
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO ACADÊMICO EM CIÊNCIA DA COMPUTAÇÃO

LUÍS GUSTAVO COUTINHO DO RÊGO

BIDIRECTIONAL SEARCH FOR NEAREST NEIGHBORS QUERIES OVER ROAD

NETWORKS

FORTALEZA

2017

LUÍS GUSTAVO COUTINHO DO RÊGO

BIDIRECTIONAL SEARCH FOR NEAREST NEIGHBORS QUERIES OVER ROAD

NETWORKS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências da Universi-
dade Federal do Ceará, como requisito parcial
à obtenção do título de mestre em Ciência da
Computação. Área de Concentração: Banco de
Dados

Orientador: Prof. Dr. José Antônio Fer-
nandes de Macêdo

Co-Orientador: Prof. Dr. Mário Antonio
do Nascimento

FORTALEZA

2017

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

R267b Rêgo, Luís Gustavo Coutinho do.
 Bidirectional search for nearest neighbors queries over road networks / Luís Gustavo Coutinho do
Rêgo. – 2017.
 38 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2017.
 Orientação: Prof. Dr. José Antônio Fernandes de Macêdo.
 Coorientação: Prof. Dr. Mário Antonio do Nascimento.

 1. k Nearest Neighbors. 2. Road Networks. 3. Spatial Queries. I. Título.
 CDD 005

LUÍS GUSTAVO COUTINHO DO RÊGO

BIDIRECTIONAL SEARCH FOR NEAREST NEIGHBORS QUERIES OVER ROAD

NETWORKS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências da Universi-
dade Federal do Ceará, como requisito parcial
à obtenção do título de mestre em Ciência da
Computação. Área de Concentração: Banco de
Dados

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. José Antônio Fernandes de Macêdo (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Mário Antonio do Nascimento (Co-Orientador)
University of Alberta (UofA)

Profa. Dra. Ticiana Linhares Coelho da Silva
Universidade Federal do Ceará (UFC)

Prof. Dr. Javam de Castro Machado
Universidade Federal do Ceará (UFC)

À memória de minha tia Mazé, que sempre tor-

ceu pelo meu sucesso e acompanhou todos os

meus passos.

AGRADECIMENTOS

Agradeço a Deus.

“Eu sou de uma terra que o povo padece

Mas não esmorece e procura vencer.

Da terra querida, que a linda cabocla

De riso na boca zomba no sofrer

Não nego meu sangue, não nego meu nome

Olho para a fome, pergunto o que há?

Eu sou brasileiro, filho do Nordeste,

Sou cabra da Peste, sou do Ceará.”

(Patativa do Assaré)

RESUMO

O presente trabalho estuda a consulta dos k vizinhos mais próximos em redes de ruas estáti-

cas, considerando Pontos de Interesse Voláteis (PoI-V). Esse novo tipo de PoI tem uma alta

frequência de atualização de localização em um mapa e sua disponibilidade é incerta. Aplicações

de compartilhamento de caronas representam um bom exemplo de uso dessa consulta: moto-

ristas podem tornar-se disponíveis ou indisponíveis a qualquer momento para aceitarem uma

chamada ou ter suas localizações alteradas com frequência. Soluções anteriores utilizam índices

espaciais ou demandam uma fase de pré-processamento no algoritmo, fazendo com que as suas

utilizações com PoI-V’s sejam inviáveis uma vez que se um desses objetos tornar-se disponível

ou indisponível, o pré-processamento ou o índice deverão ser refeitos. A solução proposta

utiliza uma combinação do algoritmo A* com uma busca bidirecional, direcionando a expansão

dos vértices, bem como diminuindo o tempo de processamento da consulta. Técnicas de poda

de espaço de busca também são aplicadas para reduzir a quantidade de potenciais PoI-V’s a

serem verificados. A corretude e a construção do algoritmo são apresentadas, assim como uma

avaliação experimental empírica com redes de ruas reais.

Palavras-chave: k Vizinhos mais Próximos. Redes de Ruas. Consultas Espaciais.

ABSTRACT

The present work studies the k nearest neighbors queries in static road networks, considering

Volatile Points of Interest (VPoI). This new type of PoI has a high frequency of location update

on a map and its availability is uncertain. Car-sharing applications are a good example of this

kind of query use: drivers can become available or unavailable at any time to accept a call or

have their locations changed frequently. Previous solutions use spatial indexes or require a

preprocessing phase in the algorithm, making their use with VPoI’s not feasible since if one of

these objects becomes available or unavailable, preprocessing or indexing should be redone. The

proposed solution uses a combination of the A* algorithm with a bidirectional search, directing

an expansion of the vertices as well as reducing the processing time of the query. Search space

pruning techniques are also applied to reduce the amount of potential VPoI’s to be scanned. The

correctness and construction of the algorithm are presented, as well as an empirical experimental

evaluation with real road networks.

Keywords: k Nearest Neighbors. Road Networks. Spatial Queries.

LIST OF FIGURES

Figure 1 – Density of different Points of Interests. 15

Figure 2 – The difference between search trees of different types of searching algorithms

(NANNICINI et al., 2012). 19

Figure 3 – Finding the NN pE2 (PAPADIAS et al., 2003). 20

Figure 4 – INE’s execution example – the query point, q, is depicted as a white circle,

network’s nodes are depicted as black circles, while PoIs are depicted as

black squares. In the above we have that q’s NN is p5 (PAPADIAS et al., 2003) 21

Figure 5 – Scenario example: dating application that requires to track multitides of users

(Volatile Point of Interest (VPoI)s) over a road network. 22

Figure 6 – Running example of the execution of the Bidirectional k Nearest Neighbors

in Road Networks (Bi-k-NN-R) algorithm. 30

Figure 7 – Computation of the Euclidean distance between q and the VPoIs. 31

Figure 8 – Example about how the algorithm determines the next search to be expanded. 32

Figure 9 – Algorithm finished and the nearest neighbors are V PoI1 and V PoI2. 32

Figure 10 – Ratio growth between the Voronoi-based approach and the Bi-k-NN-R when

the VPoI density changes. 35

Figure 11 – Execution time for Monaco (Density = 100%). 36

Figure 12 – Curve of the ratio between the two algorithms in Monaco (Density = 100%). 36

