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RESUMO

Esta tese considera uma rede sem fio multicomponente multimídia MIMO e propõe algoritmos
novos e descentralizados para resolver os seguintes problemas de pesquisa. Problema 1: como
projetar os vetores de transmissão de feixe de transmissão que maximizam a taxa de soma
ponderada do sistema (WSR), ao mesmo tempo em que satisfazem as restrições de energia
nos transmissores, Problema 2: como projetar vetores robustos de transmissão de feixe de
transmissão que minimizem a soma de potência de transmissão, satisfazendo Alvos de qualidade
de serviço (QoS) dos usuários na presença de erros de canais e Problema 3: como selecionar
de forma adaptável as direções de comunicação das células que maximizem o throughput dos
usuários, considerando conjuntamente as condições de tráfego e os níveis de interferência. Em
particular, são propostos três algoritmos diferentes e novos para resolver o Problema 1, que se
baseiam na técnica de otimização alternada e garantidos para convergir para um ótimo local
de WSR. Para facilitar a implementação dos algoritmos, um novo esquema de sinalização de
OTA (over-the-air) é então proposto com base no modo de duplicação de divisão de tempo
(TDD). Além disso, é proposto um novo algoritmo distribuído e robusto de formação de feixe
coordenado (CBF) com base nas técnicas de programação semideterminada relaxada (SDP) e
alternância de direção de multiplicadores (ADMM) para resolver o Problema 2, onde a forma de
feixe robusta é abordada usando o pior caso criação de otimização. Além disso, propõe-se uma
nova técnica de reconfiguração de células que maximiza o débito dos usuários, considerando
conjuntamente tanto as condições de tráfego de IV como os níveis de interferência. As avaliações
de algoritmos são realizadas usando simulador de computador, a partir do qual a eficácia dos
algoritmos propostos é evidenciada, em comparação com os algoritmos de referência, em termos
de eficiência espectral, eficiência de energia, taxa de convergência, sobrecarga de sinalização e
complexidade. Os algoritmos propostos são descentralizados no sentido de que cada transmissor
pode agir de forma independente, assim que tiver a informação necessária, o que torna os
algoritmos propostos nesta tese especialmente adequados para redes sem fio atuais e futuras.

Palavras-chave: Células pequenas, maximização da taxa de soma ponderada, minimização de
potência de transmissão, reconfiguração celular, TDD dinâmico, programação semideterminada,
método de multiplicadores de direção alternada, otimização específica de enxame, programação
linear inteira.



ABSTRACT

Small cells deployment is one of key technologies that is introduced to improve cellular commu-
nication systems’ performance, since it provides a low-cost approach to reuse system resources.
However, densifying cellular systems with small cells increases the inter-cell interference (ICI),
which would degrade the system performance if not properly managed. Also, small cells are
expected to have a burst-like traffic with strong fluctuation between uplink and downlink traf-
fics, since the number of users served by small cells are expected to vary strongly with time
and between adjacent cells. Complementing small cells with multiple-input multiple-output
(MIMO) and dynamic TDD (DTDD) technologies can be seen as a key solution to cope with ICI
effects and traffic fluctuations. While MIMO technology has great potential to achieve higher
throughput, improve system capacity, and enhance spectral efficiency by serving multiple users
and spatially eliminate/manage interference, DTDD technology allows each cell to adaptively
reconfigure its communication direction based on the prevailing traffic demands and interference
levels. This thesis considers a multicell multiuser MIMO wireless network and proposes novel
and decentralized algorithms for solving the following research problems. Problem 1: how to
design the transmit beamforming vectors that maximize the system weighted sum-rate (WSR),
while satisfying the power constraints at transmitters, Problem 2: how to design a robust transmit
beamforming vectors that minimize the sum transmit power, while satisfying the users’ quality-
of-service (QoS) targets in the presence of channel errors, and Problem 3: how to adaptively
select the cells communication directions that maximize the users’ throughput, while jointly
considering their traffic conditions and interference levels. In particular, three different and novel
algorithms are proposed for solving Problem 1, which are based on the alternating optimization
technique and guaranteed to converge to a local WSR-optimum. Further, a novel distributed and
robust coordinated beamforming (CBF) algorithm based on alternating direction method of mul-
tipliers (ADMM) technique is proposed for solving Problem 2, where the robust beamforming is
tackled using a worst-case optimization criterion. For Problem 3, a novel cell reconfiguration
technique is proposed that maximizes the users’ throughput, while jointly considering both the
prevailing traffic conditions and interference levels. Algorithms evaluations are carried out using
computer simulation, from which the effectiveness of the proposed algorithms is evidenced, as
compared to reference algorithms, in terms of spectral-efficiency, power-efficiency, convergence
rate, signaling overhead, and complexity. The proposed algorithms are decentralized in the sense
that each transmitter can act independently, as soon as it has the required information, which
makes the proposed algorithms in this thesis especially suitable for current and future wireless
networks.

Keywords: Sum rate maximization, coordinated beamforming, dynamic TDD, alternating direc-
tion method of multipliers, particle swarm optimization, integer linear programming.
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NOTATIONS

In this thesis the following notations are used. Scalar variables are denoted by lower-
case letters (a, b, . . ., α, β, . . . ), vectors are written as boldface lower-case letters (a, b, . . ., ααα, βββ, . . . ),
matrices correspond to boldface capitals (A, B, . . . ), and sets are written as calligraphic letters
(A, B, . . . ). The meaning of the following symbols are listed below, unless otherwise explicitly
stated:

C set of complex-valued numbers
Z set of binary (0-1) numbers
R set of integer real numbers
(a)H complex conjugate transpose
‖a‖ l2 norm
|a| the amplitude of a scaler
|A| cardinality of a set
(A)−1 matrix inverse
(A)† matrix pseudo-inverse��A�� determinant of a matrix
Tr(A) matrix trace operator
log(a) logarithm of base 2
E(a) statistical expectation
A[1:N] the first N vectors of a matrix
a[i] the i-th element of a vector
A⊗B Kronecker product
a� b dot-product between a and b
bdiag{a/A} denotes the block diagonalization of a given vectors/matrices
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1 INTRODUCTION

Wireless communication cellular networks have drastically changed over the past few
years. Originally designed for wireless voice communications, cellular networks of nowadays are
dominated by wireless data communications. The amount of wireless voice and data traffic has
grown at an exponential pace, and it will definitely continue to increase in the foreseeable future,
where video-on-demand accounts for the majority of traffic. Therefore, it is important to evolve
the current wireless communications technologies to meet the continuously increasing demand
and to satisfy the rising expectations of service quality. The vision for future cellular networks
is to achieve one-thousand folds (1000x) higher area throughput comparing to current cellular
networks [1]. The area throughput is a performance metric that is measured in bits-per-second-
per-square-kilometer (bit/s/km2) and can be modeled using the following high-level formula:

Area throughput︸              ︷︷              ︸
bit/s/km2

= bandwidth︸      ︷︷      ︸
Hz

×average cell density︸                   ︷︷                   ︸
cells/km2

×spectral efficiency per cell︸                            ︷︷                            ︸
bit/s/Hz/cell

. (1.1)

Consequently, there are three main ways to improve the cellular networks’ through-
put, as shown in Fig. 1.1, which are discussed in the following sections.

Figure 1.1 – Ways to improve the cellular networks throughput.
Ways to Improve the Cellular Networks Throughput

Allocate More Bandwidth Densify Network Improve Spectral Efficiency

Add More Antennas Adaptive Cell Reconfiguration

Source: Created by author.

1.1 Ways to improve the cellular networks throughput

1.1.1 Allocate more bandwidth

One potential solution to improve the cellular networks’ throughput is to increase
the system bandwidth. Current cellular networks use a frequency range below 6 GHz and utilize
collectively more than 1 GHz of bandwidth [2]. Therefore, to achieve the 1000x vision in the
future cellular networks, 1 THz of bandwidth or more is required, which entails using much
higher frequency bands than 6 GHz. This is physically impractical since the frequency spectrum
is a global resource that is shared among many different services, and the use of higher frequency
bands limits the range and service reliability [2]. However, there are substantial bandwidths in
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the millimeter wavelength (mmWave) bands (e.g., in the range 30–300 GHz) that are currently
being investigated to be used in future cellular communications for short-range applications
and small cells deployments [3]. The developed algorithms in this thesis assume use of low
system bandwidth and frequency ranges, since the use of large system bandwidth and high-
frequency bands adds some hardware constraints that should be considered in the practical
implementations. In chapter 5 of this thesis, some future research directions are discussed
including use of mmWave bands in the future cellular communications.

1.1.2 Densify network

Another potential solution to improve the cellular networks’ throughput is to densify
the cellular network by deploying more base stations (BSs) per area, which allows for reusing the
system resources that can substantially improve the area’s throughput. However, this approach
is associated with high deployment costs, inter-cell interference issues, and is not suitable for
high-speed mobile stations (MSs), as they would have to switch the serving BS very often. In this
line, small cells deployment (also known as heterogeneous networks) were recently introduced
by 3rd generation partnership project (3GPP) long-term evolution (LTE)-Advanced [4]. Small
cells are meant to be deployed in hot-spots within macro cell coverage area (where users speed
is low) to form a two-tier wireless communication network (see Fig. 1.2) to further increase the
system coverage, capacity, and throughput [5]. It can also reduce the required transmit power,
since the BSs and their MSs are closer to each other.

An interesting type of deployment contemplated in 3GPP LTE-Advanced networks
is the non-co-channel small-cells deployment, where each network tier (small cells tier and
macro cells tier) uses different carrier frequencies. Although the cross-tier interference can be
eliminated in this case, the co-tier interference between small cells becomes a major problem that
can significantly reduce the system throughput, especially if small cells are densely deployed.
Therefore, interference management techniques become increasingly more important.

Figure 1.2 – Small cells deployed within macro cell coverage area.

Small cells

Macro cell

Source: Created by author.

1.1.3 Improve spectral efficiency

Increasing cell density and using larger bandwidth have historically dominated the
evolution of cellular networks, which explains why we are approaching a saturation point where
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further improvements are increasingly complicated and expensive [2]. Therefore, the focus of
this thesis is to propose methods and techniques to improve the system spectral efficiency.

Spectral efficiency measures the average number of bits that it can reliably be
transmitted over channel under consideration per second per hertz (bits/s/Hz). The maximum
spectral efficiency per user is determined by the channel capacity, which is defined by the
Shannon formula that is in function of signal-to-interference-plus-noise ratio (SINR) as follows:

Spectral efficiency = log
(
1+SINR

)
= log

(
1+

signal power
interference power+noise powor

)
. (1.2)

Therefore, to improve the system spectral efficiency, one should improve the SINR
by increasing the signal power and/or reducing the interference power. There are different
ways to improve the spectral efficiency in cellular networks. A direct approach is to use more
transmit power. However, the positive effect quickly pushes the network into an interference-
limited regime where no extraordinary spectral efficiency can be obtained. Furthermore, transmit
power is a valuable resource that should be minimized and used efficiently. Therefore, different
approaches to improve the cell spectral efficiency are more desired. In the following, the two
approaches used to improve the system spectral efficiency in this thesis are discussed.

Add more antennas

One approach to improve the cell spectral efficiency is to deploy/add more antennas
at transmitter and/or receiver to form what is called MIMO technology/transmission. In wireless
communications, transmit beamforming technique is used to increase the signal power at the
intended user and reduce interference to non-intended users [6]. A high signal power is achieved
by transmitting the same data signal from all antennas, but with different amplitudes and phases,
such that the signal components add coherently at the user. Low interference is accomplished by
making the signal components add destructively at non-intended users [7]. This can be done by
using linear or non-linear transmission techniques. Non-linear techniques have been shown to
outperform linear techniques and achieve channel capacity. The capacity-achieving downlink
strategy is non-linear and uses dirty paper coding (DPC) [8]. However, it is widely considered
that DPC technique has limited practical applications, due to its high complexity. Therefore,
linear transmission beamforming techniques have gained more interest and were proven to
achieve the same sum rate scaling law as DPC [6], while maintaining lower complexity.

Since transmit beamforming focuses the signal energy at certain places, less energy
arrives in other places. This allows for so-called space-division multiple access (SDMA), where
a number of users spatially separated are served simultaneously using the same radio resource
(e.g. frequency channel and/or time slot) [7] (as illustrated in Fig. 1.3). One beamforming vector
is assigned to each user and can be matched to its channel. Unfortunately, the finite number of
transmit antennas only provides a limited amount of spatial directivity. This means that there
are energy leakages between the users, which act as interference. While it is fairly easy to
design a beamforming vector that maximizes the signal power at the intended user, it is quite
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Figure 1.3 – Multiuser MIMO beamforming (SDMA).
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Source: Created by author.

difficult to strike a perfect balance between maximizing the signal power and minimizing the
interference leakage. In fact, the optimization of multiuser transmit beamforming is generally a
nondeterministic polynomial-time (NP) hard problem [7].

Nevertheless, the optimal transmit beamforming is known in special cases and has
a closed-form solution [9]. For example, in the low signal-to-noise ratio (SNR) regime, where
system can be regarded as noise-limited, the optimal transmit beamforming is given by the
egoistic maximum ratio transmission (MRT) (also known as matched-filter) approach, where its
main objective is to maximize the signal power at the intended user. In the high SNR regime,
where system can be regarded as interference-limited, on the other hand, the optimal transmit
beamforming is given by the altruistic zero-forcing (ZF) approach, where its main objective is to
eliminate the interference-leakage to the non-intended users [7]. However, both approaches are
far from optimal in the moderate SNR regime. Thus, different alternative and iterative approaches
have been proposed, where BSs jointly optimize the transmit beamforming vectors to find a good
balance between maximizing the signal power and minimizing the interference leakage [9].

To this end, different iterative algorithms to optimize the transmit beamforming
were recently proposed for different system models and optimization criteria. For example,
the SINR maximization (maxSINR) and the MMSE subject to maximum transmit power are
well-known optimization problems in the literature [10]. It was shown in many papers, e.g. [10],
that the MMSE algorithm has better sum rate performance, while the maxSINR algorithm has
faster convergence rate. Therefore, the MMSE problem got more attention and many papers
have extended it to consider solving the weighted MMSE (MMSE) problem [11]. Here, the
weights are used to prioritize users and they can be adjusted to guarantee some fairness among
them. Interestingly enough, it turns out that the WMMSE minimization problem and the WSR
maximization problem can be made equivalent by adaptively adjusting the users’ weights
[12]. Therefore, the difficult WSR maximization problem is solved indirectly by solving the
easier WMMSE minimization problem. In this thesis, chapter 2 elaborates more on this topic,
where three novel algorithms are proposed for maximizing the users’ WSR in multicell MIMO-
broadcast channel (BC) systems.
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Adaptive cell reconfiguration

Another approach to improve the cell spectral efficiency is to adaptively select the
cell’s communication directions (downlink and uplink). It can be understood/shown that for a
given channels realization, there is an optimal communication direction for each cell where it will
have a higher signal power and a lower interference power that maximizes its spectral efficiency.
This observation is rather old than new, since earlier cellular networks could have utilized it
as well. However, the expected performance gain that can be achieved was low, since earlier
cellular networks almost had symmetric traffic demands and co-channel interference on both
communication directions. However, the introduction of small cells makes use of such approach
more reasonably, since small cells are expected to have a burst-like traffic with strong fluctuation
between uplink and downlink traffics. This is mainly due to the following observations: 1) the
number of users served by small cells in hot-spots varies strongly with time and between adjacent
cells and 2) the users of modern wireless networks typically demand a wide range of services,
where each may have different traffic characteristics, in terms of packet size and maximum
packet delay.

Among the two duplexing modes in LTE, time division duplexing (TDD) mode gains
more importance for small cell deployments than frequency division duplex (FDD) mode [13],
since it can be employed to provide unbalanced uplink-downlink data traffic. However, TDD
in LTE is assumed to select a common TDD pattern for the whole network, which cannot be
rapidly modified to match the instantaneous traffic demand [14]. Therefore, an adaptive cell
reconfiguration technique called DTDD was recently introduced to cope with traffic fluctuations,
which allows each cell to adaptively reconfigure its communication direction based on the
prevailing traffic demands and interference levels. By means of simulation [15] and performance
analysis [16], it was shown that DTDD technique enhances the system spectral and energy
efficiency, especially in scenarios in which the offered traffic is time-varying and asymmetric
in terms of uplink/downlink direction. However, allowing neighboring cells to have different
transmission directions gives rise to BS-to-BS and MS-to-MS interference (see Fig. 1.4), among
other impairments [17], which can severely degrade the system performance [18]. For that,
several interference management techniques were investigated in [15], such as cell-clustering,
power control, and interference suppressing and coordination techniques.

Clearly, the optimal performance in DTDD systems can be achieved by jointly
optimizing the cells directions and transmit beamforming vectors. However, this will add a huge
complexity on practical systems. Moreover, as specified in [15], the cell direction can be changed
at the minimum every 10ms, in contrast to the transmit beamforming vectors that can be changed
in every transmission time interval (TTI), i.e., every 1ms. Therefore, it is reasonable to separate
both optimization problems; cells reconfiguration problem and transmit beamforming vectors
design problem.

For the former problem i.e., cells reconfiguration problem, earlier works reconfigured
each cell direction based only on the aggregate traffic in the cell [19]. While this approach is fairly
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Figure 1.4 – Interference situations in dynamic TDD wireless networks.
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simple and inherently distributed, it cannot achieve the potential performance, as it disregards
the interference effects that are particularly severe in DTDD systems. Recognizing this issue,
cell reconfiguration schemes that account for the users’ traffic demands and interference levels
were recently proposed in [20, 21]. While these algorithms are shown to improve the system
throughput, as compared to the conventional static TDD (STDD), they are scenario (traffic
model) specific and do not consider the individual user’s traffic characteristics [22], in terms of
packet size and maximum packet delay. Therefore, it is important for the cell reconfiguration
algorithm to support such different traffic characteristics. In this thesis, chapter 3 elaborates more
on this topic, where a novel cell reconfiguration algorithm is proposed that takes into account
both prevailing traffic conditions and multicell BS-to-BS and MS-to-MS interference levels.

For the latter problem i.e., transmit beamforming vectors design problem, the cells
directions are generally assumed given and fixed, where the main objective is to optimize the
transmit beamforming vectors that solve the considered optimization problem. To this end, one
can optimize the transmit beamforming vectors that maximize the system WSR subject to a
transmit power constraint or minimize the total transmit power subject to some users’ QoS
constraints. For the former problem, the proposed algorithms in chapter 2 can easily be extended
to maximize the WSR in DTDD systems. We have done this extension in [23], but to avoid
repeating a similar subject already treated in chapter 2, we turn our attention to the latter problem:
minimize the total transmit power subject to some users’ QoS constraints.

A notable technique for optimizing the transmit beamforming vectors is the CBF [24].
In CBF, each BS communicates with its own users, while minimizing the interference leakage
to users in other cells. It has drawn significant attention recently due to its ability to handle



Chapter 1. Introduction 22

the interference problem using only channel state information (CSI), as compared to other
interference management schemes that require data sharing as well, such as joint transmission
[25]. It can be implemented in a centralized manner, where global CSI is made available to a
central unit, or in a distributed manner, where each BS uses only local CSI. In the latter case, the
coordination can be achieved by means of limited backhaul signaling between coordinated BSs.
However, in practical scenarios, acquiring global CSI would drastically increase the backhaul
signaling. Moreover, the BSs can never have perfect CSI, due to, for example, estimation errors
and limited feedback channels [26]. Therefore, robust and distributed CBF solutions are much
desired.

Earlier works on CBF were targeting the STDD systems, see [24, 27]. However, the
interference situations in DTDD systems are more complicated, since the uplink and downlink
users coexist at the same time among neighboring cells. Therefore, the interference management
becomes more challenging and requires a special consideration from the optimization viewpoint.
A possible solution is to formulate the optimization problem in DTDD systems as it is generally
formulated in the cognitive radio (CR) networks [28], i.e., by assuming that the uplink cells are
the primary cells and the downlink cells are the secondary cells and then include a threshold
on the maximum BS-to-BS power from the downlink BSs to uplink BSs. In this case, not only
the downlink performance targets can be guaranteed, but also the required uplink performance
targets. In this thesis, chapter 4 elaborates more on this topic, where a novel distributed and
robust CBF algorithm is proposed using relaxed semidefinite programming (SDP) [29] and
ADMM [30] techniques for DTDD wireless networks.

1.2 Acquiring channel state information

The proposed algorithms in this thesis can be implemented in any duplexing mode,
where the only difference would be on how the transceivers can acquire the CSI. There are two
duplexing modes used in LTE cellular communication systems: TDD and FDD (see Fig. 1.5).
The main difference between the two is on how the downlink and uplink communications are
separated. In the TDD mode, the downlink and uplink are separated in time, where in the FDD
mode, the downlink and uplink are instead separated in frequency. This means that the TDD
mode uses a single frequency band for both downlink and uplink, while the TDD mode requires
two separate frequency bands, one for downlink and another for uplink. Therefore, the channel
responses in TDD mode are reciprocal, i.e., the downlink/uplink channel is only a transpose of
uplink/downlink channel, thus, the downlink channel can be estimated from the uplink channel,
and vice-versa. However, in FDD mode, the downlink and uplink channel responses are always
different, which means that the estimates of the downlink/uplink channel responses need to be
fed back to the BS/MS to enable transmit/receive beamforming computation.

The main method for CSI acquisition is pilot signaling, where a predefined pilot sig-
nal is transmitted from an antenna. Any other antenna in the network can simultaneously receive
the transmission and compare it with the known pilot signal to estimate the channel from the
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Figure 1.5 – Acquiring CSI: TDD vs. FDD.
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transmitting antenna. If we instead need to estimate the channel response from two transmitting
antennas, two orthogonal pilot signals are generally required to separate the signals from the
two antennas. The orthogonality is achieved by spending two samples on the transmission. The
number of orthogonal pilot signals is proportional to the number of transmit antennas, while any
number of receive antennas can "listen" to the pilots simultaneously and estimate their individual
channels to the transmitters [2]. Note that, every pilot signal that is transmitted could have been
a signal that carried payload data. Therefore, one should minimize the pilot signaling to improve
the spectral efficiency.

Figure 1.6 – Thesis organization.
Chapter 1: Introduction

In this chapter, the thesis introduction, background,
main contributions, and orgonizations are presented.

