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Abstract 

The identification of lithofacies from well is usually an interpretative process based on geophysical logs since 
core and sidewall samples are not usually available. Despite being always sampled and described, cuttings are 
useful only as a reference for determining the rocks because a number of problems occur during the drilling and 
sampling activities. Well logs are in situ continuous records of different physical properties of the drilled rocks, 
which can be associated with different lithofacies by experienced log analysts. This task needs a relatively great 
amount of time and it is likely to be imperfect because the human analysis is subjective. Thus, any alternative 
method of classification with high accuracy and promptness is very welcome by the log analysts. This paper is 
based on Neural Networks (NNs) applied in well data from the Leão Coal Mine, southern Brazil, in order to 
classify organic mudrocks, coals and siliciclastic sandstones, the main rocks present in the Rio Bonito and 
Palermo formations, by using their well logs as database. The training and validation set of the NN contain data 
from eight cored and logged boreholes. The input included 409 values of depth and logs of gamma-ray, 
spontaneous potential, resistance and resistivity for each electrofacies. The neural network model was the 
feedforward multilayer perceptron (MLP) and the neural networks were trained with variations of the 
backpropagation algorithm: Levenberg-Marquardt and Resilient backpropagation. Although an accuracy of 
approximately 80% had been achieved in the general classification, discrepant accuracies in the classification of 
the different electrofacies are discussed in order to better understand the reasons that affected negatively the NN 
performance. 

Keywords: well logs, artificial intelligence, supervised classification, Leão Coal Mine, Paraná Basin, Brazil 

1. Introduction 

The rock sampling in a well which crosses intervals that bear mineral resources of any nature (e.g.: water, oil, 
gas, coal, metals, etc.) is essential for understanding its genesis and the subsequent activities of research and/or 
exploitation. Drill-cores and sidewall samples are obtained along intervals of interest, taking into account that 
continuous cores and the sidewall samples are punctual. They are used for determining the type of rock as well 
as for quantifying a number of properties through laboratory analyses. Nevertheless, very high costs restrict these 
kind of samples from being obtained throughout the well. Cutting samples are continuously recuperated, but they 
do have limitations regarding the correct positioning and reliable representation of the rock in the drilled 
succession. 

As a way to increase the feasibility of continuous sampling in subsurface, the measuring of several properties by 
means of sensors is a usual procedure, like natural radioactivity, electrical conductivity, transit time of sound 
waves, among others. The measuring of properties is part of the logging operations, usually carried out 
throughout the well. The values obtained in these operations are processed and transformed into continuous 
records of variations along the well, named geophysical logs, well logs or electrical logs. 
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Well logs have become more accurate as technology developed and presently allow initial analysis of many 
aquifers and oil fields to be done based only on the log interpretation. In order to fill the lack of rock samples and 
to avoid harming the assessment on the interval of interest, combined log analysis is a common practice. It 
allows estimate, for instance, the kind of rock, to recognize permeable layers, to identify intervals bearing 
hydrocarbons and to determine the percentage of rock porosity. 

For many decades, well log analysis was done manually and visually for the identification of rocks. The 
identification was carried out mainly by means of cutoffs, that is, intervals with values previously determined for 
a given kind of rock in one or more logs (e.g., shales and sandstones using gamma ray). The use of such method 
required an experienced log analyst who could relate the standards obtained to the different lithological types. 
Although good enough, that method demands a relatively great amount of time for the analysis of one single well 
or interval. It is also subject to different criteria of standard recognition as well as it is limited to human capacity 
to simultaneously relate data that may vary in nature. On the other hand, many researchers have developed 
different approaches in order to automate the process in the last years. A number of techniques has been used, 
such as statistical (Busch et al., 1987; Flexa et al., 2004; Sancevero et al., 2008), fuzzy logic (Toumani et al., 
1994; Saggaf & Nebrija, 2003a; Ilkhchi et al., 2006) and neural network (Baldwin et al., 1990; Rogers et al., 
2002; Bhatt & Helle, 2002; Saggaf & Nebrija, 2000, 2003b; Maiti et al., 2007; Schmitt, 2009; Maiti & Tiwari, 
2010; Raeesi et al., 2012). Specific applications of neural networks for better understand organic and 
fine-grained siliciclastic rocks from well logs are rare (e.g., Huang & Williamson, 1996; Yang et al., 2004; 
Schmitt, 2009). Thus, a selected dataset was chosen for testing the neural network accuracy in differentiating 
these types of rocks. 

This paper aims to recognize electrofacies patterns and link them specifically to organic and fine-grained 
siliciclastic rocks of the Rio Bonito and Palermo formations at the Leão Coal Mine through neural network. The 
results were based on 28% of training data and 72% of validation data and allowed a discussion of the variable 
indexes of the network accuracy, since the well logs intervals of training and validation are cored and the 
original descriptions were used to compare with the results. Besides, the lithological features of the working site 
challenge the achievement of a successful quality of training and validation and also challenge the results of the 
lithofacies classification as a consequence. Although with a general accuracy of approximately 80% in the 
validation phase, a number of problems were identified and discussed in order to better understand the quality of 
the results. 

2. Neural Networks and Electrofacies Modelling 

Neural Networks (NN) are groupings of processing units, called neurons or nodes, structured and interconnected, 
whose functionality is similar to a neural structure of intelligent organisms. The NN have a high computational 
power due to its parallel and distributed structure and its capacity to learn and/or make generalizations, what 
makes it possible to solve complex problems in a vast range of scientific knowledge(Haykin, 1999). 

