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Abstract
Purpose of Review The paper aims to critically study the lit-
erature published over the past 3 years as relevant to oral
biofilm control. The emphasis of this review is the interests
and importance of new findings, seeking the following an-
swers: (i) what is the major challenge in oral biofilm control?,
(ii) what are the new anti-biofilm approaches?, and (iii) what
are the further researches?
Recent Findings In addition to mechanical plaque removal
and the use of chemical agents against pathogenic biofilm,
there is a need for development of new anti-biofilm ap-
proaches. The majority of the new studies aiming to control
oral biofilm have been performed with the characterization of
the extracellular matrix components. Exopolysaccharides
(EPS), proteins, lipids, nucleic acids (eDNA), lipoteichoic
acids (LTA), and lipopolysaccharides have been identified in
the matrices of bacterial biofilms and are considered the cur-
rent targets to oral biofilm control.
Summary The extracellular matrix is essential for the exis-
tence of the biofilm and by its virulence both in bacterial
and fungal pathogens. The better understanding of the biome-
chanical properties of the EPS matrix is the main advance and
is leading to new chemical and/or biological approaches
to remove or disorganize cariogenic biofilms. Recently,

researches are focusing on the extracellular matrix for oral
biofilm control with further clinical applicability.
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Introduction

The oral cavity has several distinct habitats that provide dif-
ferent ecological conditions for colonization and growth of
microorganisms, such as the mucosal surfaces and teeth. The
entirety of microorganisms found in the oral cavity is referred
as the oral microbiota, or oral microbiome, defined as “all
microorganisms that are found on or in the human oral cavity
and its contiguous extensions” [1]. The mouth facilitates the
growth of a characteristic resident microbiota that possesses
archae, viruses, bacteria, and fungi [2]. Temperature, pH, at-
mosphere, the host defenses and host genetics may influence
the composition of the oral microbiota [3]. There is a symbi-
otic relationship between the resident oral microbiota and the
healthy host that is regulated by active host-microbe cross talk
[3]. Some changes in oral environmental conditions may
disrupt the symbiotic relationship between the host and its
resident microbes, increasing the risk of disease [3].
Microorganisms in oral microbiota can be organized as a bio-
film. The oral biofilm is the basis of many oral diseases; in-
cluding dental caries, periodontal disease and endodontic in-
fections [4]. Besides, there is evidence suggesting that oral
microorganisms may be related to the pathogenesis of system-
ic disease including cardiovascular disease, rheumatoid arthri-
tis, respiratory disease, and other conditions [4].

Regarding bacter ia , the genera Streptococcus ,
Lactobacillus, Actinomycetes, Propionibacterium, and
Veillonella are highly abundant in the oral microbiome of
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plaque from caries-active adults [5]. When there is an unbal-
ance in the immune system of the host, the oral microbiota is
modified and fungi may invade the oral tissues causing infec-
tions, such as candidiasis. More than 100 species of fungi
were identified in samples from the oral cavity [2], including
Candida spp., Aspergillus spp., Fusarium spp., Cryptococcus
spp., and Malassezia spp. [6, 7].

It is noted that although fungi have significant roles in the
development of biofilm-related diseases, most of the studies
on the oral microbiota are limited to bacteria. However, the
growing importance of fungi species, mainly Candida spp. as
an opportunist pathogen, especially in immunocompromised
individuals, has been reported [8].

ExtracellularMatrix: a Challenge in BiofilmControl

Biofilm growth begins when planktonicmicrobial cells adhere
to a surface and start secretion of extracellular matrix compo-
nents. Exopolysaccharides (EPS), proteins, lipids, nucleic
acids, lipoteichoic acids (LTA), and lipopolysaccharides have
been identified in the matrices of bacterial biofilms [9].
Infections caused by Candida spp. are also associated with
biofilm formation and with the development of an extracellu-
lar matrix (ECM) made up of secreted microbial and host-
derived substances as well as cell lysis products [10].
Proteins, lipids, carbohydrates, and nucleic acids were identi-
fied in these matrices too, in the proportion of 55% protein,
25% carbohydrate, 15% lipid, and 5% nucleic acid for
Candida albicans strain K1 [11••].

In the oral microbiome, besides Streptococcus mutans,
many organisms are equally acidogenic and aciduric; howev-
er, S. mutans is the prime EPS producer, which is important
for the establishment of virulent biofilms. Furthermore,
S. mutans quickly modulate the formation of cariogenic
biofilms when dietary sucrose and starch are present [12••].