Chapter 2: Decentralized Linear Transceiver Design in Multicell
MIMO Broadcast Channels

In this chapter, three different decentralized and novel algorithms are proposed for max-
imizing the WSR in multicell MIMO broadcast channels. Further, a novel signaling

schemes based on the TDD mode are proposed to facilitate the algorithms’ implementation.

Chapter 3: A Novel Cell Reconfiguration Technique
for Dynamic TDD Wireless Networks

In this chapter, a novel cell reconfiguration formulation is proposed
for maximizing the users throughput, while taking into account both

the prevailing traffic conditions and multicell interference levels.

Chapter 4: An ADMM Approach for Distributed Robust Coordinated
Beamforming in Dynamic TDD Wireless Networks

In this chapter, a novel distributed and robust CBF algorithm is proposed using
worse-case, relaxed SDP, and ADMM techniques for dynamic TDD wireless networks.

Chapter 5: Conclusions and Future work
In this chapter, the main conclusions of this thesis are sum-
marized and some future research directions are proposed.

Source: Created by author.
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1.3 Thesis organization and contributions

The content of this thesis is organized in five chapters, as shown in Fig. 1.6. Each
chapter is made self-contained and one can read them in any sequence. The main contributions
are summarized as follows:

• Chapter 2 considers a multicell MIMO-BC system model and propose three different
decentralized and novel WSR maximization algorithms, which are based on the
alternating optimization technique and are guaranteed to converge to a local WSR-
optimum. The proposed algorithms in this chapter are summarized as follows:

– The first algorithm uses an interference pricing approach, where each BS
maximizes its own utility that is formed by the local users’ WSR minus
the priced-ICI leakage. The transmit beamforming matrices are obtained
directly by investigating the Karush-Kuhn-Tucker (KKT) conditions of
the formulated WSR maximization problem. Through computer simula-
tions, it is shown that the proposed algorithm can achieve better sum rate
performance than reference algorithms, while using fewer iterations.

– The second algorithm designs the transmit beamforming that maximizes
the network-wide WSR by generalizing the solution steps of the first
algorithm. Interestingly, it is proven that the WSR maximization via
interference pricing can be made equivalent to the network-wide WSR
maximization whenever the MSs have single-antenna, i.e., in the mul-
ticell multiple-input single-output (MISO)-BC networks. However, the
interference pricing approach is shown to have some performance loss
when the MSs have multiple antenna, as compared to the network-wide
approach.

– The third algorithm is an implicit interference pricing approach, where
each BS self-prices its ICI leakage to other cells. Through computer
simulations, it is shown that the self-pricing approach has negligible
performance loss, as compared to the network-wide approach when
the BSs have enough degree of freedom (DoF). In this case, the self-
pricing approach is more appealing for practical systems, since it does
not require feedback of variables from other cells.

The proposed algorithms are decentralized in the sense that each BS can solve for
its transmit beamforming independently, as soon as it has the required information.
Assuming that each BS can acquire the local CSI between itself and all the MSs
in the system, as generally assumed in the literature, a novel over-the-air (OTA)
signaling scheme is proposed based on the TDD mode to facilitate the algorithms’
implementation. In contrast to some existing signaling schemes found in literature,
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the proposed signaling scheme reduces the signaling overhead and requires no
feedback of variables between BSs.

• Chapter 3 considers a multicell multiuser system model and proposes a novel cell
reconfiguration formulation that takes into account both prevailing traffic conditions
and multicell BS-to-BS and MS-to-MS interference levels. The proposed optimiza-
tion problem is then solved optimally using the integer linear programming (ILP)
algorithm [31]. However, due to its high computational complexity, a heuristic solu-
tion is then proposed based on the particle swarm optimization (PSO) algorithm [32],
which is shown to achieve near optimal performance with much lower computational
complexity. System level evaluations are carried out using gaming-network-traffic
model from [22], from which the effectiveness of the proposed scheme is evidenced
in terms of the packet throughput as compared to conventional STDD and other
reference schemes, that disregard the DTDD specific inter-cell interference effects.
The proposed scheme is general in the sense that it is not traffic model dependent,
and therefore can easily be applied to any traffic model and/or deployment scenario.
This feature makes the proposed scheme especially suitable for current and future
wireless networks.

• Chapter 4 considers a multicell MISO-BC system model and proposes a novel
distributed and robust CBF algorithm using relaxed SDP [29] and ADMM [30]
techniques for DTDD wireless networks. The design objective is to minimize the
total transmit power of downlink BSs, while satisfying the performance targets
of downlink and uplink MSs. More precisely, it is assumed that each downlink
MS has a predefined minimum SINR target and each uplink MS has a predefined
maximum interference threshold. At first, the perfect CSI case is considered, for
which a centralized algorithm is proposed to solve the aforementioned optimization
problem using relaxed SDP technique [29]. To obtain the beamforming solution
in a distributed way, a distributed algorithm is then proposed using relaxed SDP
and ADMM techniques. Afterwards, both solutions (centralized and distributed) are
extended to account for CSI errors based on worst-case optimization approach [29],
where each infinitely nonconvex worst-case constraint is transformed to only one
linear matrix inequality (LMI) constraint using the S-Lemma [33]. Using computer
simulations, it is shown that the proposed algorithm has a better energy-efficiency
than the centralized robust algorithm from [34] and a faster convergence rate than
the primal decomposition technique used in [35].

• Chapter 5 draws the main conclusions along with some future research directions.
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2 DECENTRALIZED LINEAR TRANSCEIVER DESIGN IN MULTICELL MIMO
BROADCAST CHANNELS

2.1 Introduction

MIMO technology has great potential to eliminate/manage interference, achieve
higher throughput, and enhance system capacity [36]. Using multiple antennas, the BSs can
transmit to multiple users simultaneously using linear or non-linear transmission techniques [6]
to achieve a linear increase of system throughput in the number of BS antennas. In single-cell
networks, the non-linear DPC technique [8] is known to achieve the channel capacity. However,
it is widely considered that DPC has limited practical applications, due to its high complexity.
Therefore, linear transmission techniques (also called beamforming) have gained more interest
and were proven to achieve the same sum rate scaling law as DPC [6], while maintaining low
complexity.

A notable scheme in this area is called block diagonalization (BD) [37]. In single
cell networks, conventional Block Diagonalization (cBD) completely eliminates intra-cell in-
terference by forcing each user to transmit on the null space of the other users. However, in
multicell networks, cBD would ignore the ICI, which would affect the users’ performance. For
that purpose, the authors in [38] have proposed enhanced BD (eBD), which uses a whitening
filter to reduce ICI effects. Nevertheless, both cBD and eBD algorithms have high dimensionality
restrictions, since they both rely on transmit beamforming to eliminate intra-cell interference and
ignore the receive beamforming. Motivated by the last observation, we have proposed iterative
BD (iBD) in [39], which eliminates the intra-cell interference by jointly optimizing the transmit
and receive beamforming matrices and also accounts for the ICI presence. We have shown that
iBD has better sum rate performance than both cBD and eBD, while significantly reducing
dimensionality restrictions. However, it is also shown in [39] that all the BD approaches become
interference-limited in the presence of high ICI power. The main limitation of BD technique is
that each user has an altruistic behavior with regard to other users in the same cell (since the
intra-cell interference is completely eliminated) and an egoistic behavior with regard to users
in adjacent cells (since nothing is done to reduce the ICI). Thus, the BD cannot achieve a good
balance between users’ beamforming behavior, which prevents it from achieving the optimum
sum rate [7].

An alternative approach is to jointly design the transmit beamforming of all users in
all cells. This approach is named as coordinated multi-point (CoMP) in the literature and can
be classified into joint processing (JP) [25] and CBF techniques [24]. In contrast to JP, each
user in a CBF system is served by a single BS and thus, the BSs do not need to share the users’
data or to be time and phase synchronized. Therefore, CBF has gained a lot of attention and has
been extensively studied in the literature with different optimization criteria. For example, in [24,
40, 41] for sum-power minimization, in [42] for SINR balancing, in [43] for sum mean-square
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error (MSE) minimization, and in [11, 12, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] for WSR
maximization.

Among all, the WSR maximization problem received more attention. The problem
is non-convex and NP-hard [12], for which only local optima can be guaranteed via practical
methods. Nevertheless, it has some desirable proprieties such as 1) it can prioritize the users
and achieve some fairness among them by adjusting the weights, 2) it has an implicit users and
streams selection, since, the number of active streams at convergence is almost always less than
or equal to the number of BS antennas, and 3) it is always feasible when only constrained by
transmit power. In the literature, the authors in [11] considered the single-cell MIMO BC system
model and reformulated the problem into an equivalent problem that incorporates a weighted
sum-MSE and establish a weighted sum-MSE duality that is solved iteratively using a geometric
program (GP) formulation. For multicell MISO BC system model, the problem was addressed in
[45, 47, 48]. In [45], the authors derived the KKT conditions of the problem and then devised an
iterative algorithm to solve them, without the need of resorting to convex optimization methods.
In [47], an iterative pricing algorithm was proposed based on game-theory, which is guaranteed
to converge to an interference equilibrium that corresponds to a KKT point for the original
WSR maximization problem. Among all, the global optimum solution is guaranteed only in
[48], where the problem was solved using a branch-reduce-and-bound algorithm. On the other
hand, the authors in [46] considered the multicell MISO-interference channel (IC) system model
and established a relationship between the WSR and the virtual signal-to-interference-plus-
noise Ratio (VSINR) by applying the KKT conditions, which led to a distributed and iterative
algorithm. Recently, the authors in [12] considered a single-cell MIMO-BC and established a
relationship between the WSR maximization problem and the WMMSE minimization problem
by applying the KKT conditions. As a result, an iterative algorithm called WSR-WMMSE was
proposed, which is based on the alternating optimization technique [54] and solves the quite hard
WSR maximization problem indirectly by solving the easier WMMSE minimization problem.
This later relationship has inspired many extensions, such as to the multicell MIMO-IC [49] and
to the multicell MIMO-BC [50, 51, 52, 53].

2.2 Chapter contributions

In this chapter, a multicell MIMO-BC system model is considered and three different
decentralized and novel WSR maximization algorithms are proposed based on the alternating
optimization technique [54] and are guaranteed to converge to a local WSR-optimum. The
proposed algorithms are summarized as follows.

• The first algorithm uses an interference pricing approach, same as in [47], where
each BS maximizes its own utility that is formed by the local users’ WSR minus the
priced-ICI leakage. In [47], the authors assumed single-antenna users and formulated
the problem as a relaxed SDP, whose solution requires each BS to first obtain the
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transmit covariance matrices, followed by an operation to guarantee and extract the
rank-one transmit beamforming vectors. Different from [47], the proposed algorithm
in this chapter consider multi-antenna users and the transmit beamforming matrices
are obtained directly by investigating the KKT conditions of the problem. The main
ingredient is given by Lemma 1, which makes it possible to solve the transmit
beamforming directly from the problem cost function, in contrast to the WSR-
WMMSE from [12, 49, 50, 51, 52, 53]. Through computer simulations, it is shown
that the proposed algorithm can achieve a comparable sum rate performance to
WSR-WMMSE, while using fewer iterations.

• The second algorithm designs the transmit beamforming matrices that maximizes
the network-wide WSR by generalizing the solution steps of the first algorithm.
Interestingly, it is proven that the WSR maximization via interference pricing can be
made equivalent to the network-wide WSR maximization whenever the MSs have
single-antenna, i.e., in the multicell MISO BC. However, the interference pricing
approach is shown to have some performance loss when the MSs have multiple
antennas, as compared to the network-wide approach.

• The third algorithm is an implicit interference pricing approach, where each BS
self-prices its ICI leakage to other cells. Through computer simulations, it is shown
that the self-pricing approach has negligible performance loss, as compared to the
network-wide approach, when the BSs have enough Degrees of Freedom (Dof). In
this case, the self-pricing approach is more appealing for practical systems, since it
does not require variables feedback between cells.

The proposed algorithms are decentralized in the sense that each BS can solve for
its transmit beamforming independently, as soon as it has the required information. Here, we
assume that each BS can acquire the local CSI between itself and all the MSs in the system,
same as in [12, 49, 50, 51, 52, 53]. An effective technique for obtaining this CSI is the TDD
operation, where uplink training in conjunction with reciprocity simultaneously provides the BSs
with downlink and uplink channel estimates [13, 55, 56]. In this chapter, a novel OTA signaling
scheme based on TDD mode is proposed to facilitate the algorithms’ implementation. In contrast
to some existing signaling schemes in [51, 52, 53], the proposed signaling scheme reduces the
signaling overhead and requires no feedback of variables between BSs.

2.3 Chapter organization

This chapter is organized as follows. Section 2.4 presents the system model. In
section 2.5, the proposed block diagonalization (BD) algorithm is presented. The proposed
algorithms and the over-the-air (OTA) signaling schemes for WSR maximization are presented
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in sections 2.6 and 2.7, respectively. Finally, section 2.8 presents the numerical results and then
section 2.9 conclude the chapter.

2.4 System model

Consider a multicell MIMO BC wireless network consisting of M cells, as in Fig.2.1.
In each cell, there is one BS equipped with Nt antennas and K MSs, each equipped with Nr

antennas. The BS of the n-th cell is denoted as BSn and the k-th MS in each cell is denoted as MSk.
LetM def

= {1, . . ., M} and K def
= {K1, . . .,KM} denote the sets of all BSs and MSs, respectively,

whereas Kn denotes the set of MSs associated with BSn. The M BSs are assumed to operate
over a common frequency channel and communicate with their K respective MSs using linear
transmit beamforming. The scenario under consideration assumes that each MS is served by
only one BS.

Figure 2.1 – Multicell MIMO-BC system diagram (M cells and K users per cell).
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Source: Created by author.

The received signal at MSk, k ∈ Kn, is given as

yk = Hn,kTksk︸    ︷︷    ︸
desired signal

+
∑

i∈Kn\k

Hn,kTisi︸           ︷︷           ︸
intra-cell interference

+
∑

m∈M\n

∑
j∈Km

Hm,kTjsj︸                    ︷︷                    ︸
inter-cell interference

+ zk︸︷︷︸
noise

, (2.1)

where Hm,k ∈C
Nr×Nt denotes the MIMO channel matrix from BSm to MSk, whose coefficients are

independent and identically distributed (IID) complex Gaussian random variables, Tk ∈ C
Nt×Ns

denotes the transmit beamforming, with Ns being the number of data streams, sk ∈CNs denotes the
transmitted data vector that is statistically independent with zero mean and E(sksH

k ) = I, ∀k ∈ K,
and zk ∈ CNr denotes the IID complex Gaussian noise vector with zero mean and variance σ2

k.
To decode the desired signal, each MSk multiplies its received signal vector yk by the receive
beamforming matrix Rk ∈ C

Ns×Nr . Thus, the received data vector ŝk ∈ CNs at MSk is given as

ŝk = Rkyk. (2.2)

2.5 Block diagonalization approach

Theoretically, the cBD algorithm from [37] can be interpreted as the equivalent ZF
algorithm for the MIMO systems. The main objective is to completely eliminate the intra-cell
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interference by forcing each user to transmit on the null space of all other users in the same cell.
The cBD optimization problem of BSn can be written as

PcBD :


max

Tn
rcBD
n = log

���I+ RnHnTnTH
n HH

n RH
n

RnΥnRH
n

���,
s.t.

∑
j∈Kn\k

RkHn,kTj = 0, ∀k ∈ Kn,

Tr[TnTH
n ] = pn,

(2.3)

where pn is the transmit power threshold, rcBD
n is the BSn achievable rate, and matrices Hn, Tn, Rn

and Υn are defined as 

Hn =
[
HT

n,1, . . .,H
T
n,K

]T
,

Tn = [T1, . . ., TK],

Rn = bdiag{R1, . . ., RK},

Υn = bdiag{Υ1, . . ., ΥK},

(2.4)

where Υk denotes the ICI plus noise covariance matrix of MSk, k ∈ Kn, which is given as

Υk =
∑

m∈M\n

∑
j∈Km

Hm,kTjTH
j HH

m,k+σ
2
kINr . (2.5)

As one can notice, problem PcBD does nothing to deal with the ICI that is being
received from the other cells or is leaking to the other cells, since its main objective is to
maximize each cell’s achievable rate such that all intra-cell interference is eliminated. The main
advantage, though, is that PcBD is completely distributed between M cells and has a closed-form
solution as follows. The transmit beamforming matrix of MSk, k ∈ Kn is given as

Tk =GkFkP
1
2
k , (2.6)

where Pk holds on its diagonal the power allocation, Gk holds the orthogonal basis vectors of the
null space of the intra-cell users’ channels (i.e., all cell n users’ channels except user k channel),
and Fk holds the right singular vectors of the effective channel of MSk. Let the intra-cell users’

channels of MSk, k ∈ Kn, be given as

H(−k)k = [HT
n, j, ∀j ∈ Kn\k]T. (2.7)

Then, to calculate Gk, let the singular value decomposition (SVD) of H(−k)k be given
as

H(−k)k = U(−k)k Σ
(−k)
k [V

(−k)
k Gk], (2.8)

where Gk is the last (Nt − l
(−k)
k ) right singular vectors, in which l(−k)k denotes the rank of H(−k)k .

Further, let the effective channel of MSk be given as

He
k =Hn,kGk. (2.9)
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Then, to calculate Fk, let the SVD of He
k be given as

He
k = Ue

k

[
Σek 0
0 0

]
[Ve(1)

k Ve(0)
k ], (2.10)

where Σek is an [lek × l
e
k] diagonal matrix, Ve(1)

k contains the first lek singular vectors, in which lek
denotes the rank of He

k. Therefore, assuming the values of Σek are in a decreasing order, we
choose Fk and Rk to be the first Ns vectors of Ve(1)

k and Ue
k, respectively, i.e.,

Fk = Ve(1)
k [1:Ns]

and Rk = Ue
k

H
[1:Ns]
. (2.11)

With the transmit and receive beamforming matrices calculated as above, the BSn

rate function (optimization problem) is reduced to

rcBD
n =max

Pn
log

�����I+ Σ2
nPn

RnΥnRH
n

�����, (2.12)

where Σn = bdiag(Σen1, . . ., Σ
e
nK) and Pn is a diagonal matrix that holds the optimal power loading

found using water-filling method [57] on the Σn diagonal elements. Note that the water-filling
method is applied individually on each sub-matrix of Σn assuming that total transmit power of
the BS is divided equally between its K users. Clearly, the equal power allocation is a suboptimal
solution. However, this is done to make sure that all K users are allocated for transmission.

From above, it can be seen that one of the main issue with cBD is that it does
nothing to reduce the effects of the ICI each user is receiving. This issue has been considered in
[38], where the authors proposed the eBD algorithm to account for the ICI presence. The eBD
algorithm is summarized as follows. First, to suppress the ICI effects, MSk uses the whitening
matrix Wk = Υ

− 1
2

k at the received signal. Let Wn = bdiag[Wn1, . . .,WnK]. Then, the BSn rate
function rcBD

n can be written as

reBD
n =max

T̂n

log

�����I+ R̂nWnHnT̂nT̂H
n HH

n WH
n R̂H

n

R̂nWnΥnWH
n R̂H

n

�����
=max

T̂n

log
���I+ R̂nĤnT̂nT̂H

n ĤH
n R̂H

n

���, (2.13)

where Ĥn =WnHn (thus, Ĥk =WkHn,k). As in the case of cBD, the transmit beamforming

matrix of MSk is given as T̂k = ĜkF̂kP̂
1
2
k , where Ĝk is calculated similar to (2.8) from

Ĥ(−k)k = [ĤT
j , ∀j ∈ Kn\k]T = [(WjHn, j)

T, ∀j ∈ Kn\k]T. (2.14)

The F̂k and R̂k matrices are calculated similar to (2.11) from the MSk effective
channel

Ĥe
k = ĤkĜk =WkHn,kĜk. (2.15)
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Consequently, the BSn rate function reBD
n given by (2.13) is reduced to

reBD
n =max

P̂n

log
���I+ Σ̂2

nP̂n

���. (2.16)

From above, one can see that both BD approaches, cBD and eBD, have the same
dimensionality restrictions. The expressions given by (2.7) and (2.14) have dimension of [(K −
1)Nr × Nt] with rank of [Nt − (K − 1)Nr]. Therefore, to have Ns columns in the null space,
[Nt −(K −1)Nr] should be larger than Ns, i.e., [Nt −(K −1)Nr] ≥ Ns. Moreover, it is important
to note that both approaches use only the transmit beamforming to eliminate the intra-cell
interference, i.e., the receive beamforming is not utilized. Motivated by the last observation,
one possible way to reduce the dimensionality restrictions is to utilize the receive beamforming
matrix when calculating the transmit beamforming matrix [39]. To achieve this end, the receive
beamforming matrix R̃k can be included in (2.14), then we have

H̃(−k)k = [(R̃jĤj)
T, ∀j ∈ Kn\k]T = [(R̃jWjHn, j)

T, ∀j ∈ Kn\k]T. (2.17)

Note that H̃(−k)k has dimension of [(K −1)Ns×Nt], which is no longer in function of
Nr. Calculating the null space from H̃(−k)k is always satisfied if, and only if, the number of data
streams transmitted by a BS is less than or equal to its number of transmit antennas, i.e., the
condition of [Nt −(K −1)Ns] ≥ Ns should be satisfied. The following steps are much similar to
the ones above. The transmit beamforming is given as T̃k = G̃kF̃kP̃

1
2
k , where G̃k is calculated

similarly from H̃(−k)k . The F̃k and R̃k matrices are calculated from the MSk effective channel

H̃e
k = ĤkG̃k =WkHn,kG̃k. (2.18)

Since the transmit and receive beamforming matrices are now coupled, the BS is
required to conduct some iterations in order to achieve BD. Therefore, we refer to this approach
as iterative BD (iBD) and summarize it in Algorithm 1.

Algorithm 1: Proposed iBD algorithm.

1: Initialize R̃(1)k , T̃
(1)
k , ∀k ∈ K and set t = 1.