In view of its non-linear structure, the NN is capable to capture the most complex characteristics from the data, 
which is not always possible if one uses the traditional statistical techniques or other deterministic methods. The 
greatest advantage of neural networks over conventional methods, such as the statistical one, is to carry out an 
analysis without knowledge of the intrinsic theory of the matter. Other great advantages are to analyze relations 
which are not fully known among the variables involved in the modelling and use a well-established technique 
for application in well log data. 

The use of numerical-computational methods for the classification of rocks based on well logs started in the 
early 70’s and it was boosted from the late 80’s. Those first works were based on numerical (Harris & 
McCammon, 1971; Doveton & Cable, 1979) and statistical methods, especially the principal component analysis 
(Wolff & Pelissier-Combescure, 1982) and the discriminant analysis (Busch et al., 1987; Delfiner, 1987). The 
classification of rocks based on artificial intelligence methods applied to well logs came up in the early 90’s, 
following the works that had been carried out on neural networks (Derek et al., 1990; Baldwin et al., 1990; 
Rogers et al., 1992; Benaouda et al., 1999; Zhang et al., 1999; Saggaf & Nebrija, 2000; Siripitayananon et al., 
2001; Bhatt, 2002; Bhatt & Helle, 2002; Yang et al., 2004; Maiti et al., 2007; Maiti & Tiwari, 2010) and fuzzy 
logic (Toumani et al., 1994; Xuyan & Zhanglong, 1998; Saggaf & Nebrija, 2003a; Hsieh et al., 2005). The basic 
principle is to identify the log patterns associated with facies or facies associations in different well logs, named 
electrofacies, and structure a neural network in order to recognize such patterns in all the succession or study 
area. 

Saggaf and Nebrija (2000) performed a supervised analysis to identify rocks previously identified from cores. 
The automatic method proposed by the authors was based on competitive neural network and had similar results 
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to those performed by experienced log analysts. Furthermore, the method provides a way to measure the degree 
of confidence of the analysis. Another application on electrofacies modeling estimated missing logs in wells with 
a incomplete suite (Saggaf & Nebrija, 2003b). The authors recognized the interdependence among different logs 
using as example a well with a complete log suite and applied a neural network to estimate the missing logs. The 
high accuracy of the results was evaluated by blind tests in which both estimated log and the real one were 
compared. An interesting application of neural networks was performed by Yang et al. (2004). They estimated 
the clay content, grain density, total organic carbon and cement using mudstone and carbonate values obtained 
from well logs. 

3. Resilient Backpropagation and Levenberg-Marquardt Algorithms 

The Resilient Backpropagation (Rprop) is an algorithm that performs batch supervised training in multilayer 
perceptron-like networks. This algorithm works in order to eliminate the negative influence of the partial 
derivative value in the weight adjustment. This influence occurs because the output value of a neuron of 
approximately 0 (or 1) and the expected output of 1 (or 0) imply in a derivative of approximately 0. Thus, the 
weight for this neuron will be minimally adjusted (Braga et al., 2007).The Rprop is capable to eliminate this 
problem using just the signal of the derivative, not its value. The signal indicates the direction of the weight 
adjustment, either increasing or decreasing the previous weight. The range of the weight adjustment is given by 
the “actualization value” ji

t , as shown by Equation 1. 
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The is defined as an adaptation process dependent of the signal of the error derivative in relation with the 
weight to be adjusted, as indicated by Equation 2. 

  (2) 

Where: 

0 < < 1 <  

According with the rule of adaption used by Rprop, when the partial derivative of the error in relation to the 
weight  keeps the same sign (indicating that the last adjust decreased the error), the actualization value  
increases by the factor and speeds up the training convergence. When the partial derivative changes the sign 
(indicating that the last adjust was too much), the actualization value  decreases by the factor  and 
changes the direction of adjustment. 

The Levenberg-Marquardt algorithm is an approximation of the Newton’s method. It improves the 
Gauss-Newton method by using a variable learning rate and was proposed to adjust the weights of the neural 
network after each cycle. This algorithm is a numerical optimization technique of high computational complexity 
which spends a great volume of memory, which might impede its utilization in huge networks (Haykin, 1999). 

When this algorithm is applied, the weights of the network are adjusted in accordance with the Equation 3. 
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Where: 

 is a Hessian matrix and  is the gradient. The parameter µ is multiplied by the factor β 
when an adjust intends to increase . When the purpose is decrease the value  after each step, µ is 
divided by β. When µ is too large, the algorithm becomes a descendent gradient, with step 1/ µ. When µ is low, 
the algorithm is equivalent to the algorithm Gauss-Newton (Braga et al., 2007). 
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The conjugate gradient algorithms are usually much faster than variable learning rate backpropagation, and are 
sometimes faster than resilient backpropagation, although the results vary from one problem to another. The 
conjugate gradient algorithms require only a little more storage than the simpler algorithms. Therefore, these 
algorithms are good for networks with a large number of weights (Demuth et al., 2008). 

4. Database and Methods 

In the region of the Leão Coal Mine there is the occurrence of granitoids of Proterozoic age that constitute the 
basement of the Paraná Basin in that region. Those granitoids are covered by a Paleozoic sedimentary sequence 
which comprises the Itararé Group and the Rio Bonito, Palermo, Irati, Serra Alta, Teresina and Rio do Rasto 
formations (Figure 1). That succession is remarkable for its coal beds in the Rio Bonito Formation, which 
constitute the main Brazilian coal deposits (Gomes et al., 2003). 

