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antinociceptive effects on other experimental inflammatory pain models. Thus, we aim to investigate
the strontium ranelate efficacy in reducing the zymosan-induced inflammatory hypernociception in the
TM] of rats by evaluating the TNF-c, IL-13, and hemeoxygenase-1 (HO-1) involvement.

Methods: Wistar rats were treated with strontium ranelate (0.5, 5 or 50 mg/kg, per os) 1 h before zymosan

f;:ﬁl W(:)rrcf)sr;]an dibular ioint injection (iart). Mechanical threshold was assessed by Von Frey test and synovial lavage was collected for
Arthlr)itis ! leukocyte counting and myeloperoxidase measurement, joint tissue and trigeminal ganglion were

Strontium ranelate excised for histopathological analysis (H&E) and TNF-a/IL-1[3 levels dosage (ELISA). Moreover, rats were

TNE-a pre-treated with ZnPP-IX (3mg/kg, sc), a specific HO-1 inhibitor, before strontium ranelate
administration (0.5 mg/kg, per os), and Evans Blue (5mg/kg, iv) was administered to assess plasma
extravasation. Pre-treatment with indomethacin (5 mg/kg, sc) was used as positive control while the
sham group received 0.9% sterile saline (per os and iart).
Results: Strontium ranelate did not reduce leukocyte counting, myeloperoxidase activity, Evans Blue
extravasation, IL-1f levels, and TNF-a/IL-1[3 immunolabeling; but it increased the nociceptive threshold
and reduced TNF-a levels. Additionally, HO-1 inhibition did not change the strontium ranelate effects.
Conclusion: Strontium ranelate may achieve its antinociceptive effects through the reduction of TNF-a
levels in the trigeminal ganglion, but not suppressing IL-1[3 expression nor inducing the HO-1 pathway.
© 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Sp. z o0.0. All rights

reserved.
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produces a severe and erosive synovitis along with inflammatory
pain in animal models of knee arthritis [1-3].

Inflammatory stimuli cause mechanical hypernociception by a
defined sequential release of cytokines within inflamed joints by
many cells such as tumor necrosis factor-a (TNF-a) and interleu-
kin-13 [4]. TNF-a and IL-13 are highly expressed in the joints
affected by TM] disorders. Many studies showed considerable
levels of both in the synovial fluid of patients suffering from this
condition [5,6]. Furthermore, studies demonstrated that heme
oxygenase - 1 (HO-1) exerts an antioxidant role and its induction
would lead to negative feedback for cell activation and production
of inflammatory mediators [7-9].

Strontium ranelate (Sran) {~5-[bis (carboxy-methyl) amino]-2-
carboxy-4-cyano-3-thiophen-acetic acid distrontium salt} is a
compound with two stable strontium atoms and ranelic acid. It
affects the bone turnover and it is an orally active treatment which

decreases the risk of vertebral and hip fractures in osteoporotic
women [10,11]. Although its mechanism of action is not fully
understood, this drug may possess analgesic effects [12]. Recent
studies showed that strontium ranelate had a protective effect in
experimental osteoarthritis [13] and it promoted analgesia in
arthritic rats, which was associated to inhibition of the release of
inflammatory cytokines into inflamed joints [14].

Thus, the present study attempts to investigate the unexplored
anti-nociceptive and anti-inflammatory effects of strontium
ranelate on the zymosan-induced inflammatory hypernociception
in the TM] of rats by evaluating the IL-1 and TNF-« levels after
strontium ranelate treatment. Further, we aim to determine
whether strontium ranelate effects on this experimental model of
arthritis would depend on HO-1 pathway integrity as our previous
results showed that HO-1 pathway inhibition is associated with
increased inflammatory responses [8].
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Fig.1. Experimental design to assess strontium ranelate effects on the TM] arthritis. (a) Evaluation of the anti-inflammatory and antinociceptive effects of strontium ranelate
on the zymosan-induced mechanical allodynia in the rat temporomandibular joint. (b) Investigation of the involvement of heme oxygenase-1 in the anti-inflammatory and
antinociceptive effects of strontium ranelate on the zymosan-induced mechanical allodynia in the rat temporomandibular joint.
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Materials and methods
Animals