2: BSn, ∀n: Transmit data using T̃(t)k , ∀k ∈ Kn.
3: MSk, ∀k: Calculate Υ(t)k and feed it back to BSn.
4: BSn, ∀n: Calculate R̃(t)k and T̃(t)k , ∀k ∈ Kn as:
5: - Construct H̃(−k)(t)k using R̃(t)k .
6: - Calculate G̃(t)k from H̃(−k)(t)k .
7: - Construct H̃e(t)

k using G̃(t)k .
8: - Calculate F̃(t+1)

k and R̃(t+1)
k from H̃e(t)

k .
9: Repeat steps 2-4 (until convergence)

At the first step, Algorithm 1 initializes the transmit and receive beamforming matri-
ces for all users. For instance, T̃(1)k can be initialized using the MRT approach and R̃(1)k = I. At
the t-th iteration, each BS transmits pilot signals precoded with T̃(t)k at step-2 so that each MSk
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can calculate the ICI covariance matrix, i.e., Υ(t)k , and feed it back to its serving BS via feedback
channels. After that, each BS updates the transmit and receive beamforming of its users at step-4.
The aforementioned steps are repeated until convergence. Note that the transmit and receive
beamforming matrices of all users are calculated at the BSs. Therefore, at convergence, each BS
would forward the receive beamforming matrices to its users using the feedforward channels.
With the transmit and receive beamforming matrices calculated as given by Algorithm 1, the
BSn rate function reBD

n given by (2.13) is reduced to

riBD
n =max

P̃n

log
���I+ Σ̃2

nP̃n

��� . (2.19)

Note that both equations (2.15) and (2.18) have the same structure. The following
theorem indicates their relation.

Theorem 1 If the number of data streams transmitted to any user is equal to the number of its

receive antennas, i.e., if Ns = Nr, then, both eBD and iBD are equivalent and have the same

exact performance.

Proof 1 At first, one can note that H̃−kk given by (2.17) can be written in function of Ĥ−kk given by

(2.14). To show this, let us define R̃−kn = bdiag[R̃j, ∀j ∈ Kn\k]. Then we can write H̃−kk = R̃−kn Ĥ−kk .
Note that R̃−kn is an orthogonal unitary matrix. Therefore, if Ns = Nr, then we have R̃H−k

n R̃−kn = I,

otherwise, if Ns < Nr, then R̃H−k
n R̃−kn , I. Assuming Ns = Nr, we have

H̃H−k
k H̃−kk = ĤH−k

k R̃H−k
n R̃−kn Ĥ−kk = ĤH−k

k Ĥ−kk . (2.20)

Therefore, we have H̃−ik ∝ Ĥ−ik . This end result proves that both matrices are propor-

tional to each other. Consequently, their individual null spaces are also proportional to each

other, i.e., G̃k ∝ Ĝk. Therefore, the singular values calculated using (2.10) assuming H̃e
k given

by (2.18) are exactly equal to the ones calculated assuming Ĥe
k given by (2.15), which completes

the proof.

It’s worth noting that if the system has only one cell, then the eBD algorithm is
equivalent to cBD. In this case, the iBD algorithm is also equivalent to cBD, only if Ns = Nr,
which is a straightforward result of Theorem 1.

2.6 Weighted sum rate maximization approach

This section uses the WSR as the transceiver design criterion. It is assumed that each
MS employs single-user detection by treating the interference as additive noise. Therefore, the
achievable rate of MSk, k ∈ Kn, can be written as

rk = log
���INs +TH

k HH
n,kΦ

−1
k Hn,kTk

���, (2.21)
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where Φk denotes the received interference plus-noise covariance matrix for MSk, k ∈ Kn, which
is given as

Φk =
∑

i∈Kn\k

Hn,kTiTH
i HH

n,k+Υk, (2.22)

whereas Υk is given by (2.5), which denotes the ICI plus noise covariance matrix of MSk. Here,
we assume that each MSk uses MMSE receive beamforming, which is given as [12]

RMMSE
k = argmin

Rk
E[‖Rkyk− sk‖2]

= TH
k HH

n,kΩ
−1
k , (2.23)

where Ωk =Hn,kTkTH
k HH

n,k+Φk. Using (2.23), the MSE-matrix of MSk is given as [51]

Ek = E[‖RMMSE
k yk− sk‖2]

= INs −RMMSE
k Hn,kTk, (2.24)

which can be equivalently expressed as [12]

Ek = (INs +TH
k HH

n,kΦ
−1
k Hn,kTk)

−1. (2.25)

The latter form of Ek in (2.25) shows that the rate function given by (2.21) can be
equivalently expressed as

rk = log
���E−1

k

���. (2.26)

Note that Ek must be Hermitian, since from (2.25), Ek equals a quantity (right-hand
side) that is Hermitian, which means that Ek = EH

k . Furthermore, the following lemma is needed
throughout the rest of this chapter.

Lemma 1 Given the MSE-matrix Ek as in (2.24), or equivalently as in (2.25), the receive

beamforming matrix Rk can be written as

Rk = EkTH
k HH

n,kΦ
−1
k . (2.27)

Proof 2 In the lemma, we claim that Rk = EkTH
k HH

n,kΦ
−1
k . To prove this, assume Ns = Nr and

solve for Rk from (2.24) as Rk = (I−Ek)(Hn,kTk)
−1. Then, our claim is that

EkTH
k HH

n,kΦ
−1
k

def
= (I−Ek)(Hn,kTk)

−1 (2.28)

EkTH
k HH

n,kΦ
−1
k = (Hn,kTk)

−1−Ek(HkTk)
−1 (2.29)

TH
k HH

kΦ
−1
k

(a)
= E−1

k [(Hn,kTk)
−1−Ek(Hn,kTk)

−1] (2.30)

TH
k HH

n,kΦ
−1
k

(b)
= E−1

k (Hn,kTk)
−1−(Hn,kTk)

−1, (2.31)
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where (a) is obtained by left-multiplying both sides by E−1
k and (b) is obtained by simplifying (a).

From (2.25), E−1
k = (INr +TH

k HH
n,kΦ

−1
k Hn,kTk). Substitute E−1

k into (b) and when simplifying the

resulting expression we have

TH
k HH

n,kΦ
−1
k = TH

k HH
n,kΦ

−1
k , (2.32)

which completes the proof.

2.6.1 Per-Cell WSR maximization via interference pricing

This section considers an interference pricing approach for designing the transmit
beamforming. The main idea is to manage the ICI received by a user by pricing the interfering
BSs. Similar to [47, 58], we define the interference price as the marginal decrease in the user rate
due to a marginal increase in the received interference. Mathematically, the MSk interference
price is given as

πk = ∇Φkrk. (2.33)

Using the result of ∇ log
��X�� = Tr(X−1∇X), where X is a matrix [59], then πk is given

as

πk = Tr(EkTH
k HH

n,kΦ
−2
k Hn,kTk). (2.34)

By observing (2.34) and the Lemma 1 result, we have the following corollary.

Corollary 1 The MSk interference price πk given by (2.34) can be equivalently written as

πk = Tr(RH
k E−1

k Rk). (2.35)

Proof 3 According to Lemma 1, the receive beamforming can be written as Rk = EkTH
k HH

n,kΦ
−1
k .

Then, the MSk interference price πk given by (2.34) is reduced to

πk = Tr(EkTH
k HH

n,kΦ
−2
k Hn,kTk)

(a)
= Tr(RkRH

k E−1
k )

(b)
= Tr(RH

k E−1
k Rk)

where (a) is obtained by substituting Rk into the first equality and (b) is obtained by using the

results of Tr(XYZ) = Tr(YZX) = Tr(ZXY) [59], which completes the proof.

Let πππn = {πj, ∀j ∈ Km, ∀m ∈ M\n} denote the vector that collects all interference
prices of all users in the system except BSn users. Then, define the following MS-specific
function

fk(πππn) = µkrk−Tr(Lk), (2.36)
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where µk > 0 denotes the weight associated to MSk and Lk defines the priced-ICI caused by the
MSk beamforming Tk, which is given as

Lk =
∑

m∈M\n

∑
j∈Km

πjHn, jTkTH
k HH

n, j. (2.37)

Afterwards, each BSn, ∀n ∈ M, updates its transmit beamforming Tk, ∀k ∈ Kn, as
the solution to the following interference-priced WSR maximization problem

PWSRP =


max
Tk,

∀k∈Kn

∑
k∈Kn

fk(πππn)

s.t.
∑
k∈Kn

Tr(TkTH
k ) = pn,

(2.38)

where we have used an equality power constraint rather than the often used
∑

k∈Kn Tr(TkTH
k ) ≤ pn,

since the WSR optimum is reached at maximum transmit power [12]. From problem PWSRP,
one can see that this approach is different from the BD approach in the sense that the ICI received
by a user is being managed by the interfering BSs and not the serving BS.

In [47], the authors addressed problem PWSRP from a game-theoretic view-point
assuming single-antenna users, where the objective function fk(πππn) is interpreted as a user utility
function that penalizes the user rate by the ICI that he is leaking. The problem in [47], however,
was formulated as a relaxed SDP and its solution would require each BS to obtain first the
transmit covariance matrices, i.e., Qk

def
= TkTH

k � 0, followed by operations to guarantee and
extract the rank-one transmit beamforming vectors, i.e., Tk. It was proven in [47] that problem
PWSRP is guaranteed to converge to an equilibrium point that corresponds to a KKT point
for the original problem PWSRP. In the following, we present a different solution to problem
PWSRP. The solution is obtained by investigating the KKT conditions of problem PWSRP and
with the help of the Lemma 1 result. The solution of PWSRP w.r.t. transmit beamforming for
MSk, ∀k ∈ K, is given by Proposition 1.

Proposition 1 Let the receive beamforming Rk and MSE matrix Ek for MSk be given by (2.23)

and (2.24), respectively, and by utilizing the Lemma 1 result, then the solution of problem PWSRP

w.r.t. transmit beamforming Tk for MSk, ∀k ∈ Kn, is given as

TWSRP
k = (Ak+Bn+ λnINt )

−1HH
n,kR

H
k µk, (2.39)

where λn, ∀n ∈M, are the Lagrange multipliers associated with the PWSRP constraint functions,

Ak and Bk are given as

Ak =
∑

i∈Kn\k

µiHH
n, iR

H
i E−1

i RkHn, i, (2.40)

Bn =
∑

m∈M\n

∑
j∈Km

πjHH
n, jHn, j. (2.41)
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Proof 4 From the KKT conditions, a local optimum must satisfy ∇TkL = 0, ∀k ∈ Kn, where

∇TkL defines the complex gradient operator of L with respect to Tk and L defines the

Lagrangian function of problem PWSRP, which is given as

L =
∑
k∈Kn

fk(πππn)− λn

( ∑
k∈Kn

Tr(TkTH
k )− pn

)
=

∑
k∈Kn

(µkrk−Lk)− λn

( ∑
k∈Kn

Tr(TkTH
k )− pn

)
. (2.42)

The gradient is a matrix with the [p, q]-th element defined as [∇TkL ][p,q] =∇[Tk][p,q]L .

In order to calculate ∇TkL , we need to calculate first ∇Tkrk, ∇Tkrj, ∀j ∈ Kn\k, and ∇TkLk by

utilizing the following results from [59]: ∇ log
��X�� = Tr(X−1∇X) and ∇(X−1) = −X−1(∇X)X−1,

where X is a matrix.

First, ∇Tk[p,q]rk = Tr(Ek∇Tk[p,q]E−1
k ). Here, ∇Tk[p,q]E−1

k = eqeH
p HH

n,kΦ
−1
k Hn,kTk, where

ep (eq) is a vector of Nt (Nr) dimension with one at the p (q) -th element and zeros elsewhere.

Then, we have

∇Tk[p,q]rk = Tr(EkeqeH
p HH

n,kΦ
−1
k Hn,kTk)

= eH
p HH

n,kΦ
−1
k Hn,kTkEkeq. (2.43)

Since ∇Tk[p,q]rk = [∇Tkrk][p,q], then we have ∇Tkrk = HH
n,kΦ

−1
k Hn,kTkEk. Further-

more, ∇Tk[p,q]rj, ∀j ∈ Kn\k, is given as ∇Tk[p,q]rj = Tr(Ej∇Tk[p,q]E−1
j ). First, ∇Tk[p,q]E−1

j is given as

∇Tk[p,q]E−1
j = TH

j HH
n, j[−Φ

−1
j [∇Tk[p,q]Φj]Φ

−1
j ]Hn, jTj, whereas ∇Tk[p,q]Φj = Hn, jTkeqeH

p HH
n, j. Com-

bining all results together, we have

∇Tk[p,q]rj = Tr(EjTH
j HH

n, j[−Φ
−1
j Hn, jTkeqeH

p HH
n, jΦ

−1
j ]Hn, jTj)

= −eH
p HH

n, jΦ
−1
j Hn, jTjEjTH

j HH
n, jΦ

−1
j Hn, jTkeq. (2.44)

Therefore, ∇Tkrj, ∀j ∈ Kn\k, is given as

∇Tkrj = −HH
n, jΦ

−1
j Hn, jTjEjTH

j HH
n, jΦ

−1
j Hn, jTk. (2.45)

Finally, ∇TkLk is given as ∇TkLk =
∑

m∈M\n
∑

j∈Km µ jHH
n, jHn, jTk. From above, ∇TkL is given as

∇TkL = µkHH
n,kΦ

−1
k Hn,kTkEk− ÃkTk−BnTk− λnTk, (2.46)

where

Ãk =
∑

i∈Kn\k

µiHH
n, iΦ

−1
i Hn, iTiEiTH

i HH
n, iΦ

−1
i Hn, i, (2.47)

Bn =
∑

m∈M\n

∑
j∈Km

µ jHH
n, jHn, j. (2.48)

From (2.46), it can be seen that it is not possible to solve for Tk directly. However,

according to Lemma 1, we can write RH
k =Φ

−1
k Hn,kTkEk (note that Ek = EH

k ). Then, the gradient

function (2.46) can be written as

∇TkL =µkHH
n,kR

H
k −AkTk−BnTk− λnTk, (2.49)
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where

Ak =
∑

i∈Kn\k

µiHH
n, iR

H
i E−1

i RiHn, i. (2.50)

From (2.49), we can solve for Tk directly as

Tk = (Ak+Bn+ λnINt )
−1HH

n,kR
H
k µk. (2.51)

Thus, we have the result given in proposition 1.

In (2.39), the λn, ∀n ∈M, are calculated to satisfy the power constraint at BSn, ∀n ∈
M, by using the KKT condition λn

(∑
k∈Kn Tr(TkTH

k )− pn
)
= 0 and by utilizing the fact that the

transmit power is monotonically decreasing with respect to increasing λn [49]. The closed-form
solution can be obtained by readapting the approach shown in [12] as

TWSRP
k = βnT̄k, where



T̄k = (Ak+Bn+αnINt )
−1HH

n,kR
H
k µk,

αn =
∑
i∈Kn

Tr(µiE−1
i RiRH

i )/pn,

βn =

√√√√ pn∑
i∈Kn

Tr(T̄iT̄H
i )
.

(2.52)

2.6.2 Network-wide WSR maximization

In this section, we consider the general network-wide WSR maximization problem.
Mathematically, the WSR maximization problem can be written as [49]

PWSRM =


max
Tk,

∀n∈M,∀k∈Kn

∑
n∈M

∑
k∈Kn

µkrk

s.t.
∑
k∈Kn

Tr(TkTH
k ) = pn, ∀n ∈M .

(2.53)

Problem PWSRM has been addressed in [12, 49, 50, 51, 52, 53]. For all the algorithms
presented in these references, PWSRM was solved by exploiting its relationship to the WMMSE
minimization problem, which was initially shown in [12]. Different from all, in the following, we
propose a novel solution that directly solves PWSRM. Similar to PWSRP, the solution is obtained
by investigating the KKT conditions of problem PWSRM and with the help of the Lemma 1
result. The solution of PWSRM w.r.t. transmit beamforming for MSk, ∀n ∈ M, ∀k ∈ Kn, is given
by Proposition 2.

Proposition 2 Let the receive beamforming Rk and the MSE matrix Ek for MSk be given by

(2.23) and (2.24), respectively, and by utilizing the Lemma 1 result, then the solution to PWSRM

w.r.t. transmit beamforming for MSk, ∀n ∈M, ∀k ∈ Kn, is given as

TWSRM
k = (Ak+Cn+ λnINt )

−1HH
n,kR

H
k µk, (2.54)
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where λn, ∀n ∈M, are the Lagrange multipliers associated with the PWSRM constraint functions,

Ak is given by (2.40), and Cn is given as

Cn =
∑

m∈M\n

∑
j∈Km

µ jHH
n, jR

H
j E−1

j RjHn, j. (2.55)

Proof 5 The proof can be shown by generalizing the derivation steps shown in proof of Proposi-

tion 1 and thus omitted here for brevity.

By observing (2.54), we can see that it is closely related to (2.39). Theorem 2 shows
the connection between both equations in a special case.

Theorem 2 Both equations TWSRP
k and TWSRM

k given by (2.39) and (2.54), respectively, are equal

if Nr = 1 and the MSk interference price πk given by (2.35) is replaced by π̃k that is given as

π̃k = µkπk. (2.56)

Proof 6 When Nr = 1, the interference price πk in (2.35) reduces to πk = RH
k E−1

k Rk, since both

terms Rk and Ek are scalars. By substituting πk into the Ak and Cn terms, we have

Ak =
∑

i∈Kn\k

µiπiHH
n, iHn, i.

Cn =
∑

m∈M\n

∑
j∈Km

µ jπjHH
n, jHn, j.

Since Ak is common in both, the only difference is between the Bn and Cn terms.

Now, comparing Bn to Cn, we can see that both terms are equal if each interference price in Bn

is replaced by π̃j = µ jπj, which completes the proof.

The result of Theorem 2 establishes a relationship between problems PWSRM and
PWSRP. When Nr = 1, the problems PWSRP and PWSRM are exactly equivalent. In this case,
the receive beamforming and MSE terms are scalars and directly specify the interference prices
of the MSs. However, when Nr > 1, PWSRP would provide a suboptimal solution to PWSRM.
In this latter case, the interference prices cannot exploit the spatial dimension that the receive
beamforming brings, since RH

k E−1
k Rk has a dimension of Nr ×Nr, irrespective of the number of

data streams Ns, whereas the interference price πk = Tr(RH
k E−1

k Rk) is represented by a scalar.
Therefore, when Nr > 1, the Cn term given by (2.55) contains extra information, as compared to
Bn given by (2.41), which can be exploited by the BSs to reshape the interference.

Similar to (2.39), the λn, ∀n ∈ M, in (2.54) are calculated to satisfy the power
constraint at BSn, ∀n ∈M. The closed-form solution of (2.54) can be obtained similar to (2.52),
by replacing the Bn term with Cn.
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2.6.3 WSR maximization based on self-pricing

In this approach, we consider a different strategy for maximizing the WSR in the
sense that each BS would self-price the ICI it is leaking to other cells. In this regard, when
compared to PWSRP, the BSs do not need to collect the interference prices from the users when
calculating the transmit beamforming.

In order to show this, let us assume for a moment that the rate function of a given
user, say MSj, j ∈ Km, is mostly degraded by the transmit beamforming from a single interfering
BS, say BSn, n , m. This can be translated to many scenarios, such as the BSs other than BSn

have a mutual interference that is negligible, or they are using a transmit beamforming strategy
that eliminates ICI by any means. Therefore, the interference plus noise covariance matrix of
MSj can be approximated as

Ψ j ≈
∑
k∈Kn

Hn, jTkTH
k HH

n, j+ INr, (2.57)

where the approximation is used due to the assumption that the intra-cell interference as well as
the ICI from other interfering BSs than BSn are negligible. By (2.57), the achievable rate of MSj

is given as

rj = log
���INs +TH

j HH
m, jΨ

−1
j Hm, jTj

���. (2.58)

Considering the high SNR regime, the rate function of MSj (2.58) can be approxi-
mated as

rj ≈ log
���TH

j HH
m, jΨ

−1
j Hm, jTj

���
= log

���TH
j HH

m, jHm, jTj

���− log
���Ψ j

���. (2.59)

From (2.59), it can be noticed that the second term in the right-hand side (log
���Ψ j

���)
represents the rate loss at MSj due to the beamforming at BSn. An important point to observe is
that this rate loss at MSj is already known to BSn, as it denotes the interference leakage from
BSn to MSj. Therefore, BSn can consider an implicit interference pricing approach to reduce the
interference leakage towards the MSs of other cells.

Let Ψn = {Ψ j, ∀j ∈ Km, ∀m ∈M\n} and define the following BSn specific function

gn(Ψn) =
∑
k∈Kn

µkrk−
∑

m∈M\n

∑
j∈Km

log
���Ψ j

���. (2.60)

Using (2.60), each BSn, ∀n ∈M, updates the transmit beamforming Tk, ∀k ∈ Kn, as
solution to the following optimization problem

PWSRH =


max
Tk,

∀k∈Kn

gn(Ψn)

s.t.
∑
k∈Kn

Tr(TkTH
k ) = pn.

(2.61)
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The solution of PWSRH w.r.t. transmit beamforming for MSk, ∀n ∈M, ∀k ∈ Kn, is
given by Proposition 3.

Proposition 3 Let the receive beamforming Rk and MSE matrix Ek for MSk be given by (2.23)

and (2.24), respectively, and by utilizing the Lemma 1 result, then the solution to PWSRH w.r.t.

transmit beamforming for MSk, ∀n ∈M, ∀k ∈ Kn, is given as

TWSRH
k = (Ak+Dn+ λnINt )

−1HH
n,kR

H
k µk, (2.62)

where Ak is given by (2.40) and

Dn =
∑

m∈M\n

∑
j∈Km

HH
n, jΨ

−1
j Hn, j. (2.63)

Proof 7 The derivation steps are similar to the ones shown in proof of Proposition 1 and thus

omitted here for brevity.

Similar to (2.39), λn, ∀n ∈M, in (2.62) are calculated to satisfy the power constraint
at BSn, ∀n ∈ M. The closed-form solutions of (2.62) can be obtained similar to (2.52), by
replacing the Bn term with Dn given by (2.63).

2.6.4 Algorithm design and convergence analysis

To solve either problem of PWSRP, PWSRM, or PWSRH, an algorithm based on
alternating optimization can be used [49, 50, 51, 52, 53]. The basic idea is to optimize each
problem with respect to one variable at a time, while keeping the rest of the variables fixed. The
proposed algorithm to solve either optimization problem is summarized in Algorithm 2. We
refer to this algorithm as WSRP when solving PWSRP, as WSRM when solving PWSRM, and as
WSRH when solving PWSRH.

Algorithm 2: WSR Maximization via Alternate Optimization.

1: Initialize T(1)k , ∀k ∈ K.
2: MSk, ∀k: Calculates R(t)k using (2.23) for given T(t)k , ∀k ∈ K.
3: MSk, ∀k: Calculates E(t)k using (2.24) for given T(t)k , R

(t)
k , ∀k ∈ K.

