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partial fulfillment of the requirements
for the degree of Doctor in the area of
Teleinformatics Engineering. Concen-
tration Area of Study: Signals and Systems

Date Approved: February 10, 2015

EXAMINING COMMITTEE

Prof. Dr. Guilherme de Alencar Barreto
(Committee Chair / Advisor)

Federal University of Ceará (UFC)
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RESUMO

A rede Máquina de Aprendizado Extremo (Extreme Learning Machine - ELM) tornou-

se uma arquitetura neural bastante popular devido a sua propriedade de aproximadora

universal de funções e ao rápido treinamento, dado pela seleção aleatória dos pesos e limiares

dos neurônios ocultos. Apesar de sua boa capacidade de generalização, há ainda desafios

consideráveis a superar. Um deles refere-se ao clássico problema de se determinar o número

de neurônios ocultos, o que influencia na capacidade de aprendizagem do modelo, levando

a um sobreajustamento, se esse número for muito grande, ou a um subajustamento, caso

contrário. Outro desafio está relacionado à seleção aleatória dos pesos da camada oculta,

que pode produzir uma matriz de ativações mal-condicionada, dificultando sensivelmente a

solução do sistema linear constrúıdo para treinar os pesos da camada de sáıda. Tal situação

leva a soluções com normas muito elevadas e, consequentemente, numericamente instáveis.

Baseado nesses desafios, este trabalho oferece duas contribuições orientadas a um projeto

eficiente da rede ELM. A primeira, denominada R-ELM/BIP, combina a versão batch de

um método de aprendizado recente chamado Plasticidade Intŕınseca com a técnica de

estimação robusta conhecida como Estimação M. Esta proposta fornece solução confiável

na presença de outliers, juntamente com boa capacidade de generalização e pesos de sáıda

com normas reduzidas. A segunda contribuição, denominada Adaptive Number of Hidden

Neurons Approach (ANHNA), está orientada para a seleção automática de um modelo de

rede ELM usando metaheuŕısticas. A ideia subjacente consiste em definir uma codificação

geral para o indiv́ıduo de uma população que possa ser usada por diferentes metaheuŕısticas

populacionais, tais como Evolução Diferencial e Enxame de Part́ıculas. A abordagem

proposta permite que estas metaheuŕısticas produzam soluções otimizadas para os vários

parâmetros da rede ELM, incluindo o número de neurônios ocultos e as inclinações e

limiares das funções de ativação dos mesmos, sem perder a principal caracteŕıstica da rede

ELM: o mapeamento aleatório do espaço da camada oculta. Avaliações abrangentes das

abordagens propostas são realizadas usando conjuntos de dados para regressão dispońıveis

em repositórios públicos, bem como um novo conjunto de dados gerado para o aprendizado

da coordenação visuomotora de robôs humanoides.

Palavras-chave: Máquina de Aprendizado Extremo, Robustez, Metaheuŕıstica, Plastici-

dade Intŕınseca em Batelada



ABSTRACT

The Extreme Learning Machine (ELM) has become a very popular neural network ar-

chitecture due to its universal function approximation property and fast training, which

is accomplished by setting randomly the hidden neurons’ weights and biases. Although

it offers a good generalization performance with little time consumption, it also offers

considerable challenges. One of them is related to the classical problem of defining the

network size, which influences the ability to learn the model and will overfit if it is too large

or underfit if it is too small. Another is related to the random selection of input-to-hidden-

layer weights that may produce an ill-conditioned hidden layer output matrix, which derails

the solution for the linear system used to train the output weights. This leads to a solution

with a high norm that becomes very sensitive to any contamination present in the data.

Based on these challenges, this work provides two contributions to the ELM network design

principles. The first one, named R-ELM/BIP, combines the maximization of the hidden

layer’s information transmission, through Batch Intrinsic Plasticity, with outlier-robust

estimation of the output weights. This method generates a reliable solution in the presence

of corrupted data with a good generalization capability and small output weight norms.

The second method, named Adaptive Number of Hidden Neurons Approach (ANHNA), is

defined as a general solution encoding that allows populational metaheuristics to evolve

a close to optimal architecture for ELM networks combined with activation function’s

parameter optimization, without losing the ELM’s main feature: the random mapping

from input to hidden space. Comprehensive evaluations of the proposed approaches are

performed using regression datasets available in public repositories, as well as using a new

set of data generated for learning visuomotor coordination of humanoid robots.

Keywords: Extreme Learning Machine, Robustness, Metaheuristics, Batch Intrinsic

Plasticity
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1 INTRODUCTION

Among the different artificial neural network (ANN) architectures available,

the single layer feedforward one (SLFN) is the most popular (HUANG et al., 2011).

It is specially known by its universal approximation abilities (CAO et al., 2012). In

particular, the Extreme Learning Machine (ELM) is attracting considerable attention from

the Computational Intelligence community due to its fast training speed by randomly

selecting the weights and biases of the hidden neurons. This singular feature allows the

problem of estimating the output weights to be cast as a linear model, which is then

analytically determined by finding a least-squares solution (HUANG et al., 2011).

However, there is no free lunch. Even though this network is capable of achieving

a good generalization performance with little time consumption, it also offers considerable

challenges. One of these issues is related to an inherited problem from standard SLFN:

the definition of the number of hidden neurons. A small network may not provide a good

performance due to its limited information processing which leads to a too simplistic model,

while a large one may lead to overfitting and poor generalization. To correctly define the

number of hidden neurons, the most common strategy is to resort to trial-and-error or

exhaustive search strategies (YANG et al., 2012).

Another issue is related to the random nature of the input-to-hidden-layer

weights (hidden weights, for short). This random combination often generates a set of

non-optimal weights and biases, which results in an ill-conditioned matrix of hidden

neurons’ activations H. Such situation makes the solution of the linear output system

numerically unstable due to the very high norm of the resulting output weight vector and,

hence, make the whole network very sensitive to data perturbation (e.g. outliers) (ZHAO

et al., 2011). Furthermore, as described in the work of Bartlett (1998), their size is more

relevant for the generalization capability than the configuration of the neural network

itself.

It is important to further discuss the second of the two aforementioned issues

since it has a direct effect on ELM’s outlier robustness property. Since regression and

classification problems are often contaminated by noise, it is known that it may influence

the modeling accuracy as well as the estimated parameters (BELIAKOV; KELAREV;

YEARWOOD, 2011). Bearing this in mind, Horata, Chiewchanwattana and Sunat (2013)

proposed that a robust ELM must deal with the computational robustness issues related
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to the conditioning of H matrix, as well as with outlier robustness by choosing estimation

methods, other than the standard least-squares approach, which are capable of dealing

with outliers.

Knowing that methods which control only the network size and the output

weights are insufficient in tunning the hidden neurons to a good regime, where the encoding

is optimal (NEUMANN; STEIL, 2011), we took the Intrinsic Plasticity (IP) notion as

inspiration to tackle the computational robustness problem. This biologically motivated

mechanism was first introduced by Triesch (2005) and consists in adapting the activation

function’s parameters (slope and bias) to force the output of the hidden neurons to follow

an exponential distribution (stochastically speaking). This maximizes the information

transmission caused by the high entropy of this probability distribution. (NEUMANN;

STEIL, 2011). Empirically, it also results in a more stable H matrix followed by a smaller

norm of the output weights than the ones provided by the standard least-squares method.

Regarding outlier robustness, even though robust ANN is a subject of interest

in Machine Learning, the study of this property with ELM network is still in its infancy

(HORATA et al., 2013). Works such as Huynh, Won and Kim (2008), Barros and Barreto

(2013), Horata, Chiewchanwattana and Sunat (2013) adopt an estimation method that is

less sensitive to outliers than the ordinary least-squares estimation, known as M-estimation

(HUBER, 1964). However, Horata’s work is the only one that addresses both computational

and outlier robustness problem.

Hence, one of the contributions of this work is a robust version of ELM network

that incorporates both regularizing and outlier robustness features to ELM learning, by

combining the optimization of the hidden layer output through a new method named Batch

Intrinsic Plasticity (BIP) (NEUMANN; STEIL, 2011) with the M-estimation method.

Turning to the first mentioned ELM’s challenge, to deal with its architecture

design issue, we choose the use of population-based metaheuristics due to the complex

task of finding suitable values for the number of hidden neurons and also to other learning

parameters, such as the slopes and biases of the hidden activation functions. The use

of evolutionary computation on ELM networks has been a quite popular subject. As

examples, we mention works such as Zhu et al. (2005), Xu and Shu (2006), Silva et al.

(2011), Cao, Lin and Huang (2012), Han et al. (2013), Matias et al. (2013), Figueiredo

and Ludermir (2014) and Alencar and Rocha Neto (2014). However, the majority of
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these works are not designed to automatically determine the optimal number of hidden

neurons. In other words, most of them predefine the number of hidden neurons and they

usually concentrate the efforts on using those metaheuristics to find optimal values for the

input-to-hidden layer weights. This approach, however, goes against the very nature of the

ELM network, that is, to be an SLFN whose parameters of the input-to-hidden projection

is specified randomly.

In order to propose an improved design for the ELM network following the

Intrinsic Plasticity learning principles, we introduce a new encoding scheme for the

solution vector of a given metaheuristic optimization algorithm that allows automatic

estimation of the number of hidden neurons and their activation function parameter values.

This scheme, named Automatic Number of Hidden Neurons Approach (ANHNA), is very

general and can be used by any population-based metaheuristic algorithms for continuous

optimization. Computer experiments using Differential Evolution (DE), Self-Adaptive

Differential Evolution (SaDE) and Particle Swarm Optimization (PSO) metaheuristics

demonstrate the feasibility of the proposed approach.

Finally, as a third main contribution, we present the preliminary results of a

robust version of ANHNA. This version provides, besides the number of hidden neurons

and activation function’s parameters, also the choice of the objective function to handle

outliers properly. This setting provides a broader range of architectures to be chosen from.

Comprehensive evaluations of the proposed approaches were performed using

regression datasets available in public repositories, as well as using a new set of data

generated for learning visuomotor coordination of a humanoid robot named iCub. This last

dataset was collected during an internship period at the Research Institute of Cognition

and Robotics (CoR-Lab), University of Bielefeld, Germany.

1.1 General and specific objectives

Our main goal in this thesis lies on the improvement of ELM network in two

aspects: (1) by designing an efficient method for model selection based on evolutionary

computation and ideas emanating from the intrinsic plasticity learning paradigm, and (2)

proposing an outlier robust version.

Given the main goal of this work, several specific ones were being defined and

pursued over time, such as the ones listed below:
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1. To travel abroad to an outstanding research group on Computational Intelligence

and Cognitive Science in order to acquire expertise on the theory of ELM network

and its application;

2. To develop a new solution based on the ELM network to a complex hand-eye

coordination problem for a humanoid robot;

3. To execute tests on simulated and real iCub robot;

4. To build a new dataset for the problem mentioned in Item 2 in order to train different

neural network models;

5. To study and implement the batch intrinsic plasticity (BIP) algorithm to train ELM

networks;

6. To develop a population-based metaheuristic strategy for model selection of the ELM

network;

7. To study and implement robust parameter estimation methods, such as the M-

estimation, in order to evaluate their applicability to ELM training.

1.2 A word on the thesis’ chronology and development

In this section, the research progress is described as it was performed during

this Doctorate. We detail, chronologically, the development of the studies that culminated

in the main contributions of this thesis.

The first contact of the doctorate student responsible for this thesis with neural

networks using random projections in the hidden layer was around 2008, where the learned

expertise was further explored to give rise to a thesis project in 2010.

Between 2011 and the beginning of 2012, during the internship period at the

University of Bielefeld, Germany, more specifically at CoR-Lab (Research Institute for

Cognition and Robotics) facilities, there was the opportunity to be introduced to humanoid

robotics and to improve the knowledge about the ELM network and several training

paradigms. Along this period, there was a comprehensive training to use the humanoid

robot iCub (METTA et al., 2010), both simulated and real one, where we designed the

pointing problem as a part of a large study about the communicative ability for cognitive

agents developed by the group. This particular problem was divided in two: imperative and

precise pointing (LEMME et al., 2013), where the first refers to children pre-verbal method

of communication that consists in gesturing by extending their arms as if reaching for an
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object far away from their grasp. The second, as it is named, refers to a precise gesturing

which was achieved by applying the kinesthetic teaching approach. It is interesting to

highlight that only a few studies have addressed the acquisition of pointing skills by robots.

Using the data generated with the simulated and real robot, we aimed to

learn a direct mapping from the object’s pixel coordinates in the visual field directly

to hand positions (or to joint angles) in an eye-to-hand configuration, applying neural

networks. From this study, two novelties were introduced: the Static Reservoir Computing

(EMMERICH; STEIL, 2010), which is another ANN with random projections, and the

Batch Intrinsic Plasticity (NEUMANN; STEIL, 2011; NEUMANN; STEIL, 2013), proposed

to improve ELM’s generalization performance. Both proposed recently by researchers in

CoR-Lab. Three publications resulted from this period, which are listed in Section 1.3.

With the finishing of the experiments on the robot, we started to think about

strategies for automatic model selection of the ELM network. Later in 2012, the work from

Das et al. (2009), which proposed an automatic clustering using Differential Evolution,

came as an inspiration to evolve the number of hidden neurons as well as the activation

function’s parameters of the ELM network. Then, in 2013, we developed one of the

contributions of this thesis, a novel population-based metaheuristic approach for model

selection of the ELM network, which resulted in two other publications (see Section 1.3).

We also developed several variants of this method to attend different training requirements.

By the end of 2013, came to our knowledge the work by Horata, Chiewchan-

wattana, and Sunat (2013) and its contribution as an outlier-robust ELM network. In

their work, they highlighted two issues that affect ELM performance: computational and

robustness problems. With that in mind and taking our prior knowledge on the benefits

of the intrinsic plasticity learning paradigm, we introduced an outlier-robust variant of

the ELM network trained with the BIP learning introduced by Neumann and Steil (2011).

This simple but efficient approach combines the best of two worlds: optimization of the

parameters (weights and biases) of the activation functions of the hidden neurons through

the BIP learning paradigm, with outlier robustness provided by the M-estimation method

used to compute the output weights. By the end of 2014, the proposed outlier-robust ELM

resulted in another accepted publication.

The last part of the contributions of this work consists in the on-going study on

the development of a robust extension of the aforementioned population-based metaheuristic
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method for model selection of the ELM network. A detailed timeline of this thesis

development is shown in Table 1, with a reference to the corresponding thesis’ chapters

and appendices.

Table 1 – Thesis time-line.

Pre-doctorate period

2008 First contact with the theory of random projection networks,
such as the ELM and Echo-State Networks (Chapter 2)

Doctorate

2010 Compulsory subjects

2011

Internship period at University of Bielefeld (Germany)

training with humanoid robot iCub simulator
beginning of pointing problem with humanoid robots
further studies with ELM network
data harvesting with simulator (Appendix B)
introduction to Batch Intrinsic Plasticity (Chapter 2)
introduction to Static Reservoir Computing
participation at the CITEC2 Summer School: Mechanisms of
Attention �From Experimental Studies to Technical Systems
held in University of Bielefeld (3rd-8th October)
training with real iCub robot
real robot data harvesting of pointing problem

2012
publication of Freire et al. (2012b) and Freire et al. (2012a)
study of Das et al. (2009) work
implementation of metaheuristics (Appendix A)

2013
publication in joint effort of Lemme et al. (2013)
development of the population-based metaheuristic approach
for model selection of the ELM network and variants. (Chapter 4)
study of Horata et al. (2013) work

2014
development of the outlier-robust version of
the ELM network trained with the BIO learning algorithm. (Chapter 3)
development and preliminary tests of an outlier-robust
extension of the proposed population-based metaheuristic
approach for model selection of the ELM network (Chapter 4)
publication of Freire and Barreto (2014a),
Freire and Barreto (2014c) and Freire and Barreto (2014b).

Source: author.
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1.3 Scientific production

In this section, we list the publications produced along the development of this

thesis. We also list a number of citations that this publication has already received.

• FREIRE, A., LEMME, A., STEIL, J., BARRETO, G. Learning visuo-motor coor-

dination for pointing without depth calculation. In: Proceedings of the European

Symposium on Artificial Neural Networks. [S.l.: s.n.], 2012. p. 91-96.

• FREIRE, A., LEMME, A., STEIL, J., BARRETO, G. Aprendizado de coordenação

visomotora no comportamento de apontar em um espaço 3D. In: Anais do XIX

Congresso Brasileiro de Automática (CBA2012). Campina Grande (Brazil), 2012.

Available in: <http://cba2012.dee.ufcg.edu.br/anais>.

• LEMME, A., FREIRE, A., STEIL, J., BARRETO, G.. Kinesthetic teaching of

visuomotor coordination for pointing by the humanoid robot iCub. Neurocomputing,

v. 112, p. 179-188, 2013.

Used as a reference by:

– WREDE, B., ROHLFING, K., STEIL, J., WREDE, S., OUDEYER, P.-Y. et

al. Towards robots with teleological action and language understanding. Ugur,

Emre, and Nagai, Yukie and Oztop, Erhan and Asada, Minoru. Humanoids

2012 Workshop on Developmental Robotics: Can developmental robotics yield

human-like cognitive abilities?, Nov 2012, Osaka, Japan. <hal-00788627>

– NEUMANN, K., STRUB, C., STEIL, J. Intrinsic plasticity via natural gradient

descent with application to drift compensation, Neurocomputing, v. 112, 2013,

p. 26-33, Available in <http://www.sciencedirect.com/science/article/pii/

S0925231213002221>.

– QUEISSER, F., NEUMANN, K., ROLF, M., REINHART, F., STEIL, J. An

active compliant control mode for interaction with a pneumatic soft robot. In:

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2014), 2014, p. 573,579. Available in: <http://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=6942617&isnumber=6942370>.

– ROLF, M., ASADA, M. Motor synergies are naturally observed during goal

babbling. In: IROS 2013 Workshop: Cognitive Neuroscience Robotics, Tokyo,

2013.

– CHAO, F., WANG, Z., SHANG, C., MENG, Q., JIANG, M., ZHOU, C.,

http://cba2012.dee.ufcg.edu.br/anais
http://www.sciencedirect.com/science/article/pii/S0925231213002221
http://www.sciencedirect.com/science/article/pii/S0925231213002221
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6942617&isnumber=6942370
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6942617&isnumber=6942370
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SHEN, Q. A developmental approach to robotic pointing via human-robot

interaction. Information Sciences, v. 283, 2014, p. 288-303. Available in:

<http://www.sciencedirect.com/science/article/pii/S0020025514004010>.

– HUANG, G., HUANG, G.-B., SONG, S., YOU, K. Trends in extreme learning

machines: A review. Neural Networks, v. 61, 2015, p. 32-48. Available in:

<http://www.sciencedirect.com/science/article/pii/S0893608014002214>.

– SEIDEL, D., EMMERICH, C., STEIL, J. Model-free path planning for redun-

dant robots using sparse data from kinesthetic teaching. In: 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2014),

2014, p.4381. Available in: <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6943182&isnumber=6942370>.

• FREIRE, A., BARRETO, G. A new model selection approach for the ELM net-

work using metaheuristic optimization. In: Proceedings of European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learning

(ESANN 2014). Bruges (Belgium), 23-25 April 2014. Available from: <http:

//www.i6doc.com/fr/livre/?GCOI=28001100432440>.

• FREIRE, A., BARRETO, G. ANHNA: Uma nova abordagem de seleção de mod-

elos para a Máquina de Aprendizado Extremo. In: XX Congresso Brasileiro de

Automática (CBA 2014), Minas Gerais (Brazil),20-24 Setember 2014.

• FREIRE, A., BARRETO, G. A Robust and Regularized Extreme Learning Machine.

In: Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2014), São

Carlos (Brazil), 18-23 October 2014.

Other contributions of the work developed in this thesis, from a teaching

perspective, are the following:

• four hours tutorial named “Introduction to the Simulator of the iCub Humanoid

Robot” in the joint event Latin American Robotics Symposium and Brazilian Robotics

Symposium held in Fortaleza (Brazil) on October, 16th to 19th, 2012.

• short course of 6 hours named “Simulador do Robô Humanóide iCub” in the III

Semana de Engenharia de Teleinformática (SETI 2013), held in Federal University

of Ceará from November, 6th to 8th, 2013.

http://www.sciencedirect.com/science/article/pii/S0020025514004010
http://www.sciencedirect.com/science/article/pii/S0893608014002214
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6943182&isnumber=6942370
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6943182&isnumber=6942370
http://www.i6doc.com/fr/livre/?GCOI=28001100432440
http://www.i6doc.com/fr/livre/?GCOI=28001100432440
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1.4 Thesis structure

The remainder of this thesis is organized as follows.

Chapter 2 presents an introduction about the ELM network with a brief review

of the literature on random projections for the design of feedforward neural networks. Also

it contains a discussion on the main issues of this architecture.

Chapter 3 is dedicated to outlier robustness. Here, we demonstrate with a

numerical example how the presence of outliers perturb the estimated solution. We also

describe the M-estimation paradigm, followed by a brief review of robust neural networks

and then we review approaches that apply robust methods to ELM design. Finally, we

introduce the first of our proposals, namely the robust variant of the ELM network trained

with the BIP learning algorithm.

Chapter 4 addresses another important issue: model selection. In this chapter,

we introduce the second of our proposals, which is a population-based approach for the

design of ELM networks. We also provide a literature review on how metaheuristic

approaches are being applied for the ELM design. Afterwards, we discuss the proposed

approach in detail and present a number of variants resulting from modifications of the

fitness function.

Chapter 5 describes the methodology adopted, providing detailed information

on how the datasets were treated and contaminated for the outlier robustness cases, how

all tests were performed and which parameters were chosen for the different evaluated

methods.

Chapter 6 reports the performance results of the proposed robust version of

the ELM network trained with the BIP learning algorithm for five distinct datasets and

several outlier-contaminated scenarios.

Chapter 7 reports the performance results of the proposed population-based

metaheuristic approach for the efficient design of ELM networks with six different datasets.

Chapter 8 is dedicated to the conclusions of this work.

Appendix A describes in detail the algorithms of the metaheuristics evaluated

in this work, how they differ from each other, their mutation strategies and how their

parameters are adapted.

Appendix B provides the details of the six real-world regression problems

datasets used in this work: Auto-MPG, Body Fat Breast Cancer, CPU, iCub, and Servo.
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Appendix C reports tables with values of the resulting number of hidden neurons

from the graphics presented in Chapter 6. We chose the following information to describe

them: mean, median, maximum, minimum and standard deviation.

Appendix D reports the comparison of all variants of the proposed population-

based metaheuristic approach for the ELM model selection, using all four chosen meta-

heuristics. The variants with best performances were chosen to be discussed in Chapter 7.

Appendix E shows typical convergence curves related to each of the independent

runs of the proposed population-based metaheuristic for model selection of the ELM

network, in order to illustrate how the fitness values evolved through generations.

Finally, Appendix F provides preliminary experiments on the outlier-robust

extension of the proposed population-based metaheuristic approach for model selection of

the ELM network.
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2 THE EXTREME LEARNING MACHINE

Random projections in feedforward neural networks have been a subject of

interest long before the famous works of Huang, Zhu, and Siew (2004, 2006). The essence

of those random projections is that the feature generation does not suffer any learning

adaptation, being randomly initialized and remaining fixed. This characteristic leads to a

much simpler system, where only the hidden-to-output weights (output weights for short)

must be learned. In this context, the Extreme Learning Machine (ELM) arose as an

appealing option for single layer feedforward neural networks (SLFN), offering a learning

efficiency with conceptual simplicity.

In this chapter, Section 2.1 makes a brief review through the literature on

random projections in the hidden layer of feedforward neural networks. On Section 2.2, the

ELM algorithm is detailed, followed by Section 2.3, where the issues and some proposed

improvements are described, such as: regularization (Subsection 2.3.1), architecture design

(Subsection 2.3.2) and intrinsic plasticity (Subsection 2.3.3). At last, Section 2.4 presents

the final remarks over this chapter.

2.1 Random projections in the literature

In 1958, Rosenblatt already stated about the perceptron theory:

A relatively small number of theorists, like Ashby (ASHBY, 1952) and von

Neumann (NEUMANN, 1951; NEUMANN, 1956), have been concerned with

the problems of how an imperfect neural network, containing many random

connections, can be made to perform reliable. (ROSENBLATT, 1958, p. 387)

In his work, he discussed a perceptron network that responds to optical patterns

as stimuli. It is formed by a set of two hidden layers, called projection area and association

area and their connections are random and scattered. The output offers a recursive link to

the latest hidden layer. One of the main conclusions of this paper is:

In an environment of random stimuli, a system consisting of randomly connected

units, subject to the parametric constraints discussed above, can learn to

associate specific responses to specific stimuli. Even if many stimuli are
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associated to each response, they can still be recognized with a better-than-

chance probability, although they may resemble one another closely and may

activate many of the same sensory inputs to the system. (ROSENBLATT,

1958, p. 405)

At the end of the 1980’s, a Radial Basis Function (RBF) network with random

selected centers and training only the output layer was proposed (BROOMHEAD; LOWE;

LOWE, 1988, 1989 apud WANG; WAN; HUANG, 2008, 2008). This work, however,

chooses the scale factor heuristically and focuses on the data interpolation. Schmidt et

al. (1992) proposed a randomly chosen hidden layer, whereas the output layer is trained

by a single layer learning rule or a pseudoinverse technique. It is interesting to point out

that the authors did not intend to present it as an alternative learning method: “this

method is introduced only to analyze the functional behavior of the networks with respect

to learning.” (SCHMIDT et al., 1992, p. 1)

Pao and Takefuji (1992) presented a Random Vector Functional-Link (RVFL)

which is given by one hidden layer feedforward neural network with randomly selected

input-to-hidden weights (hidden weights for short) and biases, while the output weights

are learned using simple quadratic optimization. The difference here lies on the fact that

the hidden layer output is viewed as an enhancement of the input vector and both are

presented simultaneously to the output layer. A theoretical justification for the RVFL is

given in (IGELNIK; PAO, 1995), where the authors prove that RVFL is indeed universal

function approximators for continuous functions on bounded and finite dimensional sets,

using random hidden weights and tuned hidden neuron biases (HUANG, 2014). They did

not address the universal approximation capability of a standard SLFN with both random

hidden weights and random hidden neuron biases (HUANG, 2014).

In 2001, H. Jaeger proposed a recurrent neural network named Echo State

Network (ESN) (JAEGER, 2001a; JAEGER, 2001b) where a high dimensional hidden layer

is viewed as a reservoir of dynamics and its weights are fixed and randomly initialized. They

are stored into a sparse matrix that also allows communication between hidden neurons.

The hidden layer receives as input, not only the input pattern, but its own activations

and may take recurrent links from the network’s output as well. The architecture equally

admits communication between the input directly to the output layer. Finally, the learning

phase is done by collecting the reservoir states during the application of the training data
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followed by linear regression to estimate the output weights.

Different works over the concept of reservoir computing were also introduced,

such as Maass et al. (2002) under the notion of Liquid State Machines (LSM) and Static

Reservoir Computing presented in (EMMERICH; STEIL, 2010). For more details over

reservoir computing approaches and their relation to random projections considering

output feedback can be found in (REINHART, 2011).

In a most recent effort on random projections, Widrow et al. (2013) proposed

the No-Propagation (No-Prop), which has also a random and fixed hidden weights and

only the output weights are trained. However, it uses the steepest descent to minimize

mean squared error, with the Least Mean Square (LMS) algorithm of Widrow and Hoff

(WIDROW; HOFF, 1960 apud WIDROW et al., 2013). Nevertheless, Lim (2013) stated

that this work has been already proposed by G.-B. Huang and colleagues 10 years ago and

intensively discussed and applied by other authors since.

So far, few examples of different approaches were presented to contextualize

where the Extreme Learning Machine inserts itself in the literature. The remainder of this

chapter is dedicated to describe this popular network.

2.2 Introduction to ELM

As previously mentioned, ELM is a single hidden layer feedforward network

with fixed and random projections of the input onto the hidden state space. Proposed by

Huang, Zhu, and Siew (2004, 2006), it is a universal function approximator and admits

not only sigmoidal networks, but also RBF networks, trigonometric networks, threshold

networks, and fully complex neural networks (WIDROW et al., 2013). Compared with

other traditional computational intelligence techniques, such as the Multilayer Perceptron

(MLP) and RBF, ELM provides a better generalization performance at a much faster

learning speed and with minimal human intervention (HUANG; WANG; LAN, 2011).

Given a training set with N samples {(ui,di)}N
i=1, where ui ∈ Rp is the i-th

input vector and di ∈ Rr is its correspondent desired output. In the architecture described

by Figure 1, with q hidden neurons and r output neurons, the i-th output at time step k is

given by

y(k) = β
T h(k), (2.1)
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Figure 1 – Extreme Learning Machine architecture, where only
the output weights are trained.

Source: author.

where β ∈ Rq×r is the weight matrix connecting the hidden to output neurons.

For each input pattern u(k), the correspondent hidden state h(k) ∈ Rq is given

by

h(k) =
[

f
(
mT

1 u(k)+ b1
)

. . . f
(
mT

q u(k)+ bq
)]
, (2.2)

where m j ∈ Rp is the weight vector of the j-th hidden neuron and is initially drawn from

a uniform distribution, remaining unaffected by learning. The b j is its bias value and

f (·) is a nonlinear piecewise continuous function satisfying ELM universal approximation

capability theorems (HUANG et al., 2006 apud HUANG, 2014, p. 379), for example:

1. Sigmoid function:

f (·) =
1

1 + exp
(

a(mT
j u(k))+ b j

) (2.3)
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2. Hyperbolic tangent:

f (·) =
1− exp

(
−
(

a(mT
j u(k))+ b j

))
1 + exp

(
−
(

a(mT
j u(k))+ b j

)) (2.4)

3. Fourier function:

f (·) = sin
(
mT

j u(k)+ b j
)

(2.5)

4. Hard-limit function:

f (·) =

 1 if
(

mT
j u(k)+ b j

)
≥ 0

0 otherwise
(2.6)

5. Gaussian function:

f (·) = exp
(
−b j‖u(k)−m j‖2) (2.7)

where a is the function’s slope, usually ignored being set to 1.

Let the hidden neurons output matrix be described by:

H =


h1(1) ... hq(1)

...
. . .

...

h1(N) ... hq(N)


N×q

. (2.8)

The output weights β is given by the solution of an ordinary least-squares (see

Equation 2.9).

