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Abstract

Using a self-devised numerical approach, we developed a powerful tool to investigate vortex

properties and interactions in mean-field theories for superconductors and superfluids,

based on fixing the vortex phase distribution in the energy minimization process. The

method was applied to (i) multi-component Bose-Einstein condensates (BECs) and (ii)

superconductors with single- or multi-component superconducting condensates. In these

systems, vortex-vortex interaction and other key vortex features are analytically described

only in specific regimes, that do not account for a large part of vortex behavior observed

experimentally. In multi-component BECs, for example, the vortex-vortex interaction is

only known for inter-vortex distances much greater than the healing length, i.e. far from

the vortex core. Under our approach, by assuming multi-vortex structures, within Gross-

Pitaevskii theory, we report the vortex-vortex interaction in the full range of distances,

capturing the mechanism behind unusual vortex conformations previously reported in

literature, such as bound clusters with two or three vortices. Usually, these clusters

emerge from a competition between intra- and inter-component vortex interaction, but we

demonstrate they can also emerge from the phase-frustration between the components.

In superconductors, the description of vortex-vortex interaction is usually restricted to

bulk or very thin films, and most of the key vortex features, such as the spatial magnetic

field and current density profiles, are known only in the limit of London theory, i.e. for

coherence length ξ negligible as compared to magnetic field penetration depth λ and other

system dimensions. The parametric range outside this limit is actually relevant to many

materials. We fill that gap by applying our method to Ginzburg-Landau theory. The

vortex structure is investigated for single- and two-gap bulk superconductors, outside the

London regime. This enables us to extend analytical expressions describing the condensate

and magnetic profiles around the vortex available in literature by numerical calculations

and suitable fitting functions. We expand our approach to account for films with finite

thickness, to connect our findings to both bulk and Pearl’s description by adjusting the

sample thickness. This also allowed us to describe how vortex configurations change for

samples with intermediate thickness, where we observe the effective magnetic response

of the superconductor changing between the textbook type-1 and type-2 behaviors, in

a nontrivial manner, governed by the non-monotonic vortex interaction. As a result of

a detailed analysis, we propose new critical parameters to define the crossover between

different regimes and establish their relation with the superconducting critical fields.

Keywords: Vortex matter. Vortex-vortex interaction. Superconductors. Bose-Einstein

condensates. Superfluids.



Resumo

Usando uma abordagem numérica própria, desenvolvemos uma ferramenta poderosa

para investigar propriedades e interações de vórtices na teoria do campo médio para

supercondutores e superfluidos, baseada na fixação da distribuição de fase dos vórtices

no processo de minimização da energia. O método foi aplicado a (i) condensados de

Bose-Einstein (BECs) com múltiplas componentes e (ii) supercondutores com um ou mais

condensados que super-conduzem. Nesses sistemas, a interação vórtice-vórtice e outras

características chaves são analiticamente descritas apenas em regimes específicos, que não

descrevem grande parte do comportamento dos vórtices observados experimentalmente.

Em condensados de Bose-Einstein com múltiplas componentes, por exemplo, a interação

vórtice-vórtice é conhecida apenas para distâncias muito maiores que o comprimento de

coerência, i.e. longe do centro do vórtice. Sob nossa abordagem, assumindo estruturas com

múltiplos vórtices, dentro da teoria de Gross-Pitaevskii, nós reportamos a interação entre

vórtices em todo o domínio de distâncias, capturando o mecanismo por trás de conformações

de vórtices não usuais previamente reportadas na literatura, como aglomerados ligados com

dois ou três vórtices. Sabe-se que, geralmente, esses aglomerados emergem da competição

entre interações de vórtices intra-componentes com interações inter-componentes, no

entanto, nós demonstramos que essas também podem emergir da frustração de fase entre

as componentes.

Em supercondutores, a descrição da interação entre vórtices é geralmente restrita a

materiais na forma bulk ou em filmes finos, e a maior parte das características chaves dos

vórtices, tais como os perfis espaciais do campo magnético e da densidade de corrente, são

conhecidos apenas no limite da teoria de London, i.e. para comprimentos de coerência ξ

insignificantes quando comparados ao comprimento de penetração λ e outras dimensões

do sistema. O alcance paramétrico fora desse limite é na verdade relevante para muitos

materiais. Nós preenchemos essa lacuna ao aplicar nosso método à teoria de Ginzburg-

Landau. A estrutura dos vórtices é investigada para supercondutores do tipo bulk com

uma e duas componentes fora do regime de London. Isso nos permitiu estender expressões

analíticas da literatura que descreviam os perfis do condensado e do campo magnético

em torno do vórtice através de cálculos numéricos e realização de fittings com funções

apropriadas. Expandimos nossa abordagem para filmes com espessura finita, a fim de

conectar nossos achados a ambas as descrições do tipo bulk e de Pearl, através de ajustes

da espessura da amostra. Isso também nos permitiu descrever como as configurações de

vórtices mudam para amostras com espessura intermediária, onde observamos a resposta

magnética efetiva alterando entre os comportamentos de tipo-1 e tipo-2 de forma não

trivial, levando a uma interação não monotônica entre vórtices. Como resultado de uma

análise detalhada, nós propomos novos parâmetros críticos para definir a transição entre



os diferentes regimes supercondutores e estabelecer suas relações com os campos críticos

do supercondutor usual.

Palavras-chave: Matéria de vórtice. Interação vórtice-vórtice. Supercondutores. Conden-

sados de Bose-Einstein. Superfluidos.
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1 Introduction

In what follows, we present a brief introduction to both Bose-Einstein con-

densation and superconductivity theories in order to bridge the gap between fundamental

concepts and the current research presented in this thesis. Unfortunately, summarizing

over a hundred years of research in just a single chapter within the didactic purpose of

teaching is certainly not a conceivable task and lies outside the scope of this thesis. There-

fore, only topics directly related to the research presented in this thesis will be carefully

reviewed in this thesis. In this chapter, we shall make a brief return to the past, in order

to provide an historical perspective of the progress made in both fields. Starting from their

prediction/discovery, some of relevant achievements which contributed substantially to the

condensed state description are briefly revisited. Whenever necessary, a deeper review may

be presented in subsequent chapters.

1.1 Introduction to Bose-Einstein Condensates

In the classical formalism, it is well known that the state of matter depends

on a balance between temperature and the van der Waals force between the atoms. This

combination aptly describes the transition between gaseous, liquid and solid states when the

system is cooled down (CALLEN, 1960). However, under certain circumstances, if the atoms

are cooled far down enough to extremely low temperatures, they undergo a very unusual

transformation, suggesting a non-classical treatment (PATHRIA, 1995; HUANG, 1963;

LANDAU; LIFSHITZ; PITAEVSKII, 1980). In fact, under these conditions, the de Broglie

wave length λ associated with atoms becomes very large compared to the avarage inter-

atom distances, making the quantum properties of atoms important (KETTERLE, 2007).

Ruled by the laws of quantum mechanics, where the dynamical motion is governed by the

Schrödinger equation, the Heisenberg uncertainity principle does not allow keeping track of

particle’s trajectory and, unlike in classical mechanics, particles sharing the same intrinsic

properties shall be regarded as indistinguishable objects (SAKURAI; NAPOLITANO,

2011; COHEN-TANNOUDJI; DIU; LALOE, 1991). Satyendra Nath Bose was the first to

consider the effects of particle indistinguishability in quantum mechanics (BOSE, 1924). In

fact, under the assumption of indistinguishability of photons, he made a clean derivation of

Planck’s formula of black body radiation. Thereafter, expanding upon the Bose suggestion

for a gas of non-interacting massive particles, Einstein pointed out that there should be a

critical temperature Tc under which a large fraction of system particles collapses in the

system ground state, forming a condensate which can be described by a single and uniform

wavefunction (EINSTEIN, 1925). In this regime, particles lose their identity and matter

stops behaving as a set of independent particles, leading inherent quantum effects of
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matter to be exhibited in large scales (KETTERLE, 2007; PETHICK; SMITH, 2002). This

collective behavior paved the way towards the discovery of a new state of matter usually

masked by thermal motion of system particles, named Bose-Einstein condensation (BEC)

in honor of its discoverers Satyendra Nath Bose and Albert Einstein. In this new state, the

gas behaves as a superfluid, (FETTER, 2009a; DALFOVO et al., 1999) experiencing no

flow resistance and, therefore, it no longer obeys the classical hydrodynamics description.

1.1.1 Thermal wavelength and quantum effects

Quantum effects arising from the wave nature of particles manifest themselves

macroscopically only under very restricted conditions of density and temperature. To a

first approximation, the critical temperature Tc might be derived as the emerging point of

an identity crisis, where the spatial extension of wave packets associated with gas atoms

becomes of the order of the inter-atom distances. According to the de Broglie conjecture

(BROGLIE, 1924), the spatial extension of these wave-packets is governed by the de

Broglie wavelength 〈λ〉 = h/〈p〉, where 〈p〉 is the average momentum of particles in the

gas. The wavelength is, therefore, closely related to the thermal motion of the system. At

equilibrium, the energy equipartition law holds,

〈p〉2

2m
=

3
2
kBT, (1.1)

and the spatial extension of wave packets can be defined in terms of the gas temperature

T , leading to the thermal wavelength definition λT = h/
√

3mkT . Because the average

inter-particle distance is of the order of n1/3, where n is the gas density, the quantum

regime emerge when the phase space density, D ≡ nλ3
T , approaches unity. A sketch of

the phase transition is illustrated in Fig. 1, where quantum and classical regimes are

respectively represented by the blue and red backgrounds.

n

T

Classical

     Regime nλ
3 =1

Quantum

     Regime

Figure 1 – Classical and quantum regimes in the temperature-density plane. The rough
dividing line is nλ3

T = 1, where λT is the thermal wavelength and n stands for
the density of particles.

Under usual conditions, the wave packet extension is extremely small compared

to interatomic distances and the quantum mechanical distinction of particles is irrelevant.
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In this regime, particles in a gas might be treated as billiard balls, obeying the Maxwell-

Boltzman statistic (HUANG, 1963). On the other hand, whenever the temperature of

a non-interacting gas becomes low enough and the density high enough such that the

phase space density approaches unity, the quantum indistiguishability of system particles

becomes relevant and must be taken into account in the theoretical description. Usually,

the indistinguishability is expressed in quantum theory by imposing symmetry constraints

on the state functions and on the observables, bringing consequences which deeply affect

the physical nature of the system (LEINAAS; MYRHEIM, 1977). These constraints

emerge from the invariance of measurable physical quantities with respect to a particle

permutation. From the statistical point of view, the main difference between both regimes

is the way that we count the number of different system states. Indeed, in the classical

formalism, each identical system particle is treated as distinguishable, which implies that

the permuting between any two identical particles of the system leads to different states.

On the other hand, in the quantum mechanics description, this is no longer valid and a

symmetry (anti-symmetry) between the N ! permutations of bosonic (fermionic) particles

appears for the same physical state. This redundancy, called exchange degeneracy, violates

the state vector unicity for each physical state and then must be eliminated from the

theoretical formalism by limiting the state vector space to a subspace that is invariant

under the permutation of labels (SAKURAI; NAPOLITANO, 2011).

1.1.2 Ideal Bose gas

To statistically address elementary effects derived from the indistinguishability

of quantum particles, Einstein firstly expanded upon Bose’s suggestion to a gas of N

non-interacting quantum particles confined in a volume V and sharing a certain amount of

energy E. Within their approach, named Bose-Einstein statistics, they predicted the novel

state of matter by making no reference at all to the interaction between gas atoms. It is

worth to mention that, at the time of Bose-Einstein condensation prediction, in 1924, some

of the basic concepts of quantum mechanics were not yet discovered. For instance, strange

as it may seem, the uncertainty principle of Heisenberg was derived only three years later.

Actually, as pointed out in Ref. (DELBRUCK, 1980), the Bose-Einstein statistics may

have arisen from an elementary “mistake" of Bose, which was subsequently reproduced

by Einstein. The deep meaning of Bose’s assumptions could only be understood after the

working out of quantum mechanics (DELBRUCK, 1980). In this section, the statistical

prediction of Bose-Einstein condensation is briefly reviewed, but without going into further

details on the cumbersome historical path.

1.1.2.1 Bose-Einstein distribution

Rather than describing individual particle behavior, the statistical description

accounts for the collective effects of entire system, by means of distribution of particles
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along the system energy spectrum under macro-state constraints (N, V,E). From the

principle of equal a priori probabilities, the distribution with the largest number of micro-

states is more likely to occur and therefore should represent the system ground state

(REIF, 1965). This requires the knowledge of the number of micro-states Ω(N, V,E), for

each possible distribution. In the thermodynamic limit, where fluctuations around the

average are negligible, the system total energy spectrum should be regarded as a continuum

(PATHRIA, 1995; HUANG, 1963; REIF, 1965; ANNETT, 2004). Therefore, in order to

to count accessible states, the energy spectrum might be divided into a large number of

energy cells, indexed by k = 1, 2, 3.... Let ǫk denote the average energy of cell k and gk the

number of states inside it. Each cell contain a large, but still arbitrary, number of states,

which means that gk >> 1. Thus, the problem consists in finding how many different

ways one can group n1 particles in the first cell, n2 particles in the second cell and so on,

following the macro-state constraints of number of particles and total energy,
∑

k

nk = N, (1.2a)

∑

k

ǫknk = E. (1.2b)

Because exchanging of particles in different cells does not produce a new

different state, the number of distinct microstates associated with each cell, w(k), may be

calculated separately, as the number of ways to accommodate nk particles among gk levels.

The total number of microstates, Ω(N, V,E), associated with the set {nk}, results from

Ω(N, V,E) =
∏

k

w(k), (1.3)

where, for bosons, w(k) can be achieved by counting the number of arrangements between

nk balls and gk − 1 walls separating energy cells, which is given by

w(k) =
(nk + gk − 1)!
nk!(gk − 1)!

. (1.4)

In the thermal equilibrium, the particles might distribute themselves such

that the entropy S is maximized. Thus, the distribution of bosons may be obtained by

maximizing the function S = kBlnΩ, where kB is the Boltzmann constant. Through

straightforward calculations, the result first obtained by Bose and Einstein is found

nk =
gk

e(ǫk−µ)/kBT − 1
, (1.5)

where µ is the chemical potential and T the temperature (HUANG, 1963; PATHRIA,

1995; ANNETT, 2004). Roughly, the Bose-Einstein distribution is the most random way to

distribute particles among system’s micro-states under the constraints of fixed number of

particles N and total energy E (INGUSCIO et al., 1999). The average number of particles

occupying any single quantum state is given by the ratio ni/gi,

〈nk〉 =
1

e(ǫk−µ)/kBT − 1
. (1.6)
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1.1.2.2 BEC in an ideal gas

Unlike the classical ideal gas, or the Fermi-Dirac gas, the Bose-Einstein gas

presents a very peculiar regime. In fact, as illustrated in Fig. 2, if the chemical potential µ

becomes equal to the energy level ǫk, the average number of particles of the k-th states

becomes infinitely high. The condensation of particles in a single state, however, can only

occur for the lowest energy level, otherwise the occupation number of some states would

assume negative values, which has no physical meaning. This macroscopic occupation of

the lower energy state is reflected in the abrupt changes on thermodynamical properties,

signed by a change of behavior in specific heat that closely resembles the λ-point transition

observed in liquid helium (FEYNMAN, 1957).

-3 -2 -1 0 1 2 3

 (ε
i
-µ)/k

B
T

0.0

1.0

2.0

<
n

i>

 B. E.

M. B.

F. D.

Figure 2 – The mean occupation number 〈nǫ〉 of a single-particle energy state ǫ in a sys-
tem of non-interacting particles for Fermions (red line), Bosons (blue line) and
classical particles (yellow line). Acronyms F.D., M.B. and B.E. respectively ac-
count for the Fermi-Dirac, Maxwell-Boltzmann and Bose-Einstein distributions
governing particle’s statistics.

Making the chemical potential approach the ground state energy is probably the

simplest way to observe the origin of Bose-Einstein condensation phenomenon. However, it

is by no means something rigorous, since it provides no clue on the fraction of condensed

particles or even the critical temperature required to define this new state of matter. The

comprehensiveness of phase transition’s thresholds lies somehow on the total number of

particles constraint and emerges as a pathology derived from the inability to count for

ground-state particles in thermodynamic limit. In the thermodynamic limit, the sum over

discrete quantum states of Eq. (1.2a) might be replaced by an integral over the continuum

energy spectrum and the density of particles may be written

n =
∫ ∞

0

g(ǫ)
e(ǫ−µ)/kBT − 1

dǫ, (1.7)

where g(ǫ) stands for the density of states per unit of volume and accounts for the number

of available states inside an energy element dǫ per unit of volume. For spin-0 particles, the
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density of states becomes

g(ǫ) =
m3/2

√
2π2h̄3 ǫ

1/2. (1.8)

Here, it is worth mentioning that, symmetry properties of particles are not included in the

density of states. In fact, their quantum nature is completely contained on Bose-Einstein

distribution, that governs allocation of particles among micro-states. The outcome of Eq.

(1.7) enables writing down the particle density as a function of the temperature T and the

gas fugacity, defined by z = exp(µ/kBT ),

n

(

2πh̄2

mkBT

)3/2

= g3/2(eµ/kBT ), or nλ3 = g3/2(z). (1.9)

where λ is the redefined de Broglie wavelength and the function g3/2(z) stands for the sum

series

g3/2(z) =
∞
∑

n=1

zα

α3/2
. (1.10)
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Figure 3 – Function g3/2 as a function of the gas fugacity represented by the blue line.
The yellow line show that g3/2 can be approximated by a linear function for
low values of z.

In Fig. 3, the g3/2(z) sum is plotted as a function of the gas fugacity and is

represented by the blue solid line. For low values of z, which corresponds to the high

temperature and low density limits, the g3/2 function presents an almost linear behavior

and can be well approximated by g3/2 ≈ z, as illustrated by the linear function designed

by the yellow dashed line. As a consequence, in the classical regime, the chemical potential

may be well described by

µ ≈ −3
2
kBT ln

(

mkBT

2πh̄2n2/3

)

. (1.11)

In contrast, the other limit is bounded by the convergence of the sum of (Eq. 1.10) ,

which diverges when the fugacity becomes greater than unity. Exactly at z = 1, the

function g3/2 presents a diverging derivative and assumes the value ζ(3/2) = 2.612, which
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is represented by the interception of the red dashed-dotted lines in Fig 3. Although the

right side of the Eq. (1.9) presents this bounding condition, the left side does not and

thus, the limiting condition nλ3 ≤ ζ(3/2) is not physical. This comes from the fact that

the density of states g(ǫ) assigns zero weight to the ground state energy level and thus, n

should be taken as the density of particles with non-zero momentum. Therefore, as the

temperature (density) is decreased (increased) the left side of the former equation becomes

higher, until it reaches its maximum value, g3/2(1) = 2.612. At this point, the chemical

potential energy equates to the ground-state energy of an ideal gas, characterized by zero

momentum ~k = 0. Beyond this limit, any excess of particles goes into the ground-state

energy states macroscopically occupying it and therefore, giving rise to the BEC phase.

The critical temperature follows from Eq. (1.9) for z = 1, where the right-hand side of Eq.

(1.9) becomes equal to ζ(3/2) = 2.612,

Tc =
2πh̄2

kBm

(

n

2.612

)2/3

. (1.12)

Below the critical temperature Tc, the condensed fraction of particles can be achieved by

the particle conservation principle, where the total number of particles N is a sum between

all particles with zero momentum Nk=0 and those with non-zero momentum, which obeys

expression Nk 6=0 = V g3/2/λ
3. The condensed fraction of particles of the system naturally

follows from conservation of the total number of particles,

n0

n
=
[

1 − g3/2

λ3

]

=

[

1 −
(

T

Tc

)3/2
]

, (1.13)

where n0 and n accounts for the condensed and uncondensed densities. A sketch of density-

temperature phase diagram is shown in Fig. 4, where the blue background represents the

condensed state and the red one stands for the gas phase. The origin of the Bose-Einstein

T
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Figure 4 – Phase diagram of Bose-Einstein condensation in the density-temperature plane.

phase transition lies in the particles nature and therefore, it is driven only by its statistics
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and not by their inter-atomic interactions. Actually, one should expect interactions to

spoil such phase transition, since under required temperature and density conditions, any

set of particles would condense into solid state. Fortunately, current set of experiments

has proved that such phase transition is robust enough so that, even in the presence

of interactions and external confining potentials a gas can Bose condense (BURNETT

MARK EDWARDS, 2008). However, a price has to be paid: in order to avoid the solid

state of matter, the condensed phase must be achieved under the metastable phase of a

very dilute gas, limiting, therefore, the visualization lifetime.

1.1.3 Path towards BECs

Because this was a theory without an experimental example at the time of

its prediction, the BEC phenomenon did not received the proper and deserved attention.

In fact, most physicists of that time, including Albert Einstein, took such idea as a

mathematical pathology of non- interacting systems, which has nothing to do with the

physical reality and, therefore, could never be realized experimentally. Moreover, except

for 4He, at required densities and temperatures, all materials resides in its solid state and

atoms are not delocalized as required by BEC theory. The closest evidence of Bose-Einstein

condensation in nature was in the superfluid phase of helium isotope 4He (for T ≤ 2.17),

found only later in 1937, which London tried to explain as a condensation phenomenon

distorted by the presence of strong interactions between helium atoms (LONDON, 1938).

London’s assumption was supported by a similar λ- point transition of the specific heat at

an acceptable close critical temperature of 3.13 K, strengthening the link between BEC

and superfluidity, (FEYNMAN, 1957; KAPITSZA, 1938; ALLEN, 1938). Further, more

precisely in 1957, the BEC assumption was, again, taken as the main mechanism behind

the microscopic explanation of superconductivity phenomena provided by Bardeen, Cooper

and Schrieffer theory (BCS theory) (BARDEEN; COOPER; SCHRIEFFER, 1957). In

BCS model, mediated by electron-phonon interactions, a weak effective attraction between

electrons inside the superconducting material correlates electrons in pairs leading to the

instability of Fermi sea. Because these pairs behave as bosonic particles, they could also

Bose condense, exhibiting an electronic superfluidity (superconductivity) when subjected

to sufficiently low temperatures. Subsequently, the BCS mechanism was used to explain

the superfluid phase of the fermionic isotope of helium, 3He, which, despite presenting

a half-integer spin, could also undergo through a Bose-Einstein phase transition by the

same pairing mechanism (OSHEROFF; RICHARDSON; LEE, 1972; OSHEROFF et al.,

1972; LEGGETT, 1972).

Despite many evidences of condensation provided by nature, the rush towards

BEC experimental achievement only attained notorious dimension in beginning of 80’s,

after development of laser and evaporative cooling techniques (CHU, 1998; PHILLIPS,

1998; COHEN-TANNOUDJI, 1998; KETTERLE; DRUTEN, 1996). Firstly, the average
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Figure 5 – Observation of Bose-Einstein condensation by means of absorption imaging
technique, where the absorption is illustrated as a function two spatial directions
for temperatures above, just below and well below the critical temperature,
respectively illustrated in pictures from the left- to right-hand side. Figure
retrieved from Ref. (DURFEE; KETTERLE, 1998).

kinetic energy of atoms is reduced by shining counter-propagating laser beams. In a

complex process, the scattered light carries more energy than the absorbed one, cooling

the gas to a few hundred of microkelvins. The gas is then deposited in a magnetic trap

and then subjected to the evaporative cooling process, where only the most energetic

particles are allowed to escape from the local minimum magnetic trap, making remaining

atoms cooler on average. These cooling techniques allowed to reach temperatures of the

order of few µK and therefore, could pay the price of diluteness requirements, necessary

to avoid solidification before BEC could be visualized. In fact, within the advent of these

cooling schemes, BEC phase transition was independently obtained in metastable states

of a very dilute gas of Rubidium 87Rb(ANDERSON et al., 1995) and Sodium 23Na(DAVIS

et al., 1995). At the ground state, condensed particles might exhibit no net velocity when

barriers of trapping potential are removed, whereas non-condensed particles might spread

out, maximizing the entropy. Indeed, measurements of velocity distribution provided the

first evidence of Bose-Einstein condensation. In Fig. 5, the macroscopic occupation of the

ground-state in a dilute gas of Sodium 23Na was obtained by means of absorption imaging

technique (DURFEE; KETTERLE, 1998). This outstanding experimental achievement

pushed further theoretical and experimental researches in the field. As a consequence, BEC

was one of the most investigated topics of the end of the past century and still remains as a

field of high-interest nowadays (KETTERLE, 2002). Meanwhile, subsequent condensation

experiments for different types of atoms were realized (BRADLEY et al., 1995; BRADLEY;

SACKETT; HULET, 1997; CORNISH et al., 2000; ROBERT et al., 2001; TAKASU et

al., 2003; WEBER et al., 2003; GRIESMAIER et al., 2005; STELLMER et al., 2009;

ESCOBAR et al., 2009; STELLMER et al., 2010; MICKELSON et al., 2010; KRAFT et
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al., 2009; LU et al., 2011), comprising different inter-particle interaction schemes, such as

the contact, dipolar (LU et al., 2011) and even the spin-orbit coupling interactions(LIN;

JIMENEZ-GARCIA; SPIELMAN, 2011). In fact, differently from the ideal Bose gas, alkali

atoms in a magnetic trap do interact with each other, repelling (attracting) at short (large)

interatomic distances. Usually, due to the gas diluteness, interactions are well described by

a Lennard-Jones potential and theoretically modeled by a short-range contact interaction

(HUANG; YANG, 1957; LEE; HUANG; YANG, 1957), governed by the s-wave scattering

length a (PETHICK; SMITH, 2002),

Vi(~r − ~r′) =
4πh̄2a

m
δ(~r − ~r′). (1.14)

The interaction strength can be experimentally tunned by means of an externally applied

magnetic field, in a Feshbach resonance process, where quasibound molecular states share

the same energy as an unbound state and thus couples resonantly to the free state of the

colliding atoms (INOUYE et al., 1998; CHIN et al., 2010). The closer this molecular level

lies with respect to the energy of two free atoms, the stronger the interaction between them.

In fact, this resonance mechanism has strong influence on elastic collisions and because

incoming atoms and quasibound states have different spin arrangements, the magnetic

field becomes a powerful tool in order to control such interactions.

Recently, 52Cr atoms with high magnetic moment were also observed to exhibit

a different type of interaction that could no longer be described only by the simple

hard-wall interacting model. Despite still sharing the short-range contact interaction,

these atoms also interact with each other via the long-range and anisotropic dipole-dipole

interaction (LU et al., 2011), whose properties strongly contrast with those observed in

standard condensed gases described exclusively by contact interaction (SABARI et al.,

2015). Indeed, theses gases exhibit a completely different collective excitation spectrum,

with the presence of rotons quasiparticles, also observed in liquid helium superfluid phase.

Due to the anisotropic character of the dipolar interaction, different patterns of equilibrium

states and new quantum phases were also observed. Actually, although not depicted in the

original theory, particle-particle interactions play an important role in BEC theory. Not

surprisingly, experimental realization of different interacting regimes, such as the dipolar

and the recently engineered spin-orbit coupling (LIN; JIMENEZ-GARCIA; SPIELMAN,

2011), where particle’s momentum couples with their magnetic moment, had opened up

subbranches in ultra-cold atoms physics. Moreover, the recent improvement in trapping

techniques allowed different confinement geometries, such as the effectively two-dimensional

and one-dimension confining potentials where the condensate dynamic is suppressed in

one or in two directions due to a strong confinement. Usually, external potentials are

well described by an anisotropic parabolic potential, however, it is worth to mention that

different geometries, such as the toroidal confinement, have already been experimentally

realized. In special, the development of optical trapping techniques, which has no effect
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on the hyperfine spin states structure, have allowed the realization of multi-component

BECs, where the macroscopic occupation occur in multiple spin substates (MYATT et al.,

1997; HALL et al., 1998). Further, multi-component BEC was also observed to occur in

mixtures of different isotopes of the same(PAPP; PINO; WIEMAN, 2008) and different

atomic species (FERRARI et al., 2002; MODUGNO et al., 2002; THALHAMMER et al.,

2008). As we shall see further in this thesis, multi-component BECs have a much richer

physics and are far from being just a trivial extension of the single-component case.

1.1.4 Theoretical description of an interacting Bose gas

The collective behavior of particles lies in the heart of condensation phenomenon.

In fact, for inherent quantum effects to be observed in a macroscopic scale, a large number

(usually between 104 − 106 atoms) of particles is required (ANNETT, 2004). Therefore,

a complete description of physical properties of realistic BECs would then require the

solution of, at least, thousands coupled Schrödinger’s equations, which is numerically

challeging nowadays. Then we must be satisfied with only an approximate understanding of

how the Schrödinger equation could lead to solutions that would indicate a similar behavior

to those observed experimentally. Fortunately, an approximate understanding might be

achieved under the assumption of mean-field theory for weakly interacting systems, which

yields to a Schrödinger-like equation, known as the Gross-Pitaevskii equation.

1.1.4.1 Second quantization and the many-body Hamiltonian

In the single-particle wave mechanics, the quantum mechanical formalism is

usually developed over the eigenstates of position x̂ and momentum p̂ operators. However,

expanding up the formalism in order to account for many-body quantum objects leads to

an ambiguity of eigenstates as a result of the exchanging degeneracy. Because it violates

the state vector unicity, restrictions might be imposed on vector space, limiting it to a

subspace that is invariant under the permutation of labels (SAKURAI; NAPOLITANO,

2011). At the end, the resulting basis might not contain individual information of each

system particle, since, even in theory, this information is lost during the time evolution of

the system (MERZBACHER, 1998).