4: if PWSRP then
5: BSn, ∀n: Updates T(t+1)

k , ∀k ∈ Kn, using (2.39) for given R(t)k , E
(t)
k , ∀k ∈ K.

6: end if
7: if PWSRM then
8: BSn, ∀n: Updates T(t+1)

k , ∀k ∈ Kn, using (2.54) for given R(t)k , E
(t)
k , ∀k ∈ K.

9: end if
10: if PWSRH then
11: BSn, ∀n: Updates T(t+1)

k , ∀k ∈ Kn, using (2.62) for given R(t)k , E
(t)
k , ∀k ∈ K.

12: end if
13: Repeat steps 2-12 (until convergence)

In step 1, Algorithm 2 initializes the transmit beamforming matrices for all users in
the system by any means, e.g. MRT approach. Afterwards, the algorithm alternates between the
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following three steps. In steps 2 and 3, all MSs calculate, in parallel, their receive beamforming
and MSE matrices, respectively, for the given transmit beamforming. Next, all BSs calculate, in
parallel, their transmit beamforming, using either approach, for the given receive beamforming
and MSE matrices. If this iterative process converges, it converges to a fixed point that is a
stationary point of the WSR-objective function [12]. It is worth noting that in a single-cell
scenario, all proposed algorithms coincide, where each algorithm differs from the other two in
the ICI handling.

For alternating optimization, monotonic convergence of the objective to a station-
ary (locally optimal) point is guaranteed, if each step has a unique optimum [60, Proposition
2.7.1]. The requirement for the transmit beamforming optimization to be unique is that the
matrix to be inverted in (2.39), (2.54) or (2.62) is invertible, i.e., (Ak+Bn/Cn/Dn+ λnI)−1 does
exist. One sufficient condition for invertibility is that all the power constraints are active, i.e.,∑

k∈Kn Tr(TkTH
k ) = pn so that we always have λn > 0, which is the case in the formulation of our

problems, since the WSR optimum is reached at maximum transmit power [12]. Another condi-
tion is that there are at least Nt active vectors whose effective channels are linearly independent,
i.e., rank(Ak+Bn/Cn/Dn) ≥ Nt. In practice, the cases when the matrix is non-invertible, and the
optimal beamforming solution is not unique, are very rare [53]. Nevertheless, if the matrix is
not invertible, the pseudo-inverse may be used to get a solution. However, since the original
problems PWSRP, PWSRM, and PWSRH are non-convex, a globally optimal point cannot be
found, in general, via alternating optimization. Moreover, different initializations and iteration
orders may converge to different local WSR-optima [49, 50, 51, 52, 53].

2.7 WSR maximization signaling schemes

The proposed algorithms above are decentralized, where each BS can calculate
its transmit beamforming locally once it has the required information. Here, we assume that
each BSn has access to the local CSI, i.e., Hn, j, ∀j ∈ K, as in [51, 52, 53]. TDD operation is an
effective technique for obtaining this CSI, where uplink training in conjunction with reciprocity
provides the BSs with downlink and uplink CSI simultaneously [13, 55].

In the following, a novel OTA signaling schemes are proposed based on TDD mode
to facilitate the algorithm implementation. It is assumed that 1) each BS and MS has orthogonal
pilot symbols (training) in the downlink and uplink direction, respectively, for the OTA signaling,
2) each TDD frame is divided into two parts; signaling and data parts, as shown in Fig. 2.2, where
the signaling part is further divided into downlink and uplink sub-parts to facilitate the variables’
exchange between BSs and MSs, and 3) all exchanged variables are perfectly estimated at each
iteration.

At the downlink, it is assumed that each BSn transmits pilot signals that are pre-
coded with the transmit beamforming Tk, ∀k ∈ Kn. Thus, each MSk can estimate the downlink
equivalent channels Hm,kTj, ∀m ∈ M, ∀j ∈ Km, and update its receive beamforming Rk and
MSE-matrix Ek. On the other hand, to update the transmit beamforming, each algorithm has
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Figure 2.2 – TDD frame structure.

Signaling                       Data
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Source: Created by author.

different signaling needs. Therefore, we propose the following two signaling schemes.

2.7.1 Signaling scheme A

In this scheme, it is assumed that each MSk transmits an uplink pilot signal that is
precoded with the receive beamforming Rk. Thus, each BSn can estimate the uplink equivalent
channels RjHn, j, ∀j ∈ K, and calculate Ek, ∀k ∈ Kn, using (2.24). This information is sufficient
to calculate Ak, ∀k ∈ Kn, which is common in the three algorithms.

For WSRH, Ak, ∀k ∈ Kn, is all that is needed to update the transmit beamforming
Tk, ∀k ∈ Kn, where the second term Dn can be calculated locally. However, for WSRP, each BSn

would require vector πππn to calculate Bn, which collects all interference prices from the users
of other cells. The direct approach, as assumed in [47], is to let each MSk, k ∈ Kn, calculate its
interference price πk and feed it back to its serving BS, i.e., BSn. Then, all BSs perform broadcast-
and-gather operation of their interference prices using the backhaul. Different from [47], we
assume that each BSn first recalculates the receive beamforming as Rk = (I−Ek)(Hn,kTk)

−1, ∀k ∈
Kn, using local information (see Appendix ??), and then calculates the interference prices
πk = Tr[RH

k E−1
k Rk], ∀k ∈ Kn, and exchanges them with the other BSs using the backhaul. Thus,

we do not need the feedback from the MSs. On the other hand, for WSRM, each BSn would
require µ jEj, ∀j ∈ K\Kn, to calculate Cn. Using this signaling scheme, one possible way, as
assumed in [53], is to let the BSs exchange them using the backhaul.

From above, we can see that signaling Scheme A is best applicable to WSRH, since
no further variables feedback is required. However, for WSRM (WSRP), the feedback of matrices
(scalars) between BSs is required. To reduce the signaling overhead of WSRM and WSRP, we
further propose the following signaling scheme.

2.7.2 Signaling scheme B

In this scheme, we assume that each MSk transmits a pilot signal that is pre-
coded with

√
µkE

− 1
2

k Rk [51, 53]. Thus, each BSn can estimate the uplink equivalent channels
√
µ jE

− 1
2

j RjHn, j, ∀j ∈ K, which are sufficient to calculate Ak, ∀k ∈ Kn, and Bn or Cn. However,
with WSRM and WSRP, each BSn still requires Rk, ∀k ∈ Kn, to calculate the uplink equivalent
channels µkRkHn,k, ∀k ∈ Kn. One possible way, as proposed in [51], is to let each MSk trans-

mit two consecutive uplink pilot signals; one precoded with
√
µkE

− 1
2

k Rk and another precoded
with Rk. However, this approach would unnecessarily increase the signaling overhead. In the
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following, an alternative approach is proposed, where the main idea is to let each BSn recalculate
Rk, ∀k ∈ Kn, using only local information and thus reduce the signaling overhead.

Let Xk =
√
µkE

− 1
2

k RkHn,k denote the uplink equivalent channel with MSk estimated
at BSn. Substitute Rk = (I−Ek)(Hn,kTk)

−1 into Xk and simplify the resulting expression, then
we have

Xk = (
√
µkE

− 1
2

k −
√
µkE

1
2
k )Yk, (2.64)

where Yk = (Hn,kTk)
−1Hn,k. Right multiply both sides of the latter equation by Y†k and again

simplify the resulting expression, then we have

E−
1
2

k =
1
√
µk

Mk+E
1
2
k , (2.65)

where Mk = XkY†k (where Y†k = YH
k (YkYH

k )
−1), which is formed using local information. Then,

equation (2.65) can be solved for Ek iteratively as given by Algorithm 3.

Algorithm 3: Proposed signaling scheme B.

1: Construct Mk and initialize E(1)k randomly.

2: Set Ē(t)k =
1√
µk

Mk +E
1
2 (t)
k .

3: Set E(t+1)
k = Ē−2(t)

k .
4: Repeat steps 2-3 (until convergence).
5: At convergence, solve Rk = (I−Ek)(Hn,kTk)

−1.

In step 1, Algorithm 3 constructs the local matrix Mk and randomly initializes E(1)k .
Given those initial matrices, the algorithm alternates between steps 2 and 3 at each iteration. At
the t-th iteration, the algorithm solves for E−

1
2 (t)

k given E
1
2 (t)
k at step 2 (denoted as Ē(t)k ). Then, at

step 3, the algorithm solves for E(t+1)
k given Ē(t)k . Those two steps are repeated until convergence.

If matrix Mk is assumed perfect, the algorithm is able to recalculate the MSE-matrix Ek perfectly.
Then, using Ek at step 5 we can calculate for the receive beamforming matrix Rk. Algorithm 3
convergence behavior is shown numerically in the next section. A proof of convergence is open
and we leave it for a future work.

2.8 Numerical results

This section evaluates the performance of the proposed algorithms by means of
simulation. We consider a flat Rayleigh fading scenario with uncorrelated channels between
antennas, i.e., each element of Hn,k, ∀n ∈ M, ∀k ∈ Kn, is an i.i.d. complex Gaussian random
variable with zero mean and unit variance. For each simulated algorithm, we initialize the
transmit beamforming matrices using the MRT approach, i.e.,

T(1)k = Vk[1:Ns]

√
pn
KNs
, ∀k ∈ K, (2.66)
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where Vk denotes the matrix holding in its columns the right singular vectors of Hn,k arranged
in a decreasing order w.r.t their singular values. Moreover, we assume that the noise variance
σ2

k =σ
2 = 1. The transmit power of BSn is represented by SNR as SNR= pn/σ2. For comparison

purpose, we show simulation results of the WSR-WMMSE algorithm from [49, 50, 51, 52, 53],
and the MRT approach.

Example 1: algorithm 3 convergence

This example shows simulation results to evaluate the convergence behavior of
Algorithm 3. Fig. 2.3 shows the log-scale convergence results of Algorithm 3 for the first user,
i.e., MS1, in terms of the Absolute Error that is defined as

Absolute Error =
���∑

i, j

(
E(t)1 −E?1

) ���, (2.67)

where E?1 is the perfect MSE-matrix of MS1 and E(t)1 is the obtained MSE-matrix at the t-th
iteration. We assume system of M = 2 and K = 2 and each simulated point is averaged over 1,000
channel realizations.

Figure 2.3 – Log-scale convergence behavior of Algorithm 3.
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From Fig. 2.3, it can be seen that Algorithm 3 has a fast convergence rate, where it is
able to obtain the perfect MSE-matrix using a few iterations. Note that, when Nt increases, Ns

decreases, or MK decreases, the algorithm has faster convergence rate. We note that all simulated
channel realizations have converged to the perfect MSE-matrix, although the convergence of
some channel realizations is not necessarily monotonic.
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Example 2: convergence behavior of algorithms 1 and 2

This example shows simulation results to evaluate the convergence behavior of
Algorithms 1 and 2. Fig. 2.4 shows the averaged sum rate convergence results assuming SNR =
10 dB and [M, K, Nt, Nr, Ns] = [3, 3, 9, 2, 2].

Figure 2.4 – Convergence behavior of algorithms 1 and 2.
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From Fig. 2.4, we can see that all iterative algorithms have a fast convergence rate,
within 1-to-2 iterations for iBD and within 10-to-15 iterations for the other algorithms. It’s worth
noting that WSRM has a slightly faster convergence rate than WSR-WMMSE, although both
algorithms seem to converge almost to the same point. However, the convergence speed of either
algorithm varies for the individual channel realizations. For some channel realizations, WSRM
appears to converge slightly faster and to a higher sum rate than WSR-WMMSE and vice-versa
for the other channel realizations.

Example 3: sum rate performance for single-cell case

This example shows simulation results to evaluate the sum rate performance of
Algorithms 1 and 2 in the single cell case, i.e., M = 1. Fig. 2.5 shows the average sum rate results
for a range of SNR values, assuming µk = µ = 1 and Nt = 6. Note that, when M = 1, algorithms
WSRM, WSRP, and WSRH are all equivalent, since the Bn, Cn and Dn terms are all identity
matrices and all algorithms share the Ak calculation. Therefore, for this example, we only show
WSRM results.
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Figure 2.5 – Sum rate performance for single cell case.
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From Fig. 2.5, it can be seen that when [K, Nr, Ns] = [3, 1, 1] (solid-lines), iBD has
very close performance to both WSR-WMMSE and WSRM, which are seem to have the same
sum rate performance. However, for the other simulated scenarios, when K and/or Ns increases
while keeping Nt fixed, iBD has large performance loss as compared to WSR-WMMSE and
WSRM, although it maintain the same multiplexing gain. None of the iBD and MRT algorithms
can achieve a good balance between the altruistic and egoistic behaviors of users. While iBD
has complete altruistic behavior, MRT has complete egoistic behavior. Consequently, they have
performance loss, as compared to WSR-WMMSE and WSRM.

To examine the impact of user-weights, Fig. 2.6 shows the simulation results for a
system with equal and unequal user-weights and [M, K, Nt, Nr, Ns] = [1, 3, 6, 1, 1]. From Fig. 2.6,
it can be seen that when all users have equal weights, they achieve equal performance, in average.
However, when a user has a larger weight than others, MS3 in this case, the algorithm favors him
and, thus, achieves better performance. In terms of sum rate performance, the system with equal
users’ weights has better performance than otherwise. The reason behind this is that when the
algorithm favors one user over the others, the user(s) with lower weight would have a degradation
in his(their) performance, MS1 in this case. In general, the increase of one user’s rate does not
compensate the loss of the other users’ rate. Thus, the algorithm would lose in terms of sum rate.
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Figure 2.6 – Sum rate performance with equal and different user-weights.
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Example 4: sum rate performance for multicell case

This example shows simulation results to evaluate the sum rate performance of
Algorithms 1 and 2 in the multicell case, i.e., M > 1, assuming µk = µ = 1. Fig. 2.7 shows the
average sum rate results for a range of SNR values, where [M, K, Nt] = [3, 3, 9].

Figure 2.7 – Sum rate performance for multicell case.
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From Fig. 2.7, we can see that WSRM and WSRP have the exact sum rate per-
formance when Nr = Ns = 1 (solid-lines), since both algorithms are equivalent as it is shown
in Theorem 2. However, when Nr = Ns = 2, we can see that WSRP has some performance
loss, as compared to WSRM, and the performance loss increases as the SNR value increases.
Furthermore, both iBD and MRT have a flat performance as the SNR increases, due to severe
ICI. For WSRH, we can see that it has close performance to WSRM for the entire SNR range
with a small performance loss when Nr = Ns = 1. However, increasing Ns, the performance loss
increases, as well, since Nt is fixed. WSRH is a self-pricing algorithm that is distributed between
cells. Thus, the algorithm has less transmit coordination than WSRM and WSR-WMMSE.

In Fig. 2.8, we show sum rate performance while varying the number of MS an-
tennas Nr and fixing the other parameters. We assume SNR = 10 dB and [M, K, Nt, Nr, Ns] =

[3, 3, 6, Nr, 2]. From Fig. 2.8, we can see that all algorithms have better sum rate performance as
Nr increases. However, WSRP has a much slower increase rate than others, which is translated
to a higher rate loss, as compared to WSRM. On the other hand, as Nr increases, iBD starts to
have better sum rate performance than MRT, as compared to results from Fig. 2.7. The reason
behind this is that when Nr increases, the interference whitening method has better impact on
reducing ICI effects, and thus, better performance.

Figure 2.8 – Sum rate performance for multicell case while varying number of MS antennas.
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In Fig. 2.9, we show sum rate performance while varying the number of BS antennas
and fixing the other parameters. We assume SNR = 10 dB and [M, K, Nt, Nr, Ns] = [3, 3, Nt, 2, 2].
As discussed above, we can see from Fig. 2.9 that all algorithms have better sum rate performance
as Nt increases. Different from Fig. 2.8, WSRP and WSRH sum rate increases as Nt increases,
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thus reducing the rate loss as compared to WSRM. Meanwhile, iBD has a slower sum rate
increase as compared to results from Fig. 2.8.

Figure 2.9 – Sum rate performance for multicell case while varying number of BS antennas.
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2.9 Chapter conclusions

This chapter has considered the WSR maximization problem in multicell MIMO
BC and proposed three different algorithms, which are based on the alternating optimization
technique and are guaranteed to converge to a local WSR-optimum. For all algorithms, the
transmit beamforming matrices are obtained by investigating the KKT conditions of the problems
with the help of Lemma 1. In contrast to the WSR-WMMSE algorithm from [49, 50, 51,
52, 53], which solves the WSR maximization problem indirectly by solving the WMMSE
minimization problem, the proposed algorithms in this chapter provide a direct solution to
the WSR maximization problem. Using computer simulations, it was shown that the proposed
algorithms achieve comparable sum rate performance to the WSR-WMMSE algorithm, while
using fewer iterations. Further, it was shown that the network-wide WSR maximization can be
equivalently solved using an interference pricing approach if 1) each MS is equipped with a
single-antenna and 2) the users’ weights are included in the interference prices. Furthermore,
two different signaling schemes based on TDD mode were also proposed to facilitate the
implementation of the algorithms. Different from existing schemes, the proposed signaling
schemes reduce the signaling overhead and require no variables feedback between BSs.
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3 A NOVEL CELL RECONFIGURATION TECHNIQUE FOR DYNAMIC TDD
WIRELESS NETWORKS

3.1 Introduction

Recently, DTDD was introduced to cope with traffic fluctuations by allowing each
cell to adaptively reconfigure its communication direction based on the prevailing traffic demands
and interference levels [15]. By means of simulation [15] and performance analysis [16], it was
shown that the adaptive cell reconfiguration technique enhances the system spectral and energy
efficiency, especially in scenarios in which the offered traffic is time-varying and asymmetric
in terms of uplink/downlink direction. However, allowing neighboring cells to have different
transmission directions gives rise to BS-to-BS and MS-to-MS interference (see Fig. 1.4), which
can severely degrade the system performance [18].

Earlier works for DTDD systems either assumed that the UL/DL configurations are
given [51] or reconfigured each cell direction based only on the aggregate traffic in the cell
[19]. While this latter approach is fairly simple and inherently distributed, it cannot achieve
the potential performance, as it disregards the interference effects that are particularly severe
in DTDD systems. Recognizing this issue, cell reconfiguration schemes that account for the
users’ traffic demands and interference levels were recently proposed in [20, 21]. Specifically,
the authors in [20] formulated the cell reconfiguration problem as a non-cooperative game with
the objective of minimizing the total traffic flow delays. The authors in [21] used a cluster-based
approach [61] and proposed a cell reconfiguration algorithm, where the highly interfering cells
are first grouped into a cluster, in which each cell selects a direction that matches its own traffic
demands and receives the least interference. While the proposed algorithms in [20, 21] improve
the throughput as compared to the conventional STDD, they are scenario (traffic model) specific
and do not consider the users’ traffic characteristics. Specifically, users of modern wireless
networks typically demand a wide range of services, where each may have different traffic
characteristics, in terms of packet size and maximum packet delay [22]. Therefore, it is important
for the cell reconfiguration algorithm to support such different traffic characteristics.

3.2 Chapter contributions

This chapter proposes a novel cell reconfiguration formulation that takes into account
both prevailing traffic conditions and multicell BS-to-BS and UE-to-UE interference levels.
The proposed optimization problem is then solved optimally using the ILP algorithm [31].
However, due to its high computational complexity, a heuristic solution is then proposed based
on the PSO algorithm [32], which is shown to achieve near optimal performance with much
lower computational complexity. System level evaluations are carried out, from which the
effectiveness of our proposed scheme is evidenced in terms of the packet throughput as compared
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to conventional STDD and other reference schemes, that disregard the DTDD specific inter-cell
interference effects. Although the system simulator uses the gaming network traffic model from
[22], the proposed scheme is general in the sense that it is not traffic model dependent, and
therefore can easily be applied to any traffic model and/or deployment scenario. This feature
makes the proposed scheme especially suitable for current and future wireless networks.

3.3 Chapter organization

This chapter is organized as follows. Section 3.4 presents the system model and
problem formulation. In section 3.5, the proposed ILP approach is presented. The proposed
algorithm based on the PSO technique is presented in sections 3.6. Finally, section 3.7 presents
the numerical results and then section 3.8 concludes the chapter.

3.4 System Model and Problem Formulation

Consider a multicell multiuser system model comprising M cells, where each cell
has one BS that is communicating with/serving K MSs, where each MS is served by only one BS.
LetM def

= {1, . . ., M} and K def
= {K1, . . .,KM} denote the sets of all BSs and MSs, respectively,

where Kn denotes the set of MSs associated with the n-th BS. The BS of the n-th cell is denoted
as BSn and the k-th MS in each cell is denoted as MSk. In each TTI, it is assumed that each MSk

has predefined downlink and uplink weights denoted as αk,1 ≥ 1 and αk,2 ≥ 1 respectively, where
αk,1 > αk,2 means that MSk prefers the downlink to uplink direction, and vice-versa. Throughout
this chapter, subscript 1 is used for downlink and 2 for uplink. The link-weights can be optimized
in a way that reflects the user traffic main characteristics, such as the packet size and/or packet
maximum delay. A possible link-weights optimization criterion is shown later in Section 3.7.

Let βββ ∈ ZM×2 be a binary matrix of two columns, where each column represents
one communication direction, i.e., βββn,1 = 1 if cell n is at downlink and βββn,2 = 1 if cell n is at
uplink. It is assumed that each cell is allowed to be in one direction in each TTI. Therefore,
the summation of the two columns of βββ should be a vector of all ones, i.e., βββn,1+ βββn,2 = 1, ∀n.
Further, let γk,1 and γk,2 define the two functions of MSk, k ∈ Kn, which are given as

γk,1 =
αk,1pkgn,k
Ik,1+σ2

k

, (3.1)

γk,2 =
αk,2qkgn,k
Ik,2+σ2

k

, (3.2)

where pk (qk) is the downlink (uplink) transmit power of the MSk, σ2
k is the noise variance, Ik,1

and Ik,2 are the out-of-cell interference (OCI) power received at downlink and uplink, respectively,
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which are given as

Ik,1 =
∑

m∈M\n

βββm,1

∑
j∈Km

α−1
j,1 pjgm,k︸                           ︷︷                           ︸

DL inter-cell interference

+
∑

m∈M\n

βββm,2

∑
j∈Km

α−1
j,2qj g̃ j,k︸                         ︷︷                         ︸

MS to MS interference

, (3.3)

Ik,2 =
∑

m∈M\n

βββm,2

∑
j∈Km

α−1
j,2qjgn, j︸                          ︷︷                          ︸

UL inter-cell interference

+
∑

m∈M\n

βββm,1

∑
j∈Km

α−1
j,1 pj ĝm,n︸                           ︷︷                           ︸

BS to BS interference

, (3.4)

where gn,k is the channel gain from BSn to MSk, ĝn,m is the channel gain from BSn to BSm, and
g̃ j,k is the channel gain from MSj to MSk. Throughout this chapter, letters n and m are used to
index cells/BSs, while letters k, i and j are used to index users/MSs.

