserted in the dictionary if its coherence remains

below a certain threshold δ0, given by (RICHARD et al., 2009)

max
xxx j∈D sv

t−1

|k(xxxt ,xxx j)| ≤ δ0, (4.52)

where 0≤ δ0 < 1 determines both the level of sparsity and the coherence of the dictionary

D sv
t−1 up the step t−1. At a time step t, if k(·,xxxt) satisfies the condition of Eq. (4.52), then

xxxt should be introduced into the dictionary, which becomes D sv
t = D sv

t−1∪{xxxt}.

3. Surprise Criterion - Recently, Liu et al. (2009a) developed an information theoretic

measure called surprise. The concept of surprise quantifies how much information an

input pattern contains relative to the current knowledge of the learning system (LIU et al.,

2011). According to Liu et al. (2009a), the surprise of a pair (xxx,y), denoted by ST (xxx,y),

is defined as the negative log likelihood (NLL) of the input-output pair, given the learning

system’s hypothesis on the data distribution

ST (xxx,y) =− ln p(xxx,y |T ), (4.53)

where p(xxx,y |T ) is the subjective probability of (xxx,y) hypothesized by T . One can say

that ST measures how “surprising" an input-output pair is to the learning system. The

definition in Eq. (4.53) can be used in the context of online learning problems, where the

surprise of (xxxt ,yt) to the current learning system Tt−1 is given by

STt−1(xxxt ,yt) =− ln p(xxxt ,yt |Tt−1), (4.54)
1If k(·) is not a unit-normal kernel, k(xxxi,xxx j) can be replaced by k(xxxi,xxx j)/

√
k(xxxi,xxxi)k(xxx j,xxx j).
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where p(xxxt ,yt |Tt−1) is the a posterior distribution of (xxxt ,yt) hypothesized by Tt−1.

Based on Gaussian Processes Regression (GPR) theory (RASMUSSEN; WILLIAMS,

2006), denoting St = STt−1(xxxt ,yt) for simplicity, and assuming Tt−1 = {xxxi,yi}t−1
i=1, the

surprise measure is computed as (LIU et al., 2009a)

St = − ln[p(xxxt ,yt |Tt−1)],

= lnσt +
(yt− ȳt)

2

2σ2
t
− ln[p(xxxt , |Tt−1)]+ ln

√
2π, (4.55)

where σt is the predicted variance and ȳt is the maximum a posteriori (MAP) estimation of

yt by the current learning system Tt−1.

In general, one can say that there are similar features between some of the above

mentioned sparsification methods. For instance, according to Liu et al. (2009a), the coherence

criterion can be viewed as an approximation to ALD. Moreover, under a memoryless uniform

input assumption, the surprise criterion becomes the ALD criterion. Therefore, the ALD criterion

is a special case of the surprise criterion (LIU et al., 2009a; LIU et al., 2011).

Finally, it is important to note that the above mentioned sparsification criteria, as

well as the ALD, can be generally applied to the KLMS, KRLS and other kernel-based and

online models to obtain sparse solutions. The next section briefly explains some of other online

kernel-based models.

4.5 Other Online Kernel Models

The KLMS and KRLS are the most common recursive algorithms used as kernel

adaptive filters. However, some other approaches have been developed as efficient nonlinear

extensions of simple linear filtering algorithms. Particularly, the Kernelized Affine Projection

Algorithms (KAPA) were presented by Liu and Príncipe (2008) to reformulate the conventional

Affine Projection Algorithms (APA) (SAYED, 2003) in RKHS.

As in the LMS case, the APA are simple and online, but they reduce the gradient

noise using instantaneous approximations from a window comprised of the L most recent inputs

and respective outputs as

XXX t = [xxxt−L+1, . . . ,xxxt ],

yyyt = [yt−L+1, . . . ,yt ],
(4.56)

where XXX t ∈ Rd×L is the input matrix and yyyt ∈ RL is the vector of outputs. From the steepest
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descent method in Eq. (4.10), which is repeated here for greater clarity

wwwt+1 = wwwt +µ(p̂ppt− R̂RRtwwwt), (4.57)

where, for simplicity, the factor 2 in Eq. (4.6) was inserted in the step-size parameter µ . Thus,

assuming

R̂RRt =
1
L

XXX tXXX>t , (4.58)

for the input correlation matrix, and

p̂ppt =
1
L

XXX tyyyt , (4.59)

for the cross-correlation vector, Eq. (4.57) becomes

wwwt+1 = wwwt +µXXX t(yyyt−XXX>t wwwt). (4.60)

The recursion expression in Eq. (4.60) is called the APA-1 . A similar procedure can be performed

using the regularized Newton’s recursion method (DINIZ, 2008), which is given by

wwwt+1 = wwwt +µ(RRRt + γ0III)−1(p̂ppt− R̂RRtwwwt), (4.61)

where γ0 is a regularization parameter. Again, using the equalities in Eqs. (4.58) and (4.59), and

the matrix inversion lemma, Eq. (4.61) becomes

wwwt+1 = wwwt +µXXX t(XXX>t XXX t + γ0III)−1(yyyt−XXX twwwt), (4.62)

which is called the APA-2.

In some circumstances, instead of using the instantaneous squared error as the cost

function (see Eq. (4.7)), a regularized version of the least squares (LS) problem is necessary,

which is given by

Jwww(et) = e2
t + γ‖www‖2, (4.63)

where the regularization parameter γ is different from γ0 of Newton’s method. Then, the gradient

method in Eq. (4.57) can be rewritten as

wwwt+1 = wwwt +µ[p̂ppt− (γIII + R̂RRt)wwwt ],

= (1−µγ)wwwt +µ[p̂ppt− R̂RRtwwwt ]. (4.64)
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Likewise, the Newton’s recursion in Eq. (4.61), with γ0 = 0, becomes

wwwt+1 = wwwt +µ(γIII +RRRt)
−1[p̂ppt− (γIII + R̂RRt)wwwt ],

= (1−µ)wwwt +µ(γIII +RRRt)
−1 pppt . (4.65)

Applying the approximations in Eqs. (4.58)-(4.59) and again the matrix inversion lemma, one

can write Eqs. (4.64) and (4.65), respectively, as

wwwt+1 = (1−µγ)wwwt +µXXX t [yyyt−XXX>t wwwt ], (4.66)

and

wwwt+1 = (1−µ)wwwt +µXXX t [γIII +XXX>t XXX t ]
−1yyyt . (4.67)

The recursive expressions in Eqs. (4.66) and (4.67) are called the APA-3 and APA-4, respectively.

In general, the APA family (APA-1, APA-2, APA-3 and APA-4) of linear filters ap-

pears as intermediate complexity algorithms between the standard LMS and RLS algorithms (LIU

et al., 2011).

Regarding the discussion above and based on the same methodology outlined for

the KLMS algorithm, it is possible to transform the input data into the feature space through

the nonlinear map φφφ and applying the kernel trick. This procedure gives rise to the KAPA

family (LIU; PRÍNCIPE, 2008). Thereby, one formulates the affine projection algorithms on the

sequences {y1,y2, . . .} and {φφφ(xxx1),φφφ(xxx2), . . .} to estimate the weight vector www that minimizes

the cost function

Jwww(et) = ‖yt−www>φφφ(xxxt)‖2, (4.68)

as seen in Eq. (4.22). Then, by straightforward manipulation, one can rewrite Eqs. (4.60)

and (4.62), respectively, as

wwwt+1 = wwwt +µΦΦΦt(yyyt−ΦΦΦ
>
t wwwt), (4.69)

and

wwwt+1 = wwwt +µΦΦΦt(ΦΦΦ
>
t ΦΦΦt + γ0III)−1(yyyt−ΦΦΦ

>
t wwwt), (4.70)

where ΦΦΦt = [φφφ(xxxt−L+1), . . . ,φφφ(xxxt)]. The recursive expressions in Eqs. (4.69) and (4.70) corre-

spond to the Kernel APA-1 (KAPA-1) and Kernel APA-2 (KAPA-2), respectively.
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Algorithm Recursive Equation Relation to KAPA

KLMS wwwt+1 = wwwt +µφφφ t(yt−φφφ
>
t wwwt) KAPA-1 (L = 1)

NKLMS wwwt+1 = wwwt +
µφφφ t

ktt+γ0
(yyyt−φφφ

>
t wwwt) KAPA-2 (L = 1)

Norma wwwt+1 = (1−µγ)wwwt +µφφφ t [yt−φφφ
>
t wwwt ] KAPA-3 (L = 1)

Kernel ADALINE wwwt+1 = wwwt +µΦΦΦ(yyy−ΦΦΦ
>wwwt) KAPA-1 (L = N)

RA-RBF wwwt+1 = µΦΦΦ[yyy−ΦΦΦ
>wwwt ] KAPA-3 (L = N, µγ = 1)

SW-KRLS wwwt+1 = ΦΦΦt [γIII +ΦΦΦ
>
t ΦΦΦt ]

−1yyyt KAPA-4 (µ = 1)

RegNet wwwt+1 = ΦΦΦ[γIII +ΦΦΦ
>

ΦΦΦ]−1yyy KAPA-4 (L = N, µ = 1)

Table 4 – List of kernel adaptive algorithms related to the KAPA family - adapted from Liu and
Príncipe (2008).

Accordingly, Eqs. (4.66) and (4.67) become

wwwt+1 = (1−µγ)wwwt +µΦΦΦt [yyyt−ΦΦΦ
>
t wwwt ], (4.71)

and

wwwt+1 = (1−µ)wwwt +µΦΦΦt [γIII +ΦΦΦ
>
t ΦΦΦt ]

−1yyyt . (4.72)

The expressions in Eq. (4.71) and (4.72) are the KAPA-3 and KAPA-4 , respectively.

As observed, the KAPA family corresponds to a stochastic gradient methodology

to solve the LS problem in RKHS. According to Liu and Príncipe (2008), their performance is

somewhere between the KLMS and KRLS models, which is specified by the window length

L. Similar approaches to the KAPA were discussed in Richard et al. (2009), Slavakis and

Theodoridis (2008) from different perspectives.

As a final remark, an interesting feature of the KAPA family is that it provides an

unifying model for several existing neural networks techniques and kernel adaptive filters (LIU

et al., 2011), as shown in Table 4, which summarizes all the above related algorithms. In this

table one assumes, for simplicity, that φφφ t = φφφ(xxxt), ΦΦΦ = [φφφ(xxx1), . . . ,φφφ(xxxN)] and ktt = k(xxxt ,xxxt).

It is possible to see in Table 4 that, for example, if the window length in KAPA-1 is

unitary L = 1, it reduces to the original KLMS (LIU et al., 2008). Also with L = 1, a normalized

version of KLMS (NKLMS) (MODAGHEGH et al., 2009) is obtained from KAPA-2 and,

similarly, KAPA-3 reduces to the Norma algorithm, introduced by Kivinen et al. (2004).
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Assuming that the window length includes all the available training samples (L = N),

the update rule of KAPA-1 becomes the kernel ADALINE algorithm (FRIESS; HARRISON,

1999). On the other hand, if one sets L = N and µγ = 1, the update expression of KAPA-3

becomes the same recursively adapted radial basis function (RA-RBF) network, introduced

by Liu et al. (2007). Likewise, if L = N and µ = 1, KAPA-4 directly becomes the regularization

network (RegNet) (GIROSI et al., 1995). One should note that ADALINE, RA-RBF and RegNet

are kernel models but they are not online methods. Finally, in KAPPA-4 with µ = 1, one gets the

sliding-window kernel RLS (SW-KRLS), introduced by Vaerenbergh et al. (2006), Vaerenbergh

et al. (2007).

4.6 Concluding Remarks

This chapter has presented a general framework of the kernel adaptive filtering

algorithms for nonlinear signal processing problems. This field of machine learning consists

of applying the kernelization philosophy to linear adaptive filters in order to produce powerful

online and nonlinear extensions of the well-known linear filter algorithms, such as the LMS and

RLS algorithms.

Initially, a brief review of the LMS and RLS adaptive algorithms was presented, for

further understanding of their nonlinear kernel extensions. The LMS algorithm uses the steepest

descent method as the adaptive rule to minimize the instantaneous squared error. Despite its

simplicity and low computational complexity O(d), its rate of convergence is relatively slow.

On the other hand, the RLS algorithm minimizes the sum of squared errors up to actual instant t.

Therefore, its rate of convergence is one order of magnitude faster than the LMS algorithm, and

the achieved training MSE value is, in general, lower than that obtained by the LMS algorithm.

However, the RLS computational complexity O(d2) is typically large, since it needs to propagate

the error-covariance matrix.

This chapter also discussed two of the most important kernel adaptive filtering

models, namely the KLMS and KRLS models, which are nonlinear versions of their equivalent

linear filters. The KLMS algorithm solves the least squares problem in the feature space,

implying that the gradient search is on a smooth quadratic performance surface. Unlike most

kernel methods, the KLMS algorithm does not need to built large kernel matrices because it uses

the input patterns one at a time. However, it creates a growing network because it uses all the

past training instances to compute the actual output. Its computational complexity and memory
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demand are O(N).

In addition, the KRLS algorithm corresponds to the performance of the linear RLS

algorithm in feature space. In order to limit the growth of the computational complexity with

a new incoming input sample, it applies a sparsification procedure, called the ALD criterion,

which verifies if an actual input sample is approximately linearly dependent on the dictionary,

which is formed by a reduced amount of input patterns acting as support vectors. Because of that,

the computational complexity of the KRLS model is O(m2
t ) and its memory demand is O(Nmt).

Finally, a few comments about other sparsification methods (different from the ALD

criterion) were presented, which are usual alternatives for kernel online models to achieved

sparse solutions. The sparsification methods that were commented are novelty criterion (NC),

coherence and surprise criterion. Besides that, a brief discussion was also presented about some

other kernel adaptive models, in particular, the Kernel Affine Projection Algorithms (KAPA). In

general, the KAPA family has features, such as performance and rate of convergence, between

the standard KLMS and KRLS models.

In the next chapter, the contributions of this thesis will be developed. Specifically,

novel robust kernel-based models, in batch mode, will be presented and derived from the LSSVR

and FS-LSSVR models.
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5 NOVEL ROBUST KERNEL-BASED MODELS IN BATCH MODE

“I haven’t failed.

I’ve just found 10,000 ways that won’t work.”

(Thomas Edison)

This chapter presents the first part of the contributions of this thesis, which are robust

kernel methods derived from the LSSVR and FS-LSSVR models, and are also based on the

M-estimators theory. Section 5.1 discusses the motivation in developing the novel proposals.

Next, Section 5.2 presents the first proposed robust approach, called the RLM-SVR model,

whose formulation is derived from the standard LSSVR formulation (solved in dual space).

The corresponding computational experiments using the RLM-SVR model are also presented

and discussed in Section 5.2. Then, Section 5.3 presents two novel robust approaches, the

RFS-LSSVR and R2FS-LSSVR models, which are derived from the original FS-LSSVR model

(solved in primal space). Section 5.3 also discusses the obtained results by computational

experiments using the RFS-LSSVR and R2FS-LSSVR proposals. Finally, Section 5.4 gives the

closing remarks of the chapter.

5.1 Introduction

The LSSVR model stands for a powerful alternative kernel method to the original

Vapnik’s SVR model. As discussed in detail in Chapter 2, learning in LSSVR relies on a SSE

cost function and equality constraints instead of the typical quadratic programming problem

in SVR, which on its turn is complex and time-consuming, demanding high computational

resources for its implementation. A global optimal solution for the LSSVR problem is simpler

to obtain since it requires only a set of linear equations, which can be solved by least squares

procedure, using the Moore-Penrose inverse matrix in batch mode, i.e., all the available pattern

samples are stored in computer memory during the training phase.

However, despite its computationally attractive feature, the LSSVR model has some

potential limitations, specially for large-scale datasets. The first one is the lack of sparsity in the

solution vector, implying that all training examples will be used as support vectors to make new

predictions. The second drawback is that the optimality of the SSE cost functions, in the sense

of obtain unbiased solutions with minimal variances, is guaranteed only for normally distributed

errors. Then, the performance of the LSSVR solution may be considerably affected when the
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estimation data is corrupted with non-Gaussian noise, e.g. outliers (SUYKENS et al., 2002a).

In order to properly handle outliers, some authors have developed strategies to

robustify the standard LSSVR model for nonlinear regression applications. A first work in this

area was proposed by Suykens et al. (2002a), who presented a robust weighted version of the

LSSVR model (W-LSSVR) based on weighted least squares algorithm and M-estimators. Later,

an iteratively reweighting procedure was applied into the W-LSSVR approach giving rise to the

iteratively reweighted LSSVR (IR-LSSVR) model (DE-BRABANTER et al., 2009b). A brief

discussion on both W-LSSVR and IR-LSSVR robust approaches was presented in Chapter 3.

In essence, while these robust variants modify the original LSSVR loss function to

penalize large errors, they still rely on the LS procedure (using Moore-Penrose inverse matrix)

to provide a solution for the resulting linear system. In this scenario, we introduce a different

approach to add outlier robustness to the original LSSVR model in dual space. Instead of

modifying its loss function, we decide to solve the resulting LSSVR linear system for the

parameter estimation by using the recursive least M-estimate (RLM) algorithm (ZOU et al.,

2000), which is a robust variant (based on the M-estimators) of the standard RLS algorithm. Our

proposed approach, referred to as the Recursive Least M-estimate Support Vector Regression

(RLM-SVR) model, updates recursively the vector of Lagrange multipliers and the corresponding

bias for each input sample. We are strongly inclined to think that this recursive procedure can

improve the performance of the model solution in the presence of outliers.

As before mentioned, besides the performance decay in the presence of non-Gaussian

noise, non-sparsity is another limiting factor to use the LSSVR model in some modeling

applications as, for example, those requiring large amounts of data. An attractive alternative

to overcome this aspect is solving the LSSVR optimization problem in the primal space, by

applying an approximation for the nonlinear map φφφ using the Nyström method (WILLIAMS;

SEEGER, 2001), which corresponds to the FS-LSSVR model, properly discussed in Chapter 2.

Even though being widely used to solve static (DE-BRABANTER et al., 2010;

MALL; SUYKENS, 2015) and dynamical (ESPINOZA et al., 2005; ESPINOZA et al., 2004;

DE-BRABANTER et al., 2009a; CASTRO et al., 2014; LE et al., 2011; ESPINOZA et al., 2006)

regression problems, the FS-LSSVR model is still sensitive to the presence of outliers, as in the

standard (dual space) LSSVR case, and the development of robust strategies for its solution is

still an open issue.

From the discussion above, we also propose in this chapter two robust approaches
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derived from the original FS-LSSVR model, which are based on the M-estimators and the

weighted least squares algorithm. Following the same line of reasoning of the W-LSSVR and

IR-LSSVR models in dual space, we present a theoretical development which corresponds to

their versions for the FS-LSSVR model in primal space. The proposed approaches, henceforth

called the Robust FS-LSSVR (RFS-LSSVR) and Reweighted Robust FS-LSSVR (R2FS-LSSVR)

models, keep the same sparsity and computational complexity of the FS-LSSVR model, do not

require extra parameters for tuning and can also handle system identification problems with

large-scale data.

5.2 Proposed Robust Approach in Dual Space

Initially, we address again the standard LSSVR model, whose main steps of its

formulation are repeated here for a better understanding of our proposal. Thus, consider the

training dataset D = {xxxn,yn}N
n=1, with inputs xxxn ∈ Rd and corresponding outputs yn ∈ R. In a

nonlinear regression problem, the function f (·) to be searched (as established by Eq. (2.13)),

that approximates the outputs yn for all available input instances xxxn, is given by

f (xxxn) = www>φφφ(xxxnnn)+b, (5.1)

where www ∈ Rdh , b ∈ R and φφφ(·) : Rd → Rdh were already defined.

The formulation of the LSSVR primal optimization problem leads to minimize the

following functional:

min
www,b,eee

Jp(www,eee) =
1
2
‖www‖2 + γ

1
2

N

∑
n=1

e2
n, (5.2)

subject to
{

yn = www>φφφ(xxxn)+b+ en, for n = 1, . . . ,N, (5.3)

as already seen in Eqs. (2.21) and (2.22), where en = yn− f (xxxn) is the n-th error.

Mostly, the problem in Eqs. (5.2)-(5.3) can be solved by constructing the Lagrangian,

making it possible to rewrite the primal optimization problem in dual space as

L (www,b,eee,ααα) := Jp(www,eee)−
N

∑
n=1

αn[www>φφφ(xxxn)+b+ en− yn],

=
1
2
‖www‖2 + γ

1
2

N

∑
n=1

e2
n−

N

∑
n=1

αn[www>φφφ(xxxn)+b+ en− yn]. (5.4)



97

Then, the solution of Eq. (5.4) can be obtained by the KKT conditions for optimality, and by

solving the following linear system of N +1 equations: 0 111>N

111N KKK + γ−1IIIN


︸ ︷︷ ︸

ΩΩΩ

b

ααα


︸︷︷ ︸

αααo

=

0

yyy


︸︷︷︸

yyyo

, (5.5)

where yyy = [y1, . . . ,yN ]
>, ααα = [α1, . . . ,αN ]

> and KKK ∈ RN×N is the kernel matrix. The solution of

Eq. (5.5) is computed using Eq. (2.30) as

αααo = ΩΩΩ
†yyyo, (5.6)

where ΩΩΩ
† = (ΩΩΩ>ΩΩΩ)−1ΩΩΩ

>.

5.2.1 The RLM-SVR Model

From now on, instead of modifying the LSSVR cost function by inserting a weighting

procedure, as done for the W-LSSVR and IR-LSSVR models, the proposed RLM-SVR approach

works with the same standard LSSVR formulation in Eqs. (5.2) and (5.3). Therefore, the starting

point for developing the RLM-SVR model is the previous linear system of Eq. (5.5) in dual

space, simply expressed by ΩΩΩαααo = yyyo.

The RLM-SVR model proposes a recursive estimation of the model solution αααo,

which encompasses the vector of Lagrange multipliers ααα and the bias b, instead of using the

batch mode procedure of Eq. (5.6). Hence, we consider the matrix ΩΩΩ as an array of column

vectors expressed by ΩΩΩ = [ωωω1| . . . |ωωωn| . . . |ωωωN+1] ∈ R(N+1)×(N+1), where ωωωn ∈ RN+1 denotes

the n-th input vector. Then, for each value of n = 1, . . . ,N +1, we should compute ααα
r(n)
o , which

is a robust version of αααo, after the presentation of the n-th input vector ωωωn, whose corresponding

output is y(n)o .

In order to robustify the RLM-SVR solution against the hostile effect of outliers,

we decide to apply a linear, robust and recursive algorithm to update ααα
r(n)
o . The chosen option

was the RLM algorithm, presented by Zou et al. (2000), which is based on the M-estimators

theory and is derived from the RLS algorithm. Because of that, the RLM features, such as initial

convergence, steady-state error and computational complexity, are similar to the ones of the RLS

algorithm in the Gaussian noise cases (ZOU et al., 2000).

Different from the SSE cost function of the RLS algorithm (see Eq. (4.11)), the
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resulting cost function for the RLM algorithm is given by

Jρ(en) =
n

∑
i=0

λ
n−i

ρ(ei), (5.7)

where 0� λ < 1 is the forgetting factor and ρ(·) is an M-estimate function. In this case, the

Hampel’s three-part function (ROUSSEEUW; LEROY, 1987) was originally adopted by Zou et

al. (2000) for the RLM algorithm, and is computed by

ρ(en) =



e2
n
2 0≤ |en|< ι1,

ι1|en|−
ι2
1
2 ι1 ≤ |en|< ι2,

ι1
2 (ι3 + ι2)−

ι2
1
2 + ι1

2
(|en|−ι3)

2

ι2−ι3
ι2 ≤ |en|< ι3,

ι1
2 (ι3 + ι2)−

ι2
1
2 |en| ≥ ι3,

(5.8)

where ι1, ι2 and ι3 are threshold parameters that need to be estimated continuously. In order

to obtain 95% of confidence to down weight the error signal in the interval [ι1, ι2], 97.5% of

confidence to down weight the error in the interval [ι2, ι3], and 99% of confidence to reject it

when |en|> ι3, these thresholds are determined as ι1 = 1.96σ̂n, ι2 = 2.24σ̂n and ι3 = 2.576σ̂n,

where σ̂n is the standard deviation of the “impulse-free" estimation error, which is treated below.

Since the distribution of the signal error eee = {en}N+1
n=1 is in general unknown, one

assumes, for simplicity, that it is Gaussian distributed possibly corrupted with some impulsive

noise. Thus, according to Zou et al. (2000), the error variance σ2
n at the step n is estimated as

follows:

σ̂
2
n = λeσ̂

2
n−1 + c(1−λe)med(Fn), (5.9)

where 0� λe≤ 1 is a forgetting factor, med(·) is the median operator and Fn = {e2
n,e

2
n−1, . . . ,e

2
n−Nw+1}.

Moreover, Nw is the fixed window length for the median operation and c= 1.483(1+5/(Nw−1))

is the estimator’s correction factor.

In order to search for the optimal solution in Eq. (5.7), it is necessary to compute the

gradient vector, ∇∇∇
ααα

r(n)
o

Jρ(en) = ∂Jρ(en)/∂ααα
r(n)
o , and set it to zero. Then, in a similar procedure

to the RLS algorithm in Eq. (4.17), one gets

ααα
r(n)
o = (R(n)

ρ )−1p(n)
ρ , (5.10)

with

RRR(n)
ρ =

n

∑
i=0

λ
n−iv(ei)ωωω iωωω

>
i , (5.11)

ppp(n)ρ =
n

∑
i=0

λ
n−iv(ei)y

(i)
o ωωω i, (5.12)
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where R(n)
ρ ∈ R(N+1)×(N+1) and p(n)

ρ ∈ RN+1 are called the M-estimate correlation matrix of ωωωn

and the M-estimate cross-correlation vector of ωωωn and y(n)o , respectively. The weights v(ei) are

computed according to the M-estimate function as v(ei) = ψ(ei)/ei, where ψ(ei) = dρ(ei)/dei

is the score function, as discussed in Section 3.2.