One of the most elegant ways to avoid ambiguity on many-body quantum

space proceeds by means of the introduction of a linear operator ψ̂(~r), which resembles

the annihilation operator â commonly used in quantum harmonic oscillator formalism

(ROBERTSON, 1973). The quantum field ψ depends on vector position ~r and obeys, as

the only requirement, the symmetry properties of particles, which is done by imposing the

following (anti-) commutation relation that ψ̂(~r) and its hermitian conjugate ψ̂†(~r) must

obey,

ψ̂(~r)ψ̂(~r′) ∓ ψ̂(~r′)ψ̂(~r) = 0, (1.15a)
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ψ̂†(~r)ψ̂†(~r′) ∓ ψ̂†(~r′)ψ̂†(~r) = 0, (1.15b)

ψ̂(~r)ψ̂†(~r′) ∓ ψ̂†(~r′)ψ̂(~r) = δ(~r − ~r′), (1.15c)

where δ(~r − ~r′) is the Dirac delta function and the upper (lower) signal stands for bosonic

(fermionic) particles. Operators ψ̂(~r) and ψ̂†(~r) provide a convenient and useful basis for

representing many-particle states and many-body operators. In fact, it leads to a less

superfluous notation than symmetrized and anti-symmetrized wave functions. The analogy

between ψ̂ and â becomes clear by defining an hermitian operator

N̂ ≡
∫

d3rψ̂†(~r)ψ̂(~r), (1.16)

where, the employment of ψ̂ must guarantee the existence of at least one non-trivial

eigenstate |φ〉, with a corresponding eigenvalue nφ defined by N̂ |φ〉 = nφ|φ〉. Through the

application of commutation relations [N, ψ̂(r)] = −ψ̂(~r) and [N, ψ̂†(r)] = ψ̂†(~r) on state

|φ〉, one may derive

N̂ψ̂(~r)|φ〉 = (nφ − 1) ψ̂(~r)|φ〉, (1.17a)

N̂ψ̂†(~r)|φ〉 = (nφ + 1) ψ̂†(~r)|φ〉. (1.17b)

States ψ̂(~r)|φ〉 and ψ̂†(~r)|φ〉 are, therefore, identically zero or new nontrivial eigenstates

of operator N̂ with eigenvalues nφ − 1 and nφ + 1 respectively. The expected value of

operator N̂ in the state |φ〉 establish a lower bound for eigenvalues, nφ ≥ 0, and then,

from the existence of an arbitrary nontrivial eigenstate |φ〉 of N , a nontrivial eigenstate

|0〉 of N̂ must exist, satisfying the equation

ψ̂(~r)|0〉 = 0. (1.18)

The decreasing sequence of eigenvalues has integral spacing and must have zero as the lower

bound value, making non-negative integers the only accessible numbers: nφ = 0, 1, 2, 3....

In turn, the creation operator ψ†(~r) may be used to remove almost completely the need of

state vector, allowing to retain only the special state |0〉. In fact, any other eigenstate of N̂

can be achieved by successive applications of ψ† on |0〉: |0〉, ψ̂†(~r1)|0〉, ψ̂†(~r2)ψ̂†(~r1)|0〉, etc.

This enable to use operators rather than vector states to describe the physics, which is

advantageous since operators ψ† and ψ carry the symmetry properties of particles. In fact,

one could anticipate that operator N̂ must have the same properties of the number operator

widely used for harmonic oscillators and therefore conclude that nφ actually represents

the number of particles in the state φ. However, in order to preserve the mathematical

rigor, these statements shall arise naturally in the present formalism. Before expressing

the Hamiltonian and state vectors in terms of eigenstates of N̂ , it is noteworthy that
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eigenfunctions are highly degenerate, indeed, states ψ†(~r)|0〉 and ψ†(~r′)|0〉 are, for example,

associated with the same eigenvalue n = 1, even if ~r 6= ~r′. The orthogonality of these states

is satisfied under two circumstances:(i) If their corresponding eigenvalue of N are different

or (ii) if their corresponding eigenvalues are the same, but their arguments ~r1, ~r2, ..., ~rn are

not all the same. The last condition can be expressed mathematically, in the two-particle

context, as

〈0|ψ̂(~r1)ψ̂(~r2)...ψ̂†(~r′
2)ψ̂

†(~r′
1)|0〉 = δ(~r1 − ~r′

1)δ(~r2 − ~r′
2) ± δ(~r1 − ~r′

2)δ(~r2 − ~r′
1). (1.19)

Except for state |0〉, eigenstates of N̂ can not be normalized, since Dirac delta function

diverge at the origin. Still, following a similar procedure of free-particles in the standard

wave mechanics formalism, normalized states might be achieved. For instance, through an

educated guess, the single-particle non-normalized state may be written as

|Ψ1〉 = ψ̂†(~r1)|0〉. (1.20)

Actually, this is exactly the same process of adding one quantum of energy in the case of

a harmonic oscillator. However, as we shall see further, it now means an addition of one

particle in space at position ~r1. The norm, 〈Ψ1|Ψ1〉 is not well defined, since

〈Ψ′
1|Ψ1〉 = 〈0|ψ̂(~r′

1)ψ̂
†(~r1)|0〉 =

= δ(~r1 − ~r′
1),

(1.21)

diverges when Ψ = Ψ′. However, with the experience provided by the standard formalism, a

general single-particle state may be contructed as a linear spatial superposition of position

eigenfunctions

|Ψ1〉 =
∫

d3r1Ψ(~r1)ψ̂†(~r1)|0〉, (1.22)

where Ψ(~r1) is a weight factor. Substituing last equation in the time-dependent Schrödinger

equation, it turns out that Ψ(~r1) is actually the wave function of a free particle in the

wave conjecture of quantum mechanics. Similarly, the N-particle state may be defined as

|Ψn〉 =
1√
n!

∫

d3r1...
∫

d3rnΨ(~r1, ..., ~rn)ψ̂†(~rn)...ψ̂†(~r1)|0〉. (1.23)

The meaning of such assumption becomes clear when the state |ΨN〉 is subjected

to the application of operator N̂ . In fact, recalling the commutation that [N̂ , ψ̂†(~r)] = ψ̂†(~r),

or similarly N̂ψ̂†(~r) = ψ̂†(~r)(N̂ + 1), it is possible to derive from direct application of N̂

on |Ψn〉 the eigenvalue equation

N̂ |Ψn〉 = n|Ψn〉, (1.24)

This matches with the previous definition of |Ψn〉 as a proper n-particle state, since it is

indeed an eigenstate of N̂ with eigenvalue n and strengthens the interpretation of operator
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N̂ as a number operator, where the special state |0〉 plays the role of a vacuum state,

characterized by the absence of particles. It also turns out, through direct application

on |Ψn〉, that operators ψ̂†(~r) and ψ̂(~r) may create a particle or destroy a partice at ~r,

leading to a new eigenstate of N̂ and justifying the educated guess for the n-particle state.

Because the application of ψ̂(~r) and ψ̂†(~r) to any linear combitation of eigenstates of N̂

always generate a vector inside this same subspace, the closure condition is satisfied and

subspace vectors |0〉, ψ̂†(~r1)|0〉, ψ̂†(~r2)ψ̂†(~r1)|0〉, ..., ψ̂†(~rN )...ψ̂†(~r2)ψ̂†(~r1)|0〉 indeed form a

basis in Fock space.

By repeated applications of the annihilation operator in the state |Ψn〉 and

using the normalization rule for the vacuum state, it is possible to derive the state in the

wavefunction formalism Ψn(~r1, ..., ~r2) in terms of Fock state |Ψn〉

Ψn(~r1, ..., ~rn) =
1√
n!

〈0|ψ̂(~r1)...ψ̂(~rn)|Ψn〉, (1.25)

which carries permutation (anti-)symmetry in (anti-)commutation relations obeyed by

creation and annihilation operators. Despite we are avoiding to work with Ψn(~r1, ..., ~rn), due

to the ambiguity of the wavefunction description, the former equation allows one to prove

the equivalence between the field operator and wavefunction formalisms (ROBERTSON,

1973). This means that the transformation that takes a Hamiltonian from wavefunction

space to the Fock space preserves the physical result. In a many particle system, where

particles are subjected to an external potential Ve(~r) and interact with each other through

the potential Vi(~r, ~r′), the Fock-space Hamiltonian may be defined by (ROBERTSON,

1973)

Ĥ =
∫

d3rψ̂†(~r)

[

− h̄2

2m
∇2 + Ve(~r)

]

ψ̂(~r) +
1
2

∫

d3rd3r′ψ̂†(~r)ψ̂†(~r′)Vi(~r, ~r′)ψ̂(~r)ψ̂(~r′).

(1.26)

The first and second terms account for all single-particle processes that might

occur and operate on a many particle state. In fact, both operators represent a sum over

all spatially avaiable process in which a particles is removed from position ~r, submitted to

the single-particle matrix element and then replaced at position ~r. In turn, the last term

represents the energy associated with the atom-atom interaction, where the coefficient 1/2

avoid double counting pairwise interactions. The equivalence between theses operators and

operators in wave mechanics formalism may be derived from their direct application on

the n-particle state |Ψn〉. As previously pointed out, for evaporatively cooled gases, like

in mixtures of rubidium and caesium, the de Broglie wavelength of atoms is very large

compared with length scales of interatomic forces and are mainly described by two-body

scattering, which, under low-energy condition, may be modeled by contact interactions,

Vi = gδ(~r − ~r′), where g is proportional to the s-wave scattering length as and is defined

by

g =
4πh̄2

m
a. (1.27)
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In fact, this is a good approach for the most cases of BECs and it is of the main interest

for the work presented in this thesis.

1.1.4.2 Bogoliubov approach

Because, the condensation occur in a single state of momentum space, it is

advantageous to perform a change of basis and write operators ψ̂(~r) and ψ̂†(~r) in terms of

operators which annihilate and create particles in momentum space, designed by â~k and

â†
~k

(LANCASTER; BLUNDELL; BLUNDELL, 2014). The basis change can be performed

under a Fourier transform of momentum space operators, which leads to

ψ̂(~r) =
1√
V

∑

~k

ei~k·~ra~k, (1.28)

ψ̂†(~r) =
1√
V

∑

~k

e−i~k·~ra†
~k
. (1.29)

After straightfoward calculations, the ~k-space hamiltonian describing Bose

particles in absence of external potential and interacting with each other through contact

mechanism becomes,

Ĥ =
∑

p

p̂2

2m
â†

pâp +
g

2V

∑

kpq

â†
p−qâ

†
k+qâkâp, (1.30)

where the sum goes over all momentum states. Despite it provides a general way to discuss

many-body systems in a much more simplified picture than in usual wave mechanics

formalism, solving Eq. (1.30) for macroscopic samples is still an impossible task and then

requires subsequent approximations. In fact, diagonalizing the interaction contribution

term is still very tricky when a large amount of particles is considered. To overcome

difficulties provided by the Hamiltonian interaction term, Bogoliubov proposed to explore

the consequences of the macroscopic occupation of the ground state. Instead of using exact

properties obeyed by â† and â when applied to the ground-state |Ω〉,

â~k=0|ΩN0
〉 =

√

N0|ΩN0−1〉, (1.31)

â†
~k=0

|ΩN0
〉 =

√

N0 + 1|ΩN0+1〉. (1.32)

Bogoliubov replaced creation and annihilation operators by numbers, by assuming that

adding or removing a particle from the macroscopically occupied ground-state does not

promote significant changes in the resulting eigenstate (BOGOLIUBOV, 1947). This ap-

proximation is valid when (i) the temperature is much less than the transition temperature

for the onset of condensation, and (ii) when the condensate is sufficiently weakly-interacting.

In fact, for strongly interacting systems, like the liquid 4He in its superfluid phase, the
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condensate fraction represents only 8% of the total number of particles (PENROSE;

ONSAGER, 1956), which explains nonconformities between experimental observations and

the present microscopic theory. Therefore, under sufficiently low temperatures, it would

be reasonable to state that

â~k=0|ΩN0
〉 =

√

N0|ΩN0
〉, (1.33)

â†
~k=0

|ΩN0
〉 =

√

N0|ΩN0
〉. (1.34)

The error associated with Bogoliubov’s prescription is of the order of the commutator

[â0, â
†
0] = 1 and is much smaller than the avarage values of creation and annihilation

in macroscopically occupied ground-state and therefore, may be neglected. Within this

approach, a spontaneous global symmetry break occur. In fact, the U(1) symmetry is lost

and consequently the particle number is not conserved. However, the hamiltonian could

be reduced to its simplest form

Ĥ ≈ gN2
0

2V
+
∑

p6=0

(

p2

2m
+

2gN0

V

)

â†
pâp +

gN0

2V

∑

p6=0

(

â†
pâ

†
−p + âpâ−p

)

=
1
2
gn2 +

∑

p6=0

(

p2

2m
+ ng

)

â†
pâp +

1
2

∑

p6=0

ng
(

â†
pâ

†
−p + âpâ−p

)

.

(1.35)

Here, n = N/V stands for the total density of particles and the total number of particles

N was taken as the sum of ground state particles N0 and all the rest occupying excited

states,

N = N0 +
∑

p6=0

â†
pâp. (1.36)

The Hamiltonian of Eq. (1.35) may be exactly diagonalized by means of a canonical trans-

formation, where creation and annihilation particle operators are replaced by Bogoliubov

quasiparticle operators α̂†
k and α̂k, defined by

α̂k = fkâk + gka
†
−k and α̂†

−k = gkâk + fka
†
−k. (1.37)

where fk and gk are real functions and must be such that preserve commutation relations

originally obeyed by creation and annihilation operators, [α̂k, α̂
†
−k] = f 2

k − g2
k = 1. α̂k and

α̂†
−k actually account for exchanging particles with the system ground-state and provide,

under an unitary transformation, a proper basis where the Hamiltonian may be exactly

diagonalized. The ground-state of such approximated Hamiltonian enabled Bogoliubov to

describe the energy dispersion of quasi-particle excitations for weakly interacting set of

bosonic particles, named Bogolons. The energy dispersion may be expressed as following

ǫ(~p) =

√

√

√

√

p2

2m

(

p2

2m
+ 2ng

)

, (1.38)

where, for small values of momentum ~p, resembles the linear phonon dispersion spectrum,

ǫ(~p) ≈
√

ng/m|~p|. While failing in explaining excitations in superfluid phase of 4He,
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since it does not account for roton excitations expected for larger values of momentum ~p

(FEYNMAN, 1998), the Bogoliubov approach still enabled to understand the superfluidity

effects as well as its requirements from dispersion energy spectrum. Moreover, it is also

rigorous enough to account for most part of BECs realized experimentally.

1.1.4.3 Landau superfluidity criterion

The linear phonon dispersion ǫ(~p) ≈
√

ng/m||~p|| behavior derived in last section

is crucial for the appearance of superfluidity phenomena in Bose-Einstein condensates

(LANDAU, 1941). In fact, because a quantum system does not exchange energy con-

tinuously, excitations must be created in order to absorb any dissipated energy. The

circumstances under which theses excitations become energetically favorable to emerge can

be derived from energetic analysis of an amount of superfluid mass M flowing with velocity

~v. The momentum and the energy carried out by the fluid is therefore, respectively given

by ~P = M~v and E = Mv2/2. However, if an excitation with momentum ~p and energy

ǫ(~p) is created, the updated quantities are ~P ′ = ~p+M~v and E ′ = ǫ(~p) + ~p · ~v +Mv2/2.

Whether or not excitations become energetically propitious depends basically on the energy

difference sign. In fact, excited states must have lower energy than the unexcited one,

since there is no external energy source. Mathematically, it means that E ′ − E < 0, or

ǫ(~p) + ~p · ~v < 0. (1.39)

In order to be satisfied, this condition requires that excitations must oppose to the fluid

flow, ~p · v < 0, and then, the excited phase condition may be expressed as ||~v|| > ǫ(~p)/||~p||.
It is therefore natural to define a critical velocity, vc = (ǫ(~p)/||~p||)min, under which no

excitation may be created and the fluid remains frictionless. Within Bogoliubov dispersion,

a gas of weakly interacting bosons must remain in its superfluid phase only if

vc ≤
√

ng/m. (1.40)

Notice that, interaction plays a crucial role in superfluidity phenomena. In fact, despite

the macroscopic occupation of zero momentum state, the ideal Bose gas, defined by

g = 0, does not behave as a superfluid even at the absolute zero temperature, since the

critical velocity vanishes for g = 0. Actually, despite the close relation in nature, Bose-

Einstein condensation and superfluidity are distinct phenomena. Indeed, BEC accounts

for macroscopic occupation of the ground-state, whereas superfluidity may be considered

a pathology of the explicit form of excitation energy spectrum, which does not allow

dissipations below a certain critical velocity. In fact, Landau explained superfluidity of

liquid helium isotope 4He without making any reference to BEC phenomenon. Therefore,

despite both phenomena are closely related, there is no cause-effect relation between them.
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1.1.4.4 Vortex states

Viscous free fluids respond to rotations in quite different ways when compared

to conventional fluids (YARMCHUK; GORDON; PACKARD, 1979; MADISON et al.,

2000a; ABO-SHAEER et al., 2001). In fact, a normal fluid in a rotating vessel rotates by

means of friction between the vessel and fluid particles. The friction enables transferring

the angular momentum to fluid, which rotates as a rigid body with velocity vs = Ωr.

However, because superfluids experience no friction, it should not be possible, at least

below vc, to set it into rotation. In order to glimpse the irrotational superfluid property,

it is handy to take a similar, but distinct way of following the Bogoliubov approach, by

replacing the field operator ψ̂ by a wave function ψ. This is supported by splitting the

ground-state from the sum in Eq. (1.28) ,

ψ̂(~r) = ψ(~r) + δψ̂(~r) =
√
n0e

iθ +
1√
V

∑

~k 6=0

e
~k·~ra~k, (1.41)

and then, neglecting lower order terms involving the fluctuation operator δψ̂ by means of

mean field theory, that assigns a null contribution to these fluctuations δψ(~r). Under this

condition, the function ψ(~r) =
√

n(~r)eiθ(~r) works as the system order parameter and shall

vanish for T > Tc. Here, the modulus
√

n(~r) determines the condensate density, whereas

the phase θ(~r) may account for the superfluid dynamical properties. In fact, from the

quantum mechanical expression for the current density, the superfluid velocity field is

given by

~vs =
h̄

m
~∇θ, (1.42)

characterizing an irrotational potential flow, since ~∇ × ~v = 0 should always hold, indepen-

dent of the specific form of the phase θ. This can also be expressed in terms of the null

circulation Γ,

Γ =
∮

C
~vs · d~l =

∫

~∇ × ~vs · d~S = 0 (1.43)

which holds as long as the surface enclosed by the path C is singly connected. Under

stability velocity criteria, superfluids indeed do not experience rotations like normal fluid.

However, out of stability conditions, as first pointed out by Onsager (ONSAGER, 1949;

FEYNMAN, 1955), excitations in the form of quantized vortex might appear if the rotating

vessel exceeds the critical velocity, fulfilling the quantization rule requirements of rotating

quantum particles which must assign an integer number of wavelengths over the circular

path. In this regime, particles described by a macroscopic wavefunction do not satisfy

Eq. (1.43), which means that enclosed surfaces are not singly connected anymore and

superfluidity is locally broken down by the emergence of singular regions. The difference

between a rotating normal fluid and superfluid is illustrated in the sketch presented in Fig.

6
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SuperfluidNormal fluid

Figure 6 – Sketch of a normal fluid and a superfluid in a rotating vessel. Whereas normal
fluids experiment a rigid-body rotation, superfluids rotate by forming arrays of
quantized vortices.

Any rotational motion of superfluid is sustained by the emergence of quantized

vortices, characterized by zero density at its center and circulation Γ described by

Γ =
∮

C
~vs · d~l =

∫

~∇ × ~vs · d~S =
h̄

m
2πl. (1.44)

Quantized vortices are an unambiguous signature of superfluidity and therefore

are crucial for its understanding. Due to its superfluid nature, Bose-Einstein condensates

also respond to rotation by forming quantized vortices (MADISON et al., 2000a; ABO-

SHAEER et al., 2001; MATTHEWS et al., 1999a). In general, these vortices have much

larger dimensions than those observed in liquid helium and in superconductors, making

Bose-Einstein condensates one of the best environments for their observation. There are

several ways to set a condensate in a rotating frame. For instance, as long as the critical

angular velocity is reached, angular momentum might be transfered to BEC by stiring it

with laser beams or even by inducing slightly asymmetric external confining potentials

into rotation. Within required conditions, multiple vortices may emerge absorbing the

provided rotating energy. In the simplest single-component case, where particles interact

via contact interaction, vortex might interact with each other repulsively, forming a

triangular Abrikosov vortex lattice. The study of vortex states in weakly interacting bosons

was one of the main motivations for the Gross-Pitaevskii equation development(GROSS,

1961; GROSS, 1963; PITAEVSKII, 1961). Since then, many efforts have been made to

understand the vortex dynamics in different types of condensates. Among them, it is worth

mentioning the asymptotic calculation of vortex-vortex interaction (ETO et al., 2011;

AFTALION; MASON; WEI, 2012), as well as the achievement of Abrikosov and exotic

vortex lattices in single and multi-component condensates(ABO-SHAEER et al., 2001;

MATTHEWS et al., 1999a; KASAMATSU; TSUBOTA; UEDA, 2004; KUOPANPORTTI;

HUHTAMÄKI; MÖTTÖNEN, 2012; ETO; NITTA, 2012; CIPRIANI; NITTA, 2013; LIU

et al., 2014), respectively. The understanding of vortex lattices conformation represents
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the main motivation for the work presented in this thesis and therefore shall be revisited

carefully in the subsequent chapter.

1.1.4.5 The Gross-Pitaevskii equation

Under the mean-field theory approach, the Bogoliubov approximation enabled to

investigate the dynamics of condensed system of particles. In fact, following the Heisenberg

picture, where the dynamics of the operator ψ̂(~r, t) = exp(iĤt/h̄)ψ̂(~r) exp(−iĤt/h̄) is

governed by the equation

ih̄
∂

∂t
ψ̂(~r, t) =

[

ψ̂(~r, t), Ĥ
]

, (1.45)

and then, using the many-body Hamiltonian in Eq. (1.26), one may obtain the equation

governing the time evolution of the annihilation operator.

ih̄
∂

∂t
ψ̂(~r, t) =

[

h̄2

2m
∇2 + Ve(~r) +

∫

d3rψ̂†(~r′, t)Vi(~r − ~r′)ψ̂(~r, t)

]

ψ̂(~r, t). (1.46)

Within the Bogoliubov approach limits, the assignment ψ̂(~r, t) = ψ(~r, t) and ψ̂†(~r, t) =

ψ∗(~r, t) leads to the well-known time-dependent Gross-Pitaevskii equation (GPE), which

was independently derived by E. P. Gross and L. P. Pitaevskii in 1961,

ih̄
∂

∂t
ψ(~r, t) =

[

h̄2

2m
∇2 + Ve(~r) +

∫

d3rψ†(~r′, t)Vi(~r − ~r′)ψ(~r, t)

]

ψ(~r, t). (1.47)

Because of the mean field approximation, this equation has a restricted range of validity.

In fact, the GPE works properly for condensates at temperatures well below the critical

temperature and with weak interactions between particles. Its first attribution was exploring

emerging vortices in rotating weakly interacting Bose gases, where interactions were

assumed to be essentially provided by the elastic, hard-sphere collisions between two atoms.

Elastic colisions has short-range and isotropic character and may be described by

Vi(~r − ~r′) = gδ(~r − ~r′). (1.48)

This greatly simplifies the GPE to a nonlinear time-dependent Schrodinger-like equation,

which, in the rest frame becomes,

ih̄
∂

∂t
ψ(~r, t) =

[

h̄2

2m
∇2 + Ve(~r) + g|ψ(~r, t)|2

]

ψ(~r, t). (1.49)

This equation describes BECs in the dilute limit, where each atom feels the effect of its

surrounding atoms via an effective potential energy proportional to the local density of the

condensate. The s-wave scattering length should then be much smaller than the average

distance between atoms and the number of atoms much larger than unity. As long as these

two conditions are satisfied, Eq. (1.49) properly describes the condensed gas.
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1.1.4.6 Time-independent GPE

Under the constraint of fixed number of particles, stationary solutions describing

ground-state of BECs might also be achieved by variationally minimizing the expectation

value of the free energy for non-isolated systems, F = E−µN , where E(Ψ) = 〈ΨN |Ĥ|ΨN〉
is the system energy and µ stands for the chemical potential and might vary in order to

keep the number of ground-state particles constant. Evaluating all Hamiltonian terms in

Eq. (1.26) and then differentiating with respect to Ψ∗, the equilibrium configuration is

provided by
δ

δΨ∗ 〈ΨN |Ĥ − µN̂ |ΨN〉 = 0. (1.50)

This procedure is similar to minimize the thermodynamic free energy

F [Ψ] =
∫

d~r

[

h̄2

2m
|∇Ψ|2 + (Ve(~r) − µ) |Ψ|2 +

g

2
|Ψ|4

]

, (1.51)

with respect to Ψ∗ by means of Euler-Lagrange equation and yields to the GPE in its

time-independent form,
[

− h̄2

2m
∇2 + Ve(~r) − µ+ g|ψ(~r)|2

]

Ψ(~r) = 0. (1.52)

The time-independent GPE can also be achieved by directly substituing the Ansatz

Ψ(~r, t) = e−iµtΨ(~r) into the time-dependent GPE, where e−iµt accounts for oscillations

of the off-diagonal matrix elements 〈N − 1|ψ̂(~r, t)|N〉 with frequencies of the order of

µ ≈ E(N) − E(N − 1). In the thermodynamic limit, N → ∞, the chemical potential

thermodynamical definition, as the amount of energy to add a particle into the condensate

is recovered, µ = ∂E/∂N . If the interaction is weakly enough, so that the non-linear

quadratic term may be neglected, the Schrödinger equation is recovered and its solution

depends only on the confining potential shape, Ve. In general, trapping potentials produced

in BEC experiments are well approximated by harmonic potentials and, therefore, in the

weakly interacting regime, the expected density distribution for an isotropic harmonic

potential might be given by

n(~r) = N
(

mω

πh̄

)3/4

exp
(

−mω

2h̄
r2
)

. (1.53)

This result, however, is not in good agreement with most observations done experimentally,

where the atomic cloud is much larger than the predicted one. Actually, despite the

diluteness, the interaction plays an important role in the atomic cloud shape and can not

be neglected. In fact, under typical laboratory conditions, only the kinetic term associated

with the curvature of particle density might be neglected. This regime is covered by the

Thomas-Fermi approximation and express an opposite behavior of weakly interacting

regime, where the kinetic term is an important contribution. In Thomas-Fermi regime,

after straightfoward calculations, the density becomes

n(~r) = |Ψ|2 =
µ− Ve(~r)

g
, (1.54)



46

for µ > Ve, otherwise it vanishes, where µ is obtained by normalizing n(~r) to the total

number of particles N . Differently of the weakly interacting case, extension of the atomic

cloud is well defined as long as the chemical potential is determined. In fact, spatial limits

of the condensate are described by Ve = µ, where, for isotropic harmonic traps, leads to

R2 =
2µ
mω2

, (1.55)

with

N =
8π
15

( 2µ
mω2

)3/2 µ

g
. (1.56)

As we shall see further, the time-independent GPE provide a complete descrip-

tion of the vortex-vortex interaction and it turns out to be the main tool used in the

present work. Usually, Eq. (1.52) is presented with the angular momentum contribution,

which induce vortex formations. This may be achieved by expressing the functional F [Ψ]

in a rotating frame,

F [Ψ] =
∫

d~r

[

h̄2

2m
|∇Ψ|2 + (Ve(~r) − µ) |Ψ|2 +

g

2
|Ψ|4 − ΩΨ∗LzΨ

]

, (1.57)

where Ω denotes the angular velocity and Lz = (~r × ~p)z = −ih̄(~r × ~∇) represent the

angular momentum operator in its spatial representation. However, in our approach, for

reasons that we shall see later, this term is not considered.

1.1.4.7 GPE for two-component BECs

The Gross-Pitaevskii formalism can be straightforwardly extended in order

to cover multi-component BECs by assuming the existence of multiple order parameters

as well as their respective energetic contributions in the energy density functional. The

extension, however, also depends on the interplay between particles of different condensates

and, therefore, there is no general form of proceeding with it. Here, we are going to

restrict ourselves to only two different types of inter-species interaction: the contact and

internal coherent coupling, implemented by inducing an external driving field, which

allows particles to move from one hyperfine spin state to another. Therefore, particles

from different component may interact with each other either by contact interaction or by

Rabi oscillations, which accounts for the interplay of atoms between different components

(MATTHEWS et al., 1999b). Under these conditions, the extended formalism ends up

with

E =
Nc
∑

α=1

{

h̄2

2mα

|∇Ψα|2 +
gα

2
|Ψα|4 + V e

α |Ψα|2
}

+

Nc
∑

i

Nc
∑

j>i

gij|Ψi|2|Ψj|2 − wij

(

ΨiΨ∗
j + ΨjΨ∗

i

)

.

(1.58)

First and second terms of multi-component energy density functional account for intra-

component contributions, which respectively includes the kinetic and contact interaction
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Figure 7 – Miscible and Imiscible conditions in the inter-particle interactions phase dia-
gram.

energy. On the other hand, the remaining terms of the former functional stand for the

inter-component couplings. In special, the last term can be easily understood as the sum

of every possible contribution of removing a particle from one component and replace it in

another one. Eventually, the condensate nature is fully defined by the set of parameters

mi, gα, gij and wij and it is governed by (in the two-component case)

µ1Ψ1(~r) =

[

− h̄2

2m1

∇2 + V1(~r) + g1|Ψ1(~r)|2 + g12|Ψ2(~r)|2
]

Ψ1(~r)

− ω12Ψ2(~r),

(1.59a)

µ2Ψ2(~r) =

[

− h̄2

2m2

∇2 + V2(~r) + g2|Ψ2(~r)|2 + g12|Ψ1(~r)|2
]

Ψ2(~r)

− ω12Ψ1(~r).