The database is composed of well logs and lithofacies descriptions of the cores drilled in the above-mentioned 
coal mine. The site is located in mid-eastern Rio Grande do Sul State (Figure 2), with a distribution in the 
counties of Rio Pardo, Minas do Leão, Butiá, São Jerônimo, General Câmara and Vale Verde. Despite coal 
mining occurs in the area since the 1940’s, the National Department of Mineral Production (DNPM) and the 
Brazilian Geological Survey (CPRM) carried out major mineral research projects in this area between 1975 and 
1983. The data come from the project named Iruí-Butiá (CPRM, 1981), with drilled in meshes from 8x8km to 
1x1km (Lopes, 1990). 

The logs that were used for the training, validation and classification were analyzed and selected based on the 
borehole and description files from the Porto Alegre’s Regional Superintendence Office of the CPRM. The eight 
boreholes chosen for this study were LB-132-RS, LB-137-RS, LB-138-RS, LB-139-RS, LB-141-RS, 
LB-143-RS, LB-148-RS and LB-207-RS. 

The conversion of logs from the analogue to the digital format was done by means of the original logs printed on 
millimeter paper. Raster images were carefully acquired in scanners and imported onto a graphic software in 
order to adjust the scale and perform the well log vectorization. The vectorized logs were exported as a text file 
(.txt) so as to relate depth values to the gamma ray values (GR), spontaneous potential (SP), resistivity (RTV) 
and resistance (RTC). The data set was organized in a data bank and loaded onto the Matrix Laboratory 
application, MatLab, afterwards for the initial stages of the neural network structuring. The data set was 
normalized in interval [0;1] considering the maximum and minimum values. The training dataset comprised 28% 
of the data, with its respective complementary set of validation of 72%, having the latter been developed with 
basis on information about three wells, namely LB-137-RS, LB-138-RS and LB-148-RS. The small percentage 
of training data is related with the small number of the electrofacies 3 available for training purposes. As training 
of a neural network must consider the same number of samples for each electrofacies, the training data set was 
limited in 28%. 

 

Figure 1. Stratigraphic chart of the permocarboniferous units of the Paraná Basin. Modified from Milani et al. 
(2007). Ages compiled from Gradstein & Ogg (2004) 
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Figure 2. Location maps of the study area 

 

In the next stage, different configuration and training algorithms were tested in order to define the appropriate 
neural model for the lithological classification. The lithological classes were discretized in a way that the 
expected output of each input came out codified. Each electrofacies pattern was related with a facies association 
(e.g., siltstone, sandstone and coal) and represented by a code, Electrofacies 1 = sandstone = 100, Electrofacies 2 
= siltstone = 010 and Electrofacies 3 = coal = 001. The neural network was created by the Neural Network 
Toolbox of the MatLab application in its 7.0.1 version. A network of the multilayer perceptron (MLP) was used 
and its topology was defined through successive experiments (Appendix 1). The NN was developed by means of 
supervised learning, which means that inputs and outputs were provided with the aim of adjusting the network 
parameters. 

To assess the performance of NN in the classification, an analysis of percentage of standards that were correctly 
classified, incorrectly classified, and rejected along the validation phase is done. The proportion of correctly 
classified standards is named accuracy. A classification is correct when the classifier matches an “unknown” 
standard with its true class (Braga et al., 2007). When the classifier places the “unknown” standard in the wrong 
class, the classification is said to be incorrect. The proportion of incorrectly classified standards gives origin to 
an error rate. In case the standard is similar to the standards of more than one class or is not similar enough to the 
standards of none of the classes, the unknown standard is then rejected, being designated as non-identified. 

A simple technique that is commonly used is to present the examples to the multi-layer perceptron in a random 
order in between two seasons. Ideally, this random order guarantees that the examples that were successively 
presented to the network in one season rarely belong to the same class (Haykin, 1999). 

The accuracy of the classification was checked by the Confusion Matrix (Tables 1, 2 and 3). It is a resource that 
offers an effective measure of the classification model by showing the number of correct classifications opposed 
to the classifications predicted for each class, about a group of training samples of each class. The number of 
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successes in each class is located in the main diagonal of the matrix. All the other elements represent errors of 
omission and commission in the classification (Stehman, 1997). 

160 trainings were carried out until a network topology was reached and a one-percent error acceptance was set 
(see Appendix 1). Network input parameters were organized in the following way: one network was trained with 
five variables (depth, logs GR, SP, RTC, and RTV) and another one with four: depth, logs GR, SP and RTC. In 
all the experiments, the output had three neurons: one to represent electrofacies 1, another to represent 
electrofacies 2, and another one to represent electrofacies 3. The neurons work based on a non-linear function, 
named activation function, which determine the output data using the input data. The main activation functions 
are Logistic Sigmoid, Linear and Hyperbolic Tangent. The activation functions used were the linear and the 
logistic sigmoid function (LOGSIG), whereas the tested learning algorithms consisted of variations in the 
backpropagation algorithm, such as Levenberg-Marquardt, Resilient Backpropagation and Scaled Conjugate 
Gradient. 