Male Wistar rats (n=6 per group; 160-220¢g) were housed in
standard plastic cages, they had access to food and water ad libitum
and were maintained in a temperature-controlled room (23 & 2°C)
with a 12/12-h light-dark cycle. This study was conducted in
accordance with the local Institutional Animal Care and with the
approval of the local ethical committee (registration number 54/
12) and we designed it to reduce animal suffering and the number
of animals.

Zymosan-induced inflammatory hypernociception

To induce the inflammatory hypernociception, rats were
anesthetized with inhaled isoflurane (4%) and received intra-
articular (iart) injection of zymosan (2 mg; 40 L) dissolved in
sterile saline into the left TM] using a 30-gauge needle. Sham
animals received saline solution (per os) before zymosan or saline
solution injections. The TM] skin was shaved, the postero-inferior
border of the zygomatic arch was located, and the needle was
inserted in a position inferior to this point until the needle
contacted the condyle, which was verified by the movement of the
mandible and the puncture of the needle into the joint space was
confirmed by the loss of resistance. Gentle aspiration ruled out
intravascular injection, after which zymosan or saline solution
were injected. As previously shown by our group [1] the zymosan-
induced inflammatory hypernociception is maximal at 4h of
arthritis while polymorphonuclear cell influx peaks after 6 h. Thus,
we used these time points to assess the following parameters:
head withdrawal threshold, total cell counting, and myeloperox-
idase activity.

Mechanical threshold evaluation

Inflammatory hypernociception in the TM] was evaluated by
measuring the threshold of force needed to be applied to the TM]
region until the head withdrawal occurred. The measurements
were performed by a blinded examiner who used a digital device
(Insight, Brazil) that consisted of a rigid filament linked to an
electronic device - automatic Von Frey anesthesiometer, which in
turn measures the response threshold in grams (g) when the
filament is applied to the surface of the tested region [15]. The
facial areas to be tested around the TM] were shaved before the
experimental procedure and the animals were placed in individual
plastic cages 45min before the tests. The animals underwent
conditioning sessions in the testing room for 4 consecutive days.
On day five, the basal force threshold value was recorded three
times before and 4 h after the intra-articular injections of either
zymosan or vehicle. Then, we measured the inflammatory
hypernociception of the zymosan-group animals and treated
controls. The applied mechanical stimuli were innocuous in
control animals.

Pharmacological modulation

Strontium ranelate (PROTOS®™ 2g, Les Laboratoires Servier
Industry, 45 520 Gidy, France) (0.5, 5 or 50 mg/kg, per os) was
administered one hour prior to zymosan injection (iart). Food was
removed 1 h before the treatment in order to avoid any changes in
the pharmacokinetic profile of strontium ranelate (Fig. 1a). Data
validation was achieved by using a positive control group that was
pre-treated with indomethacin (5 mg/kg, sc) 1h before zymosan
injection. Sham group received (per os and iart) 0.9% sterile saline.

To analyze the possible effect of HO-1 pathway on anti-nociceptive
and anti-inflammatory efficacy of strontium ranelate, animals
were pre-treated (sc) with ZnPP IX (3 mg/kg), a specific HO-1
inhibitor, followed by an injection (per os) of strontium ranelate
(0.5mg/kg) 30min later (Fig. 1b). After 1h, intra-articular
zymosan-injection was performed and at the 4th hour, inflamma-
tory hypernociception in the TM] was evaluated.