Then, in order to solve Eq. (5.10) for the RLM-SVR model, it is necessary to compute

the inverse matrix (RRR(n)
ρ )−1 recursively. This is obtained by defining SSS(n)ρ = (RRR(n)

ρ )−1 and applying

the matrix inversion lemma (Eq. (4.18)), as done for the RLS algorithm (see Section 4.2.3), such

as

SSS(n)ρ = λ
−1(IIIN+1−gggnωωω

>
n )SSS

(n−1)
ρ , (5.13)

where gggn ∈ RN+1 is the M-estimate gain vector, defined by

gggn =
v(en)SSS

(n−1)
ρ ωωωn

λ + v(en)ωωω>n SSS(n−1)
ρ ωωωn

. (5.14)

Then, the RLM-SVR robust solution at each step n is computed as

ααα
r(n)
o = ααα

r(n−1)
o +(y(n)o −ωωω

>
n ααα

r(n−1)
o )gggn. (5.15)

Therefore, the RLM-SVR model corresponds to sequentially applying the adaptive

Eqs. (5.13), (5.14) and (5.15). One should note that its computational complexity is O(N3) and

its memory demand is O(N2), which are the same ones of the standard LSSVR, W-LSSVR and

IR-LSSVR models.

As a final remark, it is known that the maximum number of iterations in RLM-SVR

model is N + 1, which corresponds to vanish the whole training dataset. However, it may be

necessary to cycle over the data samples Ne > 1 times in order to ensure the convergence of the

algorithm. The resulting RLM-SVR pseudo-code is summarized in Algorithm 10, where δ is a

pre-established positive parameter, similar to the one defined for the RLS algorithm.

5.2.2 Computational Experiments

In this section, we report and discuss the results of comprehensive computer sim-

ulations involving the application of the proposed RLM-SVR approach to nonlinear system

identification tasks in the presence of outliers. For the sake of completeness, we compare the

RLM-SVR performance to the ones obtained by the standard LSSVR model and two of its

robust variants in the dual space, the W-LSSVR and IR-LSSVR models. Following, we describe
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Algorithm 10: Pseudo-code for the RLM-SVR model.
Require: γ,σ (for Gaussian kernel), δ ,Ne,λ ,λe,Nw

Build the linear system of Eq. (5.5); % LSSVR linear system
Set SSS(0)ρ = δ III,ggg0 = ααα

r(0)
o = 000;

for i = 1 : Ne, do
for n = 1 : N +1, do

en = y(n)o −ωωω>n ααα
r(n−1)
o ;

Compute σ̂2
n from Eq. (5.9);

Compute v(en) =
1
en

dρ(en)
den

from Eq. (5.8);

Compute SSS(n)ρ from Eq. (5.13);
Compute gggn from Eq. (5.14);
Compute ααα

r(n)
o from Eq. (5.15);

end for
end for
Output: ααα

r(n)
o .

in detail the experimental setup and methodology, the procedure of outlier contamination, the

evaluated datasets and the performance results.

1. Methodology - Firstly, as usual in Machine Learning applications, the evaluated samples of

each dataset are split into training and test sets. Then, we perform a 5-fold cross-validation

strategy, in an automatic model selection procedure, in the search for optimal values for

the hyperparameters of each model as well as the input and output regression orders L̂u

and L̂y.

The standard LSSVR model has, in general, two hyperparameters, the regularization term

γ and the kernel width σ (for the Gaussian kernel). By the way, the Gaussian kernel is

adopted from now on for all the evaluated models in this thesis. In addition, one should

highlight that the W-LSSVR and IR-LSSVR models, as were originally proposed, use

the same optimal hyperparameters searched for the standard LSSVR model. Therefore,

γ is optimized from the range {20, . . . ,220} and σ from the range {2−10, . . . ,20} for the

RLM-SVR and LSSVR (W-LSSVR and IR-LSSVR) models.

Regarding the proposed RLM-SVR model, besides γ and σ , we still optimize the forgetting

factor λ from the range {0.99,0.999,0.9999}. Its other parameters are fixed at λe = 0.95,

Nw = 14, δ = 1,000 and, based on some preliminary simulations, we also set Ne = 20 for

all the experiments, in order to ensure convergence in the training phase.

For the synthetic datasets, the input and output regression orders (L̂u and L̂y) are set

according to their largest delays, as inferred from Eqs. (5.16) and (5.17). On the other
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hand, for the real-world datasets, L̂u and L̂y are optimized from the range {1,2,3,4,5}

(via 5-fold cross-validation strategy) for the standard LSSVR model. Then, their resulting

values for the Actuator and Dryer datasets are also used for all the other models. The

Actuator and Dryer datasets are properly described in next subsection.

The figure of merit for evaluating the numerical performance of the RLM-SVR model is

the RMSE value computed for the N′ test samples over 20 independent runs, since this

model is sensitive to the initial conditions. However, the other evaluated models (LSSVR,

W-LSSVR and IR-LSSVR) solve a convex optimization problem and, consequently, they

do not present dispersion of the RMSE values over the runs.

2. Outlier Contamination - For the experiments in robust system identification, in addition

to the standard Gaussian noise added to training samples (for the synthetic datasets), we

also contaminate the outputs of the training data by replacing them randomly with outliers

covering 0%, 5%, 10%, 15%, 20%, 25% and 30% of the total of estimation samples. We

use the same procedure to contaminate with 10% of outliers the training outputs of the

real-world datasets.

The adopted outlier generation methodology is similar to the one performed by Mattos

et al. (2016), who considered a non-Gaussian noise model. For that matter, outliers were

generated by sampling from a Student’s t-distribution with zero mean and 2 degrees of

freedom, whose probability density function (PDF) is illustrated in Fig. (8). By doing this,

we guarantee that the distribution of the residuals (i.e. estimation errors) is non-Gaussian1.

One can see in Fig. (8) that the t-distribution (in blue color) is symmetric and bell-shaped

like the normal distribution (in red color), but it has heavier tails, meaning that ranges of

too large or too small values have higher probability to occur.

5.2.2.1 Evaluated Datasets

For the experiments in system identification tasks, we use two synthetic datasets

(Synthetic-1 and Synthetic-2) and two real-world datasets (Actuator and Dryer), from benchmark

plants, which are described below.

The first synthetic dataset (Synthetic-1) is reported in Kocijan et al. (2005), being
1In real-world applications outliers are unknown in advance, but for the sake of evaluating the robustness of

estimation algorithms it is common approach to introduce fake outliers in the form of samples whose distribution
does not follow the normal distribution. Some estimation algorithms, such as the ordinary least squares (OLS), are
optimal only under the assumption of Gaussianity of the residuals. If this assumption is not met, the performance of
the corresponding model degrades considerably.
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Figure 8 – Probability density functions of the Student’s t and Gaussian distributions.

generated according to the following discrete-time dynamical equation:

yn = yn−1−0.5tanh(yn−1 +u3
n−1), (5.16)

with un drawn from a truncated Gaussian distribution (in the ±1 range) of zero mean and unity

variance. The corresponding input un and output yn sequences of the Synthetic-1 dataset are

illustrated in Fig. (9) where, of a total of 300 samples, we separate the first 150 of each sequence

un and yn for training and the remaining for testing. Moreover, the training samples are further

corrupted with additive Gaussian noise with zero mean and variance 0.0025.

The second synthetic dataset (Synthetic-2) was introduced in the seminal work

of Narendra and Parthasarathy (1990), which is given by the following equation:

yn =
yn−1

1+ y2
n−1

+u3
n−1, (5.17)

where

un =

 U(−2,2), for training data

sin(2πn/25)+ sin(2πn/10), for test data

where U(−2,2) denotes a uniformly distributed random number in the specified range. Its input

and output sequences are shown in Fig. (10), where the first 300 samples of each sequence are

used for training and the remaining for test. The training data is also corrupted with additive

Gaussian noise with zero mean and variance 0.65.

The two real-world datasets, called Actuator and Dryer, used in the experiments are

described in Sjöberg et al. (1995) and Ljung (1987), respectively, and are publicly available

for download from the DaISy repository website at the Katholieke Universiteit Leuven2. The

Actuator dataset corresponds to a SISO system, where the position of a robot arm is controlled
2http://www.iau.dtu.dk/nnbook/systems.html
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a) Input sequence. (b) Output sequence.
Figure 9 – Input and output sequences of the Synthetic-1 dataset.

a) Input sequence. (b) Output sequence.
Figure 10 – Input and output sequences of the Synthetic-2 dataset.

by a hydraulic actuator. In this case, the input un is the size of the actuator’s valve opening and

the output yn is the corresponding oil pressure. From the total of 1,024 samples of each time

series un and yn, which are shown in Fig. (11), we used 512 samples for model building (i.e.

training) and the other half for model evaluation (i.e. testing the predictor’s performance).

The Dryer dataset corresponds to a mechanical SISO system from a laboratory setup

acting like a hair dryer. In this system, the air temperature yn is measured by a thermocouple at

the output. The input un is the voltage over the heating device. From the 1,000 available samples

of un and yn, which are illustrated in Fig. (12), we use the first half for model building and the

remaining for model evaluation.

5.2.2.2 Results and Discussion

In order to assess the performance of the proposed approach in nonlinear system

identification for k-step-ahead prediction and in the presence of outliers, we carried out computer

experiments using the above described datasets. For the two synthetic datasets (Synthetic-1 and



104

a) Input sequence. (b) Output sequence.
Figure 11 – Input and output sequences of the Actuator dataset.

a) Input sequence. (b) Output sequence.
Figure 12 – Input and output sequences of the Dryer dataset.

Table 5 – Important features of the evaluated datasets and models for the computational experi-
ments.

Important Features of the Evaluated Datasets

Dataset Prediction Scenario Training (N) Test (N′) L̂u L̂y

Synthetic-1 Free Simulation 150 150 1 1
Synthetic-2 Free Simulation 300 100 1 1
Actuator 3-step ahead 512 512 4 4
Dryer Free Simulation 500 500 5 5

Synthetic-2) and for the Dryer dataset, we set k→+∞, which correspond to a free simulation

scenario. For the Actuator dataset, we set k = 3, based on the obtained performance in previous

experiments. Some important features of the datasets and of the corresponding evaluated models

are summarized in Table 5.
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5.2.2.2.1 Experiments with Synthetic Datasets

We report in Fig. (13) the RMSE values obtained by each evaluated model for the

synthetic datasets with increasing scenarios from 0% to 30% of outliers contamination. Error

bars corresponding to one standard deviation below and above the mean are shown.

More specifically, the RMSE values produced by the evaluated models for the

Synthetic-1 dataset are shown in Fig. (13a). A closer analysis of these results reveals that for

almost all the scenarios of contamination, the proposed RLM-SVR model achieved much lower

values of RMSE in comparison to the other models. This is particularly true for the scenarios with

high levels of outlier contamination (higher than 15% of outliers), where even presenting some

variance for the RMSE values over the runs, the maximum values achieved by the RLM-SVR

model were lower than those obtained by the other (robust) approaches.

The RMSE values for the Synthetic-2 dataset are shown in Fig. (13b). It can be

easily noted that, except for the scenarios up 5% and with 30% of outliers contamination, the

RLM-SVR model achieved the lowest values of RMSE among the evaluated models. A point

to be highlighted in the RLM-SVR performance is that, as already occurred for the Synthetic-1

and now for the Synthetic-2 dataset, it has become better (compared to the other models) as the

number of outliers increased. This is an evidence that the recursive updating procedure of the

RLM-SVR model, which individually treats each input sample eventually contaminated with

outliers, may be the responsible for the improvement in the quality of the solution.

5.2.2.2.2 Experiments with Real-World Datasets

In the next set of experiments, we assess the achieved results obtained by the

evaluated models for the Actuator dataset in 3-step-ahead prediction considering two cases: (i)

outlier-free scenario, and (ii) scenario with 10% of outliers. For each case we compare the best

state-of-the-art model (LSSVR, W-LSSVR and IR-LSSVR), i.e. the one that achieves the lowest

RMSE value, with the proposed RLM-SVR model.

We report in Table 6 the RMSE values obtained by each model for the Actuator

dataset. For the outlier-free scenario, one can see that the W-LSSVR model, which presented the

lowest RMSE values among the state-of-the-art models, achieved a better performance when

compared to the RLM-SVR model. On the other hand, for the scenario with 10% of outliers,

even with a certain dispersion in the RMSE values, the RLM-SVR model presented lower RMSE
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a) Synthetic-1 dataset. (b) Synthetic-2 dataset.
Figure 13 – RMSE values for the test samples over 20 independent runs in free simulation.

values than the W-LSSVR model (the best one among the LSSVR, W-LSSVR and IR-LSSVR

models).

In order to assess the effect of the outliers in the prediction performance of the

models, we report the worst-case results in Fig. (14) for the predicted outputs of the models

whose results are in bold in Table 6. In other words, we report the predicted outputs that led to

the highest RMSE values among the 20 runs, for both scenarios.

A careful analysis of Figs. (14a) and (14b), for the case without outliers, reveals that

the W-LSSVR and RLM-SVR models produced equivalent predictions, except between the steps

300 and 400, where the W-LSSVR predicted output is closer to the real one. However, for the

case with 10% of outliers showed in Figs. (14c) and (14d), it becomes evident the superiority of

the proposed approach. Even considering the output that obtained the higher value of RMSE,

the RLM-SVR model outperformed the W-LSSVR model, mainly along the top peaks of the

signal between the time steps 150−250 and 400−500, where its predictions are closer to the

real output than the W-LSSVR ones.

The obtained results from the experiments with the Dryer dataset in free simulation

are shown in Table 7 and Fig. (15). In Table 7 we report the RMSE values for each evaluated

model, where it is possible to note that, for the outlier-free scenario, the RLM-SVR model

achieved lower performance than the other models. For the outlier-corrupted scenario, again the

RLM-SVR proposed approach achieved the lowest RMSE values (even with a certain dispersion)

among the evaluated models.

In Fig. (15) we report the worst predicted outputs obtained from the models whose

results are in bolt in Table 7. For the scenario without outliers, it is possible to observe in

Figs. (15a) and (15b) that the predicted outputs for the LSSVR and RLM-SVR models were quite
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Table 6 – RMSE for the test samples over 20 independent runs in 3-step-ahead prediction scenario
- Actuator dataset.

000% of outliers 111000% of outliers

Models RMSE RMSE

LSSVR 2.39E-1 ± 0.00E0 6.30E-1 ± 0.00E0
W-LSSVR 2.36E-1 ± 0.00E0 6.21E-1 ± 0.00E0
IR-LSSVR 2.37E-1 ± 0.00E0 6.21E-1 ± 0.00E0
RLM-SVR 2.67E-1 ± 1.70E-3 5.79E-1 ± 5.10E-3

close to each other and they were able to follow, in general, the dynamical behavior of the real

output. In the presence of outliers, we can observe in Figs. (15c) and (15d) that the predictions

of both robust models (W-LSSVR and RLM-SVR) did not suffer a notable degradation with the

insertion of outliers.

Finally, as we could see in the obtained results of the computational experiments, the

achieved performances of the RLM-SVR proposal were in general suitable, since it outperformed

the other robust models in most scenarios with outliers. This is more one evidence that the

recursive procedure of the RLM-SVR model may improve the robustness of its solution against

outliers, through the individual treatment of each input sample possibly contaminated. However,

the RLM-SVR approach has inherited from the standard LSSVR model the non-sparsity of its

solution. This can be a hindrance for applications that require the use of big datasets, for example.

Furthermore, as well as the IR-LSSVR model, the robustness of the RLM-SVR model is obtained

after a relatively large number of iterations, which makes the training phase computationally

expensive.

From the discussion above, the next section presents two novel robust approaches

derived from the LSSVR formulation in the primal space, whose solutions preserve, at the same

time, robustness against outliers and sparsity.

5.3 Proposed Robust Approaches in Primal Space

The dual formulation expressed in Eq. (5.4), and earlier in Eq. (2.23), is by far the

most common strategy for building LSSVR models. However, in applications for which the

processing of large amount of data is mandatory, it may be advantageous to work in primal space

instead. One clear advantage is that solving the primal optimization problem in Eqs. (5.2)-(5.3)

corresponds to estimate directly the parameter vector www ∈ Rd to be used in Eq. (5.1) for the

prediction. It turns out to be that the dimension of www is usually much smaller than the dimension
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(a) Without outliers. (b) Without outliers.

(c) 10% of outliers. (d) 10% of outliers.
Figure 14 – Predicted outputs by the best models in Table 6 with their worst performances in

RMSE over the 20 runs - Actuator dataset.

of ααα ∈ RN .

In order to adopt the primal optimization problem, explicit knowledge of the nonlin-

ear feature mapping φφφ is required; however, this is usually not the case. For the dual problem,

the lack of knowledge about this mapping is cleverly solved by the kernel trick, where the inner

product in feature space φφφ(xxxi)
>φφφ(xxx j) can be exactly computed by means of kernel function

evaluations, such as for the Gaussian kernel.

The kernel trick though cannot be used in the primal problem. In this case, it is

required either an explicit expression for φφφ (only possible for the linear or polynomial case) or

an approximation to the feature map φ̂φφ(·) : Rd → RM, where d is the space dimension of xxxn.

This approximation is carried out using a subset of M (M� N) prototype vectors (PV) extracted

from the whole training dataset, which is obtained by the Nyström method (BAKER, 1977;

WILLIAMS; SEEGER, 2001) as

φ̂i(xxx′) =
1√
λi

M

∑
m=1

(ui)mk(zzzm,xxx′), for i = 1, . . . ,M, (5.18)
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Table 7 – RMSE for the test samples over 20 independent runs in free simulation scenario - Dryer
dataset.

000% of outliers 111000% of outliers

Models RMSE RMSE

LSSVR 1.12E-1 ± 0.00E0 1.48E-1 ± 0.00E0
W-LSSVR 1.13E-1 ± 0.00E0 1.41E-1 ± 0.00E0
IR-LSSVR 1.13E-1 ± 0.00E0 1.41E-1 ± 0.00E0
RLM-SVR 1.24E-1 ± 1.30E-3 1.29E-1 ± 2.80E-3

where λi are the eigenvalues and uuui the respective eigenvectors of the reduced kernel matrix

K̄KK ∈ RM×M, with K̄i j = k(zzziii,zzz jjj). The vectors zzzi and zzz j belong to the subset of M PV, randomly

selected.

In order to avoid a simple random selection of M prototype vectors, one can choose a

procedure based on an approximation HR of quadratic Rényi’s entropy, computed by (SUYKENS

et al., 2002b)

HR =
1

M2 111>MK̄KK111M, (5.19)

where 1M = [1, . . . ,1]>. By using such criterion, one can be sure that the selected subsample is

well spread over the entire data region.

Conceptually, the general formulation of the LSSVR problem solved in primal space,

callled FS-LSSVR model, was properly discussed in Chapter 2. However, we repeat next only

the main steps for a better understanding in deriving our proposals. Thus, the FS-LSSVR model

consists in minimizing the following functional:

Jp(ŵww, b̂) =
1
2

ŵww>ŵww+ γ
1
2

N

∑
n=1

(yn− ŵww>φ̂φφ(xxxn)− b̂)2, (5.20)

where φ̂φφ(xxxn) = [φ̂1(xxxn), . . . , φ̂m(xxxn)]
> ∈RM, ŵww∈RM and b̂∈R are the approximate solutions for

www and b, respectively. Thus, by constructing an approximated feature matrix for all the training

instances as

Φ̂ΦΦ =


φ̂1(xxx1) . . . φ̂M(xxx1)

... . . . ...

φ̂1(xxxN) . . . φ̂M(xxxN)


N×M

=


φ̂φφ
>
(xxx1)
...

φ̂φφ
>
(xxxN)


N×M

, (5.21)

and solving the primal problem in Eq. (5.20) with the approximated feature matrix Φ̂ΦΦ leads to
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(a) Without outliers. (b) Without outliers.

(c) 10% of outliers. (d) 10% of outliers.
Figure 15 – Predicted outputs by the best models in Table 7 with their worst performances in

RMSE over the 20 runs - Dryer dataset.

the following linear system of M+1 equations:Φ̂ΦΦ
>

Φ̂ΦΦ+ 1
γ
IIIM Φ̂ΦΦ

>
111N

111>N Φ̂ΦΦ 111>N 111N


︸ ︷︷ ︸

(M+1)×(M+1)

ŵww

b̂


︸︷︷︸

(M+1)×1

=

Φ̂ΦΦ
>

yyy

111>N yyy


︸ ︷︷ ︸
(M+1)×1

, (5.22)

as already obtained in Eq. (2.49).

From now, our goal is to develop robust LSSVR predictor models derived from its

primal space formulation.

5.3.1 The RFS-LSSVR Model

The starting point for the development of our first primal approach, called the Robust

FS-LSSVR (RFS-LSSVR) model, is the previous FS-LSSVR linear system given by Eq. (5.22).

In order to make it robust to outliers we adapt to the primal problem the robust approach

previously developed by Suykens et al. (2002a) for the dual problem.
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For that sake, we collect the prediction error values (en = yn− ŵww>φ̂φφ(xxxn)− b̂) pro-

duced by the FS-LSSVR model and compute the corresponding weighting factors vn using the

Hampel’s weight function (ROUSSEEUW; LEROY, 1987) as follows:

vn =


1, if |en/ŝ| ≤ c1

c2−|en/ŝ|
c2−c1

, if c1 < |en/ŝ| ≤ c2

10−4, otherwise.

(5.23)

where c1 = 2.5, c2 = 3.0 and ŝ = IQR/1.349 is a robust estimate of the standard deviation of the

FS-LSSVR error variables en.

By doing so, the RFS-LSSVR optimization problem can be reformulated as

Jp(ŵwwr,eee) =
1
2
(ŵwwr)>ŵwwr +

γ

2

N

∑
n=1

vne2
n, (5.24)

subject to

yn = (ŵwwr)>φ̂φφ(xxxn)+ b̂r + en, n = 1, . . . ,N, (5.25)

where ŵwwr and b̂r are used to denote robust solutions of ŵww and b̂, respectively.

In order to solve Eq. (5.24) with the constraints of Eq. (5.25), one must first write it

as

Jp(ŵwwr, b̂r) =
1
2
(ŵwwr)>ŵwwr +

γ

2

N

∑
n=1

vn(yn− (ŵwwr)>φ̂φφ(xxxn)− b̂r)2, (5.26)

and search for its solution by computing the gradient vectors, ∇ŵwwrJp(ŵwwr, b̂r) = ∂Jp(ŵwwr, b̂r)/∂ ŵwwr

and ∇b̂rJp(ŵwwr, b̂r) = ∂Jp(ŵwwr, b̂r)/∂ b̂r, and setting them to zero. Then, we get

∂Jp

∂ ŵwwr = ŵwwr− γ

N

∑
n=1

vn[yn− ((ŵwwr)>φ̂φφ(xxxn)+ b̂r)]φ̂φφ(xxxn) = 000M, (5.27)

and

∂Jp

∂ b̂r
=−γ

N

∑
n=1

vn[yn− ((ŵwwr)>φ̂φφ(xxxn)+ b̂r)] = 0, (5.28)

where 000M ∈ RM is a vector of zeros. The expressions in Eqs. (5.27) and (5.28) can be arranged

in corresponding matrix forms, respectively, as

1
γ

ŵwwr + Φ̂ΦΦ
>

VVV Φ̂ΦΦŵwwr− Φ̂ΦΦ
>

VVV yyy+ Φ̂ΦΦ
>

VVV 111N b̂r = 000M,



112

(
Φ̂ΦΦ
>

VVV Φ̂ΦΦ+
1
γ

IIIM

)
ŵwwr + Φ̂ΦΦ

>
VVV 111N b̂r = Φ̂ΦΦ

>
VVV yyy, (5.29)

and

−111>NVVV yyy+111>NVVV Φ̂ΦΦŵwwr +111>NVVV 111N b̂r = 0,

111>NVVV Φ̂ΦΦŵwwr +111>NVVV 111N b̂r = 111>NVVV yyy, (5.30)

with VVV = diag{vn}N
n=1 ∈RN×N being a diagonal matrix, whose diagonal elements are the weights

vn. For instance, VVV = IIIN for the (unweighted) FS-LSSVR model.

Finally, to determine the RFS-LSSVR model solution, we can arrange the expressions

in Eqs. (5.29) and (5.30) into a single linear system of M+1 equations, which is given byΦ̂ΦΦ
>

VVV Φ̂ΦΦ+ 1
γ
IIIM Φ̂ΦΦ

>
VVV 111N

111>NVVV Φ̂ΦΦ 111>NVVV 111N


︸ ︷︷ ︸

(M+1)×(M+1)

ŵwwr

b̂r


︸ ︷︷ ︸

(M+1)×1

=

Φ̂ΦΦ
>

VVV yyy

111>NVVV yyy


︸ ︷︷ ︸
(M+1)×1

, (5.31)

where one can easily see the similarities with the unweighted FS-LSSVR formulation in

Eq. (5.22). Therefore, we can conclude that the computational complexity O(NM2) and memory

demand O(NM) of the RFS-LSSVR are the same ones of the original FS-LSSVR model. The

RFS-LSSVR model is summarized in Algorithm 11.

5.3.2 The R2FS-LSSVR Model

In general, a single run of the RFS-LSSVR model should suffice to obtain good

predictions in most practical applications. However, we have observed in practice that it may be

convenient to re-run the RFS-LSSVR prediction model in the search for better performances,

specially when the training samples are contaminated with a high number of outliers. Bearing

this in mind, iterative application of the RFS-LSSVR model gives rise to the second robust

primal approach proposed in this thesis, called the Reweigthed RFS-LSSVR (R2FS-LSSVR)

model.

More specifically, at each iteration k, we need to compute the error variables e(k)n =

yn− (ŵwwr(k))>φ̂φφ(xxxn)− b̂r(k). Then, the corresponding weights v(k)n are computed by means of
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Algorithm 11: - Pseudo-code for the RFS-LSSVR model.
Require: M,γ,σ ,Niter;

Choose a working set D pv = {xxxm}M
m=1;

Select D1 with the N−M remaining training samples;
for i = niter : Niter, do

Compute HR of D pv from (2.42);
Randomly select xxxm from D pv;
Randomly select xxx∗ from D1;
Replace xxxm by xxx∗ in D pv;
Compute H∗R of D pv from (2.42);
if H∗R > HR, then

xxx∗ is accepted for D pv;
else

xxx∗ is rejected by D pv;
end if

end for
Compute Φ̂ΦΦ from Eq. (5.21);
Build the linear system of Eq. (5.22);
Compute ŵww and b̂ from Eq. (5.6); % FS-LSSVR solution
for n = 1 : N, do

Compute en = yn− ŵww>φ̂φφ(xxxn)− b̂;
Compute vn from Eq. (5.23);

end for
Build the linear system of Eq. (5.31);
Compute ŵwwr and b̂r from Eq. (5.6); % RFS-LSSVR solution

e(k)n /ŝ and using the weight function in Eq. (5.23). The final step requires the solution of

Eq. (5.31) to compute the parameter vector ŵwwr(k) and the bias term b̂r(k).