(1.59b)

In absence of coherent coupling and considering an homogenous system confined

by hard wall barriers, Vα(~r) = 0 (α = 1, 2), the immiscibility criterion can be annalitically

derived for two-component BECs in the Thomas-Fermi regime. Under these circunstances,

the governing equations become

g1|Ψ1(~r)|2 + g12|Ψ2(~r)| = µ1, (1.60a)

g2|Ψ2(~r)|2 + g12|Ψ1(~r)| = µ2, (1.60b)

Whether the condensates prefer to occupy the same region in space or not depends on the

energy difference of both situations. Straightforward calculations show that such difference

is given by

∆U = Umi − Uim ∝ g12 − √
g1g2 (1.61)

and, therefore the miscibility condition may be summarized in terms of coupling forces:

−√
g1g2 < g12 <

√
g1g2. Otherwise, if g12 >

√
g1g2, components remain segregated due
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to the overcoming of mutual repulsion whereas, for g12 < −√
g1g2, the system becomes

unstable and collapses as a consequence of the strong attraction between particles of

different condensates. These three dinstinct situations are illustrated in Fig. 7

1.2 Introduction to superconductivity

Because the wavelike nature of matter is very difficult to be demonstrated

outside the microscopic limit, whenever a quantum property is observed on a macroscopic

scale, a great effort is made to explain it (COHEN-TANNOUDJI; DIU; LALOE, 1991).

This was not different for the resistanceless state of matter discovered by Kamerlingh

Onnes in 1908 (KAMERLINGH-ONNES, 1911), where charge carriers were found to

flow through some materials without experiencing any electrical resistance. In fact, the

non-triviality of quantum effects exhibited by the so-called superconducting materials

has puzzled the greatest minds of the past century and still does nowadays. No wonder,

superconductivity is also one of the topics of physics with the highest number of Nobel

prizes winners and still remains as one of the most promising research subjects of science.

Despite superconductivity discovery has preceded the wave formalism description of matter,

promising applications boosted early researches in the field. In fact, in a society extremely

dependent on electricity, applications were easily devised by the scientists of that time.

Tc

Hc

jc

Current Density

Magnetic Field

Temperature

Superconducting 

phase

Figure 8 – Sketch of the phase diagram of an arbitrary superconducting material. The
superconducting phase is delimited by the critical values of current ~j, magnetic
field ~H and temperature T . From a practical point of view, these critical values
are in general very small, making it difficult for commercial applications.
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Unfortunately, over a hundred years have passed and the vast majority of

idealized applications still remains at the horizon of superconductivity field. Such appli-

cations are, nowadays, commercially unfeasible, mainly due to the high manufacturing

costs associated with the fragility of superconducting state, which requires extremely

low temperatures and can be easily destroyed when currents or magnetic fields exceed

their respective critical values, see Fig. 8. Hopefully, this scenario has been changing with

the vast knowledge acquired over all those years, where great improvements on critical

parameters have been reported and new materials with higher critical temperatures have

been discovered. Yet so far, despite the longstanding discovery and immeasurable efforts,

the superconducting state is not fully characterized nor understood. Indeed, the original

microscopic theory of superconductivity (BARDEEN; COOPER; SCHRIEFFER, 1957),

which proposes an electronic condensation as the main mechanism behind this novel

and strange phenomenon, was developed to model an isotropic single superconducting

energy band, accounting only for the most basic properties of homogeneous bulk supercon-

ducting materials (TANAKA, 2015) and, despite having undergone several refinements

(TANAKA, 2015; SUHL; MATTHIAS; WALKER, 1959; ORLOVA et al., 2013), it was not

able to explain the high critical temperature exhibited in the recent discovered class of

superconducting materials, denominated High-Tc superconductors (BEDNORZ; MÜLLER,

1986).

Moreover, the discovery of multi-band superconducting materials (BOUQUET

et al., 2001; SZABÓ et al., 2001; SEYFARTH et al., 2005; TEAGUE et al., 2011; KIM et

al., 2011) has opened up even more the superconductivity field, making bigger the gap

between experimental achievements and the current theoretical knowledge. In fact, such

superconductors are far from being just a trivial extension of a single band superconductor

case and even when the extensibility of the microscopic formalism covers the supercon-

ducting phase of the multi-band superconducting materials, there are still many relevant

theoretical details to be addressed concerning macroscopic features of these supercon-

ductors. No wonder, multiband superconductor properties have been widely investigated

in the last few years (CHAVES et al., 2011a; YANAGISAWA et al., 2012; SILVA et al.,

2015; VAGOV et al., 2016). Actually, even in the simplest homogeneous single-band bulk

superconductor case, there are several features not well described yet, such as vortex inner

structure and their role in vortex-vortex interaction. In fact, vortex profiles and their

magnetic distribution are only asymptotically known under the very restricted regime of

London’s approach(TINKHAM, 1975). For instance, it has been recently realized that it

is possible to extract, from the inner structure of vortices, signatures of phase transition

between different single-gap superconducting types (WANG, 2015) and, despite it may

seem fundamental enough to be presented in textbooks, experimental techniques with

higher resolutions capable to describe the inner structure of such vortices have been

constantly reported until nowadays (SUDEROW et al., 2014).
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Current efforts also involve many other facets, in particular, the handling

of the quantum confinement through the sample size reduction have proven to be of

great commercial and technological relevance, leading to appreciable increases of critical

currents and fields (TOXEN, 1962; TINKHAM, 1963; CHAUDHARI, 1966; FETTER;

HOHENBERG, 1967; ONORI; ROGANI, 1980; SCOTTO; PESCH, 1991; BRANDT; IN-

DENBOM; FORKL, 1993; POZA et al., 1998; BERDIYOROV; MILOŠEVIĆ; PEETERS,

2006; SILHANEK et al., 2007; POSEN et al., 2015). This boosted recent researches on

superconducting nanostructures and films. In special, superconducting films are observed

to exhibit a much more rich phase diagram of vortex lattice conformations than in bulk

samples and therefore, because it lies in the heart of current dissipation, a great effort has

been made to characterize and control these vortex states (TINKHAM, 1963; FETTER;

HOHENBERG, 1967; LASHER, 1967; KREMEN et al., 2016) as well as understand their

dynamics (PEARL, 1964; LUNDQVIST et al., 1999; HILLMER et al., 1996; SENAPATI

et al., 2006; GUTIERREZ et al., 2009; CUCOLO et al., 2012; SILVA et al., 2016).

1.2.1 Experimental background

Before the pioneering refrigeration techniques developed by Kamerlingh Onnes

in 1908, the ideas concerning the properties of matter under extremely low temperatures

were only speculative. At that time, physicists already knew that resistance generally

dropped as a sample was cooled, but the mechanism behind electric conduction was poorly

understood and very little was known about the behavior of conductors near the absolute

zero (BUCKEL; KLEINER, 2008). After the unsuccessful attempt to find the solidification

point of helium, the usage of liquid helium as a cryogenic fluid became quite convenient to

investigate properties of matter near the absolute zero. Onnes devoted subsequent years

of research developing techniques for storage and manipulation of liquid helium. These

techniques would enable him to answer one of the still opened questions at that time

concerning the electrical resistance of matter at 0 K. First experiments were carried out

with gold and platinum and indicated the existence of a residual resistance, as proposed

by Matthiesen in 1864 (BUCKEL; KLEINER, 2008). However, the residual resistance was

then proved to be only a consequence of material impurities and not an intrinsic property

of the matter, suggesting that extremely pure materials would present a measurably

negligible resistance close to 0 K. In order to test this hypothesis, Onnes used mercury

samples, the purest metal that he could obtain at that time. Surprisingly, the experiment

outcome was quite different from the expected. In fact, instead of decreasing smoothly,

the resistance dropped abruptly to zero just below the temperature of 4.2 K, as illustrated

in Fig. 9 (KAMERLINGH-ONNES, 1911). Soon after the discovery of the resistanceless

state of matter, other metals and compounds were found to share this same properties

with mercury, however, for different temperatures, which led to the definition of a critical

temperature Tc, characteristic of the material.
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Figure 9 – The electrical resistance of mercury as a function of temperature. Here, the
white circles represent the experimental measurements of the mercury resistance,
whereas the red and blue backgrounds denote the normal and superconducting
states respectively. This figure was made by the author, based on the result
presented in Ref. (KAMERLINGH-ONNES, 1911).

The sudden disappearance of electrical resistance is a signature and the first

hallmark of a transformation into a novel state, called superconductivity. In this state, an

electric current could flow through the sample without experiencing any energy dissipation.

In fact, all attempts to find at least small signals of electric resistance were frustrated, even

with the high-resolution equipments present nowadays (ONNES; TUYN, 1923; SCHMIDT;

MÜLLER; USTINOV, 1997). Unfortunately, the resistanceless state can also be destroyed

by the application of a sufficiently strong magnetic field, as reported by Onnes soon

after his discovery (LONDON, 1950). The upper field value where superconductivity

remains sustained also depends on the material and is called the critical field Hc of the

material. It was empirically found a parabolic dependence between the critical field and

the corresponding critical temperature (TINKHAM, 1975; LONDON, 1950),

Hc(T ) ≈ Hc(0)

[

1 −
(

T

Tc

)2
]

. (1.62)

A scheme of H×T phase diagram is illustrated in Fig. 10. The blue background represents

the superconducting regime, whereas the red one stands for the normal state.
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Figure 10 – A sketch of H × T diagram. The blue background represents the supercon-
ducting regime, wheres the red stands for the normal state.

1.2.1.1 Meissner Effect

At the time of superconductivity discovery, the basic concepts of quantum

mechanics were not still developed nor understood. Therefore, it was not surprising

that the first description have been based on the classical electromagnetism formalism

(DEAVER; RUVALDS; DIVISION, 1983). In fact, the first natural proposal was to treat

superconductors as perfect conductors, by assuming an infinite conductivity, σ → ∞,

which by Ohm’s law would lead to a vanishing electric field inside the superconductor,
~E → 0. As a consequence of Maxwell’s induction law, temporal variations of the magnetic

field could also not occur inside a superconducting sample, ~̇B = 0, and the state of a

superconductor should depend on its pre-history, as illustrated in Fig 11.

T > Tc T < Tc

T < TcT > Tc(a)

(b)

Figure 11 – The expected experimental outcome from the perfect conductance theory: (a)
The superconducting material is firstly subjected to an external magnetic field
and then cooled down below its critical temperature, "freezing" the magnetic
field inside the sample; and (b) The material is first cooled down below Tc

and then, an external magnetic field is applied. Since ~̇B = 0, the magnetic
field inside the sample should remains null.
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With the support of some experimental evidences (LONDON, 1950), the

theory of perfect conductance was well accepted for a long time, however, from the

thermodynamical point of view, it was always doubtful. In fact, the existence of multiple

states for the same imposed external conditions characterizes a non-equilibrium state that

could hardly be sustained by electrons even in the absence of electrical resistance. Moreover,

the perfect conductor theory was not able to explain the existence of the critical magnetic

field Hc. Even so, the need of a new theory emerged only in 1933, after the Meissner and

Oschsenfeld milestone experiment (MEISSNER; OCHSENFELD, 1933), which showed

that, regardless of the pre-existing state, the field inside the sample is always null whenever

the superconducting state is achieved, exhibiting also perfect diamagnetism properties.

Because perfect conductivity and diamagnetism could not coexist simultaneously, the

Meissner effect uniquely characterizes superconductors and for this reason it was considered

the second hallmark of superconductivity theory.

Differently from zero resistivity effect, Meissner’s effect led to the recognition

of superconducting state as an equilibrium state and allowed the development of its

thermodynamical description, where the normal/superconductor transition was classified

as a transition of the second kind (GORTER; CASIMIR, 1934). Within such description,

the annihilation of superconductivity due to an external applied field H = Hc could be

understood in terms of the free energy difference between the normal and superconducting

phases at zero field, also called condensation energy fn0 − fs0. The energy cost of holding

the field outside the sample should be equal to the condensation energy

fn0 − fs0 =
H2

c

8π
. (1.63)

In fact, at the critical field, normal and superconducting phases share equal thermody-

namical potentials and therefore are allowed to coexist.

The Meissner’s effect was soon found out to emerge from the appearance of

screening currents flowing around the edges of a superconducting sample. These screening

currents would suppress the applied field from inner region of superconductors by producing

a field with equal intensity and opposite direction and could be well described by Maxwell’s

equation in a magnetic medium, where the Meissner’s effect could be characterized by

a magnetic material with magnetic susceptibility χ = −1 and magnetization ~M = − ~H.

However, the origin of such currents remained unexplained until London’s description of

superconductivity, which we shall see further.

1.2.1.2 Type-I and Type-II superconductivity

Subsequent experiments carried out by Rjabinin and Schubnikow revealed

that superconductors should be distinguished into two different classes according to its

response to an applied magnetic field (RJABININ; SHUBNIKOW, 1935). If fact, all
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Figure 12 – Magnetization as a function of the applied field for: (a) a type-I supercon-
dunctor and (b) a type-II superconductor.

superconducting materials share perfect diamagnetism effect as long as the applied field

does not exceed a certain critical value, however, the superconducting phase may be

suppressed in two different ways, depending on the material. In type-I materials, Fig.

12 (a), the magnetization falls to zero abruptly whenever the thermodynamical critical

field Hc is achieved, (ii) whereas in type-II materials, Fig. 12 (b), the Meissner effect is

suppressed gradually until the normal phase is recovered. This result led to the definition of

two new critical fields, named the lower and the upper critical fields, respectively denoted

by Hc1 and Hc2. Below Hc1, a type-II superconductor exhibits perfect diamagnetism, fully

expelling the magnetic field from its inner region. However, as the applied field Ha increases,

the magnetization decays gradually until vanish at the upper critical field Ha = Hc2. At

this point, superconductivity effects are fully suppressed and the normal phase is recovered.

This behavior clearly contrast with type-I superconductors, where the ability to expel field

lines is lost abruptly at the thermodynamical critical field. Nevertheless, the mechanism

behind the nature of this segregation remained misunderstood for many years, until

Abrikosov’s remarkable work, which, within the Ginzburg-Landau formalism, predicted

the existence of a mixed phase characterized by the emergence of quantized vortices in

type-II superconductors.

1.2.2 London’s description

A new theory encompassing both perfect conductivity and diamagnetism

phenomena was then required. After repeated frustrations in attempting to explain it

through the classical formalism, the quantum nature of the phenomenon became evident.

Based on Bose-Einstein condensation theory and ignoring the fermionic nature of electrons,

Fritz London assumed a condensation of charge carriers inside the superconducting material,

describing them with a single uniform wave-function (LONDON, 1938; LONDON, 1950;

LONDON; LONDON, 1935; LONDON, 1937; LONDON, 1948). Without the magnetic
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field, electrons in a bulk superconductor should then be represented by the free-particle

wave-function Ψ(~r) = ei~k·~r, where the wave vector ~k is defined by h̄~k = ~p = m~vs. On the

other hand, if an external magnetic field is applied, the wave-function phase φ(~r) is a

much more complex function of ~r and obeys

h̄~∇φ(~r) = ~p = m~vs + q ~A. (1.64)

Integrating through an arbitrary closed path C inside the superconducting sample, the

left side of Eq. (1.64) vanishes and the Schorödinger equation becomes
∮

C

(

m~vs + q ~A
)

d~l = 0. (1.65)

Using Stokes theorem, the magnetic contribution can be transformed into a surface integral

of vector potential curl ~H = ~∇ × ~A, whereas the velocity ~vs can be written in terms of

the density current, ~vs = ~js/qns. Here, ns is the density of charge carriers and q = −e the

electric charge. The consequences of electric condensation are then summarized by the

following equation,

q
∫

S

~H · d~S = − m

qns

∮

C

~js · d~l, (1.66)

or, by its local form,

~∇ × ~js = −q2ns

m
~H. (1.67)

In contrast to the classical electrodynamic theory, Eq. (1.67) predicts a circulating and

superficial supercurrent flow as a result of an external magnetic field application, shielding

the inner region of the superconducting sample as predicted by Meissner’s effect. Together

with Maxwell’s equation ~∇ × ~H = 4π~js/c and the Gauss’s law for magnetism ~∇ · ~H = 0,

the magnetic field and the density current might be fully determined under stationary

conditions,

∇2 ~H − 1
λ2

L

~H = 0, where λL =

√

mc2

4πe2ns

. (1.68)

Although expelled, the applied magnetic field might penetrate a superconducting sample

of arbitrary shape to a depth of the order of λL, a characteristic length scale of the

superconducting material named London penetration depth. In fact, the solution of Eq.

(1.68) for a slab is an exponentially decaying function, ~H ∝ exp(−x/λL), which means

that the magnetic field is screened only from the inner region of the sample. However, at

least from qualitative point of view, this result is still in agreement with the Meissner’s

effect, since the penetration depth of metallic compounds is of the order of 10−5 cm. On

the other hand, the perfect conductivity effect would be explained by the second London’s

equation, which describes the superconductor response to an external electric field ~E.

Without rigor, this equation could be derived from the free electron-gas model, where

~vs = ~js/qns. In this approach, the 2nd Newton’s law states that

∂~js

∂t
=
nse

2

m
~E =

1
λ2

L

~E. (1.69)
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The presence of an external electric field induce temporal variations on current density,

accelerating the superconducting electrons instead of only sustaining their velocities, as

expected in a standard conductor. The London approach may also be summarized into the

superconductor energy, expressed as the sum of superconducting electrons kinetic energy

with the energetic cost of sustaining the magnetic field outside the sample

E =
1

8π

∫

V

[

λ2
(

~∇ × ~H
)

+H2
]

. (1.70)

Because those superconducting effects should disappear for T > Tc, a de-

pendence between the penetration depth and temperature is expected. In fact, it was

empirically estimated that,

λL(T ) ≈ λL(0)
√

1 − (T/Tc)4
. (1.71)

Therefore, reducing the temperature leads to a shorter penetration depth, enhancing the

superconducting properties from the experimental point of view. Exactly for T = Tc,

the penetration depth diverges and the normal properties of the material would be

recovered. Despite the successful explanation of Meissner’s effect, the London theory was

still considered incomplete and unsatisfactory. Supported by a dubious postulate that

would break the well accepted Pauli’s exclusion principle, the London theory was not

able to estimate the surface tension between normal and superconducting interfaces or

even predict the existence of a critical field Hc. Moreover, as we shall see further, it is

also supposed to be inaccurate in describing the internal structure of vortex states in

non-extreme Type-2 superconductors, since vortices are treated as point-like objects.

1.2.2.1 Flux quantization

Figure 13 – A singly connected surface S under and externally applied magnetic field ~H.

Still, stressing the quantum nature of superconductivity, London took another

important step towards the understanding of superconductivity. Within his theory, he was

able to predict the flux quantization of magnetic field almost fifteen years after the first

formulation of his theory (LONDON, 1950). In fact, because superconducting electrons

should be described by a single uniform quantum mechanical wave function, they also
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should obey Bohr-Sommerfeld quantization rule. Therefore, for a multiply connected

superconductor, illustrated in Fig. 13 , Eq. 1.66 should be rewritten as
∮ ∮

S

~H · d~S + cΛ
∮

C

~js · d~l =
nhc

e
, (1.72)

where the left side, named fluxoid, is quantized in units of φ0L = hc/e. However, to better

explore the consequences of Bohr-Sommerfeld rule on superconductors, it is worth to apply

Eq. 1.72 to a specific geometry, where the path and surface integrals might be evaluated

under symmetry arguments. For instance, one may consider a hollow cylinder sheet with

radius R subjected to an externally applied H parallel to its axial direction and obtain

according to London’s prediction,

js =
φ0L

cΛ2πR

(

n− πR2H

φ0L

)

(1.73)

From the angular current density js, the kinetic energy associated to superconducting

electrons can be extracted and the magnetic flux quantization derived,

Ks =
1
2

Λj2
s =

φ2
0L

8c2Λπ2R2

(

n− πR2H

φ0L

)2

(1.74)

In fact, from Fig. 14, where the energy is plotted as a function of magnetic flux φ = πR2H,

the system is indeed expected to find its equilibrium state for discrete values of magnetic

flux, φ/φ0L=n. As a consequence, in multiply connected superconductors, quantities such

as critical temperature and resistivity are also expected to oscillate with the applied field H.

This enabled experimental confirmations of superconductivity as a macroscopic quantum

phenomenon (DEAVER; FAIRBANK, 1961; DOLL; NÄBAUER, 1961; PARKS, 1964).

Indeed, almost fifteen years after London’s prediction, oscillations in resistivity of a hollow

cylinder near the superconducting transition point were measured as a function of the

applied field (PARKS, 1964). However, these oscillations were found to exhibit a period

φ0 = hc/2e instead of the predicted by London φ0L = hc/e. As we shall see further, this is

a consequence of the pairing mechanism behind the electronic condensation proposed in

the microscopic theory of superconductivity.

0 1 2 3
φ / φ

0

K
s

Figure 14 – Kinetic energy of superconducting electrons in a hollow cylinder as a function
of magnetic flux.
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1.2.3 The Ginzburg-Landau theory

The weaknesses of London’s theory and the recognition of the superconductor

transition as a transition of the second kind led the physicists Ginzburg and Landau to

extend the pre-existing Landau’s theory of phase transitions to superconductors, com-

bining it with a Schrödinger-like wave function Ψ(~r, t) (GINZBURG; LANDAU, 1950;

GINZBURG, 1955). In this thermodinamical approach, a complex pseudowave-function

Ψ describing the superconducting electrons was proposed as the system order parameter,

assuming non-zero values for T < Tc (ordered or superconducting phase) and vanishing at

T > Tc(disordered or normal phase). The order parameter Ψ is uniquely defined except for

a phase factor, which might preserve the invariance of physical properties. This suggested

a correlation with the quantum nature of superconductivity, where the order parameter

could be associated with the local density of superconducting electrons by |Ψ|2 ∝ ns. At

that time, despite the belief of an electronic condensation behind the superconductivity

phenomena, the quantum mechanical connection between the order parameter Ψ and the

observable quantities was not well established, so an arbitrary normalization equalizing

|Ψ|2 to ns was proposed (GINZBURG, 2008).
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Ψ
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0.0

0.5

1.0

F
s
0
 -

 F
n
0

α = 1.0

α = 0.0
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Figure 15 – The free energy density difference between superconducting and normal states
Fs0 − Fn0 as a function of Ψ for β = 1.0 and three different values of α: -1.0
(blue triangles), 0.0 (yellow squares) and 1.0 (red circles).

According to Landau’s picture, near the transition point Tc, the energy difference

between the normal and superconducting phases could be expanded in powers of the

order parameter ns = |Ψ(~r, t)|2. Therefore, in the absence of an external magnetic field

and neglecting spatial variations of the order parameter, the free energy density of a

superconductor could be expressed as

Fs0 = Fn0 + α|Ψ|2 +
β

2
|Ψ|4. (1.75)

The free energy density difference between the superconducting and normal states might

be distinguished in three different manners depending on the signal of the coefficient
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α. In Fig. 15, regardless of the phase factor, these forms are illustrated by assuming

β = 1.0 and different values of α: -1.0 (blue triangles), 0.0 (yellow squares) and 1.0 (red

circles). For α > 0, the energy density difference function has only one minimum at the

equilibrium value |Ψ| = 0, characterizing the higher energy disordered state, where T > Tc.

For α < 0, there exists two minima, where the superconducting phase become energetically

favorable, and that corresponds for the low temperature case T < Tc. Theses two regimes

are separated by the case α = 0, which corresponds to the transition point T = Tc. At this

point, the energy difference become flat around the minimum, allowing thermal oscillations

to become evident. It is worth mentioning that, these profiles are valid whenever the

phase of the superconductor is zero, which is the case for, for example, one dimension

superconductors. However, whenever the phase becomes important, the free energy density

becomes a surface that may be achieved under the rotation of former profiles, so that

negative values of α are, in fact, described by the Mexican Hat surface. Even so, these

minimum conditions can be mathematically achieved by differentiating the free energy

density Fs0 with respect to the order parameter |Ψ|2. In fact, in equilibrium, the following

conditions must be satisfied

∂Fs0

∂|Ψ|2 = 0,
∂2Fs0

∂2|Ψ|2 > 0. (1.76)

The last condition constrains β to be positive, whereas the first condition determines the

equilibrium values of the order parameter ψ0 =
√

−α/β. Within the original assumption

of Landau’s picture of phase transtions, it becomes natural to assume α to be temperature-

dependent in order to achieve the ordered (|Ψ|2=1) and disordered (|Ψ|2=0) conditions for

the order parameter. Assuming a linear dependence, α ∝ (T − Tc), in the neighbourhood

of Tc, the equilibrium point could then be characterized by

|Ψ|2 = −α

β
= −T − Tc

βc

(

dα

dT

)

c

(1.77)

and

Fs0 − Fn0 = −α2

2β
= −(T − Tc)2

2βc

(

dα

dT

)2

c

. (1.78)

In fact, the linear choice for the temperature dependence of α is in agreement

with the thermodynamic description of the critical field, fs0 − fn0 = −H2
c /8π, since it

recovers the empirically found expression for Hc as a function of the temperature T .

It also suggested a correlation between the order parameter |Ψ|2 and the density of

superconducting electrons ns, since the temperature dependence of the order parame-

ter, |Ψ|2 ∝ (1 − T/Tc), resembles the ns dependence on temperature empirically found

through London’s theory. Therefore, the expansion in powers of |Ψ|2 provides the theory

background to describe the normal/superconducting phase transition with respect to the

system temperature T . However, it accounts only for the most ideal situation, where the
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superconducting phase is uniform and no applied fields are considered, being not able to

explain by itself the odd electrodynamic properties exhibited by superconductors.

In order to fullfill the theory, Ginzburg extended the formalism in order to

account for possible fluctuations in the complex order parameter Ψ(~r). At least for small

fluctuations, the energetic contribution would be well described by the lowest order term in

|∇Ψ|2 allowed by symmetry of series expansion: ǫk
s |∇Ψ|2. An anallogy with the quantum

mechanical definition of the kinetic energy, suggested fluctuations to be a consequence

of the superconducting electrons flow. Therefore, according to Ginzburg, the energetic

contribution associated with these local variations of the order parameter could be well

described by,

ǫk
s |~∇Ψ|2 =

1
2m

| − ih̄~∇Ψ|2 =
h̄2

2m
|~∇Ψ|2, (1.79)

where h̄ = 1.05 × 10−27 erg s and m represents the effective mass of superconducting

electrons. In the presence of a magnetic field, however, this term has to be corrected in

order to account for the interaction between the magnetic field and the current induced by

the spatial variance of Ψ. This was provided by considering the gauge invariant quantum

mechanical expression for the momentum operator P̂ = −ih̄~∇ − e ~A/c, where ~A is the

vector potential, defined by ~H = ~∇ × ~A, and e stands for the effective superconducting

electric charge. Hence, in the Ginzburg-Landau picture of superconductivity, the general

expression of free energy density near Tc may be expressed as following

FsH − FnH =
1

2m

∣

∣

∣

∣

(

−ih̄~∇ − e

c
~A
)

Ψ
∣

∣

∣

∣

2

+ α|Ψ|2 +
β

2
|Ψ|4 +

H2

8π
, (1.80)

where the last term stands for the energetic cost of sustaining the magnetic field ~H, as

previously proposed in Gorter and Casimir’s thermodynamical description. Again, the

problem is reduced to find the minimum energy condition, where the system should find

its equilibrium state. Therefore, the stationary conformations of the order parameter and

magnetic field might be extracted by minimizing the total energy with respect to Ψ∗ and
~A, which leads to the set of well known coupled Ginzburg-Landau equations (see the

Appendix for a detailed derivation)

αΨ + β|Ψ|2Ψ +
1

2m

(

−ih̄~∇ − e

c
~A
)2

Ψ = 0, (1.81a)

c

4π
~∇ × ~∇ × ~A =

ih̄e

2m

(

Ψ∗~∇Ψ − Ψ~∇Ψ∗
)

− e2

mc
|Ψ|2 ~A. (1.81b)

Except for a nonlinear term, Eq. (1.81a) has the same form of the Schrödinger

equation for a free-particle under an externally applied field ~H = ~∇ × ~A, highlighting the

quantum character of the Ginzburg-Landau description. In turn, the second Ginzburg-

Landau equation, Eq. (1.81b), is nothing less than the quantum form of the circuital

Ampere’s law, where the right-hand side of the equality contains the expression for the
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superconducting current density js. Indeed, the supercurrent has exactly the same form of

the quantum mechanical Noether’s current expression for particles with mass m and charge

q = −e. This set of coupled equations, within the proper boundary conditions, would then

be able to describe the electrodynamic properties of superconductors and, despite they

were meant to describe only the transition regime, near T ≈ Tc, the Ginzburg-Landau

equations have proven to be valid even deep in the superconducting phase, for instance,

see Ref. (DEO et al., 1997). In fact, over the years, extra energetic contributions have

been suggested in order to promote a better description far from the transition point.

However, the obtained corrections are, in general, very small and might be disregarded

in most of the cases. This makes the Ginzburg-Landau formalism a powerful tool to

investigate the macroscopic features of superconductors. However, before going into further

details concerning the descriptive advantages and limitations of the theory, let us first

address some aspects obeyed by scalar Ψ and vectorial ~A fields near the system boundaries,

restricting them to the set of the physical solutions.

1.2.3.1 Boundary conditions

The first constraint lies in the argument that there should be no electronic

exchange between the superconductor and vacuum or insulator medium, so the normal

component of current density should vanish at system’s interfaces. This boundary condition

is also achieved from the variational principle. In fact, taking the variation with respect

to Ψ∗, besides the Ginzburg-Landau equations, the following equality must be satisfied

(GINZBURG, 2008)
∮

S
δΨ∗

(

−ih̄~∇ − e

c
~A
)

Ψ · n̂dS = 0, (1.82)

where n̂ is a unit vector normal to the interface and S is a surface which encloses the

sample. Because of the arbitrariness of both the variational element δΨ∗ and surface

S, the last equation may be satisfied under two different conditions: (i) for an infinite

system, where integrand contributions of opposite sides of unity cell cancels out each other

vanishing the total surface integral, or (ii) when the normal component of the supercurrent

is null at the boundaries, which leads to the standard boundary condition
(

−ih̄~∇ − e

c
~A
)

Ψ · n̂ = 0. (1.83)

Despite derived from the variational principle (see Appendix), this Neumann

boundary condition may not be reasonable from the first sight, since, as a possible

system wave function, one would expect Ψ to obey continuity requirement and impose a

Dirichlet boundary conditions, Ψ = 0. This apparent contradiction was further explained

by Ginzburg, whose argument lies in the fact the Ψ may not be regarded as a real wave

function, but just an average quantity. Still, Eq. (1.83) represents just an ideal situation

where the spatially confined sample do not interact with its surroundings. Therefore,
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it should then be regarded as a limiting case of a most general one, where the leakage

of superconducting electrons are taken into account. In fact, a most general boundary

condition was later proposed by de Gennes in 1966 (GENNES, 1966),

(

−ih̄~∇ − e

c
~A
)

Ψ · n̂ =
i

b
Ψ, (1.84)

where b is a positive constant and defines the distance outside the boundary where the

order parameter would vanish if extrapolated to outside region of the superconducting

sample, as illustrated in Fig 16.