Synovial Lavage Collection, Cell Counting and Myeloperoxidase
Activity Assessment

Six hours after zymosan injections, the rats were sacrificed
under anesthesia and exsanguinated. The superficial tissues were
dissected and the TM] cavity was washed two times to collect the
synovial fluid by the pumping and aspiration technique using
0.05mL of EDTA (1.77 mg EDTA/1 mL PBS). The total number of
white cells in the synovial lavage was counted using a Neubauer
chamber. MPO activity assay measurement was described by
Bradley et al. and it was conducted on the collected synovial lavage
which was centrifuged at 4500 rpm for 12 min at 4° C. MPO activity
was assayed by measuring the change in absorbance at 450 nm
using o-dianisidine dihydrochloride and 1% hydrogen peroxide.
The results are reported as the MPO units/joint fluid and a unit of
MPO activity was defined as the conversion of a umol of hydrogen
peroxide to water in 1 min at 22°C.

Evans blue extravasation assay

Strontium ranelate (0.5 mg/kg, per os) was administered 1h
prior to zymosan injection. Thirty minutes before euthanasia,
Evans Blue (5mg/kg, iv) was then injected to assess plasma
extravasation. After its excision, the periarticular tissue was
weighed, immersed into formamide solution (1 mL), and placed
into water bath (60°C) overnight. The resulting supernatant was
collected and the absorbance was read at 620nm using a
spectrophotometer. The concentration was determined by com-
parison with a standard curve of Evans blue dye in the extraction
solution and the amount of Evans blue dye (ug) was then
calculated per mL of exudate [16].

Histopathological analysis

The TMJ was excised six hours after the induction of the
inflammatory hypernociception. The specimens were fixed in 10%
neutral buffered formalin for 24 h, demineralized in 10% EDTA for
7 days, embedded in paraffin, and sectioned along the long axis of
the TM]J. Sections of 5 m, including the condyle, the articular
cartilage, the articular disc, the synovial membrane, the peri-
articular tissue, and the skeletal muscle were evaluated under light
microscopy (400x). The specimens were prepared for routine
hematoxylin-eosin (H&E) staining and histological analysis con-
sidered a 0-4 score based on the following parameters: cell influx
into the synovial membrane, cell influx into the connective tissue
and the skeletal muscle of the periarticular tissue, and synovial
membrane thickness.

Immunohistochemistry

Immunohistochemistry for TNF-a and IL-13 was performed
using the streptavidin-biotin (Labeled Streptavidin Biotin — LSAB)
method in formalin-fixed, paraffin-embedded tissue sections
(5mm thickness), mounted on glass slides prepared with an
organosilane-based adhesive (3-aminopropyltriethoxysilane, Sig-
ma Chemical Co®, St Louis, MO, USA). The sections underwent 2
baths in xylol for ten minutes each one. They were after immersed
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three times into alcohol at 100% concentration, and washed in
distilled water.

Antigen recovery was performed with citrate (pH 6.0; 30 min;
99° C). After returning to ambient temperature, the sections were
immersed into a 3% hydrogen peroxide blocking solution for 10 min.
The sections were then incubated overnight (4° C) with a primary
rabbit anti-TNF-a and anti- IL-1B antibody (ABCAM®, England,
UK), at the dilution of 1:200, and washed with PBS solution.

The samples were incubated with the secondary antibody LSAB
Kit for 10min at ambient temperature. Next, incubation was
performed in a chromogen solution prepared with 3,3’ diamino-
benzidine (DAB) (DAKO®, Carpentaria, CA, USA), for 10 min in a
dark chamber. Afterwards, the specimens were washed into
running water and then into distilled water. Counter-staining
was performed with hematoxylin, and afterwards the specimens
were dehydrated in alcohol and diaphanized in xylol. Finally, they
were mounted on glass slides. The negative control sections were
performed excluding the application of the primary antibody.
The parameter of positivity for the immunohistochemical
marking of the antigen in all the specimens included in the
sample consisted of the cells that exhibited brown staining in their
cytoplasm irrespective of the intensity of the immunomarking.
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TNF-« and IL-1p ELISA assays

