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RESUMO

O estudo de sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento.

Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não

pasśıveis de serem explicados por equações derivadas de leis f́ısicas e estruturas conhecidas.

Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas

não lineares, por meio da qual são obtidos modelos diretamente a partir de observações

sequenciais. Mais especificamente, nós abordamos cenários desafiadores, tais como o

aprendizado de relações temporais a partir de dados ruidosos, dados contendo valores

discrepantes (outliers) e grandes conjuntos de dados. Na interface entre estat́ısticas, ciência

da computação, análise de dados e engenharia encontra-se a comunidade de aprendizagem

de máquina, que fornece ferramentas poderosas para encontrar padrões a partir de dados

e fazer previsões. Nesse sentido, seguimos métodos baseados em Processos Gaussianos

(PGs), uma abordagem probabiĺıstica prática para a aprendizagem de máquinas de kernel.

A partir de avanços recentes em modelagem geral baseada em PGs, introduzimos novas

contribuições para o exerćıcio de modelagem dinâmica. Desse modo, propomos a nova

famı́lia de modelos de Processos Gaussianos Recorrentes (RGPs, da sigla em inglês) e

estendemos seu conceito para lidar com requisitos de robustez a outliers e aprendizagem

estocástica escalável. A estrutura hierárquica e latente (não-observada) desses modelos

impõe expressões não-anaĺıticas, que são resolvidas com a derivação de novos algoritmos

variacionais para realizar inferência determinista aproximada como um problema de

otimização. As soluções apresentadas permitem a propagação da incerteza tanto no

treinamento quanto no teste, com foco em realizar simulação livre. Nós avaliamos em

detalhe os métodos propostos com benchmarks artificiais e reais da área de identificação

de sistemas, assim como outras tarefas envolvendo dados dinâmicos. Os resultados obtidos

indicam que nossas proposições são competitivas quando comparadas a modelos dispońıveis

na literatura, mesmo nos cenários que apresentam as complicações mencionadas, e que a

modelagem dinâmica baseada em PGs é uma área de pesquisa promissora.

Palavras-chave: Processos Gaussianos. Modelagem dinâmica. Identificação de sistemas

não-lineares. Aprendizagem robusta. Aprendizagem estocástica.



ABSTRACT

The study of dynamical systems is widespread across several areas of knowledge. Sequential

data is generated constantly by different phenomena, most of them that we cannot explain

by equations derived from known physical laws and structures. In such context, this thesis

aims to tackle the task of nonlinear system identification, which builds models directly

from sequential measurements. More specifically, we approach challenging scenarios, such

as learning temporal relations from noisy data, data containing discrepant values (outliers)

and large datasets. In the interface between statistics, computer science, data analysis

and engineering lies the machine learning community, which brings powerful tools to find

patterns from data and make predictions. In that sense, we follow methods based on

Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in

kernel machines. We aim to exploit recent advances in general GP modeling to bring

new contributions to the dynamical modeling exercise. Thus, we propose the novel family

of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle

outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-

observed) structure of those models impose intractabilities in the form of non-analytical

expressions, which are handled with the derivation of new variational algorithms to perform

approximate deterministic inference as an optimization problem. The presented solutions

enable uncertainty propagation on both training and testing, with focus on free simulation.

We comprehensively evaluate the introduced methods with both artificial and real system

identification benchmarks, as well as other related dynamical settings. The obtained results

indicate that our propositions are competitive when compared to models available in the

literature within the aforementioned complicated setups and that GP-based dynamical

modeling is a promising area of research.

Keywords: Gaussian Processes. Dynamical modeling. Nonlinear system identification.

Robust learning. Stochastic learning.
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1 INTRODUCTION

“The most important questions of life are indeed,

for the most part, only problems of probability.”

(Pierre-Simon Laplace)

The contemporary world is immersed in a great variety of systems and sub-

systems with intricate interactions between themselves and with our society. Some of

those systems are related to fixed input-output mappings and, therefore, only the current

interactions affect their operation. Those are labeled as static systems. However, the class

of dynamical systems do not present those properties and require distinct study strategies.

The concept of a dynamical system defines a process whose state presents a

temporal dependence. In other words, the output of the system depends not only on

the current external inputs but also their previous values. In many cases the external

stimuli is easy to define, for instance, the opening of a valve in a hydraulic actuator or

the wind speed in a wind turbine. Alternatively, if the external signals that excite the

system are not observed, its measured outputs are usually called a times series (LJUNG,

1999). Those definitions may be used to describe phenomena of several different fields,

such as engineering, physics, chemistry, biology, finance and sociology (CHUESHOV, 2002).

Moreover, it is important to note that, ultimately, all real systems are dynamical, even

though for some of them the static analysis is sufficient (AGUIRRE, 2007).

The analysis of a dynamical system demands that its behavior must be ex-

plained by a mathematical model, which can be obtained theoretically or empirically.

The theoretical methodology is based on findings supported by equations relating pa-

rameters from a known structure, determined by underlying physical laws. On the other

hand, the experimental approach, named identification, seeks an appropriate model from

measurements and a priori knowledge, possibly acquired from past experiments (ISER-

MANN; MÜNCHHOF, 2011). The latter, which avoids the limitations and problem-specific

complexities of the purely theoretical approach, is the main application subject of this

work.

System identification, while of fundamental importance for the design, control

and analysis of industrial processes in general, is a challenging task. Although both

linear and nonlinear systems have been extensively studied for several decades, the latter
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usually involve much more complex analyses, provided the wide class of possible model

nonlinearities (BILLINGS, 2013). Since the quality of the model is frequently the bottleneck

of the final problem solution (NELLES, 2013), complications such as noisy data and the

presence of discrepant observations in the form of outliers must be carefully considered.

Moreover, modern systems have generated increasingly larger datasets, a feature which by

itself provides algorithmic and computational demands.

As described so far, the system identification exercise seems a perfect candidate

to be tackled by the machine learning community, a field closely related to statistics and

at the intersection of computer science, data analysis and engineering. The goal of machine

learning is to apply methods that can detect patterns in data, make predictions and

aid decision making (MURPHY, 2012). As opposed to other common machine learning

applications, such as standard continuous regression (static mapping) and classification

(mapping to discrete classes), we are interested in working with sequential records. Thus,

all the models presented in this work can be viewed as machine learning efforts tailored

to handle dynamical data. It is worth mentioning the recent preprint work by Pillonetto

(2016), who analyzes general connections between the fields of system identification and

machine learning, with focus on the shared problem of learning from examples.

In this thesis we mainly follow the Bayesian point of view, where the model

accounts for the uncertainty in the noisy data and in the learned dynamics (PETERKA,

1981). More specifically, we apply Gaussian Processes (GP) models, a principled, practical,

probabilistic approach to learning in kernel machines (RASMUSSEN; WILLIAMS, 2006).

Differently from modeling approaches that aim to fit a parametrized structure to a system’s

inputs and outputs, a GP model directly describes the probabilistic relations between

the output data with respect to the inputs (KOCIJAN, 2016). Thus, GP models have

been widely applied to the so called “black box” approach1 to system modeling (AŽMAN;

KOCIJAN, 2011). The probabilistic information obtained a posteriori from GP models,

i.e., after training using observed data, has made them an attractive stochastic tool to

applications in control and system identification in general (KOCIJAN et al., 2005).

The Bayesian nature of GP-based models considers the uncertainty inherited

from the quality of the available data and the modeling assumptions, which enables a clear

probabilistic interpretation of its predictions. Thus, an immediate advantage of the GP

1A black box is a system whose internal structure is unknown but its analysis is done directly from
the relations of its inputs and measured outputs.
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framework over other regression methods, like Neural Networks (NNs) or Support Vector

Machines (SVMs), is that its outputs are distributions, i.e., instead of point estimates,

each prediction is given by a fully defined probability distribution. Therefore, it explicitly

indicates its uncertainty due to limited information about the process that generated

the observed data and enables error bars in the predictions, a valuable feature in many

applications, such as control and optimization. Gregorčič and Lightbody (2008) present

some more advantages of GPs over other learning methods, such as the reduced number

of hyperparameters, less susceptibility to the so called “curse of dimensionality”2 and the

more transparent analysis of the obtained results due to the uncertainty they are able to

express.

Taking advantage of the aforementioned features, the authors have explored

diverse applications of GP-based dynamical models, such as nonlinear signal processing

(PÉREZ-CRUZ et al., 2013), human motion modeling (EK et al., 2007; WANG et al.,

2008; JIANG; SAXENA, 2014), speech representation and synthesis (HENTER et al.,

2012; KORIYAMA et al., 2014), fault detection (JURICIC; KOCIJAN, 2006; OSBORNE

et al., 2012) and model-based control (KOCIJAN et al., 2004; LIKAR; KOCIJAN, 2007;

KO et al., 2007; DEISENROTH; RASMUSSEN, 2011; ROCHA et al., 2016; KLENSKE et

al., 2016; VINOGRADSKA et al., 2016).

There is also a vast body of theses with diverse contributions to the use of

GP-based methods to dynamical modeling and more in-depth theoretical and empirical

analyses, such as GP with noisy inputs and derivative observations (GIRARD, 2004),

multiple GPs and state-space time series models (NEO, 2008), implementation and

application to engineering systems (THOMPSON, 2009), nonlinear filtering and change-

point detection (TURNER, 2012). Recently, work in this topic has been even more

active, with several authors proposing more flexible model structures, powerful learning

algorithms and tackling task-specific issues in their doctoral researches (MCHUTCHON,

2014; FRIGOLA-ALCADE, 2015; DAMIANOU, 2015; SVENSSON, 2016; BIJL, 2016).

The present PhD work builds upon such rich literature on dynamical GP-based

models in order to revisit the problem of nonlinear system identification. We aim to exploit

recent advances in general GP modeling to bring new contributions to the field, as detailed

in our objectives, listed as follows.

2Curse of dimensionality is a term usually applied to refer to the many difficulties that arise in the
analysis of problems defined in high-dimensional spaces.
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1.1 Objectives

The main objective of this thesis consists in elaborating and evaluating GP-

based formulations capable of modeling dynamical systems in challenging scenarios, such

as when facing noisy datasets, data containing outliers or very large training sets.

The specific objectives of our work are listed below:

1. To propose a novel GP-based model specifically designed to learn dynamics from

sequential data, with the focus on accounting for data and model uncertainties over

both training and testing;

2. To propose novel GP-based models to tackle the problem of learning dynamics from

data containing non-Gaussian noise in the form of outliers;

3. To propose a novel inference methodology to enable stochastic training of dynamical

GP models with large datasets;

4. To evaluate all the proposed models in their specific tasks by performing free

simulation on unseen data, as described in the next section.

1.2 System Identification

The system identification task, i.e., the process of obtaining a model only from

a system’s inputs and outputs, can be summarized by the following major steps (LJUNG,

1999):

1. Collect data: Via specifically designed experiments, data is recorded from a real

system, where the user chooses the measured signals, sampling rates and the inputs to

excite its dynamics, aiming for the most informative records possible. Note however

that sometimes one has to build a model only from the data obtained during the

system normal operation.

2. Determine model structure: A sufficiently general class of models is chosen in

order to constrain the search for a good model to explain the analyzed phenomenon.

Such structure may contain adjustable parameters to enable variations in its behavior.

3. Perform model selection: The identification step, where the collected data is

used to estimate unknown parameters, usually by assessing how well the model is

able to reproduce the collected data, as quantified by a given rule.

4. Validate the model: The evaluation step consists in verifying if predictions made
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with the chosen model are acceptable, preferably using data similar but not equal

to the records used in the model selection phase, in order to evaluate the model

generalization capability. The validation metric should be chosen accordingly the

final model application.

As many engineering procedures, the previous steps may be repeated until one

is satisfied with the obtained results, revising each step after analyzing encountered issues.

In the present thesis we are mostly interested in the latter three steps, since the data

collection step is considered to have been already done. We refer the readers to Ljung

(1999), Zhu (2001), Aguirre (2007), Isermann and Münchhof (2011) to learn more about

such data recording step, also called experiment design.

Regarding Step 4 of the aforementioned system identification methodology, i.e.,

where the selected dynamical model is used to perform predictions using separate test

data, two common evaluation approaches are described below (NELLES, 2013):

One-step-ahead prediction The next prediction is based on previous test inputs and

test observed outputs until the current instant, in a feedforward fashion. Typical

applications include weather and stock market forecasting, where measures are readily

available and applied especially for short-term prediction.

Free simulation Predictions are made only from past immediate test inputs and predic-

tions, without using past test observations, following a recurrent structure. It is also

called infinite step ahead prediction, model predicted output or simply simulation.

Such procedure is necessary when the model will be used to replace the original

system, for instance, to experiment with different inputs or as a way to diagnose a

real process.

Fig. 1 illustrates the difference between the evaluation strategies described

above, considering an autoregressive set-up. The external input of the i-th iteration is

denoted as ui, while the noiseless system output, noisy measurement (corrupted by the

disturbance ε
(y)
i ) and model prediction are respectively fi, yi and f̃i. The z−1 blocks

indicate unit delays and the red lines highlight the difference between the two diagrams.

Although one-step-ahead prediction can be useful for some tasks, it is argued

by Billings (2013) that such validation methodology can be misleading, because even poor

models can look good. Thus, throughout this thesis we follow the more challenging free

simulation approach.
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(a) One-step ahead prediction. (b) Free simulation.

Figure 1 – Block diagrams of common evaluation methodologies for system identification.
The z−1 blocks indicate unit delays. The red lines highlight the difference
between both approaches. Note that the left diagram presents a feedforward
configuration, as opposed to the diagram in the right, which is recurrent.

1.3 Probabilistic Reasoning

We mostly adopt in this thesis a probabilistic approach to modeling3. Its main

ingredient is the account for uncertainty, which comes from noisy observations, finite

data and our limited understanding about the analyzed phenomenon (BISHOP, 2006;

BARBER, 2012). Those characteristics are intrinsic to machine learning in general, which

turns probability an important tool for the area. Although in the present thesis we are not

directly interested in discussing about the basic meanings and interpretations about the

very much vague concept of probability, it is worth mentioning some of the predominant

views.

One possible view is to consider probability as being the long run frequency

of events, i.e., the probability of a certain event would be given by its frequency in the

limit of a very large number of trials (MURPHY, 2012). That is called the frequentist

interpretation or simply frequentism.

3Strictly speaking, we follow a statistical modeling approach, since we have an unknown model and some
observations, while the probabilistic perspective would deal only with random variables and their relations
(JORDAN, 2003). However, the machine learning literature commonly applies the probabilistic modeling
label to refer to models that handle (at least some of) its components with probability distributions
(BISHOP, 2006; MURPHY, 2012). Thus, the later will also be the term used throughout this thesis.
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Another view treats probability as the quantification of our belief about some-

thing. In this approach, the Bayesian view, the uncertainty of an event is related to the

degree of information we have about it (JEFFREYS, 1998; JAYNES, 2003; COX, 2006).

As already mentioned, this is the approach followed by the present work.

The fundamental step in Bayesian modeling is to perform reasoning, or inference,

i.e., to learn a probability model given a dataset and output probability distributions

on unobserved quantities, such as components of the model itself or predictions for new

observations (GELMAN et al., 2014a).

From a methodological point of view, it is interesting to separate the concepts

of model and learning algorithm. While the first is the mathematical way of representing

knowledge, for instance, in a probabilistic way, the latter is the procedure in which we

perform inference with our model. Such separation is important to enable model and

learning algorithm analyses and improvements independently of each other, as well as to

apply different inference methods to the same model in distinct applications (KOLLER;

FRIEDMAN, 2009).

As we have already declared, in this thesis our main interest lies in the GP

modeling approach, which is first of all a Bayesian nonparametric framework. The first

term of such label indicates, as previously discussed, that it treats the uncertainty of the

data and the model itself by probability means. The second term indicates the absence of

a finite set of parameters, i.e., the knowledge captured by the model is not concentrated in

a fixed set of tunable weights, such as in neural networks or models with weighted basis

functions4. Furthermore, the complexity of a GP model grows with the amount of data

made available. In other words, instead of a rigid prespecified structure, the model allows

for the data to “speak by itself”.

1.4 A Word About Notation and Nomenclature

We have tried to maintain a certain degree of formalism in the mathematical

descriptions of the current work, while constantly reminding ourselves of our practical goals

over pure analytical derivations. Nevertheless, we could not avoid the common problem of

choosing and keeping a comprehensive mathematical notation. In order to avoid confusion,

4Although there are alternative (and conflicting) definitions of parametric and nonparametric models
in the literature, throughout this work we consider the interpretation presented here, more common in the
machine learning community (BISHOP, 2006; RASMUSSEN; WILLIAMS, 2006; MURPHY, 2012).
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we refer the readers to the List of Symbols at the beginning of this document, which is

complemented by the additional conventions below, adopted throughout this thesis.

• We follow a notation for random variables common in the the probabilistic modeling

literature, used for instance by Neal (1994), Särkkä (2013), Gelman et al. (2014a).

Thus, a vector fff with a multivariate Gaussian distribution defined by its mean µµµ

and covariance matrix KKK is denoted as fff ∼N (µµµ,KKK) or equivalently via its explicit

density function p( fff ) = N ( fff |µµµ,KKK). Note that, in the latter, the symbol ‘|’ is used

to highlight the random variable associated with the distribution and separate it

from other quantities.

• Although probability density functions are written using p(·), we use the notation

q(·) to denote a variational distribution, i.e., a parametrized simpler function used

to approximate a more complex density. A factorized variational distribution of

multiple variables, e.g., fff and xxx, is sometimes compactly written as Q = q( fff )q(xxx).

• In probabilistic models we frequently have to marginalize random variables in joint or

conditional distributions. Such operation consists in integrating out a variable from

a given distribution considering all the possible values it can assume. For instance,

to marginalize the variable fff from the joint distribution p(yyy, fff ), we have to solve

the integral p(yyy) =
∫

∞

−∞
p(yyy, fff )d fff .

In this thesis we rewrite the former integral in an equivalent but more compact

way:
∫

fff p(yyy, fff ), where the subindex in the integral symbol indicates the integrated

variables over their respective domains, with the operation considering all the possible

values it can take. This approach, adopted for instance by Barber (2012), will allow

us to write long expressions avoiding notation clutter.

As important (and complicated) as maintaining a coherent notation is the issue

of choosing a proper nomenclature. Since the machine learning area has always been at the

interface of other disciplines, the terminology should be as clear as possible for readers from

neighbor communities. For instance, we anticipate that the words training, estimation and

learning will be used as synonyms. Also, testing will be equivalent to evaluating. Thus, we

try our best to clearly explain all the possibly dubious terms along the next chapters.
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1.5 List of Publications
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1. César L. C. Mattos; José D. A. Santos & Guilherme A. Barreto (2014). Classifi-

cação de padrões robusta com redes Adaline modificadas, XI Encontro Nacional de

Inteligência Artificial e Computacional, ENIAC 2014.
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sistemas dinâmicos, XII Simpósio Nacional de Automação Inteligente, SBAI 2015.
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1.6 Organization of the Thesis

The remaining of this document is organized as follows:

• Chapter 2 introduces the Bayesian GP modeling framework, first detailing its

application to standard regression and then describing important variations and

enhancements that will be used in our work, such as sparse approximations, GP

models with uncertain inputs and deep GPs;

• Chapter 3 reviews GP-based contributions for dynamical modeling in the literature

and details the proposed Recurrent Gaussian Processes (RGP) model. It also contains

the presentation of the variational framework called Recurrent Variational Bayes

(REVARB), used to perform inference with RGPs. Afterwards, comprehensive

computational experiments are presented to evaluate the newly introduced approach.

• Chapter 4 tackles the problem of learning dynamics from data containing non-

Gaussian noise in the form of outliers. GP variants for robust regression found in

the literature are evaluated in this task and two novel robust GP-based models are

proposed. Modified variational procedures are derived for those new approaches,

which are then evaluated in several benchmarks.

• Chapter 5 approaches the challenge of learning dynamics with GP models from

large sequential datasets, a known limitation of standard formulations. A novel

stochastic recurrent inference framework is introduced for the RGP model and the

two algorithms that implement it are evaluated in large scale system identification

tasks.
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• Chapter 6 concludes the thesis with a final discussion about our work and recom-

mendations for further research.

We also present additional mathematical derivations in the Appendix.
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2 THE GAUSSIAN PROCESS MODELING FRAMEWORK

“How dare we speak of the laws of chance?

Is not chance the antithesis of all law?”

(Joseph Bertrand)

GP models have been used for predictions by the geostatistics community for

many decades, where is usually known as kriging (MATHERON, 1973; STEIN, 2012).

It was only some years later that works such as Williams and Rasmussen (1996) and

Rasmussen (1996) indicated that GP models are capable to outperform more conventional

nonlinear regression methods, such as neural networks (NN) (Bayesian NNs and ensembles

of NNs) and spline methods. Since then, the GP framework has also been applied to

classification problems (WILLIAMS; BARBER, 1998; OPPER; WINTHER, 2000; KUSS;

RASMUSSEN, 2005), unsupervised learning (LAWRENCE, 2004; TITSIAS; LAWRENCE,

2010) and Bayesian global optimization (SNOEK et al., 2012). Furthermore, in Chapter 3

we will approach dynamical modeling with GPs and in Chapter 4 we will cover the use of

GP models in the problem of learning from data containing outliers. All those different

applications highlight the flexibility of the GP modeling approach.

In this chapter we describe the general GP framework with focus on its appli-

cation to the standard regression task with noisy Gaussian distributed observations. We

start by following the presentation made by Rasmussen and Williams (2006) and introduce

the more convenient GP formulation on function space, but also detail the parameter space

view, which explicits the link between GPs and other kernel-based methods. We then

describe important extensions to standard GPs, such as sparse GPs, unsupervised GP

learning and hierarchical modeling, some of the tools largely used throughout this work.

2.1 Multivariate Gaussian Distribution: Two Important Properties

Since most of the GP features are inherited from the multivariate Gaussian

distribution, we shall first briefly review it. The notation was intentionally chosen to allow

easy relation later to the GP learning setting.

Let a vector of N random variables fff ∈ RN follow a multivariate Gaussian
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distribution expressed by

p( fff |µµµ,KKK f ) = N ( fff |µµµ,KKK f ) =
1

(2π)
N
2 |KKK f |

1
2

exp
(
−1

2
( fff −µµµ)>KKK−1

f ( fff −µµµ)

)
, (2.1)

where | · | denotes the determinant of a matrix and the distribution is completely defined

by its mean vector µµµ ∈ RN and its covariance matrix KKK f ∈ RN×N .

Consider now fff 1 ∈ RN1 and fff 2 ∈ RN2 , N = N1 + N2, two subsets of the vector

fff , which are jointly Gaussian:

fff =

 fff 1

fff 2

∼N (µµµ,KKK f ), µµµ =

 µµµ1

µµµ2

 , KKK f =

 KKK11 KKK12

KKK>12 KKK22

 ,
where the vectors and matrices have the appropriate dimensions. We shall emphasize two

fundamental properties of such collection of random variables:

Marginalization The observation of a larger collection of variables does not affect the

marginal distribution of smaller subsets, which, given the former expressions, implies

that fff 1 ∼N (µµµ1,KKK11) and fff 2 ∼N (µµµ2,KKK22).

Conditioning Conditioning on Gaussians results in a new Gaussian distribution given

by

p( fff 1| fff 2) = N ( fff 1|µµµ1 + KKK12KKK−1
22 ( fff 2−µµµ2),KKK11−KKK12KKK−1

22 KKK>12). (2.2)

Although simple, both properties are of fundamental importance to formulate

most of the GP modeling framework in the next sections.

2.2 GP Prior over Functions

A GP is formally defined as a distribution over functions f : X → R such

as that, for any finite subset {xxx1,xxx2, · · · ,xxxN} ⊂X , xxxi ∈ RD, of the domain X , a vector

fff = [ f (xxx1), f (xxx2), · · · , f (xxxN)]> follows a multivariate Gaussian distribution fff ∼N (µµµ,KKK f ).

By viewing functions as infinitely long vectors, all points generated by f (·) are jointly

modeled as a single GP, an infinite object.

Fortunately, because of the marginalization propriety of Gaussians, we can

analyze such object by working with a finite multivariate Gaussian distribution over the

vector fff ∈ RN . Considering N samples of D-dimensional inputs XXX ∈ RN×D, i.e., a stack of

the vectors xxxi|Ni=1, we have

fff = f (XXX)∼N (000,KKK f ), (2.3)
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where we have defined a zero mean vector 000 ∈ RN for the GP prior. Any other value, or

even another model, could be chosen for the mean, but our choice is general enough and

will be used all along this thesis. We shall see as follows that a zero mean prior does not

correspond to zero mean posterior.

In order to model the function values fff with respect to different inputs, the

elements of the covariance matrix KKK f are calculated by [K f ]i j = k(xxxi,xxx j),∀i, j ∈ {1, · · · ,N},

where xxxi,xxx j ∈ RD and k(·, ·) is the so-called covariance (or kernel) function, which is

restricted so that it generates a positive semidefinite matrix KKK f , also called the kernel

matrix. The exponentiated quadratic kernel (also named squared exponential or Radial

Basis Function (RBF)), which enforces a certain degree of smoothness, is a common choice

and will be applied throughout this work:

k(xxxi,xxx j) = σ
2
f exp

[
−1

2

D

∑
d=1

w2
d(xid− x jd)2

]
, (2.4)

where xid,x jd are respectively the d-th components of the inputs xxxi,xxx j and

θθθ = [σ2
f ,w

2
1, . . . ,w

2
D]> is the collection of kernel hyperparameters, responsible for char-

acterizing the covariance of the model. For instance, the values of w2
1, . . . ,w

2
D, the inverse

lengthscales, are responsible for the so-called automatic relevance determination (ARD) of

the input dimensions, where the hyperparameters related to less relevant dimensions have

low values.

Any function that generates a positive semidefinite matrix KKK f is a valid co-

variance function. Chapter 4 of the book by Rasmussen and Williams (2006) describes

some common examples. Interestingly, the sum and/or product of any number of covari-

ance functions, possibly scaled, is also a valid covariance function (SHAWE-TAYLOR;

CRISTIANINI, 2004):

k(xxxi,xxx j) = ∑
m

Amkm(xxxi,xxx j)+∏
n

Bnkn(xxxi,xxx j), (2.5)

where Am and Bn are real positive constants. Furthermore, the following expression also

results in valid covariance functions:

k2(xxxi,xxx j) = k(g(xxxi),g(xxx j)), (2.6)

where g(·) is an arbitrary nonlinear mapping. Interestingly, the output dimension of g(xxxi)

can even be different from the original dimension of xxxi. All those properties turn easy the

making of kernel matrices more suitable to a given dataset.
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a) Exponentiated quadratic b) Linear
k(xi,x j) = σ2

f exp
[
− 1

2 w2(xi− x j)
2
]
. k(xi,x j) = w2xix j.

c) Matérn 3/2 d) Periodic

k(xi,x j) = σ2
f (1 +

√
3w(xi− x j))exp

[
−
√

3w(xi− x j)
]
. k(xi,x j) = σ2

f exp
[
−2w2 sin2

(
xi−x j

2

)]
.

Figure 2 – Examples of GP samples with different covariance functions.

We can sample from the GP prior in Eq. (2.3) even before observing any data.

Fig. 2 shows some samples for the unidimensional case using some of the covariance

functions commonly used in the literature. We emphasize that a single sample defines an

entire possible realization of the unknown function f (·).

Remark The kernel hyperparameters of the GP model (and other kernel-based approaches)

are distinct from the parameters found, for instance, in neural networks. Instead of

concentrating the knowledge extracted from the data, as the weights of a neural network,

hyperparameters simply constrain and characterize the general behavior of the model.

Moreover, they are usually present in a much lower number.

2.3 Inference from Noisy Observations

In practice, the true values of fff are usually not available and the regression must

be performed instead with the observations yi = f (xxxi)+ ε
(y)
i ,∀i ∈ {1, · · · ,N}, contaminated
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with some noise ε
(y)
i . If we consider the observation noise to be independent and Gaussian

with zero mean and variance σ2
y , i.e., ε

(y)
i ∼N (0,σ2

y ), we obtain the likelihood

p(yyy| fff ) = N (yyy| fff ,σ2
y III), (2.7)

where yyy ∈ RN is the vector of noisy observations and III ∈ RN×N is the identity matrix.

Since fff is Gaussian (Eq. (2.3)), it can be marginalized analytically in order to obtain the

marginal likelihood

p(yyy|XXX) =
∫

fff
p(yyy| fff )p( fff |XXX)

=
∫

fff
N (yyy| fff ,σ2

y III)N ( fff |000,KKK f )

= N (yyy|000,KKK f + σ
2
y III). (2.8)

Given a new input xxx∗ ∈ RD, the posterior predictive distribution of the related

output f∗ ∈ R is calculated analytically using standard Gaussian distribution conditioning

properties (Eq. (2.2)):

p( f∗|yyy,XXX ,xxx∗) = N
(

f∗
∣∣µ∗,σ2

∗
)
, (2.9)

µ∗ = kkk∗ f (KKK f + σ
2
y III)−1yyy,

σ
2
∗ = K∗− kkk∗ f (KKK f + σ

2
y III)−1kkk f∗,

which holds given the zero-mean joint Gaussian distribution below:

p(yyy, f∗) = N

 yyy

f∗

 ∣∣∣∣∣∣ 000,

 KKK f + σ2
y III kkk f∗

kkk∗ f K∗

 , (2.10)

where kkk f∗ = [k(xxx∗,xxx1), · · · ,k(xxx∗,xxxN)]> ∈ RN , kkk∗ f = kkk>f∗ and K∗ = k(xxx∗,xxx∗) ∈ R. The predic-

tive distribution of the noisy version y∗ ∈R is simply given by p(y∗|yyy,XXX ,xxx∗) = N
(
y∗
∣∣µ∗,σ2

∗ + σ2
y
)
.

It is important to note that predictions done with Eq. (2.9) use all the estimation data yyy.

Furthermore, each prediction is a fully defined distribution, instead of a point estimate,

which reflects the inherent uncertainty of the regression problem.

Fig. 3 illustrates a graphical model to represent the relations between the vari-

ables previously defined for the standard GP model for noisy regression. The observations

are shown as filled nodes and the latent (unobserved) variables as white nodes. Since the

inputs xxxi are not random, they are shown as deterministic variables. The observation noise

is made explicit by the Gaussian noise variables ε
(y)
i .
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y1 y2 · · · yN y∗

ε
(y)
1 ε

(y)
2

· · · ε
(y)
N ε

(y)
∗

f1 f2 · · · fN f∗

xxx1 xxx2 · · · xxxN xxx∗

Figure 3 – Graphical model detailing the relations between the variables in a standard GP
model. The observations are shown as filled nodes and the latent (unobserved)
variables as white nodes. The thick bar that connects the latent variables fi
indicates that all the those variables are connected between themselves.

It is important to highlight some points in Fig. 3: (i) an observation yi is

conditionally independent of the other nodes given its associated latent function variable

fi and observation noise ε
(y)
i , which implies p(yyy| fff ) = ∏

N
i=1 p(yi| fi); (ii) the thick bar that

connects the latent variables fi indicates that all the those variables are connected between

themselves, which is expected from the definition of the covariance matrix KKK f (see Eq.

(2.4)); (iii) the prediction f∗ is part of the same GP prior that models the N training

samples, which justifies the joint distribution in Eq. (2.10).

Alternatively (and more extensively), we could obtain the predictive expressions

in Eq. (2.9) following a more formal Bayesian approach by first calculating the posterior

distribution of fff given observed data via Bayes’ rule, which is tractable1 in this case:

p( fff |yyy,XXX)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(yyy| fff )

prior︷ ︸︸ ︷
p( fff |XXX)

p(yyy|XXX)︸ ︷︷ ︸
marginal likelihood

p( fff |yyy,XXX) ∝ N (yyy| fff ,σ2
y III)N ( fff |000,KKK f )

p( fff |yyy,XXX) = N ( fff |KKK f (KKK f + σ
2
y III)−1yyy,(KKK−1

f + σ
−2
y III)−1), (2.11)

where the marginal likelihood acts as a normalization term and the final expression is

obtained by working the product of the likelihood and the prior and then “completing the

1We use the terms tractable and analytical to refer to expressions that can be solved in closed form.
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square”2.