Figure 16 – The superconducting/normal metal interface: the illustration of the spatial
dependence of the superconducting order parameter |Ψ| where b denotes the
extrapolation length.

Actually, b is closely related to the interaction between the superconductor

and its environment and could then be distinguished in three different ways: (i) b → ∞,

where the environment strongly interacts with superconducting electrons, forming an

infinity energetic wall which prevents the electronic leakage and recovers the insulating

or vacuum boundary condition predicted by Ginzburg-Landau theory, (ii) b > 0, where

the surrounding material provides an energetic barrier that might be tunneled by the

superconducting electrons, featuring a superconductor/metal interface, and (iii) b → 0,

where, despite the absence of energetic confinement, the order parameter shall vanish at the

edges, prohibiting the existence of superconducting electrons beyond the sample frontiers.

This last condition is very unusual and must be valid only for ferromagnetic surroundings.

Its understanding requires the knowledge of the microscopic electronic pairing mechanisms

behind the superconductivity phenomena, where electrons with opposite spins are grouped

in pairs as a consequence of the electron-phonon interaction. The bosonic nature of these

electronic pairs enable the condensation, leading to the superconductivity phenomena.

However, due to the magnetic nature of ferromagnetic materials, which induces spins

alignments, this condensation is forbidden beyond the frontiers of the sample, so that,

Dirichilet boundary condition, where the order parameter must satisfy Ψ = 0, must be

satisfied.
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1.2.3.2 Characteristic length scales

The theory of Ginzburg and Landau, in its comprehensiveness, contains the

London formalism as a limiting case, where the fields do not significantly affect the

superconducting state. Naturally, the Meissner effect also must elapse from the set of

Ginzburg-Landau equations. In order to attest it, let us start from a quite general situation

by assuming a polar decomposition of the order parameter

Ψ(~r) = eiφ(~r)
√

ns(~r), (1.85)

where
√
ns represents the order parameter modulus, assuming values between 0 and

√

−α/β, and φ(~r) stands for the superconductor’s phase. Within this decomposition, the

supercurrent density becomes

~js = ns(~r)

[

e∗h̄

m∗
~∇φ(~r) − e∗2

m∗c
~A(~r)

]

. (1.86)

Under sufficiently weak fields, the London’s limit is recovered and, according to Eq. (1.81a),

the modulus
√
ns may be regarded to be invariant over space and approximately equals to

√

−α/β. Thus, by taking the curl of the current density ~js, the original London’s equation,

which explains the Meissner’s effect, is recovered

~∇ ×~js(~r) = − e∗2

m∗c

|α(T )|
β

~H(~r). (1.87)

Together with the Maxwell’s equation, the former equation allows to determine, under

London’s gauge, the temperature-dependent effective penetration depth, which scales

changes in magnetic field profiles and current densities

λ(T ) =

√

√

√

√

m∗c2β

4πe∗2|α(T )| . (1.88)

Specially, for a superconductor defined in the half-space region x > 0 and surrounded by

vacuum at x < 0, it might be found that both magnetic field and current density decays

exponentially with x inside the sample, B ∝ js ∝ e−x/λ(T ). Besides the expression of the

penetration depth, the Giznburg-Landau theory also accounts for another meaningful

length scale, which provides the stiffness of the order parameter in a zero field conformation.

It follows from the first Ginzburg-Landau equation, which, in absence of magnetic field,

becomes

− h̄2

2m∗ ∇2Ψ + αΨ + βΨ3 = 0. (1.89)

Here, the order parameter Ψ was assumed to be a real quantity. This choice is supported

by the gauge invariance of Ginzburg-Landau equations. In fact, despite Ψ and ~A are

not uniquely defined, the equations have their form preserved if a gauge transformation,

Ψ = exp(iφ)Ψ′ and ~A = ~A+ ~∇φ, is performed. Therefore, physical properties are invariant
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under the phase choice and a proper ansatz for the order parameter is Ψ(~r) =
√

−α/βf(~r),

where f is a real function that assume values between 0 and 1. This leads to a second

length scale ξ appearing as a prefactor of the gradient term in Eq. (1.89),

−ξ2∇2f − f + f 3 = 0, where ξ =

√

√

√

√

h̄2

2m∗|α(T )| . (1.90)

Therefore, if the order parameter is somehow changed from its equilibrium value, ξ specifies

the length scale over which the bulk homogeneous value of |Ψ|2 is recovered. The healing

character may be analytically derived for small fluctuations of f . In one-dimensional

case, where these small fluctuations are described by the ansatz f(x) = 1 − ǫ(x) with

ǫ(x) << 1, non-linear terms remnants of Eq. (1.89) might be disregarded and the final

outcome solution for the resulting differential equation is the exponential function,

ǫ(x) ∝ e
√

2x/ξ(T ). (1.91)

The definition of ξ as the superconductor healing or coherence length proves to be quite

convenient, since disturbances in the order parameter occur in a scale of the order of ξ.

In special, for a half-space superconductor, defined in the region x > 0 and delimited by

an ferromagnetic material at x < 0, the solution of Eq. (1.89) is the rapidly increasing

function of x

f(x) = tanh

(

x

ξ
√

2

)

, (1.92)

which clearly satisfies the boundary conditions Ψ = 0 at x = 0 and Ψ = 1 when x → ∞.

Sudden variations of the order parameter results from the existence of a non-linear term

in the first Ginzburg-Landau equation, which acts as a repulsive potential on Ψ itself,

energetically favoring the spreading of superconducting phase and contributes to more

uniform conformations of the order parameter.

1.2.3.3 Superconducting types according to GL theory

Within Ginzburg-Landau formalism, the classification between different super-

conducting types could then be understood as a stability problem of the normal state in a

superconducting sample and might be distinguished from the energy cost of sustaining

a normal-superconducting interface at the critical field Hc, under which the energy of

superconducting and normal states are the same. The presence of critical field parallel

to the NS interface removes the energy contribution from pure phases and capture only

the energetic contribution provided by the domain wall, which is the relevant quantity to

determine whether sustaining the normal-superconducting interface is favorable or not.

The domain-wall energy σns, for an interface defined at x = 0, where the superconducting
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(normal) phase occupy the half-space region x > 0 (x < 0), may be written, according to

the Gibbs free-energy, as

σns =
∫ ∞

−∞



α|Ψ|2 +
1
2
β|Ψ|4 +

1
2m∗

∣

∣

∣

∣

(

−ih̄~∇ − 2e
c
~A
)

Ψ
∣

∣

∣

∣

2

+

(

h−Hc

8π

)2




=
∫ ∞

−∞



−1
2
β|Ψ|4 +

(

h−Hc

8π

)2


 ∝ (ξ − λ).

(1.93)

Under an externally applied magnetic field, the thermodynamic Gibbs potential

proves to be the appropriate choice for the free energy, since it presumes constant external

field and temperature, instead of magnetization and temperature, as in the case of

Helmoltz free energy. Moreover, it naturally removes energetic contributions provided by

the external field that, indeed, should not be taken into account for the domain wall energy

calculation. Because, Ψ is expected to be a solution of the Ginzburg-Landau equations,

the thermodynamic equilibrium state may be reduced to a balance between two terms: a

negative condensation energy and the positive energy cost of screening the magnetic field.

If the domain wall energy is positive, sustaining such surface is not energetically favorable

and the superconductivity might be destroyed abruptly, characterizing the type-I behavior.

On the other hand, the negative surface energy was considered, at that time, only an

evidence of type-II behavior, which would explain the soft decaying of magnetization by

the coexistence of normal and superconducting phases. In fact, the knowledge of type-II

phases was only understood after Abrikosov remarkable work. Roughly, one may presume

that superconductors with larger (lower) values of ξ might exhibit a slower (faster) recovery

of pure superconducting phase, reducing (increasing) the negative condensation energy

contribution. In contrast, superconductors with lower (large) values of λ might spend

less (more) energy for sustaining the field outside, reducing (increasing) the positive

contribution. Therefore, it is possible to anticipate that positive (negative) surface energies

may occur whenever ξ >> λ (ξ << λ), characterizing type-I (type-II) superconductors. A

sketch of both superconducting regimes is presented in Fig. 17.

In fact, the boundary between type-I and type-II behaviors depends exclusively

on the temperature independent ratio κ = λ(T )/ξ(T ), named Giznburg-Landau parameter.

Numerical calculations shows that κ = 1/
√

2 is the dividing value of both phases (OSBORN;

DORSEY, 1994). However, such a treatment is valid for bulk superconductors only. In fact,

whether applied field may be depicted by the critical field depends on the sample geometry.

In the former picture, the magnetic field at the surface of a superconductor was assumed

to be homogeneous and equal to the applied field. However, whenever demagnetization

effects are considered, the magnetic field might exceed the critical field at certain points,

so that even type-I superconductors might exhibit a mixed phase, formed by macroscopic

normal domains (PROZOROV, 2007; BRANDT; DAS, 2011). These states, however, were
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(a) type - I (b) type - II

Figure 17 – Magnetization as a function of the applied field for: (a) a type-I supercon-
dunctor and (b) a type-II superconductor.

experimentally found to depend on sample pre-history and therefore, do not characterize

a thermodynamical equilibrium phase.

At this point, it worths to recall the impossibility of making distinction between

different superconducting types following London’s theory, since the transition threshold

and the nature of each type strongly depend on the ratio between both superconducting

length scale. Rather, London model presume an abrupt change from normal to supercon-

ducting phase and therefore, it should only works for extremely type-II superconductors,

where coherence length becomes negligible (ξ → 0).

1.2.4 Vortex states and Abrikosov flux lattice

Even within longstanding experimental evidences obtained by Rjabinin and

Schubnikow, in the very beginning after Ginzburg and Landau predictions, type-II regime

was believed to be unphysical. In fact, there was a lack of experimental proof, since neither

Niobium nor most of type-II compounds superconducting phases known up to date were

explored at that time. So, it is not surprising that only in 1952, two years after the first

formulation of GL theory, the question about the existence of a second superconducting

type turned out to be relevant, exactly when it has been experimentally reported by

Zavaritskii (ZAVARITSKII, 1952) that, superconducting phases of pure metals thin films

does not obey type-I theory regime.

Still, the exact mechanism behind type-II annomalous magnetization remained

unexplained until 1957, when Abrikosov explored type-II regime theory within the Ginzburg-

Landau formalism (ABRIKOSOV, 1957). Actually, it was already expected the soft

decay of magnetization to be a consequence of a mixed conformation of normal and

superconducting domains. However, the exact form of such domains as well as its appearance

mechanism was still a mystery. In order to fill this lack of knowledge, Abrikosov considered

a superconducting cylinder in a longitudinal magnetic field. Restricting himself to external

fields very close to the upper critical field Hc2, where GL equation could be linearized

by neglecting the quadratic term, he made a parallel with quantum mechanical oscillator
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and obtained the upper critical field Hc2 in terms of the coherence length and penetration

depth without making any mention to the specific form of the order parameter

Hc2 =
Φ0

2πξ(T )2
=

√
2κHc. (1.94)

When compared with the thermodynamical critical field, the distinction between first and

second order phase transitions as a classifying criterion of superconducting types emerged.

In fact, differently from type-I materials, type-II superconductors shall experiment a

second order phase transition, since for κ > 1/
√

2 the upper critical field suppress the

thermodynamical critical field Hc2 > Hc. Interestingly, at Hc2, there should exist exactly

one quantum flux per unit area 2πξ2. Within the appropriate guess for the order parameter,

Abrikosov realized that vortices would carry these quantized flux lines, which would interact

with each other forming a periodic lattice. However, instead of square lattices investigated

in Abrikosov’s paper, triangular arrangement of vortices were soon realized to have lower

energy. Even so, these lattices received the name of Abrikosov’s lattice. A sketch of

Abrikosov’s vortex lattice is presented in Fig. 18 (MOSHCHALKOV; FRITZSCHE, 2011).

Figure 18 – Sketch of quantized vortices in a type-II superconducting sample. Figure
retrieved from Ref. (MOSHCHALKOV; FRITZSCHE, 2011).

Abrikosov’s results proved to be in a good agreement with Zavaritskii exper-

imental data and soon the existence of vortex lattices was exhaustively confirmed with

different experimental techniques (ESSMANN; TRÄUBLE, 1967; GAMMEL et al., 1987;

HESS et al., 1989; BOLLE et al., 1991; HARADA et al., 1992; MOSER et al., 1995; KIRT-

LEY et al., 1996). Remarkably, it is worth to mention the first experimental visualization

by Bitter decoration technique, illustrated in Fig. 19 (ESSMANN; TRÄUBLE, 1967),

where a paramagnetic powder was deposited above a dopped Pb superconducting rod.

Due to its magnetic nature, the powder particles prefer to sit on top of vortex core, where

the magnetic field penetrates the sample.
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Figure 19 – First image of Abrikosov vortex lattice in a dopped Pb sample using Bitter
decoration. Figure retrieved from Ref. (ESSMANN; TRÄUBLE, 1967).

1.2.5 BCS theory

Despite strong evidences of an electronic condensation behind superconductivity

phenomenon, the idea of breaking particle symmetry properties remained cumbersome

for many years. Still, a microscopic theory was required. Only in 1957, a mechanism of

electronic coupling proposed by Bardeen, Cooper and Schriffer was able to model single-gap

bulk superconductors as a condensation of bosonic electronic pairs. The coupling of the

so-called Cooper pairs was supported by previous works that suggested the existence

of an electronic attraction mediated by the presence of phonons in the superconducting

crystal (FRÖHLICH, 1950). According to the electron-phonon interaction model, the

lattice of positively charged atoms is deformed due to the presence of electronic charges in

Fermi levels, producing positively charged quasiparticles which are dragged behind the

electric charges, as illustrated by in Fig 20. In fact, the time-scale of lattice deformation,

τD = 1/ωD, governed by Debye frequency ωD, is much larger than the time-scale of

electrons moving at the Fermi velocity h̄/EF , which means that the electric charge is no

longer there when the distortion takes place.

e1

e2

Figure 20 – Mechanism behind electronic attraction in an ion lattice. Due to the polar-
ization cloud left by an electron traveling through the ion lattice, a second
electron may experience a net attractive interaction. Figure made by the
author, based on a Wikipedia image.
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1.2.5.1 Revisiting the non-interacting Fermi-gas at T = 0

In the absence of lattice deformations, the problem is reduced to the non-

interacting electron model, where the ground state is a filled Fermi sea with each state

being occupied by only one electron. With electron-electron interactions ignored due to

the Pauli’s exclusion principle, the non-interacting Fermi gas may be described by the

single-particle Hamiltonian

Ĥ =
P̂ 2

2m
+ V (~r), (1.95)

where V (~r) is an infinitely periodic potential produced by lattice ions. The eigenstates of

such a periodic Hamiltonian are given by

φk(~r) =
1√
V
ei~k·~r, (1.96)

where V = LxLyLz = L3 is the box volume and ~k is the wave vector. Because the wave

function must be periodic, it follows that kx,y,z = 2πnx,y,z/L in order to obey the periodic

boundary conditions, where nx,y,z are integers. The allowed energy levels are, therefore, of

the form

ǫnx,ny ,nz
=

h̄2π2

2mL2
(n2

x + n2
y + n2

z). (1.97)

Each state is therefore, completely determined by their corresponding wave-vectors and

has an average volume in phase space given by ∆k = (2π/L)3. In the thermodynamical

limit, where V → ∞ and N → ∞, ∆k → 0 and considering the electron spin S the density

of states becomes

D(E) =
2S + 1

2π2

(2m
h̄2

)3/2

E1/2. (1.98)

Within the constraint of fixed number of particles N , the Fermi energy EF of the non-

interacting electron gas at T = 0 is provided by

n =
N

V
=
∫ ∞

0
f(E)D(E)dE

=
∫ EF

0
D(E)dE

=
(2m
h̄2

)3/2 1
2π2

2
3
E

2/3
F ,

(1.99)

where f(E) is the occupation probability of the space orbital which is equal to unity for

energies E lower than the chemical potential µ and zero otherwise.

1.2.5.2 Cooper pairs

At finite temperatures, however, excitations might emerge with energies of the

order of kBT . In general, these excitations may be described by means of two process: (i)

First, a particle in a filled state below the Fermi surface is annihilated and, subsequently,

(ii) the creation of a particle in an unfilled state above the Fermi level. Their origin lies on
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a continuous process of absorption and emission of phonons. In a first approach, lattice

deformations may thus be understood as a superposition of these process, where the

net effect is transferring momentum h̄~q from one electron to the other. In fact, through

scattering theory, it can be shown that an electron in a state ~k can undergo into a quantum

transition to ~k′ state mediated by the absorption (emission) of a phonon with momentum

~q = ~k−~k′. As pointed out by Fröhlich (FRÖHLICH, 1950), this phonon exchange between

electrons may produce an effective attractive interaction between electrons near the Fermi

surface.

The mechanism behind lattice deformation can thus be well understood through

the electron-hole model within the Fermi sea background. In such model, the removed

particle with momentum ||~p′|| < ||~pF || and energy E ′ < EF creates an excitation, named

a hole, with momentum −~p′ and energy ǫ−~p′ = EF − E ′. On the other hand, the energy

involved when an extra electron with momentum ~p > ~pF and energy E > EF is added,

is given by ǫ~p = E − EF . Using the free-particle spectrum, this can be summarized as

following

e~p =







p2/2m− EF if p > pF

EF − p2/2m if p < pF

, (1.100)

Instead of electron-hole model, however, Cooper’s approach deals with two extra electrons

added slightly above the Fermi surface, with momenta h̄k1 and h̄k2. Regardless of the

nature of an attractive interaction between these extra electrons, its consequence should

be understood by the two-body Hamiltonian
[

p2
1

2m
+

p2
2

2m
+ V (~r1 − ~r2) − (ǫ+ 2EF )

]

Ψ(~r1σ1, ~r2σ2) = 0, (1.101)

where ~r1, ~r2, σ1, σ2 are the space and spin coordinates, ǫ is the energy of the paired

electrons relative to the Fermi level EF = h̄2k2
F/2m and V (~r1 − ~r2) accounts for the

effective interaction between the extra electrons. In contrast, electrons at the Fermi sea

shall interact only via Pauli exclusion principle and, in the end, one can always express

the two-particle wave-function of extra electron as

Ψ(~r1σ1, ~r2σ2) = ei~kcm· ~Rcmϕ(~r1 − ~r2)φspin
σ1,σ2

, (1.102)

where ~Rcm is the center of mass and h̄~kc its total momentum. Due to phonon exchange, both

extra electrons are continuously scattered, changing their wave vectors, which, according

to the momentum conservation law can be mathematically expressed by

~k1 + ~k2 = ~k1

′
+ ~k2

′
= ~K, (1.103)

where ~kcm = ~K is the conserved quantity during the scattering process. Because we are

interested in the lowest energy state, motion of the center of mass must be neglected

h̄ ~K = 0, so that ~kcm = 0 and ~k1 = −~k2. The two-electron model proposed by Cooper
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becomes then equivalent to an electron-hole system. On the other hand, the spin wave

function can be either singlet, with S = 0, or, triplet, where, S = 1. However, apart from

some exception, most of known superconductors exhibit singlet cooper pairs, so we shall

assume that

φspin
σ1,σ2

=
1√
2

(| ↑↓〉 − | ↓↑〉) . (1.104)

To obey the anti-symmetry character of a fermionic wave-function, for a singlet state, the

relative coordinate wave-function must be even, ϕ(~r1 − ~r2) = ϕ(~r2 − ~r1). Expanding it in

Bloch waves, the wave-function can be expressed as

Ψ(~r1, ~r2) =
1
V

∑

~k

g(~k)ei~k·(~r1−~r2), (1.105)

where the sum is restricted to pairs with ~k = ~k1 = −~k2 and g(~k) are expansion coefficients

that provide the probability of finding one electron in state ~k and the other in −~k. Because

the momentum transfered by phonons is limited by Debye frequencies ωD, it follows, from

energy conservation, that g(~k) = 0 for E~k > EF + h̄ωD, where E~k is the unperturbed free

electron energy. Also, due to Pauli’s exclusion principle, the extra electron may not occupy

a state below the Fermi energy and, therefore, g(~k) = 0 for E~k < EF . It turns out, from

Schrödinger equation, that
(

2E~k − ǫ− 2EF

)

g(~k) +
∑

~k′

V~k~k′g(~k′) = 0, (1.106)

which holds for EF < E~k, E~k′ < EF + h̄ωD. Here, V~k~k′ is the effective interaction in

momentum representation. Instead of using the true interaction potential, however, the

problem is better reduced by assuming the simple picture where the interaction is attractive

and independent of ~k in the small energy shell around the Fermi level, V~k~k′ = −V0, with

V0 > 0. In order to determine whether electron pairs may form a bound state, with

E < 2EF , one may sum Eq. (1.106) over all ~k states and apply the thermodynamic limit,

where the sum is then replaced by an integral. The result may be summarized as

1 = V0

∫ EF +h̄ωD

EF

D(E)
2E − ǫ− 2EF

dE, (1.107)

where D(E) is the electronic density of states for one spin direction. Because the integral

extends only over a narrow spheric shell defined between the limits EF and EF + h̄ωD, the

density of states D(E) may be taken as a constant and therefore, Eq. (1.107) becomes

1 = V0D(E)ln

(

ǫ− 2h̄ωD

ǫ

)

(1.108)

or

ǫ =
2h̄ωD

1 − e2/V0D(E)
. (1.109)

The bound state becomes energetically available when the energy contribution of paired

electrons is lower than that of a fully occupied Fermi sea or, mathematically, when
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ǫ = E − 2EF < 0. The bound state condition is achieved when V0D(E) << 1, which

accounts for the weak coupling limit. In fact, in this regime, Eq. (1.109) may be reduced

to

ǫ ≈ −2h̄ωDe
−2/V0D(E), (1.110)

which is negative and, therefore, favors the Cooper pairs formation. This result may also

be achieved under the second quantized formalism, with the Cooper-pair added to the

Fermi sea represented by the state vector

|ΨCP 〉 =
∑

~k

g(~k)c†
~k↑c

†
~k↓|ΨN〉 (1.111)

and the second quantized Hamiltonian governing eigenstates of paired system given by

Ĥ =
∑

~k

E~k

(

c†
~k↑c~k↑ + c†

−~k↓c−~k↓

)

+
∑

~k

∑

~k′

V~k~k′c
†
~k↑c

†
−~k↓c−~k′↓c~k′↑, (1.112)

where c†
~k↑ (c~k↑) and c†

~k↓ (c~k↓) respectively create (annihilate) electrons with spin up and

down in the state ~k and |ΨN〉 denotes the normal ground-state of a free-electron metal,

which, in turn, may be expressed as

|ΨN〉 =
k<kF
∏

~k

(c†
~k↑c

†
~k↓)|0〉. (1.113)

1.2.5.3 The BCS theory

The instability of the Fermi sea under the attractive electronic interaction

mediated by phonons is the background theory behind superconductivity. However, effects

of the Cooper pairs prediction could only be understood by the many-body theory. In

fact, once the energy is reduced by a Cooper pair formation, more electrons near the new

Fermi energy may be expected to group in pairs, requiring a many-particle description.

Because these pairs behave as particles with zero total spin, it would then be possible

to write down a coherent state of theses electronic pairs. Within this purpose, because
~k state can be either occupied or unoccupied by a Cooper pair, Schrieffer suggested a

variational ground-state wavefunction made of a linear combination between the vacuum

state |0〉 and the state c†
~k↑c

†
~k↓|0〉, occupied by a Cooper pair

|ΨS〉 =
∏

~k

(

u~k + v~kc
†
~k↑c

†
~k↓

)

|0〉, (1.114)

where u~k and v~k are variational parameters representing the probability amplitude of

both states and must be determined under the energy minimization process, within the

normalization constraint u2
~k

+ v2
~k

= 1. Still, it is worth to mention that the state proposed

by Schrieffer recovers the normal metal state in the particular case where u~k = 0, v~k = 1 for

k < kF and u~k = 1, v~k = 0 for k > kF . Finally, with the proper variational ground-state,
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the problem was reduced to minimize the Hamiltonian Ĥ within the constraint of fixed

number of particles,

ES(ΨS) =
〈ΨS|ĤBCS|ΨS〉

〈ΨS|ΨS〉 (1.115)

where ĤBCS is the Bardee-Cooper-Schrieffer many-body Hamiltonian for Cooper pairs

and is given by

ĤBCS =
∑

~k

ǫ~k

(

c†
~k↑c~k↑ + c†

−~k↓c−~k↓

)

+
∑

~k

∑

~k′

V~k~k′c
†
~k↑c

†
−~k↓c−~k′↓c~k′↑ (1.116)

and ǫ~k = E~k − µ accounts for the single particle energy with respect to the Fermi level.

Using variational ground-state function, after some straightforward calculations, one may

find

ES(ΨS) = 2
∑

~k

ǫ~kv
2
~k

+
∑

~k

∑

~k′

V~k~k′u~kv~ku~k′v~k′ (1.117)

Because u~k and v~k must obey the constraint u2
~k
+v2

~k
= 1, there must be only one independent

variable in the system. Under a polar transformation: u~k = cos θ~k and v~k = sin θ~k , an

independent variational parameter θ~k is obtained and the Euler-Lagrange equation of

motion can be achieved for every ~k,

2ǫ~k sin 2θ~k +
∑

~k′

V~k~k′ cos 2θ~k sin 2θ~k′ = 0 (1.118)

Replacing back u~k and v~k parameters, the Euler-Lagrange equation becomes

2ǫ~ku~kv~k − ∆~k(u2
~k

− v2
~k
) = 0 (1.119)

where ∆~k is given by

∆~k = −
∑

~k′

V~k~k′u~k′v~k′ (1.120)

Under the constraint condition, u2
~k

+ v2
~k

= 1, the solution of Eq. (1.119) is found to be

u2
~k

=
1
2



1 +
ǫ~k

√

ǫ2
~k

+ ∆2
~k





v2
~k

=
1
2



1 − ǫ~k
√

ǫ2
~k

+ ∆2
~k





(1.121)

Because they follow from the minimization process, these parameters enable

us, at least in the weak interacting limit, to evaluate the condensation energy, defined

as the energy difference between superconducting and normal states. In fact, under the

energetic limits −h̄ωD < ǫ~k < h̄ωD, where V~k~k′ is reduced to a constant averaged potential
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−V0, with V0 > 0, the condensation energy becomes

ES − EN = 2
|ǫ~k

|<h̄ωD
∑

~k

ǫ~kv
2
~k

+
|ǫ~k,~k′ |<h̄ωD
∑

~k,~k′

V~k ~k′u~kv~ku~k′v~k′ − 2
−h̄ωD<ǫk<0

∑

~k

ǫ~k

=
|ǫ~k

|<h̄ωD
∑

~k

[

2ǫ~kv
2
~k

− ∆0u~kv~k

]

−
−h̄ωD<ǫk<0

∑

~k

2ǫ~k

=
|ǫ~k

|<h̄ωD
∑

~k



ǫ~k −
2ǫ2

~k
+ ∆2

0

2
√

ǫ2
~k

+ ∆2
0



−
−h̄ωD<ǫk<0

∑

~k

2ǫ~k.

(1.122)

where ∆~k was also taken as a constant, ∆0, inside the energetic spherical shell −h̄ωD <

ǫ~k < h̄ωD and 0 outside. Finally, in the thermodynamic limit, where sums may be replaced

by integrals, the energetic difference is reduced to

ES − EN = D(E)
[

h̄2ω2
D − h̄ωD

√

h̄2ω2
D + ∆2

0

]

(1.123)

or, for ∆ ≪ h̄ωD,

ES − EN = −1
2
D(E)∆2

0 (1.124)

One may therefore conclude that, there exist an energy gap ∆0 separating superconducting

and normal states and, because the superconducting state has lower energy electrons

indeed may prefer to group in pairs forming a bound state. In 1959, extending up the BCS

theory in order to account for externally applied magnetic fields, Gor’kov has shown that

the Ginzburg-Landau theory is just a limiting case of the BCS theory near the critical field,

where the order parameter was found to be proportional to the band gap ∆0 (GOR’KOV,

1959).

1.3 Our goals

For a long time, theories of superconductors and Bose-Einstein condensates

were investigated separately. However, a very close link can be observed between the

Gross-Pitaevskii theory of Bose-Einstein condensation and the Ginzburg-Landau theory

of superconductivity. In fact, in both cases, the main equation governing the particles

density is a non-linear Schrödinger-like equation. More than this, both subjects are indeed

a condensation phenomena, differing only in the kind of particle which is condensed. In

this thesis, we took advantage from the similarity of both subjects, to investigate, using

similar models, emergent vortex behavior in superconducting and superfluid systems with

single and multiple quantum condensates. In special, we attempt to explain, through

the vortex-vortex interaction, recently obtained vortex states in both superconducting

thin films and multi-component BECs which are not covered by current theory, as they

suggest non-monotonic behavior. Also, we provide further information about vortex inner

structures with suggested approximated behavior.