Note that in functions γk,1 and γk,2, the signal links are weighted directly, while
the interfering links are weighted inversely. This makes each user have a stronger signal link
and weaker interfering links in the preferred direction, which increases the probability of being
optimized in the preferred direction. Further, the functions γk,1 and γk,2 are SINR-like functions
if αk,d = 1, ∀k ∈ K, ∀d ∈ {1, 2}. Therefore, the rate-like function of MSk in direction d is given
as

rk,d = log(1+γk,d). (3.5)

From above, the proposed cell reconfiguration optimization problem can be written
as

P1 =


max
βββ∈ZM×2

∑
n∈M

∑
k∈Kn

∑
d∈{1,2}

βββn,drk,d

s.t.
∑

d∈{1,2}
βββn,d = 1, ∀n.

(3.6)

Problem P1 is a mixed integer linear programming (MILP) problem, which is non-
convex and very hard to solve even for small scale problems [62]. Here, similar to [31], we
consider the low-SINR regime. In this case, the rate maximization problem is simplified by
approximating the Shannon capacity with its first order Taylor series around zero SINR. That is,
one can approximate MSk, k ∈ Kn, objective function as βββn,drk,d ≈ βββn,dγk,d . Then, problem P1

can be written as

P2 =


max
βββ∈ZM×2

∑
n∈M

∑
k∈Kn

∑
d∈{1,2}

βββn,dγk,d

s.t.
∑

d∈{1,2}
βββn,d = 1, ∀n.

(3.7)

Although P2 is still an MILP problem, it can be transformed into an ILP from, as it
will be shown in the next section, at the expense of additional variables and constraints.

3.5 Centralized cell reconfiguration - method 1

This section proposes the first solution method to solve the optimization problem
P2 based on the ILP technique [31]. To begin with, let ψk,1 and ψk,2 be the two functions of
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MSk, k ∈ Kn, that are given as

ψk,1 =
βββn,1

Ik,1+σ2
k

, (3.8)

ψk,2 =
βββn,2

Ik,2+σ2
k

. (3.9)

Without loss of generality, we assume σ2
k = 1. Thus, ψk,d ≤ 1, ∀k ∈ K, ∀d ∈ {1, 2}.

Using the cross multiplication, we obtain

ψk,d Ik,d +ψk,dσ
2
k = βββn,d, d ∈ {1, 2}. (3.10)

Substituting Ik,d, ∀d ∈ {1, 2}, that are given by (3.3) and (3.4) into the latter equation,
we have the two following functions:∑

m∈M\n

ψk,1 βββm,1

∑
j∈Km

α−1
j,1 pjgm,k+

∑
m∈M\n

ψk,1 βββm,2

∑
j∈Km

α−1
j,2qj g̃ j,k+ψk,1σ

2
k = βββn,1, (3.11)∑

m∈M\n

ψk,2 βββm,2

∑
j∈Km

α−1
j,2qjgn, j+

∑
m∈M\n

ψk,2 βββm,1

∑
j∈Km

α−1
j,1 pj ĝm,n+ψk,2σ

2
k = βββn,2. (3.12)

Note that (3.11) and (3.12) are non-linear functions due to ψk,d βββm,d . However, we
can write both functions in a linear form with some added constraints as follows.

Let X ∈RMK×2×M×2
+ define a non-negative matrix such that Xk,d,m,u = ψk,d βββm,u. Note

that, βββm,d ∈ {0, 1} and
∑

d∈{1,2} βββm,d = 1, imply that if βββm,1 = 1, then βββm,2 = 0, Xk,d,m,1 = ψk,d ,
and Xk,d,m,2 = 0. However, if βββm,1 = 0, then βββm,2 = 1, Xk,d,m,1 = 0, and Xk,d,m,2 =ψk,d . Therefore,
the following constraints are included:

Xk,d,m,u ≥ 0, (3.13)

Xk,d,m,u ≥ βββm,u+ψk,d −1, (3.14)

∀m ∈ M, ∀k ∈ K, ∀d, u ∈ {1, 2}. Furthermore, note that for every Xk,d,m,u, if Xk,1,m,u = ψk,1,
then Xk,2,m,u = 0, and vice-versa. Therefore, the following constraints are included:

min{ψk,1, ψk,2} ≤
∑

d∈{1,2}
Xk,d,m,u, (3.15)∑

d∈{1,2}
Xk,d,m,u ≤ max{ψk,1, ψk,2}. (3.16)

The above constraints (3.15) and (3.16) are non-convex. However, they can be
replaced with the following inequality constraints after introducing the auxiliary variables



Chapter 3. A Novel Cell Reconfiguration Technique for Dynamic TDD Wireless Networks 56

z ∈ RMK
+ and w ∈ RMK

+ , where constraints (3.15) and (3.16) can be written respectively as:
wk ≥ ψk,1,

wk ≥ ψk,2,∑
d∈{1,2}

Xk,d,m,u ≥wk−(ψk,1+ψk,2).

(3.17)


zk ≤ ψk,1,

zk ≤ ψk,2,∑
d∈{1,2}

Xk,d,m,u ≤ (ψk,1+ψk,2)− zk,
(3.18)

Using the above constraints, the functions (3.11) and (3.12) can be written equiva-
lently in a linear form as∑

m∈M\n

Xk,1,m,1
∑
j∈Km

α−1
j,1 pjgm,k+

∑
m∈M\n

Xk,1,m,2
∑
j∈Km

α−1
j,2qj g̃ j,k+ψk,1σ

2
k = βββn,1. (3.19)∑

m∈M\n

Xk,2,m,1
∑
j∈Km

α−1
j,1 pj ĝm,n+

∑
m∈M\n

Xk,2,m,2
∑
j∈Km

α−1
j,2qjgn, j+ψk,2σ

2
k = βββn,2. (3.20)

Finally, the optimization problem P2 can be written in a linear form as

P3 =


max

ψψψ, βββ,X,z,w

∑
n∈M

∑
k∈Kn

(
ψk,1αk,1pkgn,k+ψk,2αk,2qkgn,k

)
s.t.

∑
d∈{1,2}

βββn,d = 1, ∀n, (3.13), (3.14), (3.17)− (3.20)
(3.21)

Problem P3 is an ILP problem, for which there exists a multitude of powerful
algorithms and solvers (such as CPLEX, GUROBI, and MOSEK), which deal with large-scale
problems (involving hundreds or even thousands of variables/constraints), in very fast time-
scales, and provide solutions with global optimality guarantees. Note that we did not use any
approximation to transform the non-linear problem P2 to a linear one, problem P3, but the
cost that we pay for this transformation is an increase in the number of variables. For an
arbitrary number of integer variables v , the number of linear programming subproblems to be
solved is at least (

√
2)v [63]. Meanwhile, the number of iterations needed to solve one linear

programming problem with c constraints and v variables is approximately 2(v + c), and each
iteration encompasses (v c− c) multiplications, (v c− c) summations, and (v − c) comparisons [63,
64]. Thus, the required total number of operations is (

√
2)v [2(v + c)(2v c+v −3c)]. As in problem

P3 there are v = 2M integer variables and c = 10MK +2M constraints, its complexity can be
approximated as O

(
(
√

2)2MM3K2
)
.

3.6 Centralized cell reconfiguration - method 2

This section proposes an alternative solution method to solve problem P2 based on
the PSO algorithm [32]. PSO is a meta-heuristic global optimization method, which belongs
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to the family of algorithms that are based on the concept of swarm intelligence [65]. It was
developed originally by Kennedy and Eberhart [32] in analogy to the behavior of bird flocks
and fish schools. Due to its metaheuristic nature, which allows obtaining solutions also for
non-differentiable problems which may be irregular, noisy or dynamically changing with time,
PSO algorithm has found a wide range of application in many domains of computer science and
applied mathematics, such as for the calculation of neural network weights [66, 67], time series
analysis [68], business optimization [69] and many others.

3.6.1 PSO algorithm review

The PSO algorithm process is as follows: Given an optimization (objective) function
f (x), our task is to optimize (maximize or minimize) this function by finding the variable vector x
that is in D-dimension, where D is the number of elements in x. At first, the algorithm generates
and initializes a swarm comprising S particles, where each particle i, i ∈ {1, . . ., S} has its own
position xi and direction vi vectors, both are in D-dimension as well. Here, each particle position
xi represents a possible solution to the optimization function f (x). Then, the algorithm searches
the optimal solution by iteratively evolving the particles. In each iteration, each particle i position,
xi, and direction, vi, vectors are updated considering two extreme values. The first one is the
personal best position x̄i, which corresponds to the personal best cost function fi(x̄i), and the
other one is the global best position x̄ found by the whole swarm, which corresponds to the
global best cost function f (x̄) [70]. The direction and position vectors are updated in the PSO
algorithm using the following equations [71]:

v(t+1)
i =wv(t)i + c1r(t)1 � (x̄i−x(t)i )+ c2r(t)2 � (x̄−x(t)i ), (3.22)

x(t+1)
i = x(t)i +v(t+1)

i , (3.23)

where � denotes the dot-product operator. In function (3.22), v(t)i and x(t)i are the direction and
position vectors for particle i in the t-th iteration, respectively. The direction vectors in function
(3.22) govern the way particles move across the search space and are made of the contribution of
three terms: the first one, defined the inertia or momentum, prevents the particle from drastically
changing direction by keeping track of the previous flow direction; the second term, called the
cognitive component, accounts for the tendency of particles to return to their own previously
found best positions; the last one, named the social component, identifies the propensity of a
particle to move towards the best position of the whole swarm. The parameter w is called the
inertia weight, whose role is to balance the global and local search. The parameters c1 and c2 are
called cognition learning and social learning rates, respectively, which are constants and they
respectively regulate the maximal step size towards the personal best particle and the global best
particle. In addition, r(t)1 and r(t)2 are random real number vectors drawn from uniform distribution
in [0,1] in each iteration. Accordingly, the trajectories drawn by the particles are semi-random in
nature, as they derive from the contribution of systematic attraction towards the personal and
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global best solutions and stochastic weighting of these two acceleration terms. To improve the
readability of this section, the defined variables above are summarized in Table 3.1.

Table 3.1 – PSO variables
Parameter Meaning
f (x) fitness function
S number of swarm particles
xi position vector of particle i
vi direction vector of particle i
x̄i personal best position vector of particle i
f (x̄i) personal best cost function of particle i
x̄ global best position vector of all particles
f (x̄) global best cost function of all particles
w, c1, c2 constant real-valued numbers
r1, r2 random vectors drawn uniformly from distribution [0,1]

Source: Created by author.

However, for some optimization problems, the optimization vector x has only integer
values in [0, 1]. For that, Kennedy and Eberhart proposed a reworking of the PSO algorithm in
1997 called binary particle swarm optimization (BPSO) [72]. In the BPSO algorithm, function
(3.22) remains the same, except that all position vectors are integers in [0, 1]. On the other hand,
the position vectors are updated using the following rule:

i f ϑ
(t+1)
i[j] < Sig(v(t+1)

i[j] )

then x(t+1)
i[j] = 1

else x(t+1)
i[j] = 0,

(3.24)

where v(t+1)
i[j] and x(t+1)

i[j] represent the j-th element of particle i direction and position vectors,

respectively, ϑ(t+1)
i[j] is a quasi-random number selected from a uniform distribution in [0,1], and

Sig(v(t+1)
i[j] ) is a Sigmoid limiting transformation function defined as

Sig(v(t+1)
i[j] ) =

1
1+ exp(−v(t+1)

i[j] )
. (3.25)

A schematic description of the basic PSO algorithm is summarized in Algorithm 4.
The iterative process described in Algorithm 4 is repeated until a stopping criterion is met. This
could be, e.g., a pre-specified total number of iterations, a maximum number of iterations since
the last update of global best or a predefined target value of the fitness. Here it must be stressed
that, in PSO, as in all stochastic evolutionary algorithms, the term convergence may refer to
two different scenarios: convergence as the limit of a series of solution (where, for instance, all
or most of the particles, reach the same point in the search space, which may not necessarily
be the optimum), indicating the algorithm stability, and convergence to a local (or the global)
optimum of the problem, which may be achieved by one or more particles (through personal
bests or global best), irrespective of the overall behavior of the swarm.
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Algorithm 4: Classical PSO algorithm
1: For each of the S particles:
2: a) Initialize the direction and position vectors v(0)i , x

(0)
i , ∀i ∈ {1, . . ., S}.

3: b) Initialize the particle’s best position to its initial position x̄i = x(0)i .
4: c) Calculate the fitness of each particle f (x(0)j ).
5: d) Initialize the global best as x̄ = x(0)j , where f (x(0)j ) ≥ f (x(0)i ), ∀i , j.
6: Repeat the following steps until a stopping criterion is met:
7: a) Update particle direction using (3.22).
8: b) Update particle position using (3.23)/(3.24) for binary/non-binary variables.
9: c) Evaluate the fitness of particle f (x(t+1)

i ).
10: d) If f (x(t+1)

i ) ≥ f (x̄i), update personal best as x̄i = x(t+1)
i .

11: e) If f (x(t+1)
i ) ≥ f (x̄), update global best as x̄ = x(t+1)

i .
12: At end of the iterative process, the best solution is given by x̄.

In the following we discus how to use Algorithm 4 to solve our optimization problem
that is given by P2. Note that we can consider the un-relaxed (original) optimization problem
given by P1 to obtain the cells’ directions (thus giving the following proposed solution one
more advantage). However, to keep consistency with the first proposed solution, ILP method,
problem P2 is considered.

3.6.2 Fitness function and coding rule

The fitness function is used as the performance evaluation of particles in the swarm.
The fitness function is defined to be equal to the objective function of problem P2, i.e.,

f (β) =
∑
n∈M

∑
k∈Kn

∑
d∈{1,2}

βββn,dγk,d, (3.26)

where the main objective is to find β such that f (β) is maximized. In Algorithm 4, the dimension
of particles’ position and direction vectors are set in the M-dimension, i.e., xi ∈ Z

M and vi ∈

RM, ∀i ∈ {1, . . ., S}. However, as β in the fitness function (3.26) is a matrix, i.e., β ∈ ZM×2, the
following transformation rule is considered to achieve x ∈ ZM→ β ∈ ZM×2, where

i f xi[j] = 1

then βi,1 = 1 and βi,2 = 0

else βi,1 = 0 and βi,2 = 1.

(3.27)

3.6.3 Position and direction initialization

As shown in Algorithm 4, being an iterative algorithm, PSO requires an initial
estimate of the particles’ positions and directions. The choice of the way these two entities are
initialized plays a determinant role in defining what is the probability that particles travel outside
the boundaries of the search space and, as a consequence, in affecting the convergence properties
of the solution. In particular, there is a general agreement in the literature – and it is also the
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author’s opinion – that initializing the particles’ positions so that they cover as uniformly as
possible the search space is the best option [71].

In the simulator, the particles positions xi, ∀i ∈ {1, . . ., S} are initialized as follows.
Let C denote the set containing the 2M possible solution vectors, i.e., the number of possible
solutions using exhaustive search method. For example, if M = 2, then the set C is defined as

C =

{[
1
1

] [
1
0

] [
0
1

] [
0
0

]}
, (3.28)

where each column vector of C represents a possible solution. If the number of particles S ≤ 2M ,
which is the general case, the position vectors xi, ∀i ∈ {1, . . ., S}, are initialized with subset of
C, while making sure that no two particles have the same initial vector/solution. Otherwise, if
S ≥ 2M , one or more particles can share the same initial vector/solution. On the other hand, the
direction vectors vi, ∀i ∈ {1, . . ., S}, are initialized randomly from the uniform distribution [0,1].

3.6.4 Choice of the acceleration constant parameters

As evident from function (3.22), the values of the acceleration constantsw, c1 and c2

govern the extent to which the particles move towards the individual and global best particle,
modulating the relative contributions of the social and cognitive terms. Different authors (see,
e.g. [65] or [73]) have investigated the effect of these coefficients on the particles’ trajectories
and on the convergence properties of the algorithm, showing that as the acceleration constants
are increased, the frequency of oscillation of the particle around the optimum increases while
smaller values result in sinusoidal patterns. In the simulator, the constants are chosen as [74]:

w = ξ,

c1 = ξφ1,

c2 = ξφ2,

ξ = 2κ
|2−φ−
√
φ2−4φ|

, where φ = φ1+φ2 and κ is a constant number.

(3.29)

It was shown in [74] that if we set κ = 1 and φ1 = φ2 = 2.05, the PSO algorithm is
guaranteed to converge, but not necessarily to the global optimal.

3.6.5 Complexity analysis

Algorithm 4 complexity can be measured by the number of mathematical operations
required by each particle in each iteration. Note that the computational complexity of Algorithm
4 is dominated by the calculation of the fitness function (3.26). To calculate (3.26), each particle
requires 2MK(6K(M−1)+2) multiplications, 2MK(2K(M−1)) summations, and 2MK divisions,
all of scalar numbers. Thus, the complexity of Algorithm 4 is given as

2MKStmax[(6K(M −1)+2)+ (2K(M −1))+1] ≈ O(ST(M2K2)), (3.30)
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where tmax denotes the total number of iterations performed by Algorithm 4. Note that, as
compared to the first method, which has complexity of O

(
(
√

2)2MM3K2
)
, the second method

using the PSO Algorithm 4 has much lower complexity, especially with small numbers of
particles S and iterations tmax . However, as Algorithm 4 may not achieve the optimal solution
as in the first method, it can be seen as a trade-off solution between the complexity and system
performance.

3.7 Numerical results

This section evaluates the proposed cell reconfiguration scheme using a system-level
simulator. In particular, the time-correlated one-ring channel model from [75] is used, which has
frequency-nonselective Rayleigh distribution. It is assumed that each BS has Nt = 2 antennas
and each MS has a single antenna. The channel gains at each TTI are given as gn,k = ρn,k‖hn,k‖

2,
ĝn,m = ρn,m‖Hn,m‖

2
F , and g̃ j,k = ρ j,k |hj,k |

2, where ρn,k, ρn,m and ρ j,k are path-loss parameters
implemented as proposed by the 3GPP TR [15, Table 6.3-1,p.59], which are shown in Table
3.2. Accordingly, the channel gains follow exponential distribution. Each cell has a radius of
50 meters, while users are uniformly distributed within the serving area, and the minimum
distance between a MS and its serving BS is 10 meters. In the simulation, the channel gains are
normalized with noise power σ2

k to always satisfy ψkd < 1 in (3.8).

Table 3.2 – Pathloss model
Communication Link Pathloss Model
BS to BS 98.4+20log10(dn,m), where dn,m in kilo meters
BS to MS 103.8+20.9log10(dn,k), where dn,k in kilo meters
MS to MS 55.78+40log10(d j,k), where d j,k in meters

Source: Created by author.

The traffic model follows the gaming-traffic model from [22], where the downlink
and uplink packet sizes and the downlink packet arrival values are generated as x = ba −
b ln(− ln y)c, in which b·c represents the floor operator, y is drawn uniformly from the range
[0, 1], while a and b are given in Table 3.3. In addition, we add an extra 2 Bytes to each generated
packet to account for the header size.

Table 3.3 – Gaming network traffic parameters
Parameter Downlink Uplink
Initial packet 1st TTI 1st TTI
Packet size a = 120 Bytes, b = 36 a = 55 Bytes, b = 5.7
Packet arrival a = 55 ms, b = 6 every 40 ms

Source: Created by author.

Let Υk,1 and Υk,2 denote the user k downlink and uplink buffer sizes. At the t-th TTI,
the users’ weights αk,1 and αk,2 are updated as

αk,d = 1+
Υk,d

Υk
, (3.31)
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where Υk = Υk,1+Υk,2, which assigns larger weight for the direction that has larger buffer size
and the addition of 1 is used to guarantee that we always have αkd ≥ 1, as we have assumed
above. At the end of the t-th TTI, assuming the user k has been scheduled to transmit on the
d direction, the corresponding buffer size is updated as Υk,d = Υk,d − rtk,d , where rtk,d is the
transmission rate of user k at the t-th TTI, that is determined by the modulation order and code
rate as given in [76, Table I]. Further, we assume that the downlink and uplink transmit power
pk = qk = 23 dBm, noise variance σ2

k = −100 dBm, and system bandwidth 180 kHz. We use PT
as the performance metric, which is defined as the ratio of successfully transmitted bits over the
required transmission time.

For comparison purposes, simulation results for the following algorithms are also
shown:

1. STDD algorithm, where all cells transmit on the same direction and switch the
communication direction every tswitch TTIs. In our simulator, we assume tswitch = 10
TTIs.

2. Distributed cell reconfiguration algorithm, where it simply neglect the OCI parame-
ters in problem P3, thus decoupling the optimization problem between the M cells.
Therefore, the cell reconfiguration problem of the n-th cell can be written as

P4 =


max
βββn

∑
k∈Kn

(
βββn,1αk,1pkgn,k+ βββn,2αk,2qkgn,k

)
s.t.