LIST OF TABLES

Table 1 – Search Entry structure. 29

Table 2 – Main characteristics of the used maps. 33

Table 3 – Parameters used in the experimental evaluation. 34

Table 4 – Network size comparison. 37

LIST OF ALGORITHMS

Algorithm 1 – GETTOPKEUCLIDEAN . 27

Algorithm 2 – BIDIRECTIONAL k NEAREST NEIGHBORS SEARCH 28

LIST OF ABBREVIATIONS AND ACRONYMS

kNN k Nearest Neighbors

Bi-k-NN-R Bidirectional k Nearest Neighbors in Road Networks

GIS Geographic Information System

GPS Global Positioning System

IER Incremental Euclidean Restriction

INE Incremental Network Expansion

LBS Location-Based Services

LDSQ Location-Dependent Spatial Queries

PoI Point of Interest

VPoI Volatile Point of Interest

CONTENTS

1 INTRODUCTION . 14

1.1 Academic contributions . 16

2 THEORETICAL FOUNDATION . 17

2.1 Preliminaries . 17

2.2 Bidirectional Search . 18

2.3 Incremental Euclidean Restriction (IER) and Incremental Network Ex-

pansion (INE) . 19

2.4 A* Search . 21

2.5 Problem Statement . 22

3 RELATED WORKS . 24

4 BIDIRECTIONAL k NEAREST NEIGHBORS SEARCH 26

4.1 The Bi-k-NN-R Algorithm . 26

4.1.1 Phase I – Pruning . 26

4.1.2 Phase II – Bidirectional search . 27

4.2 Correctness of the solution . 29

4.3 Running Example . 30

5 EXPERIMENTAL EVALUATION . 33

5.1 Experimental setup . 33

5.1.1 Dataset . 33

5.1.2 Competitors . 33

5.1.3 Methodology . 33

5.1.4 Test System . 34

5.1.5 Experimental goals . 34

5.2 Experimental evaluation . 34

5.2.1 Study on the performance of the algorithms when varying the density of

volatile PoIs . 35

5.2.2 Study on the performance of the algorithms when varying the query size k 35

5.2.3 Evaluation of the network size . 37

6 CONCLUSION . 38

REFERENCES . 39

14

1 INTRODUCTION

Geographic Information Systems (GISs) have the goal to capture, store, check,

and display data related to positions on Earth’s surface (INFORMATION.; CHORLEY, 1987).

GISs can show different types of information on the same map – for instance, roads, buildings,

vegetation, and so on – hence allowing users to see, analyze, and understand patterns and

relationships among entities. Since 2005 web mapping (HAKLAY et al., 2008), i.e., the process

of using maps delivered by Geographic Information System (GIS)s, has evolved rapidly and

gave birth to multitudes of applications – among the most popular, Google Maps, Google Earth,

Mapbox, and Wikimapia.

Earlier applications and services did not provide many points of interest (Point of

Interest (PoI))1; however, with the aid of crowdsourcing and new mapping techniques, websi-

tes and data sources like Google Maps2 and OpenStreetMaps3 provided much more detailed

geographic information (HAKLAY et al., 2008).

In turn, developers took advantage of these to devise Location-Based Services (LBS),

i.e., services that exploit real-time geographical data generated by mobile devices equipped with

Global Positioning System (GPS) receivers to enhance the user experience. Notorious examples

of LBSs are Foursquare, Airbnb, Uber, and Tinder.

Considering the massive diffusion of LBSs in the recent years, users now play a

central role in that they themselves represent points of interest. Indeed, it is now common to

answer questions such as:

“What is the set of the k closest friends with respect to the user’s current location?”

“What is the set of k closest drivers with respect to the user’s current position?”

Considering the current massive diffusion of LBSs, and depending on the specific scenario, it is

clear that computing the above k-NN queries requires dealing with possibly huge amounts of

data to be processed in real-time. To this end, Figure 1 provides two different examples, each

having different types and quantities of PoIs. More specifically, in Figure 1a we have a few blue

circles, each representing a restaurant, and the problem is to find out the k closest restaurants with

respect to the user (depicted by the green circle). Similarly, in Figure 1 we have several orange

circles, each representing the current position of some person, and a green circle, representing
1 Examples of PoIs are schools, banks, restaurants, and so on
2 https://maps.google.com/
3 https://openstreetmap.org/

15

the current position of some user; again, the problem is to find out the k closest persons with

respect to the user. Clearly, the second scenario requires performing many more computations.

(a) Density of restaurants (b) Density of users

Figure 1 – Density of different Points of Interests.

In general, solving a k-NN query requires to find the set of k closest objects with

respect to a given query point; in the context of LBSs, devising an appropriate solution depends

on the characteristics of the underlying space (e.g., a road-network) and on the ability to manage

effectively multitudes of PoIs. Challenges become even harder when having to manage volatile

PoIs (VPoI), i.e., PoIs that can appear and disappear from the system at any time instant. In this

sense, car-sharing applications represent the typical example: registered drivers may become

available or unavailable at any time. For instance, let us suppose that a user needs a ride as soon

as possible: when the user requests a car the system computes a k Nearest Neighbors (kNN)

query, thus returning the k nearest drivers – the first driver that accepts the ride is the one in

charge of providing the service.

All the best approaches to compute kNN queries in such scenarios requires a heavy

preprocessing step of index creation for a given road network. Calculate some distances and other

useful information in advance may be suitable for the application, speeding up the processing

time (SAMET et al., 2008; LEE et al., 2009; ZHONG et al., 2013). If a PoI is deleted or added,

part of the preprocessing should be then performed again (SHEN et al., 2017).

The main contribution of this thesis consists of an algorithm, Bi-k-NN-R, that deals

with the problem of computing k-NN queries over road networks, where the density of VPoIs is

high and the number of objects to retrieve,k, is possibly high. The proposed solution does not

require a preprocessing step, thus resulting attractive when designing location-based applications

or services.