Now that we have both the likelihood p(yyy| fff ) and the posterior p( fff |yyy,XXX),

inference for a new output f∗ given a new input xxx∗ is obtained with the tractable integral

below, which marginalizes (integrates out) the latent variable fff :

p( f∗|yyy,XXX ,xxx∗) =
∫

fff
p( f∗| fff ,XXX ,xxx∗)p( fff |yyy,XXX),

where p( f∗| fff ,XXX ,xxx∗) = N ( f∗|kkk∗ f KKK−1
f ttt,K∗− kkk∗ f KKK−1

f kkk f∗) (see Eq. (2.2)),

p( f∗|yyy,XXX ,xxx∗) = N ( f∗|µ∗,σ2
∗ ),

µ∗ = kkk∗ f (KKK f + σ
2
y III)−1yyy,

σ
2
∗ = K∗− kkk∗ f (KKK f + σ

2
y III)−1kkk f∗,

which is equal to Eq. (2.9). We emphasize that many of the previous expressions are only

tractable because of the GP prior and Gaussian likelihood. For instance, if the likelihood is

not Gaussian, which implies non-Gaussian observations, inference would not be analytical

anymore. In such case, as in Chapter 4 of this thesis, where we consider non-Gaussian

heavy-tailed likelihoods, approximation methods are required.

Fig. 4 shows a priori and a posteriori samples, i.e., before and after the

observation of some outputs (represented by the small black dots). Note that larger values

of w2 (smaller lengthscales) are related to wigglier functions. Note also that when noisy

outputs are considered (σ2
y > 0) the uncertainty around the observations is not close to

zero anymore.

Remark The sampled curves shown in Fig. 4 illustrate a typical issue faced by nonlinear

machine learning method: the finite (and possibly noisy) training set is responsible for the

existence of multiple models that are able to explain the observations. Thus, one should

be careful when choosing a single instance within a class of models and do so by following

a clearly defined metric.

2.4 Bayesian Model Selection

Differently from parametric regression methods, GP models do not have param-

eters that concentrate the knowledge obtained from the training set. The only unknown

2This is a well known technique to obtain the moments of a Gaussian distribution from the quadratic
form inside the exponential. See Bishop (2006), Section 2.3.1, for details.
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(a) Prior with w2 = 0.5 and σ2
y = 0. (b) Posterior with w2 = 0.5 and σ2

y = 0.

(c) Posterior with w2 = 0.5 and σ2
y = 0.01. (d) Posterior with w2 = 5 and σ2

y = 0.01.

Figure 4 – Samples from the GP model before and after the observations. In all cases
σ2

f = 1 was used.

model components are the kernel and noise hyperparameters. The noise variance σ2
y is

usually included in the vector of kernel hyperparameters θθθ , whose length becomes D + 2,

a quantity often much smaller than, for example, the number of weights in a multilayer

neural network.

The model selection step in the GP framework consists in finding hyperpa-

rameters that appropriately explain the available data. A common approach considers

the maximization of the marginal log-likelihood log p(yyy|XXX ,θθθ) of the observed data with

respect to the hyperparameters θθθ , i.e., θθθML = argmaxθθθ log p(yyy|XXX ,θθθ), which is named a

maximum likelihood solution. The so-called evidence of the model, which is obtained after
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Figure 5 – Illustration of the Bayesian model selection procedure, where models too simple
or too complex are avoided. The vertical axis indicates the evidence of a
given model. Note that models with intermediate complexity present a balance
between the value of the evidence and the number of possible supported datasets.
Figure adapted from Rasmussen and Williams (2006).

marginalizing fff , is given by

log p(yyy|XXX ,θθθ) = logN (yyy|000,KKK f + σ
2
y III),

=−N
2

log(2π)− 1
2

log
∣∣KKK f + σ

2
y III
∣∣︸ ︷︷ ︸

model capacity

−1
2

yyy>
(
KKK f + σ

2
y III
)−1

yyy︸ ︷︷ ︸
data fitting

, (2.12)

which follows the marginal likelihood derived in Eq. (2.8), but now we explicitly denote the

dependency on the vector of hyperparameters θθθ , which is used to compute the covariance

matrix KKK f +σ2
y III3. The data fitting term highlighted in Eq. (2.12) is the only one containing

the observations yyy. The other highlighted term is related to the model capacity and is

equivalent to a complexity penalty. Thus, model selection by evidence maximization

automatically balances between those two components. This procedure is also known

as type II maximum likelihood, since the optimization is in the hyperparameter space,

instead of the parameter space (RASMUSSEN; WILLIAMS, 2006). Fig. 5 illustrates such

Bayesian selection methodology, where the preferred model should be an intermediate one,

neither too simple nor too complex, which is able to efficiently explain a given dataset

without being too restrictive or too generic.

The optimization of such model selection problem is guided by the analytical

3We emphasize that the Eq. (2.12) actually expresses the logarithm of a likelihood function of the
hyperparameters θθθ conditioned on the data and it is not a probability distribution (BISHOP, 2006).
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Algorithm 1: Standard GP modeling for regression.

- Estimation step
Require: XXX ∈ RN×D (inputs), yyy ∈ RN (outputs)

Initialize model hyperparameters θθθ =
[
σ2

f ,w
2
1, · · · ,w2

D,σ
2
y

]>
;

repeat
Compute the model evidence log p(yyy|XXX ,θθθ) via Eq. (2.12).

Compute the analytical gradients ∂ log p(yyy|XXX ,θθθ)
∂θθθ

via the Eq. (2.13);
Update θθθ with a gradient-based method (e.g. BFGS (FLETCHER, 2013));

until convergence or maximum number or iterations
Output the optimized hyperparameters θθθ ML;

- Test step

Require: xxx∗ ∈ RD (inputs), θθθ ML
Compute the predictive mean µ∗ and variance σ2

∗ via the Eq. (2.9);
Output y∗ ∼N

(
µ∗,σ

2
∗ + σ2

y
)
;

gradients of the evidence with respect to each component of θθθ :

∂ log p(yyy|XXX ,θθθ)

∂θθθ
=−1

2
Tr

(
(KKK f + σ

2
y III)−1 ∂ (KKK f + σ2

y III)
∂θθθ

)

+
1
2

yyy>(KKK f + σ
2
y III)−1 ∂ (KKK f + σ2

y III)
∂θθθ

(KKK f + σ
2
y III)−1yyy.

(2.13)

After the optimization, σ2
f is proportional to the overall variance of the output,

while σ2
y becomes closer to the observation noise variance. The optimized ARD hyper-

parameters w2
1, . . . ,w

2
D are able to automatically turn off unnecessary dimensions of the

input by taking values close to zero. Importantly, the model selection procedure does not

involve any grid or random search, mechanisms usually needed for other kernel methods.

Algorithm 1 summarizes the use of the standard GP modeling framework for regression.

Remark It should be noted that the aforementioned maximum likelihood solution for the

kernel hyperparameters, although by far the most used in practice, is not the only possible

approach to perform model selection with standard GP models. For instance, we could

choose prior distributions for the components of the vector θθθ and find a maximum a poste-

riori (MAP) solution, i.e., θθθMAP = argmaxθθθ log p(yyy|XXX ,θθθ)p(θθθ). Rasmussen and Williams

(2006) also describe cross-validation methodologies, very common in other machine learning

methods. Another alternative is to consider a marginalization of the hyperparameters

themselves, which although non-analytical, can be performed approximately via sampling

techniques (OSBORNE et al., 2008; SVENSSON et al., 2015).
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2.5 From Feature Spaces to GPs

Despite the easiness of explaining the GP modeling approach from the function

space view, as in Sections 2.2 and 2.3, it is useful to present the same expressions derived

in a different manner.

Let φ : RD→ RV be a feature mapping function, from a D-dimensional space

to a V -dimensional space, and www ∈ RV a vector of weights (or parameters). Using the

same notation for inputs and outputs of previous sections, www can be used in the standard

Bayesian linear (in the parameters) regression model below:

yi = www>φ(xxxi)+ ε
(y)
i , ε

(y)
i ∼N (0,σ2

y ). (2.14)

If we consider a zero mean Gaussian prior p(www) = N (www|000,ΣΣΣw) over the weights,

with covariance matrix ΣΣΣw ∈ RV×V , and define ΦΦΦ = φ(XXX) ∈ RV×N as a matrix where each

column is given by φ(xxxi), after the application of the Bayes’ rule we get the posterior

p(www|yyy,XXX) =
p(yyy|www,XXX)p(www)

p(yyy|XXX)
= N

(
www

∣∣∣∣∣ 1
σ2

y
AAA−1

ΦΦΦyyy,AAA−1

)
, (2.15)

where AAA ∈ RV×V = 1
σ2

y
ΦΦΦΦΦΦ

>+ ΣΣΣ
−1
w .

Given a new input xxx∗, prediction is performed by averaging the weights, i.e.,

integrating out www:

p( f∗|xxx∗,XXX ,yyy) =
∫

www
p( f∗|xxx∗,www)p(www|yyy,XXX)

= N

(
f∗

∣∣∣∣∣ 1
σ2

y
φ(xxx∗)>AAA−1

ΦΦΦyyy,φ(xxx∗)>AAA−1
φ(xxx∗)

)
. (2.16)

We can rewrite the predictive distribution using the definition of the matrix AAA

and the two matrix identities below:

AAA−1
ΦΦΦ =

(
1

σ2
y

ΦΦΦΦΦΦ
>+ ΣΣΣ

−1
w

)−1

ΦΦΦ = σ
2
y ΣΣΣwΦΦΦ

(
ΦΦΦ
>

ΣΣΣwΦΦΦ + σ
2
y III
)−1

,

AAA−1 =

(
1

σ2
y

ΦΦΦΦΦΦ
>+ ΣΣΣ

−1
w

)−1

= ΣΣΣw−ΣΣΣwΦΦΦ

(
ΦΦΦ
>

ΣΣΣwΦΦΦ + σ
2
y III
)−1

ΦΦΦ
>

ΣΣΣw,

where the second expression is the so-called matrix inversion lemma. The first identity is

directly used in the mean of Eq. (2.16), while the lemma is applied in the variance. The

new prediction then becomes

p( f∗|xxx∗,XXX ,yyy) = N
(

f∗
∣∣∣φ(xxx∗)>ΣΣΣwΦΦΦ(ΦΦΦ

>
ΣΣΣwΦΦΦ + σ

2
y III)−1yyy,

φ(xxx∗)>ΣΣΣwφ(xxx∗)−φ(xxx∗)>ΣΣΣwΦΦΦ(ΦΦΦ
>

ΣΣΣwΦΦΦ + σ
2
y III)−1

ΦΦΦ
>

ΣΣΣwφ(xxx∗)
)
.

(2.17)
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We can define some quantities by applying the kernel trick and the definition

of a kernel function (SMOLA; SCHÖLKOPF, 2002):

ΦΦΦ
>

ΣΣΣwΦΦΦ = ΦΦΦ
T

ΣΣΣ
1/2
w ΣΣΣ

1/2
w ΦΦΦ = ΩΩΩ

>
ΩΩΩ = k(XXX ,XXX) = KKK f ,

φ(xxx∗)>ΣΣΣwΦΦΦ = k(xxx∗,XXX) = kkk∗ f ,

ΦΦΦ
>

ΣΣΣwφ(xxx∗) = k(XXX ,xxx∗) = kkk f∗,

φ(xxx∗)>ΣΣΣwφ(xxx∗) = k(xxx∗,xxx∗) = K∗,

where we have denoted ΩΩΩ as a modified feature map obtained from the input and replaced

the inner product of such mapping by the kernel matrix KKK f . It is important to emphasize

that the actual mapping is never performed explicitly, but only by using the kernel function.

Finally, by replacing the new kernel expressions back in Eq. (2.17), we get the

standard predictive expression for GP models:

p( f∗|xxx∗,XXX ,yyy) = N (kkk∗ f (KKK f + σ
2
y III)−1yyy,K∗− kkk∗ f (KKK f + σ

2
y III)−1kkk f∗). (2.18)

Now we can see that GP regression is related to Bayesian regression with

basis functions, i.e., linear combination of possibly nonlinear mappings, where a Gaussian

prior is given to the weights, which are analytically integrated out. We emphasize that

such integration is equivalent to consider infinitely many weights pondered by their priors.

Furthermore, it is well known from the kernel learning literature, that many kernel functions,

such as the previously mentioned exponentiated quadratic (Eq. (2.4)) is related to an

infinite-dimensional feature space ΩΩΩ (SMOLA; SCHÖLKOPF, 2002).

Perhaps even more interestingly, in the chapter entitled Priors for Infinite Net-

works in his thesis (NEAL, 1994), Neal demonstrated that within the Bayesian formalism,

neural networks with one hidden layer containing infinitely many hidden neurons converge

to a GP when Gaussian priors are assigned to the neurons’ weights. Furthermore, he also

stated that such model should be able to avoid the risk of overfitting. Later, Williams

(1998) derived the covariance function related to such infinity limit.

Remark Rasmussen and Williams (2006) dedicate a whole chapter in their book to the

relations between GPs and other learning methods, such as Reproducing Kernel Hilbert

Spaces (RKHS), regularizers, spline models, support vector machines (SVM) and relevance

vector machines (RVM), emphasizing similarities between each framework. For instance,

it is possible to interpret SVMs as MAP solutions to a GP inference problem (SOLLICH,
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2002). Connections with kernel extensions to classical adaptive filters, such as the kernel

recursive least-squares (KRLS) (ENGEL et al., 2004) and kernel least mean squares

(KLMS) (LIU et al., 2008) algorithms have also been studied by Vaerenbergh et al. (2012)

and Vaerenbergh et al. (2016), respectively.

2.6 Sparse GP Models

A problem usually associated with GP models is its O(N3) computation com-

plexity and O(N2) memory requirement4, related to the predictive expression in Eq. (2.9)

and the evidence in Eq. (2.12). The latter is more critical, since along with the gradients

in Eq. (2.13), it needs to be computed every iteration of the optimization procedure.

When the number of samples N is larger than a few thousands, the matrix inverse and

determinant operations can be slow or even prohibitive.

Several authors have proposed different solutions to deal with this problem.

Most of such methods were covered by Quiñonero-Candela and Rasmussen (2005), where a

unifying view for sparse GP modeling is presented, highlighting the implicit approximations

considered by each approach.

Later, a sparse approximate GP framework was proposed by Titsias (2009a),

following a variational Bayes approach (SCHWARZ, 1988; JORDAN et al., 1999; GIBBS;

MACKAY, 2000). Such approach has been proven to be flexible and effective by other

authors, for instance in the recent works by Matthews et al. (2016) and Bauer et al. (2016).

Since Titsias’ variational sparse framework, sometimes called the variational free energy

approximation, is applied within several models addressed by this thesis, we will describe

it in more detail here. We follow the original presentation by Titsias (2009a) and the

one presented by Damianou (2015). The reader is referred to Quiñonero-Candela and

Rasmussen (2005) and Rasmussen and Williams (2006) to learn more about other sparse

GP approaches.

2.6.1 The Variational Sparse GP Framework

The standard GP evidence expression in Eq. (2.12) depends on the inversion

of the matrix KKK f , which scales cubicly with N. In order to avoid that, Titsias’ approach

4The cubic computational complexity and squared memory demand come, respectively, from the
expensive inverse of the kernel matrix KKK f and its storage.
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starts by augmenting the model and including M samples zzz ∈ RM from the same GP prior

of the vector fff . Those samples, named inducing points, are related to M inducing inputs,

or pseudo-inputs, ζζζ j|Mj=1 ∈ RD that live in the same space of the inputs xxxi|Ni=1. Thus, the

following joint distribution holds:

p( fff ,zzz) = N

 fff

zzz

 ∣∣∣∣∣∣ 000,

 KKK f KKK f z

KKK>f z KKKz

 , (2.19)

where the elements of the covariance matrices KKKz ∈ RM×M and KKK f z ∈ RN×M are given

respectively by [KKKz] j j′ = k(ζζζ j,ζζζ j′) and [KKK f z]i j = k(xxxi,ζζζ j).

The new marginal likelihood p(yyy|XXX) then becomes

p(yyy|XXX) =
∫

fff ,zzz
p(yyy| fff )p( fff |zzz,XXX)p(zzz), (2.20)

where p(zzz) = N (zzz|000,KKKz) and the conditioning on the pseudo-inputs ζζζ j is made implicit by

the presence of the covariance matrix KKKz, which is calculated from them. The dependence

on the kernel hyperparameters θθθ in Eq. (2.20) was omitted and the subindexes in the

integral symbol indicate the integrated variables, considering all the possible values they

can take. So far we have not really altered the original model, since if we integrate out zzz,

i.e., marginalize it, we recover the exact marginal likelihood of the standard GP model.

From the joint distribution in Eq. (2.19) and the Gaussian conditioning property,

we know that

p( fff |zzz,XXX) = N ( fff |aaa f ,ΣΣΣ f ), (2.21)

aaa f = KKK f zKKK−1
z zzz,

ΣΣΣ f = KKK f −KKK f zKKK−1
z KKK>f z.

It is important to note that, differently from the original distribution p( fff |XXX) from standard

GP, in Eq. (2.21), we do not need to invert the full matrix KKK f , but only the sparse matrix

KKKz. Thus, when choosing M < N we already get better performance for large N values,

since the computational complexity becomes O(NM2), due to the most expensive operation

being now the matrix products in Eq. (2.21).

We proceed by following the standard variational approach (JORDAN et al.,

1999), denoting Q as a generic variational distribution and multiplying the right side of

Eq. (2.20) by Q
Q . After applying Jensen’s inequality5, we are able to obtain a lower bound

5In its probabilistic form, Jensen’s inequality states that φ(E{x})≤ E{φ(x)}), where φ(·) is a convex
function and E{·} is the expectation operator. Since the function log(·) is concave, the side of the inequality
in Eq. (2.22) is changed.
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for the marginal log-likelihood:

log p(yyy|XXX)≥
∫

fff ,zzz
Q log

p(yyy| fff )p( fff |zzz,XXX)p(zzz)
Q

. (2.22)

The bound in Eq. (2.22) holds for any valid distribution Q. Conveniently, we

choose the form Q = q(zzz)p( fff |zzz,XXX), which enable us to cancel the term p( fff |zzz,XXX) in the

numerator inside the logarithm. The bound then becomes:

log p(yyy|XXX)≥
∫

fff ,zzz
q(zzz)p( fff |zzz,XXX) log

p(yyy| fff )p(zzz)
q(zzz)

,

log p(yyy|XXX)≥
∫

zzz
q(zzz)

{∫
fff

p( fff |zzz,XXX) log p(yyy| fff )︸ ︷︷ ︸
L1

+ log
p(zzz)
q(zzz)

}
. (2.23)

Now we integrate over fff in Eq. (2.23), using the distribution in Eq. (2.21):

L1 =
∫

fff
p( fff |zzz,XXX) log p(yyy| fff )

=
∫

fff
N ( fff |aaa f ,ΣΣΣ f ) logN (yyy| fff ,σ2

y III)

=−N
2

log2πσ
2
y −

1
2σ2

y

(
yyy>yyy−2yyy>aaa f +

(
aaa f
)> aaa f + Tr(ΣΣΣ f )

)
= logN (yyy|aaa f ,σ

2
y III)− 1

2σ2
y

Tr(ΣΣΣ f ).

Replacing the result of the latter integral in the original bound in Eq. (2.23)

we get:

log p(yyy|XXX)≥
∫

zzz
q(zzz) log

N (yyy|aaa f ,σ
2
y III)p(zzz)

q(zzz)
− 1

2σ2
y

Tr(ΣΣΣ f ). (2.24)

The integral in the last expression has a format similar to the first Jensen’s inequality used

in Eq. (2.22). If we revert such inequality, i.e., moving the logarithm outside the integral,

we are able to optimally remove the dependency on q(zzz) and obtain a tighter bound:

log p(yyy|XXX)≥ log
∫

zzz
N (yyy|aaa f ,σ

2
y III)N (zzz|000,KKKz)−

1
2σ2

y
Tr(ΣΣΣ f )

log p(yyy|XXX)≥ logN (yyy|000,σ2
y III + KKK f zKKK−1

z KKK>f z)−
1

2σ2
y

Tr(KKK f −KKK f zKKK−1
z KKK>f z), (2.25)

where we have used the following Gaussian integral identity:

p(aaa|bbb) = N (aaa|AAAbbb + mmm,ΣΣΣ),

where p(bbb) = N (bbb|µµµb,ΣΣΣb),

and p(aaa) =
∫

bbb
p(aaa|bbb)p(bbb) = N (aaa|AAAµµµb + mmm,ΣΣΣ + AAAΣΣΣbAAA>).
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The final sparse GP variational bound in Eq. (2.25) can be used as a proxy for

the true marginal log-likelihood p(yyy|XXX). Since it depends only on the trace of the possibly

large matrix KKK f , it also causes the memory requirement to be proportional to O(NM), the

size of the matrix KKK f z, lower than the required O(N2) for standard GP when M < N.

The kernel hyperparameters and the additional variational parameters, i.e.,

the pseudo-inputs ζζζ j|Mj=1, can be optimized by maximizing the bound using its analytical

gradients, making it closer to the true model evidence. Titsias (2009a) emphasizes how the

pseudo-inputs are not model parameters, but variational parameters related to the chosen

approximate inference method and, hence, their optimization do not cause overfitting. It

is also stated that more pseudo-inputs can only make the bound tighter and improve the

approximation6. Indeed, if we choose M = N and turn the pseudo-inputs equal to the real

inputs, we would recover the original GP model.

It is important to highlight that the way the variational sparse bound was

derived, via Jensen’s inequality in Eq. (2.22), was chosen for mathematical convenience. A

more rigorous approach consists in directly consider the Kullback-Leibler (KL) divergence

between the variational posterior Q and the true posterior p( fff ,zzz|yyy,XXX), as follows (BLEI et

al., 2017):

KL(Q||p( fff ,zzz|yyy,XXX)) =
∫

fff ,zzz
Q log

Q
p( fff ,zzz|yyy,XXX)

=
∫

fff ,zzz
Q log

Qp(yyy|XXX)

p( fff ,zzz,yyy,XXX)

=−
∫

fff ,zzz
Q log

p(yyy| fff )p( fff |zzz,XXX)p(zzz)
Q

+ log p(yyy|XXX), (2.26)

where we have used p( fff ,zzz|yyy,XXX) = p( fff ,zzz,yyy,XXX)
p(yyy|XXX) . Since the KL divergence is always non-negative

(Gibbs’ inequality), we recover the inequality expressed in Eq. (2.22). Moreover, we can

see from Eq. (2.26) that the maximization of the derived lower bound, i.e., the integral in

the right side, is equivalent to minimizing the divergence between the approximation and

the true posterior.

Predictions in the variational sparse framework can be done by applying the

6It is worth noting that, in practice, the use of a very large number of pseudo-inputs can turn the
optimization slow and difficult.
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(a) Standard GP. (b) Sparse GP augmented with inducing points.

Figure 6 – Simplified graphical models for the standard and augmented sparse GPs.

following expressions:

p( f∗|yyy,XXX ,xxx∗) = N
(

f∗
∣∣µ∗,σ2

∗
)
, (2.27)

µ∗ = kkk∗zKKK−1
z mmm,

σ
2
∗ = K∗− kkk∗zKKK−1

z kkkz∗+ kkk∗zKKK−1
z SSSKKK−1

z kkkz∗,

where mmm and SSS are the moments of the optimal variational distribution q∗(zzz), given by

q∗(zzz) = N (mmm,SSS) (2.28)

mmm =
1

σ2
y

KKKz

(
KKKz +

1
σ2

y
KKK>f zKKK f z

)−1

KKK>f zyyy (2.29)

SSS = KKKz

(
KKKz +

1
σ2

y
KKK>f zKKK f z

)−1

KKKz. (2.30)

Such optimal distribution is derived in the Appendix A.2, though in a slightly different

context.

Fig. 6 shows simplified graphical models7 that illustrate how the sparse GP

model augmented with inducing points zzz compares with standard GP. White nodes are

related to latent (unobserved) probabilistic variables, while filled nodes are the random

observations. The illustrations explicit the noise model, represented by the observational

Gaussian noise ε
(y)
i , and the latent function values fi, even though the latter are always

analytically integrated out.

A simple regression example is illustrated in Fig. 7, in order to compare the

standard GP model and the variational sparse approximation. The models were trained

with 100 samples from the normalized sinc function ( fi = sin(πxi)
πxi

) contaminated with

noise sampled from N (0,0.005). Two sparse models were trained, one with only M = 10
7For the sake of simplicity, most of the graphical models in this thesis will show only the dependencies

between the variables related to the i-th observation, which is equivalent to a single column of the full GP
diagram presented in Fig. 3.
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(a) Standard GP.

(b) Variational sparse GP (M = 10). c) Variational sparse GP (M = 20).

Figure 7 – Comparison of standard GP and variational sparse GP regression. The black
dots are the training samples, while the small crosses indicate the position of
the optimized pseudo-inputs. Note that in the third scenario, for M = 20, some
pseudo-inputs were optimized to locations outside the plot area.

pseudo-inputs and other with M = 20. By looking to the predicted curves, we can see that

the sparse variant with more pseudo-inputs is very similar to the full GP model. Even

though the version with M = 10 seems a bit worse, it could be just enough, for instance,

in applications with computational restrictions.

Remark Matthews et al. (2016) argue against the “augmentation” interpretation behind

original Titsias’ presentation of the variational sparse GP framework and present a more

precise and rigorous treatment, mentioning that it leads to the same results. Nevertheless,

we maintained the original aforementioned derivation due to its simpler intuition and

common presence in the literature.
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Figure 8 – Simplified graphical model for the GP-LVM. The main difference from the
standard supervised GP model is that the inputs are now latent and the only
observed variables are the noisy observations.

2.7 Unsupervised GP Modeling and Uncertain Inputs

So far we have only referred to supervised GP modeling, i.e., the mapping from

a set of inputs to a set of correspondent outputs, all of them observed. However, GP

models have also been applied to unsupervised tasks, where only a dataset YYY ∈ RN×Dy

comprised of N noisy Dy-dimensional observations is available.

The Gaussian Process Latent Variable Model (GP-LVM), proposed by Lawrence

(2004), aims to tackle such class of problems. It considers that the data YYY is generated

by transforming a set of latent variables XXX ∈ RN×Dx by a GP. Thus, the GP-LVM can be

summarized by the set of distributions below:

p(FFF |XXX) =
Dy

∏
d=1

N ( fff :d|000,KKK f ), (2.31)

p(YYY |FFF ,XXX) =
Dy

∏
d=1

N (yyy:d| fff :d,σ
2
y III)N ( fff :d|000,KKK f ), (2.32)

p(YYY |XXX) =
Dy

∏
d=1

N (yyy:d|000,KKK f + σ
2
y III), (2.33)

where FFF ∈ RN×Dy is the latent noiseless version of YYY , the covariance matrix KKK f ∈ RN×N is

computed from XXX , σ2
y is the noise variance and each output dimension d is modeled by a

separate GP prior, although with the same kernel hyperparameters in this example. For

the sake of simplicity we have also considered the same noise variance for all the output

dimensions. We used the notation yyy:d ∈ RN to denote the vector comprised of the d-th

component of each observed sample, i.e., yyy:d is formed by the elements Yid|Ni=1. Note that,

following the standard GP modeling framework, we were able to analytically integrate the

latent function values fff :d ∈ RN , comprised of the elements Fid|Ni=1, to obtain Eq. (2.33).

Fig. 8 illustrates the GP-LVM graphical model for one-dimensional (Dy = 1) observations.

The model described by former expressions differ from standard GP regression

because the model inputs are not observed. Thus, they should be marginalized (integrated
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out), like the latent function values FFF . However, such marginalization is intractable8, since

the latent variables XXX appear in a complicated way inside the covariance matrix KKK f in the

Eq. (2.33).

The approach chosen by Lawrence (2005) to perform inference with the GP-

LVM model consists in putting a Gaussian prior to the latent space and finding the MAP

solution for the latent variables XXX as follows:

XXXMAP = argmax
XXX

log p(YYY |XXX)p(XXX), (2.34)

where p(XXX) =
N

∏
i=1

N (xxxi|000, III).

The same expression in Eq. (2.34) can be used to jointly optimize the latent variables as

well as the kernel hyperparameters via its analytical gradients.

The GP-LVM framework was originally proposed in the context of nonlinear

dimensionality reduction9, which can be done by simply choosing Dx < Dy, which results

in finding a lower dimensional space to represent the original data. However, the approach

has shown to be flexible enough to be used in several other scenarios. For instance, in

supervised tasks, the matrix XXX can be seen as a set of uncertain inputs (DAMIANOU et

al., 2016). Besides, by manipulating the prior p(XXX) on the latent variables, the GP-LVM

can be further extended. We will see in Chapter 3 that many GP approaches for dynamical

modeling are derived from a GP-LVM with dynamical priors.

Although tractable, the original MAP solution for the GP-LVM has some

drawbacks. First, since it directly optimizes the latent variables, it is susceptible to

overfitting. Second, the increase of the latent space dimension, i.e., larger Dx values, always

result in better fit to the training data, which turns the optimization of the latent space

dimensionality infeasible.

The Bayesian GP-LVM proposed by Titsias and Lawrence (2010) tackles

the aforementioned issues by applying a variational approach in order to approximately

integrate the model latent variables XXX . Inspired by Titsias’ variational sparse GP framework

(TITSIAS, 2009a), the Bayesian GP-LVM guards against overfitting by considering the

uncertainty of the latent space and enables automatic determination of Dx by using a

8An intractable expression is non-analytical, i.e., cannot be solved in closed form, and require some
kind of approximate solution.

9The GP-LVM can be seen as a nonlinear extension of the regular probabilistic Principal Component
Analysis (PCA) (LAWRENCE, 2005).
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Figure 9 – Graphical model for the Deep GP with H + 1 layers. Note that if the inputs

are made available, the variables xxx(1)
i in the first layer are not latent anymore.

covariance function with ARD hyperparameters. Even if the variational algorithm increases

the model complexity and overall computational requirements, most of the recent models

derived from the GP-LVM follow the latter Bayesian approach, including the ones proposed

in the next chapters of the present thesis.

2.8 Hierarchical and Deep Gaussian Processes

Since the prior distribution on the latent variables of the GP-LVM framework

is a design choice, one could increase the model hierarchy by considering another GP prior

for it. Such stack of GP-LVMs was firstly proposed by Lawrence and Moore (2007), who

anticipated its application to dynamical modeling and hierarchical data visualization.

The Deep GP framework defined by Damianou and Lawrence (2013) consoli-

dated the concept of hierarchical GP modeling, where the prior in the inputs of a layer

is given by a GP modeled by the previous layer. Fig. 9 illustrates the general Deep GP

graphical model, which, considering H + 1 layers, can be described by the equations below:

yyyi = f (H+1)
(

xxx(H+1)
i

)
+ εεε

(H+1)
i , (2.35)

xxx(h+1)
i = f (h)

(
xxx(h)

i

)
+ εεε

(h)
i , 1≤ h≤ H, (2.36)

where fff (h)
:d ∼N

(
000,KKK(h)

f

)
, (2.37)

where εεε
(h)
i ∈ RDh is a Gaussian noise associated with the h-layer and the functions f (h)(·)

are vector valued, i.e., output vectors. Following the strategy previously used for the

GP-LVM, each d dimension outputted by the functions f (h)(·) is modeled by a separate

GP prior, though with the same stack of inputs XXX (h) ∈ RN×Dh for the h-th layer. Since

inference in the Deep GP model is intractable, Damianou and Lawrence (2013) follow

the variational Bayes strategy behind Bayesian GP-LVM and approximately integrate the

latent variables in all layers of the model.
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Such broad class of models presents some interesting features. For instance,

a Deep GP is actually no longer a GP, since the multi-layered composition of GP priors

cannot be explained by a single GP prior (DAMIANOU, 2015). Furthermore, since each GP

layer is integrated out (at least approximately), the model performs process composition.

In Section 2.5 we mentioned how a GP model is obtained when we integrate all the weights

of a 1-hidden layer neural network with infinite width. Deep GPs have similar parallels

with multi-layered neural networks (DUVENAUD et al., 2014).

Besides the original variational approach detailed by Damianou and Lawrence

(2013), many other solutions have more recently been proposed as alternatives to perform

inference with Deep GPs, such as a nested variational method (HENSMAN; LAWRENCE,

2014), an auto-encoded set-up (DAI et al., 2016), applying approximate Expectation

Propagation (BUI et al., 2016), using random Fourier features (CUTAJAR et al., 2016),

sampling techniques (WANG et al., 2016) and doubly stochastic variational inference

(SALIMBENI; DEISENROTH, 2017). Those approaches present pros and cons, which

makes this topic a promising area of research.

Deep GPs generalize other complex GP-based models such as warped GPs,

which provide nonlinear transformation of the output space (SNELSON et al., 2004;

LÁZARO-GREDILLA, 2012), manifold learning by transformation of the input space

(CALANDRA et al., 2016) and deep kernel learning (WILSON et al., 2016a). Besides,

the hierarchical composition of GP priors alleviates the problem of choosing task-specific

covariance functions, since the successive nonlinear mappings, for instance from the use of

the exponentiated quadratic kernel, can be made more expressive than single mappings

from shallow models.