∑
d∈{1,2}

βββn,d = 1,
(3.32)

for which the optimal solution is given as

βββn = un
( ∑
k∈Kn

αk,1pkgn,k,
∑
k∈Kn

αk,2qkgn,k
)
, (3.33)

where un(A, B) is a function defined as

un(A, B) =

βn,1 = 1, βn,2 = 0, if A ≥ B,

βn,1 = 0, βn,2 = 1, if A < B.
(3.34)

3. Traffic Only cell reconfiguration algorithm, where the n-th cell chooses its communi-
cation direction as

βββn = un
( ∑
k∈Kn

Υk,1,
∑
k∈Kn

Υk,2

)
. (3.35)

Example 1: Users’ UL and DL packets throughput

Fig. 3.1 shows the cumulative distribution function (CDF) plots of users’ downlink
and uplink PT, while assuming M = 5, K = 5, and S = 3. Fig. 3.1 indicates that the DTDD cell
reconfiguration methods have higher spectral efficiency than the STDD method, whereas the
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proposed DTDD cell reconfiguration methods (centralized and distributed) have higher spectral
efficiency than the baseline Traffic Only cell reconfiguration method. More specifically, the
proposed DTDD Centralized-ILP (distributed) cell reconfiguration method achieves 4.2 (2.8)
times, as compared to the STDD method, and 1.6 (1.1) times, as compared to the baseline
Traffic Only method. The underlying reason for this improved performance is that the proposed
method jointly considers the users’ traffic demands and the interference levels when choosing
the cells’ directions. In contrast, the Traffic Only method considers only the traffic demands and
neglects the interference effects. Note that the centralized method clearly has better performance
than the distributed method as it considers the OCI, while the distributed method considers
only the intra-cell interference. Furthermore, we can see that the heuristic centralized method
based on the PSO algorithm, Proposed DTDD-Centralized-PSO, has very close performance,
around 98%, to that achieved by the centralized method based on the ILP technique, Proposed
DTDD-Centralized-ILP.

Figure 3.1 – CDF plots of users’ packets throughput.
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Example 2: Users’ mean packets throughput

Figs. 3.2 and 3.3 show the users’ mean PT while varying the number of cells M
and the number of users K, respectively, assuming S = 3. In Fig. 3.2, it is assumed that K = 5,
while in Fig. 3.3, it is assumed that M = 5. From Figs. 3.2 and 3.3, we can see that the proposed
cell-reconfiguration algorithm (centralized and distributed) achieves higher performance than the
reference algorithms, Traffic Only and STDD. Note that the proposed distributed and centralized
methods are equal whenever M = 1, while the proposed distributed and Traffic Only methods are
equal whenever K = 1. The Proposed DTDD-Centralized-PSO has negligible performance loss,
as compared to the Proposed DTDD-Centralized-ILP, with all simulation scenarios. Further, all
algorithms have degraded performance as M and/or K increases. However, the proposed scheme
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maintains its gain over the reference algorithms.

Figure 3.2 – Users’ mean PT while varying the number of cells.
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Figure 3.3 – Users’ mean PT while varying the number of local users.
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Example 3: Impact of swarm population on system performance

Next, the impact of number of swarm particles S on system performance is investi-
gated. Fig. 3.4 shows the users’ mean PT while varying the number of swarm particles S, while
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in Fig. 3.5, we show the average convergence behavior of the global best fitness function f̄ (β).
For both Figs. 3.4 and 3.5, we assume M = 5 and K = 5. From Fig. 3.4, we can see that increasing
the number of swarm particles S, the performance of Proposed DTDD-Centralized-PSO gets
closer to that achieved by Proposed DTDD-Centralized-ILP. Another important note is that
increasing number of particles S, the PSO algorithm achieves a faster convergence rate and
higher performance, as can be observed in Fig. 3.5. Here, increasing the number of particles S
increases the diversity of the swarm and its exploration ability. However, increasing S will lead
to more computational complexity. Fortunately, we can see from Fig. 3.4 that even when S = 2,
the Proposed DTDD-Centralized-PSO achieves approximately 98% of the performance achieved
by the Proposed DTDD-Centralized-ILP.

Figure 3.4 – Users’ mean PT while varying the number of swarm particles.
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Figure 3.5 – Average convergence behavior of the global best fitness function.
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Example 4: Proposed PSO algorithm convergence

Finally, in Fig. 3.6, we show the convergence behavior of the personal best fitness
function f̄i(β), i ∈ {1, . . ., S} with one channel realization, assuming M = 5, K = 5, and S ∈
{2, 3, 4}. For this particular channel realization, the PSO algorithm converges to the same
solution vector with all considered scenarios. However, we can see that when S = 2, left figure,
the best solution vector is achieved by Particle 2 after 15 iterations. Note that, in this case,
Particle 1 also converged to the same solution vector in the next iteration. This behavior holds
true as well when S = 3 and S = 4, although with a lower number of iterations.

Nevertheless, we have noticed that for some channel realizations, the PSO algorithm
has faster convergence rate and higher performance with smaller S than with larger S. The reason
behind this is that it might happen that with smaller S, one or more particles is actually initialized
with the optimal solution vector. Thus, the algorithm would have the best solution from the
very first iteration. However, as S increases, the probability that at least one of the particles is
initialized with the optimal solution vector increases as well. Therefore, on average, with larger
S, the PSO algorithm has faster convergence rate and better performance than with smaller S.
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Figure 3.6 – Convergence behavior of the personal best fitness function of swarm particles.
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3.8 Chapter conclusions

This chapter proposed a novel low-complexity cell reconfiguration scheme for DTDD
systems that jointly considers the interference-levels and the user traffic characteristics when
determining the cells’ directions to maximize the system throughput. The proposed optimization
problem is solved optimally using the ILP algorithm. However, due to its high computational
complexity, a heuristic solution is proposed based on the PSO algorithm, which is shown to
achieve near optimal performance with much lower computational complexity. In particular, we
have shown using a system-level evaluations that when M = 5 and K = 5, the proposed centralized
(distributed) scheme improves the users’ throughput by 4.2 (2.8) times, as compared to the
conventional static TDD, and by 1.6 (1.1) times, as compared to Traffic Only cell reconfiguration
schemes. The proposed scheme can be easily applied to a broad range of traffic models and/or
deployment scenarios, which makes it suitable for current and future wireless networks.
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4 AN ADMM APPROACH FOR DISTRIBUTED ROBUST COORDINATED BEAM-
FORMING IN DYNAMIC TDD WIRELESS NETWORKS

4.1 Introduction

Recently, 3GPP LTE has introduced small cell deployment [5] as one of the key
techniques to meet the exponential growth of traffic demands. Small cells using low-power nodes
are meant to be deployed in hot-spots, where the number of users vary strongly with time and
between adjacent cells. As a result, small cells are expected to have a burst-like traffic with
strong fluctuation between uplink and downlink traffics [17]. For that, TDD mode gains more
importance for small cell deployments than FDD mode [13], since it can be employed to provide
unbalanced uplink-downlink data traffic. However, TDD in LTE is assumed to select a common
TDD pattern for the whole network, which cannot be rapidly modified to match the instantaneous
traffic demand [14]. As a solution, DTDD technique has been recently introduced [15], where
each BS is allowed to dynamically reconfigure its TDD pattern based on its instantaneous
traffic demand and/or interference status. In [15, 77], DTDD system performance was evaluated
with different performance metrics and found that the DTDD system provides a significant
improvement in throughput as compared to the static TDD.

However, cross-link interference arises in DTDD, as illustrated in Fig. 4.1, among
other impairments [17], and requires a proper management to realize the DTDD advantages.
Earlier studies [21, 78] have often considered interference avoidance schemes. In [21], a cell-
clustering scheme was proposed by grouping a number of cells into a cluster according to
some metric(s), where cells in the same cluster adopt the same TDD configuration. Authors in
[78] proposed dynamic time slot allocation for an adaptive and flexible interference avoidance
scheme. Adaptive power control techniques have been used as well, such as in [79], to reduce
and compensate the cross-link interference.

In this line, MIMO techniques have been used as well, such as in [80], to spatially
suppress the interference. A notable scheme in this area is the CBF technique [81], which has
drawn significant attention recently due to its ability to handle the interference problem using
only CSI, as compared to other interference management schemes that require data sharing
as well, such as joint transmission [25]. In CBF, each BS communicates with its own users,
while minimizing the interference leakage to users in other cells. It can be implemented in a
centralized manner, where global CSI is made available to a central unit, or in a distributed
manner, where each BS uses only local CSI. In the latter case, the coordination can be achieved
by means of limited backhaul signaling. However, in practical scenarios, acquiring global CSI
would drastically increase the backhaul signaling, thus limiting the centralized approach practical
applications. Moreover, the BSs can never have perfect CSI, due to, for example, estimation
errors and limited feedback channels [26]. Therefore, robust and distributed CBF solutions are
much desired.
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Figure 4.1 – Cross-link interference in DTDD wireless networks.
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Robust optimization is usually addressed by either a probabilistic or non-probabilistic
approach [82]. With the probabilistic approach, the CSI errors are often modeled as Gaussian
random variables, where the robustness can then be achieved in a statistical sense [83]. With the
non-probabilistic approach, the CSI errors are often modeled such that they fall inside a bounded
uncertainty set. The system is then optimized to operate under the CSI worst-case condition [29].
On the other hand, distributed implementation can be achieved by a variety of techniques, for
instance, by utilizing the downlink-uplink duality [24], dual and primal decomposition techniques
[84], or ADMM technique [30]. In the literature, a wide range of CBF algorithms were recently
proposed using different assumptions. For example, centralized and robust CBF algorithms
based on worst-case criterion were proposed in [34] for the sum power minimization problem
and in [85] for the weighted sum rate maximization problem. Distributed and non-robust CBF
algorithms were proposed in [9, 24] for sum-power minimization by utilizing the downlink-uplink
duality and in [41] by using the ADMM technique. A distributed and robust CBF algorithm
based on worst-case criterion was proposed in [27] by using the ADMM technique for the sum
power minimization problem. However, all these algorithms consider static TDD systems. In
DTDD systems, the interference situations are more complicated since the uplink and downlink
users coexist at the same time among neighboring cells. Therefore, the interference management
becomes more challenging and requires a special consideration from the optimization view point.

For instance, a decentralized and non-robust algorithm was proposed in [51] for the
weighted sum rate maximization problem in DTDD systems. The problem was formulated similar
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to the one proposed in [45] for the static TDD systems, by treating the cross-link interference
as an inter-cell interference. Although the algorithm is able to achieve a local-optimal solution,
the uplink performance can be highly degraded especially if the downlink and uplink transmit
powers highly differ, which is the case in general. In this case, the algorithm naturally disregards
the uplink connections (cells). A possible solution is to formulate the optimization problem in
DTDD systems as it is generally formulated in the CR networks [28], i.e., by assuming that
the uplink cells are the primary cells and the downlink cells are the secondary cells and then
include a threshold on the maximum cross-link interference power from the downlink to uplink
cells. In this case, not only the downlink performance can be guaranteed, but also the uplink
performance. Considering CR networks, a centralized and robust algorithm based on worst-cast
criterion was proposed in [28] for the max-min SINR problem and in [86] for the sum MSE
minimization problem. In [35], a distributed and non-robust algorithm was proposed for sum
power minimization based on the primal decomposition.

4.2 Chapter contributions

Motivated by the above algorithms, this chapter proposes a novel distributed and
robust CBF algorithm using relaxed SDP and ADMM techniques for DTDD wireless networks.
The design objective is to minimize the total transmit power of downlink BSs, while satisfying
the performance targets of downlink and uplink MSs. More precisely, it is assumed that each
downlink MS has a predefined minimum SINR target and each uplink MS has a predefined
maximum interference threshold that can it tolerate. At first, a centralized algorithm using relaxed
SDP technique is proposed considering the perfect CSI case. To obtain the beamforming solution
in a distributed way, a distributed algorithm is then proposed using relaxed SDP and ADMM
techniques. Afterwards, both solutions (centralized and distributed) are extended to account for
the CSI errors based on worst-case optimization approach [29], where each infinitely nonconvex
worst-case constraint is transformed to only one linear matrix inequality (LMI) constraint using
the S-Lemma [33]. Using computer simulations, it is shown that the proposed algorithm has a
better energy-efficiency than the centralized robust algorithm from [34] and a faster convergence
rate than the primal decomposition technique used in [35].

4.3 Chapter organization

This chapter is organized as follows. Section 4.4 presents the system model, while
section 4.5 presents the problem formulation. In sections 4.6 and 4.7, the proposed centralized
and distributed algorithms assuming perfect CSI are presented, respectively. Then, sections 4.8
and 4.9 extend both distributed and centralized algorithms for robust optimization consider-
ing imperfect CSI, respectively. Finally, section 4.10 presents the numerical results and then
section 4.11 concludes the chapter.
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4.4 System model

Consider a DTDD system model comprising M cells, where in each cell there is
one BS equipped with N antennas and K local MSs, each equipped with a single-antenna. The
n-th BS is denoted as BSn and the k-th MS in each cell is denoted as MSk. LetM def

= {1, . . ., M}
and K def

= {K1, . . .,KM} denote the sets of all BSs and MSs, respectively, where Kn denotes the
set of MSs associated with BSn. At each time instant, it is assumed that there is a set of BSs
Mdl ⊂M in the downlink direction and a set of BSsMul ⊂M in the uplink direction, where
Mdl⋂Mul = {∅} andMdl ∪Mul =M. Similarly, it is assumed that Kdl ⊂ K denotes the set
of MSs in the downlink direction and Kul ⊂ K denotes the set of MSs in the uplink direction,
where Kdl⋂Kul = {∅} and Kdl ∪Kul = K. The received signal at MSk, k ∈ Kn, n ∈ Mdl (at
downlink), is given as

yk =
∑

m∈Mdl

∑
j∈Km

hH
m,ktjsj+

∑
m∈Mul

∑
j∈Km

√
qjhj,ksj+nk, (4.1)

where hm,k ∈ C
N denotes the channel vector from BSm to MSk, hj,k ∈ C denotes the channel from

MSj to MSk, tk ∈ CN denotes the MSk transmit beamforming vector, qj denotes the MSj uplink
transmit power, sk ∈ C denotes the MSk data symbol, where E(|sk |2) = 1, and nk ∈ C denotes the
additive white Gaussian noise with zero mean and variance σ2

k. On the other hand, the received
signal at BSn after combining relative to MSk, k ∈ Kn, n ∈Mul (at uplink), is given as

yk = rH
k

( ∑
m∈Mul

∑
j∈Km

hn, j
√
qjsj+

∑
m∈Mdl

∑
j∈Km

Hm,ntjsj+nk

)
, (4.2)

where rk ∈ CN denotes the MSk unit-norm uplink receive beamforming vector, Hm,n ∈ C
N×N

denotes the channel matrix from BSm to BSn, and nk ∈ C
N denotes the additive white Gaussian

noise with zero mean and variance σ2
k.

4.5 Problem formulation

This chapter considers minimizing the sum power of downlink BSs, while satisfying
(i) the downlink MSs minimum SINR targets γk, ∀k ∈ Kdl, and (ii) the maximum BS to BS
interference power thresholds ωk, ∀k ∈ Kul, tolerated by the uplink MSs. Mathematically, the
optimization problem can be written as

PA =


min
{rk}, {tk}

∑
k∈Kdl

‖tk‖2

s.t. A1: Γk ≥ γk, ∀k ∈ Kdl,

A2: $ j ≤ ω j, ∀j ∈ Kul,

(4.3)
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where Γk denotes the SINR of MSk, k ∈ Kn, n ∈Mdl, which is given as

Γk =
|hH

n,ktk |
2∑

i∈Kn\k

|hH
n,kti |

2

︸          ︷︷          ︸
intra-cell interference

+
∑

m∈Mdl\n

∑
j∈Km

|hH
m,ktj |

2

︸                    ︷︷                    ︸
inter-cell interference

+ϕk

, (4.4)

in which ϕk denotes the MS to MS interference plus noise power that is given as

ϕk =
∑
j∈Kul

|hj,k |
2qj+σ2

k . (4.5)

Furthermore, $ j denotes the BS to BS interference power that affects the MSj,
j ∈ Km, m ∈Mul, transmission, for which the following two scenarios are considered:

• Scenario 1: In this scenario, denoted hereafter as S1, it is assumed that each BSn, n ∈
Mdl, knows the equivalent-channel vectors relative to MSj, ∀j ∈ Km, ∀m ∈Mul, (see
Fig. 4.2) which are given as

gn, j =
(
rH
j Hn,m

)H
, ∀j ∈ Km, ∀m ∈Mul . (4.6)

Figure 4.2 – Scenario 1.
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Thus, the BS to BS interference power relative to MSj, j ∈ Km, m ∈Mul, is given as

$S1
j =

∑
n∈Mdl

∑
k∈Kn

gH
n, jtkt

H
k gn, j. (4.7)

For this scenario, problem PA requires a joint optimization over transmit and receive
beamforming vectors, which is non-convex and NP-hard problem [35]. Alterna-
tively, one could use an iterative approach, i.e., for given transmit beamforming
vectors, optimize the receive beamforming vectors, and vice-versa. While the trans-
mit beamforming vectors for solving problem PA are, in general, not known, the
optimal receive beamforming vectors are known to be those maximizing the indi-
vidual SINRs, which have a closed form-solution given by the minimum variance
distortionless response (MVDR) beamforming approach [87]. More precisely, for
any given and fixed transmit beamforming vectors, the receive beamforming vector
of MSk, k ∈ Kn, n ∈Mul, can be updated as [87]

rk =
Ω−1

k hn,kqk
‖Ω−1

k hn,kqk‖
, (4.8)



Chapter 4. An ADMM Approach for Distributed Robust Coordinated Beamforming in Dynamic TDD Wireless
Networks 73

where Ωk represents the interference plus noise covariance matrix, which is given as

Ωk =
∑

j∈Kul\k

hn, jhH
n, jqj+

∑
m∈Mdl

∑
j∈Km

Hm,ntjtH
j HH

m,n+σ
2
kI. (4.9)

Before leaving this section, it should be noted that for fixed receive beamforming
vectors, problem PA is similar to the optimization problem considered recently in
[35]. The distributed algorithm in [35] uses the primal decomposition technique,
where the problem is decoupled by introducing auxiliary variables that are updated
later using the sub-gradient technique. However, the update of the variables problem
is unbounded, which often leads to infeasible solutions. Our preliminarily tests show
that this undesired situation often happens, especially with large scale problems. To
resolve this issue and further extend it for robust beamforming, this chapter addresses
problem PA and proposes a robust and distributed algorithm based on SDP and
ADMM techniques.

• Scenario 2: In this scenario, denoted hereafter as S2, it is assumed that each downlink
BSn, n ∈Mdl, knows only the BS to BS channel matrices Hn,m, ∀m ∈Mul, but not
the receive beamforming vectors rj, ∀j ∈ Km, ∀m ∈ Mul (see Fig. 4.3). Therefore,
for this scenario, the BS to BS interference power received at uplink BSm, m ∈Mul,
is given as

$S2
m =

∑
n∈Mdl

∑
k∈Kn

tr
[
Hn,mtktH

k HH
n,m

]
. (4.10)

Figure 4.3 – Scenario 2.

BSn, n ∈ Mdl BSm,m ∈ Mul

tk,∀k ∈ Kn
Hn,m

Source: Created by author.

Note that the MSs of uplink cell m, i.e., MSi, ∀i ∈ Kul
m , will experiences the same BS

to BS interference power received at BSm before combining. Therefore, to satisfy all
BS to BS interference thresholds ωi, ∀i ∈ Km, the downlink BSs should consider the
minimum one as ωm = argmini{ωi, ∀i ∈ Km}. Thus, for this scenario, we replace
the constraints A2 of problem PA by

$S2
m ≤ ωm, ∀m ∈Mul . (4.11)

Note that for some values of ωm, the BS to BS constraints A2 might be inactive. In
this case, removing constraints A2 would not change the obtained solutions (transmit beamform-
ing vectors) and thus both scenarios (S1 and S2) become equivalent. In the rest of this chapter, it
is assumed that the BS to BS constraints A2 are active for all or some of the uplink MSs.
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4.6 Perfect CSI case: centralized algorithm

This section presents a centralized algorithm to solve problem PA that is based on
the relaxed-SDP technique (i.e., by dropping the rank-one constraints) [29]. At first, problem
PA can be readily written in a relaxed-SDP form as

PB =



min
{Tk,∀k∈Kdl}

∑
n∈Mdl

tr[T̃n]

s.t. B1: hH
n,kDkhn,k ≥ Jk+ϕk, ∀k ∈ Kdl,

B2:


∑

n∈Mdl

gH
n, iT̃ngn, i ≤ ωi, ∀i ∈ Kul, for S1∑

n∈Mdl

tr
[
Hn,mT̃nHH

n,m
]
≤ ωm, ∀m ∈Mul, for S2

(4.12)

where Tk, T̃m, Dk and Jk matrices are defined as

Tk = tktH
k � 0,

T̃m =
∑
i∈Km

Ti � 0,

Dk = 1
γk

Tk−
∑

j,k∈Kn

Tj � 0,

Jk =
∑

m∈Mdl\n

hH
m,kT̃mhm,k.

(4.13)

Problem PB is a convex relaxed SDP problem [29], which can be efficiently solved
using the interior point methods [82]. Several convex solvers are freely available, e.g. Se-
DuMi [88] or CVX [89]. The centralized algorithm for solving problem PB, with either scenario,
for the transmit beamforming vectors is summarized in Algorithm 5. We refer to this algorithm
as S1-Cent-CSI for Scenario 1 and as S2-Cent-CSI for Scenario 2.

Algorithm 5: Centralized CBF Algorithm.
1: Initialization: rk(0), ∀k ∈ Kul.
2: Solve problem PB for {Tk(r)}, ∀k ∈ Kdl.
3: Update rk(r+1), ∀k ∈ Kul, using (4.8).
4: For S1, set r = r+1 and go back to step (2). For S2, break.

The optimal solution of S1-Cent-CSI, in each iteration, or S2-Cent-CSI, is said to
be achieved if each of the obtained matrices Tk, ∀k ∈ Kdl, has rank equal to one [29]. From the
optimization theory view point, this result means that the strong duality holds for problem PA, as
it has been shown in [35]. Therefore, the ostensible relaxation of problem PB is not a relaxation
and it is exactly equivalent to the original problem PA. In this case, the optimal rank-one
solutions can be found using the eigenvalue decomposition [90]. In particular, the rank-one
solution of Tk is given as

tk =
√
λmax
k t̂k, (4.14)
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where λmax
k is the maximum eigenvalue of Tk (in this case it is the only non-zero one according

to Sylvester’s inequality) and t̂k is the eigenvector associated with λmax
k . However, there may be

situations where the solution is not unique [82]. In this case, there might be one or more of the
obtained matrices Tk, ∀k ∈ Kdl, to have a rank greater than one. Although this situation almost
never appears in practice [82], the optimal rank-one solutions can still be extracted in polynomial
time according to Theorem 3, proved in [91].

Theorem 3 Suppose that X is a Hermitian positive semidefinite matrix of rank R, and C1 and

C2 are two given Hermitian matrices. Then there is a rank-one decomposition of X, namely,

X =
∑R

r=1 xrxH
r such that xH

r C1xr = Tr[C1X]/R and xH
r C2xr = Tr[C2X]/R for all r = 1, . . ., R.