Hβ = D, (2.9)

where D ∈ RN×r is the desired output matrix. This linear system can simply be resolved

by least-squares method, that in its batch mode, is computed by

β = H†D (2.10)

where H† =
(
HT H

)−1 HT is the Moore-Penrose generalized inverse of matrix H. Different

methods can be used to calculate Moore-Penrose generalized inverse of a matrix, such as

orthogonal projection method, orthogonalization method, singular value decomposition

(SVD) and also through iterative methods (HUANG, 2014). In this work, the SVD

approach was adopted.

That being said, the algorithm that describes the procedure to adapt an ELM

network is given in Algorithm 1.
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Algorithm 1: Extreme Learning Machine

1: Training set {(ui,di)}N
i=1 with u ∈ Rp and d ∈ Rr;

2: Randomly generate the hidden weights M ∈ Rp×q and biases b ∈ Rq;
3: Calculate the hidden layer output matrix H;
4: Calculate the output weight vector β (see Equation 2.10);
5: return β .

2.3 Issues and improvements for ELM

Even though ELM networks and its variants are universal function approx-

imators, their generalization performance is strongly influenced by the network size,

regularization strength, and, in particular, the features provided by the hidden layer

(NEUMANN, 2013). One of the issues inherited from the traditional SLFN is how to

obtain the best architecture. It is known that a network with few nodes may not be able

to model the data, in contrast, a network with too many neurons may lead to overfitting

(MARTÍNEZ-MARTÍNEZ et al., 2011). Another shortcoming is that the random choice

of hidden weights and biases may result in an ill-conditioned hidden layer output matrix,

which derails the solution for the linear system used to train the output weights (WANG

et al., 2011; HORATA et al., 2013). An ill-conditioned hidden layer output matrix also

provides unstable solutions, where the small errors in the data will lead to errors of a

much higher magnitude in the solution (QUARTERONI et al., 2006, p. 150). This is

reflected on the high norm of output weights, which is not desirable as discussed in the

works of Bartlett (1998) and Hagiwara and Fukumizu (2008), where they stated that

the size of output weight vector is more relevant for the generalization capability than

the configuration of the neural network itself. This can be observed as the training error

enlarges and the test performance deteriorates (WANG et al., 2011). To deal with this,

ELM uses SVD even though it is computationally consuming.

In the following subsections, we presented some works and proposed improve-

ments for ELM network that concerns the aforementioned issues.

2.3.1 Tikhonov’s regularization

A problem is well-posed if its solution exists, is unique and depends continuously

on its input data, as defined by Hadamard (1902) apud Haykin (2008, chap. 7). However,

in many learning problems, those conditions are usually not satisfied. Violations may be
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encountered when there is not a distinct output for every input, when there is not enough

information in the training set that allows a unique reconstruction of the input-output

mapping, and the inevitable presence of noise or outliers in real-world data which brings

uncertainty to the reconstruction process (HAYKIN, 2008, chap. 7).

To deal with this limitation, it is expected that some prior information about

the mapping is available. The most common form of prior knowledge involves the as-

sumption that the mapping’s underlying function is smooth, i.e., similar inputs produce

similar outputs (HAYKIN, 2008, chap. 7). Based on that, the fundamental idea behind

regularization theory is to restore well-posedness by appropriate constraints on the solution,

which contains both the data and prior smoothness information (EVGENIOUA et al.,

2002).

In 1963, Tikhonov introduced a method named Regularization (TIKHONOV,

1963 apud HAYKIN, 2008, chap. 7), which became state of the art for solving ill-posed

problems. For the regularized least-squares estimator, its cost function for the i-th output

neuron is given by

J (β i) = ‖ε i‖2 + λ‖β i‖2, (2.11)

‖ε i‖2 = ε
T
i ε i = (di−Hβ i)

T (di−Hβ i) . (2.12)

where ε i ∈ RN is the vector of error between the desired output and the network’s output,

and λ > 0 is the regularization parameter.

The first term of the regularization cost function is responsible for minimizing

the error squared norm (see Equation 2.12), enforcing closeness to the data. The sec-

ond term of this function minimizes the norm of the output weight vector, introducing

smoothness, while λ controls the trade-off between these two terms.

Minimizing Equation 2.11, we obtain

β̂ i =
(
HT H + λ I

)−1 HT di, (2.13)

where I ∈ Rq×q is an identity matrix.
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2.3.2 Architecture optimization

As previously mentioned, one of the issues of the ELM network is to determine

its architecture. On one hand, few hidden neurons may not provide enough information

processing power and, consequently, a poor performance. On the other hand, a large

hidden layer may create a very complex system and lead to overfitting. To try to handle

this issue, three main approaches are pursued (XU et al., 2007; ZHANG et al., 2012):

• constructive methods start with a small network and then gradually adds new hidden

neurons until a satisfactory performance is achieved (HUANG et al., 2006; HUANG;

CHEN, 2008; HUANG et al., 2008; FENG et al., 2009; ZHANG et al., 2011; YANG

et al., 2012);

• destructive methods also known as pruning methods, start by training a much larger

network and then removes the redundant hidden neurons (RONG et al., 2008; MICHE

et al., 2008; MICHE et al., 2011; FAN et al., 2014);

• evolutionary computation uses population-based stochastic search algorithms that are

developed from the natural evolution principle or inspired by biological group behavior

(YAO, 1999). Besides the adaptation of an architecture, they may also perform

weight and learning rule adaptation, input feature selection, weight initialization, etc

(YAO, 1999). More about architecture design with metaheuristics is further described

in Chapter 4 and some metaheuristics algorithms are detailed in Appendix A.

Huang et al. (2006) proved that an incremental ELM, named I-ELM, still

maintain its properties as universal approximator. In 2008, two approaches were proposed

to improve I-ELM performance. In (HUANG et al., 2008), the I-ELM was extended from the

real domain to the complex domain with the only constraint that the activation function

must be complex continuous discriminatory or complex bounded nonlinear piecewise

continuous. Also, in 2008, Huang and Chen proposed an enhanced I-ELM, named EI-ELM.

It differs from I-ELM by picking the hidden neuron that leads to the smallest residual error

at each learning step. This resulted in a more compact architecture and faster convergence.

Still on constructive methods, the Error Minimized Extreme Learning Machine

(EM-ELM) (FENG et al., 2009) grows hidden neurons one by one or group by group,

updating the output weights incrementally each time. Based on EM-ELM, Zhang et al.

(2011) proposed the AIE-ELM that grows randomly generated hidden neurons in a way

that the existing hidden neurons may be replaced by some of the newly generated ones
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with better performance instead of keeping the existing ones. The output weights are still

updated incrementally just as EM-ELM. Yang et al. (2012) proposed the Bidirectional

Extreme Learning Machine (B-ELM), in which some neurons are not randomly selected

and takes into account the relationship between the residual error and the output weights

to achieve a faster convergence.

On pruning methods, we can mention the Optimally Pruned Extreme Learning

Machine (OP-ELM) (MICHE et al., 2008; MICHE et al., 2010), that starts with a large

hidden layer, then each hidden neuron is ranked according with a Multiresponse Sparse

Regression Algorithm and, finally, neurons are pruned according to a leave-one-out cross-

validation. TROP-ELM (MICHE et al., 2011) came as an OP-ELM improvement, that

adds a cascade of two regularization penalties: first a L1 penalty to rank the neurons of

the hidden layer, followed by a L2 penalty on the output weights for numerical stability

and better pruning of the hidden neurons. Finally, and most recently, the work of Fan

et al. (2014) proposes an Extreme Learning Machine with L1/2 regularizer (ELMR), that

identifies the unnecessary weights and prunes them based on their norms. Due to use

of the L1/2 regularizer, it is expected that the absolute values of the weights connecting

relatively important hidden neurons become fairly large.

Although constructive and pruning methods address the architecture design,

they explore only a limited number of available architectures (XU; LU; HO, 2007; ZHANG

et al., 2012). As mentioned above, evolutionary algorithms allows that not only the

architecture (number of layers, number of neurons, connections, etc) but also activation

functions, weight adaptation and others to be optimized. Because of this feature, we

adopted this method in this work and will be further detailed in Chapter 4.

2.3.3 Intrinsic plasticity

In artificial neural networks field, the majority of learning developments focus

on exploring forms of synaptic plasticity, i.e., the adaptation of synaptic weights. This

specific plasticity is a mechanism for memory formation and is the prevalent one in a

normal adult brain (LENT, 2008, p. 126). Notwithstanding, it is not the only form of

plasticity: “other forms also play a critical role in shaping adaptive changes within the

nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a

neuron.”(SEHGAL et al., 2013, p. 186).
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Biologically, this phenomenon helps neurons maintain appropriate levels of

electrical activity, by shifting the positions and/or the slopes of the response curves to make

the sensitive regions of the response curves always correspond well with input distributions

(LI, 2011). Even though it is still uncertain how the underlying processes work, there is

experimental evidence suggesting that it plays an important role as part of the memory

engram1 itself, as a regulator of synaptic plasticity underlying learning and memory, and

as a component of homeostatic regulation (CUDMORE; DESAI, 2008).

Baddeley et al (1997) (BADDELEY et al., 1997 apud LI, 2011) performed

an experimental observation where they concluded that neurons exhibit approximately

exponential distributions of the spike counts in a time window. Based on this information,

computational approaches were developed to study the effects of intrinsic plasticity (IP)

on various brain functions and dynamics.

In a mathematical manner, their goal is to obtain an approximately exponential

distribution of the firing rates. Since the exponential distribution has the highest entropy

among all distributions with fixed mean (TRIESCH, 2005), those approaches attempt to

maximize the information transmission while maintaining a fixed average firing rate, or

equivalently, minimize their average firing rate while carrying a fixed information capacity

(LI, 2011). As examples, we may cite: (BELL; SEJNOWSKI, 1995), (BADDELEY et

al., 1997), (STEMMLER; KOCH, 1999), (TRIESCH, 2004), (SAVIN et al., 2010) and

(NEUMANN, 2013).

Triesch (2005) proposed a gradient rule for intrinsic plasticity to optimize the

information transmission of a single neuron by adapting the slope a and bias b of the logistic

sigmoid activation function (see Equation 2.3) in a way that the hidden neurons’ outputs

become exponentially distributed. Based on his works (TRIESCH, 2004; TRIESCH, 2005;

TRIESCH, 2007), Neumann and Steil (2011) proposed a method named Batch Intrinsic

Plasticity (BIP) to optimize ELM networks’ hidden layer. The difference between those

two methods lies on the parameters a and b estimation that, in BIP, the samples are

presented all at once and the parameters are calculated in only one shot.

Since ELM has random hidden weights, they may lead to saturated neurons

or almost linear responses which may also compromise the generalization capability

(NEUMANN; STEIL, 2013). Nevertheless, this can be avoided using activation functions

1“A hypothetical permanent change in the brain accounting for the existence of memory; a memory
trace.”(DICTIONARIES, 2014)
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that provides a suitable regime just as the IP proposition, acting also as a feature regularizer

(NEUMANN; STEIL, 2013).

With this in mind, the BIP approach is accomplished by forcing the j-th hidden

neuron activation with a logistic activation function (Equation 2.3) or with a hyperbolic

tangent (Equation 2.4) into a desired exponential distribution fdes. For each hidden neuron,

all the incoming synaptic sum x j = mT
j U is collected, where U = (u(1), ...,u(N))T . Then

random virtual targets T fdes = (t1, ..., tN)T from the desired exponential output distribution

and the collected stimuli x j are both drawn in ascending order. Next, we build the data

matrix Φ(x j) = (xT
j ,(1, ...,1)T ) and the parameter vector v j = (a j,b j). The solution for

the optimal v j is obtained by computing the Moore-Penrose pseudo inverse is given by

(a j,b j)
T = (Φ(x j)

T
Φ(x j)+ λ I)−1

Φ(x j)
T f−1(t fdes), (2.14)

where f−1 is the inverse of the activation function. Thus, λ > 0 is the regularization

parameter and I ∈ Rq×q is an identity matrix.

It is important to highlight that, in case that the logistic sigmoid is used, the

virtual targets T fdes are in [0,1]. Due to this fact, only truncated probability distributions

are applied (NEUMANN, 2013). The algorithm that describes the BIP procedure is given

in Algorithm 2.

Algorithm 2: Batch Intrinsic Plasticity

1: Input: U = (u(1),u(2)...u(N))T ;
2: for each hidden neuron j do
3: x j = mT

j U; {harvest the synaptic sum, i = 1, ...,q}
4: t fdes = (t1, ..., tN)T ; {desired outputs from a exponential distribution fdes}
5: Put in ascending order x j and t fdes

6: Build the model Φ(x j) = (xT
j ,(1, ...1)T )

7: Calculate Equation 2.14
8: end for
9: return {a,b}.

2.4 Concluding remarks

The ELM network is an SLFN with random hidden weights, bias and analytically

determined output weights. It offers several advantages such as fast learning, simple

implementation, and good generalization capability. One can argue that it has been
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already proposed in the literature, however, as presented in our brief survey, there are

distinctions in how the input features are presented, architecture design and/or in the

main goal of processing. A thorough review can be seen in (HUANG, 2014).

The main challenges when using this network consist in defining an optimal

number of hidden neurons, work through computational issues due to ill-posed H and

dealing with the inevitable presence of noise or outliers in real-world data. Designing ELM’s

architecture has been extensively studied in these few years of the network’s existence.

Even though many researchers focus only on performance errors, there are only a few

number of works that concern regularization and size of the output weights. Nevertheless,

the study of its robustness, especially to outliers, is still in its infancy.

Having this problem in mind, in Chapter 3 we propose a robust ELM that

combines the regularization effect of intrinsic plasticity and robustness to outliers.
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3 A ROBUST ELM/BIP

Real world machine learning problems are often contaminated by noise caused

by measurement errors, human mistakes, measurements of members of wrong populations,

rounding errors etc (BELIAKOV et al., 2011; RUSIECKI, 2013). They may also be

heavy-tailed, which results in different sample distribution than the desired normal one.

These inaccuracies may influence the data basically in two ways: affecting the observations

(outputs d), creating outliers; and/or corrupting the explanatory variables (input data

u) which are then named leverage points (ROUSSEEUW; LEROY, 1987). Thereupon,

outliers can be defined intuitively as data points inconsistent with the remainder of dataset

(HUYNH et al., 2008).

Regression outliers (either in u or d) pose a serious threat to standard least

squares analysis, influencing modeling accuracy as well as the estimated parameters, as

shown in the works of Khamis et al. (2005) and Steege et al. (2012).

Hence, when fitting a model to contaminated data, we should adopt one of

these methods: regression diagnostic or robust regression (ROUSSEEUW; LEROY, 1987).

The intent of diagnostic methods is to erase the outliers and then fit the “good” data

by Ordinary Least Squares (OLS), whilst a robust regression first fits a model with a

“resistant” method and then discovers the outliers as those points which have the large

residuals from that robust solution (ROUSSEEUW; LEROY, 1987).

Even though outliers are considered error or noise, they can also contain

important information or even be the most important samples in the set (BEN-GAL, 2005

apud BARROS, 2013). By simply removing these points, that do not seem to behave as

the remaining ones, there is a chance of biasing your regression line towards some raised

hypothesis. Besides, adopting a diagnostic method is especially harder when dealing with

datasets that have many outliers.

From the exposed, we investigated here a robust regression method and related

works with neural networks, particularly with ELM. This method weights the contribution

of each sample error designated to calculate a solution, avoiding that large errors influence

the final estimation.

In this chapter, we provide a numerical example in Section 3.1 that demonstrates

how the presence of a single outlier perturbs the regression line solution. In Section 3.2 we

describe one of the most known robust regression methods, named M-Estimators, its weight
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functions (Subsection 3.2.1) and then exhibit a numerical example (Subsection 3.2.2). In

Section 3.3 we make a brief review of robust neural networks and introduce the approaches

that apply robust methods to ELM networks. Then, in Section 3.4, we present our method

named R-ELM/BIP. Finally, in Section 3.5, we provide our final remarks on this chapter.

3.1 Outliers influence

The following case exemplifies an outlier impact over model estimation. This

specific example was presented in the work of Barros (2013) and reproduced here with

permission of this author.

Table 2 – Cigarette consumption dataset.

Country Cigarette per capita Deaths (millions)
1 Australia 480 180
2 Canada 500 150
3 Denmark 380 170
4 Finland 1100 350
5 Great Britain 1100 460
6 Iceland 230 60
7 Holland 490 240
8 Norway 250 90
9 Sweden 300 110
10 Switzerland 510 250
11 USA 1300 200

Source: Barros (2013).

Table 2 shows the data corresponding to the set that associates the consumption

of cigarettes per capita in 1930 in eleven different countries with lung cancer deaths (in

million) that occurred in 1950. The sample related to the USA is recently added to this

set and hence is highlighted. From the scatter plot in Figure 2, it is possible to observe

that the majority of the data indicates a linear tendency, although this hypothesis is

compromised with this new sample addition.

Figure 3 presents the two regression lines that result from the inclusion or not

of the pair (1300, 200). It was used least squares algorithm to calculate them and it is

clear that these two cases lead to different solutions. This new sample draws the regression

line towards it, which alienates the line from a solution that could explain or even predict

the number of deaths for a certain country.
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Figure 2 – Scatter plot of Table 2 dataset.
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Figure 3 – Regression with and without the USA sample.
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Thinking of the linear system resulting from the estimation of ELM’s output

weights, the following sections discuss a robust linear regression method named Maximum

Likelihood Estimation.
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3.2 Fundamentals of Maximum Likelihood Estimation

The ordinary least squares (OLS) criterion has become the starting point for

most introductory discussions of system modeling and is based on minimizing the squared

error between the desired output d and the systems output y:

J (β ) =
N

∑
n=1
‖ε‖2 =

N

∑
n=1
‖d(n)−y(n)‖2. (3.1)

However, its specific assumptions are ordinarily overlooked:

• we have an overdetermined system (more observations than output weights, in our

case);

• the error ε is normally distributed with mean zero and unknown variance σ2
ε ;

• the observations {ε i} are uncorrelated.

The first assumption is easily fulfilled and the other two are usually supported

by the Central Limit Theorem1. Nevertheless, as Huber said in his work: “Gauss was fully

aware that his main reason for assuming an underlying normal distribution and a quadratic

loss function was mathematical, i.e., computational convenience.” (HUBER, 1964, p. 73

and 74). After all, real-world data are seldom so well-behaved. Besides the Central Limit

Theorem can only explain that, in practice, we have distributions approximately normal

and large samples are not always available.

In such situation, where the normality is failing at the tails2, it is known that

the OLS are far from optimal estimators (ANDREWS, 1974). Thus, one may ask whether

it is possible to add robustness to the estimator by minimizing a different cost function

than the sum of square errors.

It is worth noticing that the OLS criterion assigns the same importance to all

errors (BARROS; BARRETO, 2013). Thereafter, outliers may produce large squared

errors and then bias the solution towards the outliers locations, as demonstrated on

Section 3.1.

An alternative was proposed by Huber (1964) and named M-Estimation (”M”

for ”maximum likelihood-type”). In short, it can be seen as a weighted mean, in which

1It states that the distribution of the sum, or average, of a large number of independent, identically
distributed variables will be approximately normal, regardless of the underlying distribution.

2Heavy-tailed or fat-tailed distributions are the ones whose density tails tend to zero more slowly than
the normal density tails (MARONNA et al., 2006).
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extreme error values are given reduced weight while those closer to the center of the

distribution receive the largest weights.

A general M-estimator applied to the i-th output neuron of an ELM network

minimizes the following cost function:

J (β i) =
N

∑
n=1

ρ (εi(n)) =
N

∑
n=1

ρ (di(n)− yi(n)) , (3.2)

where the objective function ρ(.) gives the contribution of each error ε i(n) to the cost

function. It is interesting to notice that OLS is a particular M-estimator, achieved when

ρ (εi(n)) = ε2
i (n) .

The function ρ should possess the following properties:

• Property 1: ρ (ε)≥ 0;

• Property 2: ρ(0) = 0;

• Property 3: ρ (ε) = ρ (−ε);

• Property 4: ρ (ε(i))≥ ρ (ε( j)) for |ε(i)|> |ε( j)|.

In order to derive a learning rule, we differentiate the cost function with respect

to the output weights β i (that we will name here as coefficients for future distinction) by

setting the partial derivatives to zero, as shown below:

∂J (β i)

∂β i
=

N

∑
n=1

∂ρ (εi(n))

∂εi

∂εi(n)

∂β i
=

N

∑
n=1

ψ(εi(n))
∂εi(n)

∂β i
= 0, (3.3)

where the derivative ψ = dρ(ε)/dε is named influence function and 0 is a (q + 1) dimen-

sional row vector of zeros. It is interesting to notice that the influence function ψ(ε)

measures the influence of the error on the parameter estimation value. For example, for

the least squares, ρ(ε) = ε2/2 and ψ(ε) = ε , i.e. the influence of an error increases linearly

with its size, which confirms the non-robustness of least squares estimation (ZHANG,

1997).

Based on this, the weight function is defined as

w(εi) =
ψ(εi)

εi
, (3.4)

and then Equation 3.3 becomes

N

∑
n=1

w(εi(n))εi(n)
∂εi

∂β i
= 0. (3.5)

This is exactly the system of equations that we obtain if we solve a weighted

least-squares problem, by minimizing ∑
N
n=1 w2

i (n)ε2
i (n) (ZHANG, 1997). Nonetheless, the
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weights depend upon the errors, the errors depend upon the estimated coefficients and

the estimated coefficients depend upon the weights (FOX, 2002). As a consequence, a

closed-form equation for estimating β i is not available. Therefore, an iterative solution,

named Iteratively Reweighted Least Squares (IRWLS), is required (see Algorithm 3).

Algorithm 3: Iteratively Reweighted Least Squares

1: Provide an initial estimate of β i(0) using OLS (Equation 2.10);
2: for t = 1 until β i(t) converges do
3: Compute the errors εin(t−1) associated with the i-th output neuron and n = 1, ...,N.
4: Define weights win(t−1) = w[εin(t−1)], creating Wi(t−1) = diag{win(t−1)}
5: Solve for new weighted-least-squares estimate of β i(t):

β i(t) =
[
HT Wi(t−1)H

]−1 HT Wi(t−1)di (3.6)

6: t = t+1;
7: end for
8: return β .

3.2.1 Objective and Weighting Functions for M-Estimators

In order to apply the IRWLS algorithm, it is imperative that the user chooses

an objective function ρ . Nine of the most common functions for M-estimators are Andrews,

Bisquare, Cauchy, Fair, Huber, Logistic, OLS, Talwar, and Welsch (see Table 3). This

flexible choice of functions leads to different estimators, but independently of ρ , there is a

positive parameter k, known as error (or outlier) threshold or tunning constant, that must

also be defined.

The programming environment Matlab provides a function for robust estimation,

named ROBUSTFIT, that has not only a list of several objective functions and their

respective weight functions but also gives, if necessary, default values for the parameter

k with the same aforementioned property. The objective and weight functions and their

respective k are presented in Table 3 and demonstrated in Figures 4 and 5 with k = 1

respectively.

Observing the weight functions in Figure 5, it is possible to understand how this

parameter influences the solution. Taking Huber (Figure 5e) as an example, errors within

the defined error threshold (|ε| ≤ k) are treated just as OLS, where they all contribute to

the final estimation with weight w(ε) = 1. The difference lies at the boundary beyond k,
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Table 3 – Objective functions and their respective weight functions and default
thresholds provided by Matlab.

Name Objective Function (ρ) Weight Function (w) Threshold(k)

Andrews

{
k2
[
1− cos

(
ε

k

)]
,
∣∣ ε

k

∣∣≤ π

2k2,
∣∣ ε

k

∣∣> π

{(
ε

k

)−1 sin
(

ε

k

)
,
∣∣ ε

k

∣∣≤ π

0,
∣∣ ε

k

∣∣> π
1.339

Bisquare

 k2

6

{
1−
[
1−
(

ε

k

)2
]3
}
,
∣∣ ε

k

∣∣≤ 1

k2

6 ,
∣∣ ε

k

∣∣> 1

{[
1−
(

ε

k

)2
]2

,
∣∣ ε

k

∣∣≤ 1
0,

∣∣ ε

k

∣∣> 1
4.685

Cauchy k2

2 log
(

1 +
(

ε

k

)2
) 1

1+( ε

k )
2 2.385

Fair k2
[
|ε|
k − log

(
1 + |ε|

k

)] 1
1+ |ε|k

1.400

Huber

{
ε2(n)

2 ,
∣∣ ε

k

∣∣≤ 1
k|ε|− k2

2 ,
∣∣ ε

k

∣∣> 1

{
1,

∣∣ ε

k

∣∣≤ 1
k
|ε| ,

∣∣ ε

k

∣∣> 1 1.345

Logistic k2 log
[
cosh

(
ε

k

)] (
ε

k

)−1 tanh
(

ε

k

)
1.205

OLS ε2(n) 1 �

Talwar

{
ε2(n)

2 ,
∣∣ ε

k

∣∣≤ 1
k2

2 ,
∣∣ ε

k

∣∣> 1

} {
1,

∣∣ ε

k

∣∣≤ 1
0,

∣∣ ε

k

∣∣> 1

}
2.795

Welsch k2

2

[
1− exp

(
−
(

ε

k

)2
)]

exp
(
−
(

ε

k

)2
)

2.985

Source: Barros and Barreto (2013).

where those weight values decrease as the absolute error values |ε| increase.

Smaller values of k produce more resistance to outliers, but at the expense

of lower efficiency when the errors are normally distributed (BARROS; BARRETO,

2013). This error threshold is usually chosen to provide reasonably high efficiency in the

normal case (FOX, 2002). For example, k = 1.345σ for the Huber objective function and

k = 4.685σ for Bisquare, where σ is the standard deviation of the errors. Those values give

coefficient estimates that are approximately 95% as statistically efficient as the ordinary
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Figure 4 – Different objective functions ρ(ε) with k = 1.

(a) Andrews.
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(b) Bisquare.
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(c) Cauchy.
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(d) Fair.
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(e) Huber.
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(f) Logistic.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

Error sample ε

A
m

p
li

tu
d

e
 ρ

(ε
)

(g) OLS.
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(h) Talwar.
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(i) Welsch.
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Source: author.

least squares estimates, provided that the response has a normal distribution with no

outliers (FOX, 2002).

It is important to highlight that σ must also be estimated. Ordinarily, a robust

estimation for sigma is the normalized median absolute deviation (MADN) described in

Equation 3.7.

σ̂ = MADN(ε) =
Med (|ε−Med(ε)|)

0.6745
, (3.7)

where Med(.) is the median and the constant value 0.6745 makes σ̂ an unbiased estimate

for Gaussian errors (BARROS, 2013).

Another point to be highlighted refers to error treatment. As Barros and
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Figure 5 – Different weight functions w(ε) with k = 1.

(a) Andrews.
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(b) Bisquare.
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(c) Cauchy.
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(d) Fair.
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(e) Huber.
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(f) Logistic.
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(g) OLS.
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(h) Talwar.
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(i) Welsch.
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Source: author.

Barreto (2013) mentioned, textbook equations of the weight functions shown in Table 3

are written using directly the raw error εi(n) as argument. Notwithstanding, in practical

applications, it is highly recommended to use standardized errors ei(n) instead (STEVENS,

1984), which are then computed as:

ei(n) =
εi(n)

σ̂
√

1−h∗nn
, (3.8)

where h∗nn, with 0 ≤ h∗nn ≤ 1, is the n-th entry of the main diagonal of the hat matrix

H∗ = H(HT H)−1HT , with the matrix H defined as in Equation 2.8.

In Matlab’s implementation, they adopted the following equation:

ei(n) =
εi(n)

kσ̂
√

1−h∗nn
. (3.9)
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3.2.2 Numerical example

In order to observe the outlier robustness of M-Estimators, we take the same

numerical example given in Subsection 3.1. Adopting the ROBUSTFIT tool provided by

Matlab, the resulting regression lines are displayed in Figures 6 and 7 and are calculated

using M-Estimators with OLS, Bisquare, Andrews and Huber objective functions.

In Figure 6, the data applied did not have the USA sample, i.e., it did not

contain an outlier. We can observe that the regression lines almost overlap each other.

Also by observing Table 4, that displays the provided weights for each sample error, we

may notice that OLS and Huber had the same behavior with weight equal to one, while

the other functions offered high values.

Figure 6 – Regression without USA outlier.
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Figure 7 shows the resulting lines when there is an outlier in the data. Adding

the USA sample, we may observe that the OLS line has been pulled towards this spurious

sample, as expected. Moreover, the other M-Estimators are less affected by this sample.

On one hand, the Bisquare and Andrews functions ignored it completely, as demonstrated

in Table 4, where the respective weight is equal to zero. Huber’s resulting line, on the

other hand, was affected slightly with an approximately 0.3 weight. Even though, Huber’s

line was still more robust than the OLS alternative.

On the following sections, we will make a very brief review of robust neural
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Figure 7 – Regression with USA outlier.
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Table 4 – Weight values for different M-Estimators with Cigarette dataset.

Country
Weights (without outlier) Weights (with outlier)

OLS Bisquare Andrews Huber OLS Bisquare Andrews Huber

Australia 1 0.99914 0.99912 1 1 0.99926 0.99924 1
Canada 1 0.95897 0.95824 1 1 0.96286 0.96216 1
Denmark 1 0.99017 0.98997 1 1 0.99099 0.99081 1
Finland 1 0.8416 0.83959 1 1 0.89577 0.8941 1
Great Britain 1 0.9379 0.937 1 1 0.9549 0.95414 0.84893
Iceland 1 0.97379 0.97333 1 1 0.97594 0.97549 1
Holland 1 0.94674 0.94583 1 1 0.95081 0.94992 1
Norway 1 0.99742 0.99738 1 1 0.99755 0.9975 1
Sweden 1 0.9981 0.99807 1 1 0.99821 0.99817 1
Switzerland 1 0.94139 0.94042 1 1 0.94589 0.94493 1
USA − − − − 1 0 0 0.29814

Source: author.

networks and then present robust ELM solutions available in the literature.

3.3 Robustness in ELM networks

Robust neural networks have been a subject of interest for many years in different

applications. Works such as Liu (1993) shows that the conventional back-propagation

algorithm for neural network regression is robust to leverages, but not to outliers. Larsen et

al. (1998) proposed a neural network optimized using the maximum a posteriori technique

with a modified likelihood function which incorporates the potential risk of outliers in the
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data. Lee et al. (2009) proposed a Welsch M-estimator radial basis function with pruning

and growing techniques for noisy time series prediction.  Lobos et al. (2000) presented

on-line techniques for robust estimation of parameters of harmonic signals based on the

total least-squares criteria, which can be implemented by analogue adaptive circuits. Feng

et al. (2010) propose an algorithm for the neural network quantile regression adopted from

a Majorization-Minimization algorithm for optimization and applied it on an empirical

analysis of credit card portfolio data. Aladag et al. (2014) propose a median neuron

model multilayer feedforward (MNM-MFF) model, trained with a modified particle swarm

optimization metaheuristic, in order to deal with forecasting performance problems caused

by outliers.