Then, we set k = k+1, and repeat the procedure for the new iteration so that new

weights v(k+1)
n , a new model solution ŵwwr(k+1), and a new bias term b̂r(k+1) are calculated. It is

necessary to establish a maximum number of iterations for the algorithm. Moreover, we adopt

max(|ŵwwr(k)− ŵwwr(k−1)|)> 10−4 as stopping criterion. The pseudocode in Algorithm 12 brings all

the steps necessary to implement the R2FS-LSSVR model correctly.

5.3.3 Extension to Nonlinear MIMO Systems

The previous formulations for the RFS-LSSVR and R2FS-LSSVR models are in-

tended to be applied to SISO systems. However, many practical applications of system modeling

and identification techniques, specially in industrial environments, are designed for Multiple-

Input Multiple-Output (MIMO) systems. Bearing this in mind, in this section we extend and

generalize both RFS-LSSVR and R2FS-LSSVR models for MIMO regression/identification
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Algorithm 12: - Pseudo-code for the R2FS-LSSVR model.
Require: M,γ,σ ,Niter;

Choose a working set D pv = {xxxm}M
m=1;

Select D1 with the N−M remaining training samples;
for niter = 1 : Niter, do

Compute HR of D pv from (2.42);
Randomly select xxxm from D pv;
Randomly select xxx∗ from D1;
Replace xxxm by xxx∗ in D pv;
Compute H∗R of D pv from (2.42);
if H∗R > HR, then

xxx∗ is accepted for D pv;
else

xxx∗ is rejected by D pv;
end if

end for
Compute Φ̂ΦΦ from Eq. (5.21);
Build the linear system of Eq. (5.22);
Compute ŵww and b̂ from Eq. (5.6); % FS-LSSVR solution
for n = 1 : N, do

Compute en = yn− ŵww>φ̂φφ(xxxn)− b̂;
Compute vn from Eq. (5.23);

end for
Build the linear system of Eq. (5.31);
Compute ŵwwr(1) and b̂r(1) from Eq. (5.6); % RFS-LSSVR solution
while max(|ŵwwr(i)− ŵwwr(i−1)|)> 10−4 do

for n = 1 : N, do
Compute e(k)n = yn− (ŵwwr(k))>φ̂φφ(xxxn)− b̂r(k);
Compute v(k)n from Eq. (5.23);

end for
Built the linear system of Eq. (5.31);
Compute ŵwwr(k) and b̂r(k) from Eq. (5.6);
k=k+1;

end while
ŵwwr(k) and b̂r(k); % R2FS-LSSVR solution

problems.

Now, let us consider a training dataset {xxx′n,yyyn}N
n=1, with input xxx′n ∈ Rd′ , where d′

denotes the input dimension. The corresponding outputs are yyyn = [y(1)n , . . . ,y(ny)
n ]> ∈ Rny , where

ny is the number of outputs. For a new incoming vector xxx∗, the predictions for each output are
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computed in accordance with f̂ (xxx∗) = ŵww>φ̂φφ(xxx∗)+ b̂ as follows:

f̂1(xxx∗) = ŵww>1 φ̂φφ(xxx∗)+ b̂1,

...
...

f̂ny(xxx
∗) = ŵww>ny

φ̂φφ(xxx∗)+ b̂ny , (5.32)

where ŵww j ∈ RM and b̂ j ∈ R, j = 1, . . . ,ny, are the solutions for the j-th output.

For the MIMO case, let us arrange the ny parameter vectors ŵww j ∈ RM along the

columns of the matrix ŴWW = [ŵww1 | . . . | ŵwwny ] ∈ RM×ny , and the ny biases into the vector b̂bb =

[b̂1, . . . , b̂ny ]
> ∈ Rny . Then, the vectors ŵww j and the biases b̂ j can be computed at once by solving

the following extended version of the linear system in Eq. (5.22):Φ̂ΦΦ
>

Φ̂ΦΦ+ 1
γ
IIIM Φ̂ΦΦ

>
111N

111>N Φ̂ΦΦ 111>N 111N


︸ ︷︷ ︸

(M+1)×(M+1)

ŴWW

b̂bb
>


︸ ︷︷ ︸

(M+1)×ny

=

Φ̂ΦΦ
>

YYY

111>NYYY


︸ ︷︷ ︸
(M+1)×ny

, (5.33)

where YYY> = [yyy1 | . . . |yyyN ] ∈ Rny×N . One clear advantage of the kernel-based approach is that the

dimension of the first matrix on the left-hand side of Eq. (5.33) is the same as that in Eq. (5.22).

This is true, even though the input vector xxx′n ∈ Rd′ for the MIMO case has higher dimensionality

compared to the input vector xxxn ∈Rd of the SISO case, because the kernel computations required

by the reduced kernel matrix K̄KK and for the feature map approximation φ̂i(·) in Eq. (5.18) are

independent of the dimensionality of the input data. Accordingly, the approximated feature

matrix Φ̂ΦΦ for the MIMO case also remains with the same dimensionality as that one of the SISO

case.

Since the FS-LSSVR solutions ŵww j and b̂ j have been found, the next step is to compute

the prediction errors due each output as

e(1)n = y(1)n − ŵww>1 φ̂φφ(xxxn)− b̂1,

...

e(ny)
n = y(ny)

n − ŵww>ny
φ̂φφ(xxxn)− b̂ny , (5.34)

for n = 1, . . . ,N. Thus, we use Eq. (5.23) to determine the weights v( j)
n and the respective

diagonal matrices VVV j = diag{v( j)
n }N

n=1 for the outputs y( j)
n .
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Finally, the RFS-LSSVR solutions for MIMO systems can be computed by solving

the linear system in Eq. (5.31) for each output. Therefore, one getsΦ̂ΦΦ
>

VVV jΦ̂ΦΦ+ 1
γ
IIIM Φ̂ΦΦ

>
VVV j111N

111>NVVV jΦ̂ΦΦ 111>NVVV j111N


︸ ︷︷ ︸

(M+1)×(M+1)

ŵwwr
j

b̂r
j


︸ ︷︷ ︸
(M+1)×1

=

Φ̂ΦΦ
>

VVV jyyy( j)

111>NVVV jyyy( j)


︸ ︷︷ ︸

(M+1)×1

, (5.35)

where yyy( j)= [y( j)
1 , . . . ,y( j)

N ]> ∈RN , for j = 1, . . . ,ny. As in the SISO case, the procedure involving

the computations demanded in Eqs. (5.23), (5.34) and (5.35) can be iteratively repeated, much

the same way as stated in Section 5.3.2, to obtain the R2FS-LSSVR solutions for identification

of nonlinear MIMO systems. By the way, we discuss next how to build the input regression

vectors for a MIMO system.

5.3.3.1 The Regression Vector - MIMO Case

Since we are also interested in MIMO dynamical system identification, the regression

vector should contain the lagged values (for a certain memory order) for all inputs and output

variables of interest. In this respect, let us define the input regression subvector associated with

the i-th input as

uuu(i)n−1 =

[
u(i)n−1 u(i)n−2 · · · u(i)

n−L(i)
u

]>
, i = 1, . . . ,nu, (5.36)

where L(i)
u denotes the memory order of the i-th input variable. By the same token, let yyy( j)

n−1 us

define the output regression subvector associated with the j-th output, being defined as

yyy( j)
n−1 =

[
y( j)

n−1 y( j)
n−2 · · · y( j)

n−L( j)
y

]>
, j = 1, . . . ,ny, (5.37)

where L( j)
y denotes the order of the regression of the j-th output variable.

Without loss of generality, we assume the same memory order values for all the

input and output variables involved; i.e. L(i)
u = Lu, ∀i; and L( j)

y = Ly, ∀ j. That said, the vector of

regressors is then given by (BILLINGS, 2013)

xxx′n = [yyy(1)n−1 yyy(2)n−1 · · · yyy(ny)
n−1 , uuu(1)n−1 uuu(2)n−1 · · · uuu(nu)

n−1]
>, (5.38)

where xxx′n ∈ R(ny×Ly+nu×Lu). It is worth mentioning that since we assume that each output of

the MIMO systems obeys a NARX-type dynamics, the definition of the regression vector in

Eq. (5.38) may raise high-dimensionality concerns in system identification tasks. However, as

stated in Subsection 5.3.3, the dimension of the input vector has no effect on the dimensions of

the kernel operations required by the linear system in Eq. (5.33).
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5.3.4 Final Remarks on the Proposed Models

Remark 1 - It should be noted that the parameter estimation problem for the original W-LSSVR

and IR-LSSVR models are formulated as an optimization problem in dual space. There

is no relevant difference in their training times when compared to the original LSSVR

model (also formulated in dual space), but the resulting models are not sparse (just like the

original LSSVR). By the same token, the parameter estimation problem of the proposed

RFS-LSSVR and R2FS-LSSVR are developed in the primal space, as it is done for the

original FS-LSSVR model. There is absolutely no difference in their training times, when

compared to the original FS-LSSVR.

Remark 2 - One clear advantage of the FS-LSSVR (primal space) model over the original

LSSVR (dual space) model is that the final solution is already sparse. The proposed

RFS-LSSVR and R2FS-LSSVR models inherit sparsity from the original FS-LSSVR

model, a property that enables them to be applied to large-scale datasets.

Remark 3 - In the models formulated in the primal space, there is an extra time spent in the

search of the M prototype vectors, but this extra computational effort is a minor issue if

we take into account that the resulting solution vector (i.e. parameter vector) is sparse.

5.3.5 Computational Experiments

From this section on we report and discuss the results of comprehensive computer

simulations involving the application of the proposed approaches (RFS-LSSVR and R2FS-

LSSVR models) to nonlinear system identification with outliers. We compare their performances

to those achieved by their equivalent robust approaches in dual space (W-LSSVR an IR-LSSVR)

and by the standard LSSVR model. Next, we describe some important details about the experi-

mental methodology and the evaluation of the obtained results.

1. Methodology - Except for the large-scale dataset, we performed a 5-fold cross-validation

in the search for optimal values for the hyperparameters γ (the regularization term) from

the range {20, . . . ,220} and σ (the Gaussian kernel radius) from the range {2−10, . . . ,20}

for all the evaluated kernel models, similarly as done in Section 5.2.2. Furthermore, for

the primal models, we set Niter = 500 and select the amount of prototype vectors M in

preliminary experiments with each dataset.

As in Section 5.2.2, again the orders L̂u and L̂y are set according the largest delays of
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Eqs. (5.16) and (5.17) for the synthetic datasets. For the real-world datasets (except for

the large-scale and MIMO datasets), L̂u and L̂y are optimized from the range {1,2,3,4,5}

for the standard LSSVR model. Thus, their resulting values are used for the other models.

The figure of merit for evaluating the numerical performance of our RFS-LSSVR and

R2FS-LSSVR models is the RMSE computed for the N′ test samples over 20 independent

runs, since these models are sensitive to the initial conditions.

2. Outlier Contamination - Following the same outlier generation methodology addressed

in Mattos et al. (2016) and properly described in Section 5.2.2, in addition to Gaussian

noise we contaminate the outputs of the training data (for the synthetic datasets) by

replacing them randomly with outliers covering 0%, 5%, 10%, 15%, 20%, 25% and 30%

of the total of estimation samples. We use the same procedure to contaminate with 5% or

10% of outliers the estimation outputs of the real datasets.

5.3.5.1 Evaluated Datasets

For the experiments with the proposed approaches in nonlinear system identification

tasks, we initially use all the synthetic (Synthetic-1 and Synthetic-2) and real-world (Actuator

and Dryer) datasets previously described in Section 5.2.2.1. In addition, since the RFS-LSSVR

and R2FS-LSSVR models have inherited the high sparsity property of the FS-LSSVR model, we

decided to evaluate their performances on a large-scale dataset. For that matter, we choose the

Silverbox dataset, which was introduced in Schoukens et al. (2003) and represents an electrical

circuit simulating a mass-spring damper system. It corresponds to a nonlinear dynamical

system with feedback, presenting a dominant linear behavior (ESPINOZA et al., 2004). More

information about this dataset can be found in Pintelon and Schoukens (2012).

The input un and output yn voltage sequences of the Silverbox dataset are shown in

Figs. (16a) and (16b), respectively. This dataset contains a total of 131,072 samples of each

sequence un and yn, where the first 40,000 samples of un and yn were used for model evaluation

(testing) and the remaining 91,072 for model building (training). From the model building

samples, we separate the first 45,000 for estimating the model hyperparameters γ and σ , and the

remaining 46,072 samples for validate the parameters of the models. The same cross-validation

strategy for this dataset was adopted in Espinoza et al. (2004). The values M = 500, Lu = Ly = 10

were chosen for the experiments, as was also suggested in Espinoza et al. (2004).

Finally, we also test our proposals on a benchmarking dataset corresponding to a
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(a) Input sequence un. (b) Output sequence yn.
Figure 16 – Input and output sequences - Silverbox dataset.

(a) Input sequences u1,u2 and u3. (b) Output sequences y1,y2 and y3.
Figure 17 – Input and output sequences of the Industrial dryer dataset - MIMO system.

MIMO system. For this purpose, we selected the Industrial Dryer dataset described in Ma-

ciejowski (1996), Chou and Maciejowski (1997) and available at the DaISy repository. This

system has nu = 3 inputs, namely: the fuel flow rate (u(1)), the hot gas exhaust fan speed (u(2))

and the rate of flow of raw material (u(3)). In addition, it has ny = 3 outputs: the temperature

of the dry bulb (y(1)), the temperature of the wet bulb (y(2)) and the moisture content of raw

material (y(3)). These inputs and outputs are shown in Figs. (17a) and (17b), respectively. For

better viewing, the amplitudes of the input u(3), in Fig. (17a), were divided by a factor of 20.

From a total of 867 available samples, we use the first 600 for estimating the values of the

hyperparameters γ and σ , and the remaining 267 for testing the models.

Based on preliminary experimentation with the Industrial Dryer dataset for the

standard LSSVR model, we chose the order values to be Lu = Ly = 8. Then, we use these values

for all other models. In this case, the input regression vector xxx′n ∈ Rd′ was previously defined in
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Table 8 – Important features of the evaluated datasets and models for the computational experi-
ments.

Important Features of the Evaluated Datasets

Dataset System Type Prediction Scenario Train (N) Test (N′) L̂u L̂y

Silverbox SISO Free Simulation 91,072 40,000 10 10
Industrial Dryer MIMO 3-step ahead 600 267 8 8

Eq. (5.38) as

xxx′n = [yyy(1)n−1 yyy(2)n−1 · · · yyy(ny)
n−1 , uuu(1)n−1 uuu(2)n−1 · · · uuu(nu)

n−1]
>, (5.39)

where d′ = ny× Ly + nu× Lu = (3)(8)+ (3)(8) = 48, which may raise high-dimensionality

concerns in system identification tasks. However, as before mentioned, the dimension of the

input vector has no effect on the dimensions of the kernel operations required by the linear

system in Eq. (5.33).

5.3.5.2 Results and Discussion

Computer experiments involving all datasets correspond to the task of iterative k-step

ahead prediction. For the Actuator and Industrial Dryer (MIMO) datasets, we set k = 3 and for

the remaining datasets we set k→+∞, which correspond to infinite horizon prediction (a.k.a.

free simulation) scenario. Some important features of the synthetic (Synthetic-1 and Synthetic-2),

Actuator and Dryer datasets were already shown in Table 5, whereas the corresponding features

and parameters of the Silverbox and Industrial Dryer datasets are shown in Table 8.

5.3.5.2.1 Experiments with Synthetic Datasets

Initially, we report in Fig. (18) the RMSE values, given in the form of error bars,

achieved by the evaluated models for the synthetic datasets with increasing scenarios from 0%

to 30% of outliers contamination. Furthermore, the number of prototype vectors (PV) for the

proposed approaches and the total number of training samples are also included in the figures.

For the Synthetic-1 dataset, the RMSE values produced by the evaluated models are

shown in Fig. (18a). A detailed analysis of these results reveals that for almost all the scenarios

of contamination, including the outlier-free case, the RFS-LSSVR and R2FS-LSSVR models

achieved lower values of RMSE in comparison to the other models. This is particularly more

evident for scenarios with high levels of outlier contamination (higher than 15% of outliers).

Furthermore, an important aspect to be highlighted is the significant level of sparsity achieved by
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(a) Synthetic-1 dataset. (b) Synthetic-2 dataset.
Figure 18 – RMSE values for the test samples over 20 independent runs in free simulation.

the proposed approaches. While the standard LSSVR, W-LSSVR and IR-LSSVR models used

all of the training data (149 samples in this case), the RFS-LSSVR and R2FS-LSSVR models

used at most 15% (22 samples) of the total training instances as PV.

The RMSE values for the Synthetic-2 dataset are shown in Fig. (18b). It can be easily

observed that the proposed approaches achieved in general lower values of RMSE in comparison

to the other models. One can also note that the performances of the dual-space models (i.e.

LSSVR, W-LSSVR and IR-LSSVR) improves as the level of outlier contamination increases, but

it must be emphasized that this is happening while those models are using all training samples

(a total of 299 samples) as PVs. The proposed primal-space models (i.e. RFS-LSSVR and

R2FS-LSSVR) achieve better results using only a small number of PVs (at most 45 samples)

from the total number of training samples. As a final remark, one can note that the R2FS-LSSVR

model is highly resilient to outliers, since its performance is practically not affected by the

presence of outliers (even for a high number of them).

5.3.5.2.2 Experiments with Real-World Datasets

In the next set of computer experiments, we assess the achieved results for the

Actuator (in 3-step-ahead prediction) and for the Dryer (in free simulation) datasets considering

two different cases: (i) outlier-free scenario, and (ii) scenario with 10% of outliers. For each case

we compare the best dual model, i.e. the dual model that achieves the lowest RMSE value, with

the best primal model (RFS-LSSVR or R2FS-LSSVR). The best primal model corresponds to

the one that simultaneously achieves the lowest average RMSE value and the lowest dispersion

along the 20 runs.
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We report in Table 9 the RMSE values and the number of PV obtained by each

model for the Actuator dataset. For the outlier-free scenario, one can see that W-LSSVR and

RFS-LSSVR models, which presented the lowest RMSE values among the dual and primal

models, respectively, achieved performances quite close to each other. However, the proposed

RFS-LSSVR model achieved such a superior performance using only about 10% (51 samples)

of the training samples used by the best dual-space model (W-LSSVR).

For the scenario with 10% of outliers, even with a certain dispersion in the RMSE

values, the R2FS-LSSVR model (best performance between the primal models) presented much

lower RMSE values than the best dual model (W-LSSVR). Moreover, the performance of the

R2FS-LSSVR model was achieved using only about 5% (25 samples) of the training data as

PV. This is a clear indicator that the proposed approaches achieve very good performances in

the presence of outliers with a parsimonious use of the available training samples. This is an

appealing property of the proposed models which will be explored later for the sake of large-scale

data modeling.

We report the worst-case results (the predicted outputs that led to the highest RMSE

values among the independent runs) in Fig. (19) for the predictions of the best models showed

in Table 9. The Figs. (19a) and (19b), which correspond to the case without outliers, reveals

that the W-LSSVR and RFS-LSSVR models produced equivalent predictions, being visually

indistinguishable in the graphics since the predicted dynamical behaviors are quite close to the

real one. However, for the case with 10% of outliers showed in Figs. (19c) and (19d), it becomes

evident the superiority of the proposed approach. Even considering the output that obtained

the higher value of RMSE, the R2FS-LSSVR model outperformed the W-LSSVR model along

the whole duration of the signal. It is worth evaluating the performance of the (dual-space)

W-LSSVR model between the time steps 150−250 and 400−500, where the predictions are

notably more distorted comparing to that ones achieved by the (primal space) R2FS-LSSVR

model.

We can see in Table 10 and Fig. (20) the obtained results from the experiments with

the Dryer dataset. In Table 10 we report the RMSE values and the number of PV for each

evaluated model, where it is possible to note that, for the outlier-free scenario, all the primal

and dual models achieved performances which were very close to each other. However, it is

important to highlight once again, the performances of the RFS-LSSVR and R2FS-LSSVR were

achieved using only 15% (74 samples) of the training data. For the outlier-corrupted scenario,
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Table 9 – RMSE values for the test samples and number of PVs for each evaluated model -
Actuator dataset.

000% of outliers 111000% of outliers

Models RMSE #PV RMSE #PV

LSSVR 2.39E-1 ± 0.00E0 508 6.30E-1 ± 0.00E0 508
W-LSSVR 2.36E-1 ± 0.00E0 508 6.21E-1 ± 0.00E0 508
IR-LSSVR 2.37E-1 ± 0.00E0 508 6.21E-1 ± 0.00E0 508

RFS-LSSVR 2.38E-1 ± 5.00E-4 51 6.05E-1 ± 2.70E-3 25
R2FS-LSSVR 2.79E-1 ± 1.30E-3 51 4.85E-1 ± 8.60E-3 25

(a) Without outliers. (b) Without outliers.

(c) 10% of outliers. (d) 10% of outliers.
Figure 19 – Predicted outputs by the best models in Table 9 with their worst performances in

RMSE over the 20 runs - Actuator dataset.

again the robust primal models used an even smaller amount of PVs, just 50 samples, compared

to the other models. Furthermore, the RFS-LSSVR model achieved lower RMSE values (even

with a certain dispersion) than the W-LSSVR model.

In Fig. (20) we report the worst predicted outputs obtained from the models with the

best results in Table 10. For the scenario without outliers, one can note in Figs. (20a) and (20b)
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that the predicted outputs for the LSSVR and RFS-LSSVR models were quite close to each

other, both following the dynamical behavior of the actual output. In the presence of outliers, we

can observe in Figs. (20c) and (20d) that the predictions of both robust models (W-LSSVR and

RFS-LSSVR) did not suffer a notable degradation with the insertion of outliers. Therefore, even

for the worst-case predictions, the RFS-LSSVR model was able to follow closely the dynamical

behavior of the system of interest.

5.3.5.2.3 Experiments with a Large-Scale Dataset

We report in Fig. (21) the boxplots of the RMSE values for the proposed robust

primal approaches and the FS-LSSVR model in free simulation scenario. A remarkable aspect

to be highlighted in these experiments is the absence of results from the dual models: LSSVR,

W-LSSVR and IR-LSSVR. It is not possible to train these models in such a large-scale dataset

using the standard batch mode techniques for solving the required linear systems.

For the case with no outliers, it can be seen in Fig. (21a) that the obtained results

by the FS-LSSVR model were compatible with those ones found in Espinoza et al. (2004). We

can also observe that, in general, the RMSE values achieved by the robust approaches and the

FS-LSSVR model were relatively close each other.

Finally, the Fig. (21b) shows the RMSE boxplots when the predicted outputs are

contaminated with 5% of outliers. One can note that the performances of all the models have

been degraded with the insertion of outliers, as expected. However, our robust approaches were

considerably less affected, since their RMSE values were much smaller than those ones obtained

by the non-robust FS-LSSVR model. In time, The R2FS-LSSVR model achieved RMSE values

that were approximately half of those ones obtained by the FS-LSSVR model.

5.3.5.2.4 Experiments with a MIMO Dataset

We report in Tables 11 and 12 the obtained RMSE values (mean value and standard

deviation) and the number of PV by each model for the Industrial Dryer dataset in 3-step-ahead

prediction. The achieved results correspond to the scenarios without outliers (Table 11) and with

5% of contamination (Table 12), considering each predicted output. In the tables, the lowest

RMSE values obtained by the best dual model and by the best primal model are highlighted in

bold for each output.

For the scenario without outliers in Table 11, the dual and primal models (be they
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Table 10 – RMSE values for the test samples and number of PVs for each evaluated model -
Dryer dataset.

000% of outliers 111000% of outliers

Models RMSE #PV RMSE #PV

LSSVR 1.12E-1 ± 0.00E0 495 1.48E-1 ± 0.00E0 495
W-LSSVR 1.13E-1 ± 0.00E0 495 1.41E-1 ± 0.00E0 495
IR-LSSVR 1.13E-1 ± 0.00E0 495 1.41E-1 ± 0.00E0 495

RFS-LSSVR 1.13E-1 ± 7.00E-4 74 1.31E-1 ± 6.80E-3 50
R2FS-LSSVR 1.13E-1 ± 7.00E-4 74 1.29E-1 ± 1.05E-2 50

(a) Without outliers. (b) Without outliers.

(c) 10% of outliers. (d) 10% of outliers.
Figure 20 – Predicted outputs by the best models in Table 10 with their worst performances in

RMSE over the 20 runs - Dryer dataset.

robust or not) achieved similar RMSE values for the three outputs, as expected. A case worth

mentioning was that involving the ŷ(2) output, for which the standard LSSVR achieved lower

values of RMSE compared to the other models. However, one should note that, in this case, the

performances of the proposed approaches were achieved using only 25% (i.e. M = 150 samples)

of the training data as prototype vectors.
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(a) Outlier-free scenario. (b) Scenario with 5% of outliers.
Figure 21 – Boxplots for the RMSE values of test samples after 20 independent runs - Silverbox

dataset.

Table 11 – RMSE values for test samples for the Industrial Dryer dataset (MIMO system) in
outlier-free scenario.