Remark In the past few years, numerous successful applications have been presented in the

literature where automatic feature learning is performed by deep neural networks, i.e., large

parametric models with several layers, usually trained with the backpropagation algorithm,

a field which has been called Deep Learning (LECUN et al., 2015; SCHMIDHUBER, 2015;

GOODFELLOW et al., 2016). Models based on Deep GPs are related nonparametric

efforts which bring a Bayesian treatment to uncertainty, a valuable feature that enables

learning from smaller datasets and generates outputs with clear probabilistic interpretation.
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2.9 Discussion

In this chapter we have summarized the foundations of the GP modeling

framework, with focus on its use on regression tasks. At least two important features

were emphasized when compared to other nonlinear methods: the clear probabilistic

interpretation of the predictions, instead of point estimates, and the comprehensive

Bayesian methodology to perform model selection.

We derived the GP predictive expressions from both the prior over the function

space view, using the multivariate Gaussian distribution’s properties and tractable integrals,

and the feature space approach, where we begin from a Bayesian linear regression setting

and then are able to analytically marginalize the model parameters.

We have also described some important frameworks that enhance the standard

GP approach: the variational sparse GP, for handling larger datasets; the GP-LVM, to

perform Bayesian unsupervised learning and training from noisy inputs; and Deep GPs,

that enable general hierarchical modeling.

In the next chapters we will use the tools described so far to present some

clever GP modeling approaches introduced by several authors and also propose some new

methods inspired by such contributions.
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3 DYNAMICAL MODELING AND RECURRENT GAUSSIAN PRO-

CESSES MODELS

“Truth is much too complicated

to allow anything but approximations.”

(John von Neumann)

The useful features and high applicability of GPs have attracted the attention

of the system identification and time series analysis community. In such context, many

contributions have been recently proposed to exploit the Bayesian nature of GP and tackle

different modeling situations.

In this chapter we briefly review the current literature on dynamical modeling

with GPs, highlighting the differences between the main approaches. This initial part

follows the extensive review made in the recent theses by McHutchon (2014), Damianou

(2015), Frigola-Alcade (2015) and the book by Kocijan (2016). Afterwards, we propose a

powerful new model named Recurrent Gaussian Processes (RGP), which incorporates a

deep recurrent structure built with the focus on learning dynamics from noisy data and

performing free simulation. Furthermore, in order to do inference with the RGP model, we

introduce a modified variational framework called Recurrent Variational Bayes (REVARB).

We conclude the chapter by presenting several computational experiments to evaluate the

new RGP/REVARB approach.

3.1 Dynamical Modeling with GPs

There are many approaches to the task of dynamical modeling with GPs, each

strategy being related to different variants proposed by several authors. Thus, as mentioned

by Frigola-Alcade (2015), we could refer to a “zoo” of dynamical GP models. In this

thesis we are especially interested in nonlinear modeling, but we refer the readers to the

comprehensive survey by Pillonetto et al. (2014) on kernel methods (including GPs) to

linear system identification.

We broadly organize the main contributions found in the literature in two groups:

models with external dynamics and models with internal dynamics. Such presentation

is loosely inspired by the nonlinear dynamical modeling taxonomy described by Nelles

(2013).
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Table 1 – List of regressors used by common model structures with external dynamics.

ȳyyi−1 ūuui−1 ēeei−1 p̄ppi−1
NAR X
NFIR X
NARX X X
NARMAX X X X
NOE X X

3.1.1 GP Models with External Dynamics

The class of models with external dynamics is related to the following generic

structure:

yi = f (ϕϕϕ i)+ ε
(y)
i , (3.1)

where yi is the output, ε
(y)
i is the observation noise, f (·) is some unknown function and ϕϕϕ i

is the so-called regressor vector, which contains a combination of measured values, such

as external inputs, past observed outputs and predicted errors. Usually such values are

given by delayed measures, e.g., for 2 delayed outputs we would have ϕϕϕ i = [yi−1,yi−2]>. In

general, we can write

yi = f ([ȳyyi−1, ūuui−1, ēeei−1, p̄ppi−1])+ ε
(y)
i , (3.2)

ȳyyi−1 = [yi−1,yi−2, · · · ,yi−Ly ]
>,

ūuui−1 = [ui−1,ui−2, · · · ,ui−Lu]
>,

ēeei−1 = [ei−1,ei−2, · · · ,ei−Le ]
>, where ei = yi− ŷi,

p̄ppi−1 = [ŷi−1, ŷi−2, · · · , ŷi−Lp ]
>.

In the previous expressions, the constants Ly, Lu, Le, Lp are respectively the lagged orders

chosen for the outputs yi, inputs ui, prediction errors ei and past predictions ŷi. By

removing some of those regressors, we get the common nonlinear structures listed below,

whose components are summarized in Tab. 1:

NAR (Nonlinear Autoregressive): uses only past outputs.

NFIR (Nonlinear Finite Impulse response): uses only past inputs.

NARX (Nonlinear Autoregressive with eXogenous inputs): uses past outputs and inputs.

NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs): uses

past outputs, inputs and prediction errors.

NOE (Nonlinear Output Error): uses past inputs and past predictions.
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Figure 10 – Graphical model for the GP-NARX. Note that the model input xxxi (not shown)
is comprised of the regressor vectors ūuui−1 and ȳyyi−1, where the former is
deterministic and the latter is random, although also treated as deterministic
in the more common approaches.

The GP framework can be directly incorporated, for instance, to traditional

NARX (or NAR if Lu = 0) modeling by considering a Gaussian observation noise and

defining regressors for the model input following Tab. 1, which gives rise to the GP-NARX

model:

yi = f (xxxi)+ ε
(y)
i , ε

(y)
i ∼N (0,σ2

y ), (3.3)

xxxi = [ȳyyi−1, ūuui−1]> = [[yi−1,yi−2, · · · ,yi−Ly ], [ui−1,ui−2, · · · ,ui−Lu]]
>, (3.4)

fff ∼N (000,KKK f ), [K f ]i j = k(xxxi,xxx j), (3.5)

where yi ∈ R, fff ∈ RN , σ2
y is the noise variance and the model input xxxi ∈ RD has dimension

D = Ly + Lu. By using an ARD covariance function k(·, ·), it is possible to automatically

select which regressors within the chosen orders range are relevant to the problem. Hy-

perparameter learning and prediction follow the standard GP regression methodology

presented in Chapter 2.

The structure of the GP-NARX model is illustrated in Fig. 10. It is important

to note that, although the input of the GP-NARX contains the random vector ȳyyi−1, the

more conventional approaches consider it to be deterministic, similar to the exogenous

input ūuui−1. Thus, the observation noise, which is the only modeled noise, should not be

independent, i.e., future outputs are actually conditioned on past noisy outputs. Such

unrealistic independent noise assumption is a well known limitation of NARX models in

general (NELLES, 2013).

Due to its simplicity and applicability, GP-NARX models are among the most

common approaches to dynamical modeling with GPs. Since early work by Murray-

Smith et al. (1999), Gregorcic and Lightbody (2002), Solak et al. (2003), Kocijan et al.

(2005), many authors have followed this direction, usually tackling specific scenarios or

proposing additional features such as nonstationary covariance function for time series

prediction (BRAHIM-BELHOUARI; BERMAK, 2004) and nonstationary system identifi-
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cation (ROTTMANN; BURGARD, 2010), local modeling (AŽMAN; KOCIJAN, 2011),

integrated pre-processing filter (FRIGOLA-ALCADE; RASMUSSEN, 2013), higher-order

frequency response functions (WORDEN et al., 2014) and system identification in the

presence of outliers (MATTOS et al., 2015).

Girard et al. (2003) aimed to overcome the inherent noise inconsistencies of

the NARX structure by handling the uncertainty in the regressors caused by the feedback

of random variables during multi-step ahead prediction. They approximately propagate

the uncertainty using Gaussian approximations and moment matching, but only during

the prediction step. Such limitation was handled by McHutchon and Rasmussen (2011),

who apply local linear expansions to train GP regression models with noisy inputs. Later,

Damianou and Lawrence (2015) considered a variational approximation in both training

and test steps, while Bijl et al. (2016) approached the task of learning with input noise in

an online context.

Although less common than NARX models, there are some efforts in the

literature towards GP-based solutions with other external dynamics structures, such as

GPs with ARMA noise model (MURRAY-SMITH; GIRARD, 2001), GP-NFIR model

applications (ACKERMANN et al., 2011) and GP training with output error (OE)

(KOCIJAN; PETELIN, 2011).

3.1.2 GP Models with Internal Dynamics

Models with internal dynamics extend the structures described so far by present-

ing some form of internal memory. A general formulation can be written in a state-space

model (SSM) representation:

xxxi = f (xxxi−1,ui−1)+ εεε
(x)
i , (3.6)

yi = g(xxxi)+ ε
(y)
i , (3.7)

where εεε
(x)
i ∈ RD is the transition (or process) noise, f (·) is now called the transition

function, g(·) is the observation (or emission function) and the vector xxxi ∈ RD is called

the state of the system related to the instant i. The main differences when compared

to the previous models with external dynamics are: i) the inclusion of a separate noise

model for the dynamics; ii) the existence of separate functions to model the transition

and the observation; iii) the definition of the state xxxi, which acts as an internal memory
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with general structure.

From such characterization, we can see that SSMs do not use lagged versions

of the outputs to learn dynamics and hence do not pose much prior restrictions to the

states. However, it is important to emphasize that in most applications the states xxxi are

latent, i.e., not observed directly.

SSMs usually involve three important operations, which from the Bayesian

point of view are related to three conditional distributions, listed below (SÄRKKÄ, 2013):

Filtering Estimation of a state from the observed outputs up until the current instant,

i.e., the posterior distribution p(xxxi|yi,yi−1, · · · ,y1);

Prediction Estimation of a state given only previous observations, i.e., the conditioning

distribution p(xxxi|yi−1,yi−2, · · · ,y1);

Smoothing Estimation of the states after the observation of all available measured output,

i.e., the posterior distribution p(xxxi|yN ,yN−1, · · · ,y1).

Certainly, the above distributions can also be conditioned to external inputs ui|Ni=1, if they

are available.

In a GP-SSM context we have the GP priors below:

FFF ∼
D

∏
d=1

N ( fff :d|000,KKK f ), where fff :d = [ fff i]d|Ni=1 = Fid|Ni=1, (3.8)

ggg∼N (000,KKKg), (3.9)

where ggg ∈ RN is the vector of latent outputs from g(·) and FFF ∈ RN×D is the collection of

D latent transition vectors fff :d ∈ RN , 1 ≤ d ≤ D. Note that each output dimension d of

f (·), associated with each state dimension, is modeled by a separate GP, although with

the same inputs.

The graphical model for the GP-SSM, illustrated in Fig. 11, highlights the

challenges faced by this model, since the latent states xxxi and latent variables fff i ∈ RD and

gi, related respectively to the transition and observation functions, must be marginalized

somehow. Such latent structure and the recurrent nature of f (·) bring several intractabilities

to the model, so regular GP expressions are not analytical anymore and approximate

methods become necessary.

It is interesting to note that in the GP-NARX model shown in Fig. 10 the

regressors used as inputs, i.e., xxxi = [ȳyyi−1, ūuui−1]>, can actually be seen as an observable state
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Figure 11 – Graphical model for the GP-SSM. Besides the deterministic external input
ui−1, the only observed variable is the noisy observation yi. Note that both the
transition and observation functions, related respectively to fff i and gi, have
random variables as inputs.

in a SSM context. Conversely, the GP-SSM latent state can be roughly seen as a vector of

unobserved regressors.

Many authors have explored different approaches to perform inference with the

general GP-SSM framework, such as the use of expectation maximization (EM) (TURNER

et al., 2010), particle Markov Chain Monte Carlo (PMCMC) methods (FRIGOLA-

ALCADE et al., 2013; SVENSSON et al., 2016) and hybridization of variational Bayes

and sequential Monte Carlo (SMC) (FRIGOLA-ALCADE et al., 2014).

The works mentioned above aim to perform Bayesian filtering or smoothing, i.e.,

finding posterior distribution to the state xxxi given observations up to yyyi or all the outputs

yyyi|Ni=1, respectively. In the linear case with Gaussian noise, Kalman filtering (KALMAN

et al., 1960) and Kalman smoothing (RAUCH et al., 1965) provide the optimal solutions.

Although several nonlinear extensions exist (and are comprehensively presented by Särkkä

(2013)), the previously cited works constitute nonparametric GP-based alternatives. We

refer the readers to the work by Reece and Roberts (2010) and Särkkä et al. (2013) for

detailed connections between GP models and Kalman filtering/smoothing methods.

Other authors have opted to apply variants of the GP-LVM framework (LAWRENCE,

2004; TITSIAS; LAWRENCE, 2010) to propose alternative GP models with internal dynam-

ics (WANG et al., 2005; LAWRENCE; MOORE, 2007; FERRIS et al., 2007; DAMIANOU

et al., 2011). As opposed to sampling methods, those approaches usually follow determinis-

tic approximations, such as finding a maximum a posteriori (MAP) solution for the latent

states or approximate marginalization via variational algorithms.

Each aforementioned work usually considers slightly different model formula-

tions, aiming to simplify the inference step or to cover task specific requirements. For

instance, the Gaussian Process Dynamical Model (GPDM) proposed by Wang et al. (2005)

consists of starting from the GP-LVM framework, maintaining the original GP prior p(YYY |XXX)
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between the latent (state) space and the observations, and then includes a transition

distribution p(xxxi|xxxi−1) between states. Ferris et al. (2007) follow a similar approach, but

instead of directly modeling such transition distribution, the prior on the latent space p(XXX)

is modified by imposing positioning constraints between successive points. Similar to the

original GP-LVM (LAWRENCE, 2005), in both cases the authors proceed by maximizing

the latent variables xxxi along with the model hyperparameters, i.e., a MAP solution for the

states. This implies treating the latent variables xxxi as model parameters themselves, since

they are not marginalized.

Damianou et al. (2011) proposed the Variational Gaussian Process Dynamical

Systems (VGPDS), which approximately integrates the latent variables in its structure

using the variational approach of the Bayesian GP-LVM framework, introduced by Titsias

and Lawrence (2010). However, differently from the GPDM, the transition function f (·) in

the expression xxxi = f (xxxi−1)+εεε
(x)
i is modeled by a GP with the time instants t as inputs, i.e.,

fff ∼N (000,KKK f ), [K f ]i j = k(ti, t j). It is argued by Frigola-Alcade (2015) that such model is

capable of handling only linear dynamics, since the transition between states is not modeled

directly, but implicitly by depending from the same time inputs. Still, Damianou et al.

(2011) demonstrated how VGPDS can be easily applied to high-dimensional dynamical

data, such as video sequences.

Alvarez et al. (2009) pursue a very unique approach, named latent force models,

a hybrid GP model which applies linear differential equations in its covariance function in

order to incorporate physical knowledge about the underlying dynamical system. Later,

Alvarez et al. (2010) extended that technique to enable switching between different

dynamics, allowing its use in the task of nonlinear robot movement representation.

Finally, it is worth noting the trend in combining GP-based dynamical models

with other powerful learning methods, such as neural networks. For instance, Chatzis

and Demiris (2011) builds a GP model enhanced with the reservoir computing approach

from echo state networks (ESN) (JAEGER, 2001) to obtain an echo state GP (ESGP) for

dynamical data modeling. More recently, Al-Shedivat et al. (2016) propose a dynamical

GP model where the covariance function is replaced by a long short-term memory (LSTM)

recurrent neural network (HOCHREITER; SCHMIDHUBER, 1997). The resulting GP-

LSTM model aims to retain the nonparametric probabilistic nature of GPs while allowing

direct learning of the recurrent kernel via the LSTM.
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3.2 Recurrent GPs

Though simple and tractable, the GP-NARX model results in inconsistent noise

assumptions and mishandles the uncertainty in its basic formulation. The GP-SSM admits

unobserved variables, distinct noises and separately models the transition and observation

functions. However, its definition of the latent states is vague and ambiguous, since usually

there is no strong a priori assumptions about them. Besides, approximate methods are

necessary, increasing the overall inference complexity when compared to GP-NARX.

With those observations in mind, we propose an alternative SSM approach

where the states have an specific autoregressive structure. Differently from standard NARX

models, the autoregression in our model is performed with latent variables modeled by

probability distributions. Such structure is defined by the set of equations below:

xi = f (x̄xxi−1, ūuui−1)+ ε
(x)
i , (3.10)

yyyi = g(x̄xxi)+ εεε
(y)
i , (3.11)

where following the previously defined notation for regressors and given L lag steps we have

x̄xxi−1 = [xi−1, · · · ,xi−L]> and ūuui−1 = [ui−1, · · · ,ui−Lu ]
>. Even if the output of the transition

function f (·) in Eq. (3.10) is chosen to be 1-dimensional, it should be noticed that the

actual hidden state x̄xxi ∈ RL is multidimensional for L > 1. Since such latent transition

variables are also used as inputs in the next iterations, our model can be characterized as

recurrent.

As argued by Pascanu et al. (2014) in the context of recurrent neural networks

(RNNs), a hierarchical (or deep) structure can be helpful for recurrent modeling. Besides,

such multilayer structure has been successfully exploited more recently with the rise of

deep GP models (DAMIANOU; LAWRENCE, 2013; HENSMAN; LAWRENCE, 2014;

DAMIANOU, 2015), as briefly described in Section 2.8.

If we consider H transition functions, each one comprising a hidden layer, it

naturally results in the following deep recurrent structure:

x(h)
i = f (h)

(
x̂xx(h)

i

)
+ ε

(h)
i , fff (h) ∼N

(
000,KKK(h)

f

)
, 1≤ h≤ H, (3.12)

yyyi = f (H+1)
(

x̂xx(H+1)
i

)
+ ε

(H+1)
i , fff (H+1) ∼N

(
000,KKK(H+1)

f

)
(3.13)

where we have put GP priors with zero mean and covariance matrix KKK(h)
f on the unknown

functions f (·)(h), the noise in each layer is defined as ε
(h)
i ∼N (0,σ2

h ) and the upper index
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differentiates variables and functions from distinct layers. We also introduce the notation

x̂xx(h)
i =



[
x̄xx(1)

i−1, ūuui−1

]>
=
[[

x(1)
i−1, · · · ,x

(1)
i−L

]
, [ui−1, · · · ,ui−Lu]

]>
, if h = 1,[

x̄xx(h)
i−1, x̄xx

(h−1)
i

]>
=
[[

x(h)
i−1, · · · ,x

(h)
i−L

]
,
[
x(h−1)

i , · · · ,x(h−1)
i−L+1

]]>
, if 1 < h≤ H,

x̄xx(H)
i =

[
x(H)

i , · · · ,x(H)
i−L+1

]>
, if h = H + 1.

(3.14)

We note that the vector x̄xx(h)
i represents the autoregressive state associated with the layer

h in the instant i, from which the dynamics are learned1. Since the vectors x̄xx(h)
i are not

directly dependent on past observations, they are related to general latent states of regular

SSMs. Thus, in the nonlinear system identification terminology that we have presented

in this chapter, inspired by Nelles (2013), the RGP is considered a model with internal

dynamics.

The RGP model can also be written using only the involved distributions:

p
(

fff (h)
∣∣∣X̂XX (h)

)
= N

(
fff (h)
∣∣∣000,KKK(h)

f

)
, 1≤ h≤ H + 1, (3.15)

p
(

x(h)
i

)
= N

(
x(h)

i

∣∣∣µ(h)
0i ,λ

(h)
0i

)
, 1≤ i≤ L, (3.16)

p
(

x(h)
i

∣∣∣ f (h)
i

)
= N

(
x(h)

i

∣∣∣ f (h)
i ,σ2

h

)
, L + 1≤ i≤ N, (3.17)

p
(

yi

∣∣∣ f (H+1)
i ,σ2

H+1

)
= N

(
yi

∣∣∣ f (H+1)
i ,σ2

H+1

)
, L + 1≤ i≤ N, (3.18)

where X̂XX
(h)

is simply given by stacking the vectors x̂xx(h)
i |Ni=L+1 and we have made explicit

the means µ
(h)
0i and variances λ

(h)
0i of the Gaussian priors in the initial L latent variables

of each layer2. The former set of equations results in a full probabilistic model, where

each model component is given a distribution and from which we could sequentially take

samples.

The graphical model for the RGP is presented in Fig. 12, where we have kept

the state notation x̄xx(h) to make the recurrent dependencies more clear. Fig. 13 details the

recurrent connections in a single transition layer. It should be noted that the standard

GP-NARX and GP-SSM can also be seen as RGPs, but with different states structure.

We emphasize that the RGP model preserves the unobserved states of standard

SSMs but avoids the ambiguities of generic multidimensional states by imposing a specific

1We emphasize the different notations presented in Eq. (3.14): x(h)
i is the dynamical latent variable,

x̄xx(1)
i−1 is the latent state vector and x̂xx(h)

i is the h-th layer input.
2Note that in Eq. (3.18) we write the index range of the observations yi from i = L + 1 to i = N,

comprising N−L elements, since the first L elements are considered as initial conditions. The same strategy
is applied to the latent variables in the hidden layers in Eq. (3.17).



63

yif (H+1)
i

· · ·f (2)
i

x̄xx(2)
i

f (1)
i

x̄xx(1)
i

ūuui−1

· · ·

ε
(1)
i ε

(2)
i

ε
(y)
i

· · ·

Figure 12 – RGP graphical model with H hidden layers. The recurrent hierarchical
structure illustrates how the latent variables outputted by a given transition
layer are used as inputs in that layer and in the next one. Similar to SSMs,
the only observed variables are the deterministic external inputs and the noisy
measurements.

x(h)
if (h)

i

x(h)
i−1 x(h)

i−2
· · · x(h)

i−L

x(h−1)
i x(h−1)

i−1
· · · x(h−1)

i−L+1

ε
(h)
i

x̄xx(h)
i−1

x̄xx(h−1)
i

Figure 13 – Detailing of a single recurrent transition layer h, 1≤ h≤H, of the RGP model.

Note that for h = 1, the variables x(h−1)
i−l+1|

L
l=1 are replaced by the deterministic

external inputs ui−l|Lu
l=1. If these are not available, they are simply omitted.

latent autoregressive structure. It is also worth mentioning that our RGP model, as defined

by Eqs. (3.12) and (3.13), can be seen as a special case of the general Deep GP framework

(briefly described in Section 2.8) where the priors of the latent variables in each hidden

layer follow the autoregressive structure of Eq. (3.14), illustrated in Fig. 12. Thus, the

RGP model inherits the powerful expressiveness and uncertainty handling properties of

Deep GPs, as well as their intractabilities.

So far we have only introduced the structure and the probabilistic expressions

that describe the RGP model, without worrying about how to use it to learn dynamics

from data or perform predictions. This agrees with our goal of separating model from

inference algorithm, as argued in Section 1.3. In the next section we present the REVARB

framework, a variational method to perform inference with this novel RGP model, which
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is able to handle the uncertainties from both the data and the model components.

Remark A given model is called generative if it defines a joint distribution over inputs

and outputs, which enables it to generate data (KOLLER; FRIEDMAN, 2009). The

RGP model considers distributions in Eqs. (3.15)-(3.18) for all its components but the

exogenous inputs ui|Ni=1, which are actually absent if a time series is being modeled. If

such inputs are present, we could easily include some Gaussian distribution for them and

treat them similar to the latent dynamical variables x(1)
i |Ni=1 of the first layer. We comment

about that strategy within the REVARB framework in Appendix A.1. Thus, we can safely

refer to RGPs as generative models.

3.3 REVARB: REcurrent VARiational Bayes

Inference is intractable in our RGP model because we are not able to get

analytical forms for the posterior of the latent function values fff (h) or the marginal

likelihood of the observations yyy, as opposed to what we have done for standard GP

regression in Sections 2.3 and 2.4. We tackle such intractabilities with the variational

approximation scheme named REVARB: REcurrent VARiational Bayes.

Thus, we have two goals in this section: (i) approximately marginalize all the

latent variables of the RGP model, (ii) find an expression that approximates the RGP

model evidence, i.e., the marginal log-likelihood, which can be used to perform model

selection. The REVARB framework, described henceforward, covers both goals.

REVARB is based on the variational sparse framework proposed by Titsias

(2009a) and described in Section 2.6.1. Thus, we start by including to each layer h a

number of M inducing points zzz(h) ∈RM evaluated in M pseudo-inputs ζζζ
(h)
j

∣∣M
j=1 ∈R

Dh , where

Dh is the same dimension of the layer h input x̂xx(h)
i . Such inducing points zzz(h) are extra

samples of the GP that models f (h)(·) and we can write p
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣000,KKK(h)

z

)
, where

KKK(h)
z ∈ RM×M is the covariance matrix obtained from ζζζ

(h)
j

∣∣M
j=1.

From the expressions defined in past section, the joint distribution relating all
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the variables of the augmented model is now given by:

p
(

yyy,
{

xxx(h)
}∣∣∣Hh=1,

{
fff (h),zzz(h)

}∣∣∣H+1
h=1

)
=(

N

∏
i=L+1

p
(

yi

∣∣∣ f (H+1)
i

)
p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

) H

∏
h=1

p
(

x(h)
i

∣∣∣ f (h)
i

)
p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

))
(

H+1

∏
h=1

p
(

zzz(h)
))( L

∏
i=1

H

∏
h=1

p
(

x(h)
i

))
,

(3.19)

where the boldface indexless notation xxx(h) is used to refer to all variables x(h)
i ,∀i∈ {1, · · · ,N},

in a given layer h. Note that we have omitted for now the dependence on the pseudo-inputs

ζζζ
(h)
j . It is important to emphasize that such augmentation does not fundamentally change

the original model, since if we integrate out the inducing points zzz(h) we recover the same

original model expressions.

The exact marginal likelihood p(yyy) still cannot be computed analytically. For

instance, in order to compute it we would need to integrate all the latent variables in Eq.

(3.19). However, such integration is not analytical, since the latent variables x(h)
i appear in

the terms
∣∣∣KKK(h)

f

∣∣∣ and
(

KKK(h)
f

)−1
inside the GP priors on fff (h).

Fortunately, we are able to lower bound the marginal log-likelihood log p(yyy) by

applying Jensen’s inequality, similar to the standard variational approach (also pursued by

the sparse approximation described in Section 2.6.1):

log p(yyy)≥
∫

fff ,xxx,zzz
Q log

 p
(

yyy,
{

xxx(h)
}∣∣∣Hh=1,

{
fff (h),zzz(h)

}∣∣∣H+1
h=1

)
Q

 , (3.20)

where Q is the variational distribution. We note that, as demonstrated in Section 2.6.1

in the context of the variational sparse framework, the maximization of the bound in Eq.

(3.20) is equivalent to minimizing the KL divergence between the variational posterior Q

and the true posterior. We conveniently choose the following factorized expression for Q:

Q =

(
H

∏
h=1

q
(

xxx(h)
))(H+1

∏
h=1

q
(

zzz(h)
))( N

∏
i=L+1

H+1

∏
h=1

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

))
. (3.21)

In the former equation, the distribution p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
can be found by using

the Gaussian conditioning property, since fff (h) and zzz(h) come from the same GP:

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
= N

(
f (h)
i

∣∣∣[aaa(h)
f

]
i
,
[
ΣΣΣ

(h)
f

]
ii

)
, (3.22)

where aaa(h)
f = KKK(h)

f z

(
KKK(h)

z

)−1
zzz(h),

and ΣΣΣ
(h)
f = KKK(h)

f −KKK(h)
f z

(
KKK(h)

z

)−1(
KKK(h)

f z

)>
.
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In the above expression, KKK(h)
f ∈ R(N−L)×(N−L) is the standard covariance matrix obtained

from x̂xx(h), KKK(h)
z ∈RM×M is the covariance matrix calculated from the pseudo-inputs ζζζ

(h)
and

the components of the matrix KKK(h)
f z ∈ R(N−L)×M are calculated by

[
KKK(h)

f z

]
i j

= k
(

x̂xx(h)
i ,ζζζ

(h)
j

)
.

We have also used in Eq. (3.22) the subindex [·]i to indicate the i-th element of the vector

aaa(h)
f and the double subindex [·]ii to indicate the i-th element of the diagonal of the matrix

ΣΣΣ
(h)
f . It should be noted that we do not need to compute the full covariance matrix KKK(h)

f ,

but only its N−L diagonal elements, a feature inherited from the sparse approximation.

Moreover, we recall that the number of inducing points M is usually much lower than the

number of samples N.

We also consider a factorized mean-field approximation (PARISI, 1988) for

q
(

xxx(h)
)

:

q
(

xxx(h)
)

=
N

∏
i=1

q
(

x(h)
i

)
=

N

∏
i=1

N
(

x(h)
i

∣∣∣µ(h)
i ,λ

(h)
i

)
, (3.23)

where µ
(h)
i ∈ R and λ

(h)
i ∈ R>0 are variational parameters that characterize the posterior

approximations. The variational distribution in Eq. (3.23) indicates that the latent

variables xxx(h)
i in a given hidden layer are related to 2N variational parameters. In standard

variational GP-SSMs, such as the one presented by Frigola-Alcade et al. (2014), we would

have a total of 2ND parameters, for D-dimensional states, even for a diagonal covariance

matrix in the posterior. Such reduction of parameters in our mean-field approximation

was enabled by the latent autoregressive structure of the RGP model.

Following Titsias (2009a), it turns out that the variational distribution q
(

zzz(h)
)

that maximizes the bound is a multivariate Gaussian, which can be generically written as

q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
, where mmm(h) and SSS(h) are additional variational parameters

respectively related to the mean and covariance matrix of the distribution. Fortunately,

those can be found analytically and optimally eliminated from the expressions (TITSIAS,

2009a; TITSIAS; LAWRENCE, 2010). This step is detailed in the Appendix A.2.

Replacing the definition of the joint distribution (Eq. (3.19)) and the factorized

variational distribution Q (Eq. (3.21)) in the Jensen’s inequality of Eq. (3.20), we are able
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to cancel the terms p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
inside the logarithm:

log p(yyy)≥
N

∑
i=L+1

∫
fff ,xxx,zzz

q
(

xxx(H)
)

q
(

zzz(H+1)
)

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H+1)
i

)
log p

(
yi

∣∣∣ f (H+1)
i

)
+

N

∑
i=L+1

H

∑
h=1

∫
fff ,xxx,zzz

(
H

∏
h′=1

q
(

xxx(h′)
))

q
(

zzz(h)
)

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
log p

(
x(h)

i

∣∣∣ f (h)
i

)
−

N

∑
i=1

H

∑
h=1

∫
xxx

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

H

∑
h=1

∫
xxx

q
(

x(h)
i

)
log p

(
x(h)

i

)
−

H+1

∑
h=1

∫
zzz
q
(

zzz(h)
)

logq
(

zzz(h)
)

+
H+1

∑
h=1

∫
zzz
q
(

zzz(h)
)

log p
(

zzz(h)
)
.

(3.24)

The former expression can be rewritten in a more compact way as follows:

log p(yyy)≥
N

∑
i=L+1

H+1

∑
h=1

L
(h)

i +
N

∑
i=1

H

∑
h=1

H
(h)

i +
L

∑
i=1

H

∑
h=1

L
(h)

0i −
H+1

∑
h=1

KL
(

q
(

zzz(h)
)∣∣∣∣∣∣p(zzz(h)

))
, (3.25)

where we have denoted the terms below:

L
(H+1)

i =
〈

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H+1)
i

)
log p

(
yi

∣∣∣ f (H+1)
i

)〉
q(xxx)q(zzz)

,

L
(h)

i =
〈

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
log p

(
x(h)

i

∣∣∣ f (h)
i

)〉
q(xxx)q(zzz)

, 1≤ h≤ H,

H
(h)

i =−
〈

logq
(

x(h)
i

)〉
q(xxx)

, 1≤ h≤ H,

L
(h)

0i =
〈

log p
(

x(h)
i

)〉
q(xxx)

, 1≤ h≤ H,

KL
(

q
(

zzz(h)
)∣∣∣∣∣∣p(zzz(h)

))
=
∫

zzz
q
(

zzz(h)
)

logq
(

zzz(h)
)
−
∫

zzz
q
(

zzz(h)
)

log p
(

zzz(h)
)
, 1≤ h≤ H + 1.

In the above expressions, the notation 〈·〉p(·) indicates expectation with respect to the

distributions in the subindex. We omit some of the layer’s indexes in such distributions in

order to avoid notation clutter, but those agree with the variables inside the expectation.

It is worth interpreting the components of the bound expressed in Eq. (3.25).