16

The thesis is structured as follows: Chapter 2 presents important concepts and

notions related to this work, as well as well-established algorithms that are leveraged by our

solution. Chapter 3 presents the related works. Chapter 4 introduces Bi-k-NN-R and proves

its correctness. Chapter 5 presents the experimental evaluation, where we employ real-world

maps of different countries and study the effects that the density of VPoIs has on the quality

of results and performance. Finally, Chapter 6 draws the final conclusions and outlines some

possible future lines of research.

1.1 Academic contributions

This thesis is based on the following publications:

1. Magalhães, R. P., Coutinho, G., Macêdo, J., Ferreira, C., Cruz, L., & Nascimento, M.

(2015, November). Graphast: an extensible framework for building applications on time-

dependent networks. In Proceedings of the 23rd SIGSPATIAL International Conference

on Advances in Geographic Information Systems (p. 93). ACM.

2. Magalhães, R. P., Coutinho, G., Macêdo, J., Vidal, V. (2015, Outubro). Processamento de

Grafos em Big Data. Em Tópicos em Gerenciamento de Dados e Informações (p. 8). SBC.

The first article presents the framework developed during the research process – we also report

that the framework is used to conduct the experimental evaluation presented in this work. The

second article presents an overview of the literature of graph-processing, with a particular focus

on the state-of-the-art.

17

2 THEORETICAL FOUNDATION

In this chapter we present the foundations on which our work relies. More specifically,

Section 2.1 introduces some basic terminology, Section 2.2 introduces the bidirectional search,

Section 2.3 covers the Incremental Network Expansion (INE) algorithm, while Section 2.4

introduces the A* search. Finally, Section 2.5 pieces everything together to prepare the ground

for the presentation of the Bi-k-NN-R algorithm.

2.1 Preliminaries

Definition 2.1.1 (Road network) A road network can be defined as a directed weighted graph

G = (N,E) such that N represents the set of nodes of G, where a node may be associated with an

intersection or a geometry point, and E represents the set of edges, where each edge is associated

with a road segment (SHAHABI et al., 2002).

Many functions can be used to calculate the distance between two nodes – some

examples are the Euclidean, Manhattan and Chebyshev distances. In this work we focus on the

network distance.

Definition 2.1.2 (Network Distance) Given two nodes u,v ∈ N, we define the network distance

between u and v, d(u,v) as the length of the shortest path going from u to v.

Some nodes in the graph may represent locations of particular importance: we call

such nodes points of interest (PoIs).

Definition 2.1.3 (Point of Interest) Given a road network G = (N,E), we define a node n ∈ N

to be a Point of Interest (PoI) if it represents an entity that is important in the context of the

application domain considered.

Common examples of PoIs are restaurants, commercial centers, hospitals, and so on.

We finally introduce a particular class of PoIs called Volatile Points of Interest (VPoI).

Definition 2.1.4 (Volatile point of interest) We define a Volatile Point of Interest (VPoI) to be

a PoI that is frequently added or removed from the G.

Examples of VPoIs can be seen in mobile applications (for instance, Uber, Tinder,

etc.), where users enter and leave frequently the network.

18

2.2 Bidirectional Search

In this work we use a variant of the Dijkstra’s algorithm based on a bidirectional

expansion schema (LUBY; RAGDE, 1989). More precisely, given a directed weighted graph

G = (V,E), its reverse Ḡ = (V, Ē) (where (v,u) ∈ E only if (u,v) ∈ E), a source node s ∈V , and

a target node t ∈V , our variant works by computing two different shortest path trees – one rooted

in the source node s in the original graph, and the other one rooted in the target node t in the

reverse graph.

The source s will also be the source node of the forward search, but the target node

t will be the source node of the backward search. The outline of the bidirectional search, as

detailed in (HAKLAY et al., 2008), is presented in the following pseudocode:

1. Let S and T be the empty sets that will contain the visited nodes of the forward and

backward searches, respectively. The potential of a node n, psource(n), represents the

shortest path from a source node to n. In the bidirectional search, psource(n) is +∞ except

for s and t. Let ps(n) and pt(n) be zero.

2. Find the node n0 which has the minimum potential for s in V \S and add n0 to S. If n0 is

in T . In other words, if the node n0 is in both searches, jump to step 7.

3. For all nodes n such that (n0,n) is in E, if ps(n0)+ l(n0,n) is less than ps(n), replace

the path from s to n with the path from s to n0 and the edge (n0,n), and let ps(n0) be

ps(n0)+ l(v0,v).

4. Find the node n0 which has the minimum potential for t in V \T and add n0 to T . If n0 is

in S, then go to step 7.

5. For all nodes n such that (n,n0) is in E, if l(n0,n)+ pt(n0) is less than pt(n), replace

the path from n to t with the edge (n,n0) and the path from n0 to t, and let pt(n) be

l(n,n0)+ pt(n0).

6. Go to step 2.

7. Find the edge (u,n) minimizing ps(u)+ l(u,n)+ pt(n) such that u is in S and n is in T .

The shortest path from s to t consists of the path from s to u and the edge (u,n) and the

path from n to t if ps(u)+ l(u,n)+ pt(n) is less than ps(n0)+ pt(n0), otherwise it consists

of the path from s to n0 and the path from n0 to t.

Figure 2 shows the main difference between the expansion of the unidirectional and

bidirectional searches. Dijkstra’s algorithm grows a searching circle around the source node.

In the bidirectional search, a searching circle also grows from the target node. Thinking of

19

(a) Dijkstra Algorithm (b) Bidirectional Search

Figure 2 – The difference between search trees of different types of searching algorithms (NAN-
NICINI et al., 2012).

Dijkstra’s algorithm as a growing searching circle that represents the nodes expansion, the circle

in Figure 2a has a radius equivalent to the Euclidean distance from the source node s to the

destination node t. The circles in Figure 2b have a radius equal to the Euclidean distance from

s to a meeting node n for the blue circle, and to the Euclidean distance from n to t for the red

circle. The area of the two circles in Figure 2b will be smaller than the area in Figure 2a. The

bidirectional search will be faster up to a factor or two since it will explore fewer nodes than the

Dijkstra’s algorithm (NANNICINI et al., 2012).