The TM] tissue and the trigeminal ganglion were excised 6 h
after the zymosan-injection in rats and were homogenized in a
solution of RIPA Lysis Buffer System (Santa Cruz Biotechnology,
USA). The samples were centrifuged at 10000 rpm for 15 min at
4°C.The supernatants were stored at —80C for posterior analysis to
evaluate the protein levels of TNF-ae and IL-1(3 in the TM] tissue and
the trigeminal ganglion. The cytokine levels were quantified by the
following kits: TNF-ac—Rat TNF-alpha/TNFSF1A Quantikine ELISA
Kit (R&D Systems, catalog number RTA0O); and IL-1(3-Rat IL-1
beta/IL-1F2 Quantikine ELISA Kit (R&D Systems, catalog number
DY501). The absorbance was measured at 450 nm. IL-13 and TNF-o
concentrations were expressed as pg/mL.

Statistical analysis

The data are presented as the mean + SEM or medians where
appropriate. Differences between means were compared using
one-way ANOVA followed by the Bonferroni test. The Kruskal-
Wallis test followed by Dunn’s test was used to compare medians.
A value of p <0.05 indicated significant differences.
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Fig. 2. Effects of strontium ranelate on the zymosan-induced TMJ inflammatory hypernociception. (a) Head withdrawal threshold in strontium ranelate-treated rats (b)
Leukocyte counting in strontium ranelate-treated rats (c) MPO activity from TM] synovial lavage in strontium ranelate-treated rats. (d) Plasma extravasation in strontium
ranelate-treated rats. Data are expressed as the mean + SEM of 6 mice for each group; ‘p < 0.05 indicates a significant difference from the sham group, *p < 0.05 indicates a

significant difference from the zymosan group (ANOVA, Bonferroni).
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Results

Effects of strontium ranelate on the zymosan-induced inflammatory
hypernociception (Fig. 2)

The intra-articular injection of zymosan caused inflammatory
hypernociception that is observed as a decrease in the mechanical
threshold of head withdrawal (Fig. 2a). It resulted in a significant
increase in the number of polymorphonuclear cells (Fig. 2b) which
in turn was certified by the increase of MPO activity in the TM]
synovial lavage after zymosan injection (Fig. 2c). These changes
were followed by plasma extravasation into the TM] after 6h
(Fig. 2d). Sham animals showed no significant changes in
withdrawal threshold, polymorphonuclear cells count, and MPO
activity (Fig. 2 a, b, c). Strontium ranelate (0.5, 5 or 50 mg/kg)
injected (per os) 1h prior to zymosan injection significantly
(p <0.05) increased the nociceptive threshold (Fig. 2a). However,
strontium ranelate failed to decrease the number of polymorpho-
nuclear cells (Fig. 2b), MPO activity (Fig. 2c), and Evans blue dye
extravasation in the synovial lavage (Fig. 2d).

Effects of zinc protoporphyrin IX (ZnPP IX) on the strontium ranelate
efficacy (Fig. 3)

To investigate the role of HO-1 activity in the antinociceptive
effect of strontium ranelate, the animals were pre-treated with
ZnPP IX (3 mg/kg; sc), a specific HO-1 inhibitor. The effects of
strontium ranelate (0.5 mg/kg) on the zymosan-induced inflam-
matory hypernociception (Fig. 3) were not changed in the presence
of ZnPP-IX (3 mg/kg).

Joint tissue and trigeminal ganglion TNF-o and IL-18 ELISA assays
(Fig. 4)

The intra-articular injection of zymosan resulted in a significant
increase in TNF-a (Fig. 4a and 4b) and IL-13 (Fig. 4c and d) levels in
both joint tissue and trigeminal ganglion after. Albeit strontium
ranelate treatment was not able to significantly reduce IL-1(3 levels
when compared with the zymosan group (Fig. 4c and 4d),
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Fig. 3. Effect of zinc protoporphyrin IX (ZnPP IX), a specific HO-1 inhibitor, on the
strontium ranelate efficacy on zymosan-induced TM] inflammatory hypernocicep-
tion. Data are expressed as the mean-SEM of 6 rats for each group; 'p <0.05
indicates a significant difference from the sham group,’p <0.05 indicates a
significant difference from the zymosan group (ANOVA, Bonferroni).

strontium ranelate reduced TNF-a levels in both joint tissue and
trigeminal ganglion (Fig. 4a and 4b).