First of all, L
(H+1)

i is the only term that contains the observations yyy, being the main data

fitting component. The terms L
(h)

i

∣∣H
h=1, on the other hand, are more directly responsible

for learning the transition dynamics from the latent inputs x̂xxi in each hidden layer. The

terms L
(h)

0i

∣∣H
h=1, 1 ≤ i ≤ L, are related to the initial conditions of the latent dynamical

variables and are heavily influenced by the priors p
(

x(h)
i

)
. The entropy terms H

(h)
i

∣∣H
h=1

and the KL divergences KL
(

q
(

zzz(h)
)∣∣∣∣∣∣p(zzz(h)

))∣∣H
h=1 are responsible for constraining the

flexibility of the learned latent space and limiting the complexity of the model, acting as

regularizers that naturally appear in the derived bound.
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Working Eq. (3.25) we obtain the final REVARB expression, whose detailed

derivation is presented in the Appendix A.2. The lower bound to the model log-marginal

likelihood is given by

log p(yyy)≥−N−L
2

H+1

∑
h=1

log2πσ
2
h −

1
2σ2

H+1

(
yyy>yyy + Ψ

(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ

(H+1)
2

))
+

1
2

log
∣∣∣KKK(H+1)

z

∣∣∣− 1
2

log

∣∣∣∣∣KKK(H+1)
z +

1
σ2

H+1
ΨΨΨ

(H+1)
2

∣∣∣∣∣
+

1
2(σ2

H+1)2 yyy>ΨΨΨ
(H+1)
1

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

+
1
2

log
∣∣∣KKK(h)

z

∣∣∣− 1
2

log
∣∣∣∣KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

∣∣∣∣
+

1
2(σ2

h )2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h)

−
N

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
log p

(
x(h)

i

)}
,

(3.26)

where we have to compute some statistics that come up in the bound after solving the

expectations:

Ψ
(h)
0 = Tr

(〈
KKK(h)

f

〉
q(·)(h)

)
ΨΨΨ

(h)
1 =

〈
KKK(h)

f z

〉
q(·)(h)

ΨΨΨ
(h)
2 =

〈(
KKK(h)

f z

)>
KKK(h)

f z

〉
q(·)(h)

⇒ q(·)(h) =


q
(

xxx(1)
)
, if h = 1,

q
(

xxx(h)
)

q
(

xxx(h−1)
)
, if 1 < h≤ H,

q
(

xxx(H)
)
, if h = H + 1,

(3.27)

where 〈·〉q(xxx(h)) means expectation with respect to the distribution q
(

xxx(h)
)

, which itself

depends only on the variational parameters µ
(h)
i and λ

(h)
i . All the expectations are tractable

for our choice of the exponentiated quadratic covariance function and follow expressions

similar to the ones presented by Titsias and Lawrence (2010) for the Bayesian GP-LVM,

which are detailed in the Appendix A.1. The additional integrals in the last line of Eq.

(3.26) involve only Gaussians and are hence also tractable. Note that in the final bound

all the latent variables were, at least approximately, marginalized.

The REVARB lower bound acts as a proxy for the log-marginal likelihood

and by making it tighter, i.e., maximizing it, the approximation gets closer to the true
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expression for log p(yyy). The bound can be optimized with the help of analytical gradients

with respect to the kernel hyperparameters and variational parameters. Note that those

are not model parameters3, so our approach preserves the original nonparametric nature

of GP models.

Any gradient-based optimization algorithm can be used to iteratively maximize

the REVARB bound. In this work we use the well known BFGS method (FLETCHER,

2013), more specifically the R implementation of the standard stats package (R Core Team,

2017). Note that the moments of the Gaussian priors p
(

x(h)
i

)
= N

(
x(h)

i

∣∣∣µ(h)
0i ,λ

(h)
0i

)
of the

initial latent variables x(h)
i |Li=1 can be either fixed, e.g., µ

(h)
0i = 0 and λ

(h)
0i = 1, or optimized

along with the other components of the model. It is important to notice that the full

REVARB bound in Eq. (3.26) is not factorized along the observations, as the compact

version in Eq. (3.25) could indicate. Thus, a batch optimization must be performed.

Remark The presented REVARB derivation does not explicit the filtering or smoothing

steps. Indeed, the posterior distribution of the latent states x̄xx(h)
i in the hidden layers is not

calculated, but directly approximated by the variational distributions q
(

xxx(h)
)

, as shown in

Eq. (3.23). Thus, after the optimization of the analytical lower bound to the log-marginal

likelihood in Eq. (3.26), the variational distributions act as the posterior of the states’

components given the training observations, resulting in a smoothing “by-product”.

3.3.1 Making Predictions with the REVARB Framework

The REVARB framework allows for a natural way to approximately propagate

the uncertainty during both training and testing. Since the input of each layer in a given

iteration is a distribution that models the uncertainty in that moment, the computation of

the exact predictive distribution is intractable, in opposition to standard GP regression.

However, we can still calculate its moments and approximate it by a Gaussian, which can

be used in further predictions. For this purpose, we follow the methodology presented in

Girard et al. (2002), Girard et al. (2003) for multi-step ahead GP predictions.

Given a new input x̂xx(h)
∗ in the h-th layer, we want to approximate the predictive

3As argued in Section 2.2, the kernel hyperparameters are responsible for characterizing the chosen
covariance function and the variational parameters (pseudo-inputs and moments of the variational
distributions) are related to the inference method.
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distribution of the associated output f (h)
∗ :

p
(

f (h)
∗
)

=
〈

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)〉

q(xxx∗)
, (3.28)

where q(xxx∗) (with omitted layer index) is the approximate distribution of the latent

variables in the input x̂xx(h)
∗ , defined similar to the Eq. (3.14). The conditional distribution

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)

follows the variational sparse GP predictive Eq. (2.27) and is itself given by:

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)

= N
(

f (h)
∗

∣∣∣ρ(h)
∗ ,ς

(h)
∗
)
, (3.29)

ρ
(h)
∗ = kkk(h)

∗z
(

KKK(h)
z

)−1
mmm(h),

ς
(h)
∗ = K(h)

∗ − kkk(h)
∗z
(

KKK(h)
z

)−1
kkk(h)

z∗ + kkk(h)
∗z
(

KKK(h)
z

)−1
SSS(h)

(
KKK(h)

z

)−1
kkk(h)

z∗ ,

where the moments of q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
are the optimal expressions derived

in the Appendix A.2 (Eq, (A.18)) and repeated here for completeness:

SSS(h) = KKK(h)
z

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1

KKK(h)
z ,

mmm(h) =
1

σ2
h

KKK(h)
z

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h).

The expectation in Eq. (3.28) is intractable, since the latent variables to be

integrated appear in a complicated way inside the moments of the distribution in Eq (3.29).

In order to proceed, we apply a Gaussian approximation, which implies computing only

the first two moments of the predictive distribution. Those can be computed following

properties of conditional distributions (GIRARD et al., 2002):

p
(

f (h)
∗
)

=
〈

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)〉

q(xxx∗)
≈N

(
f (h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗
)
,

µ
(h)
∗ =

〈
ρ

(h)
∗
〉

q(xxx∗)
,

λ
(h)
∗ =

〈
ς

(h)
∗
〉

q(xxx∗)
+Vq(xxx∗)

{
ρ

(h)
∗
}
,

where Vq(xxx∗){·} indicates the variance operator with respect the distribution q(xxx∗). Impor-

tantly, the former expressions are analytical for the exponentiated quadratic covariance

function.

Following the results derived by Quiñonero-Candela and Girard (2002), Quiñonero-



71

Candela et al. (2003), the predictive moments are finally given by:

p
(

f (h)
∗
)

=
〈

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)〉

q(xxx∗)
≈N

(
f (h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗
)
, (3.30)

µ
(h)
∗ =

(
BBB(h)

)>(
ΨΨΨ

(h)
1∗

)>
, (3.31)

λ
(h)
∗ =

(
BBB(h)

)>(
ΨΨΨ

(h)
2∗ −

(
ΨΨΨ

(h)
1∗

)>
ΨΨΨ

(h)
1∗

)
BBB(h) + Ψ

(h)
0∗

−Tr
(((

KKK(h)
z

)−1
−
(

KKK(h)
z + σ

−2
h ΨΨΨ

(h)
2

)−1
)

ΨΨΨ
(h)
2∗

)
.

(3.32)

Note that, since x(h)
∗ = f (h)

∗ + ε
(h)
i , following the RGP transition expression in Eq. (3.12),

we have q
(

x(h)
∗
)

= N
(

x(h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗ + σ2

h

)
. We have also defined the matrices

BBB(h) = σ
−2
h

(
KKK(h)

z + σ
−2
h ΨΨΨ

(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h), 1≤ h≤ H, (3.33)

BBB(H+1) = σ
−2
H+1

(
KKK(H+1)

z + σ
−2
H+1ΨΨΨ

(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy. (3.34)

The terms Ψ
(h)
0∗ , ΨΨΨ

(h)
1∗ and ΨΨΨ

(h)
2∗ are computed as the original statistics in Eq. (3.27), but

instead of the distributions q
(

x(h)
i

)
we use the new approximation q

(
x(h)
∗
)

and replace

KKK(h)
f and KKK(h)

f z respectively by K(h)
∗ = k

(
x̂xx(h)
∗ , x̂xx(h)

∗
)

and kkk(h)
∗z =

[
k
(

x̂xx(h)
∗ ,ζζζ

(h)
1

)
· · ·k

(
x̂xx(h)
∗ ,ζζζ

(h)
M

)]
.

Note that for the observation layer we have E{y∗}= µ
(H+1)
∗ and V{y∗}= λ

(H+1)
∗ + σ2

H+1.

It is worth emphasizing that the REVARB predictive expression in Eq. (3.30)

is, as expected, recurrent, since future predictions are computed based on past predictive

distributions. Such behavior is also made explicit in the original RGP join distribution in

Eq. (3.19). Thus, it is clear that the RGP/REVARB framework is designed to simulate

dynamical systems, with recurrences in both training and prediction steps always being

operated with components of the own model, which are themselves probabilistically handled.

This important feature turns our approach specially suitable to perform free simulation

after the identification of nonlinear systems from noisy data.

Remark In rigorous terms, after each new prediction is made, the RGP model could

be augmented with the newly computed latent variables x(h)
∗ and, since the model has

changed, it could be re-optimized via the REVARB lower bound. Similar observation was

also pointed out by Damianou et al. (2016) in the context of GPs with uncertain inputs.

Of course, such procedure would be much more computationally demanding. We avoid this

laborious approach and follow the more pragmatic alternative explained in this section,

considering that the training data is enough to obtain a well tuned model and make all

the predictions.
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3.3.2 Sequential RNN-based Recognition Model

From the variational distribution q(xxx(h)) in Eq. (3.23) it is clear that the

number of variational parameters in the REVARB framework grows linearly with the

number of observed samples, which renders optimization challenging in large N scenarios.

To alleviate this problem we propose an alternative to constrain the variational means

µ
(h)
i using recurrent neural networks (RNNs). More specifically, in the h-th hidden layer

(1≤ h≤ H) we have:

µ
(h)
i = g(h)

µ

(
x̂xx(h)

i−1

)
= φµ,LN

(
WWW (h)>

µ,LN
φµ,LN−1

(
· · ·φµ,1

(
WWW (h)

µ,1x̂xx(h)
i−1

)))
, (3.35)

where LN denotes the depth of the neural network, matrices WWW (h)
µ,l

∣∣LN
l=1 are the networks’

weights and φφφ µ,l(·)
∣∣LN
l=1 denote element-wise activation functions. Note that, since the

neural network above is not a probabilistic model, the latent variables in its input x̂xx(h)
i−1 are

actually replaced by their correspondent variational mean values µ
(h)
i . The notation x̂xx(h)

i−1

was maintained only as an analogy to the original RGP expression in Eq. (3.12).

We refer to this RNN-based constraint as the sequential recognition model.

Such model directly captures the transition between the latent representation across time.

This provides a constraint over the variational posterior distributions of the REVARB

framework that maintains its emphasis in free simulation. The variational variances λ
(h)
i

can be either modeled by a separate parametric model, with a distinct set of weights,

or, for simplicity, be kept fixed to constant small values. For now we keep the latter

simplification, since it was the one chosen to perform experiments in Section 3.4.5. Later,

in Section 5.3.2 of Chapter 5, we deal with the case where both variational means and

variances are modeled by NNs.

The recognition model’s influence is combined with that of the analytic lower

bound in the same objective optimization function. Thus, we no longer need to optimize

the variational means but, instead, only the set of RNN weights, whose number does not

increase linearly with N. Furthermore, this approach also allows us to kick-off optimization

by random initialization of the RNN weights, as opposed to more elaborate initialization

schemes for the variational parameters.

The recognition model idea relates to the work by Kingma and Welling (2014),

Rezende et al. (2014). In our case, however, the recognition model is sequential to agree

with the dynamical latent structure of the RGP model. Moreover, its purpose is distinct,
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since it acts as a constraint in an already analytical variational lower bound. It is also

important to emphasize that our sequential recognition model acts upon a nonparametric

Bayesian model.

Although in this section we have started to introduce the sequential RNN-based

recognition model, we will further discuss and detail it in Section 5.3.2 of Chapter 5, where

it will be exploited in a stochastic optimization context in order to handle large scale

datasets.

3.3.3 Multiple Inputs and Multiple Outputs

Almost all the examples and experiments in this thesis are related to single-

input and single-output (SISO) systems. In the more general case of multiple-input and

multiple-output (MIMO) data, the RGP/REVARB framework can still be applied, though

with some minor modifications. We mention here two possible strategies, listed below.

Single shared latent space The simplest approach to apply the REVARB method to

multiple-output data consists in considering the dynamics to be closely related among

the outputs and to model them by a single shared dynamical latent space. In that

case, we only need to modify the output layer of the RGP model by writing the

observed outputs as a matrix YYY ∈ RN×Dy , a stack of N Dy-dimensional samples.

As follows we show the modified REVARB lower bound which is able to handle

multiple outputs with this strategy, where, for the sake of simplicity, we have

considered the same kernel hyperparameters and noise variance σ2
H+1 for all the

output dimensions. We emphasize that we simply replicated the original bound in
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Eq. (3.26) Dy times and replaced yyy by yyy:d, i.e., the d-th column of the matrix YYY :

log p(YYY ) =
Dy

∑
d=1

log p(yyy:d),

log p(YYY )≥
Dy

∑
d=1

{
−N−L

2

H+1

∑
h=1

log2πσ
2
h

− 1
2σ2

H+1

(
yyy>:dyyy:d + Ψ

(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ

(H+1)
2

))
+

1
2

log
∣∣∣KKK(H+1)

z

∣∣∣− 1
2

log

∣∣∣∣∣KKK(H+1)
z +

1
σ2

H+1
ΨΨΨ

(H+1)
2

∣∣∣∣∣
+

1
2(σ2

H+1)2 yyy>:dΨΨΨ
(H+1)
1

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy:d

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

+
1
2

log
∣∣∣KKK(h)

z

∣∣∣− 1
2

log
∣∣∣∣KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

∣∣∣∣
+

1
2(σ2

h )2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h)

−
N

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
log p

(
x(h)

i

)}}
.

(3.36)

Note that there is no increase in the number of variational parameters. Moreover,

the increase in the computational cost is only moderate, since most of the terms

in Eq. (3.36) are the same for all the output dimensions, with the exception of the

ones in the output layer directly dependent of the vector yyy:d. This is the approach

we have adopted in Sections 3.4.4 and 3.4.5 to model human motion data with 57

output dimensions.

Autoregressive MIMO An alternative to the single shared latent space consists in

adapting the strategy usually applied to NARX and NARMAX MIMO models,

described by Billings (2013). Besides altering the output layer, replacing the vector

yyy by the columns of the matrix YYY ∈ RN×Dy and using the modified bound presented

in Eq. (3.36), we also need to adjust the definition of the regressors used as inputs

in each layer. If we have Du-dimensional inputs, stacked in the matrix UUU ∈ RN×Du ,

and Dx-dimensional latent variables in each hidden layer h, stacked in the matrix
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XXX (h) ∈ RN×Dx , the regressors are computed by

ūuui = [Ui1, · · · ,U1Lu, · · · ,Ud1, · · · ,UdLu, · · · ,UDu1, · · · ,UDuLu]
>, (3.37)

x̄xx(h)
i = [X (h)

i1 , · · · ,X (h)
1L , · · · ,X (h)

d1 , · · · ,X (h)
dL , · · · ,X (h)

Dx1, · · · ,X
(h)
Dx

]>. (3.38)

The variational distribution of the latent dynamical variables is now given by

q
(

xxx(h)
d

)
= N

(
xxx(h)

d

∣∣∣µµµ(h)
d ,diag

(
λλλ

(h)
d

))
, where µµµ

(h)
d ∈ RN , λλλ

(h)
d ∈ RN

>0, xxx(h)
d is the d-

th column of XXX (h) and diag(·) builds a diagonal matrix from its argument.

The expressions in Eqs. (3.37) and (3.38) can be directly used to obtain the inputs

defined in Eq. (3.14). Then, after the appropriate adjustments (replace µµµ(h) and

λ
(h)
i respectively by µµµ

(h)
d and [λλλ

(h)
d ]i), the modified MIMO bound in Eq. (3.36) can

be computed. We note that this approach can become problematic if the dimensions

Du and Dx and lags of the regressors are too large.

3.3.4 Implementation Details

Algorithm 2 summarizes the application of the REVARB framework to perform

inference with the RGP model in the context of dynamical modeling. The use of the

algorithm itself is straightforward after implementing the bound in Eq. (3.26) and its

analytical gradients with respect to the kernel and variational parameters.

Similar to most machine learning methods, it is convenient to follow some

recommendations when implementing and using REVARB in practice. We list some of the

implementation details we found more useful as follows.

Numerical stability Rasmussen and Williams (2006) mention many mathematical rec-

ommendations to maintain the numerical stability during GP model selection. We

use most of their suggestions in the REVARB optimization step, especially the

inclusion of a jitter term in the diagonal of the sparse covariance matrices KKK(h)
z

(more details below) and the use of Cholesky decomposition to perform both matrix

inversions and computation of the log-determinants in the bound, since it is faster

and more stable.

Another useful mathematical trick consists in applying the Woodbury matrix identity

when the inversion of a possibly numerical unstable matrix is needed. The identity

is given by:

(AAA +UUUCCCVVV )−1 = AAA−1−AAA−1UUU(CCC−1 +VVV AAA−1UUU)−1VVV AAA−1, (3.39)
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Algorithm 2: REVARB for dynamical modeling with the RGP model.

- Estimation step
Require: uuu ∈ RN (external input), yyy ∈ RN (output), H (number of hidden layers), M

(number of inducing points), L (latent order lag), Lu (input order lag)
Initialize kernel hyperparameters and variational parameters;
repeat

Compute the evidence lower bound with Eq. (3.26);
Compute the analytical gradients of Eq. (3.26) with respect to the unknown
parameters;
Update parameters with a gradient-based method (e.g. BFGS);

until convergence or maximum number or iterations
Output the optimized parameters;

- Free simulation with test data

Require: Test external inputs uuu∗ ∈ RN∗ and the previously estimated RGP model
for i = 1 : N∗ do

for h = 1 : H do
Compute the predictive mean µ

(h)
∗i and variance λ

(h)
∗i with Eqs. (3.31) and (3.32);

Update the variational distribution of the new latent dynamical variable with

q
(

x(h)
∗i

)
= N

(
x(h)
∗i

∣∣∣µ(h)
∗i ,λ

(h)
∗i + σ2

h

)
;

end for
Compute the predictive mean µ

(H+1)
∗i and variance λ

(H+1)
∗i of the output layer with

Eqs. (3.31) and (3.32);

Output y∗i ∼N
(

µ
(H+1)
∗i ,λ

(H+1)
∗i + σ2

H+1

)
;

end for

where all the matrices have appropriate dimensions. For instance, if a problematic

matrix KKK is written as CCC = KKK−1, after applying the Woodbury formula we get the

right hand side of Eq. (3.39), an expression where no inversions of the matrix KKK are

necessary.

Finally, the REVARB lower bound in Eq. (3.26) contains the terms
(

KKK(h)
z + 1

σ2
h

ΨΨΨ
(h)
2

)
,

which appear inside an inversion and a log-determinant. Those operations can

become unstable, so we apply the following transformation in each layer:

KKK(h)
z +

1
σ2

h
ΨΨΨ

(h)
2 = LLL(h)

z

(
LLL(h)

z

)>
+

1
σ2

h
ΨΨΨ

(h)
2

= LLL(h)
z

(
III +

1
σ2

h

(
LLL(h)

z

)−1
ΨΨΨ

(h)
2

((
LLL(h)

z

)>)−1
)

︸ ︷︷ ︸
AAA(h)

(
LLL(h)

z

)>

where LLL(h)
z ∈ RM×M is the Cholesky factor of KKK(h)

z . Since LLL(h)
z is triangular, we

can compute the terms that contain its inverse with fast and stable back-forward

substitution. Furthermore, the auxiliary matrix AAA(h) denoted above is usually much
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more stable to invert or compute the log-determinant, using Cholesky decomposition

again.

The jitter term In his technical report, Titsias (2009b) argues that the jitter term

usually added to the diagonal of the sparse covariance matrix, e.g., KKK(h)
z +ν(h)III in the

h-th layer of the RGP, is itself a variational parameter. He shows that its addition is

equivalent to generalize the sparse variational bound by considering noisy inducing

samples. In the case of the RGP model, the new inducing variables zzz
′(h) ∈ RM are

given by:

zzz
′(h) = zzz(h) + εεε

(h)
z , where εεε

(h)
z ∈ RM and εεε

(h)
z ∼N (000,ν(h)III).

This assumption does not change the original lower bound if we already consider the

jitters in the matrices KKK(h)
z . Since the jitter terms are variational parameters, they

can be optimized along all the other parameters. Titsias mentions that a sensible

strategy consists in initializing the jitter term with large values (we usually choose

10−2 or 10−3), to improve numerical stability in the beginning of the optimization.

After few iterations the jitter is automatically optimized to much lower values, usually

around 10−6 or even lower, which is related to a tighter bound.

Model initialization REVARB is a deterministic approximation method, since there

is no sampling or stochastic gradients in its optimization step. However, distinct

initializations of the kernel and variational parameters can result in different local

optima and affect the performance with test data4. We aim to alleviate this issue

by sensibly initializing the model. For instance, the kernel hyperparameters are

initialized as follows:

[σ2
f ](h) = V{µµµ(h)}, 1≤ h≤ H,

[σ2
f ](H+1) = V{yyy},

[w2
d](h) = C/(max(x̂xx(h)

:d )−min(x̂xx(h)
:d ))2, 1≤ h≤ H + 1, 1≤ d ≤ D,

σ
2
h = 0.01V{µµµ(h)}, 1≤ h≤ H,

σ
2
H+1 = 0.01V{yyy},

where x̂xx(h)
:d ∈ RN is the collection of the d-th component of all the h-th layer’s inputs

and C is a positive constant, usually in the range [1,6] (a typical value is C = 2). We
4Note that different local optima can actually be related to distinct, but plausible, interpretations of

the data. See Chapter 5 of Rasmussen and Williams (2006) for a discussion about local optima in the
context of GP model selection.
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also normalize the observations yyy and inputs uuu with zero mean and unitary standard

deviation.

The initialization of the variational means µµµ(h) is made with information from outputs

and inputs (when available). Thus, we initialize the means in all the hidden layers

as follows:

µµµ
(h) = [yyy,uuu]ppp1,

where the vector ppp1 ∈R2 is the principal component of the matrix [yyy,uuu]∈RN×2. Such

initialization corresponds to the Principal Component Analysis (PCA) projection

of the data in the dimension of µµµ(h). If the external inputs uuu are not available

(e.g. for a time series), we simply initialize µµµ(h) = yyy. The variational variances are

initialized with values in the interval [0.01,0.5]. We usually choose λ
(h)
i = 0.2, ∀i, in

the recurrent layers.

Finally, the initialization of the pseudo inputs ζζζ
(h)
j

∣∣M
j=1 is performed by applying a

clustering algorithm to the inputs x̂xx(h)
i

∣∣N−L
i=1 of the layer h. We use the PAM (Partition

Around Medoids) (KAUFMAN; ROUSSEEUW, 1990)5 algorithm, more specifically,

the deterministic R implementation available at the cluster package (MAECHLER

et al., 2016).

We note that some of those techniques were applied before to other variational

GP-based models (HENSMAN et al., 2013; DAMIANOU, 2015; BAUER et al.,

2016).

Optimization strategy It has been noted before that the optimization of variational

bounds based on Titsias’ sparse framework should be performed with care. For

instance, in Damianou (2015) it is implied that the first optimization iterations

should enforce a certain degree of SNR (Signal to Noise Ratio) by fixing the values

of the kernel hyperparameters [σ2
f ](h) and σ2

h to a reasonable initialization, such as

the one mentioned in the previous item6. We also hold the value of the jitters ν(h),

to reflect the fact that the initial iterations do not correspond to a tight bound.

In our experiments, we usually hold [σ2
f ](h), σ2

h and ν(h) fixed in all layers for the first

100 iterations of the BFGS algorithm. Then, we unfix them and let the optimization

5PAM is an algorithm for the k-medoids clustering method, related to the more common K-means
algorithm.

6The recommendation was emphasized in personal communication with Damianou.
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procedure continue. Such strategy is important to avoid trivial bad local optima,

e.g., to consider all data to be noise and make [σ2
f ](h) too low or σ2

h too high.

Model orders As argued by Frigola-Alcade and Rasmussen (2013), the choice of autore-

gressive orders when applying GP-based models with ARD hyperparameters in the

covariance function is not critical to prediction performance. Given that a relatively

high order is chosen, the optimization of the ARD hyperparameters w(h)
d is able to

select the relevant input dimensions to the inference. The only possible issue to

selecting an order larger than the optimal one is the computational time penalty.

The standard RGP formulation accepts vectors of regressors ūuui = [ui−1, · · · ,ui−Lu]
>

for the external inputs. Alternatively, we could fix Lu = 1 and consider only the

previous input value, similar to regular GP-SSMs. In that case, the latent dynamical

variables in the transition layers would be responsible to incorporate the dynamics

of both inputs and outputs. In our preliminary experiments, neither approach was

clearly superior to the other.

Free simulation As previously mentioned, free simulation within the REVARB frame-

work is done by recursive computation of Eqs. (3.31) and (3.32). However, it is

not clear if the transition noise variances σ2
h |Hh=1 should be added to the predictive

variance in the hidden layers. In other words, we could do the recurrence with

the variables f (h)
∗ or with its noisy version x(h)

∗ . For instance, some experiments

by Frigola-Alcade et al. (2014) switch off the transition noise during the test step.

However, we have noticed in our experiments that by doing so the prediction often

becomes overconfident, i.e., the predicted output variance is too small. On the other

hand, by including the propagation of the transition noises we are able to better

estimate the variance in the output. We follow the latter strategy, which almost

always does not harm the predictive means and can even slightly improve them.

3.4 Experiments

In this section we evaluate the performance of our RGP model with REVARB

inference in the tasks of nonlinear system identification, times series simulation and human

motion modeling.

Quantitative evaluation is done by calculating the root mean squared er-

ror (RMSE) of the free simulation on the test data (not used in the training step),
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given by RMSE =
√

1
N∗ ∑

N∗
i=1(yi− µ̃i)2, where N∗ is the number of test samples, yi is

the true test output and µ̃i is the predicted mean output. In some experiments we

also compute the average negative log-predictive density (NLPD), given by NLPD =

1
2 log2π + 1

2N∗ ∑
N∗
i=1

[
log σ̃2

i + (yi−µ̃i)
2

σ̃2
i

]
, where σ̃2

i is the i-th predicted variance. The NLPD

is a metric of the type “the lower, the better” and is useful to indicate a favorable balance

between the squared error and the compactness of the uncertain prediction.

3.4.1 Initial Example

Before presenting the main experiments of this chapter, it is useful to show

some simpler application of the RGP/REVARB framework in order to have a better

initial intuition of its functioning. We use an artificial dynamical system modified from an

example presented by Kocijan (2016), named simply as Example dataset and described by

the following set of equations:

x(1)
i = x(1)

i−1 + 0.5
x(1)

i−1x(2)
i−1

x(1)
i−1 + x(2)

i−1

−0.5ui−1x(1)
i−1, (3.40)

x(2)
i = x(2)

i−1−0.5
x(1)

i−1x(2)
i−1

x(1)
i−1 + x(2)

i−1

−0.5ui−1x(2)
i−1 + 0.05ui−1, (3.41)

yi = x(1)
i +N (0,0.001652) (3.42)

A total of 496 samples were generated, 304 for training and 192 for testing. The

training data used 8-iteration long steps as inputs, each one scaled by uniformly random

samples in the interval [0,0.7]. The testing data was obtained from similar steps, but we

allowed some larger scalings at the second half of the test set (up to 0.85). The generated

dataset is illustrated in Figs. 14 a) and b), where it is possible to notice the presence

of some test inputs at the end of the sequence which are in a range not covered by the

training data.

We emphasize that the free simulation evaluation is made based only on the

test inputs and past predictions. We trained a standard GP-NARX and two RGP models,

one with H = 1 and other with H = 2 hidden layers, using orders L = Lu = 2 and M = 30

pseudo-inputs. The obtained results are presented in Figs. 14 c) to e), where the shaded

areas indicate ±2 standard deviations around the predicted means. All the models were

able to learn the dynamics from the training set, since the first half test simulation, which

closely follows the training data, indicate predictions very close to the correct output.
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a) Input data. b) Output data.

c) GP-NARX.

d) RGP (H = 1).

e) RGP (H = 2).

Figure 14 – Example of system identification with the RGP model. The presented free
simulations were generated from the test data. The vertical red line in a) and
b) separates the training (left) from the test data (right).
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Figure 15 – Convergence curve of the REVARB lower bound during the training step
of the RGP model with H = 2 hidden layers on the Example dataset using
the BFGS algorithm. The vertical blue line indicates the point where the
noise variance hyperparameters are unfixed (see Section 3.3.4) and the smaller
picture is a zoomed version of the curve after the first 20 iterations. The
horizontal red line indicates the analytical marginal log-likelihood obtained
by the standard GP-NARX model.

However, the second half of the test data, which contains inputs outside the training range,

was much better handled by the RGP models, especially the one with two hidden layers,

which not only presented simulations closer to the desired signal but also better indicated

the uncertainty around its predictions, resulting in improved RMSE and NLPD values.

The optimization of the RGP model with H = 2 hidden layers, which contains

a total of 1543 variational parameters and kernel hyperparameters, took 187 iterations of

the algorithm BFGS, following the initialization and optimization procedures explained in

Section 3.3.4. The convergence curve of the REVARB lower bound is illustrated in Fig. 15,

where the vertical blue line indicates the instant where the noise variance hyperparameters

are unfixed and the horizontal red line indicates the analytical marginal log-likelihood

obtained by the GP-NARX model.

Although it is not so easy to interpret the numerical difference between the

REVARB lower bound and the GP-NARX marginal log-likelihood, variational theory

proves that such gap is proportional to the Kullback-Leibler divergence between the

variational posterior Q and the true posterior, as presented in Section 2.6.1. Moreover, the

obtained non-zero divergence value is due to the approximations assumed by the REVARB

framework in order to get analytical expressions. Nevertheless, from the results illustrated

in Fig. 14 we can see that such gap, and hence the considered approximations, had no
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affect on the estimation procedure of the RGP model, which indicates that the REVARB

lower bound acts as a good enough proxy for the true marginal log-likelihood.

3.4.2 Nonlinear System Identification

We now reproduce and update the results with the system identification task

firstly reported in our work Mattos et al. (2016), comprised by one artificial benchmark,

introduced by Narendra and Li (1996), and two real datasets. The Artificial dataset is

given by the following expressions:

x(1)
i =

x(1)
i−1

(1 +(x(1)
i−1)2)+ 1

sin(x(2)
i−1), (3.43)

x(2)
i = x(2)

i−1 cos(x(2)
i−1)+ x(1)

i−1 exp
[
−1

8
((x(1)

i−1)2 +(x(2)
i−1)2)

]
+

u3
i−1

1 + u2
i−1 + 0.5cos(x(1)

i−1 + x(2)
i−1)

, (3.44)

yi =
x(1)

i

1 + 0.5sin(x(2)
i )

+
x(2)

i

1 + 0.5sin(x(1)
i )

, (3.45)

where ui and yi are respectively the external input and output in the i-th instant.

The first real dataset, labeled Drives and introduced by Wigren (2010)7, consists

of 500 samples from a system with two electric motors that drive a pulley using a flexible

belt. The input is the sum of voltages applied to the motors and the output is the speed

of the belt. The second dataset, labeled Actuator and described by Sjöberg et al. (1995)8,

consists of 1024 samples from a hydraulic actuator that controls a robot arm, where the

input is the size of the actuator’s valve opening and the output is its oil pressure.

In the case of the Artificial dataset we choose L = Lu = 5 and generate 300

samples for training and 300 samples for testing, using the same inputs described by

Narendra and Li (1996), i.e., ui = U(−2.5,2.5) for training, which indicates samples from

a uniform distribution in the interval [−2.5,2.5], and ui = sin(2πi/10) + sin(2πi/25) for

testing. We also added to the outputs of the training data noise sampled from N (0,0.1).