2.3 Incremental Euclidean Restriction (IER) and Incremental Network Expansion (INE)

(PAPADIAS et al., 2003) proposes two approaches to solve the problem of computing

k Nearest Neighbors queries over road networks; the two approaches are called, respectively,

Incremental Euclidean Restriction (IER) and Incremental Network Expansion (INE). In the

following we provide a brief overview.

The IER algorithm relies on the assumption that given any two points a and b lying

on the network, their Euclidean distance is always smaller or equal than their network distance.

Consequently, given a query point q the algorithm first retrieves its k closest PoIs by means of

the Euclidean distance – to this end, a R-tree-based data structure is used. Subsequently, the

algorithm determines the farthest PoI among the selected ones, and uses its network distance as

threshold. Finally, all the PoIs that have a network distance smaller or equal than the threshold

are evaluated, since they represent potential nearest neighbors. In the following we provide an

20

example (Figure 3) where the IER algorithm is executed with k = 1.

(a) 1st Euclidean NN (b) 2nd Euclidean NN

Figure 3 – Finding the NN pE2 (PAPADIAS et al., 2003).

Given a query point q, the IER algorithm first determines the q’s nearest neighbor

by means of the Euclidean distance – in the Figure, this happens to be pE . Subsequently, the

algorithm calculates the network distance between q and pE and uses it as a threshold (dEmax in

Figure 3a). Finally, IER considers all the PoIs whose distance is smaller than the threshold and,

if necessary, decreases the threshold accordingly (Figure 3b).

The main problem behind IER is that the Euclidean distance does not represent a

good approximation of the network distance, hence driving the method to produce lots of false

hits.

The INE algorithm tackles these issues by introducing a variant of the Dijkstra’s

algorithm – more specifically, the key idea is to expand a search tree around the query point

q until all the q’s k nearest neighbors are found. Figure 4 shows an example about how this

algorithm works.

Let us consider the query point q and k = 1: the INE algorithm first analyzes the

edge (n1,n2) – in this case no PoI is found and the queue is set to Q =< (n1,3),(n2,5) >.

Subsequently, the algorithm expands the next closest node, n1; since no PoI is found over

(n1,n7), n7 is enqueued in Q =< (n2,5),(n7,12)>. The algorithm goes on with the expansion

until p5 is reached when the edge (n2,n4) is considered: indeed, p5’s network distance, i.e.,

dN(q, p5), provides the threshold that ends the search tree, since the distance between q and n4 is

above dN(q, p5).

21

Figure 4 – INE’s execution example – the query point, q, is depicted as a white circle, network’s
nodes are depicted as black circles, while PoIs are depicted as black squares. In the
above we have that q’s NN is p5 (PAPADIAS et al., 2003)

2.4 A* Search

The A* search is a goal-directed algorithm, similarly to Dijkstra’s algorithm (HART

et al., 1968). The main difference between the two is that the latter exploits the notion of potential

(heuristic) function π(n) to guide the expansion of the search from a node n to the target node t.

More precisely, when a node n gets analyzed, for every neighbor m of n the search

adds π(n) to the value of the distance between the two nodes, d(n,m) – the goal is to prioritize

neighbors that may be closer to the target node (e.g., PoI). We report that when considering

road networks the most commonly used potential function is the Euclidean distance, since it

represents the minimum admissible value for any shortest path between two nodes.

In general, the choice of a potential function affects the accuracy of the results (i.e.,

the estimated distance) in two distinct ways:

• π(n)≤ d(n, t) ∀n ∈V , where d(n, t) is the distance from n to the target node t: in this case,

the potential function never overestimates the exact distance, and the algorithm is capable

22

to find the shortest path from the source node to the target node.

• π(n) = 0 ∀n ∈V : the A* search will perform the same steps of the Dijkstra’s algorithm

since the potential function will not modify the costs of the edges.

2.5 Problem Statement

In this work we consider scenarios where we want to compute k-NN queries over

road networks with Volatile PoIs. As such, we begin by providing the definition of k-NN queries.

Definition 2.5.1 (k Nearest Neighbors (k-NN) Query over road networks) Let G=(V,E) be

a directed graph and P⊆V be a set of points of interest in G. Then, given a query point q and a

timestamp t, returning the set of k nearest neighbors query translates into solving the problem of

returning the following set of points:

R = {r ∈ P | (∀v ∈ {P\R}) , dnet(q,r)≤ dnet(q,v)}.

In other words, computing a k-NN query requires to return the k points of interest

whose distance with q is the lowest among all the PoIs in P. Figure 5 provides a scenario example.

(a) Overall presence of users in the area (b) Insertion and deletion of vPoIs

Figure 5 – Scenario example: dating application that requires to track multitides of users (VPoIs)
over a road network.

Let us suppose that some application needs to track in real-time multitudes of users

over a road network (these are represented by the red circles in Figure 5a), and that users can

appear and disappear from the system at will – more specifically, users may become available

(blue circles) and unavailable (yellow circles) at any time instant (Figure 5b). As such, these

23

users represent volatile PoIs. Let us also suppose that the application should allow an individual

user – in the Figure this is represented by the green circle – to find out their k closest users.

24

3 RELATED WORKS

Computing k Nearest neighbors queries over road networks have been studied for

many years in the literature. For instance, (PAPADIAS et al., 2003) consider computing k-

NN queries over road networks with static objects (PoIs). In the same work, the authors

introduce the INE and IRE algorithms to reduce the overall execution time. With the increasing

popularization of online mapping services, for instance, Google Maps and OpenStreetMap, the

problem of computing k-NN queries started to present novel challenges when considered with

massive graphs, hence demanding more effective strategies. Indeed, the approaches presented in

(PAPADIAS et al., 2003) expand visits in a graph without exploiting information associated with

promising paths: as such, their performance heavily degrades with large graphs.