Part I

Bose-Einstein condensates
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2 Bound vortex states and exotic vortex lattices in

multi-component BECs: the role of the vortex-vortex

interaction

We numerically study the vortex-vortex interaction in multi-component homo-

geneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii

theory. We provide strong evidences that pairwise vortex interaction captures

the underlying mechanisms which determine the geometric configuration of the

vortices, such as different lattices in many-vortex states, as well as the bound

vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss

and apply our theoretical approach to investigate intra- and inter-component

vortex-vortex interactions in two- and three-component Bose-Einstein conden-

sates, thereby shedding light on the formation of the exotic vortex configurations.

These results correlate with current experimental efforts in multi-component

Bose-Einstein condensates, and the understanding of the role of vortex interac-

tions in multiband superconductors.

2.1 Introduction

The realization of Bose-Einstein condensates (BECs) has brought about a

suitable research environment for investigating general properties of superfluidity and

superconductivity with a high degree of control and versatility (ANDERSON et al., 1995;

BRADLEY et al., 1995; DAVIS et al., 1995). This has led vortex states and their dynamics,

key concepts for both superfluidity and superconductivity, to the rank of some of the most

investigated topics in low temperature physics (YARMCHUK; GORDON; PACKARD,

1979; FETTER, 2009b; COOPER, 2008). Remarkably, since the first observation of

vortices (MADISON et al., 2000a; MADISON et al., 2000b) and, subsequently, the

formation of highly-ordered vortex lattices in BECs (ABO-SHAEER et al., 2001), much

theoretical and experimental effort has been made to push further the understanding

of these systems. Specially, recent advances in experimental techniques have led to the

realization of condensates with several different types of particle-particle interaction, making

this research field even broader. In the spotlight, theoretical results on dipolar (COOPER;

REZAYI; SIMON, 2005; ZHANG; ZHAI, 2005) and spin-orbit-coupled (RADIĆ et al.,

2011) BECs exhibit rich ground-state phases, with bubbles, density stripes and various

vortex lattice geometries. Besides the already mentioned possibilities, further remarkable

physical phenomena to be addressed with ultracold atomic systems include, for example,

quantum-fluid turbulence in BECs (HENN et al., 2009), multicharged vortices (TELES et
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al., 2013) and vortex-antivortex lattices in superfluid fermionic gases (BOTELHO; MELO,

2006).

With the recent prospects of producing condensates with a large number of

components and different types of interaction (LU et al., 2011; AIKAWA et al., 2012),

vortex-states in multi-component condensates become even more important. Indeed, recent

theoretical results on vortex lattice conformations have shown that multi-component Bose-

Einstein condensates are far from being just a trivial extension of the single component

case. In fact, adding a component brings a diversity of possible configurations never

found in a one-component system, such as amorphous conformations, square lattices and

bound states, including overlapped vortices, vortex dimers and molecules (KASAMATSU;

TSUBOTA; UEDA, 2004; ETO; NITTA, 2012; CIPRIANI; NITTA, 2013; LIU et al., 2014;

KUOPANPORTTI; HUHTAMÄKI; MÖTTÖNEN, 2012). Some of these conformations

suggest that the interaction between vortices can be nonmonotonic with respect to the inter-

vortex distance. Unfortunately, to date, the interaction between vortices in the simplest

multi-component BEC is known only in specific limits of scale, by either assuming inter-

vortex distances much greater than the healing length (ETO et al., 2011) or considering

the interaction energy near the vortex peak in the Thomas-Fermi regime (AFTALION;

MASON; WEI, 2012). As it turns out, the asymptotic behavior does not account for

all conformations found (KUOPANPORTTI; HUHTAMÄKI; MÖTTÖNEN, 2012; ETO;

NITTA, 2012; CIPRIANI; NITTA, 2013; LIU et al., 2014). Furthermore, the generalization

of these analytical approaches to more complex cases with more components or even

with a different kind of inter-component particle-particle interaction seems to be highly

non-trivial.

Within this context, we investigate in the present paper the origin of these

unusual quantized vortex states by focusing on the pairwise vortex-vortex interaction

(CHAVES et al., 2011b; CHAVES et al., 2011a; DANTAS et al., 2015). We consider

homogeneous BECs, which possess translation invariance. On the one hand, this is impor-

tant in itself, since the key properties of the experimentally more relevant harmonically

trapped BECs in the large particle number regime bear close resemblance to those of

their homogeneous counterparts (LIMA; PELSTER, 2012). On the other hand, the recent

achievement of a condensate in a uniform potential (GAUNT et al., 2013) enables the

experimental verification of our predictions. The experimental progress has already led to

the detection of extended phase coherence in a uniform quasi-two-dimensional Bose gas

(CHOMAZ et al., 2015). In our approach, constraints are imposed on the Gross-Pitaevskii

(GP) formalism, allowing for fixing the vortices in desired positions for further analysis.

In other words, vortices no longer arise naturally from the GP equation itself, but are

instead placed manually in the position of interest. This brings about the possibility of

calculating the interaction energy between vortices as a function of their distance. Then,

by investigating conformations which minimize the corresponding energy, we are able to
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present a simple physical picture of the underlying phenomena which lead to elsewhere

observed vortex states.

2.2 Vortex states in BECs

The existence of a macroscopic wave function associating the superfluid flow

with its phase gradient provides an unique environment to glimpse the macroscopic

manifestation of quantum mechanics in fluid dynamics. The contrast between classical

and quantum hydrodynamics emerges from Bohr-Sommerfeld quantization rule, imposed

by the single-valued character of the wave-function. Its consequences may be easily seen

in a rotating frame, where the phase around a closed loop must return on itself if the

surface is singly connected, or be increased by a multiple of 2π for multiply-connected

surfaces. The later represents the only way of a superfluid to rotate: by forming topological

defects, named vortices. These topological defects represents an unambiguous signature of

quantum character of superfluidity and therefore, with the advent of BECs, became the

target of a huge portion of theoretical and experimental researches in ultra-cold atomic

gases.

2.2.1 Single-component BECs

The first experimental observation was made in a stirred Bose-Einstein con-

densate of 87Rb confined in a magnetic trap (MADISON et al., 2000a; MADISON et al.,

2000b) (see Fig.21), where laser beams were used to engineer the condensate phase and

set/control the superfluid velocity.

Figure 21 – Stirred Bose-Einstein condensation before vortex entry in panels (a) and (c).
First vortex observation image after exceed the critical rotation frequency in
(b) and (d). This figure was retrieved from Ref. (MADISON et al., 2000a).
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In the absence of external confining potentials, the single vortex structure may

be modeled analytically under the Gross-Pitaevskii formalism, with order parameter

Ψ(~r) = eilφf(ρ, z), (2.1)

and total free-energy,

E =
∫

d~r







h̄2

2m





(

∂f

∂ρ

)2

+

(

∂f

∂z

)2


+
l2h̄2f 2

2mρ2
+
g

2
f 4







. (2.2)

Here, the phase φ is identified as the polar angle around the vortex. Notice that, whenever

flux quantization is taken into account, l 6= 0, singularities on superfluid particle density

may appear at ρ = 0, otherwise the second term derived from kinetic energy contribution

would diverge at the origin. Around this singularity, there should be an azimuthal superfluid

flow, with velocity vφ = lh̄/mρ. Because the irrotational flow character is lost, the curl of

the velocity field should be redefined to

~∇ × ~v =
lh

m
δ(ρ)ẑ, (2.3)

in order to account for vortex entry. The energy barrier that a vortex needs to overcome

in order to step into the system may be derived from the Ginzburg-Landau equation for

the amplitude f of the order parameter,

− h̄2

2m

[

1
ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)

+
∂2f

∂z2

]

+
h̄2

2mρ2
l2f + gf3 = µf. (2.4)

Far from the vortex core, where the order parameter becomes uniform and the third

term may be neglected, the wavefunction amplitude is given by f∞ = (µ/g)1/2. On the

other hand, outside the long-range limit, the solution is only achieved numerically. Still,

the energy associated to a singly quantized vortex can be estimated from the the energy

difference between E and the energy associated to an uniform gas, which yields

Ev ≈ πnsh̄
2

m
ln

(

R

ξ

)

, (2.5)

where ns is the density of superfluid particles, ξ =
√

h̄/2mng is the length scale over

which order paramenter variations may occur and R is an upper integration limit of the

free-energy expression, included to avoid divergence of the angular kinetic energy term.

The former result may also be generelized in order to account for vortices with more than

one flux quanta (giant-vortices), which can be roughly approximated to

El
v =

πnsh̄
2l2

m
ln

(

R

lξ

)

. (2.6)

Whether vortices might stick together to form giant-vortices depends only on

the energy difference El
v −lEv. Because giant-vortices have higher energy than the collection
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of singly quantized states, vortices should repel each other in order to avoid overlapping.

Using a double-vortex structure ansatz Ψ = eil1φeil2φf and assuming inter-vortex distances

much larger than the coherence length d >> ξ, the long-range vortex-vortex interaction

energy is found to be well approximated by

Eint =
2πl1l2h̄

2n

m
ln
(

R

d

)

, (2.7)

where R >> d >> ξ. Due to the repulsive nature of interaction, highly ordered lattices

might be formed with the emergence of multiple vortices in the condensate. Its first

observation was made by Abo-Shaeer et al. (ABO-SHAEER et al., 2001), where Abrikosov

lattices were found for different vortex densities (see Figure 22)

Figure 22 – Observation of Abrikosov vortex lattices in a stirred Bose-Einstein condensa-
tion for (a) 16, (b) 32, (c) 80 and (d) 130 vortices. This figure was retrieved
from Ref. (ABO-SHAEER et al., 2001).

2.2.2 Multi-component BECs

Figure 23 – Vortex states obtained for different values of inter-component coupling in a two-
component Bose-Einstein condensate. Figure retrieved from Ref. (KUOPAN-
PORTTI; HUHTAMÄKI; MÖTTÖNEN, 2012)

Vortex structure and their dynamics in single-component BECs are nowadays

considered to be well understood. However, there is still a lack of knowledge concerning

vortex properties in multiple-component condensed systems. In fact, they exhibit a much

more rich phase diagram and the mechanism behind most of vortex states remains

misunderstood. For instance, it is worth to revisit the remarkable theoretical work of
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Kuopanportti (KUOPANPORTTI; HUHTAMÄKI; MÖTTÖNEN, 2012), where triangular

and square vortex lattices were found and new states such as intra-component vortex dimers

and giant-vortex states were predicted in a two-component Bose-Einstein condensate with

contact interaction between condensed particles. Such results are presented in Fig.23. Here,

we try to understand the crossover between these vortex states through the vortex-vortex

interaction calculation.

As we shall see further, differently from single component BECs, the exact

form of the vortex lattice does not depend only on the nature of the interaction played

between vortices of different and same components. Rather, it may also depend on the

mass distribution between different components, as it has strong influence on the number of

vortices in each condensate. Subsequently, by including a third-component and considering

an internal coherent coupling between the components we reproduce vortex molecules

found in Ref. (ETO; NITTA, 2012) (see Fig. 24).

Figure 24 – Triangular conformation of vortex molecules obtained in coherently coupled
three-component Bose-Einstein condensate. Figure retrieved from Ref. (ETO;
NITTA, 2012)

2.3 Our theoretical approach

We begin our consideration from the Gross-Pitaevskii energy functional for

an Nc-component homogeneous BEC. When set into rotation above a given critical

angular velocity, superfluids acquire angular momentum in the form of vortices (BUTTS;

ROKHSAR, 1999; LINN; FETTER, 1999). In turn, these can be represented by nodes in

the wave-function Ψ (FEYNMAN, 1955). Here we adopt a different approach and include

vortices directly in the form of a node, disregarding rotation. Therefore, only contributions

from the kinetic and interaction energies should enter in the energy functional. Moreover,

since vortices will be placed manually in fixed positions, we also do not need to account for

the energy provided by the angular momentum of the system, Lz, which is only necessary

to allow the vortex formation in the Gross-Pitaevskii theory for a rotating BEC. Then, in

the present case, the energy density functional reads

E =
Nc
∑

α=1

{

h̄2

2mα

|∇Ψα|2 +
gα

2
|Ψα|4

}

+ Vij, (2.8)



82

where the components are labeled by the index α. Here, the first and second terms,

respectively, account for the usual kinetic and contact interaction energies within each

component. In addition, the term Vij stands for the inter-component coupling energy

density.

In what follows, we will be interested in cases where Vij can be written as

Vij =
Nc
∑

i

Nc
∑

j>i

gij|Ψi|2|Ψj|2 − wij

(

ΨiΨ∗
j + ΨjΨ∗

i

)

, (2.9)

where the first term stands for the contact interaction and the last one represents the Rabi

term. The latter characterizes the internal coherent coupling between the components

and has been already experimentally implemented by inducing an external driving field,

which allows particles to move from one hyperfine spin state to another (MATTHEWS

et al., 1999b). These interaction terms are controlled by the parameters gα, gij and wij,

respectively. However, it is convenient to redefine them in order to have dimensionless

units of energy and length. Therefore, for a two-dimensional system, we introduce the units

E1 = h̄2ρ̄2
1/2m1 for energy density and ξ = 1/

√
ρ̄1 for distances. Here, ρ̄1 is the average

particle density of the first species. With E = E/E1 and ~r = ~r′/ξ, the energy density can

be written in its dimensionless form as

E =
Nc
∑

α=1

[

M1α|∇ψα|2 +
γα

2
|ψα|4

]

+
Nc
∑

i

Nc
∑

j>i

[

γij|ψi|2|ψj|2 − ωij

(

ψiψ
∗
j + ψjψ

∗
i

)]

,

(2.10)

where ψα = ξΨα is the dimensionless order parameter. This procedure leads to the

definition of the mass ratio M1α = m1/mα, the dimensionless contact interaction strengths

γα = gαρ̄
2
1/E1 and γij = gij ρ̄

2
1/E1, and the dimensionless Rabi frequencies ωij = wij ρ̄1/E1.

The contact parameters can be well controlled in experiments by means of Feshbach

resonances and appropriate values should enable the visualization of properties of interest.

In order to measure the interaction potential between two vortices, we consider

the total energy as a function of the inter-vortex distance. This is justified because the

system is free from external contributions, so that the vortex position only affects the

vortex-vortex interaction. Moreover, calculating the system energy as a function of the

distance between vortex pairs requires the vortex fixing, which is achieved by fixing

the 2π whirl of the phase of the condensate wave function, thereby introducing a node

in it. For one vortex in the α-component, for example, the wave function is given as

ψα(x, y) =
√
Nαe

inkθkfα(x, y), with Nα the number of particles in the α-component and

nk the corresponding winding number, i.e., the quanta of circulation carried by the vortex.

In addition, the angle θk is defined around the locus of the k-th vortex. Correspondingly,

for two vortices, we have ψα(x, y) =
√
Nαe

in1,αθ1,αein2,αθ2,αfα(x, y). Since the two-vortex
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structure is not circularly symmetric, Cartesian coordinates are an appropriate choice,

with eink,αθk,α is written as

eink,αθk,α =

(

xk,α + iyk,α

xk,α − iyk,α

)nk,α/2

, (2.11)

where ~rk,α = (xk,α, yk,α, 0) stands for the in-plane position vector with origin at the center

of the vortex k. As a consequence of the fixed circular phase around the vortex, singularities

in the amplitudes appear naturally from the energy functional minimization.

We remark that the present ansatz is general enough to allow for considering

components whose vortices might differ both in position and winding number. This is

important in order to obtain the total energy of the system in the presence of the inter-

component coupling as a function of the relative distance of the vortices and then verify

whether one has found the lowest energy configuration or not. Indeed, in the absence of

inter-component coupling γij = ωij = 0, we have found that the single-vortex state is

infinitely degenerate and the respective position of vortices in different components is

irrelevant. This supports our statement above that the total energy depends only on the

inter-vortex distance. In the presence of an inter-component coupling, however, vortices in

different components will rather stay on top of each other (separate away) for attractive

(repulsive) effective vortex-vortex interaction potentials.

With the adequate ansatz for the condensate wave function at hand, we minimize

the total energy, which is obtained by integrating in space the quantity E −∑

µα|ψα|2,
with respect to fα. Here, µα stands for the chemical potential of the the α-component

and is introduced to keep the corresponding number of particles constant, which means

that we are not taking population transfer between different hyperfine spin states into

account. The minimization process is implemented by numerically solving the set of Nc

Euler-Lagrange equations

M1αKαfα + µαfα − γαNf
2
αfα

+
Nc
∑

i

Nc
∑

j>i

ωijΘij (fiδα,j + fjδα,i)

−Nγij

(

f 2
j fiδi,α + f 2

i fjδj,α

)

= 0,

(2.12)

where

Θij = cos [(n1iθ1i − n1jθ1j) + (n2iθ2i − n2jθ2j)]. (2.13)

At this point, we have chosen the same number of particles for all components by setting

Nα = N . Notice that Eq. (2.12) has the same form of the Gross-Pitaevskii equation and

we shall call it constrained GP equation (CGP). One important difference, however, should

be emphasized: the term

Kα = ∇2 −
(

Xα
2

+ Yα
2
)

, (2.14)
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which arises from the kinetic contribution of the energy density functional, carries two

extra terms Xα and Yα, allowing us to manually set the coordinates of fixed vortices as

well as their winding numbers. These terms are given by

Xα =
n1,αx1,α

r2
1,α

+
n2,αx2,α

r2
2,α

, Yα =
n1,αy1,α

r2
1,α

+
n2,αy2,α

r2
2,α

.

Finally, we remark that a similar procedure has already been successfully

applied to superconductors in the framework of the Ginzburg-Landau theory (CHAVES et

al., 2011a; CHAVES et al., 2011b).

2.4 Numerical Results

The numerical solution of the CGP equations is obtained considering a two-

dimensional rectangular system divided in a uniform square grid 4000 × 2000 with total

dimension 1000ξ × 500ξ, by using the finite-difference technique and a relaxation method

suitable for non-linear differential equations. This leads us to the lowest-energy vortex

structure that satisfies the constraint that vortices are placed in the fixed positions. The

obtained condensate amplitudes are then substituted back in the energy density, which

is numerically integrated, yielding the total energy U =
∫

E(ψα)dxdy (dimensionless in

units of E1 = E1ξ
2) of the corresponding vortex configuration. With the total energy as a

function of the vortex-vortex distance at hand, our theoretical approach will then be used

to investigate vortex-state solutions of the Gross-Pitaevskii equation in the presence of

rotation, reflecting the real experimental conditions under which vortices are generated.

In what follows, we present the results first for BECs with contact interaction

only, where we focus on the two-component case, and then also for coherently coupled

two- and three-component BECs. For simplicity, we took the same number of particles

per component for all situations, N = 5 × 104, as well as the intra-component couplings

(γ1 = γ2 = γ3 = 1). Since the investigation of the vortex-vortex interaction is performed

within the miscibility condition: γ1γ2 − γ2
12 > 0, the used inter-component coupling

parameters are within the upper and lower limits |γ12| < 1. We denote by Ui,j,k the total

energy for the case of i vortices placed in the first component, j vortices placed in the

second, and k vortices placed in the third (if considered).

2.4.1 Two-component BEC with contact interaction

Let us first consider the case of a two-component condensate, with two vortices

placed at (x, y) = (±d/2, 0) so that the distance between them is d. We shall consider

components with different masses, as this has been found to lead to unusual lattice

conformations in Ref. (KUOPANPORTTI; HUHTAMÄKI; MÖTTÖNEN, 2012). By

assuming a mass ratio of M12 = 2.0 between the different components, we plot in Fig. 25

the vortex-vortex interaction for different values of the inter-component coupling strength:
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γ12 = −0.20 (circles); γ12 = −0.45 (squares); γ12 = −0.75 (triangles); and γ12 = −0.98

(downward triangles). Fig. 25 (a) and (b) represent the intra-component vortex-vortex

interaction for the first and second component respectively, whereas Fig. 25(c) depicts the

inter-component vortex-vortex interaction.
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Figure 25 – Vortex-vortex interaction potentials, considering M12 = 2.0, for (a-b) two
vortices in the same component and (c) vortices in different components.
Colours and symbols denote different inter-component coupling strength:
γ12 = −0.20 (blue circles); γ12 = −0.45 (yellow squares); γ12 = −0.75 (red
triangles); and γ12 = −0.98 (green downward triangles).

It turns out that for a two-vortex configuration, the interaction potential is

always a monotonic function of the distance, where the attractive or the repulsive behavior

is determined by the properties of the particle-particle interaction. Nonetheless, one

interesting feature can already be identified at this level: for inter-component attraction,

increasing the corresponding interaction strength |γ12| weakens the intra-component vortex-

vortex repulsion. This can be understood in terms of the form of the amplitudes f(x, y).

Indeed, as the attractive inter-component interaction becomes stronger, the energy is

lowest for the largest possible superposition of the amplitudes, leading to a decrease in

the density of one component in the spatial region where the other one has a vortex.

Consequently, as |γ12| increases, these depletions should become more akin to vortices and

the repulsive nature of the intra-component vortex-vortex interaction is softened by the

depletion-vortex attractive interaction.

Before we explore the consequences of the depletion induced in one component

due to the presence of vortices in the other one, let us turn our attention to the mass ratio

M12. According to the Feynman relation of the vortex density in a rotating superfluid
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(FEYNMAN, 1955), the vortex density is proportional to the particle mass, according to

nv,α =
mαΩR

πh̄
, (2.15)

where ΩR is the angular rotation frequency of the condensate. Thus, for a mass ratio

of M12 = 2.0, it is natural to investigate situations where two vortices (one vortex) are

placed in the heavier (lighter) component. To this end, we have pinned a vortex in the

second component in the center of the mesh and have placed two further vortices in

the first component, separated by a distance d, as illustrated in Fig. 26 by a contour

plot of both components. In Fig. 26, colors represent the density occupation number for

both order parameters, and vortices coordinates are explicited as a function of the inter-

vortex distance d. In this case, the system energy is no longer a vortex-vortex interaction

potential. However, this conformation should enable the identification of possible bound

states provided by the competition between the inter-component and intra-component

interactions, such as dimers and giant vortices (SCHWEIGERT; PEETERS; DEO, 1998;

XU et al., 2011; CREN et al., 2011; AFTALION; DANAILA, 2004; DANAILA, 2005;

FETTER; JACKSON; STRINGARI, 2005; KASAMATSU; TSUBOTA, 2006; GEURTS;

MILOŠEVIĆ; PEETERS, 2008) in the same component. Notice the weaker density in one

component in the positions where the other component features a vortex, characterizing

the depletion effect discussed before.

(-d/2,0) (d/2,0)

(a)

0

|ψ1|
2

(0,0)

(b)

|ψ|max
2

|ψ2|
2

Figure 26 – The occupation number density contour plots for: (a) first component with
two vortices positioned at (−d/2, 0) and (d/2, 0) and (b) second component
with a single vortex in the center of the mesh. Notice the depleted density in
one component in the positions where the other component features a vortex.
The investigation of the system energy with respect to d for this conformation
enables us to identify possible bound states in a two-component Bose-Einstein
condensate with mass ratio M12 = 2.0.
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The total energy of this three-vortex configuration is plotted in Fig. 27 (a)

and (b), whereas Fig. 27(c-f) demonstrates the previously discussed density depletion for

several values of the relative interaction strength.
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Figure 27 – (a) Total energy for three vortices configuration U21, characterizing a binary
system with M12 = 2. The vortex in the second component is fixed in the center
of the mesh, whereas vortices in the first component are placed at symmetric
positions separated by distance d. (b) A magnification of the particular case
γ12=-0.98 shows that in the favored configuration, the two vortices in the
first component are located on top of each other, and on top of the vortex in
the second component. (c-f) Occupation number density of both components,
considering vortices separated by 100 ξ, for all cases considered in (a), where
the solid (dashed) line stands for the first (second) component.

From Fig. 27(a), one sees that for low values of |γ12| the energy is a monotonically

decreasing function with the distance d, indicating repulsion between the vortices in the

same component. However, this behavior is completely changed for γ12 = −0.98, where

the total energy turns into a monotonically increasing function, allowing vortices of the

same component to occupy the same position, thus, forming a giant vortex. Indeed, as one

can see in the magnification of this result in Fig. 27(b), the energy minimum corresponds

to a vanishing distance between the vortices in the same component. At this point, it

is evident that the depletion effect is the main cause for the behavioral change of the

effective interaction. In fact, the strong coupling between the components makes the intra-

component repulsive contribution less relevant than the inter-component vortex-vortex

interaction, and the attractive effective interaction is achieved for every distance d. In Fig.

27(c-f), the occupation number density for vortices separated by 100 ξ shows the depletion
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effect, where depletions become more akin to vortices for higher values of inter-component

particle coupling |γ12|. It is noticed that vortices become larger when γ12 is increased,

causing the vortex strong overlap illustrated in Fig 27(f). This effect depends on the

inter-component particle coupling and vortex density.

Before going into further details concerning vortex core, let us first analyze

how the effective interaction between vortices changes from repulsive to attractive, by

considering intermediate values of γ12 between γ12 = −0.75 and γ12 = −0.98. We have

found that, for γ12 = −0.90 and γ12 = −0.92, as illustrated in Fig. 28(a), the energy

curves still have repulsive characters, but they exhibit shoulders at finite distances, which

could indicate the formation of non-triangular lattices in these minima of the interaction

potential, despite the overall repulsive behavior. In Fig. 28(b), by setting γ12 = −0.95,

we have obtained a total energy which exhibits a non-monotonic behavior and acquires a

clear minimum at finite inter-vortex distance. This strongly indicates that the presence

of a vortex in one component can cause the formation of a bound state of two vortices

(dimer) in the heavier component, illustrated in Fig. 28(c). This results corroborates the

states obtained in numerical experiments of Ref. (KUOPANPORTTI; HUHTAMÄKI;

MÖTTÖNEN, 2012), where the Abrikosov lattice of vortex dimers in one component,

sitting on single vortices in the other, was found in a binary mixture.
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Figure 28 – (a) Total energy of a three vortex structure in a two-component BEC, for
γ12 = −0.90 (blue circles) and −0.92 (red squares). The curve bumps may lead
to non-triangular lattices, despite the overall repulsive behavior. (b) Particular
case of a triple-vortex structure with γ12 = −0.95. The minimum far from
the origin allows for the formation of dimers for specific vortex densities. (c)
Dimer configuration profile for γ12 = −0.95.
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In addition to effects caused in the vortex-vortex interactions, leading to

different lattice conformations, the depletion effect also leads to formation of vortices

with different core sizes according to the choice of the γ12 parameter. Actually, this was

pointed out before in Fig. 27(c-f), where more negative values of γ12 result in vortices

with larger core sizes. To investigate this dependence, in Fig. 29, by setting a vortex in

only one of the two components, the vortex core radius was measured for different values

of inter-component coupling, between γ12 = −0.90 and γ12 = 0.90. This was done by

measuring the distance between the center of the vortex and the point at which the order

parameter decreases by half of its long-range convergence value.
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Figure 29 – Vortex core size as a function of the inter-component coupling, for M12 = 2.0.
The blue solid line (red dashed line) represents the core radius of a vortex in
the first (second) component.

Since the components have different mass, in Fig. 29 we investigated this effect

for vortices in both components, where the core size for a first(second)-component vortex is

presented by the solid (dashed) line. It is observed that the more the two components are

coupled, the larger the vortex radii will be. This effect actually comes from the depletion

originated by the vortex depletion which contributes to an increased vortex size. For both

components, this behavior is qualitatively the same, suggesting that the different mass

causes simply a shift between two curves.

Let us at this point address the question of how realistic the present predictions

are from an experimental point of view. For example, a two species BEC with a tunable

interspecies interaction has already been produced from the mixture of 87Rb and 41K,

for which one has M12 ≈ 2.1 (THALHAMMER et al., 2008). In that particular study, a

Feshbach resonance around a magnetic field of B ≈ 79G allows for tuning a12 from positive

to negative values. For example, for 80.7G a12 ≈ −185a0 is reported, with a0 the Bohr

radius. This clearly opens up the possibility of obtaining the appropriate negative values

of γ12 needed to experimentally observe the predicted vortex states. We also remark that,

for a 87Rb-85Rb mixture, tunability of the interspecies interaction has already been used

to probe various mean-field regimes such as spatial separation as well as the formation of

long lived droplets (see Ref. (PAPP; PINO; WIEMAN, 2008)).
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2.4.2 Vortex dimers and trimers in coherently coupled BECs

In this subsection, we consider the presence of an internal coherent coupling of

the Rabi type between the different components. In order to do so, an extra term should

be added to the energy density functional, as pointed out in Sec. 2.3. For a system with

Nc components, the Rabi contribution in Eq. (2.9) can be rewritten in the form

−2
Nc
∑

i

Nc
∑

j>i

ωij|ψi||ψj| cos(θi − θj).

If the signs of ωij coefficients are all positive, the ground state energy is achieved when all

the phases θi are the same. Recalling that the phases fix the position of the vortices, this

means that vortices of different components would overlap, featuring an attractive potential.

On the other hand, by setting positive values for the contact coupling γij, a repulsive

inter-component vortex-vortex interaction emerges. The balance between these two types

of interaction can lead to molecular conformations of vortices. Unlike the previous case,

these bound states do not arise due to the mass difference between the components, but

due to the competing interactions induced by the Rabi contribution. To illustrate the

above argument, consider, for instance, the case with two components with equal masses

M1α = 1, with one vortex in each component.
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Figure 30 – Two-vortex inter-component interaction potential in the case of competing
contact and Rabi coupling, ω = 2.1 × 10−5 and M12 = 1, for several values of
γ12.