In bacterial biofilms, the matrix polysaccharides include
mainly glucose and fructose homopolymers that are synthe-
sized from dietary sucrose by glucosyltransferases (Gtfs) and
fructosyltransferases. These enzymes are secreted by
Streptococcus spp., Lactobacillus spp., and Actinomyces
spp. [13]. Glucans synthesized by Gtfs can act as binding sites
for S. mutans and other organisms. Currently, there are three
genetically different enzymes that are produced by bacteria;
they are GtfB, GtfC, and GtfD. Each one synthesizes a struc-
turally distinct EPS using sucrose as substrate [14]. The poly-
mers formed on surfaces provide additional non-mammalian
bacterial binding sites in the pellicle to increase accumulation
of microorganisms, mainly S. mutans [15]. Gtfs, especially
GtfB, also bind other oral microorganisms, like Actinomyces
viscosus, Lactobacillus casei, and C. albicans, converting
them into glucan producers [15, 16]. GtfC is found in the
pellicle in an active form [17]. GtfD produces soluble glucans

that act as primers for GtfB and as a reserve source of energy
[17]. The knowledge of how the reactions of Gtfs affect the
production and structure of EPS in situ, as well as the supply
of microbial binding sites and subsequent matrix assembly
will increase the understanding about the mechanisms of car-
iogenic biofilm installation [18].

Beyond polysaccharides, S. mutans also releases extracel-
lular DNA (eDNA) and lipoteichoic acid (LTA), which can
contribute with matrix development [12••, 17]. eDNA is an
important extracellular matrix (ECM) component of fungal
and bacterial biofilms [19, 20]. In bacteria, this component
enhances EPS synthesis locally, increasing the adhesion of
S. mutans to saliva-coated apatitic surfaces and the setting of
highly cohesive biofilms [12••]. eDNA and other extracellular
substances, acting together with EPS, may interfere with the
functional properties of the matrix and the virulence of cario-
genic biofilms [12••]. Bacterial biofilm studies suggested that
eDNA has a multifactorial purpose, such as nutrient source
[21], facilitator of genetic information exchange [22], contrib-
utor to biofilm initiation [22, 23], to biofilm stability and dis-
persal [21, 23, 24], and to antimicrobial resistance factor [22],
since the negative charge of eDNA sequester cationic antibi-
otics [25]. Recent research found that eDNA may contribute
to the assembly of the matrix by enhancing glucan synthesis
and promoting bacterial binding to surfaces [12••, 17, 26], but
the molecular mechanisms that triggers the release and secre-
tion of eDNA and how it is incorporated into the biofilm
matrix remain unknown [12••, 17].

Environmental changes in the mouth of the host, such
as frequent consumption of sucrose, influence biofilm de-
velopment by providing a substrate for EPS production on
the pellicle surface [18]. If exposure to sucrose persists,
EPS will be continuously produced forming the body of
the matrix and maturation of the biofilm will occur. The
EPS formed on surfaces and the development of an extra-
cellular matrix may be related to mechanical properties of
biofilms, including adhesive strength and cohesiveness
[12••, 17]. However, it is yet to be determined when and
how EPS modulate adhesive and cohesive forces of the
matrix, which are fundamental properties for the mechan-
ical stability of biofilms [12••, 17]. There is a need to
better understand the biomechanical properties of the
EPS matrix to improve chemical and/or biological ap-
proaches to remove and/or disorganize cariogenic
biofilms [17].

Bacteria have mechanisms to recognize receptors on host
cell surfaces or on components of the EPS [27]. Bacterial spe-
cies do not act alone; attachment by primary colonizers provides
new receptors which may be recognized by secondary colo-
nizers leading to co-aggregation, that is, the adhesion of differ-
ent bacterial species to one another [27]. If nutrient sources are
available, biofilms can grow into larger structures than individ-
ual cells. On the other hand, if resources become depleted,
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bacteria can return to the planktonic phase and disperse to en-
counter new locations with superior resource availability [28].

Cell-to-cell binding between microorganisms plays a cru-
cial role in integrating secondary colonizers into oral biofilms
and building complex networks of interacting microbial cells
[27]. Microorganisms entering the mouth have to attach to a
surface to evade clearance by salivary flow from the mouth to
the digestive tract [27]. Adherence of pathogenic microorgan-
isms to host tissues initiates the disease process [19]. The
attached bacteria synthesize a variety of extracellular poly-
mers to structure the biofilm matrix, that retain and bind many
molecules, including enzymes, and so the matrix is biologi-
cally active [19].