In the process of validation, we have tried to analyze the NN’s efficiency by means of three logged and cored 
boreholes (LB-137-RS, LB-138-RS and LB-148-RS) with the known lithological descriptions that did not take 
part in the training stage. The validation set was composed of 497 samples of sandstone, 2411 of siltstone, and 
263 of coal, giving a total of 3171 values. In order to assess the ability of the network classification, the complete 
sections of drilling that were used in the validation stage were plotted. This was done by comparing the original 
description with the outputs of the neural network. 

5. Results and Discussions 

The boreholes LB-138-RS and LB-148-RS had the best performance of learning with the topology [5-15-3-3] 
and as variables the logs gamma rays (GR), spontaneous potential (SP), resistivity (RTV) and resistance (RTC). 
The activation function used in all layers was the logistic sigmoidal, the algorithm was the Resilient 
backpropagation and the learning finished after 4000 cycles.  

The success in the classification rate for the borehole LB-138-RS reached 76% and was the minor used in the 
validation stage. Electrofacies 2 reached 88,3% of success in its classification while electrofacies 1 and 3 had 
51,8% and 16,5%, respectively (Table 1). 

 

Table 1. Confusion matrix of the borehole LB-138-RS 

Class Accuracy+ (%) Samples Sandstone Siltstone Coal NI** 

Electrofacies 1 (Sandstone) 51,8 164 85 47 26 6 

Electrofacies 2 (Siltstone) 88,3 797 41 704 44 8 

Electrofacies 3 (Coal) 16,5 103 46 32 17 8 

Total - 1064 172 783 87 22 

Accuracy* (%) - - 49,4 89,9 19,5 - 

+ The producer’s accuracy.          * The user’s accuracy.          **Non-identified. 

 

Although incorrectly classified as electrofacies 1 by the neural network, the interval between 219,9 a 220,5m has 
a number of medium-grained sandstone intercalations within a bed of siltstone. On the other hand, the 
interpretation of a thinner sandstone bed than that described in the core, between 222,6 and 224,3m, has to do 
with both silt and mud contents present as matrix of the sandstone, i.e., filling the porous space among the sand 
grains. The silt class tends to be enriched in potassium feldspar and the clay content of the mud is also rich in 
such element. In both cases, textural and mineralogical properties altered the well log patterns and affected the 
lithological classification. Potassium, thorium and uranium are the main radioactive element present in minerals 
and affect considerably the gamma rays record in well logs. The presence of silt and clay into the sandstone 
modify the permeability and consequently the SP, RTV and RTC logs. 

This borehole also contains seven coal beds, named as S2, S3, I, I2, I3s, I3i and I4, in the interval between 
256,28 and 278,55m. Thin beds are unlikely to be classified correctly due to the shoulder effect, i.e., the logging 
tools are not capable to record the true values of each property because the rocks situated below and above a thin 
interval influence the logs, creating false values between the minimum and the maximum records of contrasting 
rocks bounded by sharp contacts. Thus, isolated thin beds of coals are not classified correctly as electrofacies 3. 
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Another question is related with the wide range of possibilities involving the term coal in the study area. Coal is 
also used as a generic term to designate organic carbon-enriched muddy rocks. In the Leão Mine coal is 
characterized by a great amount of inorganic material, such as clay, silt, quartz, feldspar and lithic grains etc. In 
fact, the organic rocks present in the area range from coal to carbonaceous siltstones. The variable content of the 
inorganic material contribute to modify the log values and, consequently, the classification of the neural network. 
The log patterns in this interval are characterized by abrupt shifts of values, especially in the GR, RTC and RTV 
logs. 

Electrofacies 1 was not classified with high accuracy as well, in the interval between 280,0 and 311,5m. The 
results of the neural network show a lot of intercalations of siltstones, and also coals, which decrease the real 
thickness of the sandstones. In this case, the presence of both feldspar grains and siltstone intercalations 
increased locally the values of the GR, RTV and RTC logs of the sandstone but SP was little or not affected. 
Figure 3 shows the comparison between the core log made by the geologist and that obtained from the neural 
network classification. 

 
Figure 3. Comparison between the descriptive litholog of the borehole LB-138-RS of CPRM (left) and the 

classification performed by the neural network (right) 

 

In the LB-148-RS the success rate was 78%, the error rate was 20% and 2% corresponds to non-identified 
patterns, all of them related with the validation stage. Electrofacies 2 reached 94,9% of success in its 
classification while electrofacies 1 had 9,8%. Electrofacies 3 was not classified in this borehole (Table 2). 

 

Table 2. Confusion Matrix of the Borehole LB-148-RS 

Class Accuracy+ (%) Samples Sandstone Siltstone Coal NI** 

Electrofacies 1 (Sandstone) 9,8 123 12 97 8 6 

Electrofacies 2 (Siltstone) 94,9 869 24 825 10 10 

Electrofacies 3 (Coal) 0,0 80 4 76 0 0 

Total - 1072 40 988 18 16 

Accuracy* (%) - - 30,0 82,7 00,0 - 

+ The producer’s accuracy.          * The user’s accuracy.          ** Non-identified. 
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The incorrect classification between 245,4 and 245,9m resulted from the generalization for training purposes. 
Defined as siltstone in a minor scale, this interval contains a lot of millimetrical to centimetrical sandstone 
intercalations, only recognizable in a major scale of observation and description such as that of the core log. The 
neural network classified an intercalation of non-identified, coal and sandstone, from the base to the top, within 
the siltstone interval. It is quite important to calibrate the resolutions of the neural network, of the logging tools 
and the description performed by geologists. The resolution of the logging tools is up to 30cm therefore any 
thinner layer classified by the neural network must be inspected by a log analyst. This inspection can reveal, for 
instance, the reason for the incorrect classification of coal in the above-mentioned interval. In this case, coal 
resulted from a combination of specific values of the GR, RTV and RTC logs caused by the shoulder effect. 