As illustrated in Fig. 30, a vortex dimer may be formed in the case of a short

range repulsive and long range attractive inter-component potential, as observed for

positive values of γij, where a minimum of interaction energy is found at finite inter-vortex

distance due to a competition between two types of inter-component interaction. On the

other hand, negative values of γ12 lead to an extended attractive interaction in the long

range.
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Let us now address the question of the formation of vortex trimers in a three-

component condensate, i.e., bound states consisting of three vortices. In an attempt to

reduce the excessive number of parameters, we shall consider the case with ω12 = ω13 =

ω23 = ω and γ12 = γ13 = γ23 = γ. This choice also helps in finding the minimum energy

configuration, since in this case, for symmetry reasons, it is expected that the three vortices

are arranged equidistantly. Thus, we manually placed the vortices at the vertices of an

equilateral triangle of side d, whose loci then read S1 = (0,
√

3d/4), S2 = (−d/2,−
√

3d/4)

and S3 = (d/2,−
√

3d/4). This is illustrated in Fig. 31, where contour plots of the densities

of the three components are shown. Notice the presence of the depletion effect in this case

as well. Subsequently, we investigated the minimum energy conformation as a function of

d for several values of ω.
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Figure 31 – The occupation number density contour plots of: (a) first component with a
vortex positioned at (0,

√
3d/4); (b) second component with a vortex positioned

at (−d/2,−
√

3d/4) and ; (c) third component with a vortex positioned at
(d/2,−

√
3d/4).

In Fig. 32(a), where we considered γ = 0.45, there is indeed a finite value dmin

of the triangle side that minimizes the interaction energy U111. Moreover, Fig. 32 (b) and

(c) display power law dependencies of dmin in ω, for γ = 0.45 and γ = 0.60, respectively,

which explains the vortex trimer configurations observed e.g. in Fig. 3 of Ref. (ETO;

NITTA, 2012). Despite the fact that the exponents are quite similar in the two considered

cases, they should depend on both γ and number of particles N . Indeed, considering

the extreme case where γ vanishes, the inflection point of the vortex interaction should

always be at d = 0 for any value of ω, leading to a vanishing exponent in the power law

dependence dmin(γ).

Since the geometry was imposed from the beginning by setting the vortices at

the vertices of the equilateral triangle, the existence of a value dmin which minimizes the

total energy does not guarantee that this configuration corresponds to the ground state.



92

0 10 20 30 40 50

d / ξ

-0.5

0.0

0.5
U

1
1

1
 /

 E
1

ω = 0.1 × 10
-4

ω = 0.5 × 10
-4

ω = 0.9 × 10
-4

ω = 1.3 × 10
-4

ω = 1.7 × 10
-4

ω = 2.1 × 10
-4

10
1

d
m

in
 /

 ξ

10
-5

10
-4

10
-3

ω

10
1

d
m

in
 /

 ξ

-0.32

(a)

(b)

-0.32

(c)

Figure 32 – (a) Total energy U111, for the equilateral triangle vortex configuration as a
function of the side d for γ = 0.45 and for several values of ω. (b) Plot of the
optimal side of the equilateral vortex triangle against ω for γ = 0.45. The
red line represents a power law with exponent −0.3214 and coefficient 0.9265.
(c) Same as (b) but for γ = 0.60. The red line represents a power law with
exponent −0.3186 and coefficient 1.0746.

In order to allow for different configurations and thereby check if the equilateral triangle

is really a minimum of the energy, we have allowed for different positions of the vertex S1,

while keeping S2 and S3 fixed for ω = 1.7 × 10−4 and γ = 0.45. As can be seen from Fig.

33, the equilateral triangle configuration turns out to be stable, corresponding to at least

a local minimum of the interaction energy.

Although not very common, there are other ways to obtain bound vortex states

which do not arise from a competition between different types of interaction. In fact, it is

also possible to obtain dimers and trimers exclusively from Rabi coupling in condensates

with at least three components. These vortex states arise from frustration between the

phase locking tendencies. As it was mentioned previously, a set of positive Rabi frequencies

ω12 = ω13 = ω23 = ω > 0 would lead to θ1 = θ2 = θ3 as a minimum of the energy, causing

the same spatial occupation for all three vortices. However, by assuming, for example,

ω12 = ω13 = −ω23 = ω, it is not possible to satisfy the minimization energy condition

cos(φ1 −φ2) = cos(φ1 −φ3) = 1 and cos(φ2 −φ3) = −1 simultaneously, which characterizes

a frustrated system (ORLOVA et al., 2013; GARAUD2011; CARLSTRÖM; BABAEV,

2011; STANEV; TEŠANOVIĆ, 2010; LIN; HU, 2012).

Since the frustration phenomenon arises basically from the problem of min-
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Figure 33 – (a) Total energy U111 as a function of the displacement of the first component
vortex xv1 from S1 position in the x direction. (b) Total energy U111 as
a function of the displacement of the first component vortex yv1 from the
origin in the y direction. For both cases, we have considered γ = 0.45 and
ω = 1.7 × 10−4. The vertical dashed line represents the coordinates of first
component vortex for the minimum energy equilateral triangle configuration.

imizing the total energy with respect to the order parameter phases, we must redefine

our ansatz, adding extra phases to our order parameters in order to account for the

phase tendencies which minimize the energy. Thus, by assuming an ansatz of the form

ψn(x, y) =
√
Neiθne−iφnfn(x, y), the consequences of choosing Rabi frequencies which lead

to a frustrated system were investigated for ω12 = ω13 = −ω23 = ω and γ12 = γ13 = γ23 = 0,

where we have considered φ1 = φ2 = 0 and several values for φ3.

In Fig. 34(a), we pinned vortices of the first and second components on top of

each other, in the center of the mesh and displaced the vortex of the third component at

distance d from the origin. This procedure was made for different values of phase φ3. The

obtained results show a potential that suggests the formation of a bound vortex state, with

the third component vortex outside the origin, for φ3 = 0, where the potential minimum is

at d ≈ 4ξ. This conformation arises from the competition between the attraction with the

vortex of the first component and the repulsion with the vortex of the second component.

By symmetry, the same result should also appear for φ = π. This configuration has the

lowest energy among the other investigated cases, however, we can not guarantee that this

conformation is the ground state. Actually, finding the ground state conformation would

require the variation of all three extra phases and also other vortices positions in the grid,

which is very expensive computationally and is left for future investigation. Nevertheless,

these results are sufficient to ensure that vortex molecules are stable states. In Fig. 34(b),

we show that increasing the Rabi coupling makes the frustration effect even more robust

and leads to a deeper minimum in the interaction potential.
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Figure 34 – (a) Total energy U111, with vortices of the first and second components pinned
in the center of the mesh, as a function of the third component vortex distance
d from the origin, for different values of the third component extra phase
φ3: 0 (solid blue line), π/6 (green dashed dotted line), π/3 (yellow dashed
line) and π/2 (red dotted line), with ω12 = ω13 = −ω23 = 1 × 10−2. (b) Total
energy U111 for the same conformation of (a), keeping φ3 = 0 and assuming
different values of ω: ω = 1 × 10−2 (blue circles), ω = 2 × 10−2 (green squares),
ω = 3 × 10−2 (yellow upward triangles) and ω = 4 × 10−2 (red downward
triangles).

In view of the present predictions concerning Rabi coupled BECs, it becomes

important to consider the possibilities of experimental realization of adequate samples. In

that respect, we focus on the phenomena of interest, namely Rabi coupling and homogeneous

confinement. They have both already been experimentally achieved with 87Rb. Before we

turn to the particular experimental setups, we recall that in our calculations the parameter

governing the Rabi coupling is ω = wρ̄1/E1, where w = h̄Ω relates the Rabi energy w to

the Rabi oscillation frequency Ω.

We first consider a recent study in Ref. (CHOMAZ et al., 2015), demonstrating

long-range coherence in quasi-two-dimensional Bose gases. There, two-dimensional densities

of about a few hundred 87Rb-atoms per square micrometer are achieved and combined with

harmonic trapping in the third direction whose frequency νz ranges from 350 up to 1500 Hz.

Moreover, for 87Rb, the (three-dimensional) s-wave scattering length is as ≈ 100a0, with

a0 the Bohr radius. For the values of the Rabi couplings we turn to Ref. (MATTHEWS et

al., 1999b), where Rabi oscillation frequencies of the order 2π × 102s−1 have been realized.

We estimate the Rabi coupling parameter ω by calculating E1 = ξ2E1 for these values of
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the particle density and Rabi frequencies, to arrive at ω = 2m1Ω
h̄ρ̄1

= 2
a2

Rabi
ρ̄1

≈ 1.7 × 10−2,

where we have associated a length aRabi =
√

h̄/m1Ω with the Rabi oscillation. This value

is already higher than ones needed for the effects discussed in this manuscript.

It is also possible to improve the estimates of the actual experimental values of

the coherent coupling by including the effect of the transversal harmonic trapping, rendering

the calculation more realistic. Indeed, in order to obtain typical values of ω in quasi-two-

dimensional systems, one should correct the s-wave scattering parameter g for the freezing

of the third dimension. This is done by dividing the three-dimensional g3D = 4πh̄2as/m1

by
√

2πaz, with az being the oscillator length in the third dimension (FISCHER, 2006).

If one then associates the energy E1 with the contact interaction energy gρ̄1, a slightly

different expression for the coherence parameter emerges ω = 1
a2

Rabi
ρ̄1

az√
8πas

≈ 1 × 10−1.

Notice that, besides the fact that this value of ω is even higher in quasi-two-dimensional

traps, this expression allows to identify the trap frequency in the third dimension, in

addition to the Rabi oscillation frequency and the particle density, as tuning knobs for

studying the effects of coherent coupling in multi-component BECs.



Part II

Superconductors
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3 Vortex characterization in single- and two-gap

superconducting bulk and films

The vortex structure is investigated for single-gap bulk superconductors outside

the London regime. The order parameter phase fixing allow us to compute the

magnetic and the Cooper pairs density profiles of isolated vortices for any set

of parameters, including in type-I superconducting regime. With our approach,

vortex and magnetic core sizes, as well as the magnetic field inside the vortex

core, can be estimated as a function of system parameters. Signatures of type-

I/type-II phase transition are observed and analytical expressions supposed to

be valid only in London regime are used to describe the magnetic behavior of

single-band superconductors. The approach is also extended to finite-thickness

superconducting samples, where properties of vortices and giant-vortices were

also investigated. Within the proper performed fitting functions we provide

analytical expressions to describe the magnetic distribution and the Cooper

pairs density of vortices and giant-vortices in films with different thickness. A

comparison with bulk results is performed in the limit of very thin films, where

the superconducting films are supposed to behave as bulk samples, but with an

effective Ginzburg-Landau parameter, κeff ∼ κ2/d. On the opposite limit, we

were also able to estimate the point at which all vortex features observed for

bulks are recovered when the film is made thicker.

3.1 Introduction

A detailed understanding of any physical phenomenon requires the full charac-

terization of its relevant composing elements. In this context, vortices play important role in

many distinct physics topics, such as: Neutron stars (Baldo, M.; Saperstein, E. E.; Tolokon-

nikov, S. V., 2007), Bose-Einstein condensates (FETTER, 2009b), Graphene (BRITO;

NAZARENO, 2012), superfluid liquid helium (YARMCHUK; GORDON; PACKARD,

1979), plasmas (BUNEMAN, 1958), turbulent classical fluids (TERHAAR; OBERLEITH-

NER; PASCHEREIT, 2015), ganular flow (FORTERRE; POULIQUEN, 2001) strongly

interacting Fermi gases (ZWIERLEIN et al., 2005) and superconductors(ABRIKOSOV,

1957; ESSMANN; TRÄUBLE, 1967; ABRIKOSOV, 2004). As major components of both

superfluidity and superconductivity, quantized vortices have been widely investigated since

their first prediction in superfluid liquid helium (ONSAGER, 1949). Since then, most of

efforts have focused on understanding the formation of vortex lattices (ABRIKOSOV,

1957; HARADA et al., 1992; SCHWEIGERT; PEETERS; DEO, 1998; ABRIKOSOV, 2004;
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PALACIOS, 1998; MILOŠEVIĆ; PEETERS, 2003; CABRAL; BAELUS; PEETERS, 2004;

KARAPETROV et al., 2006; KOMENDOVÁ; MILOŠEVIĆ; PEETERS, 2013; MENG

et al., 2014) as well as their dynamics (HARADA et al., 1992; HARADA et al., 1996;

WALLRAFF et al., 2003; PLOURDE et al., 2000; BUGOSLAVSKY et al., 2001), where

the vortex-vortex interaction play an important role. Thus, even with the high inter-

disciplinarity, it is not surprising that some basic aspects such as the internal vortex

structure have not been fully characterized nor understood. In fact, even for single-gap

bulk superconductors, some vortex features are known only in very restricted regime,

where the Ginzburg-Landau parameter κ is assumed to be extremely large and the finite

size effect of the vortex core is neglected (TINKHAM, 1975; LONDON, 1937; CLEM,

1975). Moreover, even within this limit, only the asymptotic behavior of vortex properties

can be derived analytically (TINKHAM, 1975).

Since Abrikosov’s prediction of the mixed superconducting state(ABRIKOSOV,

1957), superconductors have been separated into two distinct classes, determined by the

value of the Ginzburg-Landau parameter κ. In type-I superconductivity (κ < 1/
√

2), a

bulk sample can not sustain a mixed state, since vortices attract each other, destroying the

superconducting state abruptly. On the other hand, in type-II regime (κ > 1/
√

2), vortices

repel each other, resulting in a triangular vortex lattice. However, such differentiation

has proven to be only a limit of a more complex case, where the finite size of the

sample is taken into account, as pointed out by Tinkham (TINKHAM, 1963; FETTER;

HOHENBERG, 1967; TINKHAM, 1964). In fact, in superconducting films, even in type-I

regime, where the vortex-vortex interaction is supposed to be monotonically attractive,

vortices might experience a repulsive interaction due to the stray magnetic field interaction

outside the sample (PEARL, 1964; IRZ; RYZHOV; TAREYEVA, 1995), resulting in a

monotonically repulsive or even non-monotonic vortex-vortex interaction (BRANDT; DAS,

2011; DANTAS et al., a).

With the recent progress made in imaging techniques, vortex lattices, as well

as the internal magnetic structure of vortices, have been widely investigated experimen-

tally(KIRTLEY et al., 1996; ESKILDSEN et al., 2002; VOLODIN et al., 2002; VINNIKOV

et al., 2003; HESS et al., 1990), also allowing the visualization of mixed states in Type-I

finite-thickness superconducting samples (BRANDT; DAS, 2011; GE et al., 2013), where

vortices with larger cores and carrying more than a quantum of flux can be observed.

Theses giant-vortex states result from the overlaping of single-quantized vortices and are

signatures of the non-monotonic vortex-vortex interaction. In this limit, where vortices are

no longer governed by London equations, the ground-state phase diagram of vortex lattices

is much richer than lattices found in bulk superconductors, with triangular, square and hon-

eycomb lattices, as well as vortex stripes and giant-vortices(LASHER, 1967; SWEENEY;

GELFAND, 2010; GLADILIN et al., 2015). Unfortunately, superconductors with finite

thickness require the solution of three dimensional Ginzburg-Landau equations, which is
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computationally very expensive. However, for very thin or thick samples, solutions can be

achieved under the two-dimensional approximation, where the supercurrent is assumed to

be uniform over the thickness direction. Yet, so far, vortex and giant-vortex structures

have not been fully characterized even in these limits.

Also, the discovery of multi-band superconducting materials(BOUQUET et

al., 2001; TEAGUE et al., 2011; KIM et al., 2011) has opened up even more this field,

increasing the gap between experimental achievements and the theoretical knowledge.

Indeed, such superconductors are far from being just a trivial extension of a single band

superconductor case and there is still much information to be addressed concerning the

vortex matter, like for example, their magnetic vortex structures and vortex core sizes, as

well as their interactions and lattice conformations.

In the present work, by fixing the vortex phase, we have derived constrained

Ginzburg-Landau equations, which allow us to control vortex winding numbers and posi-

tions. In this approach, no applied magnetic field is considered and all vortex singularities

shall emerge naturally from the chosen condensate phase. This provide us the possibility

of investigating isolated vortex features outside the London limit and in the absence of

boundary effects and neighboring vortices. This method has been successfully used to

describe the vortex-vortex interaction in single and double-gap superconductors and also

explained vortex dimers and trimers conformations in multi-component Bose-Einstein

condensates (CHAVES et al., 2011a; CHAVES et al., 2011b; DANTAS et al., 2015). Within

this scheme, Cooper pairs density, magnetic profiles and current density distributions for a

single isolated vortex are calculated for the single-gap and double-gap bulk superconductors

without any imposed restriction in Ginzburg-Landau parameters spectrum. For both cases,

finite thickness superconducting films are also considered, where the restrictions on the

film thickness are extrapolated outside the range of the validity of uniform current density

approximation in order to estimate, at least qualitatively, some vortex features for single-

band superconducting films. As we shall see, all vortices features for bulk superconductors

are recovered when the sample is made thicker. Since giant vortices are also predicted for

superconductors with intermediate thickness, we also investigate vortices with winding

number greater than unity.

3.2 Vortex structure

3.2.1 On bulk samples

3.2.1.1 Magnetic structure

Because Ginzburg-Landau equations are very difficult to solve analytically,

approximations must be performed in order to qualitatively describe vortex structures.

For instance, neglecting the vortex core and assuming an uniform and constant order
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parameter reduces Ginzburg-Landau approach to

1
λ2
~∇ × ~∇ × ~h+ ~h = Φ0δ(x)δ(y)ẑ, (3.1)

where the right side was artificially introduced in order to account for the presence of

singularities in the condensate. The description lies in London’s equation regime, supposed

to be valid only when λ >> ξ. Losing information about the vortex core is a price to

be paid when an analytical approach is required. Here, the consequences of London’s

approach are carefully reviewed for bulk samples. In order to do so, it is worth to notice

that the gauge invariance is preserved and thus, physical properties might not change with

the gauge choice. It is therefore appropriate to restrict ourselves to gauges that simplifies

the equation, such as the London’s one, ~∇ · ~A = 0, where Eq. 3.1 becomes

∇2~h− 1
λ2
~h = − 1

λ2
Φ0δ(x)δ(y)ẑ. (3.2)

Taking advantage of vortex circular symmetry, this equation may be solved through

Hankel’s transform and its solution written as a function of zeroth order Hankel’s function,

K0 ,

h(r) =
Φ0

2πλ2
K0

(

r

λ

)

. (3.3)

Except for the inner core space region r ≤ ξ, the magnetic field must also obey

h(r) ≈ Φ0

2πλ2

[

ln

(

λ

r

)

+ 0.12

]

, for ξ ≪ r ≪ λ (3.4a)

h(r) ≈ Φ0

2πλ2

(

π

2
λ

r

)1/2

e−r/λ, for r → ∞ (3.4b)

as they perfectly fit the exact solution in their respective limits. In what follows, we may

recall these functions in order to fit our numerical results obtained from the computational

solution of the Ginzburg-Landau equation for single-vortex state.

3.2.1.2 Cooper pairs

Describing the Cooper pairs density distribution around the vortex core requires

a different approach, where the first and second GL equation must be simultaneously

satisfied. In general, the zero field approximation is taken into account and the solution

assumed to be approximately described by |Ψ| ∝ tanh(νr/ξ), where ν ≈ 1. However, the

rigor of such assumption may be questionable for low values of GL parameter κ. Therefore,

instead of restricting the Ginzburg-Landau parameter κ to extremely type-II materials,

limits must be imposed in order to at least lead us to the expected asymptotic behavior.

In such approach, the single vortex structure is modeled by the ansatz Ψ(r) = eiθf(r),

which naturally fixes the gauge choice to,

~A(~r) =
[1
r

∫ r

0
r′h(r′)dr′

]

θ̂. (3.5)
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Afterwards, GL equations are reduced to

f − f 3 − ξ2

[

(1
r

− 2πA
Φ0

)2

f − 1
r

d

dr

(

r
df

dr

)]

= 0, (3.6a)

J = −e∗h̄

m

α

β
f 2
(1
r

− 2πA
Φ0

)

. (3.6b)

Notice that, taking the curl of Eq. (3.6b) and then mixing it with the Maxwell equation,
~∇ × ~h = 4π ~J/c, leads to London’s equation for single-vortex structure. Unfortunately,

this set of coupled equations can only be solved numerically. Still, it is possible to restrict

ourselves to the core behavior, r → 0 and find an approximate solution,

f ∝ r

[

1 − r2

8ξ2

(

1 +
h(0)
Hc2

)]

. (3.7)

An sketch of the current density and the order parameter together with the

magnetic field distribution of the vortex structure are respectively illustrated in Fig. 35

(a) and (b)

Figure 35 – (a) Sketch of the circulating current density distribution around the vortex core
and (b) Cooper pair density and magnetic profiles of single quantized vortex.
This figure was retrieved from (MOSHCHALKOV; FRITZSCHE, 2011).

3.2.2 On films

Properties of thin superconducting films highly contrast with those exhibited by

bulk superconducting samples. In fact, theory of superconducting films represents an wide

branch of superconductivity theory and has been investigated for more than half a century.

Among the most important properties, the substantial increase of critical parameters,

such as the critical magnetic field and critical density current makes thin films one of the

best environments for commercial applications of superconductors. Also, it can be used to

model high-temperature superconductors, as pointed out by Clem (CLEM, 1991).
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The quantum confinement provided by finite size of superconducting sample

has deep consequences on vortex structure. In fact, in such systems, screening current

densities may be regarded as uniform along the outplane direction, so vortices can not

bend as in normal superconducting sample. Because current densities are almost constant

over the thickness, in the limit of extremely thin films, where the thickness δ is much

smaller than the penetration depth λ, screening currents can be averaged over the thickness

direction, so that the second GL equation for a single vortex structure becomes

~∇ × ~∇ × ~A = δ
δ(z)
λ2

[

Φ0

2πr
θ̂ − ~A

]

, for |z| < δ/2 (3.8a)

~∇ × ~∇ × ~A = 0, for |z| > δ/2. (3.8b)

This results in a larger effective penetration depth Λ, that may be approximated to

Λ ≈ 2λ2/δ. This is similar to redefine the two-dimensional density sheet of superconducting

electrons as n2D = δn3D (CLEM, 1991). Using the circular symmetry, ~A(r, θ, z) = Aθ(r, z)θ̂,

the solution may be achieved through a Hankel transform, (FETTER; HOHENBERG,

1967), yelding

Aθ(r, z) =
Φ0

2π

∫ ∞

0
dq
J1(qr)e−q|z|

1 + qΛ
, (3.9)

where the symmetry over the outplane direction was implemented and J1 represents the

Bessel function. Replacing it on the density current expression, the result is summarized

into

Jθ(r) = c
Φ0

8πΛ2
[H1(r/Λ) − Y1(r/Λ) − 2/π] , (3.10)

where H1 in the Struve function, whereas Y1 stands for Bessel function. The asymptotic

behavior of current density is

j(r) =
Φ0

4π2Λ
c

r
for ξ < r ≪ Λ, (3.11a)

j(r) =
Φ0

4π2

c

r2
for r ≫ Λ. (3.11b)

In order to calculate the associated magnetic field, it is useful to return to London’s

approach, since the curl of the vector potential given by Eq. 3.9 is not everywhere

convergent when z = 0. Thus, neglecting the vortex core radius, the field may be derived

from
~h+

4πλ2

c
~∇ × ~J = Φ0δrẑ. (3.12)

At long-range approach, the solution is given by

hz(~r) ≈ Φ0

2π
Λ
r3
. (3.13)

These results greatly differ from those exhibited in Bulk samples and lead to remarkable

behavior of the vortex-vortex interaction, which is derived from the current density
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integration for a double vortex structure (PEARL, 1964; IRZ; RYZHOV; TAREYEVA,

1995). In fact, the energy associated with the double vortex structure is under the Maxwell-

London equation, is given by

V12 =
Φ0

8πΛ
[H0(r12/Λ) − Y0(r12/Λ)] , (3.14)

which falls of as 1/r at the long-range limit, where r ≫ Λ. As we shall see further in the

next chapter, this long-range repulsive behavior makes richer the phase diagram of vortex

lattices when compared to bulk samples. Before, however, we shall first examine the vortex

inner structure in both bulk and film samples.

3.3 Theoretical Model

The superconducting state is well described within the Ginzburg-Landau

phenomenological formalism extended from the Landau second-order phase transitions

theory. In our approach, we start from the dimensionless GL energy functional for single-gap

bulk superconductors

E =
H2

c

4π

∫

dV

[

∣

∣

∣(~∇ − i ~A)Ψ
∣

∣

∣

2 −
(

1 − T

TC

)

|Ψ|2

+
1
2

|Ψ|4 + κ2
∣

∣

∣

~∇ × ~A
∣

∣

∣

2
]

,

(3.15)

where κ is the Ginzburg-Landau parameter. Here, distances are scaled to the coherence

length ξ = h̄/
√

−2mα, order parameter to its convergence value
√

−α/β, and magnetic

field to Hc2.

In order to fix vortex position and winding number during the simulation, we

properly set the vortex phase before minimizing the energy density. The pinning process

for a single-vortex structure is achieved by considering the ansatz Ψ = einθf(x, y), where

einθ stands for the order parameter phase of single isolated vortex and f(x, y) for the

order parameter magnitude, which provide us the information about the local Cooper

pairs density in the whole space. In order to keep the method as general as possible, we

shall not restrict ourselves to cases where the system has circular symmetry. Therefore,

Cartesian coordinates shall be used, where the order parameter phase is expressed as

einθ =

(

x+ iy

x− iy

)n/2

. (3.16)

Here, ~r = (x, y) is the in-plane position vector with origin at the vortex core. Minimizing

the energy density functional with respect to f(x, y) and ~A leads to the set of constrained

Ginzburg-Landau equations for a single vortex conformation

∇2f−
[

X
2

+ Y
2

+ 2
(

AxY − AyX
)

+ ~A2
]

f

+ (χ− f 2)f = 0.
(3.17a)
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−κ2~∇ × ~∇ × ~A = ~j = −



~A− nθ̂

r



 f 2, (3.17b)

where θ̂ is the angular unit vector, given by θ̂ = (−y/r, x/r, 0) and

X =
nx

r2
, Y =

ny

r2
.

For bulk superconductors, as long as vortices are assumed to be straight, all

quantities remain constant over the z−direction and the system can be described under a

two-dimensional approach, where equations are solved using an iterative relaxation method

suitable for non-linear differential equations. Whenever the finite size of the thickness

is taken into account, the system is no longer invariant over the outplane direction and

therefore, a three dimensional solution is required. Unfortunately, solve CGL equations in

three dimensions is computationally very expensive and challenging these days. Thus, we

must reconcile ourselves to approximate methods to describe, at least from a qualitative

point of view, the behavior observed experimentally. Here, we propose a way to work

around this problem by using the fast Fourier transform suitable for two dimensional

current density distributions (MILOŠEVIĆ; GEURTS, 2010). So, only Eq. (3.17a) is solved

by the relaxation method, whereas the updated order parameter is used to estimate the

current density in the whole space inside the sample. Within the updated order parameter,

Eq. (3.17b) is solved by using the Fourier transform scheme, where an uniform density

current distribution along the out-plane direction is assumed,

j(x, y, z) = j(x, y)Π(z,−δ/2, δ/2). (3.18)

Here, Π(z,−δ/2, δ/2) is the boxcar function, which is equal to 1 for −δ/2 ≤ z ≤ δ/2

and 0 otherwise. This is a good approximation in both small and large thickness limits

(MILOŠEVIĆ; GEURTS, 2010), where the inplane distribution accounts for averaged over

the z-direction

j(x, y) =
1
d

∫ d/2

−d/2
j(x, y, z)dz (3.19)

Still, we shall extrapolate the range of validity of the method and also assume intermediate

values of thickness δ (MILOŠEVIĆ; GEURTS, 2010).

3.3.1 Double-gap superconductors

When a double-gap superconductor is considered, two wave-functions are

required to describe the superconducting state. The Ginzburg-Landau energy functional

can be easily extended by superposing the energies of each condensate and adding up the

Josephson term, which couples both condensates. Since vortices in the different bands are

supposed to overlap each other in order to minimize the energy, the same phase is assumed
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for both order parameters. The set of constrained Ginzburg-Landau are then obtained by

assuming Ψk = einθfk(x, y) as the ansatz for the k-th band:

∇2f1−
[

X
2

+ Y
2

+ 2
(

AxY − AyX
)

+ ~A2
]

f1

+ (χ1 − f 2
1 )f1 + γf2 = 0.

(3.20a)

∇2f2−
[

X
2

+ Y
2

+ 2
(

AxY − AyX
)

+ ~A2
]

f2

+ α(χ2 − f 2
2 )f2 +

γκ2
2

ακ2
1

= 0.
(3.20b)

−κ2~∇ × ~∇ × ~A = −



~A− nθ̂

r





(

f 2
1

κ2
1

+ α
f 2

2

κ2
2

)

. (3.20c)

The parameters κ1, κ2, α and γ are not independent of each other and were determined

within the correct microscopic framework described in Ref. (CHAVES et al., 2011a)

3.4 Results

3.4.1 Bulk

For bulk superconductors, it is well known that the vortex core radius Rv is of

the order of the material coherence length ξ. In fact, this dependence was theoretically

reported in Ref. (BRANDT, 2006) , where different values of Ginzburg-Landau parameter

κ were assumed. In that case, the penetration depth was used as the system length scale,

allowing the observation of the dependence between Rv and ξ. However, the relation

between penetration depth λ and vortex core sizes is still not known. In what follows,

we provide the effect of changing the Ginzburg-Landau parameter κ on both the vortex

and magnetic field profiles, as illustrated in Figs. 36 (a) and (b), respectively. Here, ξ is

the length scale and therefore, it remains fixed for any κ value. Thus, penetration depth

values can be directly associated to the Ginzburg-Landau parameter. In Fig. 36 (a), vortex

profiles are shown for different values of κ: 1.0 (blue solid line), 2.0 (green dotted-dashed

line), 4.0 (yellow dashed line) and 8.0 (red dashed-dashed-dotted line). Remarkably, the

core of the vortex also depends on the penetration depth of the material, with a wider

radius for larger values of λ. However, this dependence is clear only in a very restrict range

of low κ values, out of the London limit. In fact, for λ approximately greater than 4ξ the

changes in vortex core becomes extremely soft, as illustrated in Fig. 36 (c) by gray circles.

Similarly, larger values of λ also lead to more spread distributions of magnetic field around

the vortex center, however, the increasing of the magnetic core is much more robust, as

illustrated by red squares in Fig. 36 (c). The calculations of the core sizes presented in Fig.