000% of outliers

Models RMSE - ŷ(1) RMSE - ŷ(2) RMSE - ŷ(3) #PV

LSSVR 6.51E-1 ± 0.00E0 1.49E-1 ± 0.00E0 4.49E-1 ± 0.00E0 600
W-LSSVR 6.69E-1 ± 0.00E0 1.86E-1 ± 0.00E0 4.59E-1 ± 0.00E0 600
IR-LSSVR 6.68E-1 ± 0.00E0 1.86E-1 ± 0.00E0 4.59E-1 ± 0.00E0 600

FS-LSSVR 6.35E-1 ± 9.10E-3 1.79E-1 ± 4.50E-3 4.58E-1 ± 7.40E-3 150
RFS-LSSVR 6.31E-1 ± 1.02E-2 1.82E-1 ± 4.60E-3 4.73E-1 ± 4.41E-3 150
R2FS-LSSVR 6.41E-1 ± 8.20E-3 1.78E-1 ± 2.79E-3 4.78E-1 ± 5.90E-3 150

From Table 12, we can read the obtained RMSE values achieved in an outlier-

contaminated scenario, where each training output (y(1), y(2) and y(3)) was contaminated with 5%

of outliers. It is possible to observe that practically all the models achieved similar performances

with respect to the y(3) output. With regard to the y(1) and y(2) outputs, the proposed robust

approaches, especially the R2FS-LSSVR model, outperformed the original FS-LSSVR and all of

the dual models, using only 10% (M = 60 samples) of the training data as prototype vectors. As

a general conclusion for this set of experiments, we also observed a good performance for the

RFS-LSSVR and R2FS-LSSVR models in nonlinear MIMO system identification tasks in the

presence of outliers.

5.4 Concluding Remarks

This chapter presented the first part of the contributions of this thesis, which cor-

responds to three outlier-robust strategies to solve the LSSVR optimization problem based on
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the M-estimation framework. The proposed approaches, called the Recursive Least M-estimate

SVR (RLM-SVR), Robust FS-LSSVR (RFS-LSSVR) and Reweighted Robust FS-LSSVR

(R2FS-LSSVR) models, produce robust solutions in nonlinear regression problems, especially

in dynamical system identification tasks, when the estimate outputs are contaminated with

non-Gaussian noise or outliers.

The RLM-SVR approach initially starts by obtaining the linear system of equations,

equivalent to the dual formulation of the standard (unweighted) LSSVR model. Then, the next

step consists in applying the linear and robust RLM algorithm, which is based on M-estimation

and derived from the classical RLS algorithm. Therefore, the RLM-SVR solution is obtained in

a recursive procedure, where each input sample possibly contaminated is individually treated

at each iteration. By doing this, one can improve the performance of the model solution in the

presence of outliers.

The resulting RLM-SVR model was successfully evaluated in nonlinear dynamical

system identification tasks with benchmarking synthetic and real-world datasets, in k-step ahead

prediction scenarios (k = 3 or k→+∞). For both synthetic and real-world datasets, our proposed

approach outperformed, in terms of RMSE values, the LSSSVR model and the robust W-LSSVR

and IR-LSSVR models in almost all scenarios of outliers contamination. This was an evidence

that the recursive procedure proposed by the RLM-SVR model could, actually, improve the

model performance in the presence of outliers.

In a different context, the proposed RFS-LSSVR and R2FS-LSSVR approaches

were presented as robust versions of the FS-LSSVR model, based on the M-estimators and

the weighted least squares algorithm. As in the FS-LSSVR model, they solve the LSSVR

optimization problem in primal space by means of an approximation for the nonlinear map φφφ

using the Nyström method. Because of that, the RFS-LSSVR and R2FS-LSSVR solutions are

also sparse since they rely on a selected subsample of PVs.

In addition, the RFS-LSSVR and R2FS-LSSVR proposals keep the same computa-

tional complexity of the FS-LSSVR model, do not require extra parameters for tuning and can

also handle nonlinear system identification problems with large-scale data. In general, one can

say that they are equivalent approaches in primal space of the W-LSSVR and IR-LSSVR models,

respectively. Therefore, our RFS-LSSVR and R2FS-LSSVR models produce solutions that are

sparse and, at the same time, minimize the effect of the presence of outliers in the estimation

samples. To the best of our knowledge, this was the first time that robust and sparse models were
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Table 12 – RMSE values for test samples for Industrial Dryer dataset (MIMO system) in scenario
with 5% f outliers.

555% of outliers

Models RMSE - ŷ(1) RMSE - ŷ(2) RMSE - ŷ(3) #PV

LSSVR 1.08E0 ± 0.00E0 4.95E-1 ± 0.00E0 4.99E-1 ± 0.00E0 600
W-LSSVR 9.19E-1 ± 0.00E0 3.35E-1 ± 0.00E0 5.02E-1 ± 0.00E0 600
IR-LSSVR 9.24E-1 ± 0.00E0 3.33E-1 ± 0.00E0 5.06E-1 ± 0.00E0 600

FS-LSSVR 1.05E0 ± 3.67E-2 5.59E-1 ± 2.30E-2 5.02E-1 ± 5.34E-3 60
RFS-LSSVR 8.54E-1 ± 1.39E-2 3.32E-1 ± 8.68E-3 5.01E-1 ± 4.92E-3 60
R2FS-LSSVR 8.25E-1 ± 1.21E-2 3.10E-1 ± 1.20E-2 5.07E-1 ± 3.47E-3 60

derived from the solution of the LSSVR optimization problem in primal space.

The RFS-LSSVR and R2FS-LSSVR models were successfully evaluated in system

identification tasks with benchmarking synthetic and real-world (including a large-scale dataset)

datasets corresponding to SISO and MIMO systems. For the synthetic datasets and using

infinite-steps ahead prediction, our proposals presented better performance, in terms of RMSE

values, than the standard LSSVR, W-LSSVR and IR-LSSVR models in almost all scenarios.

The superior performances of the proposed models were even more evident as the amount of

outliers was increased. For the real-world datasets using 3-steps ahead prediction (Actuator

dataset) and free simulation (Dryer dataset), at least one of the proposed approaches achieved

better performances than all of the dual models in the scenarios with outliers. In general, the

primal and dual models achieved performances quite close each other in the scenarios with no

outliers.

In the experiments with a large-scale dataset (Silverbox dataset) in free simulation,

the RFS-LSSVR and R2FS-LSSVR models significantly outperformed the FS-LSSVR model in

the presence of outliers and presented similar performance in free-outlier case. For the Industrial

Dryer dataset (corresponding to a MIMO system) in 3-steps ahead prediction scenario, in general,

all the primal and dual models obtained performances quite close each other for each predicted

output, in the scenario without outliers. However, in the case with 5% of contamination of

outliers, the RFS-LSSVR and R2FS-LSSVR approaches outperformed the original FS-LSSVR

and all the dual robust models for each evaluated output. One should highlight that, for the best

of our knowledge, this was the first time that a robust system identification problem for a MIMO

system was addressed.

Finally, we believe it is worth emphasizing the high sparsity level of the proposed

RFS-LSSVR and R2FS-LSSVR models. In all of the aforementioned experiments, with synthetic,



129

real and large-scale datasets, the proposed approaches used much less training instances as

prototype vectors, compared to the LSSVR, W-LSSVR and IR-LSSVR models. Such a high

sparsity level of the solutions provided by the proposed models is of great relevance for memory

savings in large-scale data modeling tasks, a common requirement in big data applications.

The next chapter will present the second part of the contributions of this thesis,

which corresponds to novel online and/or robust kernel-based approaches derived from the

KRLS model.
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6 NOVEL ONLINE KERNEL-BASED MODELS

“Science is the acceptance of what works and the rejection of what does not.

That needs more courage than we might think.”

(Jacob Bronowski)

In this chapter, we develop the second part of the contributions of this thesis, which

comprises two kernel-based filtering methods derived from the original KRLS model. Initially,

Section 6.1 contextualizes the framework of kernel-based models associated with linear filters

algorithms in order to solve nonlinear regression problems. Then, Section 6.2 presents a

robust approach based on the M-estimation theory, called the ROB-KRLS model, which can

be understood as a robust version to outliers of the KRLS model. The obtained results of

computational experiments with the ROB-KRLS model are also presented and discussed in

Section 6.2. In sequence, Section 6.3 develops the proposed OS-LSSVR model, which is

based on the standard LSSVR formulation and is solved according to the KRLS online learning

strategy. This section also encompasses the results of computational experiments with this

proposal. Finally, the chapter is concluded in Section 6.4.

6.1 Introduction

As mentioned before, a further characteristic common to the SVR and LSSVR

kernel-based models is the need of a batch learning process, since all the evaluated instances

are used in their training phase to build the kernel matrix. Thus, despite these methods being

powerful techniques in nonlinear regression and having a certain simplicity in selecting the kernel

functions, for which the single Gaussian kernel performs very well on most problems (FALCK

et al., 2012), their kernel matrices scales quadratically with the number of training patterns and,

consequently, this limits the amount of data that can be processed directly.

In this context, there are some challenges in using kernel models based on batch

learning strategy. One of them consists in handling large-scale datasets, where the amount

of data is too large to apply batch algorithms and, therefore, the model solution has to be

updated sequentially to account for all processed data. Moreover, in many signal processing

applications, it is necessary to have an online updating of the model solution. The reason might

be that the knowledge about the signal or system properties accumulates as more observations

become available and that a model based on current information is necessary to make an online
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decision (LJUNG, 2002). Then, although the SVR/LSSVR models can be retrained from the

scratch when the training set is modified, it is cumbersome and computationally inefficient. Thus,

it is necessary to develop recursive and online algorithms to update the model efficiently.

In essence, the field of KAF models have attracted a great deal of attention from

adaptive filtering and system identification communities (SAIDE et al., 2015; VAERENBERGH

et al., 2012; TAOUALI et al., 2012; FALCK et al., 2012; ZHU et al., 2012; LIU et al., 2010;

RICHARD et al., 2009; TANG et al., 2006; LIU et al., 2008; VAERENBERGH et al., 2007;

ENGEL et al., 2004). A successful example of this filed is the KRLS model (ENGEL et al.,

2004), which is a kernelized version of the classical RLS algorithm. In this particular case, the

support vectors are reduced to a sparse dictionary of input samples and a new sample is only

added if it can not be represented by a combination of other patterns that are already present in

the dictionary.

Despite its widespread use, the performance of the RLS algorithm (and hence, the

KRLS model) drastically degrades or even completely breaks down when the estimation data is

corrupted with outlier-like samples, e.g. impulsive disturbances (PAPAGEORGIOU et al., 2015;

ZOUBIR et al., 2012). This happens because the RLS is optimal (i.e., unbiased estimator with

minimal variance) only for normally distributed errors, an assumption that leads to objective

functions which are built upon the SSE. Such functions assign equal weights to all error terms,

but outliers tend to generate large error terms eventually biasing the whole parameter estimation

process and, hence, deteriorating the predictor’s performance.

Regarding the discussion above, we offer an alternative approach by following the

same line of reasoning that gave rise to the KRLS algorithm. In this sense, we present a theoretical

development which eventually leads to a robust version of this algorithm, henceforth called

the ROB-KRLS model. This approach is built upon concepts derived from the M-estimation

framework, in which the SSE criterion is a special case. One should highlight that the proposed

ROB-KRLS model keeps the same computational complexity of the standard KRLS and does

not require extra parameters for tuning performance.

In another line of thinking, and aware of the limitations of the LSSVR model with

regards to the aspects of nonsparsity of its solution and the required batch mode learning, it is

highly desirable to devise online learning strategies for the LSSVR model that also culminate

in a sparse solution vector. Then, we posit that a model building framework can be achieved if

we simply incorporate the ALD strategy into the standard LSSVR formulation. This procedure
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gives rise to the Online Sparse LSSVR (OS-LSSVR) model, which, as a consequence, can learn

from data incrementally and achieve sparsity also in an adaptive manner. Furthermore, since the

LSSVR theory is developed based on a regularized loss function formulated in the dual space,

the resulting OS-LSSVR model is also regularized.

6.2 Proposed Robust KAF Model

The original KRLS model, which was properly discussed in Chapter 4, is briefly

reviewed here for the sake of better understanding our approach. For this purpose, let us assume a

stream of training examples Dt = {(xxx1,y1),(xxx2,y2), . . . ,(xxxt ,yt)}, where (xxxt ,yt)∈Rd×R denotes

the current input-output pair.

One should remember that the KRLS algorithm (assuming a functional form f (xxxi) =

φφφ
>(xxxi)www minimizes, at each time step t, the following cost function:

J(www) =
t

∑
i=1

(yi− f (xxxi))
2 = ‖yyyt−ΦΦΦ

>
t www‖2, (6.1)

where φφφ(·) : Rd → Rdh , www ∈ Rdh , ΦΦΦt = [φφφ(xxx1), . . . ,φφφ(xxxt)] ∈ Rdh×t is a matrix storing all the

projected vectors and yyyt = (y1, . . . ,yt)
> is the vector of outputs.

According to Engel et al. (2004), the optimal vector wwwt can be expressed as

wwwt =
t

∑
i=1

αiφφφ(xxxi) = ΦΦΦtααα t , (6.2)

where ααα t = (α1, . . . ,αt)
>. Then, the functional in Eq. (6.1) can be rewritten as

J(ααα t) = ‖yyyt−KKKtααα t‖2, (6.3)

where KKKt = ΦΦΦ
>
t ΦΦΦt is the kernel matrix at instant t.

Remembering the ALD sparsification criterion, as previously discussed in Sec-

tion 4.3.2, let us assume that at time step t (2≤ t ≤ N) we have collected a dictionary of SVs

comprised of a subset of relevant training inputs D sv
t−1 = {x̃xx j}mt−1

j=1 . Then, when a new incoming

sample xxxt is available, one must verify if φφφ(xxxt) is approximately linearly dependent on the

dictionary vectors. If the test reveals that φφφ(xxxt) is independent on the dictionary vectors, xxxt must

be added to the dictionary.

Therefore, to test if a training vector xxxt should be added or not to the dictionary, it is

necessary to estimate the vector aaa = (a1, . . . ,amt−1)
> satisfying the following expression:

δt
def
= min

aaa

∥∥∥∥∥mt−1

∑
m=1

amφφφ(x̃xxm)−φφφ(xxxt)

∥∥∥∥∥
2

≤ ν , (6.4)
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where ν is the sparsity level parameter. Developing the minimization in Eq. (6.4), we can write

δt = min
aaa
{aaa>K̃KKt−1aaa−2aaa>k̃kkt−1(xxxt)+ ktt}, (6.5)

whose solution is given by

aaat = K̃KK−1
t−1k̃kkt−1(xxxt), (6.6)

for which we have

δt = ktt− k̃kkt−1(xxxt)
>aaat ≤ ν . (6.7)

If otherwise δt > ν , the current dictionary must be expanded adding xxxt . Thus, D sv
t =D sv

t−1∪{xxxt}

and mt = mt−1 +1.

Therefore, according to Engel et al. (2004), it is possible to rewrite the problem in

Eq. (6.3) as

J(α̃αα t) = ‖yyyt−AAAtK̃KKtα̃αα t‖2, (6.8)

where AAAt = [aaa1 aaa2 · · · aaat ]
> ∈ Rt×mt , α̃αα t ∈ Rmt is the reduced vector of mt coefficients and K̃KKt is

the kernel matrix built with the dictionary input samples. Then, the minimization of Eq. (6.8)

yields the following solution:

α̃αα t = K̃KK−1
t (AAA>t AAAt)

−1AAA>t yyyt . (6.9)

By defining a matrix PPPt as

PPPt = (AAA>t AAAt)
−1, (6.10)

one gets

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt . (6.11)

In the next section we develop a robust approach for computing the matrix PPPt in

Eq. (6.10) to estimate the vector α̃αα t iteratively in outlier-contaminated scenarios.

6.2.1 The ROB-KRLS Model

Our goal now is to present a robust KRLS predictor model for system identification

scenarios where the time series data are contaminated with heavy-tail (i.e. non-Gaussian) noise
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or outliers. The proposed approach, called the ROB-KRLS model, is based on the extension of

the M-estimators concepts to the KRLS predictor model, aiming at turning it robust to outliers.

However, instead of following a heuristic approach as done by Zou et al. (2000) for

the RLS-based linear predictor, we adopt a principled approach for the nonlinear predictor where

the parameter updating rule is derived from a suitable cost function. This means that, instead

of minimizing the standard squared norm of the error vector as in Eq. (6.8), a robust KRLS

predictor model is designed to minimize the following cost function:

J(α̃ααr
t ) = ρ(yyyt−AAAtK̃KKtα̃αα

r
t ) = ρ(eeet), (6.12)

where α̃αα
r
t is the robust version of α̃αα t , eeet = [e1, . . . ,ei, . . . ,et ]

> is the vector of prediction errors up

to the time step t and ρ(·) is an M-estimate function that computes the contribution of each error

ei = yi−aaaiK̃KKiα̃αα
r
i to the cost function in Eq. (6.12). Note that the standard least squares estimator

is achieved if we set ρ(·) = ‖ · ‖2.

In order to minimize the cost function in Eq. (6.12), an optimal solution vector αααr
t

is searched by computing the gradient vector ∇α̃αα
r
t
J(α̃ααr

t ) = ∂J(α̃ααr
t )/∂ α̃αα

r
t and equaling it to zero,

which is given by

∂ρ(eeet)

∂ α̃αα
r
t

AAAtK̃KKt = 000. (6.13)

If we define a weight function for the prediction error vector eeet as

v(eeet) =
1
eeet

∂ρ(eeet)

∂ α̃αα
r
t

, (6.14)

then, the problem in Eq. (6.13) may be written as

eeetVVV tAAAtK̃KKt = (yyyt−AAAtK̃KKtα̃αα
r
t )VVV tAAAtK̃KK = 000, (6.15)

with VVV t = diag{vi}ti=1 ∈Rt×t being a diagonal matrix, where each diagonal element is the weight

vi associated to the respective prediction error ei.

Note that the expression in Eq. (6.15) defines a weighted least-squares problem.

However, the weights vi’s depend upon the errors ei’s, these errors depend upon the estimated

vectors α̃αα
r
i ’s, and these estimated vectors depend upon the weights (FOX, 2002). Therefore,

an iterative procedure is required based on iteratively reweighted least squares (IRLS) algo-

rithm (WEDDERBURN, 1974), which approximated solution at step t is given by

α̃αα
r
t = K̃KK−1

t (AAA>t VVV tAAAt)
−1AAA>t VVV tyyyt . (6.16)
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Then, as done for the KRLS predictor, we define a matrix PPPr
t as

PPPr
t = (AAA>t VVV tAAAt)

−1, (6.17)

and

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt . (6.18)

Next, we adopt the same procedure developed for the original KRLS algorithm to

iteratively solve Eq. (6.18). For this purpose, we have two possible situations, which are better

described below. Furthermore, the general formulation of the ROB-KRLS model, including all

the mathematical derivations in detail, is presented in Appendix A.

6.2.1.1 Case 1 - Unchanged Dictionary

In this case, we get δt ≤ ν , i.e. the projection of the current input vector can be

approximately written as a linear combination of the projections of the support vectors in the

dictionary. In other words, φφφ(xxxt) is approximately linearly dependent on the projections of the

dictionary vectors. Hence, xxxt is not added to the dictionary and the kernel matrix is not changed.

In math terms, D sv
t = D sv

t−1 and K̃KKt = K̃KKt−1.

Since aaat needs to computed by Eq. (6.6) to determine δt , the matrix AAAt is built

iteratively by the inclusion of aaat , i.e. AAAt = [AAA>t−1 aaat ]
>. Then, let us define the matrix BBBr

t as

BBBr
t = AAA>t VVV tAAAt

= AAA>t−1VVV t−1AAAt−1 + vtaaataaa>t

= BBBr
t−1 + vtaaataaa>t . (6.19)

This way, using a procedure similar to the one used for the standard RLS algorithm,

which is based on the matrix inversion lemma (see Lemma 3.1), we can compute recursively the

matrix PPPr
t as follows:

PPPr
t = (BBBr

t )
−1 = PPPr

t−1−
PPPr

t−1vtaaataaa>t PPPr
t−1

1+ vtaaa>t PPPr
t−1aaat

. (6.20)

We define a robust gain vector qqqr
t as

qqqr
t =

vtPPPr
t−1aaat

1+ vtaaa>t PPPr
t−1aaat

, (6.21)

and consequently

PPPr
t = PPPr

t−1−qqqr
t aaa>t PPPr

t−1. (6.22)
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Finally, using the fact that AAA>t VVV tyyyt = AAA>t−1VVV t−1yyyt−1+aaatvtyyyt , the ROB-KRLS update

rule for α̃αα
r
t can be written as

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt ,

= α̃αα
r
t−1 + K̃KK−1

t qqqr
t (yt− k̃kkt−1(xxxt)

>
α̃αα

r
t−1), (6.23)

where the last equalities are based on qqqr
t = vtPPPr

t aaat and k̃kkt−1(xxxt) = K̃KKtaaat . The complete develop-

ment to obtain the expression in Eq. (6.23) is presented in Eq. (A.22) of Appendix A.

6.2.1.2 Case 2 - Updating the Dictionary

In this case, we get δt > ν , i.e. the projection of the current input vector cannot be

written as a linear combination of the projections of the support vectors in the dictionary. This

implies that xxxt must be added to the dictionary, i.e. D sv
t = D sv

t−1∪{xxxt} and mt = mt−1 +1. As a

consequence of this inclusion, the kernel matrix must be updated accordingly.

The challenge here is to compute K̃KKt (and hence K̃KK−1
t ) recursively using K̃KKt−1 and

the information provided by the new sample. For this purpose, based on Golub and VAN LOAN

(2013), we compute the matrices K̃KKt and K̃KK−1
t as

K̃KKt =

 K̃KKt−1 k̃kkt−1(xxxt)

k̃kkt−1(xxxt)
> ktt

 , (6.24)

and

K̃KK−1
t =

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 . (6.25)

One should recall that for the Case 2, not only the dimension of the kernel matrix K̃KKt

increases due to the inclusion of sample xxxt into the dictionary, but also the dimensions of the

matrices AAAt and VVV t . Hence, we can write

AAA>t VVV tAAAt =

 AAA>t−1VVV t−1AAAt−1 000

000> 1

 , (6.26)

AAA>t VVV t =

 AAA>t−1VVV t−1 000

000> 1

 , (6.27)

and

PPPr
t = (AAA>t VVV tAAAt)

−1 =

 PPPr
t−1 000

000> 1

 , (6.28)
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where 000 is a zero vector of appropriate size. Then, we use Eqs. (6.25)-(6.28) to calculate α̃αα
r
t as

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt ,

= K̃KK−1
t

 (AAA>t−1VVV t−1AAAt−1)
−1AAA>t−1VVV t−1yyyt−1

yt

 ,
=

 α̃αα
r
t−1− aaat

δt
(yt− k̃kkt−1(xxxt)

>α̃αα
r
t−1)

1
δt
(yt− k̃kkt−1(xxxt)

>α̃αα
r
t−1)

 , (6.29)

where for the final equality we use aaa>t K̃KKt−1 = k̃kkt−1(xxxt)
>. The complete development to obtain

Eq. (6.29) is presented in Eqs. (A.32) to (A.35) of Appendix A.

It is worth noting that the updating expression that we obtained in Eq. (6.29) for the

Case 2 does not depend on the weight vt . In other words, this part of the ROB-KRLS algorithm

is exactly the same as the one obtained for the KRLS algorithm by Engel et al. (2004). This is

quite a remarkable theoretical result. One plausible explanation is that, since both models (KRLS

and ROB-KRLS) are sparse, the majority of the training samples will cause the algorithm to

use the “Case 1 scenario”, a situation where a mechanism to constrain the influence of outliers

is actually very welcome. Outlying samples can occasionally force the algorithm to enter into

“Case 2”, but it will be very rare (as we verified in preliminary experiments) if we compare to the

number of situations where “Case 1 scenario” is used.

Since the parameter vector α̃αα
r
t has been updated (either for Case 1, or Case 2), the

sparse and robust solution for the ROB-KRLS nonlinear predictor is given by

ŷt = f̂ (xxx) =
mt

∑
m=1

α̃
r
mk(xxx,xxxm) = k̃kkmt (xxx)

>
α̃αα

r
t . (6.30)

Finally, we can infer that the ROB-KRLS model keeps the same general structure

of the original KRLS, since it only adds the M-estimation framework based on weighted least

squares algorithm to the KRLS formulation. Therefore, regarding the ROB-KRLS model, its

computational complexity is O(m2
t ) and its memory demand is O(Nmt), as in the KRLS case.

6.2.1.3 On the Choice of the Weight Function

As an important issue of the proposed nonlinear prediction model, we make a few

comments about the choice of the M-estimation function ρ(·) and the corresponding weight

function v(·). In this regard, many weight functions have been proposed in the literature,

especially for linear regression (ROUSSEEUW; LEROY, 1987). Some of them, such as Huber’s,
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Algorithm 13: - Pseudo-code for the ROB-KRLS model.
Require: ν ,σ (for Gaussian kernel);

Set: K̃KK1 = k11; K̃KK−1
1 = 1/K̃KK1; PPPr

1 = 1; α̃αα
r
1 = y1/k11; AAA1 = 1; m1 = 1;

for t = 2 : N, do
Get new sample (xxxt ,yt) and compute k̃kkt−1(xxxt);
aaat = K̃KK−1

t−1k̃kkt−1(xxxt);
δt = ktt− k̃kkt−1(xxxt)

>aaat ;
et = yt− k̃kkt−1(xxxt)

>α̃αα
r
t−1;

if δt > ν then
D sv

t = D sv
t−1∪{xxxt}; % add xxxt to the dictionary

Compute K̃KK−1
t from Eq. (6.25);

Compute PPPr
t from Eq. (6.28);

Compute α̃αα
r
t from Eq. (6.29);

mt = mt−1 +1;
else

D sv
t = D sv

t−1; % unchanged dictionary
Compute vt from Eq. (6.32);
Compute qqqr

t from Eq. (6.21);
Compute PPPr

t from Eq. (6.22);
Compute α̃αα

r
t from Eq. (6.23);

end if
end for
Output α̃αα

r
t , D sv

t .

Hampel’s and logistic functions are common choices in regression problems (DE-BRABANTER

et al., 2009b; DEBRUYNE et al., 2008; DE-BRABANTER et al., 2012).

For the ROB-KRLS prediction model, we decide to use the logistic function, which

is defined as

ρ(et) = et tanh(et), (6.31)

and the correspondent weight function is

vt = v(et) =
tanh(et)

et
, (6.32)

where et = yt− k̃kkt−1(xxxt)
>α̃αα

r
t−1 is the a priori estimation error at the step time t.