On the other hand, electrofacies 1 between 261,0 and 273, 29m was poorly classified by the neural network. The 
inspection of the core log has revealed that the electrofacies 1 in this interval comprises sandstone with 
milli-to-centimetrical intercalations of siltstones between 261,0 and 269,0m. From 269,0 to 273,29m silt is 
present as matrix of the sandstone in variable proportions, locally being considered as a sandy siltstone. For the 
depth of 318,9m, the network incorrectly classified the interval as electrofacies 1. However, in the descriptive 
profile, the layer of sandstone shows fine to medium grain size only in the range from 317 to 317,40m. 

This borehole contains eight coal beds, named S2s, S2m, S2i, S3, I, I2, I3 and I4, between 277,93 and 297,80m. 
The incorrect classification of the coal beds, i.e. electrofacies 3, can be explained by their composition; in fact, 
they are very carbonaceous black siltstones. The comparison between the core log and that obtained from the 
neural network classification is shown in the Figure 4. 

 
Figure 4. Comparison between the descriptive litholog of the borehole LB-148-RS of CPRM (left) and the 

classification done by the neural network (right) 

 

The boreholes LB-137-RS was adjusted with a multi-layer model and had the best performance of learning with 
the topology [5-15-3-3], using as variables depth and the logs gamma rays (GR), spontaneous potential (SP) and 
resistance (RTC). The activation function used in all layers was the logistic sigmoidal, the algorithm was the 
Levenberg-Marquardt and the learning finished after 2000 cycles.  

The success in the classification rate for this borehole during the validation stage reached 81% while errors and 
non-identified patterns reached 18% and 1%, respectively. Electrofacies 2 reached 93,6% of success rate and 
electrofacies 3 was correctly classified in 57,5% of the samples. Electrofacies 1 had the minor success rate with 
43,3% (Table 3). 
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Table 3. Confusion Matrix of the Borehole LB-137-RS 

Class Accuracy+ (%) Samples Sandstone Siltstone Coal NI** 

Electrofacies 1 (Sandstone) 43,3 210 91 97 16 6 

Electrofacies 2 (Siltstone) 93,6 745 9 697 33 6 

Electrofacies 3 (Coal) 57,5 80 0 32 46 2 

Total - 1035 100 826 95 14 

Accuracy* (%) - - 91,0 84,4 48,4 - 

+ The producer’s accuracy.          * The user’s accuracy.          ** Non-identified. 

 

The main reason for the incorrect classification of the electrofacies 1 situated between 223,60 and 225,40m is the 
presence of many intercalation of siltstones, which increase the GR and RTC values and decrease the SP one, 
and the small number of samples of these thin sandstone bed. As in the LB-148-RS, scale of description versus 
scale of sampling for training of the neural network was involved in problems for recognizing sandstones. 

Several intercalations generated by the neural network classification in the interval between 240,73 and 253,86m 
have to do with the wide range of values of the GR, SP and RTC logs. This interval was defined as electrofacies 
1 in the scale of observation and description and used as electrofacies 1 for training purposes. However, the 
neural network provided a different result. Electrofacies 2 and 3 were classified as centi-to-decimetric 
intercalations (Figure 5). The wide range of values of the well logs results of a combination of the lithological 
characteristics. The presence of calcite as a cement alters the pattern of the RTC and SP logs while siltstone 
intercalations and feldspar grains increase the GR log, promoting the classification as electrofacies 2 and 3. 

The seven layers of electrofacies 3 described in the cores, named as S2s, S2I, S3, I, I2, I3 and I4 occur as 
intercalations among siltstone beds in the middle of the borehole LB-137-RS, between 253,90 and 277,31m 
(Figure 5). The electrofacies 3 classified by the neural network do not correspond with the depths of the core. 
However, intercalations between electrofacies 3 and 2 are the result provided by the neural network as those 
present in the middle portion of the core, together with some non-identified intervals. A reason for this difference 
in the depths is the cumulative error associated with both drilling operations and core measurements.  

The drilling operation that recovers cores is performed by introducing drill bits sequentially into the borehole. 
The measurement of the cored interval is made based on the number of drill bits introduced in that interval. Thus, 
the more bits are used the more will be the error in the end of the operation. After removed from the drill bit, 
cores usually become bigger in length, either by the expansion promoted by the difference of pressure or by the 
number of fractures generated by the core drill operation. Hydration of mud-rocks containing smectites can also 
promote expansion of the cores. Therefore, is normal that cores have about 5 to 10% more in length than 
originally recovered from the borehole. Many times the core description is performed without considering this 
difference, expanding the real thickness of the rocks, especially muddy siltstones and claystones. On the other 
hand, the log tools perform measurements in situ, in which they are introduced at the bottom of the borehole and 
pulled up using cables. This type of measurements is also inclined toward problems, once that in small diameter 
boreholes as LB-137, LB-138 and LB-148, the logging is performed separately, i.e., GR, SP and RTC/RTV logs 
are acquired in different operations. This results in non-adjusted depths among the geophysical logs when 
different log acquisitions are not correctly calibrated. The borehole LB-137 exhibit at least three good examples 
of how this above-mentioned situation impacted the classification of sandstones by the neural network. The base 
of the electrofacies 1 in the GR log at approximately 295,0m is not coincident with both SP and RTC logs and 
the core log. Consequently, just a thin bed of electrofacies 1 was classified in the neural network log although 
sandstone in this interval is considerably thicker (see Figure5 - between 290,5 and 296,0m). 