Histopathological analysis (Fig. 5)

Inflammatory cell influx was observed into the synovial
membrane (Fig. 5b) 6h after zymosan-injection compared with
the sham group (Fig. 5a). The predominant cell types were
neutrophils, which characterized acute inflammation. Edema was
also observed in the synovium (Fig. 5b). Table 1 shows the scores
attributed to TM] histopathological analysis and compares the
values between the sham and zymosan groups. A significant
(p <0.05) increase in the inflammatory parameters was observed
in the zymosan group. Table 1 also shows the scores attributed to
the TMJ histopathological analysis and compares the values
between the zymosan and strontium ranelate (0.5, 5 or 50 mg/
kg) groups. Strontium ranelate (0.5, 5 or 50 mg/kg) did not reduce
the inflammatory parameters. Figs. 5¢ and 5d show the TM] of rats
pre-treated with strontium ranelate (0.5 mg/kg, per os).

Immunohistochemical analysis (Fig. 6)

The immunohistochemical analysis of TNF-a and IL-1[3 showed
increased immunolabeling for both TNF-a and IL-1f3 in synovio-
cytes and neutrophlis after zymosan challenge that was charac-
terized by brown-colored cells in the synovial membrane (Fig. 6).
The synovial cells in the synovial membrane of the zymosan and
strontium ranelate-treated animals also showed both TNF-a and
IL-13 expression (Fig. 6). However, in the conjunctive tissue,
strontium ranelate (0.5 mg/kg) treatment reduced TNF-a expres-
sion. The negative control group sections consisted of zymosan-
induced TM] inflammatory hypernociception that were not treated
with anti-TNF-a or anti-IL-1@8 antibody. None of the negative
controls showed TNF-a or IL-18 immunoreactivity.

Discussion

We demonstrated that the effects of strontium ranelate on the
zymosan-induced TM] inflammatory hypernociception in rats may
occur via TNF-a suppression as well as its mechanism of action in
this disease model is IL-13/HO-1 independent. Experimental
animal models of TM] inflammatory hypernociception have been
used to study inflammatory conditions and we performed the first
demonstration of TM] arthritis induced by zymosan, through
which we showed that zymosan caused a time-dependent
leucocyte migration, plasma extravasation, mechanical hyper-
nociception, and neutrophil accumulation [1]. This shows that the
zymosan-induced TM] arthritis is a reproducible experimental
model that can be used to explore the mechanisms underlying TM]
inflammation and potential therapies.

Strontium ranelate was originally designed to treat osteoporo-
sis [17-21], but it may exert effects on osteoarthritis and it has led
to positive outcomes in a phase IlI clinical study [13,22]. Albeit the
mechanism of action of strontium ranelate is not fully understood,
it appears to stimulate the differentiation of osteoblasts by eliciting
the calcium sensor receptor, inhibiting osteoclast differentiation
by inhibiting RANKL production, and increasing osteoprotegerin
(OPG) activity [23,24].

In addition, patients treated with strontium ranelate had a
greater reduction in the total score and pain subscore compared
with the placebo group [25]. Since osteoporosis and osteoarthritis
are associated with a variety of symptoms, including pain, it could
be hypothesized that strontium ranelate may also be effective in
reducing the temporomandibular joint inflammatory hypernoci-
ception. Our results demonstrated that the intra-articular zymosan
injection diminished the mechanical nociceptive threshold, which
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the sham group (ANOVA, Bonferroni).

in turn was increased by the strontium ranelate treatment.
However, the inflammatory parameters — cell influx and MPO
activity — were not reduced after strontium ranelate treatment.
Evans blue extravasation measurement into the synovial lavage did
not change following the drug administration. The TM] histopath-
ological analysis after zymosan injection showed inflammatory
cell influx into the synovial membrane, periarticular tissue, and
musculoskeletal tissue associated with thickness of synovial
membrane, being the drug treatment unable to reverse these
findings to a normal status. Likewise, it was demonstrated that
strontium ranelate treatment had no particular effect on synovitis
in dogs [13].