One reason of our choice is due the simplicity of the logistic function since, unlike

Huber’s and Hampel’s functions, it has no extra parameters to be tuned. A second reason is

because reweighting using Hampel’s function (as done by Zou et al. (2000), for instance) results

in assigning zero weight when an error et is too large, which may occur with outliers and with

their neighboring input samples (DEBRUYNE et al., 2008). This means that if a weight vt is

zero, the gain vector qqqr
t in Eq. (6.21) is also null and, consequently, the vector α̃αα

r
t in Eq. (6.23)
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is not updated for all of those input samples around the outliers. Thus, the convergence of

the predictor model is slowed down, since training is performed online. By using the logistic

function instead, the neighboring samples of outliers receive small weights and the outliers get

even smaller ones. However, all of those weights are nonzero. Therefore, in some applications

the logistic function can achieve better performance than the Hampel’s function (DEBRUYNE

et al., 2008). The resulting ROB-KRLS model is summarized in Algorithm 13.

6.2.2 Computational Experiments

In this section, we report and discuss the results of comprehensive computer simu-

lations comparing the proposed ROB-KRLS approach to the original KRLS model and other

state-of-the-art robust KAF methods, namely, the Kernel Maximum Correntropy (KMC) (ZHAO

et al., 2011) and Kernel Recursive Maximum Correntropy (KRMC) (WU et al., 2015) models.

Next, we give a general explanation about the configuration of the performed experiments.

1. Evaluated Datasets - For the experiments in nonlinear system identification tasks, we

use two synthetic datasets (Synthetic-1 and Synthetic-2) and two real-world datasets

(Actuator and Silverbox), where the latter is a large-scale dataset. All of them were

properly described in Chapter 5.

2. Outlier Contamination - We use a similar outlier generation methodology to the one

performed by Mattos et al. (2016) and previously discussed in Chapter 5. Thus, in addition

to the standard Gaussian noise added to estimation samples, we also contaminate the

outputs of the estimation data (for Synthetic-1 and Synthetic-2 datasets) by replacing them

randomly with outliers covering 0%, 5%, 10%, 15%, 20%, 25% and 30% of the total of

estimation samples. Furthermore, we use the same procedure to contaminate with 5% (for

Silverbox dataset) and 10% (for Actuator dataset) of outliers the estimation outputs of the

real-world datasets.

3. Methodology - For the synthetic and Actuator datasets, we performed 5-fold cross valida-

tion strategy to set the hyperparameters ν (used in the ALD test criterion), σ (used by the

Gaussian kernel), σ1 (used by the KMC and KRMC models to compute the error weights),

the learning rate η (for the KMC model), the regularization factor γ2 (for the KRMC

model) and δ1, δ2, used by the novelty criterion sparsification method (PLATT, 1991)

for the KRMC model, in the search for their optimal values. For the Silverbox dataset,

we follow the same experimental setup described in Section 5.3.5 in order to search the
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Table 13 – Important features of the evaluated datasets and models for the computational experi-
ments.

Important Features of the Evaluated Datasets

Dataset Prediction Scenario Training (N) Test (N′) L̂u L̂y

Synthetic-1 Free Simulation 150 150 1 1
Synthetic-2 Free Simulation 300 100 1 1
Actuator 3-step ahead 512 512 4 4
Silverbox Free Simulation 91,072 40,000 10 10

optimal values of the above hyperparameters.

Regarding the input and output regression orders (L̂u and L̂y), they were set according

to their largest delays from Eqs. (5.16) and (5.17) for the synthetic datasets. For the

real-world datasets, we use L̂u = L̂y = 4 for the Actuator dataset and L̂u = L̂y = 10 for the

Silverbox dataset, based on the same reasons discussed earlier in Chapter 5. Some features

and corresponding parameters of the evaluated datasets are summarized in Table 13.

Finally, the figure of merit for evaluating the numerical performance of the ROB-KRLS is

the RMSE distribution computed for test samples over 20 independent runs.

6.2.2.1 Results and Discussion

The computer experiments for evaluating the model performances correspond to

the task of iterative k-step ahead prediction. For the two synthetic datasets (Synthetic-1 and

Synthetic-2) and for the Silverbox dataset, we set k→+∞ (free simulation scenario). For the

Actuator dataset, we set k = 3 based on obtained performance in exhaustive previous experiments.

6.2.2.1.1 Experiments with Synthetic Datasets

In Fig. (22), we report the RMSE error bars for the synthetic datasets for increasing

outlier contamination scenarios. The RMSE error bars produced by the evaluated models for

Synthetic-1 dataset are shown in Fig. (22)a, where one can observe that up to 15% of outliers,

almost all the models achieved, in general, equivalent performances. The exception was the

KMC model, that achieved significantly lower performance compared to the other models, in all

scenarios. This was somewhat expected, because the KMC model presents a slower convergence

comparing to the RLS derived algorithms (KRLS, ROB-KRLS and KRMC), since it is a robust

and kernelized version of the LMS algorithm. For higher contamination levels, the ROB-KRLS
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(a) Synthetic-1 dataset. (b) Synthetic-2 dataset.
Figure 22 – RMSE values for the test samples over 20 independent runs.

Table 14 – Average number of training input vectors chosen as SVs for the synthetic datasets.

% of SVs

Synthetic-1 0% 5% 10% 15% 20% 25% 30%

KRLS 8.4 7.6 7.7 7.6 4.7 6.9 3.9
ROB-KRLS 7.9 8.3 10.4 7.4 6.9 7.1 6.8
KRMC 42.9 47.8 30.5 44.8 31.2 21.2 30.3

% of SV

Synthetic-2 0% 5% 10% 15% 20% 25% 30%

KRLS 4.1 6.4 8.9 6.0 1.2 2.8 1.3
ROB-KRLS 4.8 6.2 4.4 5.9 5.0 5.1 1.2
KRMC 14.9 20.6 46.2 19.3 73.8 19.4 39.4

predictor achieved the lowest values of RMSE among the evaluated models.

The RMSE error bars for the Synthetic-2 dataset are shown in Fig. (22)b. It can

be seen that for almost all the contamination scenarios, except for the scenarios up to 10% of

outliers, the proposed approach presented lower values of RMSE in comparison to the KRLS,

KMC and KRMC models. An important issue to be highlighted in this experiment is the high

resilience to outliers obtained by the ROB-KRLS model since its performance was just slightly

affected, even with the inclusion of increasing amount of outliers. Again, the performance of the

KMC model was very poor in all the contamination scenarios.

In order to check the sparsity for each model, in Table 14 we report the average

number of training samples that were selected to be included in the dictionary as support vectors

along the 20 runs of each model. The absence of results with the KMC model in this table is

because its standard formulation, as proposed by Liu et al. (2011), is non-sparse.

Firstly, it is possible to note in Table 14 that the ALD sparsity criterion (for the
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(a) Outlier-free scenario. (b) Scenario with 10% of outliers.
Figure 23 – Boxplots for the RMSE values of the test samples after 20 independent runs -

Actuator dataset.

KRLS and ROB-KRLS models) seems to be more aggressive than the NC criterion (for the

KRMC model), because the KRLS and ROB-KRLS solutions use a significant lower amount of

SVs for both artificial datasets comparing to the KRMC model. Additionally, we also observe

that, despite the presence of outliers, the ROB-KRLS model successfully achieved very sparse

solutions, sometimes even providing more sparse solutions than the KRLS model (specially for

the Synthetic-2 dataset).

Elaborating a bit more on the issue of sparsity, in Table 14 we can observe two

different trends. While the average number of SVs in the dictionary for the ROB-KRLS model

remains approximately the same for all contamination scenarios (for both synthetic datasets),

the corresponding numbers for the standard KRLS model tend to decrease as the contamination

level increases. This is particularly evident for the Synthetic-2 dataset. It seems that the presence

of outliers affected so much the parameter estimation process of the standard KRLS model to the

point that it selected just a few training samples to be part of the dictionary. In other words, just

a few estimation samples produced δt > ν for the ALD test criterion. Most of the estimation

samples (including the outlying samples) produced δt < ν; thus, letting the performance of

the standard KRLS model to be highly influenced (i.e. biased) by the outliers and, hence,

deteriorating its prediction ability.

From this behavior, we can infer that the inclusion of the M-estimation framework

into the KRLS model, which gave rise to the ROB-KRLS model, had a beneficial stabilizing

effect on the estimation process, improving its prediction performance eventually.
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6.2.2.1.2 Experiments with Real-World Datasets

Next, we assess the achieved results for the Actuator dataset considering two different

cases: (i) outlier-free scenario, and (ii) scenario with 10% of outliers. In Figs. (23a) and (23b)

we report the boxplots of the RMSE values for each model in these scenarios. The corresponding

average number of SVs are close to each boxplot. One can note in Fig. (23a) that in the

outlier-free scenario, the standard KRLS and ROB-KRLS model achieved smaller RMSE values

compared to the KMC and KRMC models, allowing a significantly small number of SVs into

the dictionary. An analysis of Fig. (23b) reveals that the performances of all models have been

degraded with the insertion of outliers, as expected. However, the ROB-KRLS model was much

less affected, since its average RMSE value (the asterisk mark) was smaller than the minimum

RMSE values achieved by the other models, a result that corroborates the robustness of the

proposed approach.

Finally, we assess the effect of outliers in the prediction performance of the best

models (KRLS and ROB-KRLS) according to results in Figs. (23a) and (23b), for both scenarios.

In Fig. (24) we report the predicted outputs for the 3-step ahead prediction task in the worst case

(those predicted outputs that led to the highest RMSE values among the independent runs) for

the outlier-free scenario. In Fig. (25) we report the predicted outputs in the worst case for the

scenario with 10% of outliers.

For the outlier-free scenario in Fig. (24), we can easily see that both models produced

equivalent satisfactory predictions, being visually indistinguishable in the graphics since the

predicted dynamical behaviors are quite close to the actual one. However, for the outlier-

corrupted scenario in Fig. (25), it becomes evident the superiority of the proposed approach. The

ROB-KRLS model performed much better than the standard KRLS algorithm, following the

actual dynamics of the Actuator more closely along the whole duration of the signal. In particular,

within the time steps 50 to 250 the ROB-KRLS clearly outperforms the KRLS algorithm. The

ROB-KRLS is also better than the KRLS in reaching the peaks (i.e. points of high curvature) of

the signal.

Regarding the ROB-KRLS performance for applications in big data, we report in

Table 15 the obtained RMSE results (average value ± standard deviation) in free simulation,

and the amount of support vectors used by the KRLS, ROB-KRLS, KRMC and KMC models

in two different scenarios for Silverbox dataset: (i) without outliers and (ii) with 5% of outliers

contamination. One can see in this table that, in the scenario without contamination, the KRLS
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(a) KRLS predicted output. (b) ROB-KRLS predicted output.
Figure 24 – Predicted outputs by the model with worst performance in RMSE along the 20 runs

for the outlier-free scenario - Actuator dataset.

(a) KRLS predicted output. (b) ROB-KRLS predicted output.
Figure 25 – Predicted outputs by the model with worst performance in RMSE along the 20 runs

for the scenario with 10% of outliers - Actuator dataset.

and ROB-KRLS models achieved RMSE values an order of magnitude lower than those obtained

by the KRMC and KMC models. Furthermore, regarding solution sparsity, our approach

(#SV=305) and the KRLS model (#SV=302) used smaller amounts of SV in comparison to

the other models. For example, the number of support vectors used by the ROB-KRLS model

represents only about 0.33% of the total training set.

In the scenario with 5% of contamination, it is possible to observe in Table 15 that

the performances of all the models have been degraded with the insertion of outliers, as somewhat

expected. However, the proposed robust approach was considerably less affected, since their

RMSE values were smaller than those ones obtained by all the other models, using only 807

training instances as support vectors.
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Table 15 – RMSE values for test samples and number of SVs for each evaluated model - Silverbox
dataset.

000% of outliers 555% of outliers

Models RMSE #SV RMSE #SV

KRLS 3.50E-3 ± 1.71E-4 302 1.08E-2 ± 6.83E-4 811
ROB-KRLS 3.50E-3 ± 1.68E-4 305 1.02E-2 ± 4.66E-4 807
KRMC 1.18E-2 ± 2.89E-4 733 1.78E-2 ± 2.36E-4 5,949
KMC 4.67E-2 ± 4.23E-5 91,072 8.11E-2 ± 1.11E-5 91,072

6.2.2.2 Correlation Analysis of the Residuals

In order to further validate the proposed approach, we apply a set of statistical

correlation tests for the residuals produced by the evaluated nonlinear models (BILLINGS;

VOON, 1986; ZHANG et al., 2013; AGUIRRE, 2007). For this purpose, the residuals are

computed as ξt = yt − ŷt , where ŷt denotes the t-th predicted value using the one-step-ahead

(OSA) prediction scheme. The objective is to verify if the residuals produced by the model under

evaluation on the training dataset are unpredictable (BILLINGS, 2013); in other words, if they

do not possess any linear or nonlinear serial correlation (i.e. temporal dependency) with current

and previous inputs ut , or with previous residuals ξt . Presence of serial correlation may indicate

unmodelled dynamics.

Thus, one autocorrelation function and four cross-correlation functions should be

computed:

rξ ξ (τ) = E{ξt−τξt}= δτ ,

ruξ (τ) = E{ut−τξt}= 0,∀τ,

ru2ξ (τ) = E{(u2
t−τ − ū2

t )ξt}= 0,∀τ, (6.33)

ru2ξ 2(τ) = E{(u2
t−τ − ū2

t )ξ
2
t }= 0,∀τ,

rξ (ξ u)(τ) = E{ξt(ξt−1−τut−1−τ)}= 0,τ ≥ 0,

where E{·} is the expected value operator, δ (·) is the Dirac delta function and ūt denotes the mean

value of the control input ut . The first two tests in Eqs. (6.33) aims at detecting linear correlations,

while the last three are useful for detecting unmodelled nonlinear effects (BILLINGS, 2013).

Commonly, the 95% confidence bands are used to decide if the tests are satisfied and the model

is validated.

We apply the aforementioned tests to the two best performing models for each dataset,
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(a) rξ ξ - KRMC model (b) rξ ξ - ROB-KRLS model

(c) ruξ - KRMC model (d) ruξ - ROB-KRLS model

(e) rξ (ξ u) - KRMC model (f) rξ (ξ u) - ROB-KRLS model

(g) ru2ξ - KRMC model (h) ru2ξ - ROB-KRLS model

(i) ru2ξ 2 - KRMC model (j) ru2ξ 2 - ROB-KRLS model
Figure 26 – Correlation tests for input-output models - Synthetic-1 dataset with 30% of outliers.

based on the RMSE results reported in Subsection 6.2.2.1 for the test data. For each tested model,

the sequence of residuals used in the correlation analysis is the one which produced the best
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(a) rξ ξ - KRMC model (b) rξ ξ - ROB-KRLS model

(c) ruξ - KRMC model (d) ruξ - ROB-KRLS model

(e) rξ (ξ u) - KRMC model (f) rξ (ξ u) - ROB-KRLS model

(g) ru2ξ - KRMC model (h) ru2ξ - ROB-KRLS model

(i) ru2ξ 2 - KRMC model (j) ru2ξ 2 - ROB-KRLS model
Figure 27 – Correlation tests for input-output models - Synthetic-2 dataset with 30% of outliers.

result (i.e. the smallest RMSE for the test data) among the 20 independent runs, considering the

scenario of greater contamination of outliers for each evaluated dataset.
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(a) rξ ξ - KRLS model (b) rξ ξ - ROB-KRLS model

(c) ruξ - KRLS model (d) ruξ - ROB-KRLS model

(e) rξ (ξ u) - KRLS model (f) rξ (ξ u) - ROB-KRLS model

(g) ru2ξ - KRLS model (h) ru2ξ - ROB-KRLS model

(i) ru2ξ 2 - KRLS model (j) ru2ξ 2 - ROB-KRLS model
Figure 28 – Correlation tests for input-output models - Actuator dataset with 10% of outliers.

For the Synthetic-1 and Synthetic-2 datasets, the two best performing models are

the KRMC and the ROB-KRLS. The corresponding results of the correlation tests are shown
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(a) rξ ξ - KRLS model (b) rξ ξ - ROB-KRLS model

(c) ruξ - KRLS model (d) ruξ - ROB-KRLS model

(e) rξ (ξ u) - KRLS model (f) rξ (ξ u) - ROB-KRLS model

(g) ru2ξ - KRLS model (h) ru2ξ - ROB-KRLS model

(i) ru2ξ 2 - KRLS model (j) ru2ξ 2 - ROB-KRLS model
Figure 29 – Correlation tests for input-output models - Silverbox dataset with 5% of outliers.

in Figs. (26) and (27), respectively. A closer analysis of these results indicate that both robust

models performed quite well, with a slight advantage to the proposed ROB-KRLS model. The
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KRMC model failed to pass 2 (out of 5) the correlation tests for the Synthetic-1 dataset. For the

Synthetic-2 dataset, the models achieved similar results, since both fail to pass the rξ (ξ u)(τ) test,

but with the KRMC model violating this test in a more intense degree.

For the two real-world datasets, the Actuator and the Silverbox, the two best per-

forming models are the KRLS and the ROB-KRLS. The corresponding results of the correlation

tests are shown in Figs. (28) and (29), respectively. A closer look at these results reveals that

the proposed ROB-KRLS clearly outperformed the KRLS model. For the Actuator dataset, the

proposed ROB-KRLS model successfully passed all the correlation tests, while the KRLS model

failed to pass the ru2ξ 2(τ) test. For the Silverbox dataset, the KRLS model failed to pass 2 (out

of 5) the correlation tests, while the proposed ROB-KRLS fail to pass the ru2ξ 2(τ) test only.

As a final remark on the correlation analysis, it is worth mentioning that they were

performed under the assumption that the system dynamics follows a NARX model. We also

fixed the input and output memory orders L̂u and L̂y for each dataset. This may not be the

best approach for each dataset, and better correlations could be achieved if the best model and

memory delays for each dataset were found. It should be noted, however, that our major goal

is not to find the best model for a given dataset, but rather to evaluate the performance of the

parameter estimation techniques for kernel-based models under the presence of outliers in the

estimation data. To facilitate our performance comparison on several benchmarking datasets, we

fixed the dynamical model to be common to all datasets and to be of NARX-type. Even doing

that, the results of the correlation analysis can be considered satisfactory.

6.2.2.3 Convergence Analysis

In order to empirically analyze the convergence behavior of the KRLS, ROB-KRLS,

KMC and KRMC models, we have included the ensemble-average learning curves for the

evaluated datasets in Fig. (30). In these curves, one plots the mean squared error (MSE) values

for each model during the training phase, averaged over the 20 independent runs, versus the

number of iterations (which exactly corresponds to the number of training samples).

The learning curves were built for each evaluated dataset considering two different

scenarios. On the left-hand side of Fig. (30), we report the results for the outlier-free scenario

for all evaluated datasets. On the right side of this figure, we report the results for the following

outlier-contaminated scenarios: 30% for the Synthetic-1 and Synthetic-2 datasets, 10% for the

Actuator dataset and 5% of outliers for the Silverbox dataset.
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(a) Synthetic-1 without outliers. (b) Synthetic-1 with 30% of outliers.

(c) Synthetic-2 without outliers. (d) Synthetic-2 with 30% of outliers.

(e) Actuator dataset without outliers. (f) Actuator dataset with 10% of outliers.

(g) Silverbox dataset without outliers. (h) Silverbox dataset with 5% of outliers.
Figure 30 – Convergence curves for the evaluated online models.
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One can easily see in Fig. (30) that the KMC presented the poorest performance,

especially in scenarios without outliers, in terms of MSE values, comparing to the other models.

Somehow, this was expected, since it derives from the KLMS algorithm, whose rate of conver-

gence is typically an order of magnitude slower than the KRLS algorithm (LIU et al., 2011) and,

consequently, than the ROB-KRLS and KRMC algorithms.

We also can see in Fig. (30) that the KRLS and ROB-KRLS models presented

basically the same rate of decay, a property which was expected since the ROB-KRLS model

uses the KRLS for the sake of online learning. Despite this fact, the proposed approach ended up

with lower MSE value compared to the other robust models for almost all datasets, except with

the Silverbox dataset with 5% of outliers in Fig. 30(h), wherein the KRMC model achieved a

lower MSE value among the evaluated algorithms.

However, it should be pointed out that the learning curves shown in Fig. 30(g) and

30(h) are to be analyzed together with the results shown in Table 15. Indeed, for the scenario

with 5% of outliers, the KRMC model converged to an RMSE value lower than those achieved

by the KRLS and the ROB-KRLS models; but, this only occurred because the KRMC ended

with approximately 7 times more SVs than the KRLS and ROB-KRLS models (as shown in the

last column of Table 15). For the testing phase, the ROB-KRLS model achieved an RMSE value

lower than that achieved by the KRMC model, indicating that the former is more sparse and less

sensitive to outliers than the latter.

Next section presents the second proposed approach in this chapter, which is based

on the standard LSSVR optimization problem and is also derived from the KRLS model.

6.3 Proposed Online LSSVR Model

It is already known that the kernel-based methods constitute an appealing approach

to the nonlinear regression problem of the form f (xxxi) = φφφ
>(xxxi)www, since their nonparametric

solutions are typically given as (SCHÖLKOPF; SMOLA, 2002; VAPNIK, 1998)

f (xxx) =
N

∑
n=1

αnk(xxx,xxxn), (6.34)

where αn ∈ R is the coefficient for the training sample xxxn. For simplicity and without loss of

generality, the bias is absent in Eq. (6.34).

The Representer Theorem (KIMELDORF; WAHBA, 1971) assures that the solution

in Eq. (6.34) may be expressed solely in terms of the kernel function over the training set
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D = {xxxn,yn}N
n=1. Furthermore, if the kernel is a Mercer kernel, then for any finite set of samples

{xxx1, . . . ,xxxN}, the matrix whose entries are KKKi, j = k(xxxi,xxx j) is positive definite (VAPNIK, 1998).

As discussed in detail in Chapter 2, the parameter estimation problem for the LSSVR

model is related to the cost function

J(www) =
N

∑
n=1

( f (xxxn)− yn)
2 + γ‖www‖2, (6.35)

where γ > 0 is the regularization parameter. From the optimality conditions of the Lagrangian

applied to the functional in Eq. (6.35), the parameter vector www is determined as

www =
N

∑
n=1

αnφφφ(xxxn) = ΦΦΦααα, (6.36)

where ΦΦΦ = [φφφ(xxx1), . . . ,φφφ(xxxN)] ∈ Rdh×N and ααα = (α1, . . . ,αN)
> is the vector of Lagrange multi-

pliers. Then, using f (xxxi) = φφφ
>(xxxi)www and Eq. (6.36), we can rewrite the functional in Eq. (6.35)

as

J(ααα) = ‖KKKααα− yyy‖2 + γααα
>KKKααα, (6.37)

where KKK = ΦΦΦ
>

ΦΦΦ and yyy = (y1, . . . ,yN)
>. Therefore, the optimal ααα can be estimated by finding

the gradient vector ∇αααJ(ααα) = ∂J(ααα)/∂ααα and equaling it to zero. Then, the vector ααα can be

computed by solving the following linear system:

(KKK + γIII)ααα = yyy, (6.38)

whose ordinary solution is given by

ααα = (KKK + γIII)−1yyy. (6.39)

One should remember that the computational complexity of the LSSVR model, in

solving Eq. (6.38), is O(N3). The overbearing computational burden stems from the fact that

every training sample will contribute one parameter to the resulting model.

In this context, we decide to apply the online and sparse strategy of the KRLS model

to solve iteratively the standard dual LSSVR optimization problem in Eq. (6.37).

6.3.1 The OS-LSSVR Model

From now on, our goal is to maintain the original formulation of the LSSVR model

in dual space and compute the vector of Lagrange multipliers of Eq. (6.39) in an online fashion
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(i.e. pattern-by-pattern). In other words, we do not want to store all the training data, then

compute the kernel matrix and finally solve the system in Eq. (6.38). In this regard, our main

contribution is to use the sparsification method behind the KRLS model to develop an online

version of the LSSVR model, called Online Sparse LSSVR (OS-LSSVR) model, that could learn

from data incrementally. Since the LSSVR theory is developed from the beginning based on

the regularized loss function in Eq. (6.35), the resulting online and sparse LSSVR model is also

regularized.

We begin the development of an online sparse variant of the LSSVR problem by

casting its original loss function in Eq. (6.37) into a sequential learning scenario. Thus, at the

time step t, we get

J(ααα t) = ‖KKKtααα t− yyyt‖2 + γααα
>
t KKKtααα t , (6.40)

which can also be written as

J(ααα t) = ‖ΦΦΦ>t ΦΦΦtααα t− yyyt‖2 + γααα
>
t ΦΦΦ
>
t ΦΦΦtααα t . (6.41)

From Engel et al. (2004), we get the following equalities:

wwwt = ΦΦΦtααα t ≈ Φ̃ΦΦtAAA>t ααα t = Φ̃ΦΦtα̃αα t , (6.42)

where AAAt = [aaa1 aaa2 · · · aaat ]
> ∈ Rt×mt . Then, Eq. (6.41) becomes

J(α̃αα t) = ‖ΦΦΦ>t Φ̃ΦΦtα̃αα t− yyyt‖2 + γααα
>
t ΦΦΦ
>
t Φ̃ΦΦtα̃αα t ,

= ‖AAAtK̃KKtα̃αα t− yyyt‖2 + γα̃αα
>
t K̃KKtα̃αα t , (6.43)

where α̃αα t ∈ Rmt is the reduced vector of mt coefficients. Then, the minimization of Eq. (6.43)

yields the following solution:

α̃αα t = (K̃KKtAAA>t AAAtK̃KKt + γK̃KKt)
−1K̃KKtAAA>t yyyt ,

= [K̃KKt(AAA>t AAAt + γK̃KK−1
t )]−1AAA>t yyyt ,

= K̃KK−1
t (AAA>t AAAt + γK̃KK−1

t )−1AAA>t yyyt . (6.44)

By defining a matrix PPPt as

PPPt = (AAA>t AAAt + γK̃KK−1
t )−1, (6.45)

we finally get

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt . (6.46)
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The next step requires the computation of the inverse matrices in Eqs. (6.45)

and (6.46) iteratively using the RLS algorithm. For this purpose, we have two possible situations

following the same recursive procedure of the KRLS algorithm, which are described below.