The matrix is considered essential for the existence of the
biofilm behavior and full expression of virulence by bacterial
pathogens [12••]. Matrix constituents could affect the diffu-
sion of substances in and out of the biofilm, helping to create a
diverse range of microenvironments within the biofilm [18].
Concerning biofilm settlement, the resident microorganisms
enmeshed and protected in the matrix are resistant to antimi-
crobials and are highly acidogenic/acid-tolerant, making them
difficult to remove, becoming reservoirs for pathogens and
toxins [17]. Thereby, the matrix can be considered the biggest
challenge on the oral biofilm control.

Advances in Oral Biofilm Control

In addition to mechanical plaque removal and the use of
chemical agents against biofilm pathogens, the development
of new anti-biofilm approaches is necessary. Polysaccharides
and eDNA, which are crucial structural and functional constit-
uents of the biofilm matrix, seem to be a good target for future
therapeutic strategies [12••, 13, 17, 18, 21, 23, 25, 26, 28–30].
The control of the biofilm that does not affect the viability of
commensal oral bacteria, like the use of enzymes, represents a
promising approach for therapy of oral diseases [13]. The
possibilities of using enzymes should be determined, includ-
ing the use of matrix-targeting enzymes to help biofilm pene-
tration by antimicrobial agents for which the matrix is a dif-
fusion barrier [29].

As cited before, the eDNA is an important ECM com-
ponent of both fungal and bacterial biofilms and it is
related to antimicrobial resistance. So, targeting eDNA
via DNAse might be a strategy to improve the penetration
of drugs into the extracellular matrix of these microorgan-
isms. In the oral cavity, strategies to deliver DNase en-
zymes would need to ensure that the enzymes are safe for
use in humans [30]. Besides that, it is important to ensure
that the enzyme will reach the oral biofilm effectively,
that it is active when in contact with the oral biofilm, that
its activity is retained for long enough to disturb the bio-
film, and that the enzyme is stable for a reasonable period

[30]. It is necessary to understand how eDNA interacts
within the biofilm matrix. Many research groups are ad-
dressing this important question, thus some eDNA-
binding compounds, polysaccharides, and proteins are
emerging in the literature [25]. Recently, ciprofloxacin-
loaded poly (lactic-co-glycolic acid) nanoparticles func-
tionalized with DNase I were fabricated and their anti-
biofilm activity was assessed against Pseudomonas
aeruginosa biofilms. DNase I-activated nanoparticles suc-
cessfully reduced established biofilm mass, size, and liv-
ing cell density, as observed in a dynamic environment in
a flow cell biofilm assay [31•].

Another novel strategy to control plaque-biofilms was de-
scribed by using atmospheric-pressure cold plasma (ACP),
since it has the ability to disrupt the biofilm matrix and rupture
cell structure. The cold plasma is generated by gas ionization
at atmospheric pressure and low temperature; producing reac-
tive oxygen species, reactive nitrogen species, UV radiation,
ions, electrons, excited molecules, and electromagnetic field.
Antimicrobial effect of ACP was shown on single- and dual-
species biofilms of C. albicans and Staphylococcus aureus as
well as biological safety of ACP on in vitro reconstituted oral
epithelium [32]. Another recent technique that showed rele-
vant results inhibiting matrix-rich biofilm development was
the blue light treatment without a photosensitizer in
S. mutans biofilms. When the biofilms were treated with
twice-daily blue light, EPS insoluble was reduced and the
reduction was even more effective than the twice-daily appli-
cation of the “gold-standard” 0.12% chlorhexidine [33].

Conclusions

The challenge of developing effective therapies to control oral
biofilms is that topically introduced agents have to evade the
fast clearance from biofilm-tooth interfaces while targeting
biofilm microenvironments. Furthermore, EPS matrix and
acidification of biofilm microenvironments are associated to
cariogenic biofilm virulence. The improvement of the bio-
availability and retention of antibacterial agents at the dental
surfaces and within the biofilm is needed. Therefore, the ac-
quaintance of biofilm matrix assembly and changes in the
biofilm microenvironment allows the discovering of new ap-
proaches against infectious biofilms [34].
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