For the real datasets we use L = Lu = 10 and apply the first half of the data for training

and the second one for testing. Fig. 16 illustrates the input and output series related to

the considered datasets.

7Data available at <http://www.it.uu.se/research/publications/reports/2010-020/NonlinearData.zip>.
We used input u1 and output z1.

8Data available at <http://www.iau.dtu.dk/nnbook/systems.html>.

http://www.it.uu.se/research/publications/reports/2010-020/NonlinearData.zip
http://www.iau.dtu.dk/nnbook/systems.html
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a) Artificial input data. b) Artificial output data.

c) Drives input data. d) Drives output data.

e) Actuator input data. f) Actuator output data.

Figure 16 – Datasets considered for the nonlinear system identification task. The vertical
red lines separate the training (left) from the test data (right). We note that
in the case of the Artificial dataset the training and test data were not actually
generated one after the other.

We apply our RGP model with 2 hidden layers, REVARB inference and 30

pseudo-inputs for the Artificial dataset and 50 pseudo-inputs for Drives and Actuator

datasets. We compare it with two models commonly applied to system identification

tasks: standard GP-NARX and MLP-NARX. We use the MLP implementation from the

MATLAB Neural Network Toolbox with 1 hidden layer (MATLAB, 2013). We also include

experiments with the LSTM network, although the task itself probably does not require
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Table 2 – Summary of RMSE values for the free simulation results on system identification
test data.

Artificial Drives Actuator
MLP-NARX 1.6334 0.4403 0.4621
LSTM 2.2438 0.4329 0.5170
GP-NARX 1.9245 0.4128 1.5488
RGP (H = 2) 0.4513 0.1922 0.3104

long term dependences. The original LSTM architecture by Hochreiter and Schmidhuber

(1997) was chosen, with a network depth of 1 to 3 layers and the number of cells at each

layer selected to be up to 2048. LSTM memory length was unlimited, and sequence length

was chosen initially to be a multiple of the longest duration memory present in the data

generative process and reduced gradually.

The obtained RMSE values are summarized in Tab. 2 and the obtained

simulations are illustrated in Fig. 17, with shaded area indicating ±2 standard deviations

around the predicted means in the GP-based cases. The RGP model was superior in all

experiments, with large improvements over GP-NARX. It is interesting to also notice,

especially for the Artificial and Actuator datasets, how the RGP model was able to better

indicate the larger uncertainty in the regions with more difficult predictions. Although

worse than RGP, the MLP-NARX model presented a relatively good result for the Actuator

dataset. The higher RMSE values obtained by the LSTM model is possibly related to the

difficulties encountered when trying to optimize its architecture for this given task.

We note that some RGP results in Tab. 2 are updated from the values originally

reported in Mattos et al. (2016), since we have incorporated some of the implementation

details discussed in Section 3.3.4. In the recent work by Al-Shedivat et al. (2016), a new

deep recurrent kernel structure named GP-LSTM is proposed and evaluated with the

datasets Drives and Actuator. The authors obtain respectively the RMSE values 0.225

and 0.347, which are better then the results originally reported in Mattos et al. (2016)

but slightly worse than our most updated results presented in Tab. 2.

3.4.2.1 Magneto-Rheological Fluid Damper Data

We now evaluate the RGP model in the task of modeling the nonlinear dynamics

of a Magneto-Rheological (MR) Fluid Damper, an experiment described by Wang et al.
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a) MLP-NARX - Artificial. b) MLP-NARX - Drives. c) MLP-NARX - Actuator.

d) LSTM - Artificial. e) LSTM - Drives. f) LSTM - Actuator.

g) GP-NARX - Artificial. h) GP-NARX - Drives. i) GP-NARX - Actuator.

j) RGP - Artificial. k) RGP - Drives. l) RGP - Actuator.

Figure 17 – Free simulation on nonlinear system identification test data. In the GP-based
models the shaded areas indicate ±2 standard deviations around the predicted
mean values.

(2009)9. The damper is a semi-active control device to reduce vibrations on dynamical

9Data available in the System Identification Toolbox for Mathworks Matlab (The MathWorks Inc.,
2016).
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a) Input data. b) Output data.

Figure 18 – Input and output series for the Damper dataset. The vertical red lines
separate the training (left) from the test data (right).

Table 3 – RMSE and NLPD values for the free simulation results on the Damper dataset.
The first five experiments were reported by The MathWorks Inc. (2016). The
reduced-rank GP-SSM experiment was presented by Svensson et al. (2016).
The experiment with SISOG was reported by Bijl et al. (2016). The NA entry
indicates that the NLPD value was not reported.

RMSE NLPD
Linear OE model (4th order) 27.1 -
Hammerstein-Wiener (4th order) 27.0 -
NARX (3rd order, wavelet) 24.5 -
NARX (3rd order, Tree partition) 19.3 -
NARX (3rd order, sigmoid network) 8.24 -
Standard GP-NARX 13.31 13.71
Variational Sparse GP-NARX (M = 100) 13.83 14.44
Reduced-rank GP-SSM (SVENSSON et al., 2016) 8.17 3.71
SISOG (BIJL et al., 2016) 7.12 NA
RGP (H = 1) 11.18 3.47
RGP (H = 2) 6.04 3.05

structures. The variable viscosity of the MR fluid is used to control the damping force.

The dataset consists of inputs related to the system velocity and outputs related to the

achieved damping force for a given fluid viscosity.

The same set-up presented by Svensson et al. (2016) is applied, which consists

of using the first 2000 of the original 3499 data samples for training and the remaining for

test via free simulation. Fig. 18 illustrates the input and output of the Damper dataset.

We used in the experiments two RGP models, with 1 and 2 hidden layers, the

orders L = Lu = 3 and M = 100 pseudo-inputs. The obtained RMSE and NLPD results

are presented in the last row of Tab. 3, along with the results for some more conventional

system identification methods reported by The MathWorks Inc. (2016). We also include

the recent result obtained by a reduced-rank GP-SSM, which applies a particle MCMC
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Figure 19 – Free simulation on test data with the 2-hidden layer RGP model after es-
timation on the Damper dataset. The shaded areas indicate ±2 standard
deviations around the predicted means.

strategy to perform Bayesian inference, reported by Svensson et al. (2016), and the result

obtained by Bijl et al. (2016) with the SISOG (System Identification using Sparse Online

GP) algorithm.

Our RGP/REVARB approach with 2 transition layers outperformed all the

other models, also presenting better compactness, as indicated by its lower NLPD value.

Fig. 19 illustrates the free simulation on test data with the 2-hidden layer RGP model,

where the shaded areas indicate ±2 standard deviations around the predicted means.

Once again our model was able to provide larger predicted variances, indicating greater

uncertainty, only in the regions where its predictions differ more from the real data.

3.4.2.2 Cascaded Tanks Data

Schoukens et al. (2015)10 provide a dataset collected from a physical system

consisting of two cascaded water tanks to be used in dynamical modeling benchmarks.

The input signal controls a water pump that pumps the water to a reservoir into the

upper water tank. Then, the water flows through a small opening to the lower tank

and afterwards back to the reservoir through another small opening. The output is the

measured flow from the lower tank into the reservoir. It is mentioned that one of the

challenges in this set-up is the eventual occurrence of overflows in the upper tank due to

large input values, which is related to hard saturation nonlinearities and input dependent

noise. The dataset, comprised of 1024 training samples and 1024 test samples, is illustrated

10Data available at <http://homepages.vub.ac.be/˜mschouke/benchmark2016.html>.

http://homepages.vub.ac.be/~mschouke/benchmark2016.html
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a) Input data. b) Output data.

Figure 20 – Input and output series for the Cascaded Tanks dataset. The vertical red
lines separate the training (left) from the test data (right).

in Fig. 20.

Svensson and Schön (2017) consider such Cascaded Tanks dataset to evaluate

several system identification methods, including one proposed by the authors, a Bayesian

model with basis function expansion with a connection to GP-SSMs where inference is

performed by SMC. Those results reported by Svensson and Schön (2017) are presented

in Tab. 4. We also include the recent result reported by Schoukens and Scheiwe (2016)

with a nonlinear Volterra feedback model and the metrics obtained by our RGP model

with both 1 and 2 transition layers, orders Lu = 5 (Lu = 1 for the model with 2 hidden

layers) and L = 5 and M = 50 pseudo-inputs. The 2-hidden layer RGP model, whose free

simulation on test data is presented in Fig. 21, obtained the best RMSE value. Although

this time the RGP simulation seems overconfident, since the predicted variances are clearly

too small (note that the 2-hidden layers version did not present the best NLPD value), we

emphasize that we were not able to find in the recent literature a simulation RMSE better

than the one achieved by our model for this particular dataset.

3.4.3 Time Series Simulation

Although the focus of the present thesis is on system identification tasks, which

are usually related to some dynamical data generated by a sequence of known external

inputs, the RGP model and the REVARB inference framework can also be directly applied

to the problem of forecasting time series by simply omitting the exogenous input ui and

the related variables.

As an illustration, we consider the standard benchmark of the Mackey-Glass

chaotic time series, which is defined by the differential equation below (MACKEY et al.,
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Table 4 – Free simulation results on the Cascaded Tanks dataset. The first six experiments
were reported by Svensson and Schön (2017). The Volterra model result was
reported by Schoukens and Scheiwe (2016). The NA entry indicates that the
NLPD value was not reported.

RMSE NLPD
Linear SSM (2nd order) 0.67 -
NARX (sigmoid network, 5th order) 0.73 -
NARX (sigmoidnet, 5th order, simulation focus) 0.49 -
NARX (wavelet network, 5th order) 0.61 -
NARX (wavelet network, 5th order, simulation focus) 0.64 -
GP-SSM with basis function expansion (SVENSSON; SCHÖN, 2017) 0.45 NA
Standard GP-NARX 1.50 1079
Variational Sparse GP-NARX (M = 50) 0.5040 119.3
Nonlinear Volterra feedback model (SCHOUKENS; SCHEIWE, 2016) 0.3972 -
RGP (H = 1) 0.7973 2.3295
RGP (H = 2) 0.3084 7.793

Figure 21 – Free simulation on test data with the RGP model after estimation on the
Cascaded Tanks dataset. Although the simulation is good, the shaded areas
indicating ±2 standard deviations around the predictions are too small (almost
not visible in the figure), which suggests that the model is overconfident.

1977):

dyt

dt
=−Byt + A

yt−T

1 + yC
t−T

, (3.46)

where t represents the discrete time. We use the following standard values for the constants

in the equation: A = 0.2, B = 0.1, C = 10 and T = 17.

We consider the same set-up used by Damianou (2015), where 72 noiseless

samples were generated for training and free simulation is performed for the next 1110

iterations. Data was normalized with zero mean and unitary variance. We use a RGP

model with 1 hidden layer, order L = 18 and M = 30 pseudo-inputs. The RMSE and
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Table 5 – Results for free simulation on the Mackey-Glass time series. With the exception
of the RGP model, all experiments were performed and the results reported by
Damianou (2015). The NA entries indicate the unreported NLPD values.

RMSE NLPD
Standard GP-NARX 1.08 NA
GP-NARX with uncertainty propagation (GIRARD et al., 2002) 0.956 NA
Semi-described GP-NARX (DAMIANOU; LAWRENCE, 2015) 0.742 NA
RGP (H = 1) 0.547 25.89

Figure 22 – Free simulation of the Mackey-Glass chaotic time series with the RGP model.
Note that the predicted uncertainty is too small and barely visible at some
points, indicating overconfident predictions.

NLPD values for our model is presented in Tab. 5. We also include the RMSE results

reported by Damianou (2015) with an autoregressive GP model with uncertain inputs

(semi-described GP-NARX, introduced by Damianou and Lawrence (2015)), the standard

GP-NARX and the GP-NARX with propagation of uncertainty via moment matching

(proposed by Girard et al. (2002) and experimented by Damianou).

The RGP model, whose free simulation output is shown in Fig. 22, performed

considerably better than the other methods. Although the predictions are clearly overcon-

fident (the predicted uncertainty is barely visible in some points), we can verify that even

after several hundreds of iterations, based solely on past predictions, the simulation holds

close to the real time series.
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Table 6 – Summary of RMSE values for the free simulation results on human motion test
data with an included external control input given by the y coordinate of the
left toes. Training and test sets present both walking and running motions.

MLP-NARX GP-NARX RGP (H = 2)
1.2141 0.8987 0.8600

3.4.4 Human Motion Modeling

We now reproduce the experiments presented in Mattos et al. (2016) with the

motion capture data from the CMU database11 to model walking and running motions

with the RGP/REVARB framework. Training was performed with the trajectories 1

to 4 (walking) and 17 to 20 (running) from subject 35. The test set is comprised by

the trajectories 5 to 8 (walking) and 21 to 24 (running) from the same subject. The

original dataset contains 59 outputs, but 2 are constant, so we remove those and use

the remaining 57. We follow the single shared latent space strategy for multiple output

modeling, summarized in Section 3.3.3.

In order to perform free simulation with an external signal, we include a

control input given by the y coordinate of the left toes. Following the previous system

identification experiments, predictions are made based only on such control input and

previous predictions. We also normalize the inputs and outputs with zero mean and

unitary standard deviation before training.

We evaluate a 2-hidden layers RGP with 200 pseudo-inputs, the standard

GP-NARX model and a 1-hidden layer MLP with 1000 hidden units. The orders are fixed

at L = Lu = 20. Note that the data related to both walking and running is used in the same

training step. RGP’s latent autoregressive structure allow us to train a single model for all

outputs (see Section 3.3.3). In the case of GP-NARX, we had to train separate models for

each output, since training a single model with 57 (output dimensions)×20 (L)+20 (Lu) =

1160 dimensional regressor vector was not feasible.

Test RMSE values are summarized in Tab. 6. The RGP model obtained better

results than both the other models. We emphasize that RGP has an additional advantage

over GP-NARX due to its latent autoregressive structure, which allows the training of a

single model for all the 57 outputs.

11Data available at <http://mocap.cs.cmu.edu/>.

http://mocap.cs.cmu.edu/
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Figure 23 – Motion generated by the RGP model with a step function control signal for
the average velocity, starting with walking (blue), switching to running (red)
and switching back to walking (blue)

3.4.5 Avatar Control

We conclude this experiments section by applying the RGP model to the

synthesis of human motions with simple control signals, such as the velocity, also reported

in Mattos et al. (2016). This methodology can ideally be used to generate realistic human

motion according to human instruction in virtual environment, such as video games. We

use the 5 walking and 5 running sequences from CMU motion database described in

previous experiment and take the subject’s average velocity as the control signal. We then

train a 1-hidden layer RGP model with the RNN sequential recognition model (two hidden

layers with 500-200 units). After training, we use the model to synthesize motions with

unseen control signals.

Fig. 23 shows the frames of the generated motion with a step function signal.

We emphasize that the training sequences do not contain any switch of motions, which

forced the model to interpolated the different velocity regimes. Videos of some of the

generated motions are available at <https://youtu.be/FuF-uZ83VMw>, <https://youtu.

be/FR-oeGxV6yY> and <https://youtu.be/AT0HMtoPgjc>.

3.5 Discussion

In this section we have defined the broad family of Recurrent Gaussian Pro-

cesses (RGPs) models, which, similarly to other recurrent modeling strategies, such as

RNNs, are able to learn, possibly deep, temporal representations from data. Our novel

RGP model presents internal dynamics in the form of a latent autoregressive structure.

The intractabilities brought by the recurrent GP priors are tackled via a variational

https://youtu.be/FuF-uZ83VMw
https://youtu.be/FR-oeGxV6yY
https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
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approximation approach, resulting in the REVARB framework. Furthermore, we extended

REVARB with a sequential RNN-based recognition model that simplifies the optimization

in some learning scenarios (which will be more explored later in Chapter 5).

We applied the RGP/REVARB framework to the tasks of nonlinear system

identification, times series forecasting and human motion modeling. The good results

obtained by our model indicate that the latent autoregressive structure and our variational

approach were able to better capture the dynamical behavior of the data when compared

to the other evaluated learning methods.

In this chapter we only applied models with up to 2 hidden layers, which

actually results in a model with 3 GP priors (2 transition layers and 1 observation layer).

From previous experiences with non-recurrent deep GPs, it has been noted that due to

the strong nonlinearities and nonparametric expressiveness of hierarchical GP models, one

typically needs fewer layers than, for instance, when using deep neural networks, even for

complex data (DAMIANOU, 2015). Thus, it is usually observed that the addition of a

layer to a shallow GP has a much greater effect than adding a layer to a NN, given that,

as presented in Section 2.5, one GP layer is equivalent to a 1-hidden layer NN with infinite

hidden units. In that sense, the proposed RGP approach is a new step towards a similar

relation between GPs and RNNs. Still, investigations with datasets that require deeper

models is left for future work.

In the work by Turner and Sahani (2008), the authors present some concerns

with respect to the use of mean-field approximations within a time-series context, suggesting

that such approximation has a hard time propagating uncertainty through time. However,

we observed in practice that our proposed REVARB framework is able to better account

for uncertainty in the latent space with its autoregressive deep structure. This may be due

to the next layer being able to “compensate” the mean-field assumption of the previous

layer, accounting for additional (temporal) correlations. Since each latent variable x(h)
i

and, thus, its associated variational parameters, is present in exactly two layers (see Eq.

(3.14), which details each layer’s input), such effect is enabled for all latent variables of the

model. Moreover, since the pseudo-inputs in a given layer are shared among the different

dynamical latent variables in that layer, they induce correlations between them. Related

remarks were made for regular deep GPs by Damianou (2015).

Nevertheless, it is worth noting that in some experiments, such as the one with
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the Cascaded Tanks dataset, in Section 3.4.2.2, and the one with the Mackey-Glass times

series, in Section 3.4.3, the RGP model was not able to output acceptable error bars, i.e.,

the predicted variances were clearly too small. Although we cannot state categorically

the cause for that, we suspect that it is an optimization issue. For instance, if some

pseudo-inputs stay far from the training data even after the optimization step, they could

falsely indicate lower uncertainty in that area during predictions. Further tuning of the

initialization and optimization methodologies presented in Section 3.3.4 may overcome

such behavior.

In the next chapter we will continue to explore the use of GP-based models

for dynamical learning, but in scenarios where the assumption of Gaussian observation

noise is not acceptable, more specifically when it is expected the presence of outliers in

the estimation data.
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4 ROBUST BAYESIAN MODELING WITH GP MODELS

“If you do not expect the unexpected,

you will not recognize it when it arrives.”

(Heraclitus of Ephesus)

As mentioned in the previous chapters, GP models are nonparametric data-

driven techniques, where instead of a rigid prespecified structure, the model allows for the

data to “speak by itself”. Moreover, a typical GP model increases its complexity as more

data becomes available and estimation data is used to both optimize the model and make

predictions.

Despite these appealing features, standard GP models assume a Gaussian

observation noise and, hence, Gaussian likelihoods arise naturally within the framework.

While this is not an issue for many applications, it makes the difference in modeling

scenarios contaminated with non-Gaussian noise, such as impulsive noise, commonly

treated as a type of outlier. Such estimation samples containing outliers can result in

misestimated hyperparameters during training and directly affect predictions. In that

case, the model’s performance considerably deteriorates, compromising its generalization

capability.

The definition of an outlier varies in the literature. One could intuitively

state that it consists of a data point which significantly differs from the overall observed

data (AGGARWAL, 2013). In other words, one could label as outlier those observations

which deviates so much from the remaining data that it suggests to have been generated

by a different mechanism (HAWKINS, 1980). Thus, it is important to emphasize that

one observation can only be termed as an outlier with respect to a given generative

assumption. In this work, such interpretation is relative to the common Gaussianity

assumption considered for the noise model.

This chapter aims to address the issue of training GP-based models that are

able to learn from data contaminated with non-Gaussian noise in the form of outliers.

Following the general trend in the present thesis, our focus lies in the modeling of data

related to dynamical systems.

We pursue models that are able to directly learn dynamics from data containing

outliers, as opposed to methodologies which aim to remove them from the data before
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training, i.e., a data cleaning step (PEARSON, 2002). Such outlier detection approach,

surveyed in the context of temporal data by Gupta et al. (2014), can be useful when a

single or few outliers are present, but the diagnosis becomes much more difficult when

dealing with multiple outliers (ROUSSEEUW; LEROY, 2005) which are intermingled with

the samples of the system under analysis.

The robustness that we seek is related to models that are not strongly affected

by the presence of outliers in the training data, a valuable feature for system identification

methods (MILANESE et al., 2013). Huber, a pioneer in robust statistics, also argues

against the data cleaning approach, emphasizing that directly dealing with outliers avoids

erroneous removal of potentially valuable training samples (HUBER, 2011).

In such context, we will evaluate some of the state-of-the-art GP models for

robust regression in the task of system identification and also propose two robust GP-based

dynamical models specifically designed to tackle that class of problems. We conclude the

chapter by evaluating the described models with several experiments related to robust

nonlinear system identification.

4.1 Robust GP Model with Non-Gaussian Likelihood

It is well known that the standard GP model with Gaussian likelihood is not

robust to outliers due to its light tails. The standard Bayesian approach to tackle impulsive

noise considers a heavy-tailed distribution for the likelihood of the N observed data samples

yyy∈RN given the latent function values fff ∈RN , such as a mixture of Gaussians, the Laplace

or the Student-t, which are respectively given by (GELMAN et al., 2014a):

pMix(yyy| fff ) =
N

∏
i=1

[
(1−wo)N (yi| fi,σ

2)+ woN (yi| fi,σ
2
o )
]
, (4.1)

pLap(yyy| fff ) =
N

∏
i=1

1
2s

exp
(
−|yi− fi|

s

)
, (4.2)

pStu(yyy| fff ) =
N

∏
i=1

Γ((ν + 1)/2)

Γ(ν/2)
√

πνσ2

(
1 +

1
ν

(yi− fi)
2

σ2

)−(ν+1)/2

, (4.3)

where wo, σ2, σ2
o , s and ν are likelihood hyperparameters and Γ(·) is the gamma function.

The first distribution has two components, one Gaussian with σ2 variance to model the

regular samples and another Gaussian with σ2
o variance to model the discrepant values.

Note that σ2
o � σ2 and that wo regulates the mixture ratio. On the other hand, the Laplace
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Figure 24 – Comparison between the Gaussian likelihood and heavy-tailed distributions.
Note that the presented non-Gaussian distributions allow some probability
mass for values far from the mean.

and Student-t expressions explicitly define distributions that prevent tails’ probability

from decaying too fast.

Fig. 24 illustrates a comparison between the curves related to those heavy

tailed distributions and the Gaussian likelihood, where we can see that the formers allow

some probability mass for samples far from the mean. Such behavior results in robustness,

since it prevents the model from “overadapting” itself in order to support the outliers. This

effect can be seen in Fig. 25, which shows a simple regression problem with the normalized

sinc function ( fi = sin(πxi)
πxi

) in the presence of outliers tackled by the standard GP with

Gaussian likelihood and a robust GP with Student-t likelihood. Note that the predicted

mean in the robust version is barely affected by the outliers in the data.

However, once a non-Gaussian likelihood is chosen, many of the original GP

equations become intractable (non-analytical), as can be recalled from the Gaussian

properties used throughout the Chapter 2 to obtain analytical expressions. Thus, robust

GP models require the use of approximation methods, such as Markov Chain Monte

Carlo (MCMC) and Sequential Monte Carlo (SMC) (NEAL, 1997; BOTTEGAL et al.,

2014; KANTAS et al., 2015; SCHÖN et al., 2015), variational Bayes (VB) (JORDAN et

al., 1999; WAINWRIGHT et al., 2008; BLEI et al., 2017) and expectation propagation

(EP) (MINKA, 2001; GELMAN et al., 2014b), where MCMC and SMC follow stochastic

sampling techniques and VB and EP are deterministic approximations. In this thesis we
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(a) Standard GP with Gaussian noise.

(b) Standard GP deteriorated by outliers. c) Robust GP with Student-t likelihood.

Figure 25 – Effect of outliers on both standard and robust GP regression models.

will cover the use of VB and EP for robust GP learning, which will be described shortly.

Outlier-robust GP models for regression have been well covered in the literature

by works that apply Student-t likelihood (NEAL, 1997; JYLÄNKI et al., 2011; BERGER;

RAUSCHER, 2012), Laplace likelihood (KUSS, 2006) and mixture of Gaussians (KUSS et

al., 2005; NAISH-GUZMAN; HOLDEN, 2008; STEGLE et al., 2008) to handle outliers as

non-Gaussian noise. Robust classification with GPs has also been studied before (KIM;

GHAHRAMANI, 2008; HERNÁNDEZ-LOBATO et al., 2011). However, developing such

GP models specifically for robust dynamical system identification is a relatively new topic,

with few representations besides our own work (MATTOS et al., 2015; MATTOS et al.,

2016; MATTOS et al., 2017). For instance, Bottegal et al. (2014) propose a robust GP

model for linear impulse response identification with MCMC-based inference, but do not

cover nonlinear systems. More recently, Ranjan et al. (2016) introduce an Expectation

Maximization (EM) algorithm to tackle robust regression tasks, reporting an experiment

with system identification, though it is evaluated in one-step-ahead prediction scenarios

only.

As expected, dynamical modeling can also be compromised by the presence
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of outliers in the estimation data. Actually, in autoregressive approaches, e.g., NARX

models, the presence of outliers becomes even more problematic, since the noisy outputs,

possibly containing outliers, are fed back to the inputs as regressors, greatly interfering in

the model capability to learn the underlying dynamics of the system.

Thus, as follows we will describe two common approaches for robust regression

with GPs, named by us the GP-tVB model, which applies VB to perform inference with a

Student-t likelihood, and the GP-LEP model, which uses an EP algorithm and the Laplace

likelihood. We emphasize that those models still follow the standard GP-NARX structure

with regressors comprised of past outputs and exogenous inputs, as presented in Section

3.1.1. The difference lies in their noise assumptions, which now consider heavy-tailed

likelihoods for the observations.

Though not with those names, both aforementioned robust GP models are

extensively detailed within the robust regression context in the thesis by Kuss (2006),

so our presentation will be brief. Our contribution consists in afterwards training those

models following the GP-NARX formulation and evaluating them in the task of system

identification in the presence of outliers.

Remark The robust Bayesian approach we follow, i.e., handling outliers as noise samples

from a heavy tailed distribution, differs from frequentist approaches. For instance, robust M-

estimation methods, as presented by Huber (2011), aim to use alternative cost functions in

order to give smaller error penalties to the samples associated with large errors, supposedly

related to outliers, which results in less model adaptation to corrupted observations.

4.1.1 The GP-tVB Model

Instead of directly applying the Student-t probability density function (Eq.

(4.3)) in the likelihood, Kuss (2006) exploits the fact that it can be defined as a mixture

of infinitely many Gaussian distributions with gamma distributed precisions (i.e., inverse

variances)1, sometimes called the scale-mixture representation:

T (ε|ν ,µ = 0,σ) =
Γ((ν + 1)/2)

Γ(ν/2)
√

πνσ2

(
1 +

ε2

νσ2

)−(ν+1)/2

, (4.4)

T (ε|ν = 2α,µ = 0,σ =
√

β/α) =
∫

∞

0
N (ε|0,τ−1)Γ(τ|α,β )dτ, (4.5)

1In Kuss (2006) an inverse gamma prior was chosen for the variance of the Gaussian distribution,
which is equivalent to the analysis presented here.
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where zero mean Gaussians with τ precision were considered and α and β are respectively

the shape and inverse scale hyperparameters of the gamma distribution. The resulting

Student-t distribution for the variable ε , which also has mean µ = 0, is characterized by

the degrees of freedom ν and the scale hyperparameter σ . Lower values of ν result in

heavier tails, while for ν → ∞ the tails become lighter and the distribution converges to a

Gaussian.

Kuss applied the aforementioned strategy to provide a GP model with a

Student-t likelihood as follows:

p( fff |XXX) = N ( fff |000,KKK f ), (4.6)

p(yyy| fff ,τττ−1) = N (yyy| fff ,diag(τττ
−1)), (4.7)

p(τττ|α,β ) =
N

∏
i=1

Γ(τi|α,β ), (4.8)

where KKK f ∈ RN×N is the covariance matrix obtained from the matrix XXX ∈ RN×D of stacked

inputs xxxi|Ni=1, yyy ∈ RN is the vector of observations, fff ∈ RN and τττ ∈ RN
>0 are latent (un-

observed) variables, diag(·) builds a diagonal matrix from a vector and the precisions τi

have a gamma prior with hyperparameters α and β . Note that the variances σ2
i = τ

−1
i

are inverse gamma distributed. Such approach has also been used before for instance by

Tipping and Lawrence (2005) to perform robust Bayesian interpolation with the Student-t

likelihood.

In a VB context, the joint posterior of fff and τττ is approximated by a factorized

expression as follows:

p( fff ,τττ|yyy,XXX)≈ Q = q( fff )q(τττ) = N ( fff |mmm,AAA)
N

∏
i=1

Γ(τi|ai,bi), (4.9)

where q( fff ) and q(τττ) are variational distributions and mmm ∈ RN , AAA ∈ RN×N and aaa,bbb ∈ RN
>0

are unknown variational parameters.

A lower bound to the marginal log-likelihood log p(yyy|XXX) can be found relating it

to the factorized posterior q(ttt)q(τττ) by using Jensen’s inequality (TIPPING; LAWRENCE,

2005; KUSS, 2006):

p(yyy|XXX) =
∫

fff ,τττ
p(yyy| fff ,τττ−1)p( fff |XXX)p(τττ),

log p(yyy|XXX)≥
∫

fff ,τττ
q( fff )q(τττ) log

p(yyy| fff ,τττ−1)p( fff |XXX)p(τττ)

q( fff )q(τττ)
. (4.10)
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Kuss (2006) details how the optimal values of mmm and AAA in Eq. (4.9) can

be written in terms of aaa and bbb, which themselves are optimized, along with the ker-

nel hyperparameters, with the help of the analytical gradients of the bound in Eq.

(4.10). Such maximization is equivalent to minimize the Kullback-Leibler divergence

KL(q( fff )q(τττ)||p( fff ,τττ|yyy,XXX)) between the variational distribution and the true posterior,

which improves the approximation (TIPPING; LAWRENCE, 2005).

The optimization of the hyperparameters and the latent variables can be done

in an Expectation-Maximization (EM) fashion, following the procedure described by Kuss

(2006). Then, the moments of the Gaussian approximated prediction p( f∗|yyy,XXX ,xxx∗) =

N ( f∗|µ∗,σ2
∗ ) for a new input xxx∗ are given by

µ∗ = kkk∗ f (KKK f + ΣΣΣ)−1yyy, and σ
2
∗ = K∗− kkk∗ f (KKK f + ΣΣΣ)kkk f∗, (4.11)

where ΣΣΣ = diag(bbb/aaa), kkk∗ f = [k(xxx∗,xxx1), · · · ,k(xxx∗,xxxN)], kkk f∗ = kkk>∗ f and K∗ = k(xxx∗,xxx∗).

4.1.2 The GP-LEP Model

Kuss (2006) describes a GP model with a Laplace likelihood, as expressed in

Eq. (4.2). Interestingly, such distribution can also be written as a mixture of Gaussians,

this time with exponentially distributed variances:

L (ε|µ = 0,s) =
1
2s

exp
(
−|ε|

s

)
, (4.12)

L (ε|µ = 0,s = 1/
√

2β ) =
∫

∞

0
N (ε|0,σ2)Exponential(σ

2|β )dσ
2, (4.13)

where zero mean Gaussians with σ2 variances were considered and β is the rate hyperpa-

rameter of the exponential distribution. The resulting Laplace distributed noise variable ε

has mean µ = 0 and is characterized by the scale hyperparameter s.

Kuss argues that a variational approximation for such model, similar to the

one presented in Section 4.1.1 for the Student-t likelihood, would not be possible due to

the exponential prior given to the variance σ2 in Eq. (4.13), since the expectation E{σ−2}

for the precision does not have a finite value. Therefore, Kuss pursues an EP inference

method to tackle the inference problem.

The EP algorithm usually works by approximating the true posterior distri-

bution of fff ∈ RN , the vector of latent function values, by a Gaussian which follows a



103

factorized structure (MINKA, 2001; KUSS, 2006):

p( fff |yyy,XXX) =
N ( fff |000,KKK f )

p(yyy|XXX)
p(yyy| fff ,s) =

N ( fff |000,KKK f )

p(yyy|XXX)

N

∏
i=1

p(yi| fi,s), (4.14)

p( fff |yyy,XXX)≈
N ( fff |000,KKK f )

q(yyy|XXX)

N

∏
i=1

c( fi,µi,σ
2
i ,Zi) = q( fff ) = N ( fff |mmm,AAA), (4.15)

where the first expression comes from the straightforward application of the Bayes’ rule and

c( fi,µi,σ
2
i ,Zi) = ZiN ( fi|µi,σ

2
i ) are called site functions, which include the normalizers Zi.