In addition, the general formulation of the OS-LSSVR model, including all the mathematical

derivations, is presented in Appendix B.

6.3.1.1 Case 1 - Unchanged Dictionary

In this case, δt ≤ ν , meaning that φφφ(xxxt) is approximately linearly dependent on the

dictionary vectors. Hence, xxxt is not added to the dictionary and the kernel matrix is not changed.

Mathematically, D sv
t = D sv

t−1 and K̃KKt = K̃KKt−1.

Since aaat needs to be computed by Eq. (6.6) to determine δt , the matrix AAAt is built

iteratively by the inclusion of aaat , i.e. AAAt = [AAA>t−1 aaat ]
>. Thus, let us define the matrix BBBt as

BBBt = AAA>t AAAt + γK̃KK−1
t

= AAA>t−1AAAt−1 + γK̃KK−1
t−1 +aaataaa>t

= BBBt−1 +aaataaa>t , (6.47)

where AAA>t AAAt = AAA>t−1AAAt−1 +aaataaa>t . Again, we can use the Lemma 3.1 to recursively compute the

matrix PPPt as

PPPt = BBB−1
t = PPPt−1−

PPPt−1aaataaa>t PPPt−1

1+aaa>t PPPt−1aaat
. (6.48)

The gain vector qqqt is defined as

qqqt =
PPPt−1aaat

1+aaa>t PPPt−1aaat
, (6.49)

and consequently

PPPt = PPPt−1−qqqtaaa
>
t PPPt−1. (6.50)

Finally, using the fact that AAA>t yyyt = AAA>t−1yyyt−1 +aaatyyyt , the OS-LSSVR update rule for

α̃αα t can be written by

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt ,

= K̃KK−1
t (PPPt−1−qqqtaaa

>
t PPPt−1)(AAA>t−1yyyt−1 +aaatyt),

= α̃αα t−1 + K̃KK−1
t (PPPtaaatyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t (qqqtyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t qqqt(yt− k̃kkt−1(xxxt)

>
α̃αα t−1), (6.51)
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where the last equalities are based on qqqt = PPPtaaat and k̃kkt−1(xxxt) = K̃KKtaaat (ENGEL et al., 2004).

The complete development to obtain the expression in Eq. (6.51) is presented in Eq. (B.20) of

Appendix B.

One should note that, if we set γ = 0 in Eq. (6.45), the proposed approach reduces to

the KRLS model. In this sense, the OS-LSSVR proposal can be thought of as being a generalized

(and regularized) version of the KRLS model.

6.3.1.2 Case 2 - Updating the Dictionary

In this case, one gets δt > ν , implying that xxxt must be added to the dictionary, i.e.

D sv
t = D sv

t−1∪{xxxt} and mt = mt−1 +1. Hence, the kernel matrix must be updated accordingly.

In order to compute K̃KKt (and hence K̃KK−1
t ) recursively using K̃KKt−1 and the information

provided by the new sample, we get

K̃KKt =

 K̃KKt−1 k̃kkt−1(xxxt)

k̃kkt−1(xxxt)
> ktt

 (6.52)

and

K̃KK−1
t =

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 . (6.53)

One should recall that for Case 2, while the dimension of the kernel matrix K̃KKt

increases due to the inclusion of sample xxxt into the dictionary, the dimension of matrix AAAt

does not. However, as required in Eq. (6.45), we need to compute the matrix AAA>t AAAt in order

to determine PPPt . To avoid a mismatch in the sum AAA>t AAAt + γK̃KK−1
t , we deliberately increase the

dimension of matrix AAA>t AAAt as

AAA>t AAAt =

 AAA>t−1AAAt−1 000

000> 1

 . (6.54)

Then, we use Eqs. (6.53) and (6.54) to write down the following expression for matrix PPPt :

PPPt =

 AAA>t−1AAAt−1 + γK̃KK−1
t−1 +

γ

δt
aaataaa>t − γ

δt
aaat

− γ

δt
aaa>t

γ

δt

−1

. (6.55)

The next step is applying the same recursive procedure used in Eq. (6.53), for the

calculation of K̃KK−1
t , to compute PPPt as

PPPt =

 PPPt−1 000

000T 0

+ 1
∆b

 −PPPt−1bbb

1

 ·
 −PPPt−1bbb

1

> , (6.56)
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where ∆b = b∗−bbb>BBB−1
t−1bbb, b∗ = 1+ γ

δt
and bbb =− γ

δt
aaat . Defining a constant c = γ/δt , we get

∆b = 1+ c− c2aaa>t PPPt−1aaat , (6.57)

and the matrix PPPt can be rewritten as

PPPt =
1

∆b

 ∆bPPPt−1 + c2PPPt−1aaataaa>t PPPt−1 cPPPt−1aaat

caaa>t PPPt−1 1

 (6.58)

Finally, we use Eq. (6.46) to estimate α̃αα t as

α̃αα t = K̃KK−1
t

1
∆b

 ∆bPPPt−1 + c2PPPt−1aaataaa>t PPPt−1 cPPPt−1aaat

caaa>t PPPt−1 1

 ·
 AAA>t−1yyyt−1

yt

 . (6.59)

After some simplifications in Eq. (6.59), we obtain

α̃αα t =
1

∆bδt

 α̃αα
(1)
t

α̃∗t

 , (6.60)

so that

α̃αα
(1)
t = ∆bδtα̃αα t−1−aaat(yt− (∆b− c)k̃kkt−1(xxxt)

>
α̃αα t−1)+

(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1)(γK̃KK−1
t−1 + caaataaa>t )PPPt−1aaat , (6.61)

and

α̃
∗
t = yt− (∆b− c)k̃kkt−1(xxxt)

>
α̃αα t−1− caaa>t PPPt−1aaat(yt + ck̃kkt−1(xxxt)

>
α̃αα t−1). (6.62)

The whole development to obtain Eqs. (6.61) and (6.62) is presented in Eqs. (B.35) and (B.36)

of Appendix B, respectively.

Again, if we set γ = 0, we get c = 0 and ∆b = 1. Then, the expressions in Eqs. (6.61)

and (6.62) reduce to the ones reported by Engel et al. (2004) for the KRLS algorithm. Thus,

based on the estimation equations developed for Case 1 (δt ≤ ν) and Case 2 (δt > ν), we can state

that the KRLS model is a particular case of the OS-LSSVR proposed approach. The OS-LSSVR

pseudo-code is summarized in Algorithm 14.

Before proceeding to the computer experiments, we believe that some remarks are

necessary in order to clarify the rationale behind the choices that eventually led to the proposal

of the OS-LSSVR model.

Remark 1 - In the KRLS model (and in the OS-LSSVR by extension), the sparsity is achieved

“on the fly” or by construction (a term borrowed from Engel et al. (2004)), instead of by pruning
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Algorithm 14: - Pseudo-code for the OS-LSSVR model.
Require: ν , γ , σ (for Gaussian kernel);

Set: K̃KK1 = k11; K̃KK−1
1 = 1/K̃KK1; PPP1 = 1/(1+ γK̃KK−1

1 ); α̃αα1 = y1PPP1/K̃KK1; AAA1 = 1; m1 = 1;
for t = 2 : N, do

Get new sample (xxxt ,yt) and compute k̃kkt−1(xxxt);
aaat = K̃KK−1

t−1k̃kkt−1(xxxt);
δt = ktt− k̃kkt−1(xxxt)

>aaat ;
if δt > ν then

D sv
t = D sv

t−1∪{xxxt}; % add xxxt to the dictionary
Compute α̃αα t from Eqs. (6.60), (6.61) and (6.62);
Compute K̃KKt and K̃KK−1

t from Eqs. (6.52) and (6.53), respectively;
Compute PPPt from Eq. (6.58);
mt = mt−1 +1;

else
D sv

t = D sv
t−1; % unchanged dictionary

Compute qqqt from Eq. (6.49);
Compute PPPt from Eq. (6.50);
Compute α̃αα t from Eq. (6.51);

end if
end for
Output α̃αα t , D sv

t .

or by using a penalty term in the loss function. In fact, the use of a sparsity penalty term, such

as the L1-norm (PELCKMANS et al., 2005) or L0-norm (LÁZARO et al., 2011; HUANG et

al., 2010) in the loss function could solve the lack of sparsity issue of the original LSSVR by

inducing a sparse LSSVR model. However, this approach does not solve our “online learning”

requirement, since the system in Eq. (6.38) would still be solved in batch mode.

Remark 2 - Regarding the LSSVR model, Jung and Polani (2006) introduced an approach which

is similar to the KRLS model, but differs from it in two important ways. First, their approach is

supervised, since the selection of the relevant basis functions takes into account the error incurred

from approximating the kernel as well as the reduction of the cost in the original learning task.

Second, previously admitted SVs can also be deleted (i.e. pruned) in order to have even tighter

control over the degree of sparsity. On the other hand, the model building framework of our

OS-LSSVR model is conceptually simpler, since it can be achieved if we simply incorporate the

ALD strategy into standard LSSVR formulation.

Remark 3 - The proposal of the OS-LSSVR model has been strongly motivated by applications in

recursive system identification (CHEN, 2009). For this purpose, we sinergetically amalgamated

the KRLS ability of generating online AND sparse solutions, with the regularized formulation
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(a) RMSE values for the test samples. (b) Predicted outputs.
Figure 31 – Obtained RMSE values and predicted outputs for the sinc function.

of the LSSVR dual problem. As we will show from the next section onwards, the OS-LSSVR

model consistently outperforms the KRLS and other related models.

6.3.2 Computational Experiments

In this section, we report the results of comprehensive computer simulations, com-

paring the proposed OS-LSSVR model with the plain LSSVR and KRLS models. For the

sake of completeness, we also report results on the performance of the KLMS model, which

was discussed in Chapter 4. The experiments are performed in the following regression tasks:

function approximation, time series prediction and system identification, including experiments

with a large-scale dataset. Next, we give some important details about the configuration of

experiments and the evaluated datasets.

1. Evaluated Datasets - For the experiments in nonlinear system identification, we use

two synthetic datasets (Synthetic-1 and Synthetic-2) and the large-scale (and real-world)

Silverbox dataset, which have already been described in Chapter 5. For the experiments in

function approximation and in time series prediction scenarios, we use the sinc function

and the chaotic laser dataset, respectively, which are described below.

2. Methodology - In all experiments we use 5-fold cross validation to choose the hyper-

parameters ν (for the ALD criterion), γ (the regularization parameter), σ (for Gaussian

kernel) and η (learning step for the KLMS model), in the search for their optimal values.

Numerical performances are evaluated using root mean square errors (RMSE) computed

for test samples over 20 independent runs.

It should be noted that the training data samples are presented only once, i.e. for only
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Table 16 – Important features of the evaluated datasets for the computational experiments.
Important Features of the Selected Datasets

Dataset Task Prediction Scenario Training (N) Test (N′) L̂u L̂y

Sinc function Function approximation - 50 100 - -
Chaotic laser series Time series prediction Free Simulation 1,000 100/500 - 50
Synthetic-1 System identification Free Simulation 150 150 1 1
Synthetic-2 System identification Free Simulation 300 100 1 1
Silverbox System identification Free Simulation 91,072 40,000 10 10

one training epoch, for all evaluated models. However, unlike the common sparsity of the

KRLS and OS-LSSVR, the KLMS model creates a growing radial-basis function network

with the arrival of each input pattern, using all of the training samples and the respective a

priori errors to make new predictions.

6.3.2.1 Results and Discussion

As mentioned before, the computer experiments involving the evaluated datasets

correspond to their applications in function approximation, time series prediction and system

identification tasks. Table 16 summarizes some important features of the computational experi-

ments with each evaluated dataset.

6.3.2.1.1 Function Approximation

We first use the proposed OS-LSSVR model for learning the 1-dimensional sinc

function y = sin(πx)/πx, defined on the interval [−5,5]. The training phase was performed on

a random set of 50 samples, whose outputs were corrupted by additive Gaussian noise with

zero-mean and a standard deviation of 0.05. The test was performed on an independent random

set of 100 noise-free points.

The boxplots of the RMSE values for each model are shown in Fig. (31a), with

the respective number of SVs relative to the total training set. One can observe that, despite

providing a slightly higher number of SVs than the KRLS algorithm, the proposed OS-LSSVR

model presented a lower average RMSE and a smaller dispersion. This result was somewhat

expected since the OS-LSSVR model is regularized, while the KRLS is not. In this case, the

KLMS algorithm presented the highest RMSE values among the evaluated models, even using

all the training samples as support vectors.

One interesting fact is that the average RMSE values of the KRLS and OS-LSSVR

models were much lower than the one achieved by the standard batch LSSVR, suggesting that
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(a) RMSE values for test samples. (b) Predicted outputs.
Figure 32 – Prediction of the laser time-series with 100 test samples.

(a) RMSE values for the test samples. (b) Predicted outputs.
Figure 33 – Prediction of the laser time-series with 500 test samples.

(a) Standard LSSVR predicted output. (b) OS-LSSVR predicted output.
Figure 34 – Prediction of the laser time-series with 500 test samples for LSSVR and OS-LSSVR

models.

sparse online training is indeed a very good alternative to standard batch training of the LSSVR

model.

The predicted outputs in the worst case, i.e. the predictions that obtained the highest
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RMSE values over the 20 runs, for the sparse KRLS and OS-LSSVR models are illustrated in

Fig. (31b). In general, the predictions of both models were close to each other until step 60, after

which, they started to present visible differences in performance.

6.3.2.1.2 Long-Term Time Series Prediction

Our second experiment involves a benchmarking time series prediction (TSP) task.

For this purpose, we use the chaotic laser time series1(GERSHENFELD; WEIGEND, 1993)

with 1,000 training samples and two different testing scenarios. In the first scenario, the models

have to predict the next 100 samples; while for the second scenario they have to predict the next

500 samples. Moreover, we set the output order L̂y = 50 for all the evaluated algorithms, as

suggested by Suykens et al. (2002b).

In Fig. (32a) we report the RMSE values achieved by each model in the TSP task

for the Scenario 1 (prediction with 100 test samples). We can see that the proposed OS-LSSVR

model achieved significantly lower values of RMSE when compared to the KRLS, KLMS and

standard LSSVR models. This was achieved using approximately half of the number of support

vectors used by all the other models. The worst-case results obtained from the sparse models

KRLS and OS-LSSVR for free simulation predictions are shown in Fig. (32b). One can observe

that the OS-LSSVR model (in red) follows the actual time series (in blue) more closely than the

KRLS algorithm (in black). The KRLS algorithm is also prone to produce higher peaks than the

OS-LSSVR model.

In Fig. (33a) we report the RMSE values for the Scenario 2 (prediction with 500 test

samples). Again, one can note that the OS-LSSVR model achieved significantly lower values

and dispersion of RMSE compared to the KRLS model. One can also observe in Fig. (33b) the

deterioration of the KRLS predicted outputs as the prediction horizon increases beyond step 100.

Based solely on the boxplots shown in Fig. (33a), one can erroneously be led to infer

that the KLMS and, mainly, the standard LSSVR model achieved the best performance when

compared to the proposed OS-LSSVR because they produced smaller RMSE values. It should

be recalled, however, that the KLMS and standard LSSVR models use all training samples as

support vectors, a feature that eventually led to overfitting. As we can see in Fig. (34a), the

LSSVR predictions successfully followed the dynamic behavior of the real output until around

step 70, when a steep collapse in laser intensity occurs. After that, the performance of the
1Available for download at www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html
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(a) RMSE values for test samples (b) Predicted outputs.
Figure 35 – Obtained RMSE values and predicted outputs for the Synthetic-1 dataset - system

identification task.

standard batch LSSVR model becomes noticeably worse. In other words, despite the fact that

the RMSE for the standard LSSVR has achieved the smallest values, its dynamical performance

was very poor. This is a clear example of the difficulties in dealing with free-simulation in

nonlinear prediction tasks, for which the predictor model should not be judged only by the

RMSE performance. Although not shown in figure, we verified that, as in the case of the LSSVR

model, the dynamical performance of the KLMS predictions was also very poor.

The OS-LSSVR performance is shown in Fig. (34b), from where it is possible to

note a small time shift between the predicted and the actual outputs. This is a common effect

in recursive chaotic time series prediction for long-term horizons. In such problems, the user

may be interested not in predicting the next samples accurately, but rather in capturing the

underlying chaotic dynamics of the system under investigation (HAYKIN; PRÍNCIPE, 1998;

MENEZES-JÚNIOR; BARRETO, 2008). Since the dynamics of the system is chaotic, the

predicted time series starts to diverge from the observed one at a certain point in the future

onwards. This does not mean at all that the performance of the OS-LSSVR model is poor, as

could be erroneously inferred from the RMSE values shown in Fig. (33a). As we report in

Fig. (34b) the proposed model was able to track correctly the challenging chaotic dynamics of

the laser system even in the worst case. This is a remarkable result, being comparable to those

reported by MENEZES-JÚNIOR and Barreto (2008) for a two-hidden-layered recurrent neural

network.
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(a) RMSE values for test samples (b) Predicted outputs.
Figure 36 – Obtained RMSE values and predicted outputs for the Synthetic-2 dataset - system

identification task.

6.3.2.1.3 Free-Simulation System Identification

In this experiment, we assess the performance of the proposed OS-LSSVR model in

nonlinear system identification with Synthetic-1 and Synthetic-2 datasets. The RMSE values

produced by each evaluated model for the Synthetic-1 dataset are shown in Fig. (35a), while

the worst-case results for KRLS and OS-LSSVR models are shown in Fig. (35b). It can be

seen in Fig. (35a) that the KRLS model ended up using less SVs than the OS-LSSVR at the

expense of a higher average RMSE value. In this sense, when compared to the KRLS model,

the OS-LSSVR model achieved a better tradeoff between the number of SVs and accuracy. In

addition, the performance of the OS-LSSVR model was similar to the performance of the batch

standard LSSVR.

Clearly, another notable aspect to be highlighted was, again, the considerable low

dispersion of RMSE values produced by the OS-LSSVR model as compared to the ones obtained

by the KLMS and KRLS models. This can be explained by the regularized nature of the OS-

LSSVR, inherited from the standard LSSVR formulation. As we can infer from Fig. (35b), the

KRLS and OS-LSSVR models were able to capture well the dynamic behavior of the system,

except around step 100, where the predictions of the KRLS model are more distorted.

For the obtained results with Synthetic-2 dataset, an analysis of the boxplots in

Fig. (36a) reveals that the RMSE distribution of the OS-LSSVR model achieved the lowest

values as compared to the KLMS and KRLS models. Moreover, for the predictions, the OS-

LSSVR model used only about 11 training instances (3.7% of training dataset) as support vectors.

In Fig. (36b), we can see that, due to regularization, even the worst-case result for the OS-LSSVR
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Table 17 – RMSE values for the test samples and number of SVs for each evaluated model -
Silverbox dataset.

Obtained results

Models RMSE #SVs

KLMS 7.10E-3 ± 2.68E-4 91,072
KRLS 3.50E-3 ± 1.71E-4 302
OS-LSSVR 2.00E-3 ± 9.03E-5 565

model is smoother than the one achieved by the KRLS model.

The OS-LSSVR model achieved an average value of RMSE comparable to the one

obtained by the standard LSSVR, but the latter presented a much higher number of support

vectors. An #SV=100% means that all training vectors were used as support vectors. For the

Synthetic-2 dataset, this means that 298 data vectors were stored and used as support vectors.

6.3.2.1.4 Performance on a Large-Scale Dataset

Since the OS-LSSVR model has inherited the sparsity property of the KRLS algo-

rithm, we also decided to evaluate its performance in system identification on the Silverbox

dataset. Thus, we report in Table 17 the obtained RMSE results (average value ± standard

deviation) and the number of SVs used by the KLMS, KRLS and OS-LSSVR models. The

absence of results from the plain LSSVR model is explained by the practical impossibility of

solving the linear system in Eq. (6.38) for a large-scale dataset using batch-mode estimation

techniques.

It is possible to see in Table 17 that the KLMS model achieved RMSE values

approximately twice as high as those achieved by the KRLS model, even using all the 91,072

training instances to make new predictions. Additionally, the proposed OS-LSSVR model

presented significantly lower average RMSE value and lower dispersion when compared to the

KRLS model, despite using a higher amount of support vectors (#SV=565) in comparison to

the KRLS model (#SV=301). The number of support vectors used by the OS-LSSVR model

represents only about 0.62% of the total training set. This supports the notion that our proposed

approach achieved a suitable trade-off between sparsity and generalization accuracy. In contrast,

the KRLS model is sparser than the OS-LSSVR model, but the former is not as accurate as the

latter.
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(a) (b)

(c) (d)

(e)
Figure 37 – Convergence curves for all the datasets: Fig. (37a) - Sinc function. Fig. (37b) - Laser

time series. Fig. (37c) - Artificial 1. Fig. (37d) - Artificial 2. Fig. (37e) - Silverbox.

6.3.2.2 Convergence Analysis

A detailed theoretical analysis on the generalization error bounds of the OS-LSSVR

models is presented in Appendix C. However, for the sake of completeness, we include empirical

studies on its convergence. In order to empirically analyze the convergence behavior of the
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Table 18 – AIC and BIC information criteria for all the evaluated models.
AIC / BIC

Dataset LSSVR KRLS OS-LSSVR KLMS

Sinc function 1.1E+2 / 2.0E+2 3.3E+1 / 6.2E+1 3.2E+1 / 6.1E+1 1.0E+2 / 1.9E+2
Laser time series 1.9E+3 / 6.5E+3 1.8E+3 / 6.4E+3 9.7E+2 / 3.3E+3 1.9E+3 / 6.5E+3
Synthetic-1 3.0E+2 / 7.5E+2 2.3E+1 / 6.2E+1 3.3E+1 / 8.7E+1 2.9E+2 / 7.4E+2
Synthetic-2 6.0E+2 / 1.7E+3 2.0E+1 / 6.4E+1 1.8E+1 / 5.9E+1 5.9E+2 / 1.7E+3
Silverbox - / - 5.9E+2 / 3.4E+3 1.1E+3 / 6.4E+3 8.0E+4 / 4.2E+5

KLMS, KRLS and OS-LSSVR models, we have included the ensemble-average learning curves

for each evaluated dataset in Fig. (37). In these curves, one plots the mean squared error (MSE)

values for each evaluated model, during the training phase and over the 20 independent runs,

versus the number of iterations (which exactly corresponds to the number of training samples).

One can note in Fig. (37) that the KLMS presented the poorest performance in

terms of MSE comparing to the other models. Somehow, this was expected, since its rate of

convergence is typically an order of magnitude slower than the KRLS algorithm (LIU et al.,

2011) and, consequently, than the OS-LSSVR algorithm.

For the learning curves in Fig. (37), the KRLS and OS-LSSVR models presented

basically the same rate of decay, a property which was expected since the OS-LSSVR model

uses the KRLS for the sake of online learning. Despite this fact, the proposed approach ended up

with a slightly lower MSE value compared to the KRLS model for all datasets.

6.3.2.3 Model Efficiency

An adaptive filtering algorithm is considered efficient if it minimizes the usage of

data while maximizing the quality of the solution, i.e. achieving parameter adjustments close

to optimum (WIDROW; KAMENETSKY, 2003). The optimum in the linear case is usually

provided by the well-known (non-adaptive) Wiener filter. However, minimizing the amount of

used data and, at the same time, maximizing the quality of the solution are somewhat antagonistic.

On the one hand, minimizing data usage corresponds to fast convergence. On the other hand, fast

convergence could provide a poor quality of solution. This trade-off is present in all nonlinear

learning systems. An analytical analysis of the efficiency for online kernel (i.e. nonlinear)

models, mainly for the LMS- and RLS-based algorithms, is still an open issue in the signal

processing community, with just a few initiatives available (see Constantin et al. (2005), for

example).

In order to assess empirically the trade-off between the solution quality (given by
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Table 19 – Average norm of the parameter vector ααα for the LSSVR model and α̃αα t for the KRLS
and OS-LSSVR models.

‖ααα‖, ‖α̃αα t‖
Dataset LSSVR KRLS OS-LSSVR

Sinc function 5.1E0 2.3E+1 6.6E+1
Laser time series 3.3E+2 3.8E+4 8.6E+1
Synthetic-1 1.6E+2 1.2E+4 7.1E+2
Synthetic-2 3.6E+6 1.5E+4 1.2E+6
Silverbox - 5.4E+2 2.4E+3

the sum of squared errors) and the number of parameters for each model, we decide to use as

performance indices the well-known Akaike’s information criterion (AIC) (AKAIKE, 1974),

given by

AIC(np) = N ln
(
σ̂

2
e
)
+2np, (6.63)

and the Bayesian information criterion (BIC) (KASHYAP et al., 1977; CRUTCHFIELD; MC-

NAMARA, 1987):

BIC(np) = N ln
(
σ̂

2
e
)
+np ln(N), (6.64)

where σ̂2
e is the maximum likelihood estimate of the variance of the residuals, N is the number

of data samples and np is the number of parameters of the model. The lower the AIC/BIC values,

the better.

The rationale for this approach is that in the realm of the kernel-based models (such

as the LSSVR and KRLS), the number of data samples used to build the model is equal to the

dimension of the solution vector ααα t . Since the LSSVR is a non-sparse model, the dimension

of ααα t is equal to the number of training data samples. For the KRLS and OS-LSSVR models,

the dimension of ααα t is the number of support vectors in the dictionary (i.e. np = mt). For the

original (non-sparse) LSSVR model, we have np = N.

We report the values of AIC and BIC information criteria in Table 18, where it should

be highlighted that all the models have the same order for each evaluated dataset. Therefore, we

can see that the lowest AIC/BIC values were achieved by the KRLS and OS-LSSVR models

for all datasets. This is an indication that these approaches presented a better compromise

involving quality of solution and the number of used samples (and, hence parameters) compared

to the standard LSSVR and KLMS. In addition, it is possible to note that the proposed approach

achieved lower AIC/BIC values compared to the KRLS in most cases (Sinc function, Laser
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time series and Artificial 2). Even for the Artificial 1 and Siverbox datasets, for which the

KRLS achieved the lowest AIC/BIC values among all models, the OS-LSSVR presented better

performance in terms of RMSE values with the test samples and convergence analysis, as already

seen in Figs. (35a), (37c), (37e) and Table 17.