The study of robustness with ELM network is still in its beginning. As pointed

out by Horata et al. (2013), two main aspects influence the robustness properties in a

ELM network: computational robustness and outlier robustness.

The computational robustness is related to the ability of ELM to compute its

output weights β , even if H is not full rank or ill-conditioned (HORATA; CHIEWCHAN-

WATTANA; SUNAT, 2013). This property has been usually ignored since many efforts

emphasize on solutions accuracy only (ZHAO et al., 2011). The hidden layer output matrix

H may be ill-conditioned, as mentioned in Section 2.3, due to the random input weights

and biases selection. This results in a solution with high norms and, consequently, sensitive

to any data perturbation, which becomes a poor estimation to the truth (ZHAO et al.,

2011).

Besides, it is known that the size of the output layer weight is more relevant

for the generalization capability than the configuration of the neural network, in terms

of the number of neurons and format of activation function (KULAIF; ZUBEN, 2013;

BARTLETT, 1998). Works such as (KULAIF; ZUBEN, 2013), (DENG et al., 2009),

(MARTÍNEZ-MARTÍNEZ et al., 2011) and (WANG; CAO; YUAN, 2011) explore this

specific issue.

The second aspect, related to outliers robustness, has been explored in recent

years within a few development proposals, using estimation methods that are known

for being less sensitive to outliers than the OLS. Works such as (HUYNH et al., 2008)

substitutes the Singular Value Decomposition method by the Weighted Least Squares,

though he did not detail which objective function he adopted. Another example is the
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one proposed by Barros and Barreto (2013), who concentrate their efforts on robust

classification problems with a proposal of an ELM, named Robust ELM (RELM), that

applied IRWLS with Andrews weight function to estimate its output weights. Finally,

one of the main references to this issue belongs to Horata et al. (2013), who addressed

both robustness problems. They replace the SVD method for the Extended Complete

Orthogonal Decomposition (ECOD) to overcome the not full column rank problem as

well as the ill-conditioning. This method is then allied to the three proposed iterative

algorithms to improve ELM’s outlier robustness: IRWLS, the Multivariate Least-Trimmed

Squares (MLTS) estimator and the One-Step Reweighted MLTS (RMLTS).

3.4 R-ELM/BIP

Based on the two robustness issues that Horata et al. (2013) described, we

propose a new method that deals with both problems. We combine the regularizer effect

and learning optimization property of Batch Intrinsic Plasticity (see Section 2.3.3) with

the outlier robustness of the M-estimation framework.

The BIP method provides that, independently of the chosen hidden weights,

we will have an optimized hidden layer which is then responsible for a stable output

layer solution. This solution has usually a small Euclidean norm, which improves the

generalization capability, as proven in works of Bartlett (1998) and Hagiwara and Fukumizu

(2008).

This manner, we tackle efficiently the ELM’s computational problem. Finally,

inspired by the works of Horata et al. (2013) and Barros and Barreto (2013), we deal

with outlier robustness by adopting the IRWLS algorithm, along with Bisquare objective

function and Matlab’s default error threshold, to estimate the output weights β .

This new method is then named Robust ELM with Batch Intrinsic Plasticity

(R-ELM/BIP) and the steps for its implementation follows in Algorithm 4.

3.5 Concluding remarks

Noisy datasets are almost a certainty when dealing with real-world problems.

Issues related to human mistakes, measurement errors, noise with other distribution than

the normal one etc, may cause the appearance of outliers. As extensively mentioned in
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Algorithm 4: R-ELM/BIP

1: Training set U = {(ui,di)}N
i=1 with u ∈ Rp and d ∈ Rr;

2: Randomly generate the hidden weights M ∈ Rp×q

3: for each hidden neuron j do
4: x j = mT

j U; {harvest the synaptic sum, i = 1, ...,q}
5: t fdes = (t1, ..., tN)T ; {desired outputs from a exponential distribution fdes}
6: Put in ascending order x j and t fdes

7: Build the model Φ(x j) = (xT
j ,(1, ...1)T )

8: Calculate Equation 2.14
9: end for

10: Re-introduce the training input data to the network and collect the network states H;
11: Calculate an initial estimate of β i(0) using OLS (Equation 2.10);
12: for t = 1 until β i(t) converges do
13: Compute the errors εin(t−1) associated with the i-th output neuron and n = 1, ...,N.
14: Define weights win(t−1) = w[εin(t−1)], creating Wi(t−1) = diag{win(t−1)}
15: Solve for new weighted-least-squares estimate of β i(t) (see Equation 3.6);
16: t = t+1;
17: end for
18: return β .

this chapter and demonstrated in Subsections 3.1 and 3.2.1, these spurious samples derail

the OLS solution, which has no resource to differentiate a sample from an outlier.

To deal with such situation, we adopted the robust regression approach named

M-Estimators, where the outliers are not necessarily excluded from the solution calculation,

but rather has its influence diminished with a chosen objective function.

Robust regression with neural networks have been explored in the literature,

although, concerning ELM architecture, there are only a few to count for. From the main

reference on this matter, Horata et al. (2013) suggest that the ELM robustness property

depends on two factors: computational robustness and outlier robustness.

Based on that, our proposed R-ELM/BIP adopts a robust regression estimator

allied to the maximization of the hidden layer’s information transmission, provided by

BIP. This set up generates a reliable solution in the presence of outliers with a good

generalization capability and small output weight norms.

In the following chapter, we deal with a different challenge for ELM networks:

the architecture design. Our proposal, based on metaheuristics, provides the number of

hidden neurons along with the respective activation functions parameters, which are all

evolved through the iterations.
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4 A NOVEL MODEL SELECTION APPROACH FOR THE ELM

The challenge of ANN’s architecture design has been dealt for many years in a

special class of neural networks named Evolutionary Artificial Neural Networks (EANN),

in which evolution is, besides the learning, another fundamental form of adaptation (YAO,

1999; DING et al., 2013). They can be regarded as a general framework for adaptive

systems (YAO, 1999) once it can be used to optimize not only the network’s topology, but

also train synaptic weights, adapt learning rules, initialize weights and extract features.

Motivated by the ELM’s architecture definition problem and inspired by those

algorithms, we proposed a method based on metaheuristics that evolve not only the number

of hidden neurons but also the activation function parameters: slope and bias. Named

Adaptive Number of Hidden Neurons Approach (ANHNA), it is outlined as a general

solution encoding for an individual (chromosome or particle) of a population followed by

some specific constraints that allows any metaheuristic algorithm to evolve a solution for

an ELM network, without losing its main characteristic: the random projections from the

input units to the hidden neurons..

This chapter is organized as follows: in Section 4.1, metaheuristics are defined.

In Section 4.2, it is made a brief review of the literature on how metaheuristics are being

applied to ELM networks, some EANN that evolve their topologies and the few works that

evolve topologies for ELM. In Section 4.3 we discuss the types of chromosome’s encoding

for architecture design using evolutionary algorithms. In Section 4.4, our proposal is

discussed in detail. Subsection 4.4.1 presents ANHNA’s seven fitness function variants

and, in Subsection 4.4.2, it is discussed the application of this method to robust ELM

networks. Lastly, Section 4.5 presents the final remarks of this chapter.

4.1 Introduction to metaheuristics

The nature-inspired heuristics, known as Evolutionary Algorithms, are based

on some abstractions of the natural process of problem-solving (YANG, 2010). Since the

beginning of time, nature has found its way to prevail over the adversities and one of

its processes is described by Darwin’s evolutionary theory, whose main concept is the

survival of the fittest. In natural evolution, survival is achieved through reproduction.

Two individuals combine their genetic material, in hope that their best characteristics are
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passed on to the generated offspring. The weaker ones, as result of bad genes combination,

will struggle to survive and most likely die. Another source of inspiration came from the

study of swarms of social organisms (e.g. birds, fishes and ants) and how each individual’s

behavior, along with the limited knowledge of its neighbors’ states, influences the goals

achievement of the whole swarm.

The main feature in common with all phenomena that serve as an inspiration

to metaheuristics is the use of a population of individuals (ENGELBRECHT, 2007).

Metaheuristic algorithms can be classified as population-based or trajectory-based (YANG,

2010). Population-based algorithms are part of an area named Evolutionary Computation,

which adopts the process of natural evolution and Darwin’s theory to find an optimal

solution for a specific problem. Each individual is an alternative to the solution and it is

represented by a chromosome, which defines the individual’s characteristics. As examples,

there are Genetic Algorithms (GA), Genetic Programming, Evolutionary Programming

and Differential Evolution. In trajectory-based algorithms, each individual performs a

search in the space of an objective function by adjusting the trajectories towards the

individuals with the best performance. Each individual is also an alternative solution

and is seen as a position in search space. In nature, for instance, this behavior could be

translated into the effort of a fish swarm finding sources of food and how they would group

in the area that has the biggest concentration of food as soon as one of the fishes finds it.

As examples of trajectory-based algorithms, we mention Particle Swarm Optimization and

Ant Colony Optimization.

Apart from its classification, metaheuristics have two major components: se-

lection of the best solutions and randomization (YANG, 2010). Selection ensures that

the solutions will converge towards the optimality, while the randomness prevents the

solutions to be trapped in local optima and, at the same time, increases the diversity of

the solutions (YANG, 2010). The combination of these two components will usually ensure

that the global optimality is achievable (YANG, 2010, p. 22).

ANNs have been extensively using metaheuristics to optimize their parameters

(weights, connections, architecture, learning constants) in the literature. In this work, we

adopt a few metaheuristic algorithms, detailed in Appendix A, to optimize an ELM’s

number of hidden neurons and activation function parameters at the same time. Through

the remaining sections, we will discuss works published concerning ELM optimization
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using metaheuristics, how the solutions are usually encoded for architecture optimization

and, finally, our proposal of a general problem encoding to achieve the aforementioned

goal.

4.2 Related works

The optimization of the ELM network using metaheuristic algorithms is an

ongoing theme in several works over the past few years. Many of them have as goal finding

suitable input weight values, usually maintaining the estimation of the output weights

as the original ELM method. Works such as the Evolutionary ELM (E-ELM) (ZHU et

al., 2005) uses the Differential Evolution (STORN; PRICE, 1995; STORN; PRICE, 1997)

to search for optimal hidden weights. The Self Adaptive Evolutionary ELM (CAO et

al., 2012) is similar to the E-ELM, although it allows automatic selection of different

trial vector generation strategies and control parameters. Han et al. (2013) proposed an

ELM network combined with an improved Particle Swarm Optimization to optimize the

hidden weights and biases. The Group Search Optimization ELM (SILVA et al., 2011)

also aims at optimizing the hidden weights and biases. And more recently, the work from

Figueiredo and Ludermir (2014) investigated the use of 8 topologies on the performance

of a Particle Swarm Optimization ELM (XU; SHU, 2006). Unfortunately, this kind of

approach demands that the number of hidden neurons must be determined beforehand by

exhaustive search.

As already stated in Chapter 2, the design of an architecture is crucial for any

successful SLFN. In the field of Evolutionary Artificial Neural Networks (EANN), there

are works that evolve the topology of the networks as well. As examples, we can cite

the work by Maniezzo (1994) that proposed the Artificial Neural Networks Adaptation:

Evolutionary Learning of Neural Optimal Running Abilities (ANNA ELEONORA). It is

based on a parallel genetic algorithm with an enhanced coding to evolve both the topology

and all synaptic weights. This coding promotes a variable length binary gene where its first

part indicates the existence/absence of a connection and the second part provides the value

of the weights. Angeline et al. (1994) proposed the Generalized Acquisition of Recurrent

links (GNARL) that evolves both architecture (number of hidden neurons, connections

to and within the hidden layer, and connection from this layer to the output one) and

weights for recurrent networks. Yao and Liu (1997) developed the EPNet, based on Fogel’s
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evolutionary programming, that evolves the architecture and weights from a feedforward

neural network with sigmoidal activation function. Differently, from other methods, this

one attempts neuron or connection elimination before addition within different mutations

sequentially executed. Abbass (2002) published one of the few works that do not make use

of genetic algorithms and called it Memetic Pareto Artificial Neural Network (MPANN).

He adopted a method named Pareto-frontier Differential Evolution (ABBASS et al., 2001

apud ABBASS, 2002) to evolve connections and number of hidden neurons of an EANN.

Tsai et al. (2006) proposed a hybrid Taguchi-genetic algorithm to evolve the number of

hidden neurons and connections in an SLFN, by increasing them from a small network

until the learning performance is acceptable.

For ELM networks, evolutionary architecture design is still an area to be

explored since there are still few published works. As examples, we can cite Matias et al.

(2013) who proposed a Genetically Optimized Extreme Learning Machine (GO-ELM) that

realizes a simultaneous evolution of architectures and connection weights. They applied a

genetic algorithm to optimize the hidden weights, the number of hidden neurons and their

activation function. The output weights are calculated using least squares with Tikhonov’s

regularization. Alencar and Rocha Neto (2014) proposed a genetic algorithm to prune

ELM networks named AG-ELM for classification problems, where each binary chromosome

indicates the number of hidden neurons by the number of genes equal to 1. Its fitness

function is a trade-off between the classification error reduction and pruning importance,

which is regulated by a parameter α .

There are some observations to be made about both works. In GO-ELM, since

the hidden weights are adapted, it results in a mischaracterized ELM. As discussed in

Chapter 2, the main characteristic of this network is a random choice of the hidden layer

weights and once the authors evolve them, the resulting network becomes an evolutionary

SLFN. About the AG-ELM, the authors did not make a fair comparison between the

proposed method and a heuristic search, since the executed heuristic search started with

20 hidden neurons. This number is far higher than the one found by their method and

it is also incremented in steps of 20 to 500 neurons. Being so, it is hardly possible to

evaluate the real improvement of this proposal over a common design method such as

cross-validation.

From the exposed so far, we identified three main points. The first one concerns
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keeping the ELM’s random nature of the input-to-output mapping, without any further

adaptation of the input-to-hidden layer weights, so this network does not lose its main

feature. The second one refers to the almost exclusive use of the genetic algorithm and

its variants in literature. This leads us to the third point, which refers to chromosome

encoding over the architectural information that we wish to evolve.

On the following sections, a brief introduction of the types of architecture

optimization encoding schemes is given and our approach ANHNA is presented.

4.3 Encoding schemes for architecture evolution

The development of architecture optimization through metaheuristics is mainly

reflected in how the architecture is coded into a chromosome (DING et al., 2013). There

are two main approaches: a direct encoding which specifies every connection of the network

or evolves an indirect specification of the connectivity (CANTÚ-PAZ; KAMATH, 2003;

DING et al., 2013).

Figure 8 – An ANN’s architecture, followed by its connectivity matrix and the respective
binary string representation.
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Source: Yao (1999).

Usually, a direct encoding scheme codes each EANN’s weight connections

in a binary string (YAO, 1999; DING et al., 2013). As shown in Figure 8, it uses a

square connection matrix that explains whether there are connections amid the neurons by

switching on (1) and off (0) those connections. The chromosome’s binary string representing

an architecture is the concatenation result of this matrix rows. It is very suitable for the

precise and fine-tuned search of a compact architecture since a single connection can be

added or removed easily (YAO, 1999). The fitness value is calculated by converting each
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chromosome into an ANN, initialize its weights, training and validating it. Observe that

the obtained validation error is not the same thing as test error, which will be calculated

with the best solution provided at the end of the search algorithm. Constraints to the

architecture, such as the existence or not of recurrent neurons, may also be incorporated

by constraints in the connection matrix.

For example, a feedforward EANN will only consider the upper-right triangle of

that matrix. This kind of solution is interesting for small networks with few hidden layers

and neurons, but for larger EANN, the chromosome will also be very large, increasing the

search space as consequence.

Some works encode not only the connections but also all weights and biases.

Maniezzo (1994) adopted a binary encoding scheme with variable length, where the

first byte specifies the number of bits that will code the weight values, followed by the

connectivity bits and their respective synaptic weights represented as binary values. In a

more modern approach, Yao and Liu (1997), Leung et al. (2003) and Tsai et al. (2006)

used floating numbers instead of binary representation.

To avoid specifying all connections, the user may choose to encode only some

characteristics of an architecture. This approach is named indirect encoding scheme. In

this case, the user chooses to commit to a specific topology (feedforward, recurrent, number

of layers) with a particular learning algorithm, and then use a metaheuristic to find the

parameter values that complete the network specification (CANTÚ-PAZ; KAMATH, 2003).

For examples, in the work of Alencar and Rocha Neto (2014), the AG-ELM assumes a fully

connected feedforward network, evolving only the number of hidden neurons by switching

them on and off in a binary chromosome. Another binary representation is found in the

work of Cantú-Paz and Kamath (2003), where the authors use the genetic algorithm to

an MLP network in order to evolve the number of hidden neurons, learning rate, the

activation function’s slope a and also the initial set of weights.

A more sophisticated approach to indirect representations was introduced by

Kitano (1990), named grammar encoding method which is also known as developmental rule

representation. Different from other encoding scheme methods, the network configuration is

not put directly into the chromosome, instead, a set of rules that generate this information

is encoded. The advantage of this method is that it may create a smaller chromosome and

it will also suffer less from the destructive effect that crossover may produce (YAO, 1999).
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In the work of Matias et al. (2013), although the chromosomes have the same length as

the vector of decision variables, it also uses the principles of grammar representation by

mapping different types of variables into continuous values. Their problem involves binary,

integer and real variables which are all represented in the chromosome as floating point

number in the interval of [0,1]. They are then converted into the actual variable value

according to their original domains by the use of specific equations and finally applied in

networks to obtain their respective fitness values.

4.4 The Adaptive Number of Hidden Neurons Approach

Motivated by the ELM’s architecture design challenge combined with the

possibility of also changing hidden neuron’s firing distributions and providing a larger

variety to their responses, we propose the Adaptive Number of Hidden Neurons Approach

(ANHNA). It can be defined as a pruning method, where an assembly of chromosome

representation and maintenance rules that optimizes, simultaneously, the number of hidden

neurons and their activation function parameters.

We found in the work of Das et al. (2009), who used a modified version of

Differential Evolution (DE) together with a specific chromosome encoding scheme for

automatic clustering, a great potential for ELM’s network optimization. Instead of cluster

centroids, we choose to apply the two activation function parameters and also extend it to

be used by any population-based and some trajectory based metaheuristics. The resulting

chromosome is a vector of real numbers that apply indirect representation.

Figure 9 illustrates the structure of the ANHNA’s i-th chromosome, which has

a dimension equal to 3Qmax, where Qmax is the maximum number of hidden neurons. The

first Qmax elements are real number switches, called activation thresholds, that control

whether the corresponding set of parameters (ai, j, bi, j) is activated or not and, consequently,

if the j-th neuron exists or not. The following Qmax elements are the activation functions’

slope values (ai, j) and the remaining are their respective biases (bi, j).

Figure 9 – ANHNA’s i-th chromosome representation.

ci(g) = Ti,1 Ti,2 ... Ti,Qmax ai,1 ... ai,Qmax bi,1 ... bi,Qmax︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Activation Thresholds Slopes Biases

Source: author.
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The activation thresholds Ti, j behave like control genes, ruled by an unit step

function defined by Rule 1 as follows:

Rule 1: Activation thresholds rule for the i-th chromosome.

if Ti, j > 0.5 then

j-th hidden neuron with its parameters (ai, j,bi, j) is active

else

j-th neuron does not exist

end if

return qi = total number of active hidden neurons of i-th chromosome.

There are some precautions that must be taken. One of them is to keep all

activation thresholds within an interval, so the results do not get very large values and get

stuck by not being able to test other combination possibilities.

Rule 2: Keep activation thresholds within an interval for the i-th chromo-

some.

if Ti, j > 1 then

Ti, j = 1

else

if Ti, j < 0 then

Ti, j = 0

end if

end if

Another precaution is to ensure the existence of a minimum number Qmin of

active hidden neurons in every chromosome, where Ti,jnew is sampled from an Uniform

distribution U (0.5,1):

Rule 3: Number of active hidden neurons in the i-th chromosome.

if qi < Qmin then

choose randomly Qmin activation thresholds: jnew ∈ RQmin ;

substitutes their activation values by Ti,jnew ∼U (0.5,1);

end if
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The fourth and last rule is that, after every chromosome update, the slope

values ai j will be replaced by their absolute values |ai j|.

Another point that must be addressed is one of the challenges of keeping

ELM principles in a metaheuristic architectural optimization approach: how to deal with

random initialization of the weights. Different random weight initializations using the same

genotype may produce quite different fitness values, which becomes a source of noise and

mislead the evolution process (YAO; LIU, 1997). One manner to deal with this situation

is to choose a single set of weights and based on them, perform the evolutionary search

process over the best number of hidden neurons, as adopted by Alencar and Rocha Neto

(2014), and other parameters. The issue with this approach is that it is equivalent to

find combinations of hidden neurons and their fixed weights that provide an acceptable

performance, instead of searching for different solutions. Another manner to reduce this

source of noise is to train and validate the same solution several times and then use

the average as the chromosome’s fitness (YAO; LIU, 1997). Although this increases the

execution time, it also provides a more precise measure of the fitness we can expect for a

chromosome, without restraining the search options as the aforementioned solution does.

Based on that, the ANHNA approach is tied to a 5-fold cross-validation to evaluate the

performance of a chromosome’s solution, where its fitness value receives the average of the

validation RMSE.

It is important to highlight that the purpose of ANHNA is to return only the

design skeleton, that is the number of hidden neurons and the respective parameters of

their activation functions. It does not provide any weight value (hidden or output ones),

which can be quickly determined by applying Algorithm 1. The training set used to train

the final ELM is formed by the combination of training and validation set applied in the

5-fold cross-validation and then tested with a set that was beforehand separated and not

used during the metaheuristic search.

From the exposed, we show how ANHNA can be applied to different metaheuris-

tics. Algorithm 5 describes ANHNA used with Differential Evolution and Algorithm 6

describes ANHNA with Particle Swarm Optimization. The details of those methods are

further discussed in Appendix A.
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Algorithm 5: ANHNA-DE Pseudocode {Qmin,Qmax}
1: Initialize the DE parameters;
2: Initialize population C(0), where T(0) and a(0)∼U (0,1) and b(0)∼U (−1,1);
3: Check activation thresholds;
4: while g < MAXGEN do
5: for each chromosome, ci(g) do
6: 5-fold cross-validation of an ELM; {with qi active hidden neurons and their (ai,bi)}
7: Evaluate f (ci); {fitness objective is the mean validation RMSE.}
8: Apply the mutation operator according to Eq. A.3
9: Check activation thresholds and |ai|;

10: Apply the Crossover (Eq. A.6) and Selection (Eq. A.7) operators → ci(g + 1);
11: end for
12: end while
13: return qbest and (abest ,bbest).

Algorithm 6: ANHNA-PSO Pseudocode {Qmin,Qmax}
1: Initialize the PSO parameters;
2: Initialize population C(0), where T(0) and a(0)∼U (0,1) and b(0)∼U (−1,1);
3: Check activation thresholds;
4: while g < MAXGEN do
5: for each chromosome, ci(g) do
6: 5-fold cross-validation of an ELM; {with qi active hidden neurons and their (ai,bi)};
7: Evaluate f (ci); {fitness objective is the mean validation RMSE.}
8: end for
9: for each chromosome, ci(g) do

10: Set pi and pki; {personal and neighborhood best positions.}
11: Update velocity and position according to Eqs. A.11 and A.14, respectively;
12: Check activation thresholds and |ai|;
13: end for
14: end while
15: return qbest and (abest ,bbest).

4.4.1 Variants of ANHNA

So far, our proposal focuses on trying to minimize the mean validation RMSE.

As discussed on Chapter 2, an acceptable test error performance is not always the best

measure to evaluate the future generalization performance. The size of the ELM’s output

weights influences on the generalization and also on the sensibility to outliers. Its size,

that can be represented by the norm of the output weights, is directly related to how

well-conditioned the hidden layer output matrix H is. Bearing this in mind, for comparison

purposes, we developed seven different fitness functions in order to study the effect of

multiple objectives in one single fitness function.
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4.4.1.1 Using the condition number of H and the norm of the output weight vector

The version of ANHNA that utilizes the norm of the output weight vector

besides the RMSE, named ANHNANO for differentiation purposes only, adopts as fitness

function the following equation:

f (ci) = µRMSE + δRMSE + 0.01µWNorm, (4.1)

where µRMSE represents the mean validation RMSE, δRMSE is its standard deviation and

µWNorm is the mean euclidean norm of the respective output weight vector, all from the

i-th chromosome.

With this setup, only 1% of the mean output weight norm is considered because

its value may be overpowering the RMSE value. The standard deviation is also added to

penalize those solutions that provide a large variation on the validation RMSE. From that,

we expect to converge to a solution with smaller validation RMSE, standard deviation

and output weight norm, which is also expected to diminish substantially the number of

hidden neurons, since the fewer neurons the smaller the norm.

The second version aims at investigating how the condition number of the

hidden layer output matrix may contribute to find an optimal ELM architecture. The

condition number of a matrix (κ) is defined as the ratio of the largest eigenvalue (σmax) to

the smallest eigenvalue (σmin) of the matrix (HAYKIN, 2008), as follows:

κ(H) =
σmax(H)

σmin(H)
. (4.2)

The closer to 1 this number is, the more well-conditioned this matrix is. It means that

we can expect a solution for the linear system which is numerically more stable and less

sensitive to noise in the data.

In our implementation, we applied a Matlab function named rcond that returns

an estimation for the reciprocal of the condition number of a matrix. If it returns a

value near to 1, the matrix is well-conditioned. If it returns a value near 0, this matrix is

badly-conditioned. We choose this function to keep all involved variables in a small range.

With this configuration, we named ANHNACN and its respective new fitness
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function is given by

f (ci) = µRMSE + δRMSE − ιµκ , (4.3)

where, ι = 0.01 and, just like ANHNANO, the µRMSE and δRMSE are the mean validation

RMSE and the standard deviation, receptively, but µκ is the mean condition number of

the generated output layer matrices of the i-th chromosome. Since the larger the last term

gets, the better, which is the opposite from the first two, it will have a different sign within

the function.

To study the impact of a stronger influence of the condition number in the

evolution process, we determined a third variant, named ANHNACNv2. It is essentially the

same as ANHNACN , although ANHNACNv2 contributes with a higher value, which is ι = 1.

4.4.1.2 Using regularization

Another variant of ANHNA aims at investigating the effect of adding a regu-

larization term into the fitness function. As discussed in Chapter 2, the idea of adding

regularization is to restore well-posedness by appropriate constraints on the solution and

provide, as consequence, smaller output weights. Nevertheless, as shown in Equation 2.13,

there is a new parameter that must be determined: the regularization parameter λ . To

solve this issue, we added it to the solution vector, as shown in Figure 10, that will be

evolved along with the architectural solution.

Figure 10 – ANHNA’s i-th chromosome representation with regularization.

ci(g) = Ti,1 Ti,2 ... Ti,Qmax ai,1 ... ai,Qmax bi,1 ... bi,Qmax λi︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Activation Thresholds Slopes Biases Regularization

Parameter
Source: author.

This new setup is named ANHNARe and it has also the same variants as the

first ANHNA version. ANHNARe’s fitness function utilizes only the mean validation RMSE,

ANHNAReNO follows the Equation 4.1, ANHNAReCN uses Equation 4.3 with ι = 0.01 and

ANHNAReCNv2 the Equation 4.3 with ι = 1.
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4.4.2 ANHNA for robust regression

One may argue if it is possible to extend ANHNA to evolve a robust ELM

network. The answer is yes, although it is still a work in progress. Our investigation,

based on what was discussed in Chapter 3, compelled us to add two other parameters to

the evolved solution: the weight function and the tuning constant, also known as error (or

outlier) threshold. The choice of weight function is coded as three real-valued variables

that, just like the activation threshold, are governed by a sign function. This results in

three bits that encode eight different weight functions, which are demonstrated in Table 5.

The tuning parameter is directly encoded as a real value variable at the end of ANHNA’s

chromosome, as shown in Figure 11.

Figure 11 – ANHNA’s i-th chromosome representation for robust ELM networks.

ci(g) = Ti,1 ... Ti,Qmax ai,1 ... ai,Qmax bi,1 ... bi,Qmax τi,1 τi,2 τi,3 υi︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Activation Slopes Biases Weight Tuning
Thresholds Function Constant

Source: author.

Table 5 – Codification for
choosing the weight
function.

Code Weight Function
000 Talwar
001 Huber
010 Bisquare
011 Fair
100 Cauchy
101 Andrews
110 Welsch
111 Logistic

Source: author.

Besides the chromosome modification, new rules are also implemented. Two of

them are similar to the ones that govern the activation thresholds. The first, as already

mentioned, is the use of sign function to generate the bits that will be compared to the

translation Table 5. Note, however, that τ values are not replaced with the newly defined

bits. A different variable vector, defined by the user, stores this code to each chromosome.
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The second rule keeps them inside the [0,1] interval.

Rule 5: Weight function code determination for the i-th chromosome.

for j=1 until 3 do

if τi, j > 0.5 then

j-th bit is considered equal to 1

else

j-th bit is considered equal to 0

end if

end for

return qi = total number of active hidden neurons of i-th chromosome.

Rule 6: Keep weight function code into an interval for the i-th chromosome.

for j=1 until 3 do

if τi, j > 1 then

τi, j = 1

else

if τi, j < 0 then

τi, j = 0

end if

end if

end for

A third new rule is that, just like the slope parameters, υ must also be always

a positive value. Hence, it will be replaced with its absolute value.

Another modification is within the 5-fold cross-validation process. The outliers

contamination of the desired output in training and validation data required a different

approach regarding the way the validation error will be faced. With the validation set

also contaminated, which is nearly what we have in real life problems, it is not possible to

simply use all results from the cross-validation to define the expected error. On one hand,

if one of the validation results returns a low error, the ELM model has most likely learned

also the outliers, which is not interesting. On the other hand, a large validation error could
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reflect that the network did not handle the outliers correctly and, hence, has not learned

the correct model at all. To handle these situations, we adopted more robust measures:

trimmed mean or median of the validation errors. While the median is represented by the

middle value taken after arranging the validation errors from lowest value to highest value,

the trimmed mean takes the mean of the remaining validation errors after excluding a

percentage of the largest and lowest values. In our specific case, the percentage for the

trimmed mean is 10%, from where we exclude 10% of the largest absolute validation errors

for each fold in cross-validation. The final fitness value for each chromosome is the mean

of the resulting five trimmed RMSE.