In the second case, between 241,0 and 253,0m, the RTC log is relatively about 80cm dislocated upward when 
horizontally compared with the SP log both at the top of this interval (see Figure 5). It was not possible to 
compare the GR log with SP and RTC in the same interval because the presence of potassium-bearing feldspars 
and clay minerals increases considerably the values of the natural radioactivity. However, their presences were 
not informed in the core log description and the positioning of the base of the sandstone based on the GR log 
would not be reliable. As a consequence, the total thickness of electrofacies 1 as described in the core log was 
classified by the neural network as intercalations of electrofacies 1, 2, 3 and also non-identified pattern. The 
description of this interval in the core log does not mention the presence of coal and mention silt only as a 
subordinate fraction of the sandstone.  
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The third example shows the GR log dislocated about 2,0 meters upward when compared with SP and RTC logs. 
The quartzose composition as well as the presence of carbonatic cement indicates that the electrofacies 1 is 
defined by a low value in the GR log, a relatively lower value in the SP log and a high value in the RTC log. 
They can be identified as spikes in the above-mentioned logs. However, GR spike do not correspond with SP 
and RTC spikes in depth (see Figure 4, between 223,61 and 225,5m). Thus, the neural network recognized the 
electrofacies 1 as a thin bed of electrofacies 3 intercalated within electrofacies 2. This is easily explained because 
the combination of values of three geophysical logs was not sufficient to characterize the electrofacies 1 as 
previously defined during the training and validation phases. 

 
Figure 5. Comparison between the descriptive litholog of the borehole LB-137-RS of CPRM (left) and the 

classification done by the neural network (right) 

 

6. Conclusions 

Neural networks are a powerful and fast technique for identifying patterns and classifying rocks from well log 
data, especially in areas with a great number of drilled boreholes. Based on the results obtained from the study 
area it was possible to determine a set of important elements involving both NNs and geological aspects capable 
to influence the results. 

The neural model used was the feedforward. Different tested parameters, such as number of hidden neurons and 
the number of variables as input has revealed that two intermediary layers, four variables of input and the 
sigmoidal logistic activation function [0;1] in all layers provided the optimal configuration. The best 
performance was achieved combining the above-mentioned characteristics with the Levenberg-Marquardt and 
Resilient backpropagation algorithms for training and validation purposes. 

The accuracy of approximately 80% in the training and validation phase cannot be understood as a guarantee of 
high quality results. This was noted analyzing the confusion matrices of the LB-137, LB-138 and LB-148 
boreholes. Electrofacies 2 had accuracy up to 88% whereas electrofacies 1 ranged from 9,8 and 51,8% and 
electrofacies 3 from 0 to 57,5%. A number of different factors explain the discrepancy of accuracy among the 
different electrofacies and their correspondent rocks, such as the difference of the scale of description with the 
resolution of the log acquisition, the frequent presence of silt and clay into the sandstones and coals, the 
abundance of potassium feldspar into the siltstones and fine-grained sandstones, the wide range of composition 
of the coals, the quality of the log acquisitions, the correct calibration of the geophysical logs acquired in 
different runs and the limited availability of appropriated logs for rock classification. 

Electrofacies 2 showed the highest accuracies because they displayed the major variations of values in the logs 
whereas electrofacies 1 and 3 were defined by a more restricted combination of the log values. Additionally, 
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problems in the depth calibration of different logs contributed substantially for reducing the accuracy of 
sandstones and coals, especially in the boreholes LB-137 and LB-148. Despite the high complexity, this 
technique is a powerful resource to help geologists analyzing and classifying a massive number of boreholes 
bearing several logs. The fastness in obtaining interpreted data in a digital format is an additional advantage. 
However, the inspection of a log analyst will be always necessary to avoid problems related with both log 
acquisition and calibration. 
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Appendix 1. Characteristics of the tested neural network structures (The best results are in boldface) 