36 (c) were performed by accounting for the distance between the center of the vortex up

to half the maximum value of |Ψ|2 and H. As a proof of validity of our approach, below the

critical value κ = 1/
√

2, where vortices are known to attract each other, the vortex core is

larger than the magnetic one, whereas, for approximately κ = 1/
√

2 (represented by the
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vertical dashed line), this feature is reversed and the magnetic field distribution exceeds

the vortex core profile. The choice of the mid-point value as a reference for the radius

calculation proves to be quite convenient, since it is possible to associate the type-I/type-II

transition point with the ratio Rv/RH . If the Rv/RH is greater than 1, vortices may attract

each other, destroying the superconductivity abruptly. In contrast, if Rv/RH < 1 the

vortex-vortex interaction is repulsive, characterizing the type-II regime.

0.0

0.3

0.6

0.9

|Ψ
|2

κ = 1.0

κ = 2.0

κ = 4.0

κ = 8.0

-4 -2 0 2 4

r / ξ

0.0

0.2

0.4

0.6

H
 /

 H
c
2

0 4 8 12

λ / ξ

0

2

4

6

R
v
 /

 ξ
 ,

 R
H

 /
 ξ

R
v

R
H

(a)

(b)

(c)

Figure 36 – Vortex and magnetic profiles for bulk superconductors in (a) and (b) respec-
tively, for different values of Ginzburg-Landau parameter κ: 1.0 (blue solid
line), 2.0 (green dotted-dashed line), 4.0 (yellow dashed line) and 8.0 (red
dashed-dashed-dotted line). (c) Vortex and magnetic core represented by gray
circles and red squares respectively. The vertical black dashed line represents
the transition point κc = 1/

√
2 between type-I and type-II regimes.

Signatures of type-I/type-II transition may also be observed through the peak

position of the angular current density or even through the peak value of the magnetic

field, as pointed out in Ref. (WANG, 2015). The former is closely related to the definition

of penetration depth λ. In fact, due to the magnetic field penetration, the angular current

distribution shall increase with r until it reaches a maximum at r ≈ λ; beyond this

limit, the magnetic field becomes negligible and the density current shall decrease to zero.

Such non-monotonic behavior of the angular current density is illustrated in Fig 37 (a),

for different values of κ: 0.4 (blue solid line), 0.6 (green dotted-dashed line), 0.8 yellow

(dashed line) and 1.0 (red dotted-dashed-dashed line). As expected, the higher the value

of κ, the greater is the peak distance with respect to the vortex core. In Fig. 37 (b),

the peak position as a function of the Ginzburg-Landau parameter κ is represented by

red circles. The qualitative peak-position description proves to be inaccurate and even

unsuitable specially for extremely type-II regime, where the dependence of κ becomes

weaker. However, it still provides a good approximation near the transition point. Indeed,
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on the threshold of type-I/type-II transition, one might expect to observe the peak at

r ≈ 1/
√

2, which is quite close to the value 0.76ξ, obtained by our approach. The behavior

of the angular density current peak as a function of the Ginzburg-Landau parameter κ is

well fitted by aκ/(1 + κ), as illustrated by the black solid line in Fig 37 (b).

0 10 20

λ / ξ

0.0

0.5

1.0

1.5

2.0

r m
a

x
 /

 ξr
max

 / ξ =aκ / (1+κ) 

0 2 4

r / ξ

0.0

0.1

0.2

0.3

0.4

j φ
 /

 ξ
−

1
H

c
2

κ = 0.4

κ = 0.6

κ = 0.8

κ = 1.0

0 2 4 6 8 10

λ / ξ

0.0

0.5

1.0

1.5

H
c
o

re
 /

 H
c H

core
 / H

c
 = 1 / (ζ + κ

1/2
)

a = 1.87

(a) (b)

(c)

ζ = 0.14

Figure 37 – (a) Angular current density for different κ values: 0.4 (blue solid line), 0.6
(green dotted-dashed line), 0.8 yellow (dashed line) and 1.0 (red dotted-dashed-
dashed line). (b) Peak position of angular density current (red circles) as a
function of κ, within an appropriate fitting function (solid gray line). (c)
Magnetic field in vortex center as a function of κ. For κ = 1/

√
2, the magnetic

field in the vortex center is exactly H(0) = 1Hc, which is the magnetic
signature of type-I/type-II transition in single-band bulk superconductors.

The second transition signature arises due to the close link between vortex

stability and the magnetic field inside its core, which allows its use as a new criterion for

type-I/type-II superconductors classification. Through our method, the result obtained

in Ref. (WANG, 2015) is revisited in order to emphasize the validity of our approach. In

Fig. 37 (c), the magnetic field peak (blue circles) is plotted as a function of the Ginzburg-

Landau parameter, where, exactly at κ = 1/
√

2 the magnetic field is observed to be
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H(0) = Hc = Hc1 = Hc2. This has been previously proposed as the magnetic signature

of transition between type-I and type-II superconductors. At the core of the vortex, the

magnetic field can be well described as a function of the Ginzburg-Landau parameter κ

by the fitting function Hcore/Hc ≈ 1/(ζ +
√
κ), with ζ ≈ 0.14. Therefore, more than just

providing information concerning the superconductor type, this fitting function also enables

one to estimate, based on experimental measurements of the magnetic field at the vortex

core, the Ginzburg Landau parameter κ of the corresponding superconductor. This result

holds as long as vortices remain far enough from each other, so that neighboring effects

become negligible. The inter-vortex distances over which neighboring vortices might not

disturb the magnetic field peak is illustrated for different values of κ: 0.4 (black circles), 0.5

(red squares), 0.6 (green triangles), 0.7 (blue diamonds), 0.8 (yellow downward triangles),

and 1.0 (pink rightward triangles) in Fig. 38, where the magnetic field at the vortex core

subtracted by the magnetic field under isolated conditions is illustrated as a function of

inter-vortex distance d. Interestingly, vortex lattices in type-I materials would present

smaller peaks than isolated vortices, whereas for type-II superconductors, this behavior is

reversed. Particularly, for κ ≈ 1/
√

2 (see blue diamonds in Fig. 38), the magnetic field

peak might not experience significant changes, even at short-range inter-vortex distance

scale.
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Figure 38 – Magnetic field difference at vortex core between double and single vortex
conformations as a function of the inter-vortex distance d for different values
of κ: 0.4 (black circles), 0.5 (red squares), 0.6 (green triangles), 0.7 (blue
diamonds), 0.8 (yellow downward triangles), and 1.0 (pink rightward triangles).

From now on, we shall revisit the description of Cooper pairs density and

magnetic profiles of vortices, in order to generalize and check the validity of well know

expressions commonly used in literature. The Cooper pairs density distribution |Ψ|2 in the

presence of a single isolated vortex can be well fitted to the function tanh2(νr/ξ), where ν
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is the fitting parameter. This approximation was first suggested by Tinkham, who proposed

a κ independent approximation, with ν ≈ 1. In Fig. 38, the validity of this approach can be

observed for different κ regimes, including the hypothetical case where vortices are assumed

to appear in a type-I superconductor. However, the fitting parameter values might depend

on the Ginzburg-Landau parameter and differ from the unity, as illustrated in the inset of

Fig. 39, where vortex profiles are represented by symbols, for different κ values: 0.2 (blue

circles), 0.8 (yellow squares) and 8.0 (red triangles). The corresponding fitting functions

are represented by dashed lines. In addition to the descriptive character, this approach

might reduce the computational time of numerical methods which requires initial guess

for the order parameter. Surprisingly, in the limit of very large κ, the fitting parameter ν

approaches 1/1.87, which is exactly the inverse of density current peak position when κ

goes to infinity.
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Figure 39 – Vortex profile in a superconducting bulk for different values of Ginzburg-
Landau parameter κ: 0.2 (blue circles), 0.8 (yellow squares), 4.0 (yellow
dashed line) and 8.0 (red triangles) and their respective fittings represented
by dashed lines . The inset provide the fitting parameter ν as a function of
the Ginzburg-Landau parameter κ.

In contrast, analytical expressions for the magnetic field distribution are ob-

tainable only in the very restricted limit of extreme type-II superconductors, where κ is

assumed to be very large and the finite size of the vortex core neglected. According to

Tinkham, for extremely type-II superconductors, the magnetic profile of a vortex can be

well approximated to

H(~r) ≈ Φ0

2πλ2

(

π

2
λ

r

)1/2

e−r/λ r → ∞, (3.21a)
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H(r) ≈ Φ0

2πλ2

[

ln
λ

r
+ 0.12

]

ξ ≪ r ≪ λ (3.21b)

where Φ0 is the quantum flux. In Fig. 39 (a-c), magnetic profiles for κ = 2, 4 and 8 are

respectively illustrated by gray circles. Despite the restrictions imposed on Ginzburg-

Landau equations, the solutions obtained by Tinkham provide accurate fittings far from

vortex core, even for weakly type-II superconductors. The fitting functions used have

the form f(r) = µ>

√

λ/re−r/λ and are illustrated by red dashed lines. In Fig. 39 (d),

represented by red circles, the fitting parameter µ> is plotted as a function of the Ginzburg-

Landau parameter κ in a log-log scale, where the expected power-law behavior is evidenced.

The red dashed line stands for the power-law fit with exponent equal to −2. In general,

the function expressed in Eq. (3.21a) provides good fitting even outside the limit r → ∞
and also for low values of κ, like κ = 2. As κ increases, the vortex core increases and

the dependence presented by Eq. (3.21b) becomes more evident. In Figs. 40 (b) and (c),

fittings to the function µ<[ln(µ0λ/r) + 0.12] are presented by blue solid line. Again, despite

the extrapolation of the limits of this solution, it is possible to observe in Fig. 40 (e) that,

µ< also obeys a power law behavior with exponent approximately equal to -1.9, which is

almost the expected value obtained by the London theory.
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Figure 40 – (a-c) Magnetic profiles for superconducting bulk samples, with different values
of Ginzburg-Landau parameter κ: 2.0, 4.0 and 8.0 respectively. Red dashed
lines represent fittings made from r ≥ λ up to 80ξ using the function µ. Fitting
parameters µ> and µ< as a function of the Ginzburg-Landau parameter in
panels (d) and (e), respectively.
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Notice that, for the short range behavior of the magnetic profile, another

parameter µ0 was also considered in order to fit the magnetic field properly. In expressions

derived by Tinkham, this parameter is equal to the unity, which means that µ0 should goes

to unity as κ → ∞. Here, we found a different convergence value, but still close to 1. This

discrepancy might occur due to the negligence of the proper approach limits: ξ ≪ r ≪ λ.

In fact, the fitting was performed in the range [2ξ, 0.90λ], which, in some cases, leads to a

small divergence when r ≈ 0.9λ. Still, the parameter µ0 illustrated in Fig. 41 leads one to

a more general expression, valid in an wider interval of r if compared with the original

one obtained from the formal asymptotic behaviors of the Hankel function.

0 10 20 30

λ / ξ

1.0

1.2

1.4

1.6

1.8

2.0

µ
0

µ
0
 (κ)  = α + β κ

−1

Figure 41 – The parameter µ0 as a function of κ is represented by blue squares, whereas
the gray dashed line stands for the fitting function α+ βκ−1, with α = 1.28
and β = 1.73

3.4.2 Films

3.4.2.1 Singly-quantized vortices

The sample dimensionality has strong influence on its superconducting proper-

ties. In fact, a thin superconducting film does not share same properties presented by a

bulk sample of the same material. In general, these properties are investigated only in the

extreme limits of ultra-thin films, where the sample thickness is approximated by a Dirac

delta function, or in bulk limit, where the space is completely fulfilled by the sample and

current density may be considered uniform along the applied field direction. According

to Pearl approach (FETTER; HOHENBERG, 1967; PEARL, 1964), thin film and bulk

properties may be correlated by an effective Ginzburg-Landau parameter κeff ∼ κ2/d,

which characterizes films with Ginzburg-Landau parameter κ as they were bulk samples.

Here, as a first proof of validity, we have explored this resemblance by comparing singly

quantized vortex features in films and in its bulk analog. In Figs. 42 (a-f) a comparison
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between Cooper pairs densities, angular current densities and magnetic profiles of films

and their correspondent bulk materials are performed by considering κ = 1.0 and different

values of thickness δ: 0.333ξ (κeff ≈ 3), 0.250ξ (κeff = 4), 0.200ξ (κeff = 5), 0.125ξ

(κeff = 8) 0.100ξ (κeff = 10) and 0.05ξ (κeff = 20). Here, film properties are represented

by black symbols, whereas red lines stand for the bulk case. Notice that, while vortex

profiles of bulk and films perfectly fit each other, current densities exhibit a disparity in

the limit of r/ξ > κeff . In fact, according to Fetter et al (FETTER; HOHENBERG, 1967),

the long-range behavior of angular current density in extremely thin films is given by

jF
θ =

cφ0

4π2

1
r2
, (3.22)

and it is expected to contrast with its analog in bulk samples,

jB
θ =

cφ0

8π2

d

λ3

(

πλ

2r

)

e−r/λ. (3.23)

Indeed, this divergence can only be observed in Figs. 42 (a-c), where the spatial range

plotted is greater than the effective Ginzburg-Landau parameter value. On the other hand,

despite share the same order of magnitude, magnetic profiles of bulk and films greatly

differs from each other. In fact, there exist be two obvious reasons to explain it. It may

be a consequence of long-range differences in current densities or even because magnetic

fields in finite thickness samples spread up, contrasting with bulk case, where the field has

null in-plane components.
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Figure 42 – Cooper pair density, angular current density and transverse component of the
magnetic field for κ = 1.0 and for different values of sample thickness δ: 0.333
ξ (κeff ≈ 3), 0.250 ξ (κeff = 4), 0.200 ξ (κeff = 5), 0.125 ξ (κeff = 8) 0.100 ξ
(κeff = 10) and 0.05 ξ (κeff = 20), respectively illustrated in panels (a-f). Red
lines account for bulk result with the corresponding effective Ginzburg-Landau
parameter.
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Figure 43 – (a-b)Vortex and magnetic field profiles are respectively illustrated for κ = 0.4
and different thickness sizes: 0.5 (blue solid line), 1.0 (green dotted-dashed
line), 2.0 (yellow dashed line) and 8.0 ( red dotted-dashed-dashed line). (c-d)
Vortex and magnetic core radius as a function of thickness size δ for four
different values of κ: 0.4 (solid line), 0.6 (dashed line), 0.8 (dotted-dashed line)
and 1.0 (dotted-dashed-dashed line). The corresponding horizontal red lines
stand for asymptotic behavior of each curve, which was obtained through the
bulk case solution.

In what follows, in order to provide a more complete description, the effect

of finite thickness on the vortex and magnetic field profiles was also investigated outside

the thin film and bulk limits. In Figs. 43 (a) and (b), vortex and magnetic profiles were

respectively plotted for κ = 0.4 and different thickness sizes δ: 0.5 (blue solid line), 1.0

(green dotted-dashed line), 2.0 (yellow dashed line) and 8.0 ( red dotted-dashed-dashed line).

The vortex and magnetic core radii as a function of the sample thickness are respectively

illustrated in panels (c) and (d), for four different values of κ: 0.4 (solid line), 0.6 (dashed

line), 0.8 (dotted-dashed line) and 1.0 (dotted-dashed-dashed line). In both cases, the

core becomes smaller as the sample becomes thicker. This behavior is sustained until

the recovery of the bulk features (designed by horizontal red lines), where the thickness

dependence becomes negligible. For the corresponding κ values used here, bulk properties

seems to be fully recovered at δ ≈ 12ξ, however, it is not possible to ensure the recovery

of the type-I/type-II transition point, since most part of the energetic contribution to the

vortex-vortex interaction comes from the repulsive magnetic field interaction outside the

sample. Therefore, a negligible magnetic field outside the sample is also required. This

also makes the usage of the ratio between the vortex and magnetic field core unsuitable,
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since there is no competition between cores outside the sample, where most part of the

repulsion comes from. Moreover, the magnetic field shown here is just the average one

of an uniform current distribution and shall not represent exactly the magnetic field in

the whole sample, which should change along the out-plane direction. However, it still

provides a qualitative estimative of the magnetic field core of isolated vortices.

Still, as in the bulk case, vortex profiles can also be described by the function

tanh2(νr), where ν is a fitting parameter that depends on δ and κ. In Fig. 44 (a), the

Cooper pairs density and the corresponding fittings are respectively represented by symbols

and dashed lines for κ = 0.4 and different values of thickness δ. In Fig.44 (b), the fitting

parameter ν is illustrated as a function of the sample thickness for four different values of

κ.
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Figure 44 – (a) Cooper pairs density for κ = 0.4 and different values of thickness δ: 0.2
( blue circles), 1.0 (yellow squares) and 12.0 (red triangles). Dashed lines
stand for the corresponding fitting functions. (b) The fitting parameter ν as
a function of the sample thickness δ for different values of Ginzburg-Landau
parameter κ: 0.4 (solid line), 0.6 (dashed line) and 0.8 (dotted-dashed line).

In contrast, expressions for the magnetic profile are analytically predicted only

in the very restricted limit of coreless vortex structure and extremely thin samples, where

the transverse component of the magnetic field at the long-range approximation might be

expressed as the rapidly decaying function

Hz ∼ φ0

2π
λeff

r3
. (3.24)

This, however, contrasts with the correct physical background, as it can be observed in

Fig. 43 (b), where vortices are expected to exhibit wider cores than those usually observed

in bulk materials and, therefore, it should not have their effects neglected. In fact, in
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Fig. 45, by assuming κ = 1.0 and different values for the sample thickness, we show that

the finite core size softens the magnetic field decay and, despite still obeys a power law

behavior, the expected exponent is recovered only for δ = 2ξ. Therefore, we may conclude

that Pearl approach for the transverse component of magnetic field should be valid only in

a very restricted range of sample thickness, which might not be too small so that vortex

cores becomes extremely large and not too large so that the Dirac delta approximation

remains valid. It also turns out that, the former approach should not be able to capture

the magnetic behavior in a wide spatial range, since it is supposed to be valid only for

r > λeff , which becomes larger as the thickness is made thinner. Therefore, the magnetic

profile description of vortices in extremely thin films remains unknown for a wide and

important range lying between vortex center and r = λeff .
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Figure 45 – Long-range magnetic profile for κ = 1.0 and different values of sample thickness
δ: 0.20, 0.25, 1.0 and 2.0 respectively illustrated by circles in panels (a-d).
Here, solid lines account for fitting functions that resembles Pearl’s prediction
for the magnetic field.

Within this context, we also propose here new expressions in order to describe

the average transverse component of magnetic distribution for any spatial range, including

also the vortex core. For this, we have subdivided the space into two different spatial ranges,

the short range, where r < RH , and the long-range defined by r > RH . At short-range, we

have found out that the magnetic distribution is well described by Hz(0) − µ1r
µ2 , whereas

for the long-range, the bulk behavior, µ3 exp(−µ4r)/
√
r, remains as a good approach. In

Figs. 46 (a-c), we respectively illustrate for thee different values of κ: 0.6, 0.8 and 1.0, the

magnetic profiles and their corresponding fitting functions by considering three different

thickness δ/ξ: 1.0 (circles), 2.0 (squares) and 8.0 (triangles). Here, the blue (red) line
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accounts for the short(long)-range fitting function. Panels (d-g) of Fig. 46 respectively

describe the fitting parameters µ1, µ2, µ3 and µ4 as a function of the sample thickness.

Notice that, we have obtained slightly different parameters as the bulk limit is recovered.

This is a consequence of using a different choice to define the short and long-range space

interval, divided from the magnetic core instead of the effective penetration depth κ. This

choice was made in order to better describe the profile at the vortex core without losing

the concordance near the long-range regime. Moreover, the proper definition of effective κ

is valid only in a very restricted regime of very thin samples, and therefore, using it as the

reference point to delimit both regimes could lead to a methodological inconsistency for

samples with intermediate thickness.
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Figure 46 – (a-c) Magnetic profiles and their corresponding fitting functions respectively
illustrated for three different values of κ = 0.6 , 0.8 and 1.0. Three different
values of sample thickness δ are considered in each panel: 1.0 (circles), 2.0
(squares) and 8.0 (triangles). Short(long)-range fitting functions are expressed
by blue(red) solid(dashed) lines. (d-g) Fitting parameters are plotted as a
function of sample thickness for three different values of κ: 0.6 (plus symbol),
0.8 (x symbol) and 1.0 (stars).

Notice that, in order to correctly account for the magnetic distribution near the

vortex core, a previous knowledge of the average value of magnetic field at the vortex center,

Hz(r = 0), is required. Therefore, in what follows we show how to estimate Hz(r = 0)

from the bulk result by finding the proper function which describes the magnetic peak
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as a function of sample thickness δ. The former result is presented in Fig. 47 (a), for

different values of κ: 0.4 (blue circles), 0.6 (green squares), 0.8 (yellow triangles) and 1.0

(red squares), where solid lines account for the fitting functions, expressed in terms of Hc2

as

HF ilm
z (0) = HBulk

z (0) − αH

βH + δ
. (3.25)

In Fig. 47 (b), we also provide information about the peak value position of angular density

current, which can also be achieved from the peak value position in bulk case by using the

fitting function

rF ilm
max = rBulk

max +
αrm

βrm + δ
. (3.26)
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Figure 47 – Average transverse component of the magnetic field peak and the peak position
of the angular density current as a function of sample thickness δ for different
values of Ginzburg-Landau parameter κ: 0.4 (blue circles), 0.6 (green squares),
0.8 (yellow upward triangles) and 1.0 (red downward triangles) respectively
illustrated in panels (a) and (b). Solid lines account for the fitting functions
expressed in Eqs. 3.25 and 3.26 with parameters of Table 1.

Parameters αH , βH , αrm and βrm are presented in Table 1 for all κ values used

in Fig.47.
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κ αH βH αrm βrm

0.4 1.26 0.52 0.17 0.13
0.6 0.92 0.67 0.25 0.22
0.8 0.73 0.81 0.33 0.32
1.0 0.62 0.93 0.40 0.42

Table 1 – Table with fitting parameters for peak value of the magnetic field and peak
position of angular current density filled with stuff for different values of κ.

3.4.2.2 Multi-quantized vortices
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Figure 48 – (a) Single and multi-quanta vortex profiles for δ = 2.0 and κ =
0.4.Corresponding magnetic fields and angular current densities profiles are
illustrated in panels (b) and (c) respectively.

Because of the long-range repulsion of stray fields outside the sample, even a

type-I superconductor behaves as a type-II if a sufficiently thin sample is considered. How-

ever, for an intermediate thickness, the vortex-vortex interaction behaves non-monotonically

and giant-vortex states might be observed (DANTAS et al., a). Despite these states have

already been exhaustively observed both theoretically and experimentally, to our knowl-

edge, the internal structure of giant-vortices have never been described under isolated

conditions. In Fig. 48 (a), we have calculated the effect of increasing winding number n on

vortex profiles. As expected, larger n values lead to larger core sizes. In contrast, in Fig.

48 (b), where the averaged magnetic field distribution is plotted, the behavior is quite

peculiar: instead of only larger magnetic cores, the finite thickness of a sample can also

induce an off-centered peak distribution in the xy-plane for the giant-vortex magnetic

field, which becomes clear for large values of vorticity n. This result is a consequence

of a larger normal domain, which leads to a negligible and slow varying angular current

density near the giant-vortex core, as observed in Fig. 48 (c). Therefore, in two dimensions,

the magnetic peak will assume a ring shape distribution, in contrast to the centered one,
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observed for vortices with winding number equal to unity. As we shall see further, this effect

might emerge under very restricted conditions, making it difficult to be experimentally

and theoretically observed. Moreover, whenever it appears as an stable conformation, the

radius of the peak-ring distribution, as well as the difference between the peak and the

magnetic field value in the core are very small and would require very high resolution

equipments to be experimentally observed.

The off-center peak behavior of the magnetic field disappears for sufficiently

thicker samples. In order to prove this, we have calculated the magnetic profiles of vortices

with winding numbers n = 1, 2, 3, 4, assuming different values of film thickness δ. The

results are shown in Figs. 49 (a-d), where κ = 0.4 was assumed. For all vorticities, the

magnetic depletion is softened as the film becomes thicker, indicating the recovery of the

centered magnetic peak profile for bulk samples, so that the visualization of off-centered

peak is then restricted for low values of δ. This condition makes its experimental observation

harder, since high-vorticity states might be unfavorable due to the strong repulsion of

stray fields.

-6 -3 0 3 6

r / ξ

-6 -3 0 3 6
0

1

2

0

1

2

H
 /

 H
c
2

δ = 1.0

δ = 2.0

δ = 4.0

δ = 8.0

(a)  n = 1

(c)  n = 3

(b)  n = 2

(d)  n = 4

Figure 49 – Magnetic profiles of vortices with winding numbers n = 1, 2, 3, 4 are exhibited
in panels (a-d) respectively, where κ = 0.4 and different film thickness were
assumed: δ = 1.0 (blue solid line), δ = 2.0 (green dotted-dashed line), 4.0
(yellow dashed line) and 8.0 (dotted-dashed-dashed line).

In order to test the stability of the giant-vortex states presented in Figs. 49

(b-d), we have used the vortex-vortex interaction approach reported in Refs. (CHAVES et

al., 2011a; CHAVES et al., 2011b). The short range interaction shall provide information

concerning whether merging two vortices at the same position, forming a new vortex

with higher vorticity, represents at least a local minimum energy conformation or not.
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Interactions between a single vortex n1 = 1 and vortices with vorticities n2 = 1, 2 and 3 are

respectively illustrated in Figs. 50 (a-c) for κ = 0.4 and different values of film thickness

δ: 1.0 (blue solid line), 2.0 (green dashed line), 4.0 (yellow dashed line) and 8.0 (red

dotted-dashed-dashed line). For δ = 1ξ, where peak-depletions are more perceptible, giant-

vortex states are clearly unstable. If larger thickness values are considered, the stability of

the giant-vortex states is achieved and the depletion might be observed experimentally.

However, increasing thickness sample in order to allow giant-vortices states to become the

ground-state conformation might not be a good option, since the effect is more perceptible

for lower values of δ and might become negligible for large values of δ. In fact, for a given

n and κ, the off-centered peak field would be better visualized for vortices in the threshold

of their stability with respect to δ.
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Figure 50 – Stability test of giant-vortex states with n = 2, 3 and 4 respectively illustrated
in panels (a), (b) and (c) for different values of thickness δ: δ = 1.0 (blue
solid line), δ = 2.0 (green dotted-dashed line), 4.0 (yellow dashed line) and
8.0 (dotted-dashed-dashed line).

In what follows, we have also considered giant-vortex states with n = 3 for

δ = 2.0 and different values of κ: 0.30 (blue solid lines), 0.35(yellow dashed-lines), 0.40

(red dashed-dotted lines). The magnetic profiles of such vortices are illustrated in Fig. 51

(a). Surprisingly, in the investigated regimes, the parameter κ barely affects the off-center

peak behavior. The stability of giant-vortices with n = 3 are showed in Figs 51 (b) through

the interactions of vortices with n1 = 1 and n2 = 2. From this result we can conclude

that, using materials with lower values of Ginzburg-Landau parameter κ might be a

better solution to experimentally probe giant-vortices with the off-centered peak profile of

the magnetic field. In fact, the off-centered peak turns out to be a consequence of large

vortex cores when compared to the sample thickness and, therefore, might experiment

no significant influence of the Ginzburg-Landau parameter κ. However, this also leads to

smaller radius of the depletion core, requiring a better experimental resolution.
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Figure 51 – (a) Magnetic profiles of giant-vortices (n = 3) for δ = 2.0ξ and different
values of κ: 0.30 (blue solid lines), 0.35(yellow dashed-lines), 0.40 (red dashed-
dotted lines). (b) Corresponding stability tests through the giant-vortex-vortex
interaction calculation

In Figs. 52 (a-d), we illustrate for different values of vorticity n = 1, 2, 3 and

4, the orthogonal component of the magnetic field profile at the vortex core along the

perpendicular direction z, by considering samples with different thickness δ: 1.0 (solid

blue line), 2.0(yellow dashed line) and 4.0 (red dotted-dashed line). Here, vertical lines

delimit the boundaries of the sample. Notice that, despite presenting weaker fields inside

the superconducting sample, vortices with higher vorticity sustain these fields for longer

distances in outside region. As a consequence, differently from what we have observed in

former results, vortices with lower vorticities might not present higher magnetic fields at

their cores if measured outside the sample.
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Figure 52 – Perpendicular component of magnetic field profile along z direction with
vorticities n = 1, 2, 3 and 4 in panels (a-d), respectively. In each panel, three
different sample thickness δ were considered δ = 1.0, 2.0 and 4.0ξ
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3.4.3 Double-gap bulk superconductors

As pointed out in Sec. 3.3, our approach can be easily extended to describe

multi-band superconductors. Interestingly enough, the outcoming results are far from

being a trivial extension of the single-gap case, as we will demonstrate in what follows. In

fact, several features of the single band case are lost, among them, the monotonic behavior

of the vortex-vortex interaction is one of the most remarkable. Naturally, it also becomes

difficult to extend the magnetic-peak criterion in order to explain the possible interaction

regimes exhibited in a double-gap superconductor. On the other hand, using vortices and

magnetic core sizes still seems to be a reasonable way of recongnizing theses possible

regimes. Indeed, this was already proposed in Ref. (BRANDT; ZHOU, 2009), in order to

explain the non-monotonic nature of the vortex-vortex interaction observed in MgB2 bulk

samples. However, the validity of this approach was never discussed in greater details and

the criteria of estimative of core sizes are still not well established. In order to test it, we

have calculated core sizes of both magnetic and vortex profiles exhibited by a single votex

conformation in a MgB2 -like material. Here, we define a MgB2-like material as a material

which share same parameters with MgB2, except for one. This is quite convenient, since

two-gap superconductors have a large amount of parameters.