(LEE et al., 2009) proposes the ROAD framework to solve Location-Dependent

Spatial Queries (LDSQ) on road networks, which incorporate a novel search algorithm for nearest

neighbors queries. The underlying idea is to preprocess the original road network to recursively

partition it into subgraphs called Rnets, and arrange Rnets into a hierarchical structure; this, in

turn, allows to pre-compute the distances of the shortest paths associated with pairs of nodes

belonging to the border of Rnets. Also, ROAD employs an algorithm, similar to Dijkstra, to

incrementally expand and solve k-NN queries. Finally, we report that (ZHONG et al., 2013) show

how ROAD exhibits poor performance when considering large road networks with uniformly

distributed PoIs.

(SAMET et al., 2008) propose SILC, a solution that employs a pre-computation

step that determines the shortest paths between all the nodes of a road network, and stores such

distances into a quadtree-based data structure to reduce the overall storage cost. The authors

argue that spatial networks seldom exhibit none or minor changes over time, thus focusing

the resolution of the problem on changes regarding objects of interest. As such, their solution

separates the problem of calculating shortest path distances between pairs of nodes of the network

from the problem of finding the k nearest neighbors of some query point. We finally report that

(ZHONG et al., 2013) show how SILC is inefficient when considering large amounts of PoIs

distributed over small regions. Finally, SILC has a spatial complexity of O(|V |1.5) for what

concerns the data structures used in its pre-computation step, while newer approaches require

O(|V |log|V |).

Similarly to (LEE et al., 2009), (ZHONG et al., 2013) proposes a hierarchical

data structure, called G-Tree, to compute the nearest neighbors of a query node q. First, the

25

approach employs a pre-processing phase to create a data structure, called G-Tree, by recursively

partitioning a road network G into subgraphs – this is done by means of a multi-level partitioning

algorithm; the approach computes also a distance matrix that contains the distances of the shortest

paths between pairs of nodes that belong to the borders of each subgraph. The approach then

creates an occurrence list referencing the leaves of the G-Tree containing at least one object of

interest or the query point q; occurrence lists are also created for their parent subgraphs until the

root node is reached. The information created during the pre-processing phase is finally used to

speed up the computation of k-NN queries.

All the techniques presented so far do not consider several important challenges

that come with scenarios in which moving objects frequently issue their current location over

time. (SHEN et al., 2017) attempt to tackle this issue by proposing a new data structure, the

V-Tree, that builds on the previously introduced G-Tree. More precisely, a V-Tree represents an

augmented G-Tree in which information about the current status of moving objects, as well as

their relationship with the nodes of the graph, are taken into account. Finally, to compute k-NN

queries the authors propose an algorithm that visits the V-Tree.

In general, all the approaches presented so far use some pre-processing step to speed

up the computation of k-NN queries. (SHEN et al., 2017) represents the only work that explicitly

considers the problem of tracking moving objects over road networks.

26

4 BIDIRECTIONAL k NEAREST NEIGHBORS SEARCH

In this chapter, we present the approach we propose to compute k-NN queries in

network spaces with VPoIs, as per the problem definition provided in Definition 2.5.1. The

chapter is organized as follows: Section 4.1 presents our proposal, the Bi-k-NN-R algorithm.

Section 4.2 proves Bi-k-NN-R’s correctness. Finally, Section 4.3 presents a running example.

4.1 The Bi-k-NN-R Algorithm

In general, existing literature attempt to tackle the problem of computing k-NN

queries over road networks by incorporating a pre-processing phase in their solution; the role

of the pre-processing phase is to create an index whose purpose is to reduce the time spent

to compute queries. In this thesis, we propose the Bidirectional k Nearest Neighbors in Road

Networks (Bi-kNN-R) algorithm. The algorithm combines and leverages the INE, A*, and

bidirectional search algorithms. Overall, our approach is structured in two phases:

• Pruning: the first phase takes in input a query point q and the set of VPoIs over the

road network, and sorts them according to their Euclidean distance from q. VPoIs are

subsequently stored in a priority queue, queueV PoIs, according to their distance. Section

4.1.1 presents this phase.

• Bidirectional search: the second phase takes in input the priority queue returned at the

end of the first phase, as well as the query point q, and conducts k+ 1 searches – one

backward search for each of the top k VPoIs in queueV PoIs targeting q, and one search

that calculate the trees of shortest paths from q. The goal is to find the final q’s k nearest

neighbors according to their network distance. Searches are conducted in parallel, always

prioritizing the search having an expanded distance smaller than the others. The process

goes on until the final set of k nearest VPoIs is determined. Section 4.1.2 illustrates this

phase.

4.1.1 Phase I – Pruning

The goal of this phase is to reduce the number of VPoIs that must be considered in

the second phase. Algorithm 1 presents the related pseudocode. Given a query point q and a set

of VPoIs V P, the algorithm calculates the Euclidean distance between q and all the elements

27

vp ∈V P. VPoIs are subsequently stored in the priority queue queueVPoIs, where the priority is

determined by the Euclidean distance.

Algorithm 1: GETTOPKEUCLIDEAN

Input:
• The query point q.
• The set of VPoIs, V PoI.

Output: The priority queue queueV PoIs, ordered according to the Euclidean distance
between q and the VPoIs in V P.

1 begin
2 queueV PoIs← /0

3 foreach vp ∈V PoI do
4 distance← getEuclideanDistance(q, p)
5 queueV PoIs← enqueue(vp,distance)
6 end

7 return queueV PoIs
8 end

4.1.2 Phase II – Bidirectional search

The goal of the second phase is to determine the set of q’s k closest VPoIs according

to the network distance. To this end, our solution takes advantage of the information available in

queueV PoIs and leverages the bidirectional search and A* algorithms.

The key idea is to initially conduct k+1 searches: one forward search that computes

the tree of shortest paths from q (this is done by means of the Dijkstra’s algorithm), while the

remaining k backward searches originate from the k closest (according to the Euclidean distance)

VPoIs with respect to q and target the query point – we call these VPoIs candidate VPoIs;

backward searches are conducted by means of the A* algorithm. Each time some backward

search meets with the forward search at some node in the graph, the information related to their

meet is used to compute the final network distance between their sources.

As the searches progress, it is possible that VPoIs that are not among the candidate

ones may turn out potentially closer to q than the candidates: each time this happens, the

algorithm creates an additional backward search that is executed in parallel with the other

searches. The phase terminates once the final set of k q’s nearest VPoIs is determined. Algorithm

2 presents the pseudocode.