Moreover, such a decomposition can be found in polynomial time.

Note that, for each set of receive beamforming vectors, S1-Cent-CSI would obtain
the optimal transmit beamforming vectors, if the problem is feasible. However, as the receive
beamforming vectors are updated in each iteration, the global optimal solution of problem PB

with S1 can not be guaranteed.
In the rest of this chapter, our effort will be spent on solving problem PA for down-

link transmit beamforming vectors in a distributed way assuming the uplink receive beamforming
vectors are given by (4.8).

4.7 Perfect CSI case: distributed algorithm

In the previous section, it was assumed that there exist a central-unit that has access
to the global CSI to jointly optimize the downlink transmit beamforming vectors. This section
relaxes this assumption and assumes that each downlink BS has access only to the local CSI (i.e.,
each BSn, ∀n ∈ Mdl, knows hn, i, ∀i ∈ Kdl and gn, i, ∀i ∈ Kul for S1 or Hn,m, ∀m ∈ Mul for S2)
and calculates its transmit beamforming vectors with limited signaling with other downlink BSs.
The main idea is to decouple the optimization problem between the downlink cells, i.e., downlink
BSs. In particular, each downlink BS is coupled with (i) each MS in the other downlink cells by
inter-cell interference and (ii) each MS in the uplink cells by BS to BS interference power. Thus,
to decouple the optimization problem, each downlink BS will first assume that those coupling
terms are fixed, as auxiliary variables, and optimize its MSs transmit beamforming accordingly.
After that, the auxiliary variables are gradually updated. These steps are detailed in the next
sections.

4.7.1 Problem decoupling

To begin with, let χm,k denotes the inter-cell interference power from downlink BSm

to downlink MSk and φm,k/φm,n denotes the BS to BS interference power from downlink BSm to
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uplink MSk/BSn (see Fig. 4.4), i.e.,

χm,k
def
= hH

m,kT̃mhm,k, (4.15)
φm,k

def
= gH

m,kT̃mgm,k, for S1,

φm,n
def
= tr

[
Hm,nT̃mHH

m,n
]
, for S2.

(4.16)

Figure 4.4 – DTDD network diagram.
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Source: Created by author.

With defined variables above, the SINR function of MSk, k ∈ Kn, n ∈ Mdl, can be
written as

Γk =
|hH

n,ktk |
2∑

i∈Kn\k

|hH
n,kti |

2+
∑

m∈Mdl\n

χm,k+ϕk

, (4.17)

while, the BS to BS interference power for both scenarios can be written as

$S1
i =

∑
n∈Mdl

φn,k, ∀i ∈ Km, ∀m ∈Mul, (4.18)

$S2
m =

∑
n∈Mdl

φn,m, ∀m ∈Mul . (4.19)

Further, let χχχ and φφφ denote the two vectors that collect all the inter-cell and BS to
BS interference power variables, respectively, i.e.,

χχχ
def
= [{ χn,k}, ∀n ∈Mdl, ∀k ∈ Kdl\Kn]

T, (4.20)

φφφ
def
=


[{φn,k}, ∀n ∈Mdl, ∀k ∈ Kul]T, for S1,

[{φn,m}, ∀n ∈Mdl, ∀m ∈Mul]T, for S2.
(4.21)
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Furthermore, let χχχn and φφφn denote the two vectors that collect all the inter-cell and
BS to BS interference variables, respectively, that are relevant only to BSn, i.e.,

χχχn
def
= [{ χk}, ∀k ∈ Kdl

n , { χn,k}, ∀k ∈ Kdl\Kn]
T (4.22)

φφφn
def
=


[{φn,k}, ∀k ∈ Kul]T, for S1

[{φn,m}, ∀m ∈Mul]T, for S2
(4.23)

where χk
def
=

∑
m∈Mdl\n χm,k. From above, it can be shown that there exist permutation matrices

Ξn and Πn such that

χχχn = Ξn χχχ, ∀n ∈Mdl, (4.24)

φφφn = Πnφφφ, ∀n ∈Mdl . (4.25)

Let Pn = tr[T̃n]. Then, using the above defined vectors, problem PB can be written
as

PC =



min
{ χχχn}, {φφφn}
{Pn }, {Tk }

∑
n∈Mdl

Pn

s.t. C1: { χχχn, φφφn, Pn, {Tk, ∀k ∈ Kn}} ∈ Sn, ∀n ∈Mdl,

C2: χχχn = Ξn χχχ, ∀n ∈Mdl,

C3: φφφn = Πnφφφ, ∀n ∈Mdl,

C4: Π̃φφφn ≤ ωωω,

(4.26)

where Π̃ =
∑

n∈Mdl Πn, ωωω denotes the vector that collects all the BS to BS interference power
thresholds, which is given as

ωωω =


[{ωi, ∀i ∈ Kul}]T, for S1,

[{ωm, ∀m ∈Mul}]T, for S2,
(4.27)

and Sn is the convex set of BSn, n ∈Mdl, which is defined as

Sn =



C1-1: hH
n,kDkhn,k ≥ χk+ϕk, ∀k ∈ Kn,

C1-2: hH
n, iT̃nhn, i ≤ χn, i, ∀i ∈ Kdl\Kn,

C1-3:


gH
n, iT̃ngn, i ≤ φn, i, ∀i ∈ Kul, for S1

tr
[
Hn,mT̃nHH

n,m
]
≤ φn,m, ∀m ∈Mul, for S2

C1-4: tr[T̃n] = Pn

(4.28)

for all n ∈ Mdl. Problem PC is equivalent to problem PB, since all the inequality constraints
hold with equality at the optimal solution.
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4.7.2 Distributed algorithm via ADMM

This section applies the ADMM concepts [30] to solve problem PC distributively.
ADMM is a powerful dual decomposition technique that is perfectly suited for distributed
constrained optimization problems. It blends the superior convergence properties of dual de-
composition and the numerical robustness of augmented Lagrangian methods [30]. Therefore,
ADMM is proved to be more numerically stable, faster in convergence, and can converge under
more general conditions than dual decomposition can, e.g., without the requirements of strict
convexity or finiteness of the objective function [30]. The ADMM algorithm solves problems in
the form [30]

min
x∈Rn,z∈Rm

f (x)+ g(z), s.t. Ax+Bz = c, (4.29)

where f and g are convex, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The augmented Lagrangian of the
above problem is given as

J (x, z, y) = f (x)+ g(z)+yT(Ax+Bz− c)+
ρ

2
‖Ax+Bz− c‖22 . (4.30)

where ρ > 0 is the penalty parameter and y is the dual vector. Then, the ADMM consists of the
following iterations

x(t+1) =min
x

J (x, z(t), y(t)) (4.31)

z(t+1) =min
z

J (x(t+1), z, y(t)) (4.32)

y(t+1) = yt + ρ(Ax(t+1)+Bz(t+1)− c), (4.33)

where t here denotes the iteration index. Notice that x and z are updated in an alternating fashion,
which accounts for the term alternating direction. This is in contrast to the original method of
multipliers, that considers updating both variables jointly. Separating the minimization over
x and z into two steps is precisely what allows for decomposition when f or g are separable.
According to [27, Lemma 2], a sufficient condition for convergence of the above steps is that
ATA and BTB need to be invertible. If so, then the sequence generated by the above steps is
bounded, and every limit point is an optimal solution of the original problem.

Applying the above concepts to problem PC , one can see that the solution is mainly
composed of three iterative steps. The first step is a BS-wise step to update the local primal
variables. The second step is a network-wise step to update the global variables. The third step is
again a BS-wise step to update the local dual variables. The three steps are detailed as follows. To
begin with, we consider excluding constraints C4 at the first step, as it couples all the downlink
BSs together, and include it only at the second step. The augmented-form of problem PC (after
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excluding constraints C4) is given as

PD =



min
{ χχχn}, {φφφn}
{Pn }, {Tk }

∑
n∈Mdl

(
Pn+

ρ

2
‖Ξn χχχ− χχχn‖

2+
ρ

2
‖Πnφφφ−φφφn‖

2+
ρ

2
(P̃n−Pn)

2
)

s.t. D1: { χχχn, φφφn, Pn, {Tk, ∀k ∈ Kn}} ∈ Sn, ∀n ∈Mdl,

D2: χχχn = Ξn χχχ, ∀n ∈Mdl,

D3: φφφn = Πnφφφ, ∀n ∈Mdl,

D4: P̃n = Pn, ∀n ∈Mdl,

(4.34)

where P̃n ≥ 0, ∀n ∈ Mdl, are slack variables. Note that problem PD is clearly equivalent to
problem PC (after excluding constraint C4), since for any feasible solution, the added terms to
the objective are zero. However, the added penalty terms bring numerical stability and faster
convergence [27, 30]. The augmented Lagrangian of problem PD is given by

L (χχχ, φφφ, {P̃n}, {ηηηn}, {ξξξn}, {µn}) =
∑

n∈Mdl

(
Pn+

ρ

2
‖Ξn χχχ− χχχn‖

2+
ρ

2
‖Πnφφφ−φφφn‖

2+

ρ

2
(P̃n−Pn)

2+ηηηT
n (Ξn χχχ− χχχn)+ ξξξ

T
n (Πnφφφ−φφφn)+

µn(P̃n−Pn)
)
, (4.35)

where ηηηn, ξξξn, and µn, ∀n ∈ Mdl, are the dual vectors associated with constraints D2, D3 and
D4, respectively. Note that the Lagrangian (4.35) is separable between the downlink BSs. Thus,
function (4.35) can be written as

L (χχχ, φφφ, {P̃n}, {ηηηn}, {ξξξn}, {µn}) =
∑

n∈Mdl

Ln(χχχ, φφφ, P̃n, ηηηn, ξξξn, µn). (4.36)

From above, the BSn, ∀n ∈Mdl, augmented dual problem based ADMM is given as

PE =


min
χχχn,φφφn

Pn, {Tk }

Ln(χχχ, φφφ, P̃n, ηηηn, ξξξn, µn)

s.t. { χχχn, φφφn, Pn, {Tk, ∀k ∈ Kn}} ∈ Sn.

(4.37)

Note that problem PE is a BS-wise step that updates the local variables, χχχn, φφφn, Pn, Tk, ∀k ∈
Kn, for given global and local variables χχχ, φφφ, P̃n, ηηηn, ξξξn, µn. Thus, at the (t+1) iteration, each
BSn, ∀n ∈Mdl, solves problem PE to obtain χχχn(t+1), φφφn(t+1), Pn(t+1) and Tk(t+1), ∀k ∈ Kn.
After that, each downlink BSn, ∀n ∈ Mdl, performs a broadcast and gather operation of the
obtained local parameters χχχn(t+1), φφφn(t+1), ηηηn(t), and ξξξn(t) with other downlink BSs. After
gathering all the variables from other downlink BSs, each BSn, ∀n ∈ Mdl, updates the global
variables χχχ(t + 1) and φφφ(t + 1) and the local variable P̃n(t + 1) as a solution to the following
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problems:

χχχ(t+1) =min
χχχ

L (χχχ, φφφ, {P̃n}, {ηηηn}, {ξξξn}, {µn})

(a)
=min

χχχ

ρ

2

∑
n∈Mdl

‖Ξn χχχ− χχχn(t+1)‖2+
∑

n∈Mdl

ηηηT
n (t)

(
Ξn χχχ− χχχn(t+1)

)
, (4.38)

φφφ(t+1) = min
φφφ

s.t. Π̃φφφ=ωωω

L (χχχ, φφφ, {P̃n}, {ηηηn}, {ξξξn}, {µn})

(b)
= min

φφφ

s.t. Π̃φφφ=ωωω

ρ

2

∑
n∈Mdl

‖Πnφφφ−φφφn(t+1)‖2+
∑

n∈Mdl

ξξξT
n (t)

(
Πnφφφ−φφφn(t+1)

)
, (4.39)

P̃n(t+1) =min
P̃n

Ln(χχχ, φφφ, {P̃n}, {ηηηn}, {ξξξn}, {µn})

(c)
=min

P̃n

ρ

2
(P̃n−Pn(t+1))2+µn(t)

(
P̃n−Pn(t+1)

)
, (4.40)

where (a), (b) and (c) are obtained by removing the irrelevant terms. Note that the constraint C4,
that was excluded in problem PD, is included in the global variables update in problem (4.39).
Problems (4.38), (4.39) and (4.40) are convex quadratic problems. The closed-form solutions are
given, respectively, as

χχχ(t+1) = Ξ†
(
χ̃χχ(t+1)−

1
ρ
η̃ηη(t)

)
, (4.41)

φφφ(t+1) = Π†
(
φ̃φφ(t+1)−

1
ρ
ξ̃ξξ(t)

)
+

1
ρ
(ΠT
Π)−1
Π̃

Tζζζ, (4.42)

P̃n(t+1) = Pn(t+1)−
1
ρ
µn(t), (4.43)

where ζζζ denotes the dual vector associated with problem (4.39) constraint, which has a closed-
form solution given as

ζζζ =
( 1
ρ
Π̃(ΠT

Π)−1
Π̃

T
)−1 (

ωωω− Π̃Π†
(
φ̃φφ(t+1)−

1
ρ
ξ̃ξξ(t)

))
. (4.44)

Moreover, matrix Ξ is defined as

Ξ = [ΞT
Mdl(1) . . .Ξ

T
Mdl(|Mdl |)

]T, (4.45)

where Π, χ̃χχ(t+1), η̃ηη(t), φ̃φφ(t+1), and ξ̃ξξ(t) are defined in a similar way. Note that ΞTΞ � 0 and
ΠTΠ � 0. Thus, both matrices are invertible, which is a sufficient condition for convergence
of the above steps according to [27, Lemma 2]. Finally, each BSn, n ∈ Mdl, updates the dual
vectors ηηηn(t+1), ξξξn(t+1) and µn(t+1) as

ηηηn(t+1) = ηηηn(t)+ ρ
(
Ξn χχχ(t+1)− χχχn(t+1)

)
, (4.46)

ξξξn(t+1) = ξξξn(t)+ ρ
(
Πnφφφ(t+1)−φφφn(t+1)

)
, (4.47)

µn(t+1) = µn(t)+ ρ
(
P̃n(t+1)−Pn(t+1)

)
. (4.48)
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Note that the above dual variables update are a subgradient-like update with the
penalty parameter ρ representing the step-size. It is known that the subgradient algorithms are
guaranteed to converge as long as the update step-size is carefully chosen [35]. Unfortunately,
the optimal value of the step-size, i.e., ρ, is not known. In general, it is dependent of the system
parameters.

The distributed algorithm for solving problem PA, with either scenario, is summa-
rized in Algorithm 6. We refer to this algorithm as S1-Dist-CSI for Scenario 1 and as S2-Dist-CSI
for Scenario 2. In Algorithm 6 inner-iterations, each BSn, ∀n ∈Mdl, is required to perform broad-

Algorithm 6: Distributed CBF Algorithm based ADMM Technique.
1: Inputs:
2: The global and local parameters χχχ(0), φφφ(0),P̃n(0),ηηηn(0),ξξξn(0),µn(0), ∀n ∈Mdl.
3: Receive beamforming vectors rk(0), ∀k ∈ Kul.
4: Penalty parameter ρ.
5: Set r = 1 outer-iterations index for updating receive beamforming of uplink users.
6: Set t = 1 inner-iterations index for updating transmit beamforming of downlink users.
7: while not converged do
8: For fixed rk(r), ∀k ∈ Kul, update tk(t), ∀k ∈ Kdl:
9: while not converged do

10: Solve problem PE to obtain χχχn(t+1), φφφn(t+1) and P̃n(t+1), ∀n ∈Mdl.
11: Share χχχn(t+1), φφφn(t+1), ηηηn(t), and ξξξn(t), ∀n ∈Mdl, between downlink BSs.
12: Update χχχ(t+1)/φφφ(t+1) using (4.41)/(4.42).
13: Update P̃n(t+1)/ηηηn(t+1)/ξξξn(t+1)/µn(t+1) using (4.43)/(4.46)/(4.47)/(4.48).
14: Set t = t+1,
15: end while
16: For fixed tk(t), ∀k ∈ Kdl, update rk(r+1), ∀k ∈ Kul using (4.8).
17: For S1, set r = r+1 and go back to step 8.
18: For S2, break.
19: end while

cast and gather operation of the obtained local variables χχχn(t+1) and φφφn(t+1) at each iteration
index (t). It can be checked that the total backhaul signaling at each iteration is

2|Mdl |(|Mdl |K + |Mul |K), for S1,

2|Mdl |(|Mdl |K + |Mul |), for S2.
(4.49)

Clearly, the total backhaul signaling for S2 is less than S1, as it is in function of the
number of uplink BSs rather than the number of uplink MSs. This means that the two scenarios
have equal signaling overhead, per iteration, when there is only one user per uplink cell, i.e.,
K = 1. Furthermore, in practice, it might be required to stop the algorithm after some finite
number of iterations, say tmax. However, since Algorithm 6 inner-iterations operate in the dual
domain, the minimum SINR and maximum BS to BS interference power thresholds might be
violated. In this case, each BSn, ∀n ∈Mdl, is required to perform one more iteration in the primal
domain to guarantee that both constraints are satisfied. With this respect, each BSn, ∀n ∈Mdl,
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solves the following problem

PF =


min

{Tk,∀k∈Kn}
Pn

s.t. { χχχn, φφφn, Pn, {Tk, ∀k ∈ Kn}} ∈ Sn,

for given χχχn = Ξn χχχ(t
max), φφφn = Πnφφφ(tmax) (where Π̃φφφ(tmax) = ωωω), and {ri(r)}.

4.8 Imperfect CSI case: distributed algorithm

In the previous section, we have assumed that the downlink BSs have perfect knowl-
edge of local CSI. This simplified the presentation of the distributed algorithm, but it is clearly
an ideal model as, in real implementation, the BSs can only have imperfect CSI due to a variety
of reasons; e.g., imperfect channel estimation, feedback quantization, inadequate channel reci-
procity [26]. As a result, the MSs’ target values can no longer be guaranteed. To overcome this, a
robust optimization of the transmit beamforming vectors should be considered, i.e., Algorithms 5
and 6 should be modified such that they would account for the CSI errors.

In this chapter, it assumed that the CSI errors fall inside a bounded uncertainty
set. Thus, the main task is to modify the proposed algorithms to operate under the CSI worst-
case condition. At the end of this section, it will be clear that the only change to be made to
Algorithm 6 is only on step (a-1), whereas the remaining steps are similar. To start with, let the
true/perfect channels be given as

hn,k = ĥn,k+ en,k, (4.50)

Hn,m = Ĥn,m+En,m, (4.51)

where ĥn,k ∈ C
N and Ĥn,m ∈ C

N×N denote the estimated channels available to the downlink BSs.
The CSI errors are denoted by en,k ∈ CN and En,m ∈ C

N×N , which are assumed to be bounded
and take values from the set

H
def
=


{en,k

��‖en,k‖2 = eH
n,kINen,k ≤ εn,k}, ∀n ∈Mdl, ∀k ∈ K,

{En,m
��tr(En,mEH

n,m) = vec(En,m)
HIN2vec(En,m) ≤ έn,m}, ∀n, m ∈M,

(4.52)

where εn,k > 0 and έn,m > 0 control the degree of errors associated with the hn,k and Hn,m

channels, respectively.
To account for CSI errors, the constraint functions of convex set Sn, n ∈Mn, given by

(4.28) should be modified to operate under the worst-case condition. The worst-case optimization
for constraints C1-1 and C1-2 of BSn, n ∈Mdl can be written, respectively, as

min
∀en,k∈H

(ĥn,k+ en,k)HDk(ĥn,k+ en,k) ≥ χk+ϕk, ∀k ∈ Kn, (4.53)

max
∀en, i∈H

(ĥn, i+ en, i)HT̃n(ĥn, i+ en, i) ≤ χn, i, ∀i ∈ Kdl\Kn. (4.54)
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For S1, the worst-case optimization for constraint C1-3 of BSn, n ∈ Mdl, can be
written as

max
∀en, i∈H

(ĝn, i+ en, i)HT̃n(ĝn, i+ en, i) ≤ φn, i, ∀i ∈ Kul . (4.55)

For S2, the worst-case optimization for constraint C1-3 of BSn, n ∈ Mdl can be
written as

max
∀En,m∈H

tr
[
(Ĥn,m+En,m)T̃n(Ĥn,m+En,m)

H]
≤ φn,m, ∀m ∈Mul . (4.56)

Note that, due to the worst-case design criterion, each problem of (4.53), (4.54),
(4.55) and (4.56) contains infinitely many constraints. Fortunately, each of these problems can
be written in linear matrix inequality (LMI) form using the S-Lemma [33, p.655].

Lemma 2 (S-Lemma) Let f (x)= xHAx+2aHx+ c and h(x)= xHBx+2bHx+d be two quadratic

functions having symmetric matrices A and B. Given any pair of quadratic functions ( f, h), if

h(x) ≤ 0 satisfies Slater’s condition, namely, there is an x ∈ CN such that h(x) < 0, the following

two statements are always equivalent:

1. ∀x satisfying h(x) ≤ 0⇒ f (x) ≥ 0.

2. There exists a λ ≥ 0 such that f (x)+ λh(x) ≥ 0, i.e,[
A a
aH c

]
+ λ

[
B b
bH d

]
� 0

To make use of Lemma 2, consider, for example, the minimization problem (4.53).
It can be noticed that the objective function and the channel uncertainty constraint of problem
(4.53) can be expressed as f (en,k) and h(en,k), respectively, as

f (en,k) =eH
n,kDken,k+2eH

n,kDkĥn,k+ ĥH
n,kDkĥn,k− χk−ϕk, (4.57)

h(en,k) =eH
n,kINen,k− εn,k. (4.58)

Then, according to Lemma 2, problem (4.53) can be written equivalently in linear
matrix inequality (LMI) form as

Fk
def
=

[
Dk+ λn,kIN Dkĥn,k

(Dkĥn,k)
H ĥH

n,kDkĥn,k− fk

]
� 0, ∀k ∈ Kn (4.59)

where fk = εn,kλn,k + χk + ϕk. Using similar steps, one can write the maximization problems
(4.54), (4.55) and (4.56) in LMI form, respectively, as

Jn, i
def
=

[
λn, iIN − T̃n −T̃nĥn, i

−(T̃nĥn, i)
H jn, i− ĥH

n, iT̃nĥn, i

]
� 0, ∀i ∈ Kdl\Kn, (4.60)

Ln, i
def
=

[
λn, iIN − T̃n −T̃nĝn, i

−(T̃nĝn, i)
H ln, i− ĝH

n, iT̃nĝn, i

]
� 0, ∀i ∈ Kul, (4.61)

Un,m
def
=

[
λ́n,mIN2 −(IN ⊗ T̃n) −vec(Ĥn,mT̃n)

−vec(Ĥn,mT̃n)
H un,m− tr[Ĥn,mT̃nĤH

n,m]

]
� 0, ∀m ∈Mul, (4.62)
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where jn, i = χn, i− εnniλn, i, ln, i = φn, i− εn, iλn, i and un,m = φn,m− έn,m λ́n,m. Note that in formulat-
ing the functions (4.62), the following trace properties are utilized: for give matrices A, B and C,
we have tr(A+B+C) = tr(A)+ tr(B)+ tr(C) and that tr(ABC) = vec(A)H(I⊗B)vec(C).