Both cases are being investigated and the details of how the contamination was

performed are in Chapter 5.

This modification of ANHNA is named ANHNAR and has all rules compiled

in Algorithm 7. We elected Differential Evolution as the applied metaheuristic. It is

important to highlight that, just as the original ANHNA, ANHNAR returns only the

architectural information. The difference lies in the addition of the weight function to be

applied to IRLS method and its error threshold (υbest). The final robust ELM must be

trained (with training and validation set) and tested (with unseen data), using IRLS as

output weights estimation method.

Algorithm 7: ANHNAR-DE Pseudocode {Qmin,Qmax}
1: Initialize the DE parameters;
2: Initialize population C(0), with T(0), a(0), τ(0) and υ(0)∼U (0,1) and b(0)∼U (−1,1);
3: Check activation thresholds;
4: while g < MAXGEN do
5: for each chromosome, ci(g) do
6: 5-fold cross-validation of an ELM; {with qi active hidden neurons and their (ai,bi),

using the weight function given by τ i and tuning constant υi.}
7: Evaluate f (ci); {fitness objective: trimmed mean or median of validation RMSE.}
8: Apply the mutation operator according to Eq. A.3
9: Check activation thresholds, weight function code, |ai| and |υi|;

10: Apply the Crossover (Eq. A.6) and Selection (Eq. A.7) operators → ci(g + 1);
11: end for
12: end while
13: return qbest , (abest ,bbest), the respective weight function and υbest .
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4.5 Concluding remarks

Model selection for ELM networks using evolutionary algorithms has been

a subject of interest for many years. The search and optimization properties of those

methods make them suitable for this task. However, as discussed in this chapter, the

majority of works involves the optimization of hidden weights, which goes against the

fundamental principle of this network: the random choice of the input-to-hidden layer

weights.

In this chapter, we proposed the Adaptive Number of Hidden Neurons Approach

(ANHNA), a general encoding scheme, which can be adopted by different metaheuristics

and evolves not only the number of hidden neurons but also the activation function

parameters: slope and bias. It also keeps the ELM’s principle of the random hidden

weights.

ANHNA, besides the manner of encoding the architectural information in the

chromosome, is also tied to a set of rules that governs the evolution process. Several other

variants of ANHNA were proposed with different objective functions. A multiobjective

task was implemented into single functions that will minimize the validation error as well

as the output weight norm.

Another variant of ANHNA, named ANHNAR, is oriented towards the evolution

of robust ELM networks. It promotes chromosome modification and a new set of rules,

which include a change in how the validation error is treated in the fitness function.

In the following chapter, we present the experimental methodology as well as

how the outlier contamination was performed. The parameters adopted for each method

applied are also detailed and the chosen datasets are described.
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5 METHODS AND EXPERIMENTS

The success of any experiment relies on how it is designed. The objective of

this chapter is to present how the datasets were treated and contaminated for the outlier

robustness cases (Section 5.1) and provide information about how the tests were performed

(Section 5.2) and which parameters were adopted (Section 5.3). Finally, we make our final

remarks over the content of this chapter in Section 5.4.

5.1 Data treatment

In this thesis, we investigate the performance of the proposed methods with 6

different datasets regarding regression problems, which are further described in Appendix B.

We follow the work from Horata et al. (2013) as a major reference, which also includes

their methodology for experiment design. In this regard, attributes from all sets were

scaled to [0,1] and their target values to [−1,1].

5.1.1 Outlier contamination

The experiments on the outlier robustness involved deliberately contaminated

datasets. Notwithstanding real-world datasets will mostly like have outliers, specific levels

of noise will be added to the target outputs of the training set. These levels allow us to

control and observe the behavior of the chosen algorithms with increasing distortion and if

their performances will degrade or show robustness to it. It is also important to highlight

that, in this thesis, we investigate only the contamination of the output, which interferes

in the modeling precision, as discussed in Chapter 3.

From each dataset, eight sub-problems will emerge, depending on the type

of outlier and the contamination rate. They could be contaminated by either one-sided

outliers or two-sided outliers, where one-sided refers to absolute values only and two-sided

may be positive as well as negative values. The contamination rates are 10%, 20%, 30%

and 40%.

Following Horata et al. (2013), let K ∈ 1, ...,N be a subset of row indices of

desired output matrix D that will be contaminated with outliers and ∆k ∈ R1×r is a vector

of random errors drawn from a multivariate normal distribution of zero mean vector and

diagonal covariance matrix, i.e. ∆k ∼ N(0,σ2Ir), where Ir is a r× r identity matrix and
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∀k ∈ K. Thus, dk ∈ R1×r is a row from D and d̃k will be its correspondent contaminated

row due to one-sided outliers if

d̃k = dk + |∆k|, ∀k ∈ K, (5.1)

or two-sided outliers if

d̃k = dk + ∆k, ∀k ∈ K. (5.2)

The contaminated target output matrix D̃ is defined as

D̃ = D + ∆, (5.3)

where ∆ ∈ RN×r is comprised of [∆1...∆i...∆N ] such that if i 6= K then ∆i = 0.

It is also important to highlight that the test data do not suffer any contamina-

tion. This way, we can evaluate if the network has learned the true function underlying

the data or if it has learned the noise as well.

5.2 Experiments

In this thesis, there are three main experiments: the first is related to ELM

robustness and a comparison to the proposed R-ELM/BIP; the verification of the perfor-

mance of ANHNA’s variants with different metaheuristics; and, finally, the evaluation of

the work in progress over ANHNAR, that will be presented with the first experiment.

All experiments involved basically two steps. First the data is randomized and

then separated into ten almost evenly set of samples. We will use the idea of cross-validation

here to guarantee that all samples were used to test the algorithms at least one time,

which results in ten independent repetitions. Figure 12 shows the data partitioning into

the test set and training set, where D represents here the whole dataset for demonstration

purposes only.

At each repetition, the second step depends on the method to be assessed. In

the first experiment, for example, there is the issue of the estimation of parameters such

as the number of hidden neurons. So, within every repetition, we applied a grid search,

where the number of hidden neurons was increased from 2 to 100 neurons, in steps of 2.

For each number of hidden neurons, it was performed a 5-fold cross-validation, as shown

in Figure 13.
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Figure 12 – Data separation in test and training samples.
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Source: author.

Figure 13 – A 5-fold cross validation procedure.
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Source: author.

After the full grid was covered, the number of neurons that returned the smallest

validation error is chosen. Later, the network using the chosen number of hidden neurons

is trained applying training plus validation dataset, and then tested with unseen data.

Figure 14 illustrates the steps of this procedure. We should highlight, however, that the

calculated RMSE is a trimmed version, where 10% of the largest absolute error is discarded.

This approach is used in an attempt of diminishing the outliers influences in the choice of

the best architecture. With this setup, the following algorithms were compared: ELM,

ELM/BIP, ROB-ELM, IRWLS-ELM and R-ELM/BIP.

In the second experiment, the parameter estimation is performed with ANHNA

and its variants. In this specific case, the 5-fold cross-validation is inside the method

itself, as described in Chapter 4. It is important to highlight that ANHNA and its
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Figure 14 – Flow chart of the experiments with robust ELM networks.b
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Source: author.
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variants (ANHNANO, ANHNACN ,ANHNACNv2, ANHNARe, ANHNAReNO, ANHNAReCN

and ANHNAReCNv2) utilize the mean validation RMSE, while ANHNAR may use the

trimmed mean or median of validation RMSE after the 5-fold cross-validation. Figure 15

illustrates the executed steps. Those variants were compared only to ANHNA itself, but

to evaluate ANHNA’s performance, it was compared to ELM, ELM/BIP, ANHNA-DE,

ANHNA-SADE, ANHNA-PSOg and ANHNA-PSOl.

The third and last experiment, that refers the to ANHNAR, follows the same

structure as ANHNA in Figure 15.

Figure 15 – Flow chart of the experiments with ANHNA.b

Training Data Test Data
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False

b
True

ANHNA

Source: author.

Table 6 indicates how the data was divided on the first repetition in training

and test samples to test and training. Training samples are shown in five columns that
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represent the five training and validation folds. Other repetitions are not presented due to

the fact that the amount of samples varies very little: plus or minus one sample.

Table 6 – Division of samples for each fold in cross validation.

Datasets Test Training/Validation
Auto-MPG 40 282/70 281/71 282/70 282/70 281/71
Body fat 25 182/45 181/46 181/46 182/45 182/45
Breast Cancer 20 140/34 139/35 139/35 139/35 139/35
CPU 21 150/38 150/38 151/37 151/37 150/38
iCub 49 353/89 354/88 353/89 354/88 354/88
Servo 17 120/30 120/30 120/30 120/30 120/30

Source: author.

In robustness experiments, the data partitioning is still the same, but now

an error is added to the training and validation sets. As described in Section 5.1, there

are eight combinations: 1 sided and 2 sided outliers with 10%,20%,30% and 40% of

contamination each. For each combination, training and validation data will separately

receive the percentage of corrupted samples. This means that, e.g., if there are 100 samples

for training, 20 samples for validating and 10% of outliers, the training set will have 10

corrupted samples and validation set will have 2. It is important to highlight, once again,

that the test set does not suffer any contamination.

ANHNA-DER is compared with the following algorithms: ELM, ELM/BIP,

ROB-ELM, IRWLS-ELM and R-ELM/BIP.

The experiments were executed simultaneously on six different computers with

different versions of Matlab and variable computational resources. Because of this setup,

the execution time will be given as a generic estimation based on empirical observation.

5.3 Parameters

Once the framework of the experiments is determined, we present the parameters

values applied to the different algorithms during those tests.

For ELM networks, which had their number of hidden neurons found by grid

search and did not suffer any modification on their activation function’s parameters, there

is a bias input equal to one only to the hidden layer. The other ELM generated in this

work had their activation function’s parameters altered, which already included a bias to

them, that is why there is no need for an external fixed input as the example above.
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All ELM use the hyperbolic tangent as activation function and the non-robust

networks adopt SVD for estimation of output weights. Hidden weights are randomly

initialized between [−0.1,0.1].

For the BIP procedure, the estimation of the activation function’s parameters,

as shown in Equation 2.14, needs a regularization parameter λ = 10−2 and the desired

exponential distribution mean µ fdes = 0.2. Those values are the same ones adopted in the

original work (NEUMANN; STEIL, 2011) and were no longer optimized.

For the DE algorithm, the scaling and crossover parameters are calculated just

as in the work of Das et al. (2009). The scaling factor varies in the range [0.5,1] by using

the following equation:

F = 0.5(1 + rand(0,1)), (5.4)

where rand(0,1) is an uniformly distributed random number within the range [0,1].

CR = Cmin +

(
(Cmax−Cmin)

(
TotalGenerations−ActualGeneration

TotalGenerations

))
. (5.5)

In association with this variable parameter, the mutation step follows the

DE/best/1 strategy (see Appendix A). For the crossover, its parameter CR is also variable.

It decreases linearly within the interval [0.5,1] along the generations as demonstrated in

Equation 5.5. When CR = 1, it means that all components of the parent chromosome

are replaced with the difference vector operator. As this parameter is decreasing, more

components of the parent are inherited by the offspring. This approach allows the algorithm

to perform an exhaustive exploration of the search space at the beginning and finely adjust

the solutions at the final stages of evolution (DAS et al., 2009).

Just as the adopted DE, SADE algorithm also does not need predefined scaling

and crossover parameters. For both, we just need to set the number of population NP = 100

and the maximum number of generations MAXIGEN = 300, and for SADE there is also

the learning period LP = 20.

For the PSO algorithm, we also adopted NP = 100 and MAXGEN = 300 for both

gbest and lbest strategies. The acceleration constants ς1 = ς2 = 2.05 and the constriction

coefficient χ = 0.72984 were defined with values suggested by the works of Clerc and

Kennedy (2002) and Bratton and Kennedy (2007).
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In the robustness experiments, RELM and R-ELM/BIP do not have any

adaptation of the weighting function. Thus, the Matlab’s default bisquare weighting

function is used as well as its respective default tuning constant equals to 4.685 for R-

ELM/BIP. The RELM, as proposed in (BARROS; BARRETO, 2013), uses Andrews

function with its default tuning constant equals to 1.339.

5.4 Concluding remarks

In this chapter, we detailed the three main experiments carried out in this

thesis based on regression problems, how the data was treated and the adopted parameters

for all applied algorithms.

From a data perspective, this work could be divided into two parts: non-robust

and robust ELM. The non-robust part refers to the tests realized with ANHNA, ANHNANO,

ANHNACN ,ANHNACNv2, ANHNARe, ANHNAReNO, ANHNAReCN and ANHNAReCNv2. The

purpose of this experiment is to assess their capacity of providing good solutions prefer-

entially with a, as small as possible, number of hidden neurons and norm of the output

weight vector.

As for the robust part, it could also be divided into two parts: the evaluation of

our method R-ELM/BIP and the work in progress about ANHNAR. Section 5.1 presented

the procedure for data contamination that we could observe, in a controlled manner, how

the algorithms behave with increasing presence of outliers in the data.

In terms of data presentation, all experiments are based on two steps: ten

external repetitions and a 5-fold cross-validation. This last procedure is applied either

inside a grid search or within ANHNA and its variants. An overview of the process is

exemplified in Figures 14 and 15 respectively.

In the next chapters, we present the results of the aforementioned experiments.



83

6 PERFORMANCE ANALYSIS OF THE ROBUST ELM

In this chapter, we present the results concerning the ELM network and its

improved robust versions applied to data contaminated with outliers. We compare non-

robust versions, such as ELM and ELM with Batch Intrinsic Plasticity (ELM/BIP), with

versions that adopt a robust estimation method of output weights, e.g., Robust ELM

(RELM), IRWLS-ELM and the proposed R-ELM/BIP (see Chapter 3 for more details). We

also present the preliminary results from the robust versions ANHNA-DER and ANHNA-

DERm, where the former uses a trimmed RMSE and the latter a median RMSE as the

validation error. In appendix F it is illustrated the evolution along the generations of the

choice of the weight functions and its respective error threshold for each robust ANHNA.

To evaluate their performances, we selected five real-world regression problems

datasets: Auto-MPG, Breast Cancer, CPU, iCub, and Servo, although robust ANHNA

versions do not have results for iCub dataset so far. For more details about them, see

Appendix B. The evaluation metrics include the test RMSE, the selected number of hidden

neurons and the Euclidean norm of the output weight vector.

As previously mentioned, the training and validation sets are contaminated

with 10%, 20%, 30% e 40% of outliers that are also divided into two categories: one sided

and two-sided. However, it is important to highlight that the testing set has no added noise

but the one embedded in the dataset itself. That way, we can evaluate if the algorithm

has learned the model or it has been profoundly affected (i.e. distorted) by the outliers.

This chapter is organized as follows. Section 6.1 displays all graphics and tables

related to each dataset and its respective type of contamination followed by the discussion

based on observations drawn from those graphics and tables.

6.1 Comparison of robust ELM networks

We present a set of boxplots that describes the range of the solutions found

after each of the 10 repetitions of the aforementioned algorithms. The black dots represent

the mean values of the evaluated metric and the black crosses indicate results that were far

different from the distribution of the repetitions’ results. Remember that each repetition

is related to a cross-validation process to find the most suitable number of hidden layer

neurons, which means that those repetitions may provide a different number of neurons
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for the same method and problem. This is also described in boxplots. At the end, the

behavior of output weight norms within the different outlier-contaminated scenario is

demonstrated in tables. For a more precise description of the number of hidden neurons

chosen see the tables displayed in Appendix C.

6.1.1 iCub dataset

Figure 16 – Testing RMSE of robust ELM networks with 1 sided contamination (iCub
dataset).
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Figure 17 – Testing RMSE of robust ELM networks with 2 sided contamination (iCub
dataset).
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(b) 30% and 40%.
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From Figures 16 and 17, it is clear the deterioration of the RMSE performance

of the non-robust methods when we increase the percentage of contamination with outliers.

This behavior confirms our expectation that non-robust methods would be highly affected
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by the presence of outliers, resulting in poor estimations of the real phenomenon that

generated the data. The larger the amount of noise, the worst are their performances.

This result also demonstrates that outliers may influence ELM performance when this

issue is not correctly addressed.

The proposed R-ELM/BIP and the RELM showed to be less affected in those

cases, where RELM demonstrated a slightly better RMSE performance in the two-sided

case.

Figure 18 – Number of hidden neurons of robust ELM networks with 1 sided contamination
(iCub dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 19 – Number of hidden neurons of robust ELM networks with 2 sided contamination
(iCub dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Interestingly, the ELM/BIP network offered some outlier robustness when

compared to the ELM in the two-sided contamination scenario. This is due to the fact that
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absolute-valued noise is a much harder problem than the two-sided one. Considering that

an outlier exerts an influence that draws the estimated model towards it when all outliers

are positive values, they will all exert an attraction towards the same direction. Moreover,

when we deal with outliers both positive and negative, their influence may be deadened

by each other to some extent. We may observe, as well, that the ability to optimize the

outputs of the hidden neurons and consequently providing small norms of the norm of

the output weight vector, has a direct influence, not only on the generalization capacity

but also in the ELM’s outlier robustness property. Hence the importance of addressing

correctly ELM numerical issues.

Observing the number of hidden neurons in Figures 18 and 19, it is interesting

to notice that, after all repetitions of grid search and cross validation, the ELM and

ELM/BIP best networks have less than five hidden neurons. Usually, a large number is

closely related to a better RMSE performance, although this is not the case of IRWLS-ELM.

Even though this method deals with computational and outlier robustness problems, its

RMSE performance is only slightly better than the traditional ELM. We hypothesized

that its high norms of output weight vectors (see Tables 7 and 8) make it too sensitive to

any possible noise contained in the dataset.

As for the norms themselves in Tables 7 and 8 , ELM/BIP and R-ELM/BIP

provided not only the smallest ones, but also presented the smallest variation considering

the increasing contamination. Those tables also illustrate how much a randomly initialized

hidden layer may affect the norms of the output weight vectors and how important it is to

use methods that improve it.
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Table 7 – Output weight euclidean norm with 1 sided contamination (iCub
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 8.130×102 4.334×102 9.844 2.100×103 7.524×102

ELM-BIP 4.594×10−1 4.094×10−1 3.738×10−1 8.527×10−1 1.473×10−1

R-ELM/BIP 2.416 1.654 6.702×10−1 9.407 2.543
RELM 7.813×103 55.03 9.840×10−1 6.697×104 2.104×104

IRWLS-ELM 1.602×106 1.240×106 2.676×104 5.329×106 1.657×106

20%

ELM 1.906×102 7.690 2.543 1.698×103 5.314×102

ELM-BIP 1.745 6.487×10−1 4.741×10−1 5.930 1.851
R-ELM/BIP 86.34 4.152 6.947×10−1 5.415×102 1.771×102

RELM 4.231×107 90.47 4.941 4.224×108 1.335×108

IRWLS-ELM 2.637×106 2.122×106 9.197×103 7.775×106 2.857×106

30%

ELM 1.625×103 43.92 2.555 9.270×103 3.086×103

ELM-BIP 1.700 7.957×10−1 7.192×10−1 7.789 2.192
R-ELM/BIP 1.676×102 1.021×102 1.627 5.712×102 1.952×102

RELM 1.475×108 1.971×102 8.674×10−1 1.474×109 4.661×108

IRWLS-ELM 3.801×106 4.225×105 1.799×102 1.804×107 7.184×106

40%

ELM 2.555×103 2.080×103 5.761×102 6.379×103 2.098×103

ELM-BIP 3.599 1.913 8.639×10−1 12.04 4.231
R-ELM/BIP 1.260×103 8.482×102 2.472×102 4.041×103 1.224×103

RELM 3.821×108 3.491×108 7.354×104 9.577×108 3.710×108

IRWLS-ELM 7.146×105 8.219×104 7.855×102 3.905×106 1.317×106

Source: author.

Table 8 – Output weight euclidean norm with 2 sided contamination (iCub
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 6.117×102 4.678×102 1.279×102 1.688×103 5.063×102

ELM-BIP 1.479 1.003 2.715×10−1 5.839 1.618
R-ELM/BIP 2.314 1.419 7.378×10−1 8.907 2.562
RELM 5.551×105 1.220×102 2.248 5.409×106 1.706×106

IRWLS-ELM 4.126×106 1.127×106 2.261×102 1.659×107 6.317×106

20%

ELM 2.368×102 1.567×102 1.508 7.338×102 2.797×102

ELM-BIP 6.620×10−1 3.495×10−1 2.602×10−1 1.938 6.147×10−1

R-ELM/BIP 43.61 1.717 4.223×10−1 4.151×102 1.306×102

RELM 1.246×107 5.681×103 8.547×10−1 1.242×108 3.926×107

IRWLS-ELM 3.838×106 1.016×106 5.454×102 1.621×107 6.336×106

30%

ELM 1.209×102 3.009 1.236 9.658×102 3.043×102

ELM-BIP 1.275 3.502×10−1 2.837×10−1 8.513 2.557
R-ELM/BIP 35.12 3.128 2.550×10−1 2.776×102 86.07
RELM 5.664×106 2.528×104 1.858 5.322×107 1.673×107

IRWLS-ELM 1.363×107 5.734×102 1.820 1.361×108 4.304×107

40%

ELM 6.250×102 11.63 1.694 2.606×103 9.931×102

ELM-BIP 6.424×10−1 4.293×10−1 3.147×10−1 2.491 6.591×10−1

R-ELM/BIP 3.927 1.106 2.609×10−1 21.54 6.792
RELM 1.548×106 6.504×105 12.01 6.373×106 2.256×106

IRWLS-ELM 4.164×104 2.334×103 1.517 2.147×105 7.825×104

Source: author.
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6.1.2 Auto-MPG dataset

Figure 20 – Testing RMSE of robust ELM networks with 1 sided contamination (Auto-
MPG dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 21 – Testing RMSE of robust ELM networks with 2 sided contamination (Auto-
MPG dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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From this example on, we also present the results of ANHNA-DER (represented

in dark green) and ANHNA-DERm (represented in dark blue).

As it can be observed in Figures 20 and 21, the two robust ANHNA provided

similar performances to RELM and R-ELM/BIP, which suffer far less from the increasing

outlier contamination. ANHNA-DERm shows to be more robust than ANHNA-DER in

most cases. This is due to the fact that the trimmed RMSE applied in ANHNA-DER only

trims 10% of the largest errors, which becomes less effective when the rate of contamination
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increases. The median, in this case, has shown to be a more robust method to be adopted.

The IRWLS-ELM was the worst of all robust approaches and, as expected, the non-robust

versions were highly affected by outliers.

Figure 22 – Number of hidden neurons of robust ELM networks with 1 sided contamination
(Auto-MPG dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 23 – Number of hidden neurons of robust ELM networks with 2 sided contamination
(Auto-MPG dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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As for the number of hidden neurons in Figures 22 and 23, IRWLS-ELM stood

out among the robust methods with less than 20 neurons in 20% to 40% of contamination in

both cases. We can also notice that, between ANHNA versions, ANHNA-DER provided the

smallest amount of hidden neurons in one-sided contamination case, while ANHNA-DERm

stood out in the two-sided case.

Once again, the methods that applied BIP has shown norms of the output
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Table 9 – Output weight euclidean norm with 1 sided contamination (Auto-MPG
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 1.821×102 1.399×102 5.027×102 3.555×102 1.069×102

ELM/BIP 1.438 1.220 8.676×10−1 2.667 5.898×10−1

ANHNAR-DE 6.390×108 7.152×105 1.198×102 6.341×109 2.003×109

ANHNARm-DE 4.077×109 2.447×104 1.635×102 4.045×1010 1.278×1010

R-ELM/BIP 1.810 1.568 1.135 2.861 5.698×10−1

RELM 1.577×102 1.379×102 2.961×102 3.442×102 1.006×102

IRWLS-ELM 2.260×104 1.290×104 1.815×102 1.186×105 3.469×104

20%

ELM 1.437×102 1.308×102 2.760×102 3.089×102 7.648×102

ELM/BIP 1.271 1.212 4.008×10−1 1.961 5.918×10−1

ANHNAR-DE 6.278×106 1.831×105 6.256×102 5.188×107 1.630×107

ANHNARm-DE 6.637×109 1.158×104 4.178×102 6.636×1010 2.098×1010

R-ELM/BIP 1.984 1.637 1.032 3.890 9.762×10−1

RELM 7.504×102 5.339×102 1.254×102 2.064×102 6.053×102

IRWLS-ELM 6.801×102 5.159×102 1.963×102 1.783×102 5.462×102

30%

ELM 1.523×102 1.304×102 6.258×102 2.910×102 8.763×102

ELM/BIP 1.705 1.099 6.520×10−1 4.404 1.436
ANHNAR-DE 9.520×109 3.581×102 13.30 9.520×1010 3.010×1010

ANHNARm-DE 1.876×106 1.235×104 1.599×102 1.031×107 3.425×106

R-ELM/BIP 4.252 4.185 1.129 8.300 2.653
RELM 3.278×102 9.907×102 2.261×102 2.280×104 6.889×102

IRWLS-ELM 9.403×102 8.157×102 1.436×102 1.776×102 5.670×102

40%

ELM 1.428×102 1.281×102 45.92 3.585×102 1.200×102

ELM/BIP 1.478 9.445×10−1 6.188×10−1 3.574 1.020
ANHNAR-DE 2.713×104 94.56 4.715 2.529×105 7.947×104

ANHNARm-DE 3.445×105 3.977×104 2.154×102 2.683×106 8.366×105

R-ELM/BIP 2.061 1.118 4.165×10−1 9.134 2.637
RELM 5.088×102 1.652×102 1.038 2.194×102 7.257×102

IRWLS-ELM 1.115×102 6.424×102 15.93 4.548×102 1.383×102

Source: author.

weight vectors (see Table 9 and 10) with smaller mean and variation than the remaining

algorithms along the different rate of contamination. Moreover, the two robust ANHNA

provided the largest norms of them all. This is due to the fact that their fitness function

takes into account only the trimmed validation RMSE or its median. So, these versions of

robust ANHNA will search only for the best RMSE performance solution. It is interesting

to notice that, even though ANHNA’s solution provide large output weight norms, it does

not overfit, as demonstrated by their testing results.

We can also see that the trade-off between RMSE performance, number of

hidden neurons and norm of output weight vector is difficult to balance. So far, the

network that stood out considering all cases was the R-ELM/BIP with one of the best

RMSE performances allied to the smallest norm among the robust methods. Nevertheless,
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Table 10 – Output weight euclidean norm with 2 sided contamination (Auto-MPG
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 1.542×102 1.326×102 4.183×102 2.817×102 7.372×102

ELM/BIP 1.680 1.697 4.966×10−1 2.891 7.763×10−1

ANHNAR-DE 3.676×109 2.041×107 3.622×102 2.742×1010 8.637×109

ANHNARm-DE 1.174×109 2.549×105 1.258×102 1.108×1010 3.481×109

R-ELM/BIP 3.051 2.355 7.738×10−1 7.933 2.042
RELM 1.428×102 1.278×102 8.711×102 2.403×102 5.737×102

IRWLS-ELM 2.080×104 7.567×102 6.667×102 8.060×104 2.624×104

20%

ELM 5.147×102 4.272×102 9.855 1.408×102 4.855×102

ELM/BIP 1.136 7.889×10−1 5.221×10−1 2.684 6.988×10−1

ANHNAR-DE 7.697×109 8.232×104 2.994×102 7.692×1010 2.432×1010

ANHNARm-DE 4.243×109 1.111×105 52.24 4.242×1010 1.342×1010

R-ELM/BIP 2.640 2.463 1.233 5.880 1.317
RELM 1.223×102 7.238×102 3.944×102 3.014×102 9.490×102

IRWLS-ELM 6.449×102 5.557×102 3.187×102 1.142×102 2.482×102

30%

ELM 6.738×102 5.035×102 1.331×102 2.297×102 6.679×102

ELM/BIP 1.348 1.126 5.740×10−1 3.355 8.205×10−1

ANHNAR-DE 1.072×109 6.187×105 9.024×102 9.225×109 2.881×109

ANHNARm-DE 3.829×105 6.817×104 3.096×102 1.797×106 6.971×105

R-ELM/BIP 3.649 2.703 9.821×10−1 9.599 2.919
RELM 7.769×102 5.971×102 1.250×102 2.400×102 6.521×102

IRWLS-ELM 7.876×102 8.376×102 24.24 1.892×102 5.798×102

40%

ELM 4.835×102 2.552×102 12.78 1.227×102 4.580×102

ELM/BIP 1.158 9.475×10−1 5.144×10−1 2.884 7.082×10−1

ANHNAR-DE 2.772×106 7.864×104 6.123×102 8.472×106 3.693×106

ANHNARm-DE 1.639×109 2.089×104 8.121×102 1.399×1010 4.405×109

R-ELM/BIP 1.348 1.189 6.977×10−1 2.172 5.332×10−1

RELM 8.007×102 5.155×102 3.927 2.478×102 8.641×102

IRWLS-ELM 7.028×102 5.862×102 1.157×102 1.676×102 4.946×102

Source: author.

it was not so successful, considering the number of hidden neurons.

6.1.3 Breast Cancer dataset

From the exposed in Figures 24 and 25, it is clear that the ANHNA-DERm is the

best performing method. Since all methods, including ELM and ELM/BIP, were chosen

based on the trimmed RMSE, we hypothesized that the median used in ANHNA-DERm

provided a more robust measure considering that both training and validation sets are

corrupted. The two other best performances belong to RELM and ANHNA-DER , although

their performances deteriorated with the increasing rate of contamination.