First, the functions INITFORWARDSEARCHENTRY and INITSEARCHENTRYQUEUE

28

Algorithm 2: BIDIRECTIONAL k NEAREST NEIGHBORS SEARCH

Input:
• The query point q.
• The priority queue created during the first phase, queueV PoIs.

Output: The final set of q’s k nearest neighbors.

1 f orwardSearchEntry← INITFORWARDSEARCHENTRY(q);
2 backwardSearchEntryQueue←

INITBACKWARDSEARCHENTRYQUEUE(q,queueVPoIs);
3 Res← /0;

4 while backwardSearchEntryQueue 6= /0 do
5 (backwardSearchEntryQueue,queueV PoIs)←

CHECKLOWERBOUND(backwardSearchEntryQueue,queueV PoIs);

6 if CHECKMEET(backwardSearchEntryQueue, f orwardSearchEntry) = f alse then
7 (currentBackwardSearch,backwardSearchEntryQueue)←

DEQUEUE(backwardSearchEntryQueue);
8 currentBackwardSearch←

EXECUTESTEPSEARCH(currentBackwardSearch, f orwardSearchEntry);
9 backwardSearchEntryQueue←

ENQUEUE(backwardSearchEntryQueue,currentBackwardSearch);
10 else
11 Res← ENQUEUE(Res,currentBackwardSearch);
12 end
13 end

14 return GETTOPK(Res)

(lines 1 and 2, respectively) create and initialize k+1 searchEntry data structures, i.e., one entry

associated with the forward search, and k entries associated with the backward searches – the

latter has the effect of dequeueing the associated VPoIs from queueV PoIs. All the k searchEntry

data structures related to the backward searches are subsequently stored to a priority queue,

backwardSearchEntryQueue, according to their expanded distance, i.e., the distance between

their source node s and the node of the search boundary that has the lowest distance with

respect to s. Each searchEntry holds information used to manage the associated search (Table

1): more precisely, it holds (i) a priority queue, unsettleNodes, and (ii) a set, settleNodes, that

keep track, respectively, of the boundary of the search and the set of visited nodes – initially,

settleNodes = /0 while unsettleNodes contains the neighbors of s. Finally, each SearchEntry

contains (iii) meetingNode, a reference that is used at a later point to refer the node where a

backward search meets with the forward search, and (iv) parentNodes, a data structure that

holds information about the parents of s. Finally, the algorithm creates an empty priority queue,

Res, (line 3) that is used to subsequently hold the VPoIs considered among the potential nearest

29

SearchEntry
+ unsettleNodes: Queue<LowerBoundDistanceEntry>
+ parentNodes: Map<Long, RouteEntry>
+ settleNodes: Map<Long, Integer>
+ meetingNode: DistanceEntry

Table 1 – Search Entry structure.

neighbors – the priority is determined according to the Network distance.

After the initialization step, the algorithm starts to compute the initial k+1 searches

– this is realized by the while loop at line 4. The loop iterates until backwardSearchEntryQueue

is empty, i.e., all the backward searches have terminated. At each iteration, the algorithm

first checks if the expanded distance of the search at the top of backwardSearchEntryQueue is

greater or equal than the Euclidean distance associated with the top VPoI in queueV PoIs (function

CHECKLOWERBOUND, line 5): if this condition is true, the VPoI represents a potential nearest

neighbor. As such, the VPoI is dequeued from queueV PoIs and a corresponding backward search

is enqueued in backwardSearchEntryQueue.

The CHECKMEET function (line 6) determines if any bidirectional search in

backwardSearchEntryQueue has met the f orwardSearchEntry at some node of the graph:

if this is true, the search is removed from backwardSearchEntryQueue and the associated

VPoI is added to Res. Conversely, the algorithm proceeds to dequeue the top element in

backwardSearchEntryQueue and stores the related SearchEntry in the currentBackwardSearch

variable (line 7). The function EXECUTESTEPSEARCH is then executed (line 9) to compute a

step of the search in currentBackwardSearch.

The phase terminates by returning the top k VPoIs in Res.

4.2 Correctness of the solution

In the following, we prove the correctness of Bi-k-NN-R.

Theorem 4.2.1 (Correctness of the Bi-k-NN-R algorithm) Let R = {vp1, · · · ,vpk} be the set

of k VPoIs returned by the Bi-k-NN-R algorithm. Then, R is indeed the set of the k nearest

neighbors, according to the network distance, with respect to q.

Proof. To demonstrate the above statement, we need to prove that Bi-k-NN-R truly returns the

correct set of q’s k nearest neighbors. Let Rp be the set of VPoIs that Bi-k-NN-R should consider

during its execution, i.e., the set of the candidate VPoIs plus the VPoIs whose Euclidean distance

30

4
6

4

1 1 5

5

5

5

9

10

VPoI1

VPoI2

VPoI3

VPoI4

8

9

q
8

9

8
7

5

4
4

3
4

4

2 2

2

2

3
4

10

6

3
3

3
3

4

Figure 6 – Running example of the execution of the Bi-k-NN-R algorithm.

happens to be less or equal than the network distance between V PoIrmax and q at some point

of the algorithm’s execution, where V PoIrmax represents the farthest nearest neighbor candidate

considering the Euclidean distance from q.

Let us also suppose that Bi-k-NN-R does not consider some V PoIr∗ ∈ Rp during its

execution: this is absurd, since deucl(q,V PoIr∗)≤ dnet(q,V PoIrmax) becomes true at some point

of the execution; this ensures that only the VPoIs having an Euclidean distance greater than

dnet(q,V PoIrmax) are left out by the algorithm.

Once all the shortest paths of the VPoIs in Rp are computed, Bi-k-NN-R picks up the

k VPoIs having the smaller network distance with q: this ensures the correctness of the output. �

4.3 Running Example

This section presents a running example of the execution of the Bi-k-NN-R algorithm.

Figure 6 presents a toy road-network. Here, the query point q is represented by a red circle, while

the four VPoIs are represented by green circles; blue circles represent regular nodes. Finally, let

us suppose that k = 2.