The scalar variables µi, σ2
i and Zi are collectively called site parameters. Following Kuss

(2006), the mean vector mmm∈RN and covariance matrix AAA∈RN×N of the approximate distri-

bution may be computed as mmm = AAAΣΣΣ
−1

µµµ and AAA = (K−1 +ΣΣΣ
−1)−1, where ΣΣΣ = diag(σ2

1 , · · · ,σ2
N)

and µµµ = [µ1, · · · ,µN ]>. Moreover, the approximation q(yyy|XXX) (Eq. (4.15)) to the marginal

likelihood p(yyy|XXX) is shown to be expressed in terms of the site parameters and can be used

to perform model selection.

Kuss (2006) details an EP algorithm to perform inference with a GP model

equipped with a Laplace likelihood, which we name henceforth the GP-LEP model. The

site parameters are optimized by iterative moment matching, which turns out to be

equivalent to simultaneously minimize the reverse Kullback-Leibler divergence between the

true posterior and the approximate distribution, i.e., the divergence KL(p( fff |yyy,XXX)||q( fff )).

The convergence is not guaranteed, but it has been reported in the literature that EP

works well within GP models (RASMUSSEN; WILLIAMS, 2006).

Predictions p( f∗|yyy,XXX ,xxx∗) = N ( f∗|µ∗,σ2
∗ ) for a new input xxx∗ are given by

µ∗ = kkk∗ f KKK−1
f mmm, and σ

2
∗ = K∗− kkk∗ f (KKK−1

f −KKK−1
f AAAKKK−1

f )kkk f∗. (4.16)

4.1.3 Evaluation of GP-tVB and GP-LEP for Robust System Identification

In order to verify the performance of the previously described models in the task

of nonlinear system identification in the presence of outliers, we performed computational

experiments with five artificial datasets, detailed in Tab. 7. The first four datasets were

presented in the seminal work by Narendra and Parthasarathy (1990). The fifth dataset

was generated following Kocijan et al. (2005).

Besides the Gaussian noise, indicated in the last column of Tab. 7, the

estimation data of all datasets was also incrementally corrupted with a number of outliers

equal to 2.5%, 5% and 10% of the estimation samples. Each randomly chosen sample was
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Table 7 – Details of the five artificial datasets used in the computational experiments
related to the task of robust system identification. The indicated noise in the
last column is added only to the output of the estimation data. Note that
U(A,B) is a random number uniformly distributed between A and B.

Input/Samples

# Output Estimation Test Noise

1 yi =
yi−1yi−2(yi−1+2.5)

1+y2
i−1+y2

i−2
+ ui−1

ui = U(−2,2) ui = sin(2πi/25)
N (0,0.29)

300 samples 100 samples

2 yi =
yi−1

1+y2
i−1

+ u3
i−1

ui = U(−2,2)
ui = sin(2πi/25)+

N (0,0.65)sin(2πi/10)
300 samples 100 samples

3
yi = 0.8yi−1+ ui = U(−1,1) ui = sin(2πi/25)

N (0,0.07)
(ui−1−0.8)ui−1(ui−1 + 0.5) 300 samples 100 samples

4
yi = 0.3yi−1 + 0.6yi−2+ ui = U(−1,1) ui = sin(2πi/250)

N (0,0.18)0.3sin(3πui−1)+ 0.1sin(5πui−1) 500 samples 500 samples

5 yi = yi−1−0.5tanh(yi−1 + u3
i−1)

ui = N (ui|0,1) ui = N (ui|0,1)
N (0,0.0025)−1≤ ui ≤ 1 −1≤ ui ≤ 1

150 samples 150 samples

added by a uniformly distributed value U(−My,+My), where My is the maximum absolute

output. We emphasize that only the output values were corrupted in this step. Such

outlier contamination methodology is similar to the one performed by Majhi and Panda

(2011)2. The orders Lu and Ly for the regressors were set to their largest delays presented

in the second column of Tab. 7.

We compare the performances of the following GP models: standard GP-

NARX, GP with Student-t likelihood and VB inference (GP-tVB) and GP with Laplace

likelihood and EP inference (GP-LEP). Note that in order to use both GP-tVB and

GP-LEP for system identification we simply need to build the appropriate regressors

xxxi = [yi−1, · · · ,yi−Ly ,ui−1, · · · ,ui−Lu ]
> and apply them as model inputs, following standard

GP-NARX training and testing. The obtained root mean square errors (RMSE) for free

simulation on test data are presented in Tab. 8.

In almost all scenarios with outliers both robust variants presented better

performances than GP-NARX. Only in one case, Artificial 3 dataset with 10% of corruption,

GP-NARX performed better than one of the robust models (GP-tVB). In the scenarios

without outliers, i.e., with Gaussian noise only, the GP-NARX model achieved the best

RMSE for Artificial 1 and 4 datasets, but it also performed close to the robust models for

2We opted here to follow Majhi and Panda (2011) and sample the outliers from an uniform distribution
instead of, e.g., from a Student-t or Laplace distributions, because this could favor GP-tVB or GP-LEP,
respectively. We note however that in the next sections of this chapter we adopt a different contamination
strategy, explained later.



105

Table 8 – Summary of test free simulation RMSE values in scenarios with different con-
tamination rates by outliers in the estimation data.

Artificial 1 Artificial 2

% of outliers 0% 2.5% 5% 10% 0% 2.5% 5% 10%
GP-NARX 0.2134 0.3499 0.3874 0.4877 0.3312 0.3724 0.5266 0.4410
GP-tVB 0.2455 0.3037 0.2995 0.2868 0.3189 0.3247 0.3284 0.3306
GP-LEP 0.2453 0.2724 0.2720 0.3101 0.3450 0.3352 0.3471 0.3963

Artificial 3 Artificial 4

GP-NARX 0.1106 0.4411 0.7022 0.6032 0.6384 2.1584 2.2935 2.4640
GP-tVB 0.1097 0.1040 0.3344 0.8691 0.6402 0.7462 2.2220 2.1951
GP-LEP 0.0825 0.3527 0.4481 0.5738 0.9188 1.1297 2.1742 2.3762

Artificial 5

GP-NARX 0.0256 0.0751 0.1479 0.1578
GP-tVB 0.0216 0.0542 0.0568 0.1006
GP-LEP 0.0345 0.0499 0.0747 0.1222

the other datasets with 0% of corruption.

A good resilience to outliers was obtained for Artificial 1 and 2 datasets, with

GP-LEP and GP-tVB models being less affected in the cases with outliers. The most

impressive performance was the one achieved by the GP-tVB model for all cases of the

Artificial 2 dataset, with little RMSE degradation.

For the Artificial 3 dataset, only the GP-tVB model with 2.5% of outliers

achieved error values close to the scenario without outliers. In the other cases, both

variants, although better than standard GP-NARX model, presented considerably greater

RMSE values than their results for 0% of outliers.

Likewise, in the experiments with Artificial 4 and 5 datasets, we also observed

that all models were affected by the corruption of the estimation data, even with lower

quantities of outliers. However, it is important to emphasize that both GP-tVB and

GP-LEP models achieved better RMSE values than GP-NARX, often by a large margin,

as observed in the Artificial 4 dataset for the GP-tVB model. In such cases, the robust

variants can be considered a valid improvement over the standard GP-NARX model.

Finally, it is worth mentioning that during the experiments, the variational

approach of the GP-tVB model has been consistently more stable than the EP algorithm

of the GP-LEP model, even with the incorporation of the numerical safeties suggested by

Rasmussen and Williams (2006) and Kuss (2006), which might be a decisive factor when

choosing which model to apply for system identification.
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Although the robust variants have performed better in the scenarios with

outliers, we cannot state categorically that they were insensitive to the corrupted data, for

both GP-tVB and GP-LEP models obtained noticeably worse RMSE in some cases with

outliers. Depending on the task in hand, such degradation may or may not be tolerable.

This observation, as well as some numerical issues encountered in the EP algorithm,

encouraged us to further pursue alternative GP-based models which are more appropriate

for robust system identification. In that context, we introduce in the next sections two

new GP-based formulations specifically designed to tackle dynamical data contaminated

by non-Gaussian noise.

4.2 GP-RLARX: Robust GP Latent Autoregressive Model

Both GP-tVB and GP-LEP models, presented in the previous section, handle

the observed outliers by choosing a heavy-tailed likelihood. However, as we have previously

argued, the feedback of noisy output values (possibly contaminated by outliers) in an

autoregressive context can further compromise the learning procedure with dynamical

data.

To this extent, we propose a robust alternative to the GP-NARX model that,

besides incorporating the heavy-tailed Student-t distribution, also introduces a latent

autoregressive structure to avoid outliers being directly used as input regressors.

This new robust GP model with latent autoregressive structure is named

henceforth GP-RLARX and is defined by the following equations:

xi = f (x̄xxi−1, ūuui−1)+ ε
(x)
i , fff ∼N

(
000,KKK f

)
, ε

(x)
i ∼N

(
0,σ2

x
)
, (4.17)

yi = xi + ε
(y)
i , ε

(y)
i ∼N

(
0,τ−1

i
)
, τi ∼ Γ(α,β ), (4.18)

where x̄xxi−1 = [xi−1, · · · ,xi−L]> and ūuui−1 = [ui−1, · · · ,ui−Lu]
> are, respectively, autoregressive

vectors of dynamical latent variables xi ∈ R and external inputs ui ∈ R, L is the number

of considered past latent variables and we have followed the same notation used in the

previous sections. The unknown function f (·) has a GP prior with covariance matrix KKK f

and we have defined ε
(x)
i ∈ R as a zero mean Gaussian transition noise with variance σ2

x .

The observation noise ε
(y)
i ∈ R follows a Student-t distribution, which is written using the

scale-mixture representation, i.e., it is considered to be sampled from a Gaussian whose

precision τi has a gamma prior with hyperparameters α and β . Note that the GP-RLARX
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model formulation presents a similar latent autoregressive structure of the RGP model3,

introduced in Chapter 3, Section 3.2.

We emphasize that Eq. (4.17) is distinct from standard GP-NARX Eqs. (3.3)

and (3.4) presented in Section 3.1.1, which are also used by the GP-tVB and GP-LEP

models. In the GP-RLARX formulation, the autoregression is made with the dynamical

latent variables xi, instead of the observed outputs yi. This feature avoids the feedback

of possibly corrupted observations into the dynamics. Furthermore, differently from the

inputs of standard NARX models, the latent variables xi have a probability distribution,

which enables the propagation of uncertainty during free simulation.

The features proposed for the GP-RLARX model make it more powerful, but

also introduce additional intractabilities not covered, for instance, by the variational

framework of GP-tVB. These additional intractabilities come from the difficulty in prop-

agating the uncertainty of latent inputs through the nonlinear GP prior. In order to

overcome this issue, we build on the variational approach of the Bayesian GP-LVM (TIT-

SIAS; LAWRENCE, 2010) and extend it to account for the Student-t likelihood of the

GP-RLARX and its latent autoregressive structure, the latter similarly handled by the

REVARB method presented in Section 3.3 for the RGP model.

We start by rewriting Eqs. (4.17) and (4.18) in terms of distributions:

p( fff |X̂XX) = N ( fff |000,KKK f ),

p(xi) = N (xi|µ0i,λ0i), 1≤ i≤ L,

p(xi| fi) = N (xi| fi,σ
2
x ), L + 1≤ i≤ N,

p(yi|xi,τi) = N (yi|xi,τ
−1
i ), L + 1≤ i≤ N,

p(τi) = Γ(τi|α,β ), L + 1≤ i≤ N,

where X̂XX ∈R(N−L)×(L+Lu) is the stack of input vectors x̂xxi = [x̄xxi−1, ūuui−1]> ∈RL+Lu ,L+1≤ i≤N,

KKK f ∈ R(N−L)×(N−L) is the covariance matrix of the GP and we have put Gaussian priors

with moments µ0i and λ0i to the initial latent variables xi|Li=1.

We follow a variational procedure similar to the REVARB framework derivation

presented in Section 3.3, keeping the same notation. Thus, we include M inducing

points zzz ∈ RM evaluated in M pseudo-inputs ζζζ j|Mj=1 ∈ RL+Lu , where p(zzz) = N (zzz|000,KKKz)

3Chronologically speaking, work on the GP-RLARX model was actually developed and published by
us before the RGP model.
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and KKKz ∈ RM×M is the covariance matrix computed from the pseudo-inputs. The joint

distribution of all the variables is now given by

p(yyy,xxx, fff ,zzz,τττ) =

(
N

∏
i=L+1

p(yi|xi,τi)p(τi)p(xi| fi)p( fi|zzz, x̂xxi)

)
p(zzz)

L

∏
i=1

p(xi). (4.19)

Note that if we integrate out zzz we recover exactly the original model without inducing

points.

Applying Jensen’s inequality to Eq. (4.19) gives a lower bound to the marginal

log-likelihood log p(yyy):

log p(yyy)≥
∫

xxx, fff ,zzz,τττ
Q log

[
p(yyy,xxx, fff ,zzz,τττ)

Q

]
, (4.20)

where Q is the variational distribution, chosen to be given as follows:

Q = q(xxx)q(zzz)q(τττ)
N

∏
i=L+1

p( fi|zzz, x̂xxi). (4.21)

Each term of the variational posterior is defined by

q(xxx) =
N

∏
i=1

q(xi) =
N

∏
i=1

N (xi|µi,λi), (4.22)

q(zzz) = N (zzz|mmm,SSS), (4.23)

q(τττ) =
N

∏
i=L+1

q(τi) =
N

∏
i=L+1

Γ(τi|ai,bi), (4.24)

p( fi|zzz, x̂xxi) = N ( fi|[aaa f ]i, [ΣΣΣ f ]ii), (4.25)

where aaa f = KKK f zKKK−1
z zzz,

ΣΣΣ f = KKK f −KKK f zKKK−1
z KKK>f z.

The variables µi ∈R, λi ∈R>0, mmm ∈RM, SSS ∈RM×M, ai,bi ∈R>0 are variational parameters

and KKK f z ∈ R(N−L)×M is the cross-covariance matrix calculated from x̂xxi|Ni=L+1 and ζζζ j|Mj=1.

We replace the factorized variational distribution Q back to Eq. (4.20) and by

working the expressions, with the same strategy followed by the REVARB steps presented

in the Appendix A.2, we are able to optimally eliminate the variational parameters mmm and

SSS. After the derivation, detailed in the Appendix A.3, we obtain a lower bound to the
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marginal log-likelihood log p(yyy) of the GP-RLARX model:

log p(yyy)≥−N−L
2

(
log2πσ

2
x − log2π

)
+

1
2

N

∑
i=L+1

(ψ(ai)− logbi)

− 1
2

N

∑
i=L+1

[
ai

bi

(
y2

i −2yiµi + λi + µ
2
i
)]
− 1

2σ2
x

[
N

∑
i=1

(
λi + µ

2
i
)

+ Ψ0−Tr(KKK−1
z ΨΨΨ2)

]

+
1
2

log |KKKz|−
1
2

log
∣∣∣∣KKKz +

1
σ2

x
ΨΨΨ2

∣∣∣∣+ 1
2(σ2

x )2 µµµ
>

ΨΨΨ1

(
KKKz +

1
σ2

x
ΨΨΨ2

)−1

ΨΨΨ
>
1 µµµ

−
N

∑
i=1

∫
xi

q(xi) logq(xi)+
L

∑
i=1

∫
xi

q(xi) log p(xi)−KL(q(τττ)‖ p(τττ)),

(4.26)

where ψ(ai) = ∂ logΓ(ai)
∂ai

is the digamma function and the last term is the Kullback-Leibler

divergence between two gamma distributions. We have once more used the statistics

Ψ0 = Tr(〈KKK f 〉q(xxx)), ΨΨΨ1 = 〈KKK f z〉q(xxx) and ΨΨΨ2 = 〈KKK>f zKKK f z〉q(xxx), where 〈·〉q(xxx) denotes expectation

with respect to the distribution q(xxx). Those expressions, which are tractable for the squared

exponential kernel, are identical to the ones presented in the Appendix A.1 for the REVARB

method.

We can also write a compact version for the GP-RLARX lower bound as follows:

log p(yyy)≥
N

∑
i=L+1

[
L

(y)
i +L

(x)
i

]
+

N

∑
i=1

Hi +
L

∑
i=1

L0i−KL(q(zzz)||p(zzz))−KL(q(τττ)||p(τττ)) ,

(4.27)

where each term is given by:

L
(y)

i = 〈log p(yi|xi,τi)〉q(xxx)q(τττ) , (4.28)

L
(x)

i = 〈p( fi|zzz, x̂xxi) log p(xi| fi)〉q(xxx)q(zzz) , (4.29)

Hi =−〈logq(xi)〉q(xxx) , (4.30)

L0i = 〈log p(xi)〉q(xxx) , (4.31)

KL(q(zzz)||p(zzz)) =
∫

zzz
q(zzz) logq(zzz)−

∫
zzz
q(zzz) log p(zzz) , (4.32)

KL(q(τττ)||p(τττ)) =
N

∑
i=L+1

[
(ai−α)ψ(ai)+ log

Γ(α)

Γ(ai)
+ α log

bi

β
+ ai

β −bi

bi

]
. (4.33)

It is worth mentioning that the second line of the full GP-RLARX bound in Eq.

(4.26) shows the only term that includes the observations. The value of each observation
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yi is weighted by the fraction ai/bi, which comes from the expectation with respect to the

variational distribution q(τττ) in Eq. (4.28). For observations containing outliers, the value

of this fraction is much lower than regular observations, reducing their influence in the

bound. Thus, the inspection of the optimized variational parameters ai and bi per se can

be used as a method to detect outliers in the estimation data. It is also important to notice

that the full GP-RLARX bound in Eq. (4.26) is not factorized along the observations.

The kernel hyperparameters and the variational parameters, including the

pseudo-inputs ζζζ j|Mj=1, are jointly optimized by maximizing the GP-RLARX lower bound,

using the analytical gradients of Eq. (4.26), which constitutes its model selection step.

Such optimization is performed by standard gradient-based methods, such as the BFGS

algorithm (FLETCHER, 2013).

Although the computation of the exact predictive distribution for the GP-

RLARX model is intractable, since the input is uncertain, we can calculate its moments,

similar to the REVARB framework in Section 3.3.1. Given a new regressor vector x̂xx∗

obtained from past latent variables and a sequence of external inputs, the mean and variance

of the correspondent prediction f∗ are calculated by following the results presented by

Girard et al. (2002), Girard et al. (2003) using moment matching:

p( f∗) = 〈p( f∗|x̂xx∗)〉q(xxx∗) ≈N ( f∗|µ∗,λ∗) , (4.34)

µ∗ = BBB>(ΨΨΨ
∗
1)>, (4.35)

λ∗ = BBB>(ΨΨΨ
∗
2− (ΨΨΨ

∗
1)>ΨΨΨ

∗
1)BBB + Ψ

∗
0−Tr((KKK−1

z − (KKKz + σ
−2
x ΨΨΨ2)−1)ΨΨΨ

∗
2), (4.36)

where BBB = σ−2
x (KKKz + σ−2

x ΨΨΨ2)−1ΨΨΨ
>
1 µµµ and the statistics Ψ∗0, ΨΨΨ

∗
1 and ΨΨΨ

∗
2 are computed as

before, in the lower bound, but using the new approximation q(x∗) = N
(
x∗
∣∣µ∗,λ∗+ σ2

x
)
.

In the output, the predicted variance λ∗ can be added by the median4 of the fractions

bi/ai|Ni=L+1 related to the training data, since the variance of the Student-t likelihood is

β/α (see Eq. (4.5)). Thus, the moments of the final prediction are given by E{y∗}= µ∗

and V{y∗}= λ∗+ median(bi/ai|Ni=L+1).

Importantly, predictions are not made directly with the observations yyy, since

they could contain outliers, but with the variational moments of the dynamical latent

variables, used to compute the matrix BBB. Furthermore, the optimized variational means µµµ ,

as we will illustrate later, act as a filtered version of the observed outputs. As opposed

4In this case it is better to take the median value instead of the mean, since the fractions related to
the outliers can be much larger.
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Algorithm 3: GP-RLARX for outlier-robust dynamical modeling.

- Estimation step
Require: uuu ∈ RN (external input), yyy ∈ RN (output), M (number of inducing points), L

(latent order lag), Lu (input order lag)
Initialize kernel hyperparameters and variational parameters;
repeat

Compute the evidence lower bound with Eq. (4.26);
Compute the analytical gradients of Eq. (4.26) with respect to the unknown
parameters;
Update parameters with a gradient-based method (e.g. BFGS);

until convergence or maximum number or iterations
Output the optimized parameters;
Check the ratios ai/bi|Ni=L+1, the smallest values are related to the estimation samples
which probably contain outliers;

- Free simulation with test data

Require: Test external inputs uuu∗ ∈ RN∗ and the previously estimated GP-RLARX model
for i = 1 : N∗ do

Compute the predictive mean µ∗i and variance λ∗i with Eqs. (4.35) and (4.36);
Update the variational distribution of the new latent dynamical variable with
q(x∗i) = N

(
x∗i
∣∣µ∗i,λ∗i + σ2

x
)
;

Output y∗i ∼N
(
µ∗i,λ∗i + median(bi/ai|Ni=L+1)

)
;

end for

to GP-tVB and other standard NARX models, the GP-RLARX framework allows for a

natural way of approximate propagating the uncertainty during free simulation, since it

recursively uses the full predictive distributions as inputs for next predictions, instead of

just their mean values or single point estimates.

The GP-RLARX model was firstly introduced by us in Mattos et al. (2016),

where it performed well compared to GP-NARX and GP-tVB in several artificial bench-

marks with different levels of outlier contamination. We will postpone the reproduction of

those experiments for now, since in the next section we will present a robust version of

the multilayer RGP model described in Section 3.2, which constitutes a step further from

GP-RLARX in both model complexity (and computational requirements) but hopefully

also in model expressiveness.

4.3 The RGP-t Model

Despite the superior performance by the GP-RLARX model in the presence of

outliers when compared to GP-tVB, as reported in Mattos et al. (2016), its framework

adopts a very simple observation model: the output yi is equal to the current latent variable
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xi plus the noise ε
(y)
i (see Eq. (4.18)). This forces the latent space to be closely related to

the output and constrains the latent variables. Furthermore, it relies on a single transition

layer, which does not support any kind of hierarchy.

The aforementioned restrictions could hinder the GP-RLARX model’s capability

to learn more complex dynamics from outlier-corrupted data. Bearing this in mind, we can

extend GP-RLARX by including an additional GP to model the observation (or emission)

layer, in order to separate the transition and emission nonlinear functions. To further

increase the representational capability of the model, we allow the inclusion of more than

one transition layer, referred to as hidden layers. This approach builds upon the RGP

model, described in Section 3.2, being equivalent to provide it with a robust Student-t

likelihood. However, such extension requires a modification to the REVARB framework

previously presented in Section 3.3, since it originally considered a Gaussian likelihood,

which makes it not suitable to scenarios where outliers are expected to occur.

The extension proposed by us in Mattos et al. (2017) aims to bring together

in a synergistic way the best properties of the GP-RLARX and RGP models in order to

eventually obtain a more reliable solution for robust system identification: (i) resilience to

non-Gaussian noise provided by the GP-RLARX model due to the Student-t likelihood, and

(ii) the enhanced representational capability provided by the hierarchical RGP structure.

We name henceforth this new model as the RGP-t model and the corresponding modified

variational framework as REVARB-t.

Considering H hidden transition layers and one observation layer, the RGP-t

model is characterized by the following set of equations:

x(h)
i = f (h)

(
x̂xx(h)

i

)
+ ε

(h)
i , ε

(h)
i ∼N

(
0,σ2

h
)
, 1≤ h≤ H, (4.37)

yi = f (H+1)
(

x̂xx(H+1)
i

)
+ ε

(H+1)
i , ε

(H+1)
i ∼N

(
0,τ−1

i
)
, τi ∼ Γ(α,β ), (4.38)

fff (h) ∼N
(

000,KKK(h)
f

)
, 1≤ h≤ H + 1. (4.39)

Each layer is related to an unknown function f (h)(·) modeled by a distinct GP with

covariance matrix KKK(h)
f . We emphasize that, while the transition noises ε

(h)
i are Gaussian,

the observation noise ε
(H+1)
i is Student-t, written in the scale-mixture representation

(Gaussian with gamma distributed precision), and capable of handling outliers. Differently

from the GP-RLARX model, the RGP-t models at least two nonlinear functions, when

H = 1, which corresponds to at least two separate GP priors.
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(c) RGP-t with H hidden layers.

Figure 26 – Graphical models for some of the robust GP-based approaches considered for
dynamical modeling in this chapter. The shaded nodes are random observed
entities (outputs), while the white nodes represent the latent (unobserved)
variables. The arrows indicate direct dependencies. Note that past exogenous
inputs ūuui−1 are treated as deterministic elements.

Similar to the original RGP, in the previous equations, each layer’s input

x̂xx(h)
i ∈ RDh is a regressor vector given by Eq. (3.14), repeated here for convenience:

x̂xx(h)
i =



[
x̄xx(1)

i−1, ūuui−1

]>
, if h = 1,[

x̄xx(h)
i−1, x̄xx

(h−1)
i

]>
, if 1 < h≤ H,

x̄xx(H)
i , if h = H + 1,

(4.40)

where x̄xx(h)
i−1 =

[
x(h)

i−1, · · · ,x
(h)
i−L

]
, and ūuui−1 = [ui−1, · · · ,ui−Lu] .

Importantly, all the model dynamics learned from the latent autoregressive states x̄xx(h)
i−1

presented in Eq. (4.40) do not depend directly from the possibly outlier-corrupted

observations.

Fig. 26 illustrates the structures of some of the different outlier-robust GP-

based models used in this chapter for system identification: the GP-tVB, the GP-RLARX

and the RGP-t. In the graphical models, which follow the notation used so far, the

shaded nodes are random observed entities (outputs), the white nodes represent the latent

(unobserved) variables and the past exogenous inputs ūuui−1 are treated as deterministic
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elements. The arrows indicate direct dependencies, e.g., the observation yi depends on

the noise ε
(y)
i . We opted to make explicit the noise models and the latent fi variables,

even though the latter are always integrated out (i.e., marginalized). It should be noted

that the models include the hyperparameters α and β related to the gamma distributed

precision of the observation noise. The variance hyperparameter of the Gaussian transition

noises are not shown, but are implicit. The recent robust model presented by Ranjan et al.

(2016), mentioned in the beginning of this chapter, follows the same NARX structure of

the GP-tVB, although with a different inference method (an EM algorithm).

The original RGP model is trained with the REVARB framework, proposed

by us in Mattos et al. (2016) and described in Section 3.3. Since the standard REVARB

considers only a Gaussian likelihood, we now present a robust modification in order to

train the RGP-t model, named REVARB-t, introduced by us in Mattos et al. (2017) and

explained in the next section.

Remark The model formulation evolution from the Student-t equipped GP-tVB to

the GP-RLARX, and then to the RGP-t, represents a pursuit towards more expressive

models that are, at the same time, robust to outliers and tailored to nonlinear system

identification. As can be inferred from Fig. 26, the GP-tVB is simply an adaptation of a

robust regression model to the NARX structure. The GP-RLARX then introduces latent

dynamical variables, which, although closely related to the observations, are properly

handled as random variables. Finally, the RGP-t enhances the previous approaches by

incorporating a fully hierarchical structure, increasing its representational power, while

also preserving the focus on simulation with uncertainty propagation through its dynamical

transitions and a robust nonlinear observation layer.

4.4 The REVARB-t Framework

For the sake of clarity, we follow here the steps of the original REVARB method

described in Chapter 3, Section 3.3, including elements of the GP-RLARX variational

framework (Section 4.2) and emphasizing the modifications that led to the proposal of

REVARB-t. Though possibly redundant at some points, such approach will make this

section more readable.
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We first rewrite Eqs. (4.37) and (4.38) to explicit the involved distributions:

p
(

fff (h)
∣∣∣X̂XX (h)

)
= N

(
fff (h)
∣∣∣000,KKK(h)

f

)
, 1≤ h≤ H + 1,

p
(

x(h)
i

)
= N

(
x(h)

i

∣∣∣µ(h)
0i ,λ

(h)
0i

)
, 1≤ i≤ L,

p
(

x(h)
i

∣∣∣ f (h)
i

)
= N

(
x(h)

i

∣∣∣ f (h)
i ,σ2

h

)
, L + 1≤ i≤ N,

p
(

yi

∣∣∣ f (H+1)
i ,τi

)
= N

(
yi

∣∣∣ f (H+1)
i ,τ−1

i

)
, L + 1≤ i≤ N,

p(τi) = Γ(τi|α,β ), L + 1≤ i≤ N,

where X̂XX
(h)

is the stack of input vectors x̂xx(h)
i |Ni=L+1, and the means µ

(h)
0i ∈ R and variances

λ
(h)
0i ∈ R>0 come from the Gaussian priors in the initial L latent variables of each layer.

Interestingly, if we sample from such generative model, the presence of the gamma prior

p(τi) = Γ(τi|α,β ) would enable the generation of a few small precisions τi (high variances)

for the observation noise values, differently from the original RGP, which allows only

Gaussian distributed observation noise.

One more time we tackle the model’s intractabilities by applying Titsias’

sparse variational framework (TITSIAS, 2009a). We augment each layer h by including

M inducing points zzz(h) ∈ RM evaluated in M pseudo-inputs ζζζ
(h)
j |Mj=1 ∈ RDh , where Dh is

the same dimension of x̂xx(h)
i and p

(
zzz(h)
)

= N
(

zzz(h)
∣∣∣000,KKK(h)

z

)
, where KKK(h)

z ∈ RM×M is the

covariance matrix obtained from ζζζ
(h)
j |Mj=1. The joint distribution of the variables present

in the RGP-t model is now given by

p
(

yyy,τττ,
{

xxx(h)
}∣∣∣Hh=1,

{
fff (h),zzz(h)

}∣∣∣H+1
h=1

)
=

N

∏
i=L+1

p
(

yi

∣∣∣ f (H+1)
i ,τi

)
p(τi)p

(
f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

)
(

H

∏
h=1

p
(

x(h)
i

∣∣∣ f (h)
i

)
p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

))(H+1

∏
h=1

p
(

zzz(h)
))( L

∏
i=1

H

∏
h=1

p
(

x(h)
i

))
,

(4.41)

where the boldface indexless notation xxx(h) refers to all the variables x(h)
i

∣∣N
i=1 within the h-th

layer.

By applying Jensen’s inequality we are able to obtain a lower bound to the

marginal log-likelihood log p(yyy):

log p(yyy)≥
∫

τττ, fff ,xxx,zzz
Q log

 p
(

yyy,τττ,
{

xxx(h)
}∣∣∣Hh=1,

{
fff (h),zzz(h)

}∣∣∣H+1
h=1

)
Q

 , (4.42)
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where Q is the variational distribution. We conveniently choose the following factorized

expression for Q:

Q = q(τττ)

(
H

∏
h=1

q
(

xxx(h)
))(H+1

∏
h=1

q
(

zzz(h)
))( N

∏
i=L+1

H+1

∏
h=1

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

))
, (4.43)

where q(τττ), q
(

xxx(h)
)

and q
(

zzz(h)
)

are respectively the variational posterior distributions

related to the latent precisions τττ, the latent dynamical variables xxx(h) and the inducing

points zzz(h).

Considering a mean-field approximation, each term is given by

q(τττ) =
N

∏
i=L+1

Γ(τi|ai,bi), (4.44)

q
(

xxx(h)
)

=
N

∏
i=1

N
(

x(h)
i

∣∣∣µ(h)
i ,λ

(h)
i

)
, (4.45)

q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
, (4.46)

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
= N

(
f (h)
i

∣∣∣[aaa(h)
f

]
i
,
[
ΣΣΣ

(h)
f

]
ii

)
, (4.47)

where aaa(h)
f = KKK(h)

f z

(
KKK(h)

z

)−1
zzz(h) and ΣΣΣ

(h)
f = KKK(h)

f −KKK(h)
f z

(
KKK(h)

z

)−1(
KKK(h)

f z

)>
.

In the above, ai,bi ∈R>0, µ
(h)
i ∈R, λ

(h)
i ∈R>0, mmm(h) ∈RM and SSS(h) ∈RM×M are variational

parameters, KKK(h)
f ∈ R(N−L)×(N−L) is the standard kernel matrix obtained from x̂xx(h)

i |Ni=L+1,

KKK(h)
z ∈ RM×M is the sparse kernel matrix calculated from the pseudo-inputs ζζζ

(h)
j |Mj=1 and

KKK(h)
f z ∈ R(N−L)×M, where

[
KKK(h)

f z

]
i j

= k
(

x̂xx(h)
i ,ζζζ

(h)
j

)
. Note that while the hyperparameters

of the gamma prior α and β are global, each sample is related to its own set of local

variational posterior parameters ai and bi.