The ELM/BIP and R-ELM/BIP, as in the previously presented datasets, still

maintains the smallest norms of all tested algorithms in all cases studied.
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Figure 24 – Testing RMSE of robust ELM networks with 1 sided contamination (Breast
Cancer dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 25 – Testing RMSE of robust ELM networks with 2 sided contamination (Breast
Cancer dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 26 – Number of hidden neurons of robust ELM networks with 1 sided contamination
(Breast Cancer dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 27 – Number of hidden neurons of robust ELM networks with 2 sided contamination
(Breast Cancer dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Table 11 – Output weight euclidean norm with 1 sided contamination (Breast Cancer
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 11.72 7.193 3.409 43.74 12.09
ELM/BIP 9.096×10−1 9.134×10−1 7.073×10−1 1.138 1.280×10−1

ANHNAR-DE 6.547×102 39.56 9.096 6.065×102 1.902×102

ANHNARm-DE 42.23 29.23 8.923 1.271×102 36.12
R-ELM/BIP 7.176×10−1 7.075×10−1 5.403×10−1 9.495×10−1 1.564×10−1

RELM 2.451 2.421 2.031 3.134 3.257×10−1

IRWLS-ELM 15.38 12.53 9.279 30.38 7.123

20%

ELM 6.196 5.517 3.783 10.29 1.978
ELM/BIP 8.694×10−1 8.883×10−1 6.557×10−1 1.050 1.426×10−1

ANHNAR-DE 6.391×107 2.437×104 1.397×102 6.382×108 2.018×108

ANHNARm-DE 34.54 15.75 7.807 1.648×102 48.29
R-ELM/BIP 7.270×10−1 7.323×10−1 6.078×10−1 8.879×10−1 9.021×10−2

RELM 3.424 3.535 2.713 4.531 6.047×10−1

IRWLS-ELM 16.86 8.884 5.196 59.18 16.54

30%

ELM 7.696 6.108 3.826 17.66 4.022
ELM/BIP 8.591×10−1 8.350×10−1 4.731×10−1 1.214 2.521×10−1

ANHNAR-DE 1.053×109 4.252×102 54.62 1.053×1010 3.331×109

ANHNARm-DE 41.36 26.97 11.01 1.016×102 33.36
R-ELM/BIP 9.742×10−1 9.309×10−1 6.920×10−1 1.196 1.595×10−1

RELM 4.447 4.179 3.045 6.206 1.274
IRWLS-ELM 7.564 7.419 4.987 10.61 2.162

40%

ELM 7.589 5.837 4.186 14.78 3.582
ELM/BIP 1.210 1.208 6.889×10−1 1.598 2.665×10−1

ANHNAR-DE 5.897×104 9.327×102 10.80 4.631×105 1.458×105

ANHNARm-DE 62.97 49.25 20.30 1.789×102 46.54
R-ELM/BIP 1.129 9.661×10−1 5.522×10−1 2.010 5.372×10−1

RELM 4.940 3.417 2.661 16.34 4.168
IRWLS-ELM 10.26 8.887 5.967 21.04 4.729

Source: author.
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Table 12 – Output weight euclidean norm with 2 sided contamination (Breast Cancer
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 7.305 7.135 5.560 10.23 1.508
ELM/BIP 8.719×10−1 8.731×10−1 6.522×10−1 1.094 1.645×10−1

ANHNAR-DE 5.996×109 2.373×102 17.81 5.983×1010 1.892×1010

ANHNARm-DE 27.84 16.02 7.195 75.83 24.84
R-ELM/BIP 6.559×10−1 6.465×10−1 4.910×10−1 8.032×10−1 9.020×10−2

RELM 2.557 2.602 1.925 3.102 3.712×10−1

IRWLS-ELM 24.20 18.18 12.37 60.13 14.46

20%

ELM 4.193 3.773 1.711 8.023 1.672
ELM/BIP 8.107×10−1 7.863×10−1 5.180×10−1 1.070 1.875×10−1

ANHNAR-DE 1.462×1010 5.648×105 2.716×102 1.462×1011 4.622×1010

ANHNARm-DE 38.59 27.75 10.21 1.380×102 38.23
R-ELM/BIP 8.062×10−1 7.797×10−1 6.380×10−1 1.152 1.441×10−1

RELM 3.609 3.346 2.366 5.274 9.031×10−1

IRWLS-ELM 14.26 14.30 3.310 28.74 8.999

30%

ELM 6.605 4.986 1.626 19.16 4.934
ELM/BIP 8.210×10−1 8.274×10−1 4.607×10−1 1.148 1.876×10−1

ANHNAR-DE 8.318×1010 7.841×106 67.55 6.109×1011 1.958×1011

ANHNARm-DE 29.08 23.97 8.589 78.18 20.96
R-ELM/BIP 8.443×10−1 8.012×10−1 6.842×10−1 1.100 1.375×10−1

RELM 3.752 3.172 2.559 5.767 1.135
IRWLS-ELM 6.337 5.397 2.629 12.65 3.116

40%

ELM 4.570 3.405 2.467 8.423 2.401
ELM/BIP 1.012 9.393×10−1 4.043×10−1 1.803 4.751×10−1

ANHNAR-DE 8.772×106 7.049×102 1.031×102 8.733×107 2.760×107

ANHNARm-DE 94.17 71.99 7.714 2.618×102 89.64
R-ELM/BIP 8.908×10−1 7.976×10−1 5.500×10−1 1.353 2.915×10−1

RELM 4.780 3.877 2.488 9.408 2.534
IRWLS-ELM 8.338 5.910 2.427 32.33 8.581

Source: author.

For this dataset ANHNA-DERm provided the the best performance when con-

sidering RMSE performance and a small norms of output weight vectors (see Tables 11

and 12). Although it needed a large number of hidden neurons (see Figures 26 and 27), it

also accomplished performances that varied less than the other evaluated methods plus

combined with norms surprisingly small considering the size of the hidden layer. The

ANHNA-DER showed a good RMSE performance, but considering the number of hidden

neurons and their high weight norms, it did not excel as a viable solution. That being said,

plus the fact that IRWLS-ELM provided the poorest performance among the evaluated

robust methods, RELM and R-ELM/BIP offered the second and third best solutions,

respectively, for this set.
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6.1.4 CPU dataset

Figure 28 – Testing RMSE of robust ELM networks with 1 sided contamination (CPU
dataset).
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Figure 29 – Testing RMSE of robust ELM networks with 2 sided contamination (CPU
dataset).
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(b) 30% and 40%.
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Figure 30 – Number of hidden neurons of robust ELM networks with 1 sided contamination
(CPU dataset).
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(b) 30% and 40%.
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Figure 31 – Number of hidden neurons of robust ELM networks with 2 sided contamination
(CPU dataset).
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(b) 30% and 40%.
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Table 13 – Output weight euclidean norm with 1 sided contamination (CPU dataset).

Mean Median Minimum Maximum Std.

10%

ELM 1.715×103 1.257×103 4.149 5.593×103 1.846×103

ELM/BIP 8.101×10−1 8.058×10−1 3.536×10−1 1.229 3.102×10−1

ANHNAR-DE 1.457×107 5.564×104 2.304×102 1.345×108 4.221×107

ANHNARm-DE 2.170×109 4.086×105 1.312×103 2.165×1010 6.846×109

R-ELM/BIP 7.595×10−1 7.740×10−1 2.823×10−1 1.532 3.999×10−1

RELM 8.874×102 4.431×102 13.75 5.449×103 1.624×103

IRWLS-ELM 1.017×103 7.781×102 6.395×102 2.479×103 5.756×102

20%

ELM 1.306×103 1.092×103 4.333 4.533×103 1.392×103

ELM/BIP 8.131×10−1 7.052×10−1 4.127×10−1 1.450 3.508×10−1

ANHNAR-DE 2.462×109 6.770×104 1.882×102 2.461×1010 7.781×109

ANHNARm-DE 2.319×109 1.800×104 3.211×103 1.714×1010 5.545×109

R-ELM/BIP 1.269 9.110×10−1 3.459×10−1 3.059 8.874×10−1

RELM 5.970×102 3.927×102 2.131×102 1.521×103 4.822×102

IRWLS-ELM 1.409×103 7.997×102 4.635 5.299×103 1.595×103

30%

ELM 7.667×102 7.340×102 4.495 2.647×103 8.230×102

ELM/BIP 7.410×10−1 5.129×10−1 3.000×10−1 1.522 4.189×10−1

ANHNAR-DE 8.867×109 2.598×103 4.709 8.866×1010 2.804×1010

ANHNARm-DE 2.731×104 6.875×103 5.366×102 8.774×104 3.680×104

R-ELM/BIP 1.686 1.488 3.249×10−1 4.617 1.316
RELM 5.439×102 3.202×102 1.674 1.871×103 5.362×102

IRWLS-ELM 6.223×102 2.525×102 2.264 2.738×103 8.828×102

40%

ELM 5.278×102 14.67 3.231 2.507×103 8.695×102

ELM/BIP 9.217×10−1 8.725×10−1 4.323×10−1 1.692 4.266×10−1

ANHNAR-DE 1.604×103 1.208×102 3.079 7.359×103 2.811×103

ANHNARm-DE 1.442×105 1.211×104 4.112×102 1.026×106 3.262×105

R-ELM/BIP 1.265 1.207 3.102×10−1 3.217 9.147×10−1

RELM 7.633×102 3.472×102 1.395 3.561×103 1.117×103

IRWLS-ELM 4.844×102 10.32 3.534 2.568×103 8.425×102

Source: author.



97

In Figures 28 and 29, ANHNA-DERm , RELM and R-ELM/BIP presented

similar RMSE performances. On the number of hidden neurons, from the evaluated robust

methods, the IRWLS-ELM provided solutions with fewer neurons than the others.

As for the norms of the output weight vectors (see Tables 13 and 14), we may

observe once more that ELM/BIP and R-ELM/BIP provided the smallest and stabler

norms of all methods, independently of the rate of outlier contamination. Just as in iCub

and Auto-MPG examples, all robust ANHNA versions provided the highest norms.

Table 14 – Output weight euclidean norm with 2 sided contamination (CPU dataset).

Mean Median Minimum Maximum Std.

10%

ELM 6.278×102 4.877×102 4.262 2.144×103 6.077×102

ELM/BIP 5.687×10−1 5.369×10−1 3.128×10−1 9.218×10−1 2.024×10−1

ANHNAR-DE 3.180×105 2.044×104 6.065×102 2.924×106 9.160×105

ANHNARm-DE 2.439×108 5.998×104 5.967×102 2.386×109 7.526×108

R-ELM/BIP 7.726×10−1 6.786×10−1 3.036×10−1 1.430 3.708×10−1

RELM 8.148×102 6.502×102 1.833 3.035×103 8.631×102

IRWLS-ELM 1.483×103 1.121×103 1.946×102 5.112×103 1.467×103

20%

ELM 2.308×102 12.23 1.889 9.586×102 3.677×102

ELM/BIP 6.997×10−1 3.982×10−1 2.608×10−1 1.951 5.784×10−1

ANHNAR-DE 2.242×106 7.113×104 1.762×103 1.904×107 5.959×106

ANHNARm-DE 5.296×105 5.229×103 2.888×102 4.642×106 1.452×106

R-ELM/BIP 9.012×10−1 5.583×10−1 3.876×10−1 2.505 7.240×10−1

RELM 4.356×102 4.153×102 4.237 8.386×102 3.122×102

IRWLS-ELM 6.843×102 5.398×102 4.502 2.445×103 7.653×102

30%

ELM 2.104×102 15.37 2.011 8.700×102 3.332×102

ELM/BIP 6.900×10−1 6.628×10−1 1.867×10−1 1.428 4.395×10−1

ANHNAR-DE 3.200×107 1.807×104 1.067×102 2.992×108 9.402×107

ANHNARm-DE 9.037×104 6.416×103 8.776×102 8.462×105 2.656×105

R-ELM/BIP 7.281×10−1 5.820×10−1 2.253×10−1 1.654 4.699×10−1

RELM 1.477×103 7.300×102 1.914 5.061×103 1.771×103

IRWLS-ELM 1.708×103 8.776×102 1.194 9.569×103 2.845×103

40%

ELM 2.641×102 3.259 1.614 1.605×103 4.991×102

ELM/BIP 4.262×10−1 3.460×10−1 1.633×10−1 1.286 3.213×10−1

ANHNAR-DE 1.883×105 9.369×104 1.065×102 6.287×105 2.275×105

ANHNARm-DE 1.439×1010 1.158×104 7.999×102 1.439×1011 4.549×1010

R-ELM/BIP 4.081×10−1 3.822×10−1 2.015×10−1 7.398×10−1 1.402×10−1

RELM 2.856×102 1.634×102 2.859 7.576×102 2.579×102

IRWLS-ELM 2.877×102 1.231×102 9.430×10−1 1.063×103 3.915×102

Source: author.
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6.1.5 Servo dataset

Figure 32 – Testing RMSE of robust ELM networks with 1 sided contamination (Servo
dataset).
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Figure 33 – Testing RMSE of robust ELM networks with 2 sided contamination (Servo

dataset).
(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 34 – Number of hidden neurons of robust ELM networks with 1 sided contamination

(Servo dataset).
(a) 10% and 20%.
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(b) 30% and 40%.
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Figure 35 – Number of hidden neurons of robust ELM networks with 2 sided contamination
(Servo dataset).

(a) 10% and 20%.
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(b) 30% and 40%.
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Table 15 – Output weight euclidean norm with 1 sided contamination (Servo
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 1.003×102 1.816×102 5.168 5.230×102 1.632×102

ELM/BIP 5.316 5.080 1.426 11.22 3.085
ANHNAR-DE 2.829×109 2.739×107 1.909×105 2.718×1010 8.559×109

ANHNARm-DE 3.204×109 1.786×108 2.673×104 1.535×1010 6.015×109

R-ELM/BIP 4.549 4.282 1.998 7.614 1.852
RELM 5.067×104 1.786×104 7.961×102 1.765×105 6.238×104

IRWLS-ELM 3.546×102 6.445×102 6.328 1.330×104 4.836×102

20%

ELM 7.109×102 3.636×102 3.837 2.349×102 8.800×102

ELM/BIP 1.792 1.322 5.014×10−1 3.801 1.168
ANHNAR-DE 1.644×1010 4.986×105 2.197×102 1.644×1011 5.198×1010

ANHNARm-DE 5.239×108 2.189×106 1.419×104 5.077×109 1.600×109

R-ELM/BIP 3.494 2.898 1.599 5.984 1.714
RELM 5.086×102 2.187×102 5.986 1.881×104 6.828×102

IRWLS-ELM 1.418×102 3.772×102 5.664 7.693×102 2.373×102

30%

ELM 6.680×102 12.13 2.014 2.856×102 1.149×102

ELM/BIP 2.803 1.213 4.610×10−1 12.54 3.759
ANHNAR-DE 7.839×105 1.056×104 2.124×102 5.361×106 1.749×106

ANHNARm-DE 1.004×108 2.477×105 4.781×102 6.784×108 2.262×108

R-ELM/BIP 2.635 2.357 1.137 5.140 1.189
RELM 1.837×102 9.061×102 2.340 9.769×102 2.921×102

IRWLS-ELM 1.584×102 1.468×102 10.66 4.105×102 1.594×102

40%

ELM 2.544×104 16.40 3.671 2.535×105 8.014×104

ELM/BIP 1.176 6.230×10−1 5.164×10−1 4.950 1.356
ANHNAR-DE 1.760×109 4.936×104 14.88 1.746×1010 5.518×109

ANHNARm-DE 1.745×108 1.211×105 6.987×102 1.695×109 5.343×108

R-ELM/BIP 1.583 1.085 3.472×10−1 4.301 1.268
RELM 1.723×102 4.976 9.141×10−1 8.461×102 3.040×102

IRWLS-ELM 3.128×102 5.983×102 5.464 1.412×104 4.674×102

Source: author.
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Table 16 – Output weight euclidean norm with 2 sided contamination (Servo
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 4.130×102 3.837×102 7.071 2.025×104 7.832×102

ELM/BIP 3.230 2.340 5.375×10−1 8.466 2.840
ANHNAR-DE 2.396×109 9.618×106 3.637×105 2.266×1010 7.126×109

ANHNARm-DE 1.386×109 1.726×108 3.581×102 6.056×109 2.137×109

R-ELM/BIP 5.137 3.879 1.991 10.25 2.929
RELM 1.897×104 4.192×102 4.187×102 8.113×104 3.032×104

IRWLS-ELM 8.176×102 6.385×102 11.48 5.805×104 1.833×104

20%

ELM 4.372×102 2.282×102 1.117 1.443×102 5.454×102

ELM/BIP 1.453 7.873×10−1 5.074×10−1 5.208 1.565
ANHNAR-DE 1.457×108 1.684×107 5.456×104 7.912×108 2.814×108

ANHNARm-DE 2.598×108 6.373×105 2.648×102 2.586×109 8.173×108

R-ELM/BIP 3.280 2.843 1.569 7.219 1.624
RELM 1.678×104 2.536×102 6.538×102 1.280×105 3.940×104

IRWLS-ELM 8.528×102 2.405×102 2.483 5.380×102 1.647×102

30%

ELM 9.334×102 37.20 1.961 8.502×102 2.664×102

ELM/BIP 9.030×10−1 6.155×10−1 3.329×10−1 3.267 8.809×10−1

ANHNAR-DE 1.090×1010 1.934×106 7.750×102 1.088×1011 3.440×1010

ANHNARm-DE 6.234×108 1.532×106 2.631×102 6.219×109 1.966×109

R-ELM/BIP 2.077 2.073 9.629×10−1 3.299 8.627×10−1

RELM 2.760×102 1.119×102 1.350 1.612×104 4.840×102

IRWLS-ELM 3.047×102 8.760×102 95.14 1.628×104 5.115×102

40%

ELM 1.938×102 8.201 2.393 1.587×102 4.963×102

ELM/BIP 6.225×10−1 4.428×10−1 2.654×10−1 2.518 6.745×10−1

ANHNAR-DE 8.250×106 1.022×106 1.823×102 6.234×107 1.927×107

ANHNARm-DE 6.026×106 2.595×105 3.490×102 5.646×107 1.773×107

R-ELM/BIP 1.302 1.193 1.815×10−1 2.393 8.339×10−1

RELM 1.293×102 8.044×102 8.445×10−1 6.045×102 1.817×102

IRWLS-ELM 2.901×102 18.69 1.163 2.572×102 8.041×102

Source: author.

As illustrated by Figures 32 and 33, we may observe again that ELM/BIP

provided some outlier robustness when compared to ELM and even to IRWLS-ELM in the

2 sided case. We hypothesize that the combination of a small number of hidden neurons

and a larger norm of output weight vector than other methods, as it is demonstrated in

following figures and tables, contributes to the poor performance of IRWLS-ELM.

The robust ANHNA versions presents the largest number of neurons of all

methods, followed by R-ELM/BIP, RELM and IRWLS-ELM in most of the cases illustrated

in Figures 34 and 35.

Just as the majority of the examples presented previously, Tables 15 and 16

show that ELM/BIP and R-ELM/BIP provided small norms of output weight vector even

with the worst case scenario of 40% of outlier contamination. The robust versions of
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ANHNA presented very high norms, as in most datasets evaluated.

In the following chapter, we present the results from ANHNA for optimizing

the traditional ELM network.
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7 PERFORMANCE ANALYSIS OF THE ANHNA

In this chapter, we present the results from ANHNA using four different metaheuristics: Dif-

ferential Evolution (ANHNA-DE), Self-Adaptive Differential Evolution (ANHNA-SADE),

Particle Swarm Optimization with global neighborhood (ANHNA-PSOg) and Particle

Swarm Optimization with local neighborhood (ANHNA-PSOl). More details about these

algorithms, see Appendix A.

As mentioned before, besides ANHNAR, we have eight variants, independently

of the chosen metaheuristic. In order to optimize the evaluation of the proposed approach,

we choose only one variant to represent each aforementioned ANHNA variant.

Just as in the previous chapter, we adopt three different information to evaluate

their performance instead of only observing its numerical error: we search for the trade-off

between the RMSE during testing, the selected number of neurons and the Euclidean

norm of the output weight vector.

From what is exposed in Appendix D, on one hand, ANHNA-DE variant

that uses only the RMSE as fitness function has the best RMSE performance overall,

although it seldom exceeds the other variants regarding the minimum number of hidden

neurons. Moreover, it is the worst of ANHNA’s variants considering the final norm of

the output weight vector. This behavior was already anticipated because it is usually

the scenario found in many works in the literature. On the other hand, ANHNA-DENO

provides a solution with the smallest norm of the output weight vector of all and also the

minimum number of hidden neurons among all methods compared. However, its RMSE

performance is the worst of them. This result was also anticipated since it was expected

that ANHNA-DENO would choose solutions with fewer neurons and consequently smaller

norms. Furthermore, due to the fact that better performances were associated with higher

norms, they were then excluded in the selection step. Another consequence of this choice

is that using fewer neurons, the network will most likely underfit.

With the trade-off in mind, only two variants succeeded evenly: ANHNA-DERe

and ANHNA-DEReCNv2. The former had a slightly better RMSE performance and norm

of the output weight vector than the other ANHNA versions, while the latter provides a

slightly fewer number of hidden neurons. Thus, henceforward, we elected ANHNA-DERe

to represent ANHNA-DE results.

For ANHNA-PSO variants, we found similar issues, where we also had to
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compromise between precision performance, its number of neurons and norm of the output

weight vector. For both ANHNA-PSOg and ANHNA-PSOl, we elected their regularized

variants ANHNA-PSOgRe and ANHNA-PSOlRe , as well. With ANHNA-SADE there are,

so far, only results without regularization. Furthermore, the test results for its variants

were similar to one another. Thus, we adopted ANHNA-SADE original version to be

represented in this chapter.

We selected six real-world regression problems datasets: Auto-MPG, Body Fat,

Breast Cancer, CPU, iCub, and Servo. For more details about them, see Appendix B.

This chapter is organized as follows. Section 7.1 holds all figures and tables

related to the comparative study carried in this chapter, followed by the discussion over

those results.

7.1 ANHNA’s comparative study

7.1.1 Auto-MPG dataset

Table 17 – Evaluation results of the norm of the output weight vector (Auto-MPG
dataset).

Mean Median Minimum Maximum Std.

ELM 2.411×104 1.273×104 5.878×103 6.912×104 2.313×104

ELM-BIP 4.559 3.714 2.663 9.287 2.177
ANHNA-DERe 93.65 16.30 8.554 7.832×102 2.424×102

ANHNA-PSOgRe 25.37 16.56 7.522 65.26 19.29
ANHNA-PSOlRe 41.18 18.34 9.324 1.709×102 53.26
ANHNA-SADE 9.578×103 5.094×102 1.729×102 5.337×104 1.925×104

Source: author.

Table 18 – Regularization parameters for different ANHNA (Auto-MPG dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 2.263×10−4 1.132×10−4 2.801×10−8 6.994×10−4 2.464×10−4

ANHNA-PSOgRe 2.401×10−4 1.796×10−4 9.394×10−6 9.809×10−4 2.883×10−4

ANHNA-PSOlRe 1.732×10−4 1.350×10−4 8.126×10−7 4.459×10−4 1.600×10−4

Source: author.

From the exposed in Table 17, the ELM network has the solutions with the

highest norm of all examples. This result combined with the ones in the previous chapter
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illustrates how much the random choice of hidden weights and biases influences the

estimation of the output weights. As already expected, ELM/BIP provided the smallest

norm of all methods. When we compare the median and minimum values ANHNA-DERe ,

ANHNA-PSOgRe and ANHNA-PSOlRe , it is possible to observe that their norms were very

similar. Their maximum values are what distinguishes their performances and consequently

moves their average value.

Considering the values of regularization parameter λ in Table 18, the values

presented are small but not zero (with exception of the minimum value of ANHNA-DERe).

This means that regularization was in fact needed to improve the performances, otherwise,

the evolved λ would always be close to zero, i.e. no regularization needed.

Figure 36 shows the RMSE of training and testing, where the black dots

represent their respective mean values. It is clear that ELM achieves the worst performance

overall, but the remaining methods have very similar results. ANHNA-SADE provides

the smallest testing RMSE combined with a small number of hidden neurons (about 30),

while ANHNA-PSOgRe provides the best results taking the median and mean as reference.

Overall, considering also the time of execution to select a network, train and

test it, ELM/BIP offered the best solution. It provided a competitive RMSE performance,

combined with the smallest norm of all, used fewer neurons than ANHNA-DERe , ANHNA-

PSOgRe , and ANHNA-PSOlRe and required only minutes to run, compared to hours of

ANHNA versions.
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Figure 36 – ANHNA comparison with different metaheuristics
(Auto-MPG dataset).

(a) Training and Testing RMSE Results.
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7.1.2 Bodyfat dataset

For this dataset, as shown in Figure 37, all ANHNA versions reported better

performances than ELM and ELM/BIP. On average, those versions are very similar

although their medians demonstrate slight differences, where ANHNA-PSOlRe and ANHNA-

DERe stand out. ANHNA-SADE, once more, offered the minimum number of hidden

neurons but with higher norms than ANHNA-DERe , ANHNA-PSOgRe , ANHNA-PSOlRe .
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Figure 37 – ANHNA comparison with different metaheuristics
(Bodyfat dataset).

(a) Training and Testing RMSE Results.
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Table 19 – Evaluation results of the norm of the output weight vector (Bodyfat
dataset).

Mean Median Minimum Maximum Std.

ELM 5.505×102 5.104×102 13.36 1.051×103 3.593×102

ELM-BIP 1.038 1.020 7.538×10−1 1.249 1.425×10−1

ANHNA-DERe 5.225 4.047 2.551 14.82 3.674
ANHNA-PSOgRe 4.713 3.065 2.392 15.46 3.949
ANHNA-PSOlRe 3.787 3.271 1.705 7.262 1.891
ANHNA-SADE 45.70 40.22 16.05 80.37 23.06

Source: author.
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Table 20 – Regularization parameters for different ANHNA (Bodyfat dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 9.045×10−4 5.731×10−4 3.865×10−5 3.613×10−3 1.059×10−3

ANHNA-PSOgRe 8.133×10−4 4.376×10−4 3.096×10−3 4.221×10−3 1.895×10−3

ANHNA-PSOlRe 1.464×10−3 1.184×10−3 1.668×10−4 3.927×10−3 1.262×10−3

Source: author.

Even though ELM/BIP still provides the smallest norms of output weight vec-

tors, ANHNA-SADE provides the best solution for this example. It achieved a performance

similar to the best ones with a significantly smaller number of hidden neurons and a norm

of acceptable magnitude.

7.1.3 Breast Cancer dataset

Table 21 – Evaluation results of the norm of the output weight vector (Breast Cancer
dataset).

Mean Median Minimum Maximum Std.

ELM 23.16 21.72 10.60 40.06 10.24
ELM-BIP 6.433×10−1 6.251×10−1 5.411×10−1 7.950×10−1 7.899×10−2

ANHNA-DERe 5.441 4.693 3.339 9.504 2.051
ANHNA-PSOgRe 6.921 6.646 3.661 9.651 1.768
ANHNA-PSOlRe 7.002 6.722 4.753 9.506 1.529
ANHNA-SADE 18.59 6.211 3.518 1.052×102 31.71

Source: author.

Table 22 – Regularization parameters for different ANHNA (Breast Cancer dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 6.130×10−6 2.730×10−6 7.267×10−8 3.842×10−5 1.150×10−5

ANHNA-PSOgRe 4.327×10−6 3.234×10−6 1.176×10−8 1.287×10−5 4.326×10−6

ANHNA-PSOlRe 5.667×10−6 3.578×10−6 3.288×10−7 1.407×10−5 4.824×10−6

Source: author.

Observing Table 21, we can already notice a pattern, where ELM/BIP offer

the smallest norms of all, ANHNA-SADE provides the largest ones and ANHNA-DERe ,

ANHNA-PSOgRe and ANHNA-PSOlRe are very similar to each other.

Figure 38 shows that ANHNA-based methods provide solutions with a noticeable

improvement on the testing performance. Although the four versions suggest a larger
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Figure 38 – ANHNA comparison with different metaheuristics
(Breast Cancer dataset).

(a) Training and Testing RMSE Results.
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number of hidden neurons, the resulting norms of the output weight vectors are not as

high as ELM ones. Considering that ANHNA versions’ RMSE performances are similar,

ANHNA-PSOgRe provided the best solution with fewer neurons and a small norm.

Table 22 shows that the chosen λ are closer to zero than the ones obtained

with the previously presented datasets.

7.1.4 CPU dataset

Figure 39 shows that, once more, ANHNA versions provided better perfor-

mances, although ANHNA-DERe offers the best mean and median values of all ANHNA.
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ANHNA-SADE still offers the minimum number of hidden neurons, but also the largest

norms of output weight vectors of all ANHNA versions (see Table 23). Another point

to highlight is that, while ELM and ELM/BIP show signs of overfitting (small training

errors and large test errors), we can observe that all ANHNA versions provides compatible

training and testing errors. Such result shows the reliability of our proposed method. That

being said, ANHNA-DERe provided the best solution with the best RMSE performance,

the second minimum number of hidden neurons among ANHNA versions and a small

norm.

Figure 39 – ANHNA comparison with different metaheuristics
(CPU dataset).

(a) Training and Testing RMSE Results.
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Table 23 – Evaluation results of the norm of the output weight vector (CPU
dataset).

Mean Median Minimum Maximum Std.

ELM 1.665×103 1.438×103 7.715×102 3.295×103 7.652×102

ELM-BIP 1.437 1.380 6.323×10−1 2.093 4.048×10−1

ANHNA-DERe 18.21 13.24 8.083 54.47 13.73
ANHNA-PSOgRe 15.69 12.60 8.917×10−1 54.42 14.67
ANHNA-PSOlRe 8.574 8.875 6.874×10−1 14.03 4.629
ANHNA-SADE 4.492×102 3.135×102 1.447×102 1.442×103 4.102×102

Source: author.

Table 24 – Regularization parameters for different ANHNA (CPU dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 1.186×10−4 7.556×10−5 2.101×10−6 4.346×10−4 1.326×10−4

ANHNA-PSOgRe 1.162×10−2 1.587×10−4 5.507×10−6 1.150×10−1 3.632×10−2

ANHNA-PSOlRe 4.443×10−2 2.456×10−4 9.392×10−5 2.667×10−1 9.566×10−2

Source: author.

7.1.5 iCub dataset

Analyzing Figure 40, it is clear that there is no significative difference in

performance between ELM/BIP and ANHNA versions. What is clear is that all of the

former are better than the traditional ELM.

Considering also the number of hidden neurons, ANHNA-SADE still offers the

minimum number, but ELM/BIP also provides a small amount. To finalize, observing the

norms of the output weight matrices in Table 25, it is clear that ELM/BIP provided the

best solution, given the fact of the smallest norm plus the fact that it takes minutes to

execute this evaluation.

Table 25 – Evaluation results of the norm of the output weight matrix (iCub
dataset).

Mean Median Minimum Maximum Std.