Studies correlate the HO-1 activity with oxidative damage
inhibition and reduction in proinflammatory cytokines production
[7].1t was reported that this enzyme had antinociceptive effects on
acetic acid-evoked nociception and positive outcomes after
induction of HO-1 in a zymosan-induced air pouch inflammation
model [8,26]. Considering these data, we evaluated the involve-
ment of HO-1 in the strontium ranelate antinociceptive effects and
we observed that they were not changed after the pre-treatment
with ZnPP-IX, suggesting that HO-1 activity is not involved in its
antinociceptive effects.

Many cell types produce cytokines in response to a variety of
stimuli, which is a link between cellular injury and the develop-
ment of local signs and symptoms of inflammation. There is a
cascade of release of cytokines linking injuries and the release of

nociceptive mediators in rats: a concept that allows us to
understand why the inhibition of cytokines causes analgesia
[27]. Many studies have demonstrated the contribution of TNF-a to
inflammatory hyperalgesia and the clinical success of the anti-TNF-
a therapy of rheumatoid arthritis also exemplifies this concept
[4,28]. During the inflammatory response, TNF-a is the first
released cytokine and IL-1f3 is a potent pleiotropic mediator
involved in inflammatory responses [29]. Hence, TNF-a and IL-13
are recognized contributors to the pathogenesis of joint diseases,
leading to synovial fibroblast hyperplasia and to the destruction of
the extracellular matrix [30,31].

In the present study, the zymosan injection resulted in a
significant increase in both TNF-a and IL-1f3 levels so that our
findings are in accordance with other ones, suggesting that TNF-a
is as driving cytokine of the nociceptive process. TNF-a plays a
crucial role in the development of inflammatory hyperalgesia
during the inflammatory response in rats, being highly expressed
in the synovial fluid of patients with TM] disorders [5-7].
Additionally, we also demonstrated that treatment with strontium
ranelate reduced TNF-« levels in both joint tissue and trigeminal
ganglion.

TNF-a is the first cytokine released during an inflammatory
response, triggering the release of IL-13 known to activate
inflammatory and degradative pathways in synovial cells. Studies
suggested high IL-13 levels in the synovial fluid of patients
suffering from TM] disorders [5,29,32]. Nunes et al. [14]
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Fig. 5. Photomicrographs of the histopathological analysis of temporomandibular joints (TM]). (a) sham group TM] (100x); (b) zymosan 2 mg group (400x) showing
inflammatory cell influx in the synovial membrane; (c) and (d) TM] of rats pretreated (per os) with strontium ranelate (0.5 mg/kg) and injected (i.art.) with zymosan 2 mg (100
and 400 x, respectively). C: condyle; AC: articular cartilage; AD: articular disc; SM: synovial membrane; PAT: periarticular tissue. Hematoxylin and eosin (H&E) staining.

Table 1
Histopathological analysis by hematoxylin-eosin staining (HE) of the temporomandibular joint of rats after intra-articular zymosan injection and strontium ranelate (Sran)
treatment.
Groups Cell influx in the Periarticular cell influx Cell influx in the
synovial membrane Muscular tissue
Sham 1(0-1) 1(0-2) 0 (0-0)
Zy 4 (2-4) 3(3-4) 2.5 (2-4)
Indo 2(1-2)" 2(1-2)" 1.5 (1-2)
Sran 0.5 3.5 (2-4) 3.5 (3-4) 3.5 (2-4)
Sran 5 3(2-3) 3.5 (3-4) 3.5 (2-4)
Sran 50 3 (2-4) 4 (2-4) 4(2-4)

p<0.05 versus Sham; ~p < 0.05 versus Zymosan (Kruskal-Wallis, Dunn’s).