6.3.2.4 A Note on the Norm of the Solution Vector

As a final experiment, we analyzed the influence of the regularization parameter γ in

the model solutions. In Table 19 we report the average norm of the Lagrange multipliers vector

ααα for the standard LSSVR and α̃αα t for the KRLS and OS-LSSVR models, for all previously used

datasets. It is possible to infer that, in general, the Lagrange multipliers vectors for LSSVR and

OS-LSSVR have magnitude orders close to each other, which was expected since both models

are regularized. However, for the KRLS model, the effects of its lack of regularization were

more visible for the Synthetic-1 dataset and, in particular, for the Laser time series. Even for the

Synthetic-2 and Silverbox datasets, wherein the regularized models obtained higher norms for ααα

and α̃αα t , their performances overcame the KRLS algorithm. Thus, we conclude by stating that

the OS-LSSVR model is, indeed, a very efficient regularized online sparse variant of the LSSVR

model.

6.4 Concluding Remarks

In this chapter, we presented the second part of the contributions of this thesis, which

correspond to KAF proposals derived from the original KRLS model. As in the KRLS case,

the proposed approaches, called the Robust KRLS (ROB-KRLS) and Online Sparse LSSVR

(OS-LSSVR) models, apply a constructive sparsity procedure based on the ALD criterion in

order to produce sparse solutions for nonlinear and online regression tasks.

First, we derived an outlier-robust version of the KRLS model, based on concepts

from the M-estimation framework. The ROB-KRLS proposal produces solutions that minimize

the effects of the presence of outliers in the estimation samples. To the best of our knowledge,

the ROB-KRLS is the first online kernel-based model that includes, simultaneously, features of

sparsity and robustness based on the M-estimators.

The ROB-KRLS model was successfully evaluated in nonlinear dynamical system

identification tasks with artificial and real-world datasets (including a large-scale dataset) in
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the presence of outliers. With the artificial datasets and using infinite-steps ahead prediction,

the ROB-KRLS proposal presented better performance, in terms of RMSE values, than the

original KRLS model and the robust KMC and KRMC approaches, in almost all scenarios. This

superiority of our model was even more evident as the amount of outliers was increased. With

the real-word datasets using 3-step ahead predictions (Actuator dataset) and free simulation

(Silverbox dataset), again our approach achieved, in general, better performance among the

evaluated models in all the scenarios, without and with outliers.

Still inspired by the KRLS model, we developed an online updating scheme for

building regularized sparse LSSVR models, as in its standard dual formulation, based on the

ALD criterion. The proposed framework of our OS-LSSVR model is comprehensive enough to

encompass the KRLS algorithm as a non-regularized special case.

The OS-LSSVR model was successfully evaluated in tasks of increasing complexity,

such as function approximation, time series prediction and nonlinear dynamical system identifi-

cation, including tests with a large-scale dataset. Based on the results reported in this chapter, we

can state that the proposed OS-LSSVR model consistently outperformed the state-of-the-art in

KAF algorithms (KRLS and KLMS) in terms of accuracy on test samples, convergence, sparsity

and statistical efficiency.

Next chapter will synthesize the main conclusions drawn throughout the development

of this thesis.
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7 CONCLUSIONS AND FUTURE DIRECTIONS

“I hadn’t been aware that there were doors closed to me

until I started knocking on them.”

(Gertrude B. Elion)

In this chapter, we present a summarized overview of the contributions of this thesis,

the respective conclusions and we point out some important topics for further research.

7.1 Conclusions and Discussion

In this thesis, we have investigated kernel-based methods to solve nonlinear re-

gression problems, especially those from dynamical system identification tasks. As Machine

Learning techniques, these kernel regression methods are universal approximators by nature,

and their solid mathematical foundation guarantees that the resulting models come from convex

optimization problems. Thus, the proposed approaches throughout this work are related through

their foundation in kernel regression, inspired by the Vapnik’s support vectors theory.

Because of its simplicity, compared to the SVR quadratic programming problem,

the LSSVR model was an important focus in kernel-based regression for the development of

our proposals in this thesis. Since it originally works in the dual space formulation, its model

solution only lies in solving a linear system of equations by using the OLS procedure (using

Moore-Penrose inverse matrix) in batch mode. However, the training phase in batch mode, allied

to the natural non-sparsity of its solution, can be a limiting factor in using the standard LSSVR

for applications that require a large amount of data, for example. A feasible strategy to overcome

this is solve the LSSVR optimization problem in the primal space with the aid of the Nyström

method to find an approximation for the nonlinear map φφφ . This resulting approach, which is

called FS-LSSVR model and is discussed throughout this thesis, produces sparse solutions on a

selected subsample of prototype vectors (PVs).

Despite the attractive features of the LSSVR model in the original dual space or in

the primal space (FS-LSSVR), either by the computational simplicity or by the sparsity of the

solution (only in the FS-LSSVR case), both formulations are based on SSE cost functions whose

optimality is guaranteed only for normally distributed errors. Thus, their performances can be

considerably compromised when the estimation data is corrupted with non-Gaussian noise or
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outliers, which are very common in real-world datasets of nonlinear processing applications such

as in dynamical system identification.

That being said, our first proposed approach in this thesis was a robust version of

the standard LSSVR method, the RLM-SVR model, that combines the dual (and unweighted)

LSSVR formulation with the linear robust RLM algorithm, which is based on the M-estimators

and derived from the RLS algorithm. In essence, the RLM-SVR model solution is obtained

in a recursive procedure where each sample, that is possibly contaminated with outliers, is

individually treated at each iteration. As in the LSSVR case, the RLM-SVR model is non-sparse

and, moreover, its robustness is achieved after a relatively large number of iterations.

A comprehensive performance evaluation of the RLM-SVR model has been carried

out on synthetic and real-world datasets contaminated with outliers, in system identification

scenarios. The performances were compared to the ones obtained by the standard LSSVR and

two of its robust variants, namely the W-LSSVR and IR-LSSVR models. Despite showing

dispersion in the obtained results, since it is sensitive to the initial conditions, the RLM-SVR

model outperformed the other methods in almost all the scenarios with outlier contamination.

Our second and third contributions, referred to as the RFS-LSSVR and R2FS-

LSSVR models, represent two robust models based on M-estimators and the weighted least

squares algorithm, and are derived from the primal formulation of the FS-LSSVR model. Thus,

these novel methodologies produce sparse solutions that minimize the effect of the presence

of outliers in the estimation samples. The theoretical development of the RFS-LSSVR and

R2FS-LSSVR proposals corresponds to equivalent robust strategies in the primal space of the

W-LSSVR and IR-LSSVR models in the dual space, respectively. Notably, to the the best of our

knowledge, this was the first time that robust and sparse models were derived from the LSSVR

formulation in the primal space.

The RFS-LSSVR and R2FS-LSSVR proposals were successfully evaluated in non-

linear dynamical system identification tasks in different scenarios: using benchmarking synthetic

and real-world datasets (including a large-scale dataset), in SISO and MIMO systems and using

3-steps ahead prediction and free simulation. In general, the proposed models presented better

performance in almost all scenarios, in terms of RMSE values and sparsity of the solution, than

with the LSSVR, W-LSSVR, IR-LSSVR and FS-LSSVR models. The superior performances of

the RFS-LSSVR and R2FS-LSSVR models were even more evident as the number of outliers

was increased. Finally, to the best of our knowledge, this was the first time that a robust system
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identification problem was treated using a MIMO system.

Despite their solid mathematical foundations and commendable achieved perfor-

mances in a wide range of nonlinear regression applications, most kernel-based models (including

those mentioned above), be them sparse, as with FS-LSSVR, or non-sparse as with LSSVR, have

a learning process normally carried out in batch mode. However, there are several application

domains, such as time series prediction, control, system identification and channel equalization,

that require online learning strategies, where the model solution is updated with the arrival of

each new input sample. Therefore, the field of KAF methods, which applies the kernelization

strategy to linear adaptive filters as in the KLMS, KRLS and KAPA models, has aroused interest

in the community of Machine Learning for solving nonlinear signal processing problems, such

as the ones that demand big data applications or data nonstationarity.

Regarding the discussion above, we have also developed an outlier-robust version

of the KRLS algorithm, called the ROB-KRLS model, which corresponds to the fourth con-

tribution of this work. The proposed ROB-KRLS model is also derived from the M-estimators

and, consequently, produces solutions that minimize the effects of the presence of outliers.

Moreover, the ROB-KRLS model still preserves the sparsity and the computational complexity

of the original KRLS model. The ROB-KRLS model is the first online kernel-based method that

includes, simultaneously, features of sparsity and robustness based on M-estimation theory.

The performance of the ROB-KRLS model was evaluated in system identification

tasks using artificial and real-world datasets, one of which was a large-scale dataset, contaminated

with outliers. The computer experiments were carried out in scenarios of 3-step ahead prediction

and free simulation. Based on the evaluated criteria of the achieved RMSE values, number of

support vectors, correlation analysis of the residuals and empirical convergence behavior over

the training phase, the ROB-KRLS model outperformed the original KRLS and two robust KAF

approaches, namely the KMC and KRMC models.

As the fifth and last contribution in this work, we presented an online updating

strategy to solve the LSSVR dual optimization problem. This proposed framework, called the

OS-LSSVR model, incorporates the ALD criterion of the KRLS algorithm to achieve sparsity

and online learning for the standard LSSVR model. One should note that our OS-LSSVR

proposal is comprehensive enough to encompass the KRLS model as a special case.

The OS-LSSVR model was successfully evaluated in different tasks of nonlinear

regression, such as function approximation, time series prediction and system identification,
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Table 20 – Summary of the main characteristics of each proposed model.
Proposed Kernel-Based Models

Feature RLM-SVR RFS/R2FS-LSSVR ROB-KRLS OS-LSSVR

Primal/dual problem dual primal dual dual

Regularized problem YES YES NO YES

Batch/online learning batch batch online online

Sparsity solution NO YES YES YES

Robustness YES YES YES NO

Computational complexity O(N3) O(NM2) O(m2
t ) O(m2

t )

Memory demand O(N2) O(NM) O(Nmt) O(Nmt)

including tests with a big dataset. Based on results obtained in terms of RMSE values, number

of support vectors, convergence analysis and statistical efficiency, the OS-LSSVR approach

consistently outperformed the KLMS and KRLS kernel adaptive filtering models. Finally,

Table 20 summarizes the main characteristics of each proposed approach in this thesis.

In what follows, we discuss the main topics that we wish to pursue from now on.

7.2 Future Directions

In this thesis, we have presented some novel proposals in kernel-based models for

nonlinear regression. However, these contributions are merely a snapshot of work in a limited

time. There are certainly additional leads and challenges that need further investigation. We sum

up a few possibilities that could be undertaken.

An interesting aspect that deserves to be investigated is the application of the M-

estimators framework, as done for the ROB-KRLS proposal, to the OS-LSSVR model. It may

be a suitable trade-off between sparsity and generalization accuracy with the robustness of

M-estimators against the effect of outliers.

For all the performed experiments in system identification in this thesis, we adopted

the assumption that the system dynamics follow a NARX model. However, we intend to inves-

tigate the behavior of the proposed RLM-SVR, RFS-LSSVR, R2FS-LSSVR, ROB-KRLS and

OS-LSSVR approaches in strategies based on different philosophies, as NARMAX (nonlinear

autoregressive moving average model with exogenous inputs) model (BILLINGS, 2013), for

instance.
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Some kernel adaptive filtering methods can be formulated by using a general non-

linear state model in the input space, i.e. they can implement a linear state model in RKHS.

The Extended KRLS is a typical example in this line of work, whose model solution is guided

by a kernel regressor using a Kalman filter with an explicit state transition process. Therefore,

a prominent research topic is the extension of the ROB-KRLS and OS-LSSVR proposals in

a framework of state space models, where they can be used for applications in time series

prediction, dynamic positioning, tracking channel, etc.

Although our RFS-LSSVR and R2FS-LSSVR proposed approaches present solutions

that are sparsity and robust to outliers, they still need a batch mode procedure in their learning

process. One important point to be investigated is the feasibility of applying an online learning

procedure to the primal RFS-LSSVR and R2FS-LSSVR models with the help of the strategy

developed for the KRLS model, also based on the ALD sparsification criterion.

Finally, although all the proposed models (RLM-SVR, RFS-LSSVR, R2FS-LSSVR,

ROB-KRLS and OS-LSSVR) have been developed to solve regression problems, it would be

possible to extend their formulations for applications in pattern classification. In principle, we

believe that there is no impediment for our proposals to have satisfactory performances in online

and/or robust classification tasks.
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APPENDIX A – THE ROB-KRLS MODEL

This appendix presents a general formulation of the ROB-KRLS model, including all

the mathematical derivations carried out up to obtain the model solution. For this purpose, it is

worth highlighting that this appendix follows a similar procedure to that presented in Section 6.2

and also adopts the same mathematical notation used throughout this thesis.

A.1 Complete Formulation

Initially, consider a given stream of training examples

Dt = {(xxx1,y1),(xxx2,y2), . . . ,(xxxt ,yt)}, (A.1)

where (xxxt ,yt)∈Rd×R denotes the current input-output pair. Then, the KRLS algorithm assumes

a functional form, e.g. f (xxxi) = φφφ
>(xxxi)www, and minimizes in a sequential procedure the following

cost function:

J(www) =
t

∑
i=1

(yi− f (xxxi))
2 = ‖yyyt−ΦΦΦ

>
t www‖2, (A.2)

where φφφ(·) : Rd → Rdh is the nonlinear mapping, www ∈ Rdh is the vector of parameters, ΦΦΦt =

[φφφ(xxx1), . . . ,φφφ(xxxt)] ∈ Rdh×t is a matrix storing all the projected vectors and yyyt = (y1, . . . ,yt)
> is

the vector of outputs.

The optimal vector wwwt in Eq. (A.2) can be expressed as,

wwwt =
t

∑
i=1

αiφφφ(xxxi) = ΦΦΦtααα t , (A.3)

where ααα t = (α1, . . . ,αt)
> is the vector of coefficients. Therefore, the problem in Eq. (A.2) can

be rewritten as

J(ααα t) = ‖yyyt−KKKtααα t‖2, (A.4)

where KKKt = ΦΦΦ
>
t ΦΦΦt . From Engel et al. (2004), it is possible to write the following equalities:

wwwt = ΦΦΦtααα t ≈ Φ̃ΦΦtAAA>t ααα t = Φ̃ΦΦtα̃αα t , (A.5)

where AAAt = [aaa1 aaa2 · · · aaat ]
> ∈ Rt×mt . Then, Eq. (A.4) becomes

J(α̃αα t) = ‖yyyt−ΦΦΦ
>
t Φ̃ΦΦtα̃αα t‖2,

= ‖ΦΦΦ>t Φ̃ΦΦtα̃αα t− yyyt‖2,

= ‖AAAtK̃KKtα̃αα t− yyyt‖2, (A.6)
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where α̃αα t ∈ Rmt is the reduced vector of mt coefficients. The next step is to take the gradient

vector ∇α̃ααt J(α̃αα t) = ∂J(α̃αα t)/∂ α̃αα t of Eq. (A.6) and equaling it to zero, such as

∂J(α̃αα t)

∂ α̃αα t
= 2(AAAtK̃KKtα̃αα t− yyyt)AAAtK̃KKt ,

= K̃KKtAAA>t AAAtK̃KKtα̃αα t− K̃KKtAAA>t yyyt = 0,

⇒ K̃KKtAAA>t AAAtK̃KKtα̃αα t = K̃KKtAAA>t yyyt . (A.7)

The expression in Eq. (A.7) corresponds to the minimization of the functional in Eq. (A.6), which

yields the following solution:

α̃αα t = (K̃KKtAAA>t AAAtK̃KKt)
−1K̃KKtAAA>t yyyt ,

= K̃KK−1
t (AAA>t AAAt)

−1AAA>t yyyt . (A.8)

Finally, by defining a matrix PPPt as

PPPt = (AAA>t AAAt)
−1, (A.9)

one can write the expression for α̃αα t in Eq. (A.8) as

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt . (A.10)

From now on, instead of minimizing the standard squared norm of the error vector as

in Eq. (A.6), a robust KRLS predictor model is designed to minimize the following cost function:

J(α̃ααr
t ) = ρ(yyyt−AAAtK̃KKtα̃αα

r
t ) = ρ(eeet), (A.11)

where α̃αα
r
t is the robust version of α̃αα t and eeet = [e1, . . . ,ei, . . . ,et ]

> is the vector of prediction errors

up to the time step t.

In order to minimize the cost function in Eq. (A.11), an optimal solution vector αααr
t

is searched by computing the gradient vector ∇α̃αα
r
t
J(α̃ααr

t ) = ∂J(α̃ααr
t )/∂ α̃αα

r
t and equaling it to zero,

which is given by

∂ρ(eeet)

∂ α̃αα
r
t

AAAtK̃KKt = 000. (A.12)

Defining a weight function for the prediction error vector eeet as

v(eeet) =
1
eeet

∂ρ(eeet)

∂ α̃αα
r
t

, (A.13)
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the problem in Eq. (A.12) can be rewritten as

eeetVVV tAAAtK̃KKt = (yyyt−AAAtK̃KKtα̃αα
r
t )VVV tAAAtK̃KKt ,

= K̃KKtAAA>t VVV tyyyt− K̃KKtAAA>t VVV tAAAtK̃KKtα̃αα
r
t = 000,

⇒ K̃KKtAAA>t VVV tAAAtK̃KKtα̃αα
r
t = K̃KKtAAA>t VVV tyyyt , (A.14)

where VVV t = diag{vi}ti=1 ∈ Rt×t . The expression in Eq. (A.14) corresponds to the minimization

of the functional in Eq. (A.11), which yields the following solution:

α̃αα
r
t = (K̃KKtAAA>t VVV tAAAtK̃KKt)

−1K̃KKtAAA>t VVV tyyyt ,

= K̃KK−1
t (AAA>t VVV tAAAt)

−1AAA>t VVV tyyyt , (A.15)

Then, as done for the KRLS predictor, one defines a matrix PPPr
t as

PPPr
t = (AAA>t VVV tAAAt)

−1, (A.16)

and, therefore,

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt . (A.17)

Next, we adopt the same procedure developed for the original KRLS algorithm to

iteratively solve Eq. (A.17).

A.1.1 Case 1 - Unchanged Dictionary

In this case, δt ≤ ν , meaning that φφφ(xxxt) is approximately linearly dependent on the

dictionary vectors. Hence, xxxt is not added to the dictionary (D sv
t = D sv

t−1) and, consequently, the

kernel matrix is not changed (K̃KKt = K̃KKt−1).

Since aaat needs to computed by Eq. (6.6) to determine δt , the matrix AAAt is built

iteratively by the inclusion of aaat , i.e. AAAt = [AAA>t−1 aaat ]
>. Thus, by defining a matrix BBBr

t as

BBBr
t = AAA>t VVV tAAAt

= AAA>t−1VVV t−1AAAt−1 + vtaaataaa>t

= BBBr
t−1 + vtaaataaa>t . (A.18)

where AAA>t VVV tAAAt = AAA>t−1VVV t−1AAAt−1 + vtaaataaa>t , one can apply the matrix inversion lemma (GOLUB;

LOAN, 2012; HAGER, 1989) to recursively compute the matrix PPPr
t as

PPPr
t = (BBBr

t )
−1 = PPPr

t−1−
PPPr

t−1vtaaataaa>t PPPr
t−1

1+ vtaaa>t PPPr
t−1aaat

. (A.19)
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Also defining a robust gain vector qqqr
t as

qqqr
t =

vtPPPr
t−1aaat

1+ vtaaa>t PPPr
t−1aaat

, (A.20)

one gets

PPPr
t = PPPr

t−1−qqqr
t aaa>t PPPr

t−1. (A.21)

Finally, using the fact that AAA>t VVV tyyyt = AAA>t−1VVV t−1yyyt−1+aaatvtyyyt , the ROB-KRLS update

rule for α̃αα
r
t can be written as

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt ,

= K̃KK−1
t (PPPr

t−1−qqqr
t aaa>t PPPr

t−1)(AAA
>
t−1VVV t−1yyyt−1 +aaatvtyt),

= (K̃KK−1
t PPPr

t−1− K̃KK−1
t qqqr

t aaa>t PPPr
t−1)(AAA

>
t−1VVV t−1yyyt−1 +aaatvtyt),

= K̃KK−1
t PPPr

t−1AAA>t−1VVV t−1yyyt−1 + K̃KK−1
t PPPr

t−1aaatvtyt− K̃KK−1
t qqqr

t aaa>t PPPr
t−1AAA>t−1VVV t−1yyyt−1

− K̃KK−1
t qqqr

t aaa>t PPPr
t−1aaatvtyt ,

= α̃αα
r
t−1 + K̃KK−1

t aaatvtyt(PPPr
t−1−qqqr

t aaa>t PPPr
t−1)−qqqr

t aaa>t α̃αα
r
t−1,

= α̃αα
r
t−1 + K̃KK−1

t aaatvtytPPPr
t −qqqr

t aaa>t α̃αα
r
t−1,

= α̃αα
r
t−1 + K̃KK−1

t (PPPr
t aaatvtyt−qqqr

t aaa>t K̃KKtα̃αα
r
t−1),

= α̃αα
r
t−1 + K̃KK−1

t (qqqr
t yt−qqqr

t aaa>t K̃KKtα̃αα
r
t−1),

= α̃αα
r
t−1 + K̃KK−1

t qqqr
t (yt− k̃kkt−1(xxxt)

>
α̃αα

r
t−1), (A.22)

where the last equalities are based on qqqr
t = vtPPPr

t aaat and k̃kkt−1(xxxt) = K̃KKtaaat .

A.1.2 Case 2 - Updating the Dictionary

In this case, one gets δt > ν , implying that xxxt must be added to the dictionary, i.e.

D sv
t = D sv

t−1∪{xxxt} and mt = mt−1 +1. Hence, the kernel matrix must be updated accordingly.

In order to compute K̃KK−1
t recursively, consider the matrix K̃KKt−1 and the information

provided by the new sample to build K̃KKt as

K̃KKt =

 K̃KKt−1 k̃kkt−1(xxxt)

k̃kkt−1(xxxt)
> ktt

 , (A.23)

and also consider the following matrix identity (GOLUB; LOAN, 2012):

if DDDt =

 DDDt−1 ddd

ddd> d∗

 , (A.24)
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then

DDD−1
t =

 DDD−1
t−1 000

000> 0

+ 1
∆d

 −DDD−1
t−1ddd

1

 −DDD−1
t−1ddd

1

> , (A.25)

where DDDt and dddt are a square matrix and a vector, respectively, of appropriate sizes. Furthermore,

d∗ and ∆d are scalars such that ∆d = d∗−ddd>DDD−1
t−1ddd.

Then, assuming the equalities DDDt−1 = K̃KKt−1, ddd = k̃kkt−1(xxxt) and d∗ = ktt in Eq. (A.24),

and applying them in Eq. (A.25), it is possible to recursively compute the inverse matrix K̃KK−1
t as

K̃KK−1
t =

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 −K̃KK−1
t−1k̃kkt−1(xxxt)

1

 −K̃KK−1
t−1k̃kkt−1(xxxt)

1

> ,
=

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 K̃KK−1
t−1k̃kkt−1(xxxt)k̃kkt−1(xxxt)

>K̃KK−1
t−1 −K̃KK−1

t−1k̃kkt−1(xxxt)

−k̃kkt−1(xxxt)
>K̃KK−1

t−1 1

 ,
=

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 aaataaa>t −aaat

−aaa>t 1

 , (A.26)

where δt = ktt− k̃kkt−1(xxxt)
>K̃KK−1

t−1k̃kkt−1(xxxt) and aaat = K̃KK−1
t−1k̃kkt−1(xxxt). The final expression for K̃KK−1

t is

obtained by adding the matrices in Eq. (A.26), which is given by

K̃KK−1
t =

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 , (A.27)

One should recall that for the Case 2, not only the dimension of the kernel matrix K̃KKt

increases due to the inclusion of sample xxxt into the dictionary, but also the dimensions of the

matrices AAAt and VVV t . Hence, one can write

AAA>t VVV tAAAt =

 AAA>t−1VVV t−1AAAt−1 000

000> 1

 , (A.28)

AAA>t VVV t =

 AAA>t−1VVV t−1 000

000> 1

 , (A.29)

and

PPPr
t = (AAA>t VVV tAAAt)

−1 =

 PPPr
t−1 000

000> 1

 . (A.30)
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In order to compute the vector solution α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt , one can still represent

the vector yyyt by

yyyt =

 yyyt−1

yt

 . (A.31)

Thus, substituting Eqs. (A.27), (A.29), (A.30) and (A.31) into Eq. (A.17), it is possible to develop

the expression for α̃αα
r
t as

α̃αα
r
t = K̃KK−1

t PPPr
t AAA>t VVV tyyyt ,

= K̃KK−1
t

 PPPr
t−1 000

000> 1

 AAA>t−1VVV t−1 000

000> 1

 yyyt−1

yt

 ,
= K̃KK−1

t

 PPPr
t−1AAA>t−1VVV t−1 000

000> 1

 yyyt−1

yt

 ,
= K̃KK−1

t

 PPPr
t−1AAA>t−1VVV t−1yyyt−1

yt

 ,
=

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 PPPr
t−1AAA>t−1VVV t−1yyyt−1

yt

 ,
=

1
δt

 δtK̃KK
−1
t−1PPPr

t−1AAA>t−1VVV t−1yyyt−1 +aaataaa>t PPPr
t−1AAA>t−1VVV t−1yyyt−1−aaatyt

−aaa>t PPPr
t−1AAA>t−1VVV t−1yyyt−1 + yt

 , (A.32)

=

 (α̃ααr
t )

(1)

(α̃r
t )

(2)

 . (A.33)

Then, developing the upper and lower terms in Eq. (A.32) for compute (α̃ααr
t )

(1) and (α̃r
t )

(2) in

Eq. (A.33), respectively, one gets

(α̃ααr
t )

(1) =
1
δt
(δtK̃KK

−1
t−1PPPr

t−1AAA>t−1VVV t−1yyyt−1 +aaataaa>t PPPr
t−1AAA>t−1VVV t−1yyyt−1−aaatyt),

= α̃αα
r
t−1−

aaat

δt
(yt−aaa>t PPPr

t−1AAA>t−1VVV t−1yyyt−1),

= α̃αα
r
t−1−

aaat

δt
(yt−aaa>t K̃KKt−1K̃KK−1

t−1PPPr
t−1AAA>t−1VVV t−1yyyt−1),

= α̃αα
r
t−1−

aaat

δt
(yt− k̃kkt−1(xxxt)

>
α̃αα

r
t−1), (A.34)
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and

(α̃r
t )

(2) =
1
δt
(yt−aaa>t PPPr

t−1AAA>t−1VVV t−1yyyt−1),

=
1
δt
(yt−aaa>t K̃KKt−1K̃KK−1

t−1PPPr
t−1AAA>t−1VVV t−1yyyt−1),

=
1
δt
(yt− k̃kkt−1(xxxt)

>
α̃αα

r
t−1), (A.35)

where, for the final equalities in Eqs. (A.34) and (A.35), one applies aaa>t K̃KKt−1 = k̃kkt−1(xxxt)
>.