First, Bi-k-NN-R computes the Euclidean distance dE between q and all the VPoIs

in the graph (Figure 7) – in the example, we have that dE(V PoI1) = 10, dE(V PoI2) = 20,

dE(V PoI3) = 30, and dE(V PoI4) = 70.

31

q

VPoI1

VPoI2

VPoI3

VPoI4

30

70
20

10

Figure 7 – Computation of the Euclidean distance between q and the VPoIs.

In phase II, the algorithm starts to compute the forward search (related to q) and

the backward searches (related to the k closest VPoIs (according to the Euclidean distance). In

the example (Figure 7) we see that only V PoI1 and V PoI2 are initially considered since they

are the closest VPoIs according to the Euclidean distance. Once the searches reach the status

depicted in Figure 8, the algorithm finds out that the Euclidean distance of V PoI3 is lower than

the expanded distance of V PoI2, i.e., that also V PoI3 represents a potential nearest neighbor of

q. Consequently, a new backward search having origin in V PoI3 is added to the priority queue

backwardSearchEntryQueue.

As soon as some backward search finishes, the algorithm stores its information to

the priority queue Res. When all the backward searches finish, the algorithm retrieves the top k

searches from Res. Figure 9 shows the final iteration, where the algorithm determines that V PoI1

and V PoI3 are the nearest neighbors of q.

32

4
6

4

1 1 5

5

5

5

10

VPoI1

VPoI2

VPoI3

VPoI4

8
q

30

70

Figure 8 – Example about how the algorithm determines the next search to be expanded.

4
6

4

1 1 5

5

5

5

9

10

VPoI1

VPoI2

VPoI3

VPoI4

8

9

q
8

9

8
7

5

4
4

70

Figure 9 – Algorithm finished and the nearest neighbors are V PoI1 and V PoI2.

33

5 EXPERIMENTAL EVALUATION

In this chapter we present the experimental evaluation. More precisely, Section 5.1

introduces the experimental setup, while Section 5.2 presents the experiments.

5.1 Experimental setup

5.1.1 Dataset

All maps were imported from OpenStreetMap1, a collaborative project that allows to

create and edit maps. Maps were imported by means of the importer module available in the

Graphast framework (MAGALHÃES et al., 2015). Table 2 recap the main characteristics of the

road-networks used in the experiments.

Table 2 – Main characteristics of the used maps.

Monaco
#nodes 777
#edges 1340
File Size 348KB

Seychelles
#nodes 2284
#edges 4822
File Size 786KB

Andorra
#nodes 3496
#edges 7074
File Size 1.5MB

5.1.2 Competitors

We implement our algorithm by means of the Graphast framework (MAGALHÃES

et al., 2015). We also implemented the Voronoi-based approach as the baseline solution for

presented work.

5.1.3 Methodology

The Bi-k-NN-R algorithm is evaluated according to three different parameters:

network size (i.e., the number of nodes in a graph), the number k of nearest neighbors to be

returned, and the density of VPoI density. The latter measure is calculated as the ratio between
1 https://www.openstreetmap.org/

34

the number of VPoIs and the number of nodes in the network. Table 3 provides the ranges

of values for the various parameters. The Voronoi approach was also tested with the same

parameters.

Table 3 – Parameters used in the experimental evaluation.

Network Size 777, 3494
Network Density 1%, 25%, 50%, 75%, 100%
Query Size (k) 1, 2, 4, 8, 16, ..., (Network Size)

For each combination of network size, density, and query size, 100 queries are

executed. For each executed query, the query node q is chosen randomly among the nodes of the

network, as well as all VPoIs. For each combination of parameters, in the results we report the

average execution time yielded by the 100 queries.

Finally, to validate the shortest paths calculated by our algorithm we used the

Graphhopper framework (KARICH; SCHRÖDER, 2014).

5.1.4 Test System

All the experiments were performed on a computer with a macOS Sierra OS, a

2.2GHz Intel Core i7 CPU and 16GB of RAM.

5.1.5 Experimental goals

For this experimental evaluation, the aim is to compare and see how our algorithm

behave when the previously mentioned parameters change. The following list summarizes the

batches of experiments

• Study on the performance of the algorithms when varying the density of volatile PoIs,

• Study on the performance of the algorithms when varying the query size k,

• Evaluation of the network size.

5.2 Experimental evaluation

In this section, we present the experimental evaluation. In general, all the studies

study how some parameter affects the performance of the competitors. As such, the section is

structured as follows: in Section 5.2.1 we focus on the density of volatile PoIs; in Section 5.2.2

35

we focus on the query size; finally, in Section 5.2.3 we focus on of the size of the network.

5.2.1 Study on the performance of the algorithms when varying the density of volatile PoIs

In this batch of experiments, we study how the VPoI density influences the perfor-

mance of the two competitors. The set of values used is {25%,50%,75%,100%}. For each

value, the nodes assuming the role of VPoIs were randomly chosen. Figure 10 shows how the

ratio between the execution time of the Voronoi-based approach and the Bi-k-NN-R algorithm

grows when the density changes in the road network of Monaco.

0 25 50 75 100
0

2

4

6

V PoI density

R
at

io

Figure 10 – Ratio growth between the Voronoi-based approach and the Bi-k-NN-R when the
VPoI density changes.

5.2.2 Study on the performance of the algorithms when varying the query size k

In this section, we study how variations in the query size k affect the performance

of the algorithms. We vary k in the [1, |V P|] range, and use steps that increase according to the

power of two. The other parameters are kept fixed to their respective defaults, i.e., the network

size is equal to 777 nodes and the density is equal to 100%. Finally, we report that the query

point is chosen randomly at each repetition. Figure 11 presents the results.

From the results, we observe that the Voronoi approach outperforms Bi-k-NN-R

when k < 64 .