Network Training Function Epochs Goal Network Topology Performance 

01   Trainrp 2000 0 [5 5 3] 0.161761 

02 Trainrp 3000 0 [5 6 3] 0.127005 

03 Trainrp 2000 0 [5 7 3] 0.143599 

04 Trainrp 2000 0 [5 8 3] 0.126066 

05 Trainrp 2000 0 [5 5 6 3] 0.137137 

06 Trainrp 2000 1.00E-06 [5 6 6 3] 0.128023 

07 Trainrp 4000 1.00E-06 [5 7 6 3] 0.093263 

08 Trainrp 4000 1.00E-06 [5 5 8 3] 0.131707 

09 Trainrp 2000 0 [5 9 3] 0.122293 

10 Trainrp 4500 0 [5 9 3] 0.113562 

11 Trainrp 2000 0 [5 9 3 3] 0.122020 

12 Trainrp 2000 0 [5 9 5 3] 0.097517 

13 Trainrp 4000 0 [5 9 5 3] 0.083604 

14 Trainrp 3000 0 [5 9 7 3] 0.093627 

15 Trainrp 2000 0 [5 10 3] 0.125502 

16 Trainrp 3000 0 [5 10 8 3] 0.075555 

17 Trainrp 2000 1.00E-06 [5 10 4 3] 0.105006 

18 Trainrp 2000 0 [5 11 3] 0.102984 

19 Trainrp 3000 0 [5 11 3 3] 0.121211 

20 Trainrp 4000 0 [5 11 7 3] 0.887591 

21 Trainrp 2000 0 [5 11 11 3] 0.073653 

22 Trainrp 2000 0 [5 12 3] 0.110698 

23 Trainrp 2000 0 [5 12 6 3] 0.113244 

24 Trainrp 2000 0 [5 12 8 3] 0.686064 

25 Trainrp 7500 0 [5 12 8 3] 0.053986 

26 Trainrp 2000 0 [5 13 3] 0.110039 

27 Trainrp 10000 0 [5 13 3] 0.094947 

28 Trainrp 1800 0 [5 13 5 3] 0.0910092 

29 Trainrp 1600 0 [5 13 5 3] 0.081546 

30 Trainrp 1800 0 [5 13 9 3] 0.072645 

31 Trainrp 2000 0 [5 14 3] 0.105466 

32 Trainrp 1800 0 [5 14 7 3] 0.079592 

33 Trainrp 6800 0 [5 14 7 3] 0.066327 

34 Trainrp 2000 0 [5 15 3] 0.106643 

35 Trainrp 2000 0 [5 15 3 3] 0.101061 

36 Trainrp 100 0 [ 5 16 3] 0.159846 

37 Trainrp 2000 0 [5 16 12 3] 0.061439 

38 Trainrp 2000 0 [5 16 16 3] 0.065717 

39 Trainrp 2000 0 [5 17 3] 0.101536 

40 Trainrp 6500 0 [5 17 12 3] 0.040916 
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Network Training Function Epochs Goal Network Topology Performance 

41 Trainrp 2000 0 [5 3 3] 0.177421 

42 Trainrp 2000 0 [5 4 3] 0.174565 

43 Trainrp 4000 0 [5 3 4 3] 0.163174 

44 Trainrp 4000 0 [5 4 2 3] 0.170973 

45 Trainrp 1800 0 [5 5 2 3] 0.147313 

46 Traingd 4000 0 [5 5 3] 0.212059 

47 Trainlm 1200 0 [5 5 3] 0.151875 

48 Trainlm 1200 0 [5 6 3] 0.396853 

49 Trainlm 1200 0 [5 7 3] 0.113255 

50 Trainlm 800 0 [5 8 3] 0.146548 

51 Trainlm 400 0 [5 5 6 3] 0.338177 

52 Trainlm 1200 0 [5 6 6 3] 0.179799 

53 Trainlm 900 1.00E-10 [5 7 6 3] 0.087738 

54 Trainlm 1200 1.00E-10 [5 5 8 3] 0.077445 

55 Trainlm 800 0 [5 9 3] 0.097632 

56 Trainlm 800 0 [5 9 3 3] 0.173424 

57 Trainlm 800 0 [5 10 3] 0.152903 

58 Trainlm 1200 1.00E-10 [5 10 4 3] 0.235506 

59 Trainscg 1000 0 [5 10 3 3] 0.075231 

60 Trainrp 4000 0 [5 15 3 3] 0.073317 

61 Traingd 2000 0.01 [4 3 3] 0.372167 

62 Trainlm 2000 0.01 [4 3 3] 0.217464 

63 Trainscg 2000 0.01 [4 3 3] 0.162386 

64 Trainscg 10000 0.01 [4 3 3] 0.162078 

65 Traingd 2000 0.01 [4 4 3] 0.228008 

66 Trainlm 955 0.01 [4 4 3] 0.157538 

67 Traingd 2000 0 [4 4 3] 0.258511 

68 Traingd 10000 0 [4 4 3] 0.253145 

69 Traingd 2000 0 [4 4 4 3] 0.206377 

70 Traingd 10000 0 [4 4 4 3] 0.168605 

71 Trainlm 2000 0 [4 4 4 3] 0.114823 

72 Trainlm 1000 0 [4 4 4 3] 0.114741 

73 Trainscg 3000 0 [4 4 4 3] 0.127212 

74 Trainscg 10000 0 [4 4 4 3] 0.120246 

75 Traingd 2000 0 [4 5 3] 0.210314 

76  Traingd 10000 0 [4 5 3] 0.194140 

77 Trainscg 2000 0 [4 5 5 3] 0.119495 

78 Trainscg 10000 0 [4 5 5 3] 0.109068 

79 Trainlm 2000 0 [4 5 5 3] 0.113401 

80 Traingd 2000 0 [4 6 3] 0.390762 

81 Trainlm 2000 0 [4 6 3] 0.107373 

82 Trainlm 10000 0 [4 6 3] 0.107011 

83 Trainlm 2000 0 [4 6 6 3] 0.097712 

84 Trainlm 1000 0 [4 6 6 3] 0.097708 

85 Trainscg 2000 0 [4 6 6 3] 0.095146 

86 Trainscg 10000 0 [4 6 6 3] 0.089533 

87 Trainscg 50000 0 [4 6 6 3] 0.087341 
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Network Training Function Epochs Goal Network Topology Performance 