Therefore, the resulting solution vector is given by

α̃αα
r
t =

 α̃αα
r
t−1− aaat

δt
(yt− k̃kkt−1(xxxt)

>α̃αα
r
t−1)

1
δt
(yt− k̃kkt−1(xxxt)

>α̃αα
r
t−1)

 . (A.36)

Finally, since the parameter vector α̃αα
r
t has been updated (either for Case 1, or Case

2), the sparse and robust solution for the ROB-KRLS nonlinear predictor is given by

ŷt = f̂ (xxx) =
mt

∑
m=1

α̃
r
mk(xxx,xxxm) = k̃kkmt (xxx)

>
α̃αα

r
t . (A.37)
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APPENDIX B – THE OS-LSSVR MODEL

This appendix presents a general formulation of the OS-LSSVR model, including all

the mathematical derivations carried out up to obtain the model solution. For this purpose, it is

worth highlighting that this appendix follows a similar procedure to that presented in Section 6.3

and also adopts the same mathematical notation used throughout this thesis.

B.1 Complete Formulation

In general, the kernel-based models are able to solve nonlinear regression problems

of the form f (xxxi) = φφφ
>(xxxi)www, www ∈ Rdh . Their respective model solutions are typically given as

f (xxx) =
N

∑
n=1

αnk(xxx,xxxn), (B.1)

computed over the entire training dataset D = {xxxn,yn}N
n=1. The value αn ∈ R is the coefficient

associated with the training sample xxxn.

As already discussed in Chapter 2, the parameter estimation problem for the standard

LSSVR formulation is expressed by

J(www) =
N

∑
n=1

( f (xxxn)− yn)
2 + γ‖www‖2, (B.2)

where γ > 0 is the regularization parameter. Then, applying the optimality conditions of the

Lagrangian into the problem in Eq. (B.2), the parameter vector www can be computed as

www =
N

∑
n=1

αnφφφ(xxxn) = ΦΦΦααα, (B.3)

where ΦΦΦ = [φφφ(xxx1), . . . ,φφφ(xxxN)] ∈ Rdh×N and ααα = (α1, . . . ,αN)
> is the vector of Lagrange multi-

pliers. Then, using f (xxxi) = φφφ
>(xxxi)www and Eq. (B.3), one can rewrite the functional in Eq. (B.2)

as

J(ααα) = ‖KKKααα− yyy‖2 + γααα
>KKKααα, (B.4)

where KKK = ΦΦΦ
>

ΦΦΦ and yyy = (y1, . . . ,yN)
>. Therefore, the optimal ααα can be estimated by finding

the gradient vector ∇αααJ(ααα) = ∂J(ααα)/∂ααα and equaling it to zero, which results in the following

linear system:

(KKK + γIII)ααα = yyy, (B.5)
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whose solution is given by the OLS algorithm as

ααα = (KKK + γIII)−1yyy. (B.6)

From now on, the OS-LSSVR model consists in applying the learning procedure of

the KRLS model to solve iteratively the standard dual LSSVR optimization problem in Eq. (B.4).

Thereby, consider the sequential training pairs of input-output

Dt = {(xxx1,y1),(xxx2,y2), . . . ,(xxxt ,yt)}, (B.7)

where the functional in Eq. (B.4) should be solved into a sequential learning scenario. Thus, one

gets

J(ααα t) = ‖KKKtααα t− yyyt‖2 + γααα
>
t KKKtααα t , (B.8)

which, based on KKKt = ΦΦΦ
>
t ΦΦΦt , can also be written as

J(ααα t) = ‖ΦΦΦ>t ΦΦΦtααα t− yyyt‖2 + γααα
>
t ΦΦΦ
>
t ΦΦΦtααα t . (B.9)

From Engel et al. (2004), it is possible to write the following equalities:

wwwt = ΦΦΦtααα t ≈ Φ̃ΦΦtAAA>t ααα t = Φ̃ΦΦtα̃αα t , (B.10)

where AAAt = [aaa1 aaa2 · · · aaat ]
> ∈ Rt×mt . Then, Eq. (B.9) becomes

J(α̃αα t) = ‖ΦΦΦ>t Φ̃ΦΦtα̃αα t− yyyt‖2 + γααα
>
t ΦΦΦ
>
t Φ̃ΦΦtα̃αα t ,

= ‖AAAtK̃KKtα̃αα t− yyyt‖2 + γααα
>
t AAAtK̃KKtα̃αα t ,

= ‖AAAtK̃KKtα̃αα t− yyyt‖2 + γα̃αα
>
t K̃KKtα̃αα t , (B.11)

where α̃αα t ∈ Rmt is a reduced vector of mt coefficients, and K̃KKt ∈ Rmt×mt is the corresponding

reduced kernel matrix up instant t. The next step is to take the gradient vector ∇α̃ααt J(α̃αα t) =

∂J(α̃αα t)/∂ α̃αα t of Eq. (B.11) and equaling it to zero, such as

∂J(α̃αα t)

∂ α̃αα t
= 2(AAAtK̃KKtα̃αα t− yyyt)AAAtK̃KKt +2γK̃KKtα̃αα t ,

= K̃KKtAAA>t AAAtK̃KKtα̃αα t + γK̃KKtα̃αα t− K̃KKtAAA>t yyyt = 0,

⇒ (K̃KKtAAA>t AAAtK̃KKt + γK̃KKt)α̃αα t = K̃KKtAAA>t yyyt . (B.12)
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The expression in Eq. (B.12) corresponds to the minimization of the functional in Eq. (B.11),

which yields the following solution:

α̃αα t = (K̃KKtAAA>t AAAtK̃KKt + γK̃KKt)
−1K̃KKtAAA>t yyyt ,

= [K̃KKt(AAA>t AAAtK̃KKt + γIIIt)]
−1K̃KKtAAA>t yyyt ,

= (AAA>t AAAtK̃KKt + γIIIt)
−1K̃KK−1

t K̃KKtAAA>t yyyt ,

= (AAA>t AAAtK̃KKt + γIIIt)
−1AAA>t yyyt ,

= [(AAA>t AAAt + γK̃KK−1
t )K̃KKt ]

−1AAA>t yyyt ,

= K̃KK−1
t (AAA>t AAAt + γK̃KK−1

t )−1AAA>t yyyt . (B.13)

Finally, by defining a matrix PPPt as

PPPt = (AAA>t AAAt + γK̃KK−1
t )−1, (B.14)

one can write the expression for α̃αα t in Eq. (B.13) as

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt . (B.15)

The next step requires the computation of the inverse matrices in Eqs. (B.14)

and (B.15) iteratively using the RLS algorithm. For this purpose, we have two possible situations

following the same recursive procedure of the KRLS algorithm, which are described below.

B.1.1 Case 1 - Unchanged Dictionary

In this case, δt ≤ ν , meaning that φφφ(xxxt) is approximately linearly dependent on the

dictionary vectors. Hence, xxxt is not added to the dictionary (D sv
t = D sv

t−1) and, consequently, the

kernel matrix is not changed (K̃KKt = K̃KKt−1).

Since aaat needs to be computed (see Eq. (6.6)) to determine δt , the matrix AAAt is built

iteratively by the inclusion of aaat , i.e. AAAt = [AAA>t−1 aaat ]
>. Thus, by defining a matrix BBBt as

BBBt = AAA>t AAAt + γK̃KK−1
t ,

= AAA>t−1AAAt−1 + γK̃KK−1
t−1 +aaataaa>t ,

= BBBt−1 +aaataaa>t , (B.16)

where AAA>t AAAt = AAA>t−1AAAt−1 + aaataaa>t , one can apply the matrix inversion lemma to recursively

compute the matrix PPPt as

PPPt = BBB−1
t = PPPt−1−

PPPt−1aaataaa>t PPPt−1

1+aaa>t PPPt−1aaat
. (B.17)



199

Also defining the gain vector qqqt as

qqqt =
PPPt−1aaat

1+aaa>t PPPt−1aaat
, (B.18)

one gets

PPPt = PPPt−1−qqqtaaa
>PPPt−1. (B.19)

Finally, using the fact that AAA>t yyyt = AAA>t−1yyyt−1 +aaatyyyt , the OS-LS-SVR update rule for

α̃αα t can be written by

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt ,

= K̃KK−1
t (PPPt−1−qqqtaaa

>
t PPPt−1)(AAA>t−1yyyt−1 +aaatyt),

= (K̃KK−1
t PPPt−1− K̃KK−1

t qqqtaaa
>
t PPPt−1)(AAA>t−1yyyt−1 +aaatyt),

= K̃KK−1
t PPPt−1AAA>t−1yyyt−1 + K̃KK−1

t PPPt−1aaatyt− K̃KK−1
t qqqtaaa

>
t PPPt−1AAA>t−1yyyt−1− K̃KK−1

t qqqtaaa
>
t PPPt−1aaatyt ,

= α̃αα t−1 + K̃KK−1
t aaatyt(PPPt−1 +qqqtaaa

>
t PPPt−1)−qqqtaaa

>
t α̃αα t−1,

= α̃αα t−1 + K̃KK−1
t aaatytPPPt−qqqtaaa

>
t α̃αα t−1,

= α̃αα t−1 + K̃KK−1
t (PPPtaaatyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t (qqqtyt−qqqtaaa

>
t K̃KKtα̃αα t−1),

= α̃αα t−1 + K̃KK−1
t qqqt(yt− k̃kkt−1(xxxt)

>
α̃αα t−1), (B.20)

where the last equalities are based on qqqt = PPPtaaat and k̃kkt−1(xxxt) = K̃KKtaaat .

B.1.2 Case 2 - Updating the Dictionary

In this case, one gets δt > ν , implying that xxxt must be added to the dictionary, i.e.

D sv
t = D sv

t−1∪{xxxt} and mt = mt−1 +1. Hence, the kernel matrix must be updated accordingly.

In order to compute K̃KK−1
t recursively, consider the matrix K̃KKt−1 and the information

provided by the new sample to build K̃KKt as

K̃KKt =

 K̃KKt−1 k̃kkt−1(xxxt)

k̃kkt−1(xxxt)
> ktt

 , (B.21)

and also consider the following matrix identity:

if DDDt =

 DDDt−1 ddd

ddd> d∗

 , (B.22)
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then

DDD−1
t =

 DDD−1
t−1 000

000> 0

+ 1
∆d

 −DDD−1
t−1ddd

1

 −DDD−1
t−1ddd

1

> , (B.23)

where DDDt and dddt are a square matrix and a vector, respectively, of appropriate sizes. Furthermore,

d∗ and ∆d are scalars such that ∆d = d∗−ddd>DDD−1
t−1ddd.

Then, assuming the equalities DDDt−1 = K̃KKt−1, ddd = k̃kkt−1(xxxt) and d∗ = ktt in Eq. (B.22),

and applying them in Eq. (B.23), it is possible to recursively compute the inverse matrix K̃KK−1
t as

K̃KK−1
t =

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 −K̃KK−1
t−1k̃kkt−1(xxxt)

1

 −K̃KK−1
t−1k̃kkt−1(xxxt)

1

> ,
=

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 K̃KK−1
t−1k̃kkt−1(xxxt)k̃kkt−1(xxxt)

>K̃KK−1
t−1 −K̃KK−1

t−1k̃kkt−1(xxxt)

−k̃kkt−1(xxxt)
>K̃KK−1

t−1 1

 ,
=

 K̃KK−1
t−1 000

000> 0

+ 1
δt

 aaataaa>t −aaat

−aaa>t 1

 , (B.24)

where δt = ktt− k̃kkt−1(xxxt)
>K̃KK−1

t−1k̃kkt−1(xxxt) and aaat = K̃KK−1
t−1k̃kkt−1(xxxt). The final expression for K̃KK−1

t is

obtained adding the matrices in Eq. (B.24), which is given by

K̃KK−1
t =

1
δt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 . (B.25)

One can infer that the dimension of the matrix K̃KK−1
t increases due to the inclusion of

sample xxxt into the dictionary. Thus, to avoid a mismatch in the calculation of PPPt in Eq. (B.14),

the dimension of matrix AAA>t AAAt should be increased as follows:

AAA>t AAAt =

 AAA>t−1AAAt−1 000

000> 1

 . (B.26)

From Eqs. (B.25), (B.26) and since the matrix PPPt is computed as PPPt = (AAA>t AAAt +

γK̃KK−1
t )−1, one can express the sum between parentheses as

AAA>t AAAt + γK̃KK−1
t =

 AAA>t−1AAAt−1 000

000> 1

+
 γK̃KK−1

t−1 +
γ

δt
aaataaa>t − γ

δt
aaat

− γ

δt
aaa>t

γ

δt

 ,
and, therefore,

PPPt =

 AAA>t−1AAAt−1 + γK̃KK−1
t−1 +

γ

δt
aaataaa>t − γ

δt
aaat

− γ

δt
aaa>t

γ

δt

−1

. (B.27)
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The next step is applying the same matrix identity of Eqs. (B.22) and (B.23), used

for the calculation of K̃KK−1
t , to compute PPPt as

PPPt =

 PPPt−1 000

000T 0

+ 1
∆b

 −PPPt−1bbb

1

 ·
 −PPPt−1bbb

1

> , (B.28)

where ∆b = b∗−bbb>BBB−1
t−1bbb, b∗ = 1+ γ

δt
and bbb =− γ

δt
aaat . Defining a constant c = γ/δt , one gets

∆b = 1+
γ

δt
− (− γ

δt
aaa>t )PPPt−1(−

γ

δt
aaat) = 1+ c− c2aaa>t PPPt−1aaat , (B.29)

where c = γ

δt
. Then, the matrix PPPt can be computed by

PPPt =

 PPPt−1 000

000> 0

+ 1
∆b

 c2PPPt−1aaataaa>t PPPt−1 cPPPt−1aaat

caaa>t PPPt−1 1

 ,
=

1
∆b

 ∆bPPPt−1 + c2PPPt−1aaataaa>t PPPt−1 cPPPt−1aaat

caaa>t PPPt−1 1

 . (B.30)

In order to compute the vector solution α̃αα t = K̃KK−1
t PPPtAAA>t yyyt , one can still represent the

product AAA>t yyyt by

AAA>t yyyt =

 AAA>t−1yyyt−1

yt

 . (B.31)

Thus, one uses Eqs. (B.30) and (B.31) to develop the expression for α̃αα t as

α̃αα t = K̃KK−1
t PPPtAAA>t yyyt ,

= K̃KK−1
t

1
∆b

 ∆bPPPt−1 + c2PPPt−1aaataaa>t PPPt−1 cPPPt−1aaat

caaa>t PPPt−1 1

 AAA>t−1yyyt−1

yt

 ,
= K̃KK−1

t
1

∆b

 ∆bPPPt−1AAA>t−1yyyt−1 + c2PPPt−1aaataaa>t PPPt−1AAA>t−1yyyt−1 + cPPPt−1aaatyt

caaa>t PPPt−1AAA>t−1yyyt−1 + yt

 ,
= K̃KK−1

t
1

∆b

 ∆bPPPt−1AAA>t−1yyyt−1 + c2PPPt−1aaat k̃kkt−1(xxxt)
>α̃αα t−1 + cPPPt−1aaatyt

yt + ck̃kkt−1(xxxt)
>α̃αα t−1

 . (B.32)

From Eq. (B.25), it is possible to rewrite Eq. (B.32) as

α̃αα t =
1

∆bδt

 δtK̃KK
−1
t−1 +aaataaa>t −aaat

−aaa>t 1

 ∆bPPPt−1AAA>t−1yyyt−1 + c2PPPt−1aaat k̃kkt−1(xxxt)
>α̃αα t−1 + cPPPt−1aaatyt

yt + ck̃kkt−1(xxxt)
>α̃αα t−1

 ,
where the matrix product can be extended to (δtK̃KK

−1
t−1 +aaataaa>t )(∆bPPPt−1AAA>t−1yyyt−1 + c2PPPt−1aaat k̃kk

>
t−1α̃αα t−1 + cPPPt−1aaatyt)−aaat(yt + ck̃kk

>
t−1α̃αα t−1)

−aaa>t (∆bPPPt−1AAA>t−1yyyt−1 + c2PPPt−1aaat k̃kk
>
t−1α̃αα t−1 + cPPPt−1aaatyt)+ yt + ck̃kk

>
t−1α̃αα t−1

 ,(B.33)
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where, for the sake of space reduction, it was used the representation k̃kkt−1 instead k̃kkt−1(xxxt).

Finally, the OS-LSSVR model solution can be expressed by

α̃αα t =
1

∆bδt

 α̃αα
(1)
t

α̃∗t

 , (B.34)

where the vector α̃αα
(1)
t and the scalar α̃∗t can be computed, respectively, by algebraically develop-

ing the upper and lower terms in Eq. (B.33), as

α̃αα
(1)
t = ∆bδtK̃KK

−1
t−1PPPt−1AAA>t−1yyyt−1 +δtc2K̃KK−1

t−1PPPt−1aaat k̃kkt−1(xxxt)
>

α̃αα t−1 +δtcK̃KK−1
t−1PPPt−1aaatyt

+ ∆baaataaa>t PPPt−1AAA>t−1yyyt−1 + c2aaataaa>t PPPt−1aaat k̃kkt−1(xxxt)
>

α̃αα t−1 + caaataaa>t PPPt−1aaatyt

− aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1),

= ∆bδtα̃αα t−1 +δtc2K̃KK−1
t−1PPPt−1aaat k̃kkt−1(xxxt)

>
α̃αα t−1 + γK̃KK−1

t−1PPPt−1aaatyt

+ ∆baaat k̃kkt−1(xxxt)
>

α̃αα t−1 + c2aaataaa>t PPPt−1aaat k̃kkt−1(xxxt)
>

α̃αα t−1 + caaataaa>t PPPt−1aaatyt

− aaatyt− caaat k̃kkt−1(xxxt)
>

α̃αα t−1,

= ∆bδtα̃αα t−1 + γK̃KK−1
t−1PPPt−1aaat(yt + ck̃kkt−1(xxxt)

>
α̃αα t−1)

+ aaat(∆bk̃kkt−1(xxxt)
>

α̃αα t−1− ck̃kkt−1(xxxt)
>

α̃αα t−1− yt)+ caaataaa>t PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1),

= ∆bδtα̃αα t−1 +aaat((∆b− c)k̃kkt−1(xxxt)
>

α̃αα t−1− yt)

+ PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1)(γK̃KK−1
t−1 + caaataaa>t ),

= ∆bδtα̃αα t−1−aaat(yt− (∆b− c)k̃kkt−1(xxxt)
>

α̃αα t−1)

+ PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1)(γK̃KK−1
t−1 + caaataaa>t ), (B.35)

and

α̃
∗
t = −∆baaaT

t PPPt−1AAA>t−1yyyt−1− c2aaa>t PPPt−1aaat k̃kkt−1(xxxt)
>

α̃αα t−1− caaa>t PPPt−1aaatyt + yt + ck̃kkt−1(xxxt)
>

α̃αα t−1,

= −∆bk̃kkt−1(xxxt)
>

α̃αα t−1 + yt + ck̃kkt−1(xxxt)
T

α̃αα t−1− caaa>t PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1),

= yt +(c−∆b)k̃kkt−1(xxxt)
>

α̃αα t−1− caaa>t PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1),

= yt− (∆b− c)k̃kkt−1(xxxt)
>

α̃αα t−1− caaa>t PPPt−1aaat(yt + ck̃kkt−1(xxxt)
>

α̃αα t−1). (B.36)

Thereby, once the parameter vector α̃αα t in Eq. (B.34) has been updated, the sparse

resulting solution for the OS-LSSVR model is given by

ŷt = f (xxx) =
mt

∑
m=1

α̃mk(xxx,xxxm) = k̃kkmt (xxx)
>

α̃αα t . (B.37)
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APPENDIX C – BOUND ON GENERALIZATION ERROR - OS-LSSVR MODEL

This appendix presents an analysis of the generalization error bound applicable to the

proposed OS-LSSVR model. For this purpose, one follows a similar strategy adopted in Engel et

al. (2003) for the KRLS model, extending it to the OS-LSSVR proposal.

C.1 A Generalization Bound

Let D = {(xxxn,yn)}N
n=1 be a set of IID samples drawn from some distribution P(XXX ,YYY ).

In the OS-LSSVR case, the loss function is expressed by

` f (xxx,y) = `(y, f (xxx)) = (y− f (xxx))2 + γ‖www‖2, (C.1)

where f is given by f (xxx) = 〈www,φφφ(xxx)〉. In addition, let

LF = {` f (xxx,y) : f ∈F}, (C.2)

be a class of functions (defined on D) and let σσσ = (σ1, . . . ,σN) be a sequence of IID random

variables assuming the values {−1,+1}, such as P(σn = 1) = P(σn =−1) = 1/2. According

to Vaart and Wellner (1996), the empirical Rademacher complexity of F is defined as

R̂N(F ) = EEEσ sup
f∈F

{
1
N

N

∑
n=1

σn f (xxxn)

}
, (C.3)

where the Rademacher complexity is given by RN(F ) = EEER̂N(F ).

As in the KRLS case, one should set L( f )=EEEX ,Y `(Y, f (X)) and L̂( f )= ÊEEN`(Y, f (X)).

Then, the bound for the expected loss can be obtained by means of the following theorem (MEIR;

ZHANG, 2003; ENGEL et al., 2003):

Theorem C.1 Let F be a class of functions mapping from a domain X to R, and let D =

{(xxxn,yn)}N
n=1, xxxn ∈X , yn ∈ R, be independently selected according to a probability measure P.

Assume there exists a positive real number M such that for all positive λ

logEEEX ,Y sup
f∈F

cosh(2λ`(Y, f (X)))≤ λ
2M2/2. (C.4)

Then, with probability at least 1−δ over the samples of length N, every f ∈F satisfies

L( f )≤ L̂( f )+2RN(LF )+M

√
2log(1/δ )

N
. (C.5)
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In addition, the empirical Rademacher complexity R̂N is limited according to the following

result (MEIR; ZHANG, 2003; ENGEL et al., 2003):

Lemma C.2 Consider the class of functions FA = { f (xxx) = 〈www,φφφ(xxx)〉 : (1/2)‖www‖2 ≤ A}. Then

R̂N(FA)≤

√√√√2A
N

(
1
N

N

∑
n=1
‖φφφ(xxxn)‖2

)

where one assumes initially that (1/2)‖www‖2 ≤ A (we use www ∈ΩA to indicate this inequality).

Then, assuming that k(xxx,xxx′)≤ B for all xxx and xxx′, and the expectation with respect to the product

distribution PN over the samples S by EEES, it is possible to write

RN(LFA
) = EEESEEEσ sup

www∈ΩA

1
N

N

∑
n=1

σn[(yn−〈www,φφφ(xxxn)〉)2 + γ‖www‖2], (C.6)

= EEESEEEσ sup
www∈ΩA

1
N

N

∑
n=1

σn[〈www,φφφ(xxxn)〉2−2〈www,ynφφφ(xxxn)〉+ γ〈www,www〉], (C.7)

≤ EEESEEEσ sup
www∈ΩA

1
N

N

∑
n=1

σn(
√

2AB+2|yn|)〈www,φφφ(xxxn)〉+σn2γA. (C.8)

Based on the fact that EEEσn = 0 for any n, the last term in Eq. (C.8) is null, since

EEESEEEσ sup
www∈ΩA

1
N

N

∑
n=1

σn2γA = 2γAEEESEEEσ

1
N

N

∑
n=1

σn = 0. (C.9)

Based on the procedure introduced in Engel et al. (2003)(see e.g. page 20) for the

KRLS algorithm, the derived bound on RN for the proposed OS-LSSVR model is given by

RN(LFA
)≤

2
√

2AB+4
√

ABEEE[YYY 2]
√

N
, (C.10)

expressed in terms of the parameters A and B. In order to get rid of the dependence on the

parameter A, one proceeds with the same mathematical manipulations as described in Meir and

Zhang (2003), Engel et al. (2003) to establish the following bound of the expected loss for the

OS-LSSVR model:

EEE((Y − fw(X))2 + γ‖www‖2)≤ 1
N

N

∑
n=1

(yn− fw(xxxn))
2 + γ g̃(www)
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+
4
√

2Bg̃(www)+8
√

Bg̃(www)EEE[YYY 2]
√

N

+M

√
4loglog2(2g̃(www)/g0)+2log(1/δ )

N
, (C.11)

with

g̃(www) = 2max((1/2)‖www‖2,g0), (C.12)

where g0 is a constant.

The first two terms on the right-hand side of Eq. (C.11) denote the empirical loss

over the training data. The third term corresponds to the Rademacher complexity, which was

demonstrated in Eqs. (C.6)-(C.10) be the same one obtained for the KRLS algorithm. Finally,

the last term is common to both KRLS and OS-LSSVR models, since it does not depend on the

considered loss function `(y, f (xxx)).

Therefore, one should note that the expression in Eq. (C.11) is similar to that one

reported in Engel et al. (2003) (Theorem 4.3), but with a regularization term in both sides of the

inequality. Then, the generalization error bound is controlled by the parameter γ . If we set γ = 0

(i.e. no regularization term) in Eq. (C.11), one gets the original form as derived for the KRLS

algorithm.
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