Replacing the factorized variational distribution Q back in the Eq. (4.42) we

are able to cancel out the intractable terms p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
inside the logarithm. We

are also able to optimally eliminate the variational parameters mmm(h) and SSS(h) following

the REVARB steps in the Appendix A.2. After solving the tractable integrals and some

algebraic manipulation detailed in the Appendix A.4, we finally get to the REVARB-t
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lower bound:

log p(yyy)≥−N−L
2

H

∑
h=1

log2πσ
2
h −

N−L
2

log2π +
1
2

N

∑
i=L+1

(ψ(ai)− logbi)

− 1
2

(
yyy>RRRyyy + Ψ

′(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ
′(H+1)
2

))
+

1
2

log
∣∣∣KKK(H+1)

z

∣∣∣− 1
2

log
∣∣∣KKK(H+1)

z + ΨΨΨ
′(H+1)
2

∣∣∣
+

1
2

yyy>ΨΨΨ
′(H+1)
1

(
KKK(H+1)

z + ΨΨΨ
′(H+1)
2

)−1(
ΨΨΨ
′(H+1)
1

)>
yyy−KL(q(τττ)||p(τττ))

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h)−Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

− 1
2σ2

h
Ψ

(h)
0 +

1
2

log
∣∣∣KKK(h)

z

∣∣∣− 1
2

log
∣∣∣∣KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

∣∣∣∣
+

1
2(σ2

h )2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h)

−
N

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
log p

(
x(h)

i

)}
,

(4.48)

where we have once more defined the statistics Ψ
(h)
0 = Tr

(〈
KKK(h)

f

〉
q(xxx(h))

)
, ΨΨΨ

(h)
1 =

〈
KKK(h)

f z

〉
q(xxx(h))

and ΨΨΨ
(h)
2 =

〈(
KKK(h)

f z

)>
KKK(h)

f z

〉
q(xxx(h))

for the hidden layers, i.e., 1≤ h≤H. Those are identical

to REVARB’s expressions detailed in the Appendix A.1. For the output layer we have

slightly different statistics given by

Ψ
′(H+1)
0 = Tr

(
RRR
〈

KKK(H+1)
f

〉
q(xxx(H))

)
, (4.49)

ΨΨΨ
′(H+1)
1 = RRR

〈
KKK(H+1)

f z

〉
q(xxx(H))

, (4.50)

ΨΨΨ
′(H+1)
2 =

〈(
KKK(H+1)

f z

)>
RRRKKK(H+1)

f z

〉
q(xxx(H))

, (4.51)

where RRR = diag
(

aL+1

bL+1
, · · · , aN

bN

)
.

Those new expressions, which are tractable when the exponentiated quadratic kernel is

chosen, are also presented in the Appendix A.1.

The compact version of the REVARB-t bound is given by:

log p(yyy)≥
N

∑
i=L+1

H+1

∑
h=1

L
(h)

i +
N

∑
i=1

H

∑
h=1

H
(h)

i +
L

∑
i=1

H

∑
h=1

L
(h)

0i

−
H+1

∑
h=1

KL
(

q
(

zzz(h)
)∣∣∣∣∣∣p(zzz(h)

))
−KL(q(τττ)||p(τττ)),

(4.52)
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where the terms are computed as below:

L
(H+1)

i =
〈

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H+1)
i

)
log p

(
yi

∣∣∣ f (H+1)
i ,τi

)〉
q(xxx)q(zzz)q(τττ)

, (4.53)

L
(h)

i =
〈

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
log p

(
x(h)

i

∣∣∣ f (h)
i

)〉
q(xxx)q(zzz)

, (4.54)

H
(h)

i =−
〈

logq
(

x(h)
i

)〉
q(xxx)

, (4.55)

L
(h)

0i =
〈

log p
(

x(h)
i

)〉
q(xxx)

, (4.56)

KL
(

q
(

zzz(h)
)∣∣∣∣∣∣p(zzz(h)

))
=
∫

zzz
q
(

zzz(h)
)

logq
(

zzz(h)
)
−
∫

zzz
q
(

zzz(h)
)

log p
(

zzz(h)
)
, (4.57)

KL(q(τττ)||p(τττ)) =
N

∑
i=L+1

[
(ai−α)ψ(ai)+ log

Γ(α)

Γ(ai)
+ α log

bi

β
+ ai

β −bi

bi

]
. (4.58)

The REVARB-t model selection step is performed by jointly optimizing all the

model’s hyperparameters and variational parameters by maximizing the lower bound on

the marginal log-likelihood expressed in Eq. (4.48). The second and fourth lines in Eq.

(4.48) show the only terms that include the observations yyy. In those terms, similar to the

GP-RLARX model in Section 4.2, the value of each output yi is always weighted by the

ratio ai/bi in the diagonal of the matrix RRR, which comes from the expectation with respect

to the gamma distribution q(τττ) in Eq. (4.53). Observations which contain outliers are

related to much lower ratio values than regular observations, not greatly interfering in the

bound. Furthermore, similar to GP-RLARX, we can detect outliers in the estimation data

by checking the values of such ratios for each training sample. Note again that the full

REVARB-t bound in Eq. (4.48) is not factorizable along the observations.

4.4.1 Making Predictions with the REVARB-t Framework

We are interested in using the RGP-t model to perform free simulation, i.e., given

a sequence of new inputs, to iteratively use only past inputs and past predictions to infer

the next step output. Furthermore, each prediction should consist of a fully characterized

distribution and consider the uncertainty of past predictions. Thus, predictions in the

REVARB-t can be performed with a set of modified predictive equations from the original

REVARB framework, presented in Section 3.3.1.

Given a new regressor vector x̂xx(h)
∗ , the mean µ

(h)
∗ and variance λ

(h)
∗ of the

predictions f (h)
∗ ∼N

(
µ

(h)
∗ ,λ

(h)
∗
)

within each layer of the RGP-t model are calculated by

approximate propagating uncertainty between each layer, using the expressions below (see
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Section 3.3.1 for a related derivation):

µ
(h)
∗ =

(
BBB(h)

)>(
ΨΨΨ

(h)
1∗

)>
, (4.59)

λ
(h)
∗ =

(
BBB(h)

)>(
ΨΨΨ

(h)
2∗ −

(
ΨΨΨ

(h)
1∗

)>
ΨΨΨ

(h)
1∗

)
BBB(h)

+ Ψ
(h)
0∗ −Tr

(((
KKK(h)

z

)−1
−
(

PPP(h)
)−1

)
ΨΨΨ

(h)
2∗

), (4.60)

where we have defined the following matrices:

PPP(h) = KKK(h)
z + σ

−2
h ΨΨΨ

(h)
2 , 1≤ h≤ H, (4.61)

PPP(H+1) = KKK(H+1)
z + ΨΨΨ

′(H+1)
2 , (4.62)

BBB(h) = σ
−2
h

(
PPP(h)

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h), 1≤ h≤ H, (4.63)

BBB(H+1) =
(

PPP(H+1)
)−1(

ΨΨΨ
′(H+1)
1

)>
yyy. (4.64)

In the former expression for BBB(H+1) in Eq. (4.64), the training observations yyy

are once again weighted by the diagonal of the matrix RRR, inside ΨΨΨ
′(H+1)
1 , which reduces

the influence of the outliers in the predictions.

The terms Ψ
(h)
0∗ , ΨΨΨ

(h)
1∗ and ΨΨΨ

(h)
2∗ in Eqs. (4.59) and (4.60) are computed as before,

but instead of the distributions q
(

x(h)
i

)
we use the new Gaussian approximation q

(
x(h)
∗
)

=

N
(

x(h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗ + σ2

h

)
and replace KKK(h)

f and KKK(h)
f z respectively with K(h)

∗ = k
(

x̂xx(h)
∗ , x̂xx(h)

∗
)

and kkk(h)
∗z =

[
k
(

x̂xx(h)
∗ ,ζζζ

(h)
1

)
· · ·k

(
x̂xx(h)
∗ ,ζζζ

(h)
M

)]
.

The predicted variance λ
(H+1)
∗ in the observation layer can be added by the

median of the values bi/ai|Ni=L+1 related to the training outputs, following our approach

for the GP-RLARX model. Thus, the predicted moments in the last layer are then given

by E{y∗}= µ
(H+1)
∗ and V{y∗}= λ

(H+1)
∗ + median(bi/ai|Ni=L+1).

Algorithm 4 summarizes the use of the RGP-t/REVARB-t framework in the

robust system identification task, where we highlight that at the end of the estimation step

it is possible to check which estimation samples probably contain outliers. Besides, each

output during free simulation on test data is approximated by a fully defined Gaussian

distribution.

4.5 Experiments

In this section we reproduce the several computational experiments firstly

reported by us in Mattos et al. (2017) in order to evaluate the proposed GP-RLARX and
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Algorithm 4: REVARB-t for outlier-robust dynamical modeling with the RGP-t
model.
- Estimation step
Require: uuu ∈ RN (external input), yyy ∈ RN (output), H (number of hidden layers), M

(number of inducing points), L (latent order lag), Lu (input order lag)
Initialize kernel hyperparameters and variational parameters;
repeat

Compute the evidence lower bound with Eq. (4.48);
Compute the analytical gradients of Eq. (4.48) with respect to the unknown
parameters;
Update parameters with a gradient-based method (e.g. BFGS);

until convergence or maximum number or iterations
Output the optimized parameters;
Check the ratios ai/bi|Ni=L+1, the smallest values are related to the estimation samples
which probably contain outliers;

- Free simulation with test data

Require: Test external inputs uuu∗ ∈ RN∗ and the previously estimated RGP-t model
for i = 1 : N∗ do

for h = 1 : H do
Compute the predictive mean µ

(h)
∗i and variance λ

(h)
∗i with Eqs. (4.59) and (4.60);

Update the variational distribution of the new latent dynamical variable with

q
(

x(h)
∗i

)
= N

(
x(h)
∗i

∣∣∣µ(h)
∗i ,λ

(h)
∗i + σ2

h

)
;

end for
Compute the predictive mean µ

(H+1)
∗i and variance λ

(H+1)
∗i of the output layer with

Eqs. (4.59) and (4.60);

Output y(H+1)
∗i ∼N

(
µ

(H+1)
∗i ,λ

(H+1)
∗ + median(bi/ai|Ni=L+1)

)
;

end for

RGP-t models and compare them with the standard GP-NARX and the robust GP-tVB.

The experiments include six artificial benchmarks available in the system identification

literature and two datasets related to process industry systems, available in the DaISy

(Database for the Identification of Systems) repository (MOOR, 2016). In the latter two

cases we also include experiments with the standard RGP model with Gaussian likelihood.

4.5.1 Artificial Benchmarks

We use the five artificial datasets previously described in Tab. 7 and a sixth

dataset, derived from the artificial plant presented by Campos et al. (2000), summarized

in Tab. 9. The outliers were generated by sampling from σ(yyy)×T (0,2), i.e., a Student-t

distribution with zero mean and 2 degrees of freedom scaled by the standard deviation
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Table 9 – Details of the sixth artificial dataset used in the robust computational experi-
ments. The other five datasets used in Section 4.5.1 are detailed in Tab. 7. Note
that U(A,B) is a random number uniformly distributed between A and B.

Input/Samples

# Output Estimation Test Noise

6
x(1)

i = x(2)
i−1 ui = U(−0.5,0.5) ui = U(−0.5,0.5)

N (0,0.0065)
x(2)

i =− 3
16

x(1)
i−1(

1+
(

x(2)
i−1

)2
) + x(2)

i−1 + ui−1 300 samples 300 samples

yi = x(1)
i

of the original estimation data5. We considered scenarios without outliers and with 5%,

10%, 15%, 20%, 25% and 30% of the estimation samples incrementally contaminated by

outliers. In all experiments we used a RGP-t model with 1 hidden (transition) layer and

1 output (observation) layer. The number of inducing points M was fixed to 10% of the

number of samples for both GP-RLARX and RGP-t models and the pseudo-inputs were

initialized using the PAM (Partition Around Medoids) algorithm. We note that the results

in this section should not be compared with the results previously reported in Section

4.1.3, since the datasets were regenerated.

The obtained root mean square errors (RMSE) are presented in the line charts

of Fig. 27. The robustness of the GP-RLARX model was already praised in Mattos

et al. (2016) and its latent autoregressive structure was able to pair up with the heavy

tailed Student-t likelihood and be more tolerant to outliers than GP-tVB. The RGP-t

model maintains those features and incorporates additional representational capabilities to

the dynamical modeling. Thus, besides the dataset Artificial 1, where RGP-t performed

quite similar to GP-RLARX, in almost all the other scenarios the multilayered structure

of RGP-t was able to obtain better results. For instance, in the case of Artificial 2, 4

and 6 datasets, great gain in performance occurred in all levels of contamination, which

highlights the powerful hierarchical structure of the RGP-t model.

As mentioned before, the variational framework of the three robust models,

i.e., GP-tVB, GP-RLARX and RGP-t, allows for a practical way of detecting estimation

samples that contain outliers. After the model optimization step, by computing the

ratios ai/bi related to the variational distribution q(τττ) for the observation noise precisions

along the estimation data and sorting the values, we can select the smallest ones, which

5Note that, since in the experiments of this section all the robust models apply a Student-t likelihood,
we do not favor any one of them to the detriment of the others by sampling the outliers from a Student-t
distribution.
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(a) Artificial 1 dataset. (b) Artificial 2 dataset. (c) Artificial 3 dataset.

(d) Artificial 4 dataset. (e) Artificial 5 dataset. (f) Artificial 6 dataset.

Figure 27 – Line charts for the RMSE values related to the free simulation on test data
with different levels of contamination by outliers. The correspondent bar plots
indicate the percentage of outliers detected by the robust models using the
variational framework.

correspond to smallest variational precisions (or largest variances), and associate them with

samples containing outliers. The bar plots in Fig. 27 show the results of the application of

such methodology, where we have selected in each case the expected amount of outliers

(5% to 30%).
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Figure 28 – Example of the robust filtering property of the GP-RLARX model. The black
points are training observations with only Gaussian noise, while red points are
outliers. The blue line indicates the mean values of the variational parameters
after optimization, which act as filtered versions of the training data.

The three robust models are able to detect most of the outliers in the corrupted

scenarios. Interestingly, although all the models use the same Student-t likelihood, in

many cases the GP-RLARX and RGP-t were able to detect more outliers than GP-tVB,

with RGP-t being slightly better overall, mainly for Artificial 4 and 6 datasets. It should

be noted that, in some scenarios, such as the ones of the Artificial 5 dataset, although

GP-tVB has been able to detect almost the same amount of outliers of the other robust

models, its performance in terms of test prediction (see the correspondent line chart in Fig.

27) was considerably worse than GP-RLARX and especially RGP-t. Such observation once

again stresses the importance of the latent autoregressive structure in the outlier-robust

system identification task.

Before ending this subsection of experiments, we illustrate an interesting prop-

erty of the GP-RLARX model. Since in its emission layer, expressed in Eq. (4.18), the

latent output of the recurrent layer differs from the observed output only by the observation

noise, an useful byproduct of the model optimization is a filtered version of the training

data. An example is shown in Fig. 28 for the Artificial 5 dataset with 25% of outliers.

It is worth noticing that such property is not readily shared by the RGP-t model, since

its outputs are obtained after passing the recurrent latent space through an additional

nonlinear mapping learned in the separate observation layer.
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Table 10 – RMSE and NLPD results for free simulation on test data after estimation on
the pH dataset without and with outliers. The percentage of correctly detected
outliers is also presented for the robust models that use variational-based
inference.

Without outliers With 30% of outliers

RMSE NLPD RMSE NLPD % detected

GP-NARX 0.8716 1.8435 1.2735 2.3344 -
GP-tVB 0.9834 4264.0 1.0619 28.6278 76.7
GP-RLARX 0.8305 1.9181 0.7776 1.4777 75.0
RGP (H = 1) 0.6658 1.7751 0.9299 1.8496 -
RGP (H = 2) 0.6616 1.5625 1.2258 2.1177 -
RGP-t (H = 1) 0.6661 0.6363 0.6221 1.4663 81.7
RGP-t (H = 2) 0.6796 1.4283 0.6192 1.1978 85.0

4.5.2 pH Data

We now evaluate the GP models with the pH dataset6. The data comes from

a pH neutralization process in a constant volume stirring tank. The control input is the

base solution flow and the output is the pH value of the solution in the tank. We apply

the first 200 samples for estimation and the next 800 samples for validation (testing).

Two scenarios were considered, one without outliers and other where the estimation data

was contaminated with 30% of outliers, sampled from σ(yyy)×T (0,2), where σ(yyy) is the

standard deviation of the original estimation data. We chose the orders L = Lu = 5 for the

regressors. Besides the models used in Section 4.5.1, we also evaluate the original RGP

model with Gaussian likelihood (with 1 and 2 hidden layers).

In Tab. 10 we report the test RMSE values and the average negative log-

predictive density (NLPD). When applicable, the amount of outliers correctly detected by

the robust models, using the variational strategy mentioned before, is also shown.

The corrupted scenario is quite extreme, with few estimation samples and

a large contamination rate. Even though, the GP-RLARX model was better than the

GP-tVB and both RGP-t models were able to reasonably learn the system dynamics.

Actually, the RMSE values obtained for those models were even lower in the corrupted

case than in the non-corrupted case, which can be explained by the fact that the former

follows the expected Student-t noise prior of the robust models. Similar behavior was also

observed in some of the results presented in Fig. 27 in Section 4.5.1.

The free simulation outputs on test data for the best model, the RGP-t with 2

6Data available in the DaISy repository (MOOR, 2016) at <http://homes.esat.kuleuven.be/˜smc/
daisy/daisydata.html>.

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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(a) RGP (H = 2) without outliers. (b) RGP (H = 2) with 30% of outliers.

(c) RGP-t (H = 2) without outliers. (d) RGP-t (H = 2) with 30% of outliers.

Figure 29 – Free simulation on test data after estimation on the pH train dataset without
and with outliers. The shaded areas indicate ±2 standard deviations around
the predicted mean values.

(a) Variational precisions after model optimization. (b) Detected outliers.

Figure 30 – Outlier detection by the RGP-t model with 2 hidden layers and REVARB-t
inference for the pH estimation data in the scenario with 30% of outliers. TN
are the true negatives (correctly classified as non-outliers), TP are the true
positives (correctly classified as outliers), FN are the false negatives (undetected
outliers) and FP are the false positives (regular samples misclassified as
outliers). In the right side, the black line indicates the original training
output.

hidden layers, and its non-robust counterpart, RGP with 2 hidden layers, are presented in

Fig. 29, where the shaded areas indicate ±2 standard deviations around the predicted
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mean values. The RGP-t model seems “overconfident”, since its shaded area is barely

visible, but it still has presented superior performance for all three considered metrics in

Tab. 29 for the corrupted scenario. Note that the output of the non-robust RGP model,

although much worse in the case with outliers, is not so “wild” due to the presence of the

external input, which is not contaminated.

In Fig. 30 we report results on the outlier detection capability of the RGP-t

model with 2 hidden layers and REVARB-t inference. On the left side the variational

precisions, i.e., the ratios ai/bi, are shown, where we can see a clear difference in the

magnitude of the optimized precisions between outliers and regular samples. On the

right side we confirm that all the severe outliers were correctly detected (true positives,

represented by the blue dots), since the undetected ones (false negatives, red dots), are

actually not far away from the original data. The points misclassified as outliers (false

positives, green dots), whose amount was not enough to compromise the performance of

the model, are also shown.

4.5.3 Heat Exchanger Data

We conclude the experiments with the Heat Exchanger dataset7. The data

comes from a liquid-saturated steam heat exchanger, where water is heated by pressurized

saturated steam through a copper tube. The output variable is the outlet liquid temperature

and the input variable is the liquid flow rate. One more time we applied the GP models to

a scenario without outliers and another with 30% of outliers, which were sampled from

the scaled distribution σ(yyy)×T (0,2). The estimation set contains 300 samples (starting

from the 101-th sample, since the first 100 are constant), while the test set contains the

next 600 samples. We fixed the orders L = Lu = 5 for the regressors.

The obtained RMSE and NLPD values are shown in Tab. 11. The GP-RLARX

presented good results, especially when compared to GP-tVB, but the robustness of both

RGP-t models was again verified, with the 2-layered variant presenting the best RMSE

and NLPD metrics. The outputs of the free simulation test for the latter model and

its non-robust RGP counterpart are presented in Fig. 31, where we can observe that

the RGP-t is unaffected by the outliers and actually present the best performance. One

7Data available in the DaISy repository (MOOR, 2016) at <http://homes.esat.kuleuven.be/˜smc/
daisy/daisydata.html>.

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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Table 11 – RMSE and NLPD results for free simulation on test data after estimation on
the Heat Exchanger dataset without and with outliers. The percentage of
correctly detected outliers is also presented for the robust models that use
variational-based inference.

Without outliers With 30% of outliers

RMSE NLPD RMSE NLPD % detected

GP-NARX 0.4816 0.8360 1.7269 2.0772 -
GP-tVB 0.7030 13.4332 0.5627 1.7514 77.8
GP-RLARX 0.5532 0.8979 0.4362 0.7374 76.7
RGP (H = 1) 0.4223 0.6893 0.7885 1.5402 -
RGP (H = 2) 0.4638 2.2295 0.5977 1.5324 -
RGP-t (H = 1) 0.4745 1.6603 0.4233 0.8927 74.4
RGP-t (H = 2) 0.4563 1.4855 0.4087 0.7039 74.4

(a) RGP (H = 2) without outliers. (b) RGP (H = 2) with 30% of outliers.

(c) RGP-t (H = 2) without outliers. (d) RGP-t (H = 2) with 30% of outliers.

Figure 31 – Free simulation on test data after estimation on the Heat Exchanger train
dataset without and with outliers. The shaded areas indicate ±2 standard
deviations around the predicted mean values.

more time we note that the simulation of the non-robust RGP model in the contaminated

scenario, although worse than before the outliers inclusion, is not completely far off the

real output due to the presence of the uncontaminated exogenous input.

In Fig. 32 we show the outliers detected by the RGP-t/REVARB-t solution

with 2 hidden layers. Even though this time it did not present the best detection rate
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(a) Variational precisions after model optimization. (b) Detected outliers.

Figure 32 – Outlier detection by the RGP-t model with 2 hidden layers for the Heat
Exchanger estimation data in the scenario with 30% of outliers. TN are the
true negatives (correctly classified as non-outliers), TP are the true positives
(correctly classified as outliers), FN are the false negatives (undetected outliers)
and FP are the false positives (regular samples misclassified as outliers). In
the right side, the black line indicates the original training output.

among the robust models, it is noticeable that most of the more relevant outliers were

found. We emphasize that the low variational precision values (blue dots) shown in the

left side are applied as weights to the correspondent output estimation samples, which

greatly hinders any spurious effect caused by outliers on the model learning and predictive

capabilities.

4.6 Discussion

In this chapter we have tackled the task of nonlinear system identification in

the presence of outliers by introducing the GP-RLARX and RGP-t models, motivated by

advances in robust GP-based modeling and approximate inference.

The GP-RLARX introduced the latent autoregressive structure which enables

dynamical modeling without direct feedback of noisy observations possibly corrupted by

outliers. The latter are handled by a heavy-tailed Student-t likelihood, which allows some

probability far from the zero mean assumed for the observation noise and avoids model

degradation during the estimation step. A variational approach is then derived to perform

inference with such model.

By incorporating the robust Student-t treatment of the GP-RLARX model to

the multilayer structure of the standard RGP, we get the RGP-t model, which applies

a modified variational approach for inference, named REVARB-t. This more elaborated

method enables us to perform robust learning within a powerful hierarchical recurrent
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framework and opens up the possibility of applying such GP modeling approach to

challenging nonlinear system identification scenarios.

We extensively evaluated the proposed models with computational experiments

on several artificial benchmarks and datasets related to process industry systems. Some of

the experiments were also performed with the GP-tVB (Student-t likelihood and variational

inference) and GP-LEP (with a Laplace likelihood and EP inference) models, which present

the original NARX dynamical structure and follow standard approaches to robust regression

found in the literature. The better results presented by our proposed methods, which

additionally incorporate dynamical latent structures, indicate that only the inclusion of a

heavy-tailed likelihood is not enough to guard against outliers in an autoregressive set up,

since they are still fed back as regressors in the inputs.

Although the GP-RLARX model was superior to both GP-tVB and GP-LEP

models, the flexible and resilient structure of the RGP-t model was responsible for an

impressive performance in almost all scenarios, even with large amounts of outliers. We

also demonstrated how the variational approach paired with a Student-t likelihood can be

applied to automatically detect outliers in the estimation samples and avoid their spurious

effect on learning and prediction without directly removing them.

We conclude this chapter by noting that the superior performance obtained by

the RGP-t model does not turn the GP-RLARX model obsolete. GP-RLARX’s shallow

structure and cleaner variational approach is computationally less demanding and allows

for the filtering effect illustrated at the end of Section 4.5.1. The latter feature can even

be more valuable than the actual predictions in some applications, for instance, if the task

in hand demands a filtered version of the training data.
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5 GP MODELS FOR STOCHASTIC DYNAMICAL MODELING

“Keep computations to the lowest level of the multiplication table.”

(David Hilbert)

In Chapter 2 we commented how the standard GP modeling approach features

a cubic O(N3) complexity with respect to the number of training samples N, besides a

O(N2) memory requirement. In Section 2.6.1 we described a commonly used alternative,

the variational sparse framework (TITSIAS, 2009a), which reduces such computational

and memory demands to O(NM2) and O(NM), respectively, where we can choose M < N

inducing points. However, the dependency with the number of samples remains and in

larger N scenarios even the sparse approach may become infeasible.

The problem of modeling large quantities of sequential records generated by

large scale systems and modern sensing devices has recently caught the attention of the

dynamical modeling community (CARLI et al., 2012; KIM et al., 2013; CHENG et al.,

2015; GREEN et al., 2015; GREEN; MASKELL, 2017; SANTOS; BARRETO, 2017).

A seminal work that tackled the issue of handling large datasets for (static) regression

problems with GP-based models was the one presented by Hensman et al. (2013), which

incorporates the general ideas behind stochastic variational inference (SVI), proposed by

Hoffman et al. (2013), to the variational sparse GP framework, enabling experiments with

hundreds of thousands of samples.

The standard REVARB algorithm presented in Chapter 3, Section 3.3, works

in batch, i.e., all the N input/output samples and the variational parameters are updated

at the same time at each optimization step. Furthermore, since it follows strategies from

Titsias’ variational sparse framework, it presents similar computational requirements. In

this chapter, inspired by Hensman et al. (2013) and other recent works, we formulate

a stochastic version for the REVARB method, named S-REVARB, which enables the

application of the RGP model, described in Section 3.2, to large datasets. We derive two

algorithms to implement the S-REVARB inference, named Local and Global S-REVARB.

Afterwards, we evaluate both approaches in system identification benchmarks with up to

95,000 training samples, much larger than the datasets previously presented in Chapter 3

for the original REVARB framework.
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5.1 Stochastic Optimization

It is worth beginning by summarizing the general stochastic optimization task.

The main idea behind stochastic optimization methods lies in successively approximating

an initial candidate θθθ 1 to the solution θθθopt of a problem over several iterations t, such as

that, in probabilistic terms, limt→∞ θθθ t = θθθopt holds (ROBBINS; MONRO, 1951).

Arguably, the most common approach to guide an initial candidate solution

involves taking small steps in the direction of noisy gradients as follows1:

θθθ t = θθθ t−1 + αigggt−1, (5.1)

where αt is a small learning step (also known as learning rate) and the vector gggt−1 indicates

an unbiased estimation of the gradient of an objective function L(·) that needs to be

maximized with respect to the candidate solution θθθ t−1, i.e., gggt−1 ≈ ∂L
∂θθθ t−1

. We note that

such approximation, although unbiased, may actually be considerably rough.

In the context of stochastic learning, the estimated gradient gggt−1 related to

the parameters update in each optimization step can be computed from a small set (a

mini-batch) of training samples or even a single data point, which enables learning with

very large datasets.

Although simple, it is known that optimization methods that follow Eq. (5.1)

converge to a local optimum (or a global optimum, if the objective function L(·) is convex),

given some mild assumptions, such as that ∑αt = ∞ and ∑α2
t < ∞ (BOTTOU, 1998).

We refer the readers to the work by Bottou (2004) for a comprehensive review on the

importance of stochastic optimization in the machine learning literature.

5.2 Stochastic Variational Inference with GP Models

The general stochastic variational inference (SVI) framework proposed by

Hoffman et al. (2013) applies stochastic learning techniques to optimize a variational

objective function, e.g., a lower bound to the model marginal likelihood. SVI follows the

simplified steps below:

1. Sample a certain number of data points from the training set;

1Although not the focus of the present thesis, stochastic gradient-free approaches are also largely
present in the literature. We mention for reference metaheuristic algorithms (TALBI, 2009) and Bayesian
optimization (SNOEK et al., 2012). Interestingly, the latter is usually GP-based.
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2. Optimize local variational parameters (if they exist);

3. Form intermediate global variational parameters;

4. Stochastically update global variational parameters.

Hoffman et al. (2013) applied this approach to learn latent Dirichlet allocation

and hierarchical Dirichlet processes topic models from datasets with millions of data points.

From the aforementioned listed steps, we can see that we have at least two requirements

in order to apply SVI: (i) a set of global parameters; (ii) a factorized variational objective

that enables separation of the observations and, if they exist, the correspondent local

variational parameters.

Standard GP models do not present any of those requirements. In contrast,

the variational sparse GP framework includes inducing points zzz ∈ RM, which act as global

variables. This feature is easily seen in the graphical models illustrated in Fig. 6, back in

Chapter 2. However, the sparse equations presented in Section 2.6.1 turn the observations

dependent, which can be noticed from the variational sparse lower bound in Eq. (2.25),

reproduced here for clarity:

log p(yyy|XXX)≥ logN (yyy|000,σ2
y III + KKK f zKKK−1

z KKK>f z)−
1

2σ2
y

Tr(KKK f −KKK f zKKK−1
z KKK>f z), (5.2)

where the first term in the right side is responsible for preventing a factorization along the ob-

servations, since it contains the expressions log
∣∣∣σ2

y III + KKK f zKKK−1
z KKK>f z

∣∣∣ and(
σ2

y III + KKK f zKKK−1
z KKK>f z

)−1
, which are not factorisable with respect to the training samples.

Those remarks were made by Hensman et al. (2013), who noticed that such behavior is

result of the exact marginalization of the inducing variables zzz.

In order to enable SVI in the variational sparse GP framework, Hensman et al.

derived a non-collapsed lower bound, i.e., a bound explicitly parametrized by a variational

distribution q(zzz) = N (zzz|mmm,SSS), with moments mmm ∈ RM and SSS ∈ RM×M, as follows:

log p(yyy|XXX)≥
N

∑
i=1

{
logN (yi|kkk>i KKK−1

z mmm,σ2
y )− 1

2σ2
y

[KKK f ]ii−
1
2

Tr(SSSΛΛΛi)

}
−KL(q(zzz)||p(zzz)), (5.3)

where kkki is the i-th column of KKK>f z and ΛΛΛ = 1
σ2

y
KKK−1

z kkkikkk>i KKK−1
z . Hensman et al. emphasize

that the derivatives of this new bound with respect to the moments of q(zzz), which are

given by

∂ log p(yyy|XXX)

∂mmm
=

1
σ2

y
KKK−1

z KKK>f zyyy−ΛΛΛmmm,

∂ log p(yyy|XXX)

∂SSS
=

1
2

SSS−1− 1
2

ΛΛΛ,
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show that the optimal values of the moments are obtained when those derivatives are set

to zero, when we recover the expressions previously presented in Eqs. (2.29) and (2.30) in

the context of the variational sparse framework. Thus, the bound expressed in Eq. (5.3) is

always looser (or equal, if the optimal moments are used) than the original variational

sparse lower bound.

The new variational bound in Eq. (5.3), factorized along the training samples,

enables online (one sample per iteration) or mini-batch updates. The SVI-GP methodology

consists in sampling from the training data, computing the noisy derivatives2 of Eq.

(5.3) with respect to the moments mmm and SSS, the pseudo-inputs ζζζ j|Mj=1 and the kernel

hyperparameters, and then proceed by taking a small step in the direction of the computed

gradient. We note that in Hensman et al. (2013) the pseudo-inputs are actually kept fixed

and the update steps follow the natural gradient direction, i.e., the estimated gradient

is weighted by the inverse of the Fisher information matrix (AMARI, 1998). Later, in

Hensman et al. (2015), such SVI approach was adapted to highly scalable GP models for

classification, where it was used to train models with millions of data points, a feat not

possible with either standard or sparse GPs optimized in batch.