ELM 4.488×107 3.455×107 4.594×105 1.095×108 4.495×107

ELM-BIP 1.954 1.837 5.483×10−1 4.052 1.127
ANHNA-DERe 6.486 5.255 9.970×10−1 16.48 4.779
ANHNA-PSOgRe 3.379 3.128 2.478 4.754 6.804×10−1

ANHNA-PSOlRe 4.920 2.805 1.155 21.07 5.850
ANHNA-SADE 1.332×102 83.71 34.66 5.553×102 1.550×102

Source: author.
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Figure 40 – ANHNA comparison with different metaheuristics
(iCub dataset).

(a) Training and Testing RMSE Results.
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Table 26 – Regularization parameters for different ANHNA (iCub dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 2.334×10−3 2.104×10−4 2.810×10−5 1.523×10−2 4.789×10−3

ANHNA-PSOgRe 9.698×10−4 1.087×10−3 1.685×10−4 1.330×10−3 3.710×10−4

ANHNA-PSOlRe 1.546×10−3 8.891×10−4 -3.509×10−4 4.873×10−3 1.747×10−3

Source: author.
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7.1.6 Servo dataset

It is interesting to notice in Table 28 that the regularization parameters are

very small tending to zero. This behavior is clearly reflected in the resulting large norms

of output weight vectors of ANHNA versions (see Table 27).

Although ANHNA-DERe showed a better performance, its respective norms

prevents it to be chosen as the best solution. In this case, ELM/BIP also provides the

best cost-benefit ratio.

In the following chapter, we present the conclusions of this work and future

works.

Table 27 – Evaluation results of the norm of the output weight vector (Servo
dataset).

Mean Median Minimum Maximum Std.

ELM 2.154×104 3.522×103 1.286×102 1.578×105 4.875×104

ELM-BIP 12.95 10.74 5.546 32.43 8.349
ANHNA-DERe 2.597×103 1.068×103 61.36 1.519×104 4.502×103

ANHNA-PSOgRe 7.797×103 2.150×103 2.184×102 5.047×104 1.536×104

ANHNA-PSOlRe 3.286×103 3.571×103 1.502×102 9.226×103 2.933×103

ANHNA-SADE 9.863×106 1.325×106 3.553×104 8.295×107 2.577×107

Source: author.

Table 28 – Regularization parameters for different ANHNA (Servo dataset).

Mean Median Minimum Maximum Std.

ANHNA-DERe 2.083×10−6 4.416×10−8 7.657×10−11 2.023×10−5 6.377×10−6

ANHNA-PSOgRe 3.528×10−7 4.506×10−9 -7.557×10−7 1.843×10−6 8.234×10−7

ANHNA-PSOlRe 2.831×10−7 2.545×10−9 3.169×10−10 1.921×10−6 6.038×10−7

Source: author.
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Figure 41 – ANHNA comparison with different metaheuristics
(Servo dataset).

(a) Training and Testing RMSE Results.
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8 CONCLUSIONS AND FUTURE WORK

This thesis deals with the challenge of improving the Extreme Learning Machine network

by designing an efficient method for model selection and proposing an outlier robust version.

Considering that traditional ELM networks have their performances strongly influenced

by the hidden layer size, the conditioning of the hidden layer’s output and the features

provided by the hidden layer, any improvement should address those issues.

That being said, one of our contributions is the R-ELM/BIP that combines the

outlier robustness property provided by M-Estimators with the optimization of the hidden

layer’s output using Intrinsic Plasticity principles. The second contribution towards an

improved ELM network is the Automatic Number of Hidden Neurons Approach (ANHNA),

which is a new encoding scheme for automatic architecture design based on metaheuristics

that suggests the number of hidden neurons and their respective activation function’s

parameters. Deriving from ANHNA, a third contribution is a robust version that also

searches for the weight function and its respective error threshold, besides the architecture

itself.

An additional contribution of this work is the data and the work related to the

learning of visuomotor coordination in a pointing problem with the humanoid robot iCub.

This contribution provided one of the datasets used here and it was harvested with the

simulated version of the robot.

In this thesis, we made a brief review in the literature about the different

neural networks with random projections in the hidden layer and how, within this context,

the ELM arose as an appealing alternative. We also discussed the issues that affect

its performance and introduced the concept of Intrinsic Plasticity, which is based on

a biologically plausible phenomenon and optimizes the information transmission of the

hidden layer. This method, implemented as Batch Intrinsic Plasticity, also acts as a feature

regularizer and provides a better conditioned hidden layer’s output matrix H, that affect

(positively) the quality of the output weights solution.

Another aspect of ELM’s performance discussed here is related to its robustness

to outliers. It is known that real-world datasets are commonly contaminated with outliers

and/or leverage points. So, it is only realistic that we also tried to incorporate such

property into an improved version. Based on Horata et al. (2013), we described the two

main problems that must be addressed in order to achieve outlier robustness: the numerical
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stability and the robust estimation of output weights.

We also presented a brief review about optimization of ELM network using

metaheuristics, where we showed that most of the works seek to optimize the hidden

weights. This specific category of works, by adapting the hidden weights, ceases to deal with

an ELM network to deal with an evolutionary neural network that adopts a metaheuristic

to perform the weight adaptation. Based on the work of Das et al. (2009), our proposed

encoding scheme, ANHNA, which can be applied to any populational based metaheuristic,

is further described. Four different metaheuristics algorithms, that were adopted in this

thesis, are described as well.

We carried out a comprehensive set of tests to evaluate our proposed methods

with traditional ELM and its improved version using BIP, for commonly used datasets,

and also with robust methods such as RELM and IRWLS-ELM, for purposely increasingly

contaminated datasets. For the robust cases, with exception of robust ANHNA versions,

all networks were selected through a grid search associated with a 5-Fold cross-validation

that used a 10% trimmed validation RMSE to choose the best network in each of the 10

independent repetitions. Each of the methods was subjected to training and validation

using data deliberately contaminated with outliers with different rates (10% to 40%) and

different cases (1 or 2 sided).

The performed comparison involved the evaluation of three different information:

the test RMSE, the number of hidden neurons and the norm of the output weight vectors.

The respective results showed that the non-robust ELM versions did suffer performance

deterioration with the growing rate of outliers, which reinforces the importance of the

study on outlier robustness. In addition, there was not a single method that was the best

in all datasets and cases, but there are some patterns observed. One of them is related to

BIP property of maintaining a small norm of the output weight vector, independently of

the rate of outlier contamination. ELM/BIP provided better results than ELM network,

especially in two-sided cases, and showed that small norms of the output weights influence

the network robustness. Such results indicate that BIP is a very reliable method even in

adverse situations.

The proposed R-ELM/BIP performed similarly to RELM in most of the cases,

but better than the non-robust methods and the IRWLS-ELM. It presented, just as RELM

and robust ANHNA versions, to be less influenced by the rate of outliers. Even though the
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usual number of hidden neurons is larger than the RELM’s number in half of the examples,

the provided norms of R-ELM/BIP are the smallest of all robust methods and also than

the traditional ELM, independently of the contamination rate or size of the hidden layer.

Hence, it represents a valid and reliable alternative to the other methods.

The two robust ANHNA-DE evaluated, ANHNA-DER and ANHNA-DERm ,

differentiate from each other by the use of trimmed validation RMSE or median validation

RMSE to choose the best solution along the generations, respectively. They presented

accuracies that are comparable to, or even better than, the other robust methods. However,

the number of hidden neurons was similar or higher than the others and their norms of

output weight vectors were extremely high. This indicates that using only RMSE as the

fitness function for ELM’s model selection is not a sufficient measure and shows that you

can achieve great accuracy with the ELM at the expense of a non-robust network that

may also present generalization problems as well.

For the evaluation of the proposed method ANHNA, where there is no other

noise added but the one inherent to the dataset itself, comprehensive tests were performed

with ANHNA-DE, ANHNA-SADE, ANHNA-PSOg , and ANHNA-PSOl. For each of them,

eight different fitness functions were adopted and comprised the use of RMSE, two different

percentages of the conditioning number and the norm of the output weight vector, besides

the same variants but using regularized ELM. The only exception was with ANHNA-SADE

that had only the former four fitness functions evaluated. From all of those tests, we chose

only one for each metaheuristic to be represented in the results chapter.

From the comparisons of the variants, the difficulty of the trade-off between

the RMSE performance, the number of hidden neurons and norm of the output weight

vector became clear. Those variants that provided best RMSE performance rarely offered

small hidden layers, much less a small norm of the output weight vector, and vice versa.

With the given options, we chose the regularized versions ANHNA-DERe, ANHNA-PSOgRe

and ANHNA-PSOlRe , who presented the good RMSE performances and smaller norms

than the variants with highest RMSE accuracy. For ANHNA-SADE, we chose its original

version, since there were no results available with regularization.

When those chosen ANHNA variants were compared with ELM, ELM/BIP and

among themselves, we observed that its principle of modifying the activation function pa-

rameters as well as the number of hidden neurons has provided better RMSE performances
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than traditional ELM and similar or better performances than ELM/BIP. It also was clear

that the use of DE or PSO is indifferent to RMSE performance, but SADE gave similar

RMSE performances with an unusually small number of hidden neurons. Nevertheless,

this last method also resulted in solutions with the highest norm of all selected algorithms.

Even though, in some cases, the cost-benefit ratio (considering the norm and

execution time) still leans towards the ELM/BIP, ANHNA proposal still presented examples

with improved accuracy associated with norms equivalent to the ELM/BIP ones. Such

results indicate that this method should be further refined, but already shows promising

results.

So far, this thesis presented three main contributions: the R-ELM/BIP, ANHNA

versions and the iCub data and study. We focused on describing the former two formulations

and their contexts, associating them with a comprehensive amount of tests which included

the iCub’s harvest data. From what it was exposed, our proposals showed valid and

promising results. In what follows, we discuss the main directions that we wish to pursue

from now on.

8.1 Future Work

The fitness function for ANHNA will be further studied and evaluated in order

to find the best balance between the previously mentioned trade-off. Time optimization

of ANHNA’s execution is another matter that must be addressed. We will also execute

the evaluations of ANHNA-SADE with regularized ELM networks and perform additional

studies to understand which mechanisms enabled it to provide a fewer number of hidden

neurons than the other tested metaheuristics.

For robust versions of ANHNA, new robust measures to evaluate the validation

errors, when the validation set is also contaminated, should be tested. The investigation

of robustness properties will be performed using noise of distributions other than the

Normal one plus the adoption of different robust estimation methods that could reduce

the execution time without affecting its robustness.
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aprendizado extremo via algoritmos genéticos. In: Anais do Encontro Nacional de
Inteligência Artificial e Computacional (ENIAC 2014). [s.n.], 2014. Available
from Internet: <http://www.lbd.dcc.ufmg.br/colecoes/eniac/2014/0060.pdf>.

ANDREWS, D. F. A robust method for multiple linear regression. Technometrics,
Taylor & Francis, Ltd. on behalf of American Statistical Association and American
Society for Quality, v. 16, n. 4, p. 523–531, 1974. ISSN 00401706. Available from Internet:
<http://www.jstor.org/stable/1267603>.

ANGELINE, P.; SAUNDERS, G.; POLLACK, J. An evolutionary algorithm that
constructs recurrent neural networks. IEEE Transactions on Neural Networks, v. 5,
n. 1, p. 54–65, January 1994.

ASHBY, W. R. Design for a brain. [S.l.]: New York: Wiley, 1952.

BADDELEY, R.; ABBOTT, L. F.; BOOTH, M. C.; SENGPIEL, F.; FREEMAN, T.;
WAKEMAN, E. A.; ROLLS, E. T. Responses of neurons in primary and inferior temporal
visual cortices to natural scenes. Proceedings of the Royal Society B: Biological
Sciences, v. 264, p. 1775–1783, 1997.

BAKER, J. E. Reducing bias and inefficiency in the selection algorithm. In:
GREFENSTETTE, J. J. (Ed.). Proceedings of the 2nd International Conference
on Genetic Algorithms. [S.l.]: Lawrence Erlbaum Associates, Inc. Mahwah, NJ, USA,
1987. p. 14–21. ISBN 0-8058-0158-8.

BARROS, A. L. B.; BARRETO, G. A. Building a robust extreme learning machine
for classification in the presence of outliers. In: PAN, J.-S.; POLYCARPOU, M.;
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Congresso Brasileiro de Automática (CBA2012). [s.n.], 2012. Available from
Internet: <http://cba2012.dee.ufcg.edu.br/anais>.

FREIRE, A.; LEMME, A.; BARRETO, G.; STEIL, J. Learning visuo-motor coordination
for pointing without depth calculation. In: Proceedings of the European Symposium
on Artificial Neural Networks. [S.l.: s.n.], 2012. p. 91–96.
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APPENDIX A – EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms refer to a class of population-based stochastic search

algorithms that are developed from ideas and principles of natural evolution or social

behavior of biological organisms (YAO, 1999). They are particularly useful for dealing

with large complex problems because they are less likely to be trapped in local minima

then traditional gradient-based algorithms (YAO, 1999). In our work, we choose two of

these algorithms and their variations: Differential Evolution (DE), Self-Adaptive Differ-

ential Evolution (SaDE), Particle Swarm Optimization (PSO) with global or local best

neighborhoods.

This chapter is organized as follows: Section A.1 describes the Differential

Evolution algorithm, emphasizing its three main parts: mutation (Subsection A.1.1),

crossover (Subsection A.1.2) and selection (Subsection A.1.3). Section A.2 describes a

variation of DE, named Self-Adaptive Differential Evolution, and how it differs from

the original method: mutation strategies (Subsection A.2.1) and parameters adaptation

(Subsection A.2.2). At the end, Section A.3 describes the Particle Swarm Optimization

algorithm and their two main variations: with global or local best neighborhood setup for

particles adaptation, and on Subsection A.3.1 the PSO’s velocity component is detailed.

A.1 Differential Evolution

Differential Evolution is a population-based stochastic metaheuristic, designed

by Storn and Price in 1995 (STORN; PRICE, 1995; STORN; PRICE, 1997). It is very

popular due to its simplicity and effectiveness in solving various types of problems, including

multi-objective, multi-modal, dynamic and constrained optimization problems (ZAHARIE,

2014). This method works through a cycle of reproduction and selection operators, where

reproduction includes mutation and crossover operators. Each cycle corresponds to an

evolutionary generation, which evolves a population of NP solution candidates called

individuals towards the global optimum. The population of individuals corresponding to

generation g will be denoted by C(g) = {c1(g),c2(g), ...,cNP(g)} and the components of a

vector ci will be denoted by (c1
i ,c

2
i , ...,c

dn
i ), where dn is the size of the individual vector.

The initial population is generated by assigning random values in the search space to the

variables of every solution (HU et al., 2013).
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Differently than other evolutionary algorithms, the mutation operator is applied

first to generate a trial vector Vi(g) for every individual of the current population, which

will then be used by the crossover operator to implement a discrete recombination of vi(g)

and ci(g) to produce the offspring c′i(g). That being said, the general structure of DE is

described in Algorithm 8, where the eventual improvements are placed on mutation and

crossover operators. In almost all implementations, the selection operator is working as

follows: the trial element is compared with the current element and the best of them is

transferred to the new population (ZAHARIE, 2014).

Algorithm 8: General DE Algorithm
1: initialize the parameters from DE;
2: g← 0;
3: set cmin and cmax;
4: initialize population C(0)∼U (cmin,cmax) of NP individuals;
5: compute fitness: { f (c1(0), ..., f (cNP(0)};
6: while stopping condition(s) not true do
7: for each individual, ci(g) ∈ C(g), i = 1, ...,NP do
8: create: vi(g)← generateMutation(C(g));
9: create an offspring: c′i(g)← crossover(C(g),V(g));

10: compute fitness: f (c′i(g));
11: if f (c′i(g)) < f (ci(g)) then
12: ci(g + 1)← c′i(g);
13: f (ci(g + 1))← f (c′i(g));
14: else
15: ci(g + 1)← ci(g);
16: f (ci(g + 1))← f (ci(g));
17: end if
18: end for
19: g← g + 1;
20: end while
21: return individual with best fitness: cbest .

As mentioned before, the DE variants mainly differ with respect to the mutation

and crossover operators. The most used ones are briefly described in the following.

A.1.1 Mutation

Applied to produce a trial vector vi, the most frequently used mutation strategies

implemented are listed as follows and more details about them can be seen in Storn (1996).

• DE/rand/1: the most common one, generates vi with three elements i1, i2 and i3,

where ci1(g) is a target vector, i 6= i1 6= i2 6= i3 and i1, i2, i3 ∼U (1,NP). They are used
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to construct a difference term to be added to the target vector (see Equation A.1)

and the constant F ∈ (0,∞) is a scale factor or mutation factor that controls the

amplification of the differential variation (ENGELBRECHT, 2007).

vi(g) = ci1(g)+ F(ci2(g)− ci3(g)). (A.1)

• DE/rand/nv: for this strategy, more than one difference is used to calculate vi, as

shown below:

vi(g) = ci1(g)+ F
nv

∑
k=1

(ci2,k(g)− ci3,k(g)), (A.2)

where ci2,k(g)− ci3,k(g) shows the k-th difference vector. The larger the value of nv,

the more directions can be explored per generation (ENGELBRECHT, 2007).

• DE/best/1: is a small variance from DE/rand/1, where the target vector ci1(g)

becomes the best individual cbest(g) in g-th generation (see Equation A.3).

vi(g) = cbest(g)+ F(ci2(g)− ci3(g)). (A.3)

• DE/rand-to-best/nv: other common variant is based on changing the selected

target vector with linear combinations involving the best individual cbest(g) and/or

the target element ci1(g) from the current population (see Equation A.4) (ZAHARIE,

2014).

vi(g) = γcbest(g)+(1− γ)ci1(g)+ F
nv

∑
k=1

(ci2,k(g)− ci3,k(g)), (A.4)

where γ ∈ (0,1) controls the influence of the best individual on the target vector.

• DE/current-to-rand/1 + nv: with this strategy, the parent is mutated using at

least two difference vectors (ENGELBRECHT, 2007). One is calculated from the

current individual and a random vector, while the remaining are calculated using

only randomly selected vectors, as shown on Equation A.5.

vi(g) = ci(g)+ F1(ci1(g)− ci(g))+ F2

nv

∑
k=1

(ci2,k(g)− ci3,k(g)), (A.5)

where F1 may be equal or not to F2.
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A.1.2 Crossover

After the mutation phase, crossover operator is applied to each pair of individ-

uals ci(g) and respective trial vectors vi(g) to produce the offspring c′i(g). The basic DE

algorithm employs the binomial crossover, defined as follows:

c j′
i (g) =

 c j
i (g) if rand j ≤CR and j = jrand

v j
i (g) otherwise.

(A.6)

In Equation A.6, the crossover rate CR ∈ [0,1) is a user-specified constant that

controls the number of elements of parent ci(g) that will change, and j = 1, ...,dn. The

larger CR value is, the more elements of the trial vector will be used to produce the

offspring, and less of the parent. To enforce that at least one element will differ from the

parent, a randomly selected jrand ∼U (1,dn) is chosen from the trial vector to pass to the

next generation.

Besides, there is an exponential crossover operator, which is an alternative to

the aforementioned method. In this case, the elements of the offspring c′i(g) are inherited

from the respective trial vector vi(g), starting from a randomly chosen element until

the first time rand j > CR. The remaining elements of c′i(g) are then copied from the

corresponding parent ci(g) by at least one element.

A.1.3 Selection

Finally, the selection operator is responsible for constructing the population for

the next generation. As already mentioned, a very simple rule based on fitness is applied

(see Equation A.7), which ensures that the average fitness of the population does not

deteriorate (ENGELBRECHT, 2007).

ci(g + 1) =

 c′i(g) f (c′i(g)) < f (ci(g))

ci(g) otherwise.
(A.7)

A.2 Self-Adaptive Differential Evolution

Proposed by Qin et al. (2009), the Self-Adaptive Differential Evolution deter-

mines adaptively an appropriate strategy and its associated parameter values at different

stages of the evolution process. Just like many other methods, DE has control parameters
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that significantly influence its optimization performance, such as population size NP,

scaling factor F and crossover rate CR. Therefore, in an attempt of avoiding trial-and-error

searching processes, which are time-consuming and has high computational cost, trial

vector generation strategies and their parameters are gradually self-adapted from their

previous experiences in generating promising solutions.

A.2.1 Mutation Strategies

Within this DE variation, we keep a candidate pool of Ks strategies from where

each individual ci(g) will elect one based on the probability pk(g) (k = 1, ...,Ks), which

represents the probability of that k-th strategy to be chosen. The more successful a strategy

has behaved to generate promising solutions, the more likely it will be chosen in the next

generations. This pool contains four different strategies:

• DE/rand/1 (see Equation A.1)

• DE/rand/2 (see Equation A.2)

• DE/current-to-rand/1 (see Equation A.5), where F1 6= F2 and

• DE/rand-to-best/2 : where the implementation suggested in Qin et al. (2009) is

different from the one described in Storn (1996) and Engelbrecht (2007). In his work,

this strategy is given by:

vi(g) = ci(g)+ F(cbest(g)− ci(g))+ F(ci1(g)− ci2(g))+ F(ci3(g)− ci4(g)). (A.8)

A learning period LP, constituted of a fixed number of generations, is established

so that the algorithm can acquire information about the success and failure of those

strategies through the first generations in order to determine real values to pk(g). Therefore,

those probabilities during the learning period are equal, i.e., pk(gLP) = 1
Ks

.

On the original paper (QIN et al., 2009), the authors used the stochastic

universal selection method (BAKER, 1987) to choose one strategy for each individual in

current population. However, posterior works, such as Cao et al. (2012) does not mention

any particular method for such task, which gives us the option of using it or not.

After the mutation is done, depending on the strategy, the crossover operator

changes as well. For the first three strategies, the binomial crossover is chosen because of

its popularity (QIN et al., 2009), and for the last one, the offspring receives the entire trial

vector vi(g). Once again, in Cao et al. (2012), it differs by using only binomial crossover.
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Table 29 – Success memory.

Index Strategy 1 Strategy 2 ... Strategy Ks
1 ns1(g−LP) ns2(g−LP) ... nsKs(g−LP)
2 ns1(g−LP + 1) ns2(g−LP + 1) ... nsKs(g−LP + 1)
...

...
...

...
...

LP ns1(g−1) ns2(g−1) ... nsKs(g−1)

Source: Qin et al. (2009).

Table 30 – Failure memory.

Index Strategy 1 Strategy 2 ... Strategy Ks
1 n f1(g−LP) n f2(g−LP) ... n fKs(g−LP)
2 n f1(g−LP + 1) n f2(g−LP + 1) ... n fKs(g−LP + 1)
...

...
...

...
...

LP n f1(g−1) n f2(g−1) ... n fKs(g−1)

Source: Qin et al. (2009).

Subsequently, all offspring are evaluated and the number of those generated

by k-th strategy that succeeded to pass to next generation is recorded as nsk(g), as well

as the number of those who failed is recorded as n fk(g). LP generations’ success nsk and

failures n fk are stored in success and Failure memory, which are illustrated on Tables 29

and 30. Once the generations reach a value larger than LP, the earliest records on these

memories, i.e. ns(g−LP) and nf(g−LP), are replaced by new ones. Also, the probabilities

of choosing different strategies will be updated at each subsequent generation based on

the success and failure memories, accordingly with Equation A.9.

pk(g) =
Sk(g)

Ks

∑
k=1

Sk(g)

, (A.9)

where Sk(g) is defined as follows.

Sk(g) =

g−1

∑
δ=g−LP

nsk(δ )

g−1

∑
δ=g−LP

nsk(δ )+
g−1

∑
δ=g−LP

n fk(δ )

+ ε, (A.10)

with k = 1, ...,Ks, g > LP and ε = 0.01, which is used to avoid possible null success rates.

Equation A.10 presents the success rate of offspring generated by the k-th strategy and

succeeded to pass to next generation within the previous LP generations with respect
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to generation g. The larger Sk(g), the larger the probability pk(g) of applying the k-th

strategy to generate the offspring c′i(g) at current generation g.

A.2.2 Parameter Adaptation

In basic DE there are three control parameters: the scaling factor F , crossover

rate CR and the number of individuals NP, whereas SaDE needs only NP and the amount

of learning period LP to be adjusted by the user. The population size and learning period

do not need a fine-tuning, however, F and CR may be sensitive to different problems and

F is directly related to the speed of the algorithm (QIN et al., 2009). In SaDE, for every

ci(g), F is randomly generated according to the normal distributions N (0.5,0.3) and CR

is continually adapted as N (CRmk ,0.1). The CRmk represents the mean value and it is

initialized as 0.5. Within the first LP generations, a CRMemoryk is created to store those

CR values related to k-th strategy that were successful to create offspring that passed

to the next generation. After those LP generations, the median value value stored in

CRMemoryk will be calculated to overwrite CRmk .

All of those steps aforementioned are summarized in Algorithm 9.

A.3 Particle Swarm Optimization

The Particle Swarm Optimization was developed as a population-based search

that simulates the social behavior of fish schooling or bird flocking, first proposed in

(KENNEDY; EBERHART, 1995). In most of PSO implementations, particles of a swarm

move through the search space using a combination of an attraction to the best solution

that each of them has found, and an attraction to the best solution that all particles in

their neighborhood have found (BRATTON; KENNEDY, 2007). This neighborhood is

defined for each individual particle as the subset of particles it is able to communicate

with (BRATTON; KENNEDY, 2007) and its range determines the kind of topology the

algorithm will assume.

The neighborhood in a global topology comprises all particles, while in local

topology, which was first introduced by Eberhart and Kennedy (1995), the neighborhood

comprises only a small number of particles that are linked by their indexes. Figure 42

illustrates the relationship differences between particles within both types of neighborhood.
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Algorithm 9: General SaDE Algorithm (QIN et al., 2009)

1: g← 0;
2: set cmin and cmax;
3: initialize population C(0)∼U (cmin,cmax) of NP individuals;
4: initialize CRmk , pk(g) with k← 1, ...,Ks and LP;
5: compute fitness: { f (c1(0), ..., f (cNP(0)};
6: while stopping condition(s) not true do
7: if g > LP then
8: for k← 1 to Ks do
9: update pk(g); {Calculate pk(g) and update Success and Failure Memory.}

10: remove nsk(g−LP) and n fk(g−LP) out of Success and Failure Memory ;
11: end for
12: end if
13: use stochastic universal sampling to select one strategy k for each individual in ci(g);
14: for i← 1 to NP do
15: Fi ∼N (0.5,0.3); {Assign control parameter F .}
16: end for
17: if g > LP then
18: for k← 1 to Ks do
19: CRmk ← median(CRMemoryk); {Assign control parameter CR.}
20: end for
21: end if
22: for k← 1 to Ks do
23: for i← 1 to NP do
24: CRk,i ∼N (CRmk ,0.1);
25: while CRk,i < 0 or CRk,i > 1 do
26: CRk,i ∼N (CRmk ,0.1);
27: end while
28: end for
29: end for
30: Produce offspring C′(g) using the associated strategy k and parameters Fi and CRk,i;
31: if c′i(g) outside boundaries then
32: c′i(g)∼U (cmin,cmax);
33: end if
34: for i← 1 to NP do
35: compute fitness: f (c′i(g)); {Selection}
36: if f (c′i(g))≤ f (ci(g)) then
37: ci(g + 1)← c′i(g);
38: f (ci(g + 1))← f (c′i(g));
39: nsk(g) = nsk(g)+ 1;
40: CRMemoryk←CRk,i;
41: if f (c′i(g)) < f (cbest) then
42: cbest ← c′i(g);
43: f (cbest)← f (c′i(g));
44: end if
45: else
46: ci(g + 1)← ci(g);
47: f (ci(g + 1))← f (ci(g));
48: n fk(g) = n fk(g)+ 1;
49: end if
50: end for
51: g← g + 1;
52: end while
53: return individual with best fitness: cbest .
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Figure 42 – PSO topologies.
(a) Global (gbest) topology. (b) Local topology (lbest) in ring shape.

Source: Bratton and Kennedy (2007).

In the case of ring social structure (Figure 42b), each particle is connected to two adjacent

members in the population, although this can be generalized to a number bigger than two,

accordingly with the user will.

Local topologies present a slower convergence due to the information exchange

between small groups of particles, which creates several independent search groups at the

beginning. However, this feature may prevent early convergence in a suboptimal solution

(ENGELBRECHT, 2007). The algorithms that use global topology are known as gbest

PSO and the ones with local topology are lbest PSO.

The internal structures aforementioned as particles are individually composed

by three vectors: the current position of i-th particle ci ∈ RPr, the previous i-th best

position pi ∈ RPr and the i-th particle velocity ννν i ∈ RPr, where Pr is the search space

dimensionality. Let ci(g) be a solution candidate described as a set of coordinates of a

point in space, whose position is changed by adding a velocity ννν i, as demonstrated on

Equations A.11, Equation A.12 for gbest PSO and Equation A.13 for lbest PSO.

ci(g + 1) = ci(g)+ ννν i(g + 1). (A.11)

ν
j

i (g + 1) = ν
j

i (g)+ ς1r j
1(p j

i (g)− c j
i (g))+ ς2r j

2(p j
best(g)− c j

i (g)). (A.12)



137

ν
j

i (g + 1) = ν
j

i (g)+ ς1r j
1(p j

i (g)− c j
i (g))+ ς2r j

2(pl j
k(g)− c j

i (g)), (A.13)

where ς1 and ς2 are positive acceleration constants, r j
1 and r j

2, with j = 1, ...,Pr, are random

values sampled from an uniform distribution at each velocity update. They are responsible

for introducing a stochastic element to the algorithm.

An overview about the PSO process is presented on Algorithm 10, for gbest

PSO, and Algorithm 11, for lbest PSO.

A.3.1 Velocity component

The velocity vector drives the optimization process and reflects both the par-

ticle’s experience knowledge and the information exchanged within the neighborhood

(ENGELBRECHT, 2007). It is adjusted mainly by two components: the cognitive compo-

nent and social component. The first one is represented by the difference between pi, that

is the personal best position found so far, and the individual’s current position. The social

component is the socially exchanged information given by the stochastically weighted

difference between the neighborhood’s best position plk (lbest) or cbest (gbest) and the

individual’s current position. These adjustments to the particle’s movement through space

cause it to search around the two best positions (CLERC; KENNEDY, 2002).

The association of the acceleration constants ς1 and ς2 with the random values

r j
1 and r j

2 scales the contribution of cognitive and social components respectively. This

stochastic amount will be mentioned from now on as ϕ1 = ς1r1 and ϕ2 = ς2r2.