88 Trainscg 2000 0 [4 7 3] 0.133247 

89 Trainscg 2000 0 [4 7 7 3] 0.120674 

90 Trainscg 10000 0 [4 7 7 3] 0.097372 

91 Trainlm 2000 0 [4 8 3] 0.196666 

92 Trainlm 2000 0 [4 8 8 3] 0.091307 

93 Trainscg 2000 0 [4 8 8 3] 0.101799 

94 Trainlm 2000 0 [4 8 8 3] 0.157563 

95 Trainlm 2000 0 [4 9 3] 0.109490 

96 Trainlm 2000 0 [4 9 9 3] 0.033892 

97 Trainscg 500 0 [4 9 9 3] 0.087229 

98 Trainscg 2000 0 [4 9 9 3] 0.059246 

99 Trainscg 10000 0 [4 9 9 3] 0.050717 

100 Trainlm 1000 0 [4 9 9 3] 0.0689713 

101 Trainscg 2000 0 [4 10 3] 0.0903861 

102 Trainlm 2000 0 [4 10 3 3] 0.0793820 

103 Trainscg 1000 0 [4 10 3 3] 0.0872670 

104 Trainscg 1000 0 [4 10 3 3] 0.1190600 

105 Trainlm 2000 0 [4 10 10 3] 0.0419324 

106 Trainlm 2000 0 [4 10 10 3] 0.0559653 

107 Trainlm 2000 0 [4 11 3] 0.0899211 

108 Trainscg 2000 0 [4 11 3 3] 0.1047880 

109 Trainscg 2000 0 [4 11 11 3] 0.0519017 

110 Trainlm 1000 0 [4 11 11 3] 0.3200000 

111 Trainscg 2000 0 [4 15 3 3] 0.0804826 

112 Trainscg 4000 0 [4 15 3 3] 0.0596600 

113 Trainlm 2000 0 [4 12 3] 0.1678090 

114 Trainlm 2000 0 [4 12 6 3] 0.0367683 

115 Trainlm 2000 0 [4 13 3] 0.0628424 

116 Trainscg 2000 0 [4 13 13 3] 0.0418241 

117 Trainscg 1000 0 [4 13 13 3] 0.0288487 

118 Trainlm 2000 0 [4 14 3] 0.1982060 

119 Trainlm 1000 0 [4 14 14 3] 0.0122249 

120 Trainscg 2000 0 [4 14 14 3] 0.0344649 

121 Trainlm 1000 0 [4 15 3 3] 0.1493460 

122 Trainscg 2000 0 [4 15 3 3] 0.0707770 

123 Trainscg 2000 0 [4 15 15 3] 0.2327850 

124 Trainlm 2000 0 [4 16 3] 0.0637224 

125 Trainlm 2000 0 [4 16 5 3] 0.1478150 

126 Trainlm 2000 0 [4 16 9 3] 0.0105860 

127 Trainscg 2000 0 [4 16 9 3] 0.0530648 

128 Trainlm 508 0 [4 12 16 3] 0.0146699 

129 Trainscg 2000 0 [4 16 14 3] 0.1354810 

130 Trainlm 2000 0 [4 16 16 3] 0.0122249 

131 Traingd 2000 0 [4 17 3] 0.1904250 

132   Traingd 2000 0 [4 17 3] 0.1827710 

133 Trainlm 500 0 [4 17 8 3] 0.2304210 

134 Trainlm 463 0 [4 19 3] 0.0529747 



www.ccsenet.org/esr Earth Science Research Vol. 2, No. 1; 2013 

208 
 

Network Training Function Epochs Goal Network Topology Performance 

135 Trainscg 2000 0 [4 19 17 3] 0.0243736 

136 Trainlm 759 0 [4 20 3] 0.0480848 

137  Trainscg 2000 0 [4 20 10 3] 0.0319886 

138 Trainlm 500 0 [4 25 3] 0.0516164 

139 Trainlm 500 0 [4 25 10 3] 0.0219058 

140  Trainscg 2000 0 [4 30 3] 0.0184589 

141 Trainrp 500 0.001 [4 10 10 3] 0.0939445 

142 Trainrp 2000 0.001 [4 10 10 3] 0.0690895 

143 Trainrp 2000 0.001 [4 6 4 3] 0.1293610 

144 Trainrp 4000 0 [4 15 3 3] 0.0842303 

145 Trainrp 4000 0.001 [4 16 3 3] 0.081825 

146 Trainrp 2000 0.001 [4 12 16 3] 0.0633783 

147 Trainrp 2000 0.001 [4 14 17 3] 0.0536302 

148 Trainrp 4000 0 [4 16 4 3] 0.0862503 

149 Trainrp 2000 0 [4 40 3] 0.0758472 

150 Trainlm 500 0.0001 [4 35 3] 0.0369465 

151 Trainscg 1000 0.0001 [4 30 3] 0.0544163 

152 Trainrp 2000 0.0001 [4 16 8 3] 0.0846655 

153 Trainrp 7000 0.0000001 [4 16 8 3] 0.0610484 

154 Traingd 10000 0 [4 5 3] 0.1923500 

155 Traingd 4000 0 [4 4 4 3] 0.2038060 

156 Trainrp 4500 0.00001 [4 4 4 3] 0.153103 

157 Trainrp 200 0.001 [4 3 3 3] 0.186938 

158 Trainrp 4500 0.00001 [4 16 16 3] 0.332939 

159 Trainrp 3250 0.0000001 [4 17 15 3] 0.0699365 

160 Trainrp 1800 0.0000001 [4 17 15 3] 0.0772765 

Where: 

Trainrp – Resilient backpropagation, 

Traingd – Gradient descent backpropagation, 

Trainlm – Levenberg-Marquardt backpropagation, 

Trainscg – Scale conjugate gradient backpropagation. 

 