0.0

1.0

2.0

|Ψ
1
|2

0.0

0.2

0.4

|Ψ
2
|2

-8 -4 0 4 8

r / ξ

0.0

1.0

2.0

H
 /

 H
c
2

κ
1

= 1.0

κ
1

= 4.0

κ
1

= 8.0

0 5 10 15 20
κ

1

0.0

2.0

4.0

6.0

R
v
 /

 ξ
, 
R

H
 /

 ξ
R

H

R
v1

R
v2

(a)

(b)

(c)

(d)

Figure 53 – Vortex profiles of σ- and π- bands respectively exhibited in panels (a) and (b)
for a MgB2-like material with different values of the σ-band Ginzburg-Landau
parameter κ1: 1.0 (blue solid line), 4.0 (red dotted-dashed line) and 8.0 (yellow
dashed line) . The corresponding magnetic field profiles in (c). (d) The vortex
and magnetic core radius as a function of κ1 parameter in (d), where the
vortex core of σ and π bands are respectively designed by black circles and
gray squares, whereas red triangles stands for the magnetic field core.
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Figs. 53 (a-c) illustrate the calculated Cooper pairs densities of both π and σ

bands, as well as the corresponding magnetic field distribution for three different values

of κ1: 1.0 (blue solid line), 4.0 (red dashed-dashed-dotted line) and 8.0 (yellow dashed

line). Both bands exhibits larger vortex cores for increasing κ1. Notice that, both κ1 and

κ2 are linearly dependent of each other, which explains the significant changes observed

for the second band profile. As expected, the magnetic field profile also becomes more

widespread for larger values of κ1. In Fig. 53 (d), vortex and magnetic core sizes are

estimated by using the same half-peak value approach used for single-band case. Three

different regimes can be observed: (i) Rv2 > Rv1 > RH for κ1 ≤ 1.57;(ii) Rv2 > RH > Rv1

for 1.57 ≥ κ1 ≤ 14.96 and; (iii) RH > Rv2 > Rv1 for κ1 ≥ 14.96. This suggests a possible

superconducting type change with an increasing κ1. In fact, extending the argument used

for single-band case, we should expect the vortex-vortex interaction to be attractive for

κ1 ≤ 1.57, non-monotonic for 1.57 ≥ κ1 ≤ 14.96 and repulsive for κ1 ≥ 14.96.
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Figure 54 – Vortex-vortex interaction near transtion points. In panel (a) and (b), the
transtions attractive/non-monotonic and non-monotonic/repulsive are respec-
tively investigated by assuming different values of κ1: 3.0 (blue circles), 4.0
(red squares), 6.0 (gray losangles), 8.0 (yellow upward triangles), 10.0 (violet
downward triangles) and 14.0 (green rightward triangles).

In order to test the core size signature of the change of superconducting types,

we provide, in Fig.54 (a) and (b), the vortex-vortex interaction near the supposed transition

points with respect to κ1: 3.0 (blue circles), 4.0 (red squares), 6.0 (gray losangles), 8.0

(yellow upward triangles), 10.0 (violet downward triangles) and 14.0 (green rightward

triangles). Indeed, we have found all the regimes predicted from core size analysis, which

suggest a correlation between them and the vortex-vortex interaction behavior. However,

the approach which was sucessfully used to estimate core sizes for single band case seems

to be inaccurate when extended to double-gap superconductors. In fact, as can be observed

in Fig.54(a), the non-monotonic interaction appears only for κ1 > 3.0. On the other hand,

a fully repulsive behavior can be observed for κ1 > 10.0. Even so, the core sizes approach

can still be seen to provide reasonable estimates of the values where the transtion between
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interaction regimes occur, while it is clearly possible to predict the kind of interaction

when differences between core sizes, as defined here, are highly evident.

The effect of changing the partial density of states n12 = n1/n2 on vortex and

magnetic profiles is illustrated in Figs. 55 (a-c) for different values of n12: 0.30 (blue solid

line), 0.60 (red dotted-dashed line) and 1.0 (yellow dashed line). The convergence values of

both order parameters are reduced with the increasing of n12 (CHAVES et al., 2011a). Also,

the vortex core seems to get larger as n12 increases, as a consequence of a more widespread

magnetic field distribution, which can be observed in panel (c). Nevertheless, this behavior

seems to saturate as n12 increases. In fact, differences between the cases n12 = 1.0 and

n12 = 0.6 are clearly smaller than between the cases n12 = 0.6 and n12 = 0.30. This is also

confirmed in panel (d), where the estimatives of core sizes are plotted as a function of

n12. For low values of n12, all core sizes rapidly increase, however, for n12 ≈ 0.5 both the

magnetic core radius RH , and the vortex core radius of first band Rv1 become independent

of n12. On the other hand, the radius of the vortex core of the second band Rv2 exhibits a

non-monotonic behavior, decreasing instead of saturating, for n12 approximately greater

than 0.5.
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Figure 55 – Vortex profiles of σ- and π- bands respectively exhibited in panels (a) and
(b) for a MgB2-like material with different values of partial density of states
n12: 0.30 (blue solid line), 0.60 (red dotted-dashed line) and 1.00 (yellow
dashed line). The corresponding magnetic field profiles in (c). The vortex and
magnetic core radius as a function of n12 parameter in (d), where the vortex
core of σ and π bands are respectively designed by black circles and gray
squares, whereas red triangles stands for the magnetic field core.
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4 Non-monotonic vortex-vortex interactions at the

type-I to type-II transition of thin superconducting

films

The vortex-vortex interaction potential in a thin superconducting film is calcu-

lated within the Ginzburg-Landau formalism. For superconductors with Ginzburg-

Landau parameter κ < 1/
√

2, these interactions are verified to be monotonically

attractive in the bulk and repulsive for a very thin film. However, considering

moderate film thickness (of the order of few ξ), our results demonstrate that

the vortex-vortex interaction potential is short-range attractive and long-range

repulsive. This allows one to redefine the critical values of the GL parameter

κ so that the well known critical value 1/
√

2 appears just as a limiting case

for large thickness of the film. The calculated potentials will enable understand-

ing several vortex configurations at the type-I to type-II transition as the film

thickness is reduced.

4.1 Introduction

Over the past years, bulk superconductors have been separated into two classes,

(GINZBURG; LANDAU, 1950) according to their Ginzburg-Landau parameter κ: (i) type-I

(κ < 1/
√

2), where the vortex-vortex interaction is attractive, and (ii) type-II (κ > 1/
√

2),

where vortices repel each other. (CHAVES et al., 2011b; JACOBS; REBBI, 1979; KRAMER,

1971) However, it is widely accepted that in a sufficiently thin superconducting film, the

vortex-vortex interaction is dominated by the repulsive interaction between the stray

fields outside the film, (SWEENEY; GELFAND, 2010; BRANDT, 2009) so that even

a type-I superconductor becomes effectively type-II, with an effective κ given by 2λ2/δ,

where λ is the penetration depth. Recent experimental results in MgB2, which is a two-

band superconductor, suggest the existence of a non-monotonic vortex-vortex interaction

potential, (CHAVES et al., 2011a; MOSHCHALKOV et al., 2009) which is short range-

repulsive and long-range attractive. Such a non-monotonic behavior of the interaction

potential, although already theoretically predicted years before, (BABAEV; SPEIGHT,

2005) was surprising enough to (i) suggest the classification of MgB2 into a third class

for superconductors, coined as type-1.5, (ii) to create a huge debate about the possibility

of observing attractive and repulsive behaviors due to different bands in this system,

(BRANDT; DAS, 2011) and even (iii) about the validity of the results obtained by

Ginzburg-Landau theory below TC in the two-bands case. (KOGAN; SCHMALIAN, 2011;

BABAEV; SILAEV, 2012) In this context, the discussion about how vortices interact in
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superconductors has been re-opened and a new challenge of classifying possible interaction

regimes emerged.

Although several theoretical simulations have confirmed the monotonic attrac-

tion (repulsion) of vortices in a type-I superconducting bulk (film), it is not clear how

should the vortex-vortex interaction behave in a type-I film with a moderate value of

thickness. One could presume that there are three possibilities for an attractive potential

to become repulsive as an adjusting parameter (in this case, the film thickness δ) varies:

for a moderate thickness, the potential could be (i) short-range attractive and long-range

repulsive, so that the repulsive potential range increases and dominates the attractive

part as the thickness decreases; or (ii) short-range repulsive and long-range attractive,

which prevents the cores of the attractive vortices to overlap; or even (iii) practically

zero, assuming that the attractive and repulsive contributions cancel out at a threshold

thickness. Despite recent theoretical and experimental results on superconducting films of

intermediate thickness have successively confirmed giant-vortex states as a possible stable

conformation (GE et al., 2013; GLADILIN et al., 2015; CÓRDOBA-CAMACHO et al.,

2016; PALONEN; JÄYKKÄ; PATURI, 2013), suggesting that the interaction between

vortices may be non-monotonic, the role of the vortex-vortex interaction on these confor-

mations have never been confirmed and critical parameters defining the cross-over between

different phases was not yet proposed.

With constrained Ginzburg-Landau equations (CHAVES et al., 2011b) for a

finite thickness superconducting film, we have calculated, in this chapter, the vortex-vortex

interaction potential at the type-I regime. For sufficiently thin films, our results confirm

the vortex-vortex monotonic repulsion widely known in the literature. However, assuming

moderate values for the thickness, we demonstrate that the type-I to type-II transition

occurs with a non-monotonic vortex-vortex interaction potential such as the one in the

situation (i) described above, where vortices attract (repel) when they are close to (far

from) each other. This result conclusively demonstrates that non-monotonic interactions

are not an exclusive phenomenon to multi-band superconductors, but can also be observed

and even controlled, by adjusting the film thickness, in single band type-I films.

4.2 Results

A typical resulting magnetic field profile is shown in Fig. 56. Figure 56(a) shows

isosurfaces of the magnetic field distribution, considering two n = 1 vortices separated

by a distance d ≈ 6ξ in a superconducting film with thickness δ = 4ξ and κ = 0.4. Inner

(outter) surfaces represent regions with higher (lower) magnetic field. Magnetic peaks are

observed in each vortex position, as expected, and they become more spread over the

x, y-plane as z increases. Indeed, stray magnetic fields are supposed to merge far above (or

below) the film. On the other hand, the magnetic field intensity decreases as z increases,
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Figure 56 – (a) Isosurfaces of the magnetic field distribution, considering two n = 1 vortices
separated by a distance d ≈ 6ξ in a superconducting film with thickness δ = 4ξ
and κ = 0.4. Inner (outter) surfaces represent regions with higher (lower)
magnetic field. (b) Magnetic field profile along the z−direction, calculated in
one of the vortex cores, for film thickness δ = 1 (blue solid line), 2 (yellow
dashed line) and 4 ξ (red dotted-dashed line). The film limits in z in each
case are illustrated by vertical lines.

specially outside the sample. Notice the magnetic field investigated here is not the external

(applied) one, but only the one that comes from the contribution of the superconducting

vortices, which is indeed expected to become weak far from the film surface. This is clearly

observed in Fig. 56(b), where the curves represent the magnetic field amplitude along the

z-direction in the core of one of the vortices, for three different values of sample thickness

δ. This amplitude decreases with z, specially when z > δ/2, i.e. beyond the film surface,

which is represented by the vertical lines in Fig. 56(b) for each value of δ.

Figures 57 (a) and (b) show the energy of two singly quantized vortices as

a function of their separation distance, i.e. the vortex-vortex interaction potential, for

different values of the film thickness κ and δ respectively. In Fig. 57 (a) the sample

thickness δ = 1.0 is kept fixed and several values of GL parameters κ are considered,

whereas in panel (b) the thickness effect is investigated for κ = 0.4. The zero energy

level is assumed as the energy of the two vortices on top of each other (i.e. for d = 0, or,

equivalently, for a n = 2 doubly quantized vortex). A repulsive potential when vortices

are far from each other, due to the interaction between stray magnetic fields, is observed

in all cases. On the other hand, the type-I character of these superconductors manifests

itself as a short range attractive interaction. The former becomes stronger as the film

thickness decreases. For instance, considering κ = 0.4, a film thickness of 4.0 ξ is enough

to yield a strong short range interaction (see purple upward triangles in Fig. 57(b)), so

that the overall vortex-vortex potential is predominantly attractive, as expected for a

type-I superconductor. However, as the film thickness decreases, the stray fields repulsion

enhances and the energy of two vortices on top of each other (d = 0) becomes just a
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Figure 57 – Vortex-vortex interaction potential as a function of the vortex separation for
δ = 1.0 and different Ginzburg-Landau parameter κ in (a) and for κ = 0.4
and different film thickness δ in (b). In (c) Interaction potentials between
a giant-vortices and vortices with vorticities n1 and n2 in the κ = 0.3 and
δ = 1.0ξ case. The n1 = n2 = 1 case is shown again for comparison with the
cases with different vorticities.

local minimum, as observed for δ = 2 and 3 ξ. For even lower δ, the potential eventually

becomes completely repulsive, as expected for any superconducting thin film. The nature

of the interaction is then completely determined by the pair of parameters δ and κ where,

for larger values (namely, less attractive) of κ, only thicker samples leads giant-vortex

formation.

This conclusively shows that the monotonically repulsive or attractive vortex-

vortex interaction potentials, expected for type-I and type-II bulk superconductors, re-

spectively, are not the only possible cases for superconducting films. Actually, our results

in Fig. 57 shows 3 situations: (i) pure repulsion, namely a type-II behavior, (ii) short

range attraction and long range repulsion, with a local minimum at d=0, and (iii) a

predominantly attractive potential with weak long range repulsion, namely a type-I-like

potential. Case (ii) suggests that in type-I superconducting films with moderate thickness,

a number of vortices might merge into a giant vortex or agglomerate very close to each

other in a stable (although not the lowest energy) state. In order to understand the

merging of vortices one-by-one, we have also calculated the interaction potential between

a n2 = 1 vortex and a giant vortex with winding number (vorticity) n1. Such interaction

is shown in Fig. 57(c) for n1 ranging from 1 to 3 in a κ = 0.3 and δ = 1ξ superconducting

film. Notice the n1 = n2 = 1 case is one of the curves in Fig. 57(a), which is replicated

in (c) just for comparison with the curves for other values of n1. Regarding the strong

repulsive tail in the n1 = n2 = 1 potential curve, with just a shallow local minimum
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around d = 0, one could imagine that just a few vortices could merge into this minimum.

Indeed, as the vorticity of the giant vortex increases, the local minimum around d = 0 is

smoothed out, but the potential never becomes monotonically repulsive - as a matter of

fact, the energy of a giant vortex in a type-I superconductor decreases with the winding

number, which compensates, to some extent, the repulsive contribution of the stray fields

in the vortex-giant vortex interaction potential. Conversely, the giant vortex-giant vortex

interaction potential is observed to be monotonically repulsive for any vorticity of the giant

vortices - the specific case of n1 = n2 = 2 giant vortices is shown by the red diamonds curve

in Fig. 57(c), as an example, where such repulsion is already observed. Thus, after merging

into giant vortices, the agglomerations of vortices repel each other and might even form

giant-vortex Abrikosov lattices. This scenario is compatible with the vortex conformations

observed recently by solving GL equations in thin superconducting films (SWEENEY;

GELFAND, 2010; PALONEN; JÄYKKÄ; PATURI, 2013). Besides, the agglomerates of

vortices with high vorticity predicted here resemble the flux tubes experimentally observed

in the intermediate state of type-I superconducting films (GE et al., 2013), illustrated in

Fig. 58

Figure 58 – Randomly nucleated giant vortices at 6.9 K after ZFC and then progressively
increasing the magnetic field to (b) 10.3 Oe and (c) 10.5 Oe. (d) SHPM image
taken after shaking the vortex pattern of (c) with hac = 0.1 Oe for 30 s. This
figure was retrieved from Ref. (GE et al., 2013).

It is also worth to mention that, vortex-vortex interaction does not obey the

superposition principle. In fact, if it does, in the presence of a giant vortex, a vortex should

experience an interaction equivalent to twice the interaction of a single vortex, which does

not occur (see in Fig. 57(c), the downward yellow triangles and blue circles). This restricts

the utilization of molecular dynamics to cases where vortices may not overlap each other

or to extremely type-II superconductors.

In order to estimate whether giant-vortex conformations are energetically

favorable or not, we have constructed in Fig. 59 (a), a κ vs. δ phase diagram based on

different regimes of interaction. The red background accounts for type-II behavior, where
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Figure 59 – (a) κ vs. δ phase diagram illustrating different types of regimes in supercon-
ducting films: type-II (red), giant-vortex state (gray) and type-I (blue). The
black dashed line indicates whether the giant-vortex with n = 2 represents the
ground state or not. (b) Redefined critical Ginzburg-Landau parameter (black
circles), along with its corresponding fitting functions in both thin (red dashed
line) and thick (blue solid line) limits, with α = 0.36, β = 0.39, γ = 0.57 and
ζ = 1.07.

singly quantized vortices might repel each other. In the gray region, giant-vortex states are

allowed by the presence of short-range attraction, however, not necessarily as the ground-

state conformation. In fact, the minimum at the origin of interacting potential might

be either a local or a global minimum. This distinction is represented for a giant-vortex

with vorticity n = 2 by the black dashed line, under which the giant vortex conformation

becomes energetically favorable. Vortices with higher vorticities, such as n = 3, 4, undergo

this local/global transition for slightly lower(higher) values of κ (δ). On the other hand,

the type-I behavior, illustrated by the blue background, is recovered whenever infinitely

quantized vortices becomes the ground state conformation, exhibiting lower energy than an

infinity number of separated singly quantized vortices. Notice that, the critical Ginzburg-

Landau parameter dividing type-I/type-II regimes in bulk superconductors, κb
c = 1/

√
2,

proves to be just a limiting case of a more general one, where the thickness of the sample

is assumed to be extremely large when compared to the coherence length. Therefore, the

GL parameter κ must be redefined in order to account for the phase transition in full

range of sample thickness. Up to date, it is well established that extremely thin films

share some bulk properties with an effective GL parameter κeff = 2κ2/δ. In Fig. 59 (b)

we have performed fittings to the dividing line of repulsive and non-monotonic regimes. In

contrast to the expected behavior at extremely thin film limit, we have found the critical

GL parameter to obey κc ≈ 0.36δ2/5 (red dashed line) instead of 0.59
√
δ. The difference

is caused due to the energetic distributions in films, that, differently from bulk samples,
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Figure 60 – (a) κ vs. δ phase diagram showing attractive (blue background) and repulsive
(red background) interaction regimes according to the energetic contribution
inside the sample and (b) dividing line between both regimes with its corre-
ponding fitting function α

√
δ, for α = 0.54 (black solid line) and the expected

coefficient α = 0.59 (orange dashed line).

are under influence of stray field outside the sample. In fact, once vortices share similar

profiles to those of bulk samples with keff , the total energy calculated in the interaction

potential could only be recovered if and only if the energetic contribution of stray fields

outside the sample were disregarded. Indeed, by accounting only for internal contributions,

we have obtained a slightly close relation to the expected one, κc = 0.54
√
δ. The small

discrepancy between coefficients lies in the fact that we have included values of thickness

outside the extremely thin limit δ << ξ may even also be a consequence of the finite core

structure, usually disregarded at literature. On the other limit, when the sample is made

larger than 3ξ, we have found the critical GL parameter to obey κc ≈ κb
c − 0.57/δ1.07.

In order to emphasize our approach validity, we also propose a different calcula-

tion that not only matches our previous result, but also provide the physical interpretation

of transition between non-monotonic to repulsive vortex-vortex interaction regimes in

terms of critical fields Hc and Hc2. In bulk superconductors the interaction is found to

be either short-range attractive for κ < 1/
√

2 or short-range repulsive when κ > 1/
√

2.

The behavioral change between these two regimes is characterized as the point where

the upper Hc2 and lower Hc1 critical fields matches with Hc. In order to extend such

criteria to samples with finite thickness, a tunable external magnetic field was added

in an initially full superconducting sample and the critical field was defined as the field

where the condensation energy becomes equal to the energy loss of expelling the magnetic

field at the Meissner state, so that normal and superconducting states share the same

energy, vanishing the Gibbs free energy. On the other hand, differently from Hc, the upper

critical field Hc2 do not change with the penetration depth and therefore, shall not depend
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Figure 61 – (a) Energy difference between superconducting and normal domains as a
function of the externally applied magnetic field for different values of κ.
Order parameter and magnetic profiles at H0 = Hc2, respectively illustrated
in (b) and (c) for the same values of κ in (a).

significantly on the film thickness, preserving its definition used for bulk cases. Surprisingly,

our obtained critical parameter κeff , defining the short-range transition also matches

the point where Hc = Hc2. In Fig. 61, fixing the thickness δ = 4ξ, the energy difference

Es −En is shown for different values of Ginzburg-Landau parameter κ: 0.40 (gray circles),

0.50 (yellow squares), 0.58 (green upward triangles) and 0.80 (red downward triangles).

Assuming low values of Ginzburg-Landau parameter, such as κ = 0.4 and 0.5, where the

short-range interaction is attractive, Hc is greater than the upper critical field and the

superconductor is fundamentally of type-I. This type-I behavior is, however, distorted

by the presence of the long-range repulsion between stray fields, so that the full-range

interaction becomes non-monotonic. As the Ginzburg-Landau parameter increases, how-

ever, Hc approaches Hc2 and exactly over our redefined critical parameter, κ = 0.58, the

free energy difference vanishes at exactly H0 = Hc2, characterizing the transition between

attractive and repulsive short-range regimes. In fact, whenever the material nature is of

type-II, the Gibbs free energy should vanish at Hc2, since the superconducting state is

completely destroyed, |Ψ(x, y, z)| = 0, and the magnetic field becomes the applied field.

This behavior is shown in Fig. 61 for κ = 0.8 by red triangles.

In Fig. 62 (a), the critical field is shown as a function of the sample thickness for

three different values of Ginzburg-Landau parameter κ: 0.3 (blue circles), 0.4 (gray squares)

and 0.5 (red triangles). As the sample is made thicker, the ratio Hc/Hc2 approaches their

expected asymptotic values (dotted lines), analytically obtained from Ginzburg-Landau

theory, Hbulk
c /Hc2 = 1/

√
2κ. Because our approach convergence is greatly compromised

when large values of thickness and small values of κ are assumed, fitting functions were
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Figure 62 – (a) Critical field as a function of sample thickness δ for three different values
of Ginzburg-Landau parameter κ: 0.30 (blue circles), 0.4 (gray squares) and
0.5 (red triangles); and their corresponding asymptotic values (dotted lines).
Fitting functions Hc/Hc2 = ακ[1 −

√

(βκ/δ)] are represented by dashed lines,
with fitting parameters (α0.3, β0.3) = (0.22, 0.47), (α0.4, β0.4) = (1.71, 0.38) and
(α0.5, β0.5) = (1.38, 0.24). (b) Critical field near the film limit for κ = 0.5. Red
and gray backgrounds account for the short-range repulsion and short-range
attractive regimes.

used in order to speculate the critical field behavior when δ/ξ goes to infinity. According

to Ref. (HARPER; TINKHAM, 1968), the critical field of a film approximately obeys

Hc

Hc2

=
1√
2κ



1 −
(

∆
δ

)1/2


 , (4.1)

where ∆ is a length associated with the energy at the interface between normal and

superconducting domains. Notice that, in the limit where δ/ξ → ∞, the bulk result is indeed

recovered, Hc/Hc2 → 1/
√

2κ. Here, however, 1/
√

2κ and ∆ were respectively replaced by

fitting parameters ακ and βκ. Performed fittings are illustrated by dashed lines in Fig. 62

(a), with (α0.3, β0.3) = (0.22, 0.47), (α0.4, β0.4) = (1.71, 0.38) and (α0.5, β0.5) = (1.38, 0.24).

In fact, asymptotic values provided by fitting functions, αk, are very close to the theoretical

predictions, 1/
√

2κ, with errors of the order of 5.0%, 3.5% and 2.7%, respectively.

On the other hand, as the sample is made thinner its critical field decreases

until it reaches the transition point, characterized by Hc = Hc2. Below this point, the

Gibbs free energy should always vanish at Hc2, when the full normal state is achieved.

This behavior is shown at Fig. 62 (b) for κ = 0.5, where the red and gray backgrounds

represent the repulsive and non-monotonic vortex-vortex interaction regimes, respectively.

The dividing line between both regimes was extracted from vortex-vortex interaction phase

diagram shown in Fig. 59 (a).

The dividing line separating repulsive and non-monotonic regimes is only

slightly affected by the many-body effect. In fact, in Fig. 63 (a) , considering a triple
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Figure 63 – (a) Dividing line between short-range attractive and short-range repulsive
regimes for double- (blue circles) and triple- (red squares) vortex structures.
(b-d) Total energy E as a function of inter-vortex distance d for double- (blue
solid line) and triple- (red dashed line) vortex structures with κ = 0.48, 0.54
and 0.60, respectively.

vortex structure, where vortices are sited at vertices of an equilateral triangle of lateral

size d, the dividing line separating short-range attraction and short-range repulsion is

shown by blue circles. For comparison, the result obtained with the double-vortex structure

was replicated (red squares). In Figs. 63 (b-d), the total energy is shown as a function

of the inter-vortex distances d for the double- (blue solid line) and triple- (red dashed

line) vortex structures, where δ = 4ξ and different values of κ were assumed. In all these

three situations, many-body effect has small influence on the nature of the short-range

interaction. Indeed, relevant differences are observed only when vortex cores do not overlap

with each other.
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5 Conclusions

Overall, the vortex pinning approach provides a powerful tool, allowing us to

investigate from the most basic and simplest properties exhibited in their internal structure,

to their dynamical properties governed by the vortex-vortex interaction (DANTAS et

al., a; DANTAS et al., b). Our approach proved to be general enough, describing vortex

properties under different backgrounds, such as single- and multi- component Bose-Einstein

condensates as well as bulk and film superconductors. Nevertheless, there is still room

for improvements. In fact, the method can be extended in order to cover Bose-Einstein

condensates with different kinds of particle-particle interaction or even superconductors

with more than one superconducting band. Anyway, restricting ourselves to the cases

covered in this thesis, we have presented a method for calculating pairwise vortex-vortex

interaction potentials in multi-component Bose-Einstein condensates, capable of revealing

the underlying reasons for the unusual vortex configurations, such as different lattice

geometries and few-vortex clusters. We have applied our theory in specific examples and

could thereby clarify the formation of a lattice of dimers in rotating two-component BECs

as well as the dimer/trimer state in a coherently coupled two/three-component BEC by

pointing out the role of the non-monotonic interaction potential with respect to the inter-

vortex distance in both cases. Our analysis of the present day experimental capabilities,

combined with simple estimates of relevant parameters, indicates that considered effects are

on the verge of being directly observed in the lab. We remark that the present theory can

be straightforwardly adapted to any number of condensate components, providing a tool

to anticipate different aspects of vortex physics in Bose-Einstein condensates. As a matter

of fact, even for one-component BECs featuring the anisotropic and long-range dipolar

interaction, vortex phases such as bubbles and stripes have been foreseen (COOPER;

REZAYI; SIMON, 2005; ZHANG; ZHAI, 2005; KUMAR; MURUGANANDAM, 2014), for

which a thorough understanding of the role of vortex-vortex interaction is still lacking.

Taking advantage of the control of number of vortices in the superconducting

sample, we have investigated, under the zero-field approximation, the inner structure of

a single and isolated vortex, as well as some of their properties, such as the magnetic

field, current density and order parameter profile. Some of these features were known only

under the London’s approach or in very restricted spatial regimes. Within the advent

of our approach, we have extended some expression known in literature, covering, for

any value of Ginzburg-Landau parameter κ, vortex properties over full spatial range.

For bulk samples, we have found that type-I/type-II transition is closely related to the

ratio between vortex and magnetic core sizes. Actually, with the mean-value definition

for core sizes, the threshold of interaction regimes lies exactly over the point where the
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vortex and the magnetic profiles have exactly the same core size. This argument was used

to explain non-monotonic vortex-vortex interactions in two-band superconductors. Here,

however, despite it shows a close relation with their sizes, the threshold of interaction

regime transitions are not well defined under our definitions of core sizes.

Subsequently, extending up the formalism in order to account for supercon-

ducting samples with finite thickness, we have described the vortex and magnetic core

sizes as a function of the film thickness. Our results shows that both cores become larger

as the thickness becomes smaller and shall recover the bulk value for samples with 12ξ.

Interestingly, for giant-vortex states, magnetic profiles might present off-centered peak as

a consequence of the large core radius when compared to the film thickness. In general,

magnetic fields produced by giant-vortex inside the sample are weaker than those produced

by single vortices, however this behavior might be reverted outside the sample, which

makes giant-vortices more easily detectable far from the sample. In contrast, we have also

find out that signatures of phase transition between different regimes of vortex-vortex

interaction may not be extended to describe vortex states in samples with finite thickness

due to the magnetic contribution of stray fields outside the sample region.

Finally, we have calculated the vortex-vortex interaction potential in a type-

I superconducting film by solving constrained GL equations. Our results demonstrate

that the repulsion between stray fields in films with a thickness of a few ξ lead to a

non-monotonic vortex-vortex interaction potential that is short range attractive and long

range repulsive, which differs even from the recently observed non-monotonic potential

in two-band superconductors, where vortices attract (repel) when placed far away from

(close to) each other. By analyzing the obtained potential profiles, one can have a deeper

understanding of the vortex conformations in these films. The critical value for which the

vortex-vortex interaction becomes repulsive and vortices are suppose to form ordinary

Abrikosov lattices, which has been assumed as κb
c = 1/

√
2 for bulk superconductors, is

demonstrated to be a limiting case for a more general κc(δ) as the film thickness δ increases.

The redefined κc(δ) satisfies κc(δ) = αδβ in the δ → 0 limit, with α ≈ 0.36 and β ≈ 0.4.

This result contrasts with the well know definition of effective Ginzburg-Landau parameter,

which should lead to κc ≈ 0.59
√
δ. On the other hand, if the film is made thicker, the

critical parameter must satisfy κc ≈ κb
c − 0.57/δ1.07, rapidly recovering the bulk transition

point.
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