A number of basic modifications to the PSO have been developed to improve

the speed of convergence and the quality of its solutions (ENGELBRECHT, 2007). In the

work from Bratton and Kennedy (2007), they define a new standard algorithm designed

to be a straightforward extension of the original algorithm while taking into account those

developments that can be expected to improve performance on standard measures. One of

the suggested changes was proposed to balance the exploration-exploitation trade-off and

prevent that the velocities explode to large values. This is accomplished by constricting

the velocities by a constriction coefficient χ, proposed in (CLERC; KENNEDY, 2002).
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The new velocity update equation is now given by:

ννν
j
i (g + 1) = χ

[
ν

j
i (g)+ ϕ1(p j

i (g)− c j
i (g))+ ϕ2(p j

best(g)− c j
i (g))

]
, (A.14)

where

χ =
2κ

|2−ϕ−
√

ϕ(ϕ−4)|
, (A.15)

with κ ∈ [0,1], ϕ = ϕ1 + ϕ2 and ϕ > 4.

Algorithm 10: gbest PSO
1: g← 0;
2: set cmin and cmax;
3: initialize population C(0)∼U (cmin,cmax) of NP particles;
4: compute fitness { f (c1(0), ..., f (cNP(0)};
5: set large numbers to f (pi(0) and f (pbest(0));
6: while stopping condition(s) not true do
7: for each particle i = 1, ...,NP do
8: if f (ci(g)) < f (pi(g)) then
9: pi(g)← ci(g); {set personal best position}

10: f (pi(g))← f (ci(g));
11: end if
12: if f (ci(g)) < f (pbest(g)) then
13: f (pbest(g))← f (ci(g)); {set global best position}
14: pbest(g)← ci(g);
15: end if
16: end for
17: for each particle i = 1, ...,NP do
18: update the velocity;
19: update the position;
20: end for
21: g← g + 1;
22: end while
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Algorithm 11: lbest PSO
1: g← 0;
2: set cmin and cmax;
3: initialize population C(0)∼U (cmin,cmax) of NP particles;
4: compute fitness { f (c1(0), ..., f (cNP(0)};
5: set large numbers to f (pi(0) and f (plk(0));
6: while stopping condition(s) not true do
7: for each particle i = 1, ...,NP do
8: if f (ci(g)) < f (ci(g)) then
9: ci(g)← ci(g); {set personal best position}

10: f (ci(g)← f (ci(g));
11: end if
12: if f (ci(g)) < f (plk(g)) then
13: f (plk(g))← f (ci(g)); {set neighborhood best position}
14: plk(g)← ci(g);
15: end if
16: end for
17: for each particle i = 1, ...,NP do
18: update the velocity;
19: update the position;
20: end for
21: g← g + 1;
22: end while
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APPENDIX B – DATASETS

In this work, we investigate the performance of the proposed methods with 6

different datasets regarding regression problems.

B.1 Real-world problems

• Auto-MPG: taken from UCI database, this set concerns city-cycle fuel consumption

in miles per gallon, to be predicted in terms of 3 discrete and 5 continuous attributes.

The original set has 1 nominal attribute which refers to the car name and it is unique

for each sample. In this case, we ignored this information, resulting in a set of only 7

attributes and one output. Another observation is the absence of 6 attributes values,

which leave us with 392 full samples.

• Body Fat: it is a set from Statlib database (MEYER; VLACHOS, 1989) that

concerns the percentage of body fat determined by underwater weighing and various

body circumference measurements for 252 men.

There are 14 attributes available, all continuous, and one output which refers to the

percentage of body fat.

• Wisconsin Prognostic Breast Cancer: it is a set from UCI database for regres-

sion problems, where each sample represents follow-up data for one breast cancer

case, including only those cases exhibiting invasive breast cancer and no evidence of

distant metastases at the time of diagnosis. The goal here is to predict the time for

cancer to recur.

There are 198 samples with 34 attributes, but the first one is just an ID number,

which is ignored. The second one is the nominal predicting field that indicates the

outcome: R = recurrent, N = nonrecurrent. In this case, the recurrent cases were

substituted by the numerical value 1, and the nonrecurrent by -1. At the end, we

are left with 32 attributes.

• CPU: also taken from UCI database, the estimated relative performance values of a

CPU, described in terms of its cycle time, memory size etc. There are 209 samples

and the first two data columns are ignored because they inform the vendor name

and model, which is almost a unique identification for each sample. The last data

column is also ignored since it is the estimation result of this dataset owner, which
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leaves us with 6 input attributes and 1 output.

• iCub imperative pointing: this dataset was collected during the sandwich Ph.D.

period spent at Research Institute for Cognition and Robotics (CoR-Lab) in Bielefeld,

Germany, supported by CNPq and DAAD, the German Academic Exchange Service.

Publications over this set can be seen in (FREIRE et al., 2012a; FREIRE et al.,

2012b; LEMME et al., 2013).

As a visually guided sensorimotor behavior, pointing has been an important topic

of research in cognitive science, especially in what concerns the development of

infants’ preverbal communicative skill (LEMME et al., 2013). Classically, infants

are thought to point for two main reasons (BATES et al., 1975; LISZKOWSKI et

al., 2006). Firstly, they point when they want a nearby adult to do something for

them (e.g. give them something). This is called imperative pointing and consists in

extending the arm as if reaching for an object. It has been proposed that children

use imperative pointing as a result of not being able to reach objects that are too far

away to grasp. Secondly, infants point when they want an adult to share attention

with them to some interesting event or object.

Figure 43 – Setup for iCub’s dataset harvesting.

(a) iCub’s simula-
tor.

(b) On the left, the physical setup is shown. A webcam captures video of an user
moving a red ball. The video is then projected on a screen inside the simulator
(center panel). On the right, the view from the left and right simulated cameras
is displayed.

Source: Lemme et al. (2013).

This behavior was executed with the aid of the iCub’s simulator, however, based

on real images from a webcam, as demonstrated on Figure 43. A red ball of

approximately 6 cm of diameter is the target object within the visual field of the

robot. This is accomplished by recording the image of a user moving this ball
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freely in space with a webcam. The video is then projected on a screen inside the

simulator, as shown on center panel in Figure 43. This configuration emulates a

direct interaction with the real world, which is seen by the simulated robot with

simulated camera eyes. In the experiment, recorded data comprise pixel coordinates

of the ball from both eye-cameras (iL, jL) and (iR, jR), the 3D position of the ball

(xb,yb,zb) estimated from the simulated left camera image by using an object tracker

available on iCub’s software repository (TAIANA et al., 2010), end-effector position

(xe,ye,ze) and joint angles (θ1 , ..., θ7) (LEMME et al., 2013).

The dataset resulted in 491 samples and was first presented on Freire et al. (2012b)

and later on Lemme et al. (2013). The goal is to map pixel coordinates obtained

from binocular vision directly to joint angles, defining 4 attributes as inputs and 7

outputs.

• Servo Motor: taken from UCI, its goal relies on predicting the rise time of a

servomechanism in terms of gain settings and choices of mechanical linkages. There

are 167 samples with 4 attributes and one output. Two of those attributes (motor

and screw) has nominal values which were substituted as shown on Table 31.

Table 31 – Substitution of nominal attribute in
Servo dataset into a numerical one.

Motor and Screw Values A B C D E
New Value 1 2 3 4 5

Source: author.
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APPENDIX C – DETAILED TABLES FOR ROBUST ELM

In this appendix, we present the correspondent mean, median, maximum,

minimum and standard deviation values of the number of hidden neurons and output

weight euclidean norms from the graphics presented in Chapter 6.

C.1 iCub dataset

Table 32 – Number of hidden neurons with 1 sided contamination (iCub dataset).

Mean Median Minimum Maximum Std.

10%

ELM 4 4 2 6 9.428×10−1

ELM-BIP 2.400 2 2 4 8.433×10−1

R-ELM/BIP 8.800 8 6 14 2.150
RELM 6 5 2 16 4.216
IRWLS-ELM 15.80 16 10 22 3.190

20%

ELM 2.200 2 2 4 6.325×10−1

ELM-BIP 2.400 2 2 4 8.433×10−1

R-ELM/BIP 18 11 6 48 14.24
RELM 11.20 6 2 44 12.55
IRWLS-ELM 14.20 16 6 22 5.287

30%

ELM 3 2 2 6 1.700
ELM-BIP 2.400 2 2 4 8.433×10−1

R-ELM/BIP 28.20 27 6 48 13.71
RELM 12 4 2 50 15.43
IRWLS-ELM 12.80 14 4 22 6.339

40%

ELM 4.800 4 4 6 1.033
ELM-BIP 3 3 2 4 1.054
R-ELM/BIP 41.40 44 32 48 6.041
RELM 33.60 37 14 46 10.74
IRWLS-ELM 9.400 10 4 16 3.893

Source: author.
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Table 33 – Number of hidden neurons with 2 sided contamination (iCub dataset).

Mean Median Minimum Maximum Std.

10%

ELM 4.200 4 4 6 6.325×10−1

ELM-BIP 3.400 4 2 4 9.661×10−1

R-ELM/BIP 9 8 6 20 4.243
RELM 7.600 5 2 24 6.979
IRWLS-ELM 15.20 17 4 24 6.746

20%

ELM 3 3 2 4 1.054
ELM-BIP 2 2 2 2
R-ELM/BIP 10.60 6 4 42 11.55
RELM 12.60 10 2 40 10.63
IRWLS-ELM 14.60 15 4 24 6.186

30%

ELM 2.400 2 2 4 8.433×10−1

ELM-BIP 2 2 2 2
R-ELM/BIP 13.80 12 2 32 9.773
RELM 11.60 8 2 32 10.36
IRWLS-ELM 6.600 4 2 18 4.904

40%

ELM 2.800 2 2 4 1.033
ELM-BIP 2 2 2 2
R-ELM/BIP 6.600 4 2 20 5.967
RELM 15.60 18 2 26 8.208
IRWLS-ELM 5.600 5 2 10 2.951

Source: author.
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C.2 Auto-MPG dataset

Table 34 – Number of hidden neurons with 1 sided contamination (Auto-
MPG dataset).

Mean Median Minimum Maximum Std.

10%

ELM 21.40 20 12 40 8.695
ELM-BIP 14.80 14 10 22 3.676
R-ELM/BIP 29.20 29 22 38 5.350
RELM 42.80 44 14 64 12.93
IRWLS-ELM 64.40 71 24 100 22.25

20%

ELM 16.80 16 10 30 5.978
ELM-BIP 9.400 9 6 14 3.134
R-ELM/BIP 28 25 14 44 9.189
RELM 29.60 31 12 48 13.19
IRWLS-ELM 14.80 13 8 28 5.827

30%

ELM 15.60 13 10 26 5.317
ELM-BIP 8.800 8 6 16 3.155
R-ELM/BIP 39.40 39 12 64 15.09
RELM 39.80 38 14 80 19.52
IRWLS-ELM 14.20 14 8 20 4.264

40%

ELM 14.40 13 6 32 7.648
ELM-BIP 6.400 6 4 10 2.459
R-ELM/BIP 15.40 12 2 42 14.27
RELM 14.60 11 2 40 13.70
IRWLS-ELM 12.20 10 6 24 5.453

Source: author.
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Table 35 – Number of hidden neurons with 2 sided contamination (Auto-
MPG dataset).

Mean Median Minimum Maximum Std.

10%

ELM 22.80 22 12 36 7.495
ELM-BIP 13.40 13 6 20 4.006
R-ELM/BIP 39 37 16 68 14.02
RELM 42.40 42 32 54 6.720
IRWLS-ELM 57.60 60 14 84 24.25

20%

ELM 10.80 10 6 24 5.266
ELM-BIP 9.600 8 4 20 4.195
R-ELM/BIP 31.40 31 14 46 9.845
RELM 37.20 31 20 56 15.44
IRWLS-ELM 14.40 14 10 18 2.459

30%

ELM 10.60 10 8 16 2.836
ELM-BIP 8.400 8 4 12 2.271
R-ELM/BIP 32.20 31 12 60 13.97
RELM 25 24 10 52 12.52
IRWLS-ELM 14 15 10 18 2.981

40%

ELM 10.80 9 6 20 4.237
ELM-BIP 9.200 8 4 20 4.826
R-ELM/BIP 18 17 8 34 7.542
RELM 21 18 6 36 11.13
IRWLS-ELM 13.40 14 10 20 3.134

Source: author.
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C.3 Bodyfat dataset

Table 36 – Number of hidden neurons with 1 sided contamination (Bodyfat
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 13.80 14 10 20 3.190
ELM-BIP 10.80 10 6 18 3.425
R-ELM/BIP 84.20 82 68 98 9.449
RELM 76.20 76 44 100 16.45
IRWLS-ELM 16.20 16 14 20 1.989

20%

ELM 11.20 11 8 14 2.348
ELM-BIP 10.40 11 4 20 4.971
R-ELM/BIP 45.80 50 8 66 17.24
RELM 34.40 33 10 62 23.49
IRWLS-ELM 15 14 10 20 3.018

30%

ELM 11 11 6 16 3.432
ELM-BIP 8.800 8 4 14 3.553
R-ELM/BIP 30 27 12 50 13.70
RELM 19.80 13 2 50 19.15
IRWLS-ELM 14.40 14 10 18 2.459

40%

ELM 12.80 13 4 24 5.514
ELM-BIP 8 7 4 20 4.807
R-ELM/BIP 14.20 19 2 28 10.09
RELM 10 3 2 34 12.33
IRWLS-ELM 10 10 4 16 3.771

Source: author.
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Table 37 – Number of hidden neurons with 2 sided contamination (Bodyfat
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 13 14 10 14 1.700
ELM-BIP 13.40 13 8 22 4.719
R-ELM/BIP 82.80 82 66 98 12.41
RELM 62.20 62 34 90 16.75
IRWLS-ELM 16.40 16 14 24 3.098

20%

ELM 10.40 10 6 14 2.459
ELM-BIP 8.200 8 4 14 3.190
R-ELM/BIP 43.60 39 20 70 17.91
RELM 45.20 50 12 64 17.97
IRWLS-ELM 16.40 15 14 24 3.373

30%

ELM 8.800 8 6 14 2.700
ELM-BIP 6.200 6 2 14 3.706
R-ELM/BIP 25.80 23 8 56 15.36
RELM 24.20 14 8 52 18.02
IRWLS-ELM 13.20 12 10 18 2.348

40%

ELM 10.20 10 6 16 3.048
ELM-BIP 8.600 6 4 22 5.582
R-ELM/BIP 19.60 20 12 26 3.864
RELM 14.80 13 6 24 6.680
IRWLS-ELM 10.40 10 8 14 2.066

Source: author.
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C.4 Breast Cancer dataset

Table 38 – Number of hidden neurons with 1 sided contamination (Breast
Cancer dataset).

Mean Median Minimum Maximum Std.

10%

ELM 21.60 20 16 34 5.317
ELM-BIP 21.20 20 8 40 9.247
R-ELM/BIP 62 61 52 76 7.180
RELM 67 68 52 76 8.124
IRWLS-ELM 37.20 35 32 50 5.903

20%

ELM 15.80 16 8 22 3.706
ELM-BIP 15.20 14 10 24 3.795
R-ELM/BIP 41.60 42 28 50 6.851
RELM 33.20 31 22 48 10.21
IRWLS-ELM 27.80 27 20 38 5.692

30%

ELM 13 14 4 16 3.682
ELM-BIP 12 11 8 18 4
R-ELM/BIP 22.80 21 16 30 5.266
RELM 24.80 26 12 36 8.066
IRWLS-ELM 19.60 19 16 24 2.459

40%

ELM 15 13 10 24 4.447
ELM-BIP 16.60 16 10 30 5.739
R-ELM/BIP 15.20 16 2 32 9.390
RELM 14.20 13 8 26 6.286
IRWLS-ELM 19.20 21 12 24 4.733

Source: author.
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Table 39 – Number of hidden neurons with 2 sided contamination (Breast
Cancer dataset).

Mean Median Minimum Maximum Std.

10%

ELM 18 17 12 28 4.989
ELM-BIP 21.20 21 16 34 5.266
R-ELM/BIP 69 69 60 76 6.055
RELM 63 58 52 78 8.907
IRWLS-ELM 38.60 38 30 44 4.526

20%

ELM 11 10 4 18 4.137
ELM-BIP 13 12 8 18 3.432
R-ELM/BIP 40.20 38 26 60 9.998
RELM 34 32 20 52 8.165
IRWLS-ELM 30 32 20 34 5.333

30%

ELM 14 14 4 24 5.888
ELM-BIP 9.200 9 4 16 3.676
R-ELM/BIP 27.60 27 22 34 4.195
RELM 27.40 27 20 42 6.736
IRWLS-ELM 19.80 21 12 30 6.143

40%

ELM 10.80 11 6 16 3.910
ELM-BIP 10.40 10 2 20 6.381
R-ELM/BIP 16.60 17 10 24 4.526
RELM 18.40 18 8 26 5.400
IRWLS-ELM 17.60 17 10 30 5.948

Source: author.



151

C.5 CPU dataset

Table 40 – Number of hidden neurons with 1 sided contamination (CPU
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 10.80 12 2 18 4.917
ELM-BIP 7.200 7 2 12 3.293
R-ELM/BIP 20.20 20 10 32 7.084
RELM 15.60 14 6 36 9.276
IRWLS-ELM 13 12 8 22 4.830

20%

ELM 9.200 9 2 14 4.022
ELM-BIP 5.800 6 2 12 2.741
R-ELM/BIP 21.20 23 8 32 7.671
RELM 15 14 8 24 5.099
IRWLS-ELM 10.80 11 4 22 5.181

30%

ELM 8.200 10 2 16 4.566
ELM-BIP 5.600 2 2 16 5.400
R-ELM/BIP 19 21 10 24 5.518
RELM 11.60 12 6 22 4.600
IRWLS-ELM 6.800 5 2 14 4.022

40%

ELM 5.400 5 2 10 3.406
ELM-BIP 5.200 4 2 10 3.155
R-ELM/BIP 12.40 14 4 18 5.060
RELM 9.800 11 2 18 5.203
IRWLS-ELM 6.400 5 2 14 3.627

Source: author.
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Table 41 – Number of hidden neurons with 2 sided contamination (CPU
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 8.800 10 4 12 2.860
ELM-BIP 6.400 6 4 10 2.459
R-ELM/BIP 19.20 19 10 30 7.315
RELM 14 15 6 22 5.888
IRWLS-ELM 13 12 8 26 5.518

20%

ELM 4.600 4 2 8 2.503
ELM-BIP 6.200 6 2 12 2.898
R-ELM/BIP 20.80 20 8 38 8.443
RELM 14 12 6 22 6.394
IRWLS-ELM 9.200 9 4 14 3.425

30%

ELM 5.200 5 2 10 2.860
ELM-BIP 4.600 4 2 10 2.503
R-ELM/BIP 16.40 16 4 28 8.422
RELM 17.80 16 6 36 9.636
IRWLS-ELM 9.600 10 2 16 3.864

40%

ELM 5 4 2 10 3.162
ELM-BIP 4 3 2 8 2.309
R-ELM/BIP 7.600 6 4 16 3.373
RELM 9.400 10 2 16 3.777
IRWLS-ELM 6.200 6 2 10 3.327

Source: author.
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C.6 Servo dataset

Table 42 – Number of hidden neurons with 1 sided contamination (Servo
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 6.400 5 4 12 2.951
ELM-BIP 16.40 18 10 22 4.600
R-ELM/BIP 31.60 33 16 42 8.475
RELM 22.40 23 12 34 7.106
IRWLS-ELM 11 9 4 22 6.616

20%

ELM 6 5 4 14 3.127
ELM-BIP 9.800 8 4 18 4.264
R-ELM/BIP 21.40 20 16 32 5.420
RELM 16.60 18 4 24 6.603
IRWLS-ELM 7.800 6 4 16 4.566

30%

ELM 5.200 4 2 12 3.293
ELM-BIP 9.200 9 2 18 5.903
R-ELM/BIP 16.20 17 8 26 5.453
RELM 11 11 4 22 5.831
IRWLS-ELM 7.800 6 4 16 4.158

40%

ELM 5.800 4 2 22 5.846
ELM-BIP 5.400 4 2 14 3.534
R-ELM/BIP 7.800 7 2 18 5.203
RELM 7.600 4 2 20 6.096
IRWLS-ELM 7.800 6 4 16 4.662

Source: author.
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Table 43 – Number of hidden neurons with 2 sided contamination (Servo
dataset).

Mean Median Minimum Maximum Std.

10%

ELM 9 6 4 22 6.815
ELM-BIP 14.60 12 6 28 7.121
R-ELM/BIP 31.40 29 20 50 9.891
RELM 20 19 8 30 6.667
IRWLS-ELM 10.20 8 4 26 7.451

20%

ELM 6 5 2 12 2.981
ELM-BIP 8 8 4 14 3.266
R-ELM/BIP 22.60 21 14 34 6.186
RELM 18 19 10 28 6.394
IRWLS-ELM 6.600 6 2 16 4.222

30%

ELM 6 4 2 18 4.522
ELM-BIP 5.600 6 2 10 2.271
R-ELM/BIP 15.40 17 4 24 6.328
RELM 11.20 9 2 22 6.125
IRWLS-ELM 8.200 7 4 18 3.938

40%

ELM 4.200 4 2 6 1.135
ELM-BIP 4.800 4 2 8 2.150
R-ELM/BIP 8.200 8 2 16 4.566
RELM 9.200 9 2 16 4.917
IRWLS-ELM 4.400 4 2 10 2.066

Source: author.
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APPENDIX D – RESULTS OF ANHNA’S VARIANTS

This appendix is dedicated to present all results related to ANHNA with

Differential Evolution and its variants performance using the following datasets: Abalone,

Auto-MPG, Body Fat, Boston Housing, Breast Cancer, CPU, iCub and Servo (more details

in Appendix B). We also present here ANHNA’s performance using different metaheuristics

(Section D.2) where the variants were also applied. It is important to highlight that ANHNA

using Self-Adaptive Differential Evolution does not have regularization variants versions

for this thesis.

D.1 ANHNA with Differential Evolution

Below we present the evaluation of all variants of ANHNA with Differential

Evolution, as described in Section 4.4.1. For more details over this metaheuristic, see

Appendix A.1). One of the figures presents the RMSE from training and test in the 10

repetitions (see details of the test methodology in Chapter 5), where the black dots represent

the mean value, and the other figure shows the number of hidden neurons chosen by its

respective ANHNA in those same repetitions. The tables provide the information about

the behavior (mean, median, minimum value, maximum value and standard deviation) of

the output weight norms given by the architecture and parameters provided by ANHNA.

From this information, we elect the version that presents itself with the best

RMSE performance, least number of hidden neurons chosen and the smaller average of

weight norms in most of the tested datasets, to represent ANHNA in the main results of

this thesis.

It is also important to highlight that these tests were made with no addition of

noise besides the one already contained in the set itself.
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D.1.1 Auto-MPG

Figure 44 – ANHNA-DE’s variants for Auto-MPG dataset
with DE.

(a) Training and Testing RMSE Results.
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(b) Number of hidden neurons.

0 10 20 30 40 50 60 70 80 90 100

 

 

 

 

 

 

 

 

 

 

ANHNA−DE
ReCNv2

ANHNA−DE
CNv2

ANHNA−DE
ReCN

ANHNA−DE
CN

ANHNA−DE
ReNO

ANHNA−DE
NO

ANHNA−DE
Re

ANHNA−DE

ELM−BIP

ELM

Auto−MPG

Source: author.

Table 44 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (Auto-MPG dataset).

Mean Median Minimum Maximum Std.

ELM 2.411×104 1.273×104 5.878×103 6.912×104 2.313×104

ELM-BIP 4.559 3.714 2.663 9.287 2.177
ANHNA-DE 1.478e+09 3.108×104 3.160×102 1.478×1010 4.673e+09
ANHNA-DERe 93.65 16.30 8.554 7.832×102 2.424×102

ANHNA-DENO 2.036 1.711 6.635×10−1 4.056 1.082
ANHNA-DEReNO 6.497×10−1 6.424×10−1 4.559×10−1 8.617×10−1 1.517×10−1

ANHNA-DECN 6.856×108 4.450×104 8.484×102 3.515e+09 1.403e+09
ANHNA-DEReCN 25.83 19.40 7.569 92.02 24.49
ANHNA-DECNv2 4.110×105 7.117×103 3.694×102 3.751×106 1.176×106

ANHNA-DEReCNv2 46.86 35.57 12.07 1.979×102 54.17

Source: author.
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D.1.2 Bodyfat

Figure 45 – ANHNA-DE’s variants for Bodyfat dataset
with DE.

(a) Training and Testing RMSE Results.
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(b) Number of hidden neurons.
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Table 45 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (Bodyfat dataset).

Mean Median Minimum Maximum Std.

ELM 5.505×102 5.104×102 13.36 1.051×103 3.593×102

ELM-BIP 1.038 1.020 7.538×10−1 1.249 1.425×10−1

ANHNA-DE 1.302×104 2.915×102 24.77 1.258×105 3.962×104

ANHNA-DERe 5.225 4.047 2.551 14.82 3.674
ANHNA-DENO 5.260 5.073 1.837 9.490 2.620
ANHNA-DEReNO 1.052 1.032 7.651×10−1 1.284 1.490×10−1

ANHNA-DECN 4.942×106 3.495×104 25.10 4.848×107 1.530×107

ANHNA-DEReCN 3.087 3.266 1.303 4.435 1.075
ANHNA-DECNv2 7.014×106 2.089×104 1.172×102 6.909×107 2.181×107

ANHNA-DEReCNv2 2.472 2.467 1.425 3.106 5.445×10−1

Source: author.
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D.1.3 Breast Cancer

Figure 46 – ANHNA-DE’s variants for Breast Cancer
dataset with DE.

(a) Training and Testing RMSE Results.
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(b) Number of hidden neurons.
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Table 46 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (Breast Cancer dataset).

Mean Median Minimum Maximum Std.

ELM 23.16 21.72 10.60 40.06 10.24
ELM-BIP 6.433×10−1 6.251×10−1 5.411×10−1 7.950×10−1 7.899×10−2

ANHNA-DE 20.91 15.64 5.509 43.22 13.39
ANHNA-DERe 5.441 4.693 3.339 9.504 2.051
ANHNA-DENO 5.218 5.299 4.092 6.492 8.314×10−1

ANHNA-DEReNO 1.870 1.852 1.511 2.420 2.449×10−1

ANHNA-DECN 41.20 16.38 5.979 1.346×102 46.11
ANHNA-DEReCN 5.599 4.442 2.417 10.91 2.828
ANHNA-DECNv2 13.06 10.30 7.537 34.08 8.039
ANHNA-DEReCNv2 8.617 7.623 4.179 16.35 3.530

Source: author.
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D.1.4 CPU

Figure 47 – ANHNA-DE’s variants for CPU dataset with
DE.

(a) Training and Testing RMSE Results.
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Table 47 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (CPU dataset).

Mean Median Minimum Maximum Std.

ELM 1.665×103 1.438×103 7.715×102 3.295×103 7.652×102

ELM-BIP 1.437 1.380 6.323×10−1 2.093 4.048×10−1

ANHNA-DE 2.072×105 2.866×103 3.543×102 1.869×106 5.865×105

ANHNA-DERe 18.21 13.24 8.083 54.47 13.73
ANHNA-DENO 2.746 2.647 8.141×10−1 5.481 1.480
ANHNA-DEReNO 7.166×10−1 6.000×10−1 3.719×10−1 1.323 3.116×10−1

ANHNA-DECN 8.244×104 2.110×103 84.14 5.924×105 1.884×105

ANHNA-DEReCN 13.93 8.772 1.610 37.80 12.94
ANHNA-DECNv2 2.703×104 4.051×103 2.391×102 1.341×105 4.646×104

ANHNA-DEReCNv2 8.852 6.499 1.394 22.57 6.733

Source: author.



160

D.1.5 iCub

Figure 48 – ANHNA-DE’s variants for iCub dataset with
DE.

(a) Training and Testing RMSE Results.
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Table 48 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (iCub dataset).

Mean Median Minimum Maximum Std.

ELM 4.488×107 3.455×107 4.594×105 1.095×108 4.495×107

ELM-BIP 1.954 1.837 5.483×10−1 4.052 1.127
ANHNA-DE 2.530×104 3.058×102 72.00 2.498×105 7.889×104

ANHNA-DERe 6.486 5.255 9.970×10−1 16.48 4.779
ANHNA-DENO 5.210×10−1 5.276×10−1 2.452×10−1 9.002×10−1 2.022×10−1

ANHNA-DEReNO 7.816×10−2 7.560×10−2 5.586×10−2 1.103×10−1 1.497×10−2

ANHNA-DECN 1.567×105 5.499×102 39.37 1.232×106 3.904×105

ANHNA-DEReCN 1.263×10−1 1.090×10−1 8.636×10−2 1.911×10−1 3.558×10−2

ANHNA-DECNv2 3.659×108 3.642×102 21.95 3.658e+09 1.157e+09
ANHNA-DEReCNv2 7.026×10−2 7.513×10−2 5.234×10−2 8.134×10−2 1.042×10−2

Source: author.
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D.1.6 Servo

Figure 49 – ANHNA-DE’s variants for Servo dataset with
DE.

(a) Training and Testing RMSE Results.
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Table 49 – ANHNA-DE’s comparison study of euclidean norm of output weight
vectors (Servo dataset).

Mean Median Minimum Maximum Std.

ELM 2.154×104 3.522×103 1.286×102 1.578×105 4.875×104

ELM-BIP 12.95 10.74 5.546 32.43 8.349
ANHNA-DE 7.187e+09 1.435e+09 1.811×105 3.002×1010 1.150×1010

ANHNA-DERe 2.597×103 1.068×103 61.36 1.519×104 4.502×103

ANHNA-DENO 1.561 1.342 5.898×10−1 2.640 6.969×10−1

ANHNA-DEReNO 1.315 1.274 8.087×10−1 2.332 4.468×10−1

ANHNA-DECN 1.601×1010 3.487e+09 1.639×105 1.011×1011 3.121×1010

ANHNA-DEReCN 3.504×103 4.397×102 53.69 1.383×104 5.553×103

ANHNA-DECNv2 9.740e+09 2.607e+09 1.035×106 4.925×1010 1.641×1010

ANHNA-DEReCNv2 2.759×103 7.341×102 86.11 1.874×104 5.759×103

Source: author.
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D.2 ANHNA with different metaheuristics

In this section, we present ANHNA and its variants’ performance using different

metaheuristics, such as: Particle Swarm Optimization using global (Subsection D.2.1) and

local (Subsection D.2.2) neighborhood, and also with Self-Adaptive Differential Evolution

(Subsection D.2.3). We present the results of only two datasets for illustration purposes.