Analyzing from the user point of view, queries that retrieve less than 64 nearest

36

10
0

10
2.1

1

10
2.4

1

10
2.7

1

10
2.8

9
0

20

40

60

k

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

) Voronoi-Based
Bi-k-NN-R

Figure 11 – Execution time for Monaco (Density = 100%).

neighbors are just too fast to notice any difference between the two algorithms. On the other

hand, queries that retrieve more than 64 nearest neighbors have a noticeable difference for the

final user. For example, the average execution time for k = 256 in the Monaco graph with a

VPoI density of 100% is 4.4 seconds to the Voronoi approach and 0.6 second to the Bi-k-NN-R

algorithm.

1 128 256 512 777
0

5

10

15

k

R
at

io

Ratio

Figure 12 – Curve of the ratio between the two algorithms in Monaco (Density = 100%).

Figure 12 shows the ratio between the results of the Voronoi-based solution and the

Bi-k-NN-R algorithm. From the results, we can see that our algorithm achieves speedups lower

than 1 when k < 64, while in the opposite case it achieves speedups up to 15×.

37

5.2.3 Evaluation of the network size

For this set of experiments, we considered three different sizes networks: Monaco,

Seychelles and Andorra. Setting the density of VPoIs for all graphs in 75% and analyzing the

ratio of the execution time between the Voronoi-based solution and the Bi-k-NN-R algorithm,

Table 4 shows that the ratio decreases when the size of the graph increases.

Table 4 – Network size comparison.

Graph Maximum number of k Ratio
Monaco 582 10.78
Seychelles 1713 4.0
Andorra 2622 1.46

38

6 CONCLUSION

This thesis presents a novel solution, the Bi-k-NN-R algorithm, to solve the problem

of computing kNN queries over road networks with volatile points of interest. The solution

incorporates the A* algorithm into the bidirectional search.

We also conduct an experimental evaluation, where we study the performance of our

approach with several maps of different countries. The experiments show that the Bi-k-NN-R

algorithm is up to one order of magnitude faster than the state-of-the-art, i.e., the Voronoi-based

approach when considering scenarios where the number and density of VPoIs in the map are

high k ≥ 64.

As a future direction of research, we plan to improve its performance for any number

of retrieved VPoIs and density. For example, the new version of the Bi-k-NN-R algorithm could

also use the A* search to direct the forward search to the closest VPoIs in that iteration. Another

possible line of research consists in exploring if some of the techniques used in this work can

be incorporated in the resolution of other types of queries – for instance, incorporating the

bidirectional search technique when computing reverse k-NN queries. Finally, in the future, we

plan to extend the experimental evaluation to include larger graphs (e.g., Germany) and compare

with the V-Tree approach that is, current, the state of the art for the k nearest neighbors query

with moving objects.

39

REFERENCES

HAKLAY, M.; SINGLETON, A.; PARKER, C. Web mapping 2.0: The neogeography of the
geoweb. Geography Compass, Wiley Online Library, v. 2, n. 6, p. 2011–2039, 2008.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, IEEE, v. 4,
n. 2, p. 100–107, 1968.

INFORMATION., C. O. E. I. T. H. O. G.; CHORLEY, R. Handling Geographic Information.
Report... of the Committee... Chairman: Lord Chorley. [S.l.]: HM Stationery Office, 1987.

KARICH, P.; SCHRÖDER, S. Graphhopper. http://www. graphhopper. com, last accessed,
v. 4, n. 2, p. 15, 2014.

LEE, K. C.; LEE, W.-C.; ZHENG, B. Fast object search on road networks. In: ACM.
Proceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. [S.l.], 2009. p. 1018–1029.

LUBY, M.; RAGDE, P. A bidirectional shortest-path algorithm with good average-case behavior.
Algorithmica, Springer, v. 4, n. 1, p. 551–567, 1989.

MAGALHÃES, R. P.; COUTINHO, G.; MACÊDO, J.; FERREIRA, C.; CRUZ, L.;
NASCIMENTO, M. Graphast: an extensible framework for building applications on
time-dependent networks. In: ACM. Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems. [S.l.], 2015. p. 93.

NANNICINI, G.; DELLING, D.; SCHULTES, D.; LIBERTI, L. Bidirectional a* search on
time-dependent road networks. Networks, Wiley Online Library, v. 59, n. 2, p. 240–251, 2012.

PAPADIAS, D.; ZHANG, J.; MAMOULIS, N.; TAO, Y. Query processing in spatial network
databases. In: VLDB ENDOWMENT. Proceedings of the 29th international conference on
Very large data bases-Volume 29. [S.l.], 2003. p. 802–813.

SAMET, H.; SANKARANARAYANAN, J.; ALBORZI, H. Scalable network distance browsing
in spatial databases. In: ACM. Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. [S.l.], 2008. p. 43–54.

SHAHABI, C.; KOLAHDOUZAN, M. R.; SHARIFZADEH, M. A road network embedding
technique for k-nearest neighbor search in moving object databases. In: ACM. Proceedings of
the 10th ACM international symposium on Advances in geographic information systems.
[S.l.], 2002. p. 94–100.

SHEN, B.; ZHAO, Y.; LI, G.; ZHENG, W.; QIN, Y.; YUAN, B.; RAO, Y. V-tree: Efficient knn
search on moving objects with road-network constraints. In: IEEE. Data Engineering (ICDE),
2017 IEEE 33rd International Conference on. [S.l.], 2017. p. 609–620.

ZHONG, R.; LI, G.; TAN, K.-L.; ZHOU, L. G-tree: An efficient index for knn search on
road networks. In: ACM. Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. [S.l.], 2013. p. 39–48.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introduction
	Academic contributions

	Theoretical Foundation
	Preliminaries
	Bidirectional Search
	Incremental Euclidean Restriction (IER) and Incremental Network Expansion (INE)
	A* Search
	Problem Statement

	Related Works
	Bidirectional k Nearest Neighbors search
	The Bi-kNN-R Algorithm
	Phase I – Pruning
	Phase II – Bidirectional search

	Correctness of the solution
	Running Example

	Experimental Evaluation
	Experimental setup
	Dataset
	Competitors
	Methodology
	Test System
	Experimental goals

	Experimental evaluation
	Study on the performance of the algorithms when varying the density of volatile PoIs
	Study on the performance of the algorithms when varying the query size k
	Evaluation of the network size

	Conclusion
	REFERENCES