From above, it can be seen that using the S-Lemma, each problem with infinite
number of constraints is converted into just one LMI constraint. This comes with the cost of
adding extra variables {λn,k, λ́n,m} that indirectly represent the worst channel conditions in the
uncertainty set. Thus, if we can find {λn,k ≥ 0, λ́n,m ≥ 0}, then all the constraints (4.53), (4.54),
(4.55) and (4.56) are satisfied for all {en,k, En,m} ∈ H .

Therefore, to account for CSI errors, each BSn, n ∈Mdl, should modify its non-robust
convex set Sn with the worst-case based robust convex set Ŝn, which is given as

Ŝn =



Fk � 0, ∀k ∈ Kn,

Jn, i � 0, ∀i ∈ Kdl\Kn,
Ln, i � 0, ∀i ∈ Kul, for S1

Un,m � 0, ∀m ∈Mul, for S2

tr[T̃n] = Pn

}
, ∀n ∈Mdl .

(4.63)

Finally, problem PE can be rewritten considering the worst-case beamforming
design as

PJ =


min

χχχn,φφφn,Pn
{Tk }

{λn,k }, {λ́n,m }

Ln(χχχ(t), φφφ(t), Pn(t), ηηηn(t), ξξξn(t), µn(t))

s.t. J1: { χχχn, φφφn, Pn, {Tk}, {λn,k}, {λ́n,m}} ∈ Ŝn.

(4.64)

Hence, the distributed robust algorithm of either scenario can be obtained by updating
Algorithm 6 step (a-1) to consider solving problem PJ instead of PE. We refer to this algorithm
as S1-Dist-Robust for Scenario 1 and as S2-Dist-Robust for Scenario 2.

4.9 Imperfect CSI case: centralized algorithm

The centralized robust optimization problem of either scenario can be written similar
to problem PC , by replacing the constraint C1 with the constraint of problem PJ , i.e., constraint
J1. The resulting centralized problem can then be solved by an algorithm similar to Algorithm 5
using off-the-shelf convex solvers, e.g. SeDuMi [88]. We refer to this algorithm as S1-Cent-
Robust for Scenario 1 and as S2-Cent-Robust for Scenario 2.

4.10 Numerical results

We consider a flat Rayleigh fading scenario with uncorrelated channels between
antennas, i.e., each element of hn,k, en,k,Hn,m, and En,m is an i.i.d. complex Gaussian random
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variable with zero mean and unit variance. To simplify the exposition, we assume equal input
design parameters for all MSs, i.e., γk = γ, ∀k ∈ Kdl, ωk = ω, ∀k ∈ Kul, and εn,k = έn,m =

ε, ∀n, m ∈ M, ∀k ∈ K. We initialize the receive beamforming vectors of uplink MSs using
(4.8) assuming the initial transmit beamforming vectors of downlink MSs are given by the
MRT approach, i.e., tk(0) = hn,k/‖hn,k‖. Moreover, we assume that the uplink transmit power
qk = 23 dBm, ∀k ∈ Kul, and the noise power σ2 = 1. We consider a system of [M, K, N

]
= [3, 3, 8],

where |Mdl | = 2 and |Mul | = 1.

Example 1: impact of channel errors

In this example, we show simulation results to examine the impact of CSI errors
on the satisfaction of design targets. Fig. 4.5 shows the CDF plots for the achievable SINR
at the downlink MSs (Γ) and the BS to BS interference power at the uplink MSs ($) for two
error-bound (ε) values. For comparison, we show simulation results of the centralized robust
algorithm shown in [34]. We refer to this reference algorithm as S1-Cent-Robust-Ref.

Figure 4.5 – CDF plots of SINR at downlink MSs and BS-to-BS interference power at uplink
MSs.
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At first, we note note that in Fig. 4.5, S1-Cent-NonRobust algorithm is equivalent to
S1-Cent-CSI algorithm with estimated channels given by (4.50) and (4.51) being used as the
input channels. From Fig. 4.5, it can be observed that, with S1-Cent-NonRobust, the design
targets γ and ω are unsatisfied with high probability and the unsatisfaction level increases as the
CSI error-bound increases. On the other hand, with both robust algorithms, S1-Cent-Robust and
S1-Cent-Robust-Ref, the design targets are always satisfied and the satisfaction level increases
as the CSI error-bound increases. Note that, when ε = 0.01, both robust algorithms almost have
the same satisfaction level. However, when ε = 0.1, the satisfaction level of S1-Cent-Robust-
Ref is higher than S1-Cent-Robust. This shows that S1-Cent-Robust-Ref is overreacting to the
CSI error-bounds, as compared to S1-Cent-Robust. In the next example, it will be shown that
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this overreaction of S1-Cent-Robust-Ref would result on using a higher transmit power than
S1-Cent-Robust.

Example 2: impact of input parameters

In this example, we show simulation results to evaluate the impact of input parameters
γ, ω and ε on system performance (sum downlink power and feasibility). Figs. 4.6, 4.7 and 4.8
show the averaged simulation results, while varying the minimum SINR target γ, the maximum
BS to BS interference power thresholdω, and the channel uncertainty upper-bound ε, respectively.
For each simulation scenario, we vary one of the input parameters assuming the others are fixed.

Figure 4.6 – Performance comparison while varying the minimum SINR target.
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Figure 4.7 – Performance comparison while varying the maximum BS-to-BS interference power
threshold.
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At first, we note that in Figs. 4.6, 4.7 and 4.8, the feasibility plots are a measure of
the percentage of the feasible channel-realizations to the total number of tested ones. The results
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Figure 4.8 – Performance comparison while varying the channel uncertainty upper-bound.
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with less than 50% feasibility rate are not shown on the performance plots. Furthermore, the
results of 1 Outer Iteration are obtained using the first initialization of the receive beamforming
vectors, i.e., {rk(0)}, while the At Convergence results are obtained with updating the receive
beamforming vectors until convergence.

From Figs. 4.6, 4.7 and 4.8, it can be seen that when the input parameters γ and ε
increase, the sum of the downlink power increases and the feasibility rate decreases for both
robust algorithms. These results hold true, as well, when the input parameter ω decreases.
From all results, it can be seen that the proposed algorithm S1-Cent-Robust has better energy-
efficiency and wider feasibility range, as compared to the reference algorithm S1-Cent-Robust-
Ref. Furthermore, we can see that updating the receive uplink beamforming vectors of the uplink
MSs is critical on improving the energy-efficiency of the downlink BSs. Fig. 4.9 demonstrates
the average convergence behavior outer-iterations (r) for updating the uplink MSs receive
beamforming for two γ values. From Fig. 4.9, we can see that all the considered algorithms
converge approximately within 10 iterations.

Example 3: comparing distributed to centralized algorithms

It was pointed out earlier that for any given receive beamforming vectors for uplink
MSs, there are an optimal transmit beamforming vectors for the downlink MSs. This example
shows simulation results comparing S1-Cent-Robust to S1-Dist-Robust for calculating the
transmit beamforming vectors when using the first initialization of the receive beamforming
vectors, i.e., {rk(0)}. Fig. 4.10 shows the sum downlink power of 25 channel realizations.

From Fig. 4.10, it can be observed that S1-Dist-Robust achieves near-optimal so-
lutions as compared to S1-Cent-Robust. Similar results can be obtained using the distributed
algorithm shown in [35] for non-robust beamforming, i.e., assuming perfect CSI. The algorithm
uses two iterative steps: in the first step, the local variables are updated using the uplink-downlink
duality [24], while in the second step, the global variables are updated using the sub-gradient
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Figure 4.9 – Convergence behavior of centralized algorithms while updating the uplink receive
beamforming.
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Figure 4.10 – Comparison between centralized and distributed algorithms with 25 channel
realizations.
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technique with a step-size α. We refer to this algorithm as S1-Dist-CSI-Ref.
The main difference between S1-Dist-CSI and S1-Dist-CSI-Ref is on the convergence



Chapter 4. An ADMM Approach for Distributed Robust Coordinated Beamforming in Dynamic TDD Wireless
Networks 89

behavior. In Fig. 4.11, the convergence behavior of both algorithms is shown for one channel
realization (rather than the average to expose the convergence behavior of each algorithm) in
terms of normalized power accuracy, which is defined as

Normalized power accuracy =
|P(t)−P?|

P?
, (4.65)

where P(t) =
∑

n∈Mdl Pn(t) is the sum of downlink power at iteration (t) with the distributed
algorithm and P? is the sum of downlink power with the centralized algorithm.

Figure 4.11 – Convergence behavior of distributed algorithms with one channel realization.
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From Fig. 4.11, it can be observed that both distributed approaches converge to
near-optimal solutions after few iterations for low-to-moderate convergence tolerance value.
Nevertheless, it can be seen that S1-Dist-CSI has a faster convergence rate, as compared to
S1-Dist-CSI-Ref. We note that the convergence behavior of either algorithm depends on the
selection of ρ and α parameters. Unfortunately, the optimal value of either parameter is not
known, and, in general, it is dependent on the system-scale and input parameter values.

Example 4: comparing scenario 1 to scenario 2

In this example, we show simulation results comparing Scenario 1 to Scenario 2.
So far, we have shown that Scenario 2 has advantage over Scenario 1 in terms of signaling
overhead (as pointed out in (4.49)), whereas Scenario 1 has advantage over Scenario 2 in terms of
energy-efficiency, since it can exploit the receive beamforming vectors (as shown in the previous
simulation results). In addition, Fig. 4.12 shows simulation results comparing both scenarios for
a range of ω values.
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Figure 4.12 – Performance comparison between scenario 1 and scenario 2.
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Figure 4.13 – CDF plots comparing scenario 1 with scenario 2.
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From Fig. 4.12, we can see that Scenario 2 requires much higher ω values to be
feasible than Scenario 1. However, after a certain ω value (after 46 dBm for the considered
system), both scenarios become equivalent, since the BS to BS interference power thresholds
become inactive. Nevertheless, in Scenario 2, each uplink MS would have its BS apply the receive
beamforming vector in the actual data reception phase. Fig. 4.13 shows the CDF plots comparing
both scenarios for the achievable SINR of downlink MSs and the BS to BS interference power
of uplink MSs.

In Fig. 4.13, the Opt/Act result refers to the BS to BS interference power of uplink



Chapter 4. An ADMM Approach for Distributed Robust Coordinated Beamforming in Dynamic TDD Wireless
Networks 91

MSs before/after applying the receive beamforming vectors (i.e., at the optimization phase and
at the actual reception phase). From the figure, it can be seen that while the optimized value of
the BS to BS interference power is quite high with Scenario 2, the actual BS to BS interference
power received by uplink MSs, after applying the receive beamforming, is much smaller and
even closer to that with Scenario 1.

4.11 Chapter conclusions

This chapter considered DTDD wireless networks and proposed a distributed and
robust CBF algorithm based on the relaxed semidefinite programming (SDP) and ADMM
techniques. The design objective was to minimize the sum power of downlink BSs, while
satisfying the worst-case of minimum SINR targets for the downlink MSs and the worst-case
maximum interference thresholds for the uplink MSsm where each infinitely nonconvex worst-
case constraint is transformed into only one LMI constraint by using the S-Lemma. Detailed
simulation results are presented, with a wide range of input parameters and system scale, to
investigate the effectiveness of the proposed robust algorithm for interference mitigation in
DTDD networks. It is shown that the proposed algorithm outperforms the reference algorithms,
where it has a better energy-efficiency and a faster convergence rate.
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5 CONCLUSIONS AND FUTURE WORKS

5.1 Algorithms summary and conclusions

This thesis has dealt with the design of decentralized algorithms for multicell mul-
tiuser wireless networks. The contributions of this thesis have addressed the following main
research topics/problems:

• Problem 1: How to design decentralized transmit beamforming algorithms that
maximize the system WSR, while satisfying the power constraints at transmitters.

• Problem 2: How to adaptively select the cells communication directions in order to
maximize the users’ throughput, while jointly considering their traffic conditions
and interference levels.

• Problem 3: How to design a decentralized and robust transmit beamforming algo-
rithm that minimizes the sum transmit power, while satisfying the users’ QoS targets
in the presence of channel errors.

Problem 1 is an interesting beamforming design that is more in line with the future
wireless networks, where users will demand different kinds of applications and services, each
with different traffic characteristics (e.g., packet size and maximum packet delay). Therefore,
maximizing the system sum rate while considering the users’ traffic characteristics is a very
desired problem formulation. However, the problem is shown to be non-convex and NP hard,
where most of the proposed solutions in the literature approach Problem 1 indirectly by solving
the WMMSE minimization problem. The algorithm using this latter approach is often called
WSR-WMMSE. Differently, the proposed algorithms in this thesis approached Problem 1 directly
by investigating its KKT conditions. In particular, this thesis proposed three different novel
algorithms for solving Problem 1 based on the alternating optimization technique, which are
guaranteed to converge to a local WSR-optimum. The first algorithm is an interference pricing
approach, where each cell maximizes its own utility that is formed by the local users’ WSR
minus the priced ICI leakage. The second algorithm designs transceivers that maximize the
network-wide WSR. The third algorithm is an implicit interference pricing approach, where
each cell self-prices its ICI leakage and, thus, does not require variables feedback between cells.
The performance of the three proposed algorithms was investigated using numerical examples,
where it was shown that the proposed algorithms have better sum rate and faster convergence
rate, as compared to the WSR-WMMSE and some other state-of-art algorithms. Furthermore, a
novel OTA signaling scheme based on TDD mode was also proposed to facilitate the algorithms’
implementation, which reduces the signaling overhead and requires no backhaul feedback, as
compared to some existing signaling schemes. The main conclusions that can be drawn from
this chapter are summarized as follows:



Chapter 5. Conclusions and Future Works 93

• Problem 1 is an important beamforming design that is more applicable for future
cellular networks, since it has the ability to prioritize users according to, e.g., their
traffic characteristics, and has implicit users and streams selection mechanism. Fur-
ther, it is shown to outperform the state-of-art beamforming design approaches, like
MRT and ZF/BD.

• There exists a direct solution to Problem 1, which can be achieved by investigating
its KKT conditions with help of Lemma 1. This is in contrast to the generally
used approach in the literature that indirectly solves Problem 1 by solving the
WMMSE minimization problem, which can be made equivalent to the original WSR
maximization problem by adaptively adjusting the users’ weights.

• Also, the WSR maximization via interference pricing approach can be made equiv-
alent to the network-wide WSR maximization, whenever the mobile stations are
equipped with single-antenna.

Problem 2 targets a question that is most probably the first question raised since
the introduction of DTDD technique. Earlier works targeting Problem 3 reconfigured each
cell direction based only on the aggregate traffic in the cell. This approach is fairly simple
and inherently distributed, but it cannot achieve the potential performance as it disregards the
interference effects that are particularly severe in DTDD systems. Other solutions were proposed
that account for the users’ traffic demands and interference levels, as well. However, most of those
solutions are scenario (traffic model) specific and do not consider the individual user’s traffic
characteristics. Therefore, it is important for the cell reconfiguration algorithm to support such
different traffic characteristics. This thesis proposed a novel cell reconfiguration formulation to
maximizes the users’ throughput, while jointly considering both the prevailing traffic conditions
and multicell interference levels. Realistic system level simulations indicate that the proposed
scheme outperforms not only the static TDD system but also other reference schemes, that
disregard the DTDD specific interference effects. The main conclusions that can be drawn from
this chapter are summarized as follows:

• DTDD technique enhances the system spectral and energy efficiencies, as compared
to STDD, especially in scenarios in which the offered traffic is time-varying and
asymmetric in terms of uplink/downlink direction.

• It is important for the cell reconfiguration algorithm to jointly consider the users’
traffic characteristics and interference levels when selecting the cells directions.

Problem 3 approaches the transmit beamforming design from a different perspective
than Problem 1. The future wireless cellular networks are expected to be much more densified
with small cells as compared to current cellular networks. Therefore, minimizing the transmit
power while satisfying the users’ QoS targets will be a critical optimization problem for cellular
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networks design. The problem itself is very well known in the literature, where many solutions
can be found. However, their extension to DTDD wireless networks is not direct, due to more
complicated interference situations in DTDD networks, since the uplink and downlink users
coexist at the same time among neighboring cells. Therefore, Problem 2 in DTDD networks
requires a special consideration from the optimization viewpoint. A possible solution is to for-
mulate the optimization problem in DTDD as it is generally formulated in the CR networks, i.e.,
by assuming the uplink cells are the primary cells and the downlink cells are the secondary cells
and then include a threshold on the maximum BS-to-BS interference power from the downlink
to uplink cells. In this case, not only the required downlink performance can be guaranteed, but
also the required uplink performance. However, due to the fact that the transmitters can never
have perfect CSI (due to, e.g., estimation errors and limited feedback channels), the performance
targets can no longer be guaranteed if the CSI errors are not taken into account. Therefore, robust
and fully distributed transmit beamforming solutions are much desired. To this end, this thesis
proposed a novel distributed and robust CBF algorithm based on the relaxed SDP and ADMM
techniques for solving Problem 2, where the robust beamforming was tackled using a worst-case
optimization criterion. From simulation results, it was shown that the proposed algorithm outper-
forms some reference algorithms by achieving a better energy-efficiency and a faster convergence
rate. The main conclusions that can be drawn from this chapter are summarized as follows:

• Cross-link interference imposes great challenge to DTDD systems, which can
severely degrade the system performance, especially the uplink cells’ performance,
if not properly managed.

• Robust optimization techniques are critical for beamforming designs to guarantee
the users’ QoS targets, due to unavoidable CSI estimation errors.

• There is a trade-off between system energy-efficiency and the beamforming design
algorithms’ complexity and signaling overhead. Iteratively updating the transmit and
receive beamforming vectors provides more system energy-efficiency but increases
the algorithms’ complexity and signaling overhead.

• ADMM is a powerful dual decomposition technique that is perfectly suited for
distributed constrained optimization problems, which has superior convergence
properties and numerical robustness as compared to many other decomposition
techniques, thus making it a favorable choice for practical implementations.

5.2 Future works

The contents of this thesis can be extended in many directions. In the following,
some of the possible future work directions are pointed out.
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5.2.1 Effects of CSI estimation errors

The proposed algorithms in chapter 2 assumed perfect knowledge of CSI, which is
impossible to have in the practical implementation due to unavoidable CSI estimation errors.
CSI estimation has two main effects on system performance. First, it has affected on resources
utilization, since some resources will be used for the CSI estimation, thus, reducing the data
transmission resources. Second, the CSI estimation errors have a great impact on the beamform-
ing design quality and system performance. Although those two aspects will not change the main
conclusions of the chapter, since all the proposed and reference algorithms will face the same
CSI quality, it is still interesting to investigate the effects of CSI estimation errors on system
performance.

5.2.2 Maximize WSR in DTDD systems

The proposed algorithms in chapter 2 for the WSR maximization can be readily
implemented in DTDD systems by treating the cross-link interference (BS to BS and MS to MS
interference) as an inter-cell interference. However, we have noticed that if the downlink and
uplink transmit powers highly differ, the uplink performance can be highly degraded. A possible
solution is to include an interference-power threshold from downlink cells to uplink cells, similar
to the considered approach in chapter 4.

5.2.3 Massive MIMO and millimeter waves

The proposed algorithms in chapters 2 and 4 can be extended to consider use of
massive MIMO setup, i.e., very large number of antennas at transmitter and/or receiver. The
use of massive MIMO has become a key enabler to meet the data rate demands of the future
cellular systems [1]. Unfortunately, the bottleneck that limits the successful incorporation of
massive MIMO into cellular networks is the large physical size of the antenna arrays at currently
used cellular frequencies (below 6 GHz). For this reason, massive MIMO is being considered in
conjunction with mmWave frequencies [3], where antenna arrays of reasonable physical sizes are
feasible. From a signal processing perspective, transmission with massive arrays increases the
processing complexity derived from the computation of the required beamformers when digital
schemes are applied to hundreds of antennas. Multi-antenna digital beamforming is carried out
at baseband and, thus, it requires an architecture with as many radio-frequency (RF) chains
as antenna ports to do the digital to analog data conversion and subsequent upmixing to RF.
However, the use of one RF chain per antenna is not only a very costly option for massive MIMO
systems, but it also leads to an extremely high power consumption. Motivated by this, there is now
a growing interest in alternative transmission schemes based on analog beamforming and hybrid
beamforming architectures, where all or part of the processing is based on RF beamforming.
However, RF beamforming adds hardware constraints (see [92] for more details), which should
be considered when designing the beamforming solutions.
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5.2.4 LTE-based system evaluations

The simulation results in chapter 3 assumed that each cell can change its communi-
cation direction in every TTI. This, however, is not realistic, as cells are allowed to change their
communication directions at minimum every 10 TTIs according to 3GPP TR in [15]. Further, the
simulation results can also be extended to consider an LTE-TDD-like simulator, which comprises
7 subframes configurations [13], as shown in Table 5.1. For instance, we can select one config-
uration for each cell that better matches the output of the proposed algorithms. Furthermore,
different and more optimal users’ weights optimization approaches can also be investigated.

Table 5.1 – TDD frames configurations.
Configuration Number Subframe Number UL-DL

- 0 1 2 3 4 5 6 7 8 9 -
0 D S U U U D S U U U 6-2
1 D S U U D D S U U D 4-4
2 D S U D D D S U D D 2-6
3 D S U U U D D D D D 3-6
4 D S U U D D D D D D 2-7
5 D S U D D D D D D D 1-8
6 D S U U U D S U U D 5-3

Source: Created by author.
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