More details over these metaheuristics, see Appendix A.3 and Appendix A.2.

D.2.1 Variations with ANHNA-PSOg

D.2.1.1 Bodyfat

Figure 50 – ANHNA’s variants for Bodyfat dataset with
PSOg.

(a) Training and Testing RMSE Results.
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Table 50 – ANHNA-PSOg’s comparison study of euclidean norm of output weight
vectors (Bodyfat dataset).

Mean Median Minimum Maximum Std.

ELM 5.505×102 5.104×102 13.36 1.051×103 3.593×102

ELM-BIP 1.038 1.020 7.538×10−1 1.249 1.425×10−1

ANHNA-PSOg 1.222×103 3.121×102 14.99 9.297×103 2.856×103

ANHNA-PSOgRe 4.713 3.065 2.392 15.46 3.949
ANHNA-PSOgNO 4.594 4.436 2.256 6.470 1.532
ANHNA-PSOgReNO 1.055 1.030 7.140×10−1 1.370 1.983×10−1

ANHNA-PSOgCN 1.388×105 1.728×103 62.17 1.329×106 4.181×105

ANHNA-PSOgReCN 1.681 1.867 1.053e-32 2.215 6.613×10−1

ANHNA-PSOgCNv2 8.105×103 2.050×103 27.60 4.079×104 1.417×104

ANHNA-PSOgReCNv2 2.195 2.138 1.580 3.681 5.749×10−1

Source: author.

D.2.1.2 Breast Cancer

Figure 51 – ANHNA’s variants for Breast Cancer dataset
with PSOg.

(a) Training and Testing RMSE Results.
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Table 51 – ANHNA-PSOg’s comparison study of euclidean norm of output weight
vectors (Breast Cancer dataset).

Mean Median Minimum Maximum Std.

ELM 23.16 21.72 10.60 40.06 10.24
ELM-BIP 6.433×10−1 6.251×10−1 5.411×10−1 7.950×10−1 7.899×10−2

ANHNA-PSOg 42.15 33.80 10.75 1.027×102 28.54
ANHNA-PSOgRe 6.921 6.646 3.661 9.651 1.768
ANHNA-PSOgNO 4.650 4.858 3.076 5.269 7.153×10−1

ANHNA-PSOgReNO 2.591 2.006 1.639 7.815 1.858
ANHNA-PSOgCN 55.79 41.64 10.93 1.248×102 44.89
ANHNA-PSOgReCN 3.846 3.076 2.440 7.725 1.655
ANHNA-PSOgCNv2 41.00 33.88 10.18 1.113×102 31.96
ANHNA-PSOgReCNv2 2.479 2.479 1.951 2.967 2.929×10−1

Source: author.

D.2.2 Variants with ANHNA-PSOl

D.2.2.1 Bodyfat

Table 52 – ANHNA-PSOl’s comparison study of euclidean norm of output weight
vectors (Bodyfat dataset).

Mean Median Minimum Maximum Std.

ELM 5.505×102 5.104×102 13.36 1.051×103 3.593×102

ELM-BIP 1.038 1.020 7.538×10−1 1.249 1.425×10−1

ANHNA-PSOl 76.79 39.20 17.70 4.242×102 1.232×102

ANHNA-PSOlRe 3.787 3.271 1.705 7.262 1.891
ANHNA-PSOlNO 5.386 5.354 2.341 9.331 2.487
ANHNA-PSOlReNO 1.079 1.126 8.135×10−1 1.261 1.308×10−1

ANHNA-PSOlCN 3.757×105 2.518×103 56.59 3.208×106 1.009×106

ANHNA-PSOlReCN 2.226 2.317 1.312 3.830 6.818×10−1

ANHNA-PSOlCNv2 4.512×103 4.411×102 20.71 3.797×104 1.181×104

ANHNA-PSOlReCNv2 2.269 2.279 1.529 3.879 7.200×10−1

Source: author.



165

Figure 52 – ANHNA’s variants for Bodyfat dataset with
PSOl.

(a) Training and Testing RMSE Results.
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D.2.2.2 Breast Cancer

Table 53 – ANHNA-PSOl’s comparison study of euclidean norm of output weight
vectors (Breast Cancer dataset).

Mean Median Minimum Maximum Std.

ELM 23.16 21.72 10.60 40.06 10.24
ELM-BIP 6.433×10−1 6.251×10−1 5.411×10−1 7.950×10−1 7.899×10−2

ANHNA-PSOl 89.30 72.41 27.45 2.356×102 59.79
ANHNA-PSOlRe 7.002 6.722 4.753 9.506 1.529
ANHNA-PSOlNO 6.247 5.995 4.861 8.911 1.230
ANHNA-PSOlReNO 1.951 1.958 1.671 2.289 2.128×10−1

ANHNA-PSOlCN 86.99 74.05 37.61 2.285×102 56.55
ANHNA-PSOlReCN 4.528 3.348 2.361 8.237 2.034
ANHNA-PSOlCNv2 92.81 72.42 30.28 2.108×102 68.70
ANHNA-PSOlReCNv2 5.761 5.180 3.494 11.02 2.436

Source: author.
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Figure 53 – ANHNA’s variants for Breast Cancer dataset
with PSOl.

(a) Training and Testing RMSE Results.
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D.2.3 Variants with ANHNA-SADE

D.2.3.1 Bodyfat

Table 54 – ANHNA’s comparison study of euclidean norm of output weight
vectors (Bodyfat dataset).

Mean Median Minimum Maximum Std.

ELM 5.505×102 5.104×102 13.36 1.051×103 3.593×102

ELM-BIP 1.038 1.020 7.538×10−1 1.249 1.425×10−1

ANHNA-SADE 45.70 40.22 16.05 80.37 23.06
ANHNA-SADENO 42.20 31.42 10.35 1.251×102 36.73
ANHNA-SADECN 5.915×102 57.44 12.67 4.149×103 1.284×103

ANHNA-SADECNv2 1.864×103 54.57 27.25 9.271×103 3.785×103

Source: author.
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Figure 54 – ANHNA’s variants for Bodyfat dataset with
SADE.

(a) Training and Test RMSE Results.
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D.2.3.2 Breast Cancer

Table 55 – ANHNA’s comparison study of euclidean norm of output weight vectors
(Breast Cancer dataset).

Mean Median Minimum Maximum Std.

ELM 23.16 21.72 10.60 40.06 10.24
ELM-BIP 6.433×10−1 6.251×10−1 5.411×10−1 7.950×10−1 7.899×10−2

ANHNA-SADE 18.59 6.211 3.518 1.052×102 31.71
ANHNA-SADENO 45.05 8.421 3.829 2.398×102 73.41
ANHNA-SADECN 5.850 5.668 4.498 8.052 1.240
ANHNA-SADECNv2 6.057 4.947 4.376 13.33 2.788

Source: author.
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Figure 55 – ANHNA’s variants for Breast Cancer dataset
with SADE.

(a) Training and Test RMSE Results.
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APPENDIX E – ANHNA’S CONVERGENCE

In this appendix, the convergence graphics for the chosen variant ANHNA-

DERe are presented for each of the ten repetitions performed, as detailed in Chapter 5.

Considering a 5-Fold internal cross-validation within ANHNA, each graph shows the

evolution of the best solution provided by the metaheuristic. The mean training RMSE is

represented in a red line, while the mean validation RMSE, used as the fitness function, is

given by a black one. The minimum and maximum validation RMSE of the best solution

are represented by a dashed blue line.

E.1 Auto-MPG

Figure 56 – ANHNA-DERe convergence in 4 of 10 repetitions (Auto-MPG dataset).
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(b) Repetition 2

0 50 100 150 200 250 300
0.055

0.06

0.065

0.07

0.075

Generations

R
M
S
E

Auto−MPG

 

 

Training
(mean)

Validation
(mean)

Validation
(max)

Validation
(min)

(c) Repetition 3

0 50 100 150 200 250 300
0.055

0.06

0.065

0.07

0.075

Generations

R
M
S
E

Auto−MPG

 

 

Training
(mean)

Validation
(mean)

Validation
(max)

Validation
(min)

(d) Repetition 4

0 50 100 150 200 250 300
0.055

0.06

0.065

0.07

Generations

R
M
S
E

Auto−MPG

 

 

Training
(mean)

Validation
(mean)

Validation
(max)

Validation
(min)

Source: author.



170

Figure 57 – ANHNA-DERe convergence of 5 to 10 from 10 repetitions (Auto-MPG dataset).
(a) Repetition 5
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(b) Repetition 6
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(c) Repetition 7
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(d) Repetition 8
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(e) Repetition 9
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(f) Repetition 10
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E.2 Bodyfat

Figure 58 – ANHNA-DERe convergence of 1 to 6 of 10 repetitions (Bodyfat dataset).
(a) Repetition 1
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(b) Repetition 2
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Figure 59 – ANHNA-DERe convergence of 9 to 10 from 10 repetitions (Bodyfat dataset).
(a) Repetition 7
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E.3 Breast Cancer

Figure 60 – ANHNA-DERe convergence in 2 of 10 repetitions (Breast Cancer dataset).
(a) Repetition 1
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Figure 61 – ANHNA-DERe convergence of 3 to 10 from 10 repetitions (Breast Cancer
dataset).
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E.4 CPU

Figure 62 – ANHNA-DERe convergence in 8 of 10 repetitions (CPU dataset).
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Figure 63 – ANHNA-DERe convergence of 9 to 10 from 10 repetitions (CPU dataset).
(a) Repetition 9
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Source: author.

E.5 iCub

Figure 64 – ANHNA-DERe convergence in 4 of 10 repetitions (iCub dataset).
(a) Repetition 1
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Figure 65 – ANHNA-DERe convergence of 5 to 10 from 10 repetitions (iCub dataset).
(a) Repetition 5
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E.6 Servo

Figure 66 – ANHNA-DERe convergence in 8 of 10 repetitions (Servo dataset).
(a) Repetition 1
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Figure 67 – ANHNA-DERe convergence of 9 to 10 from 10 repetitions (Servo dataset).
(a) Repetition 9
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APPENDIX F – ROBUST ANHNA’S CONVERGENCE

This appendix is dedicated to the exhibition of the weight function’s choice

evolution over the generations, as well as its respective error threshold (or tunning constant)

of the two versions of robust ANHNA: using trimmed mean (ANHNAR-DE) or median

ANHNARm-DE.

Here we present the five adopted real-world regression problems datasets: Auto-

MPG, Breast Cancer, CPU, and Servo. For each of them, it was applied 1 sided or 2 sided

contaminations, which had also different percentages of contamination: 10%, 20%, 20%

and 20%.

F.1 ANHNAR-DE

F.1.1 Auto-MPG

F.1.1.1 Auto-MPG with 1 sided and 10% of contamination

Figure 68 – ANHNAR-DE weight function choice for Auto-MPG dataset with 1 sided and
10% of outlier contamination.
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Source: author.

Figure 69 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 10% of outlier contamination.
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F.1.1.2 Auto-MPG with 1 sided and 20% of contamination

Figure 70 – ANHNAR-DE weight function choice for Auto-MPG dataset with 1 sided and
20% of outlier contamination.
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Source: author.

Figure 71 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 20% of outlier contamination.
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Source: author.

F.1.1.3 Auto-MPG with 1 sided and 30% of contamination

Figure 72 – ANHNAR-DE weight function choice for Auto-MPG dataset with 1 sided and
30% of outlier contamination.
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Figure 73 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 30% of outlier contamination.
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F.1.1.4 Auto-MPG with 1 sided and 40% of contamination

Figure 74 – ANHNAR-DE weight function choice for Auto-MPG dataset with 1 sided and
40% of outlier contamination.
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Figure 75 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 40% of outlier contamination.
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F.1.1.5 Auto-MPG with 2 sided and 10% of contamination

Figure 76 – ANHNAR-DE weight function choice for Auto-MPG dataset with 2 sided and
10% of outlier contamination.
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Source: author.

Figure 77 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 10% of outlier contamination.
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F.1.1.6 Auto-MPG with 2 sided and 20% of contamination

Figure 78 – ANHNAR-DE weight function choice for Auto-MPG dataset with 2 sided and
20% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

Source: author.



183

Figure 79 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 20% of outlier contamination.
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F.1.1.7 Auto-MPG with 2 sided and 30% of contamination

Figure 80 – ANHNAR-DE weight function choice for Auto-MPG dataset with 2 sided and
30% of outlier contamination.
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Figure 81 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 30% of outlier contamination.
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F.1.1.8 Auto-MPG with 2 sided and 40% of contamination

Figure 82 – ANHNAR-DE weight function choice for Auto-MPG dataset with 2 sided and
40% of outlier contamination.
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Figure 83 – ANHNAR-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 40% of outlier contamination.
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F.1.2 Breast Cancer

F.1.2.1 Breast Cancer with 1 sided and 10% of contamination

Figure 84 – ANHNAR-DE weight function choice for Breast Cancer dataset with 1 sided
and 10% of outlier contamination.
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Figure 85 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 1 sided
and 10% of outlier contamination.
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F.1.2.2 Breast Cancer with 1 sided and 20% of contamination

Figure 86 – ANHNAR-DE weight function choice for Breast Cancer dataset with 1 sided
and 20% of outlier contamination.
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Figure 87 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 1 sided
and 20% of outlier contamination.
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F.1.2.3 Breast Cancer with 1 sided and 30% of contamination

Figure 88 – ANHNAR-DE weight function choice for Breast Cancer dataset with 1 sided
and 30% of outlier contamination.
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Figure 89 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 1 sided
and 30% of outlier contamination.
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F.1.2.4 Breast Cancer with 1 sided and 40% of contamination

Figure 90 – ANHNAR-DE weight function choice for Breast Cancer dataset with 1 sided
and 40% of outlier contamination.
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Figure 91 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 1 sided
and 40% of outlier contamination.
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F.1.2.5 Breast Cancer with 2 sided and 10% of contamination

Figure 92 – ANHNAR-DE weight function choice for Breast Cancer dataset with 2 sided
and 10% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

Source: author.

Figure 93 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 2 sided
and 10% of outlier contamination.
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F.1.2.6 Breast Cancer with 2 sided and 20% of contamination

Figure 94 – ANHNAR-DE weight function choice for Breast Cancer dataset with 2 sided
and 20% of outlier contamination.
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Figure 95 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 2 sided
and 20% of outlier contamination.
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F.1.2.7 Breast Cancer with 2 sided and 30% of contamination

Figure 96 – ANHNAR-DE weight function choice for Breast Cancer dataset with 2 sided
and 30% of outlier contamination.
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Figure 97 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 2 sided
and 30% of outlier contamination.
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F.1.2.8 Breast Cancer with 2 sided and 40% of contamination

Figure 98 – ANHNAR-DE weight function choice for Breast Cancer dataset with 2 sided
and 40% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Breast Cancer

Source: author.

Figure 99 – ANHNAR-DE error threshold evolution for Breast Cancer dataset with 2 sided
and 40% of outlier contamination.
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F.1.3 CPU

F.1.3.1 CPU with 1 sided and 10% of contamination

Figure 100 – ANHNAR-DE weight function choice for CPU dataset with 1 sided and 10%
of outlier contamination.
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Figure 101 – ANHNAR-DE error threshold evolution for CPU dataset with 1 sided and
10% of outlier contamination.
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F.1.3.2 CPU with 1 sided and 20% of contamination

Figure 102 – ANHNAR-DE weight function choice for CPU dataset with 1 sided and 20%
of outlier contamination.
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Figure 103 – ANHNAR-DE error threshold evolution for CPU dataset with 1 sided and
20% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

−2.3333

−0.6667

1

2.6667

4.3333

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

CPU

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

−0.6667

0.6667

2

3.3333

4.6667

Generations
E

r
r
o

r
 t

h
r
e
s
h

o
ld

CPU

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

−2.3333

−0.6667

1

2.6667

4.3333

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

CPU

Source: author.

F.1.3.3 CPU with 1 sided and 30% of contamination

Figure 104 – ANHNAR-DE weight function choice for CPU dataset with 1 sided and 30%
of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

CPU

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

CPU

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

CPU

Source: author.

Figure 105 – ANHNAR-DE error threshold evolution for CPU dataset with 1 sided and
30% of outlier contamination.
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F.1.3.4 CPU with 1 sided and 40% of contamination

Figure 106 – ANHNAR-DE weight function choice for CPU dataset with 1 sided and 40%
of outlier contamination.
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Figure 107 – ANHNAR-DE error threshold evolution for CPU dataset with 1 sided and
40% of outlier contamination.
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F.1.3.5 CPU with 2 sided and 10% of contamination

Figure 108 – ANHNAR-DE weight function choice for CPU dataset with 2 sided and 10%
of outlier contamination.
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Figure 109 – ANHNAR-DE error threshold evolution for CPU dataset with 2 sided and
10% of outlier contamination.
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F.1.3.6 CPU with 2 sided and 20% of contamination

Figure 110 – ANHNAR-DE weight function choice for CPU dataset with 2 sided and 20%
of outlier contamination.
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Figure 111 – ANHNAR-DE error threshold evolution for CPU dataset with 2 sided and
20% of outlier contamination.
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F.1.3.7 CPU with 2 sided and 30% of contamination

Figure 112 – ANHNAR-DE weight function choice for CPU dataset with 2 sided and 30%
of outlier contamination.
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Figure 113 – ANHNAR-DE error threshold evolution for CPU dataset with 2 sided and
30% of outlier contamination.
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F.1.3.8 CPU with 2 sided and 40% of contamination

Figure 114 – ANHNAR-DE weight function choice for CPU dataset with 2 sided and 40%
of outlier contamination.
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Figure 115 – ANHNAR-DE error threshold evolution for CPU dataset with 2 sided and
40% of outlier contamination.
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F.1.4 Servo

F.1.4.1 Servo with 1 sided and 10% of contamination

Figure 116 – ANHNAR-DE weight function choice for Servo dataset with 1 sided and 10%
of outlier contamination.
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Figure 117 – ANHNAR-DE error threshold evolution for Servo dataset with 1 sided and
10% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300
−2

−0.6667

0.6667

2

3.3333

4.6667

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

(b) Repetitions 5 to 7

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

(c) Repetitions 8 to 10

0 50 100 150 200 250 300
0

0.8333

1.6667

2.5

3.3333

4.1667

5

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

Source: author.



196

F.1.4.2 Servo with 1 sided and 20% of contamination

Figure 118 – ANHNAR-DE weight function choice for Servo dataset with 1 sided and 20%
of outlier contamination.
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Figure 119 – ANHNAR-DE error threshold evolution for Servo dataset with 1 sided and
20% of outlier contamination.
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F.1.4.3 Servo with 1 sided and 30% of contamination

Figure 120 – ANHNAR-DE weight function choice for Servo dataset with 1 sided and 30%
of outlier contamination.
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Figure 121 – ANHNAR-DE error threshold evolution for Servo dataset with 1 sided and
30% of outlier contamination.
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F.1.4.4 Servo with 1 sided and 40% of contamination

Figure 122 – ANHNAR-DE weight function choice for Servo dataset with 1 sided and 40%
of outlier contamination.
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Figure 123 – ANHNAR-DE error threshold evolution for Servo dataset with 1 sided and
40% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

−2.3333

−0.6667

1

2.6667

4.3333

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

(b) Repetitions 5 to 7

0 50 100 150 200 250 300
−2

−0.6667

0.6667

2

3.3333

4.6667

6

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

−1.3333

−0.6667

0

0.6667

1.3333

2

Generations

E
r
r
o

r
 t

h
r
e
s
h

o
ld

Servo

Source: author.



198

F.1.4.5 Servo with 2 sided and 10% of contamination

Figure 124 – ANHNAR-DE weight function choice for Servo dataset with 2 sided and 10%
of outlier contamination.
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Figure 125 – ANHNAR-DE error threshold evolution for Servo dataset with 2 sided and
10% of outlier contamination.
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F.1.4.6 Servo with 2 sided and 20% of contamination

Figure 126 – ANHNAR-DE weight function choice for Servo dataset with 2 sided and 20%
of outlier contamination.
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Figure 127 – ANHNAR-DE error threshold evolution for Servo dataset with 2 sided and
20% of outlier contamination.
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F.1.4.7 Servo with 2 sided and 30% of contamination

Figure 128 – ANHNAR-DE weight function choice for Servo dataset with 2 sided and 30%
of outlier contamination.
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Figure 129 – ANHNAR-DE error threshold evolution for Servo dataset with 2 sided and
30% of outlier contamination.
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F.1.4.8 Servo with 2 sided and 40% of contamination

Figure 130 – ANHNAR-DE weight function choice for Servo dataset with 2 sided and 40%
of outlier contamination.
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Figure 131 – ANHNAR-DE error threshold evolution for Servo dataset with 2 sided and
40% of outlier contamination.
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F.2 ANHNARm-DE

F.2.1 Auto-MPG

F.2.1.1 Auto-MPG with 1 sided and 10% of contamination

Figure 132 – ANHNARm-DE weight function choice for Auto-MPG dataset with 1 sided
and 10% of outlier contamination.
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Figure 133 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 10% of outlier contamination.
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F.2.1.2 Auto-MPG with 1 sided and 20% of contamination

Figure 134 – ANHNARm-DE weight function choice for Auto-MPG dataset with 1 sided
and 20% of outlier contamination.
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Source: author.

F.2.1.3 Auto-MPG with 1 sided and 30% of contamination

Figure 136 – ANHNARm-DE weight function choice for Auto-MPG dataset with 1 sided
and 30% of outlier contamination.
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Figure 135 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 20% of outlier contamination.
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Source: author.

Figure 137 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 30% of outlier contamination.
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F.2.1.4 Auto-MPG with 1 sided and 40% of contamination

Figure 138 – ANHNARm-DE weight function choice for Auto-MPG dataset with 1 sided
and 40% of outlier contamination.
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Figure 139 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 1 sided
and 40% of outlier contamination.
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F.2.1.5 Auto-MPG with 2 sided and 10% of contamination

Figure 140 – ANHNARm-DE weight function choice for Auto-MPG dataset with 2 sided
and 10% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Auto−MPG

Source: author.

Figure 141 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 10% of outlier contamination.
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F.2.1.6 Auto-MPG with 2 sided and 20% of contamination

Figure 142 – ANHNARm-DE weight function choice for Auto-MPG dataset with 2 sided
and 20% of outlier contamination.
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Figure 143 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 20% of outlier contamination.
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Source: author.

F.2.1.7 Auto-MPG with 2 sided and 30% of contamination

Figure 144 – ANHNARm-DE weight function choice for Auto-MPG dataset with 2 sided
and 30% of outlier contamination.
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Figure 145 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 30% of outlier contamination.
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F.2.1.8 Auto-MPG with 2 sided and 40% of contamination

Figure 146 – ANHNARm-DE weight function choice for Auto-MPG dataset with 2 sided
and 40% of outlier contamination.
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Figure 147 – ANHNARm-DE error threshold evolution for Auto-MPG dataset with 2 sided
and 40% of outlier contamination.
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F.2.2 Breast Cancer

F.2.2.1 Breast Cancer with 1 sided and 10% of contamination

Figure 148 – ANHNARm-DE weight function choice for Breast Cancer dataset with 1 sided
and 10% of outlier contamination.
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Source: author.

Figure 149 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 1
sided and 10% of outlier contamination.
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F.2.2.2 Breast Cancer with 1 sided and 20% of contamination

Figure 150 – ANHNARm-DE weight function choice for Breast Cancer dataset with 1 sided
and 20% of outlier contamination.
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Figure 151 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 1
sided and 20% of outlier contamination.
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F.2.2.3 Breast Cancer with 1 sided and 30% of contamination

Figure 152 – ANHNARm-DE weight function choice for Breast Cancer dataset with 1 sided
and 30% of outlier contamination.
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Figure 153 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 1
sided and 30% of outlier contamination.
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F.2.2.4 Breast Cancer with 1 sided and 40% of contamination

Figure 154 – ANHNARm-DE weight function choice for Breast Cancer dataset with 1 sided
and 40% of outlier contamination.
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Source: author.

Figure 155 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 1
sided and 40% of outlier contamination.
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F.2.2.5 Breast Cancer with 2 sided and 10% of contamination

Figure 156 – ANHNARm-DE weight function choice for Breast Cancer dataset with 2 sided
and 10% of outlier contamination.
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Figure 157 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 2
sided and 10% of outlier contamination.
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F.2.2.6 Breast Cancer with 2 sided and 20% of contamination

Figure 158 – ANHNARm-DE weight function choice for Breast Cancer dataset with 2 sided
and 20% of outlier contamination.
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F.2.2.7 Breast Cancer with 2 sided and 30% of contamination

Figure 160 – ANHNARm-DE weight function choice for Breast Cancer dataset with 2 sided
and 30% of outlier contamination.
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Figure 159 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 2
sided and 20% of outlier contamination.
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Source: author.

Figure 161 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 2
sided and 30% of outlier contamination.
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Source: author.

F.2.2.8 Breast Cancer with 2 sided and 40% of contamination

Figure 162 – ANHNARm-DE weight function choice for Breast Cancer dataset with 2 sided
and 40% of outlier contamination.
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Figure 163 – ANHNARm-DE error threshold evolution for Breast Cancer dataset with 2
sided and 40% of outlier contamination.
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F.2.3 CPU

F.2.3.1 CPU with 1 sided and 10% of contamination

Figure 164 – ANHNARm-DE weight function choice for CPU dataset with 1 sided and 10%
of outlier contamination.
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Source: author.

Figure 165 – ANHNARm-DE error threshold evolution for CPU dataset with 1 sided and
10% of outlier contamination.
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F.2.3.2 CPU with 1 sided and 20% of contamination

Figure 166 – ANHNARm-DE weight function choice for CPU dataset with 1 sided and 20%
of outlier contamination.
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Figure 167 – ANHNARm-DE error threshold evolution for CPU dataset with 1 sided and
20% of outlier contamination.
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F.2.3.3 CPU with 1 sided and 30% of contamination

Figure 168 – ANHNARm-DE weight function choice for CPU dataset with 1 sided and 30%
of outlier contamination.
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Figure 169 – ANHNARm-DE error threshold evolution for CPU dataset with 1 sided and
30% of outlier contamination.
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F.2.3.4 CPU with 1 sided and 40% of contamination

Figure 170 – ANHNARm-DE weight function choice for CPU dataset with 1 sided and 40%
of outlier contamination.
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Source: author.

F.2.3.5 CPU with 2 sided and 10% of contamination

Figure 172 – ANHNARm-DE weight function choice for CPU dataset with 2 sided and 10%
of outlier contamination.
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Figure 171 – ANHNARm-DE error threshold evolution for CPU dataset with 1 sided and
40% of outlier contamination.
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Figure 173 – ANHNARm-DE error threshold evolution for CPU dataset with 2 sided and
10% of outlier contamination.
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F.2.3.6 CPU with 2 sided and 20% of contamination

Figure 174 – ANHNARm-DE weight function choice for CPU dataset with 2 sided and 20%
of outlier contamination.
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Figure 175 – ANHNARm-DE error threshold evolution for CPU dataset with 2 sided and
20% of outlier contamination.
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F.2.3.7 CPU with 2 sided and 30% of contamination

Figure 176 – ANHNARm-DE weight function choice for CPU dataset with 2 sided and 30%
of outlier contamination.
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Figure 177 – ANHNARm-DE error threshold evolution for CPU dataset with 2 sided and
30% of outlier contamination.
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F.2.3.8 CPU with 2 sided and 40% of contamination

Figure 178 – ANHNARm-DE weight function choice for CPU dataset with 2 sided and 40%
of outlier contamination.
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Figure 179 – ANHNARm-DE error threshold evolution for CPU dataset with 2 sided and
40% of outlier contamination.
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F.2.4 Servo

F.2.4.1 Servo with 1 sided and 10% of contamination

Figure 180 – ANHNARm-DE weight function choice for Servo dataset with 1 sided and
10% of outlier contamination.
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Figure 181 – ANHNARm-DE error threshold evolution for Servo dataset with 1 sided and
10% of outlier contamination.
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F.2.4.2 Servo with 1 sided and 20% of contamination

Figure 182 – ANHNARm-DE weight function choice for Servo dataset with 1 sided and
20% of outlier contamination.
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Figure 183 – ANHNARm-DE error threshold evolution for Servo dataset with 1 sided and
20% of outlier contamination.
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F.2.4.3 Servo with 1 sided and 30% of contamination

Figure 184 – ANHNARm-DE weight function choice for Servo dataset with 1 sided and
30% of outlier contamination.
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Source: author.

Figure 185 – ANHNARm-DE error threshold evolution for Servo dataset with 1 sided and
30% of outlier contamination.
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F.2.4.4 Servo with 1 sided and 40% of contamination

Figure 186 – ANHNARm-DE weight function choice for Servo dataset with 1 sided and
40% of outlier contamination.
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Figure 187 – ANHNARm-DE error threshold evolution for Servo dataset with 1 sided and
40% of outlier contamination.
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F.2.4.5 Servo with 2 sided and 10% of contamination

Figure 188 – ANHNARm-DE weight function choice for Servo dataset with 2 sided and
10% of outlier contamination.
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F.2.4.6 Servo with 2 sided and 20% of contamination

Figure 190 – ANHNARm-DE weight function choice for Servo dataset with 2 sided and
20% of outlier contamination.
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Figure 189 – ANHNARm-DE error threshold evolution for Servo dataset with 2 sided and
10% of outlier contamination.
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Figure 191 – ANHNARm-DE error threshold evolution for Servo dataset with 2 sided and
20% of outlier contamination.
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F.2.4.7 Servo with 2 sided and 30% of contamination

Figure 192 – ANHNARm-DE weight function choice for Servo dataset with 2 sided and
30% of outlier contamination.
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Figure 193 – ANHNARm-DE error threshold evolution for Servo dataset with 2 sided and
30% of outlier contamination.
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F.2.4.8 Servo with 2 sided and 40% of contamination

Figure 194 – ANHNARm-DE weight function choice for Servo dataset with 2 sided and
40% of outlier contamination.

(a) Repetitions 1 to 4

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Servo

(b) Repetitions 5 to 7

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Servo

(c) Repetitions 8 to 10

0 50 100 150 200 250 300

Talwar

Huber

Bisquare

Fair

Cauchy

Andrews

Welsch

Logistic

Generations

Servo

Source: author.

Figure 195 – ANHNARm-DE error threshold evolution for Servo dataset with 2 sided and
40% of outlier contamination.
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