investigated the anti-inflammatory activity of strontium ranelate
in the articular incapacitation test, in the paw-pressure test, and in
the anterior cruciate ligament transection model. Unlike our
protocol, the animals received strontium ranelate at higher doses:
30-300mg/kg per os. They find that strontium ranelate dose-
dependently inhibited joint pain in both types of arthritis models,
but it did not alter cell influx which is a similar result obtained
here. Contrary to them, our findings suggest that the strontium
ranelate treatment is not capable of reducing IL-13 levels
compared with the zymosan group.

This might be related to the differences in the design performed
by Nunes et al. [14]. The strontium ranelate dose administered in
their protocol is far higher than the one we used, which could
potentiate the analgesic effects of this drug. Other essential
difference is the experimental model of diseases that could

culminate in distinct results as different disease models may imply
in contrasting pathogenesis mechanisms, thus, leading to different
results. As pointed out by Nunes et al. [ 14], naloxone abolished the
strontium ranelate analgesic effect which is valuable information
on the strontium ranelate unspecific mechanism of action.
Furthermore, the immunohistochemical analysis showed in-
creased TNF-a and IL-13 immunolabeling in the synovial cells
after the intra-articular zymosan injection. Albeit strontium
ranelate slightly reduced the TNF-o immunolabeling in the
conjunctive tissue, it was not able to diminish the IL-1f3
immunolabeling one. Contrary to this result, in the synovial
membrane of dogs undergoing sectioning of the anterior cruciate
ligament, the genetic expression of IL-1[3 was significantly reduced
by strontium ranelate treatment at the doses of 50 or 75 mg/kg per
day for 16 weeks [13]. A possible explanation for these
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Fig. 6. Representative immunohistochemistry of TM] tissues for IL-1 (upper panel), and TNF-a (lower panel) from rats at the sixth hour after zymosan injection. The upper
panel shows increased IL-1f3 immunolabeling of synoviocytes and neutrophlis after zymosan-challenge (400x ). The bottom panel shows increased TNF-a immunolabeling of
synoviocytes and neutrophlis after zymosan-challenge (400x). Control: negative control (sections in the absence of anti-IL-13 and anti-TNF-a antibody); Sham:
unchallenged rats; Zymosan: zymosan-challenged rats receiving 0.9% saline solution; Sran 0.5: zymosan-challenged rats receiving strontium ranelate (0.5 mg/kg).

contradictory results could be the different animal model of
disease along with the adopted posology, leading to contradictory
results from what we obtained.

Therefore, albeit the mechanisms of action through which
strontium ranelate exerts antinociceptive effects remain relatively
elusive, this study provides novel information on its effects on the
zymosan-induced TM] inflammatory hypernociception as stron-
tium ranelate primarily suppressed TNF-a levels and reduced the
nociceptive threshold. The inflammatory stimuli or tissue injuries
stimulate the release of characteristic cytokine cascades, which
ultimately trigger the release of final mediators responsible for
inflammatory pain. These final mediators, such as prostanoids or
sympathetic amines, act directly on the nociceptors to cause
hypernociception, which results from the lowering of threshold
due to modulation of specific voltage-dependent sodium channels.

As reported here, strontium ranelate could decrease hyper-
nociception thresholds by reducing TNF-« levels in the periartic-
ular tissues and trigeminal ganglion. Given the importance of these
structures to the temporomandibular joint pain onset and
progression, we suggest that TNF-a functions as a target point
for strontium ranelate. This suggests that strontium ranelate might
be a potential candidate for the treatment of TM] pain through
TNF-a inhibition and more studies of longer duration are
necessary to validate the use of strontium ranelate in the pain
management.
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