Recently, other authors have build upon the original SVI-GP framework to

enable further scalability within the SVI context, such as the stochastic variational

Kronecker-structured GP named Blitzkriging (NICKSON et al., 2015), automated varia-

tional inference for non-Gaussian likelihood (DEZFOULI; BONILLA, 2015), a distributed

SVI-GP framework (HOANG et al., 2015) and hybridization with deep neural networks

(WILSON et al., 2016b).

One can see from the SVI-GP bound presented in Eq. (5.3) that it does

not contain local latent variables such as the ones from the GP-LVM formulation (see

Section 2.7). Hensman et al. (2013) comment that a similar factorized bound could be

achieved for the GP-LVM and that a SVI approach would be possible by alternating

between the optimization of the local variational parameters, i.e., the moments of the

variational distribution q(XXX) associated with the latent variables XXX , while keeping the

global parameters fixed, and then holding the moments of q(XXX) and stochastically updating

the global parameters. However, the authors did not presented any experimental evaluation

of this methodology.

2We emphasize that the noise in the gradients comes from the fact that they are computed only from
a subset of the training data in a given iteration of the algorithm.
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Such experiments were performed in the thesis by Damianou (2015) in the

context of high-dimensional data visualization, where SVI was successfully applied to the

Bayesian GP-LVM formulation by Titsias and Lawrence (2010) in order to be used with

datasets containing tens of thousands of samples, following an optimization methodology

which includes an adaptive learning rate, firstly proposed by Hensman et al. (2014).

Nevertheless, Damianou comments that, although viable, the experiments indicated that

the corresponding optimization procedure is very unstable because certain data batches can

cause bifurcation-like effects.

In Bui and Turner (2015) the authors argue that such SVI scheme for models

derived from the GP-LVM is not practical for datasets of even modest size, since it can take a

long time to converge because each iteration only updates the local variational parameters

related to the samples in the current mini-batch and ignores the local optimizations

performed in the previous iterations. In order to fix that, they propose the use of

recognition models, for instance, a MLP neural network, to model the local variational

parameters. In that case the network’s parameters (weights) would be shared between

all data points and actually behave themselves as global parameters. Bui and Turner

illustrate the use of this approach, which does not contain any local parameter, in the task

of unsupervised learning, using datasets with up to 18,000 images.

All those aforementioned contributions are not specifically designed to handle

dynamical data and do not consider dynamical latent variables, such as the ones introduced

by the RGP model, as described in Chapter 3. Thus, inspired by the referred recent works

on SVI for GPs and GP-LVMs, we develop a non-collapsed variational lower bound for

the REVARB algorithm, which enables stochastic inference with the RGP model in large

data scenarios. The henceforward called S-REVARB framework will be presented in the

next sections.

Remark Although not explored in the present thesis, it is worth mentioning additional

recent works that aim to scale GP-based models to very large datasets, following alternative

approaches, such as the use of mixtures of local experts (NGUYEN; BONILLA, 2014),

tree-structured approximations (BUI; TURNER, 2014), distributed computations (GAL

et al., 2014; DAI et al., 2014; DEISENROTH; NG, 2015; HOANG et al., 2016), Kronecker

and Toeplitz methods with kernel interpolation (WILSON; NICKISCH, 2015; WILSON et

al., 2015), fast matrix factorization techniques (AMBIKASARAN et al., 2016), exploitation
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of GP spectral representation (HENSMAN et al., 2016) and parametric approximations

(RAISSI, 2017).

5.3 S-REVARB: A Stochastic REVARB Framework

The S-REVARB framework modifies the original REVARB approach in order

to enable stochastic variational inference with the RGP model. To this objective, we first

need to factorize the REVARB lower bound across the training observations. We can do

this by continuing from original REVARB’s compact bound in Eq. (3.25), reproduced

here for the sake of clarity:

log p(yyy)≥
N

∑
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where each term in Eq. (5.4) is given by
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Following Hensman et al. (2013), we proceed without optimally marginalizing

the inducing points zzz(h) in each layer h. Instead, we maintain the parametrized distributions

q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
,1 ≤ h ≤ H + 1, in order to obtain a non-collapsed bound.

Fortunately, we do not need to directly parametrize the covariance matrices SSS(h) ∈ RM×M,

but only its triangular Cholesky factor LLL(h)
z ∈RM×M, such as that SSS(h) = LLL(h)

z

(
LLL(h)

z

)>
holds,

which contains only 1
2M(M + 1) variational parameters.

After the marginalization of all latent variables and some algebraic manipulation,
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detailed in the Appendix A.5, the final S-REVARB lower bound is given by
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where the factorized statistics Ψ
i(h)
0 ∈ R, ΨΨΨ
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which follows the same notation used to define the REVARB statistics in Eq. (3.27).

The new expressions in (5.11) are similarly calculated, also following the detailing in the

Appendix A.1, but considering only a single sample or a mini-batch.

We emphasize that the S-REVARB bound in Eq. (5.10) is fully factorized,

since it explicitly separates terms associated with the local variational parameters, related

to each observation i, and terms associated only with the model’s global parameters. For

instance, in the original REVARB bound, after solving the expectations related to the
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Table 12 – Comparison of computational and memory requirements of some GP-based
dynamical models with respect to the number of training samples N, the number
of pseudo-inputs M, the mini-batch size B and the number of hidden layers H.

Computational Memory

GP-NARX O(N3) O(N2)
Variational Sparse GP-NARX O(NM2) O(NM)
RGP/REVARB O((H + 1)NM2) O((H + 1)NM)
RGP/S-REVARB O((H + 1)BM2) O((H + 1)BM)

h-th layer and marginalizing the inducing points zzz(h), the terms log
∣∣∣KKK(h)

z + 1
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h
ΨΨΨ

(h)
2
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)−1
appear. Since the statistic ΨΨΨ

(h)
2 must be computed with the whole

dataset, the bound cannot be factorized along the data samples. Such dependencies do

not occur in S-REVARB’s full non-collapsed bound, as expressed in Eq. (5.10).

Following the general SVI framework (HOFFMAN et al., 2013), if we consider

a mini-batch B, i.e., a set of B sequential indexes sampled from the training data, we can

rewrite Eq. (5.4):
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whose analytical gradients can be used to perform mini-batch stochastic optimization.

Note that the factor N−L
B that scales the terms related to the local variables is necessary

to avoid the dominance of the terms associated only with the global parameters, i.e., the

KL divergence terms. The intuition presented by Hoffman et al. (2013) is that for B = 1

the bound is actually formed by replicating a single observation for the whole training

set. In the case of mini-batches, the proportional scaling is followed. Such scaling factor

would converge to 1 if all the data was to be used at once, where we would have B = N−L.

Moreover, the terms L
(h)

0i need only to be computed when the mini-batch contains samples

which directly depend on the initial conditions, i.e., the indexes 1≤ i≤ L.

Tab. 12 summarizes computational and memory requirements of the RGP/S-

REVARB framework when compared to other dynamical GP-based models used in this

thesis, where our stochastic approach removes the scale dependency with the number of

training samples N.
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5.3.1 Local S-REVARB: Recurrent SVI

One possible approach to use the S-REVARB non-collapsed bound to estimate

the variational parameters of the RGP model follows the iterative strategy suggested by

Hensman et al. (2013), similar to the experiments performed by Damianou (2015) in the

context of the GP-LVM, summarized below:

1. Sample a mini-batch of training data points.

2. Hold all the model parameters with the exception of the local variational parameters

of N
(

x(h)
i

∣∣∣µ(h)
i ,λ

(h)
i

)
related to the sampled points.

3. Optimize the variational parameters of previous step until convergence, using analyt-

ical gradients of the lower bound.

4. Hold all variational means and variances.

5. Perform stochastic update steps for the global parameters, i.e., kernel hyperparame-

ters, pseudo-inputs ζζζ
(h)
j |Mj=1 and the moments of q

(
zzz(h)
)

in all layers.

The steps are repeated until the parameters stop changing significantly or for a

fixed amount of iterations. Since Step 3 can be computationally intense, it may actually

be executed only in some cycles, or epochs, through the dataset, e.g., after a sequence of

few epochs, perform local optimization in all iterations of the next epoch. Alternatively,

instead of performing Step 3 until convergence, it is possible to consider only a stochastic

update as follows:

3) (alternative) Take a small step in the direction of the lower bound’s gradients with

respect to the local variational parameters related to the samples in the mini-batch.

In this latter case, which is usually more convenient to implement, the alternative Step 3

should be performed every iteration of the algorithm.

Although the described procedure maintains all the local variables, which still

scale with N, they are optimized in mini-batches of size B� N, greatly reducing the

computational cost and memory requirement in each iteration, as presented in Tab. 12.

This enables the RGP model to be trained with much more samples than with standard

REVARB. When applying the S-REVARB in the latter approach, i.e., with the alternative

Step 3, it will be named as the Local S-REVARB framework, to emphasize the explicit

presence of the local latent variables.

Remark It is important to note that the Local S-REVARB framework does not correspond
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to a new model. It considers the same RGP model presented in Section 3.2, including all

its probabilistic distributions and variables. Thus, the Local S-REVARB is proposed as a

stochastic and more scalable alternative inference method to the original REVARB.

5.3.2 Global S-REVARB: Sequential Recognition Models for S-REVARB

Since the local variational parameters related to each training sample are still

present in the solution detailed so far, it may suffer from the issues argued by Bui and

Turner (2015), where those variables would be stochastically updated at most once per

epoch, i.e., each local optimization does not incorporate any knowledge of other local

updates. That could turn the optimization procedure slow and overall inefficient. Bui and

Turner fix this issue by using MLP neural networks as recognition models. However, those

do not directly consider dynamical data or the RGP structure.

In the case of S-REVARB, we can use the RNN sequential recognition model

previously presented in Section 3.3.2 to generate the local variational parameters. In

Section 3.3.2 it was applied in a batch context and only for the variational means. Here

we are interested in the stochastic scenario and in also applying a separate recognition

model for the local variances. Thus, for a given hidden layer 1≤ h≤ H, both recognition

models are written as follows:

q
(

x(h)
i

)
= N

(
x(h)

i

∣∣∣µ(h)
i ,λ

(h)
i

)
, (5.13)

µ
(h)
i = g(h)

µ

(
x̂xx(h)

i−1

)
= φµ,2

(
WWW (h)>

µ,2 φµ,1

(
WWW (h)

µ,1x̂xx(h)
i−1

))
, (5.14)

λ
(h)
i = g(h)

λ

(
x̂xx(h)

i−1

)
= φλ ,2

(
WWW (h)>

λ ,2 φλ ,1

(
WWW (h)

λ ,1x̂xx(h)
i−1

))
, (5.15)

where matrices WWW (h)
µ,l and WWW (h)

λ ,l, l ∈ {1,2}, are the networks’ weights, and φφφ µ,l(·) and

φφφ λ ,l(·) denote element-wise activation functions. In this work we use networks with depth

equal 2, i.e., with 1 hidden layer, but deeper networks could also be applied. The only

restriction is that g(h)
λ

must generate only non-negative values, since they are related to

the variational variances. It is important to note that the latent variables in the input x̂xx(h)
i−1

of the recognition models above are in practice replaced by their associated variational

means µ
(h)
i , since standard NNs do not directly handle probabilistic variables as inputs.

Fig. 33 illustrates the structure and connections of the recognition models

that generates the variational means and variances in the hidden layers of the RGP

model in this new approach. It is worth noticing that the recognition model related to
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Figure 33 – Diagram for the MLP and RNN-based recognition models of the Global S-
REVARB framework in a RGP model with H recurrent layers. Note that the
outputs of the RNNs are used as inputs in the MLPs in the same and in the
next hidden layer, which must be accounted when backpropagating gradients
during training.

the variational means expressed in Eq. (5.14) is a RNN, while the model related to the

variational variances in Eq. (5.15) is a regular feedforward MLP network. The MLP is

trained with standard backpropagation (RUMELHART et al., 1986), while the update of

the RNN’s parameters is made via the truncated backpropagation through time (TBPTT)

algorithm (WILLIAMS; ZIPSER, 1995). Note that the outputs of the RNN are used as

inputs in the MLP, so the gradients should be correctly propagated from one network to

the other. Furthermore, when more than one hidden layer is present in the RGP model

(e.g. 2 hidden recurrent layers), the gradients of a given layer should be backpropagated

to the previous layer, following the dependencies shown in Fig. 33.

Importantly, the weights of the NNs are shared among the variational param-

eters, working as global parameters themselves. This is made clear when we recall that

a stochastic update on the weights has effect in the output of the networks given any

input. Such sequential recognition models when applied along S-REVARB’s non-collapsed

bound results in the Global S-REVARB framework, which enables mini-batch updates via

stochastic gradient ascent. Since now the model contains only global variables, which do

not scale with the number of samples, this approach opens up the possibility of performing

inference with the RGP model in scenarios with even larger datasets.

Remark At a first glance, one could misinterpret the Global S-REVARB approach as a

parametric version of the RGP model, due to the inclusion of the NN-based recognition

models. However, this is not true. First, the obtained recurrent model is very different

from a stand-alone parametric RNN, since it is built from the original RGP probabilistic

modeling formulation by using the same analytical lower bound of the Local S-REVARB.

Second, the sequential recognition models only act as constraints to the already analytical
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nonparametric bound, functioning as variational (and not model) parameters. Similar

arguments were also made by Dai et al. (2016) in the context of auto-encoded deep GP

models.

5.3.3 Making Predictions with the S-REVARB Framework

In order to make predictions in the S-REVARB framework we can pursue the

methodology presented by Girard et al. (2003) in the context of multi-step ahead GP

predictions, which was also used in the original REVARB formulation.

Thus, we need to follow the same steps (and notation) detailed in Chapter 3,

Section 3.3.1. First, we recall the conditional distribution of the sparse GP framework,

reproduced below for the h-th layer:

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)

= N
(

f (h)
∗

∣∣∣ρ(h)
∗ ,ς

(h)
∗
)
, (5.16)

ρ
(h)
∗ = kkk(h)

∗z
(

KKK(h)
z

)−1
mmm(h),

ς
(h)
∗ = K(h)

∗ − kkk(h)
∗z
(

KKK(h)
z

)−1
kkk(h)

z∗ + kkk(h)
∗z
(

KKK(h)
z

)−1
SSS(h)

(
KKK(h)

z

)−1
kkk(h)

z∗ .

Note that the former conditional distribution contains the moments of the variational

posterior q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
, which in the case of S-REVARB are left explicitly

parametrized by the moments mmm(h) and SSS(h), treated as variational parameters. We then

proceed to compute the Gaussian approximation of the final predictive distribution in each

layer:

p
(

f (h)
∗
)

=
〈

p
(

f (h)
∗

∣∣∣x̂xx(h)
∗
)〉

q(xxx∗)
≈N

(
f (h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗
)
, (5.17)

µ
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〉
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λ
(h)
∗ =

〈
ς

(h)
∗
〉

q(xxx∗)
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BBB(h) + Ψ

(h)
0∗

−Tr
((

KKK(h)
z

)−1
(

III−SSS(h)
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)
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(h)
2∗

)
,

(5.19)

where we have defined the matrix

BBB(h) =
(

KKK(h)
z

)−1
mmm(h). (5.20)
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The new statistics Ψ
(h)
0∗ , ΨΨΨ

(h)
1∗ and ΨΨΨ

(h)
2∗ are computed using the Gaussian approximation

q
(

x(h)
∗
)

= N
(

x(h)
∗

∣∣∣µ(h)
∗ ,λ

(h)
∗ + σ2

h

)
. Finally, for the output layer we have E{y∗}= µ

(H+1)
∗

and V{y∗}= λ
(H+1)
∗ + σ2

H+1.

It is worth emphasizing that the main difference between REVARB and S-

REVARB in terms of the predictive step is that the latter, which considers a non-collapsed

lower bound, applies the variational parameters mmm(h) and SSS(h) that explicitly parametrize

the distribution q
(

zzz(h)
)

to compute the predictive approximations. On the other hand,

the original REVARB is able to apply the optimal moments of q
(

zzz(h)
)

, which are derived

in its collapsed bound.

The aforementioned predictive equations can be readily applied by the Local

S-REVARB, since it uses the local variational distribution q
(

x(h)
∗
)

to compute the recursive

predictions. In the case of the Global S-REVARB variant, we can describe at least two

strategies for making predictions, listed as follows:

Variational sparse simulation The Local S-REVARB is able to approximately propa-

gate the uncertainty during predictions by sequentially computing Eqs. (5.18) and

(5.19) for each layer. The Global S-REVARB can also pursue the same methodology,

named henceforth variational sparse simulation. Such strategy directly uses the mo-

ments of the distribution q
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
, from the variational sparse

approximation, and the predictive variational distribution q
(

xxx(h)
∗
)

. Note that in this

approach the recognition networks are not used for making predictions.

Recognition-based simulation Since the Global S-REVARB includes NNs and RNNs,

we have an alternative method to perform predictions with it that works as follows:

the predictive means and variances in the hidden layers are directly computed

using the recognition models, i.e., using Eqs. (5.14) and (5.15); then, in the output

layer, the final prediction is made based on Eqs. (5.18) and (5.19), following

the aforementioned variational sparse simulation approach. Such procedure takes

advantage of the already learned sequential recognition models. However, it only

considers the predicted variances of the last hidden layer (h = H) to perform the final

prediction in the output layer. Thus, when using such recognition-based simulation,

the uncertainty is computed locally but not propagated through the recurrent layers,

only in the final observation layer.

After some preliminary experiments, we could not notice a clearly better
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Algorithm 5: S-REVARB for stochastic dynamical modeling with the RGP model.

- Estimation step
Require: uuu ∈ RN (external input), yyy ∈ RN (output), H (number of hidden layers), M

(number of inducing points), L (latent order lag), Lu (input order lag), B (mini-batch
size)
Initialize kernel hyperparameters and variational parameters;
repeat

Sample B sequential points of the data;
Compute the evidence lower bound with Eq. (5.10) considering only the sampled
points (scaling as in Eq. (5.12));
Compute the analytical gradients of Eq. (5.10) with respect to the unknown
parameters;
Update parameters with a stochastic gradient method;

until convergence or maximum number or iterations
Output the optimized model;

- Free simulation with test data

Require: Test external inputs uuu∗ ∈ RN∗ and the previously estimated RGP model
for i = 1 : N∗ do

for h = 1 : H do
Compute the predictive mean µ

(h)
∗i and variance λ

(h)
∗i following one of the strategies

presented in Section 5.3.3;
Update the variational distributions of the new latent dynamical variable with

q
(

x(h)
∗i

)
= N

(
x(h)
∗i

∣∣∣µ(h)
∗i ,λ

(h)
∗i + σ2

h

)
;

end for
Compute the predictive mean µ

(H+1)
∗i and variance λ

(H+1)
∗i of the output layer using

Eqs. (5.18) and (5.19);

Output y∗i ∼N
(

µ
(H+1)
∗i ,λ

(H+1)
∗i + σ2

H+1

)
;

end for

methodology for performing predictions with the Global S-REVARB framework. Thus, we

will explicit which approach was used for each experiment with the Global S-REVARB in

the next sections.

5.3.4 Implementation Details

Algorithm 5 summarizes the general application of the S-REVARB framework to

the RGP model. Both Local and Global versions, i.e., without or with sequential recognition

models, follow the same general steps. Below we also list some of the implementation

details we found useful when experimenting with S-REVARB. It is worth noting that the

implementation details mentioned in Section 3.3.4 for the original REVARB still applies

for its stochastic version.
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Mini-batch sampling Since we are dealing with sequential training data, the mini-

batch sampling procedure differs from the one followed by standard regression or

classification methods. In our case, we slice the input and output time series with the

size of the mini-batch (B) and shuffle the slices before presenting to the optimization

algorithm. The important difference lies in the fact that we cannot shuffle the

samples within the same mini-batch, in order to preserve the information about the

system dynamics.

Activation functions We opted to use different activation functions for each layer in

the recognition models of the Global S-REVARB. More specifically, the MLP that

models the latent variances applies the hyperbolic tangent in the hidden units, which

is given by f (x) = exp(2x)−1
exp(2x)+1 , while the so-called SoftPlus activation function is used

in the output units, which is given by f (x) = log(1 + exp(x)). The latter function

ensures that the recognition model will output only positive values for the variances.

The RNN that models the variational means applies the ReLu (Rectified Linear Unit)

activation function in the hidden units, which is simply given by f (x) = max(0,x)

and is known for preventing vanishing or exploding gradient problems, which may

rise in recurrent networks (GLOROT et al., 2011). The output units apply the

simple linear function f (x) = x, the usual choice in non-restricted regression tasks.

Model initialization In order to initialize the Global S-REVARB’s recognition models,

we follow the common approach of sampling the initial weights from the scaled

Gaussian distribution
√

1
Nin

N (0,1), where Nin is the number of inputs of the corre-

spondent neuron. Since we use ReLu units in the hidden layer of the RNN models, we

initialize their weights slightly different, sampling from
√

2
Nin

N (0,1), which follows

the recommendation made by He et al. (2015). Moreover, although we initialize all

the neurons’ biases with zeros, the biases of the ReLu units are initialized with small

values, e.g., 0.01, in order to prevent “dead” units, i.e., which always output zero

values, in the beginning of the optimization.

The components of the initial pseudo-inputs ζζζ
(h)
j |Mj=1 are sampled from the normal

distribution N (0,1), while the moments of the variational distributions q
(

zzz(h)
)

are

initialized with zero mean vectors and unitary diagonal covariance matrices, i.e.,

mmm(h) = 000 and SSS(h) = III at the start of the optimization, which implies the Cholesky

factor LLL(h)
z = III for the matrix SSS(h). The kernel hyperparameters are initialized as
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follows:
(

σ
(h)
f

)2
= 1,

(
w(h)

d

)2
= 0.01, σ2

h = 0.01. The jitter terms in each layer (see

Section 3.3.4) are initialized with 0.01.

The hyperparameters and variational parameters of the Local S-REVARB are ini-

tialized following the original REVARB strategy, presented in Section 3.3.4, but

subsampling the training data when necessary, e.g., for initializing the pseudo-inputs

via clustering.

Optimization strategy There is a vast literature with algorithmic techniques and rec-

ommendations related to stochastic gradient-based optimization methods. In this

thesis we use the ADAM optimizer, an adaptive strategy to the learning rate with

separate values to each parameter being optimized (KINGMA; BA, 2015).

Moreover, we opted to decay the learning rate αt in each t iteration of the optimization.

More specifically, after 30% of the total iterations we start to exponentially decay

αt , from the initial value of αinit until the final value of αfinal. We found empirically

that the values αinit = 0.02 and αfinal = 0.002 work well in practice, but those might

need further tunning for other datasets.

We note that more elaborate adaptive learning rate strategies introduced for other

non-GP SVI algorithms, such as the ones presented by Ranganath et al. (2013), Li

and Ouyang (2016), were not explored in this work and is left to future investigations.

The TBPTT algorithm used to train the RNN within the Global S-REVARB follows

gradients backpropagated across all samples of a given mini-batch and the previous

30 samples, counted backwards from the first sample in the mini-batch.

Finally, we hold the initial values of the kernel hyperparameters fixed for the

initial iterations, e.g., the first 30% of the optimization steps, following similar

recommendation by Hensman et al. (2013).

5.4 Experiments

In this section we will evaluate the RGP/S-REVARB solution in the task of

system identification with large datasets. More specifically, we use the so-called Silverbox

dataset and the Wiener-Hammerstein benchmark. We also perform an initial example

with a smaller dataset in order to better analyze the proposed stochastic algorithms.
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Table 13 – RMSE and NLPD values for the free simulation results of the S-REVARB
framework on the Damper dataset. The Global S-REVARB followed recognition-
based simulation. With the exception of the last two entries (separated by
a horizontal line), all the values were previously reported in Tab. 3, Section
3.4.2.1, and reproduced here for convenience.

RMSE NLPD
Linear OE model (4th order) 27.1 -
Hammerstein-Wiener (4th order) 27.0 -
NARX (3rd order, wavelet) 24.5 -
NARX (3rd order, Tree partition) 19.3 -
NARX (3rd order, sigmoid network) 8.24 -
Standard GP-NARX 13.31 13.71
Variational Sparse GP-NARX (M = 100) 13.83 14.44
Reduced-rank GP-SSM (SVENSSON et al., 2016) 8.17 3.71
SISOG (BIJL et al., 2016) 7.12 NA
REVARB (H = 1) 11.18 3.47
REVARB (H = 2) 6.04 3.05
Local S-REVARB (H = 2) 8.30 3.51
Global S-REVARB (H = 2) 7.46 3.32

5.4.1 Initial Example

We first follow the experiments with the Damper dataset, previously used

in Chapter 3, Section 3.4.2.1. We consider two RGP models containing H = 2 hidden

layers and inference by the Local and Global S-REVARB algorithms. Both stochastic

approaches use orders L = Lu = 3, M = 100 pseudo-inputs and mini-batch size B = 200,

while the recognition models in the Global S-REVARB experiment have 100 hidden units

and followed recognition-based simulation with the test data. The optimization via the

Adam algorithm was executed for 5000 iterations.

Results are presented in Tab. 13, where we can see that both stochastic

algorithms were able to obtain results not too far away from the batch REVARB. The

Global S-REVARB was better than most other models presented in Tab. 3, Section 3.4.2.1,

and reproduced in Tab. 13 for convenience, with the exception of the RMSE obtained

by the SISOG method (BIJL et al., 2016). The Local S-REVARB also presented a good

result, with slightly worse RMSE than the reduced-rank GP-SSM (SVENSSON et al.,

2016), but better NLPD value. We note that the S-REVARB lower bound is looser than

the collapsed REVARB bound, so it is somehow expected to obtain better results with the

latter in scenarios with small and medium datasets, where it is feasible to use all training

samples in the batch approach.
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(a) Local S-REVARB.

(b) Global S-REVARB.

Figure 34 – Convergence curves of the S-REVARB lower bound with H = 2 hidden layers,
in both Local and Global variants, during the training step on the Damper
dataset using the Adam stochastic gradient algorithm. The vertical black
line indicates the instant where the kernel hyperparameters are unfixed and
the smaller pictures are zoomed versions of the curves after such instant.

Fig. 34 illustrates the convergence curves of the S-REVARB lower bound

computed over the current mini-batch and over the entire training set using both stochastic

inference strategies. The vertical black line indicates the instant where the kernel hyperpa-

rameters are unfixed and the smaller pictures are zoomed versions of the curves after such

instant. We can see that the Local S-REVARB was able to obtain a higher value for the

lower bound. This was the usual behavior in our experiments with smaller datasets, when

several cycles (epochs) over the data are possible and the local unconstrained variational

parameters seems to enable further optimization of the bound. However, we emphasize that
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such additional optimization does not affect free simulation performance with test data, as

can be noticed from the better predictive results obtained by the Global S-REVARB (Tab.

13), despite the lower value obtained for the bound.

Moreover, Fig. 34 also indicates that the Local S-REVARB presents a smoother

convergence, while the Global S-REVARB is wigglier, which in the latter case is related to

the update of all the weights of the NN recognition models in every iteration. Although

in both cases the bound value in the mini-batch is noisier than the bound computed for

the whole training data, they follow similar behavior, which indicates that the stochastic

updates are valid approximations.

5.4.2 Stochastic System Identification with Large Datasets

We now perform experiments with two much larger system identification bench-

marks. The Silverbox dataset was the subject of a special session organized at the IFAC

Symposium on Nonlinear Control Systems (NOLCOS) in 2004 (SCHOUKENS et al., 2003;

WIGREN; SCHOUKENS, 2013)3. Its data comes from an electrical circuit describing the

behavior of a mass-spring-damper nonlinear dynamical system with feedback, where the

linear contributions are dominant. The input is related to the force applied to the mass

and the output represents the mass displacement. A total of 91,072 samples are used for

training and 40,000 for testing.

The Wiener-Hammerstein benchmark (SCHOUKENS et al., 2009; HJAL-

MARSSON et al., 2012)4, presented in the IFAC Symposium on System Identification in

2009 is comprised of data from an electronic nonlinear system consisting of a cascade of a

linear dynamical block, a static nonlinear block and a final linear dynamical block. The

training and test sets contain 95,000 and 84,000 samples, respectively. Note that we have

skipped the first 5000 constant samples from the original 100,000 training observations

and the last 4000 zero value test samples from the original 88,000.

Both the original Silverbox and Wiener-Hammerstein datasets are almost

absent of observation noise, with the Silverbox having negligible noise and the Wiener-

Hammerstein presenting a very high Signal-to-Noise Ratio (SNR) of 70dB. In order to

3Data available at <http://www.it.uu.se/research/publications/reports/2013-006/SNLA80mVZipped.
zip>.

4Data available at <http://www.ee.kth.se/˜hjalmars/ifac tc11 benchmarks/2009 wienerhammerstein/
WienerHammerBenchMark.mat>.

http://www.it.uu.se/research/publications/reports/2013-006/SNLA80mVZipped.zip
http://www.it.uu.se/research/publications/reports/2013-006/SNLA80mVZipped.zip
http://www.ee.kth.se/~hjalmars/ifac_tc11_benchmarks/2009_wienerhammerstein/WienerHammerBenchMark.mat
http://www.ee.kth.se/~hjalmars/ifac_tc11_benchmarks/2009_wienerhammerstein/WienerHammerBenchMark.mat
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evaluate our approaches with noisier data, we add zero-mean Gaussian noise to both

training sets with variances computed to turn their SNRs approximately equal to 20dB.

In all experiments we used the orders L = Lu = 10 and M = 50 pseudo-inputs.

The mini-batch size was fixed to B = 1000, which showed empirically to be a good balance

between stable gradients and computational cost. For the Global S-REVARB we use

networks with 100 hidden units for the recognition models of both the variational means

and variances.

For comparison, we have included in the experiments the variational sparse

GP-NARX and RGP models with the standard REVARB method. In those cases we used

only the first 5000 training samples for the estimation step. We also experimented with the

same RNN applied as a sequential recognition model in the Global S-REVARB, used as a

stand-alone model with both 1 and 2 hidden layers and 100 hidden units per layer. Those

are initialized and stochastically optimized similarly to the Global S-REVARB algorithm.

The summary of obtained RMSE and NLPD values are presented in Tab. 14.

In the case of the Silverbox dataset, the 1-hidden layer versions of all the multilayer models

were better than their 2-hidden layer counterparts. This was somehow expected, since in

this dataset the linear dynamics are dominant, as remarked by Marconato et al. (2012),

and the inclusion of a second nonlinear recurrent layer proved to be more of a burden.

The best result was obtained by the Global S-REVARB with H = 1, but the same model

trained with the Local S-REVARB obtained the second best result.

Fig. 35 compares the absolute errors achieved by the Global S-REVARB

solution with H = 1 and the 1-hidden layer RNN, where the former presents lower values

in most areas. The final 5000 test samples are highlighted in the subfigure because they

are related to inputs outside the range used to generate the training samples, which make

them more difficult to predict. Still, the S-REVARB also presented smaller error values in

that segment.

In the results for the Wiener-Hammerstein benchmark, also presented in Tab.

14, we had the opposite behavior. Most of the multilayer models with 2 hidden layers were

better than their shallow versions. The exception was the Local S-REVARB. This time

the best solution was the Global S-REVARB with H = 2. Fig. 36 presents the absolute

test errors obtained by that best solution and the RNN with two hidden layers, where we

can see that the largest errors are associated with the RNN model.
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Table 14 – Summary of results for the free simulation on test data after estimation from
large dynamical datasets. Note that only the stochastic methods (RNNs and
S-REVARB variants) used the entire training sets, since they can be trained
via mini-batches. The other models were optimized in batch using the first
N = 5000 training samples.

Silverbox RMSE NLPD

RNN (1 hidden layer) 2.107×10−3 -
RNN (2 hidden layers) 3.369×10−3 -
Variational Sparse GP-NARX (N = 5000) 1.676×10−3 −4.204
REVARB (H = 1,N = 5000) 1.757×10−3 −4.217
REVARB (H = 2,N = 5000) 3.562×10−3 −3.997
Local S-REVARB (H = 1) 1.245×10−3 −4.222
Local S-REVARB (H = 2) 8.285×10−3 −3.321
Global S-REVARB (H = 1)a 1.052×10−3 −4.226
Global S-REVARB (H = 2)a 1.4031×10−3 −4.1436

Wiener-Hammerstein RMSE NLPD

RNN (1 hidden layer) 1.222×10−2 -
RNN (2 hidden layers) 8.247×10−3 -
Variational Sparse GP-NARX (N = 5000) 3.584×10−2 −1.883
REVARB (H = 1,N = 5000) 2.037×10−2 −2.406
REVARB (H = 2,N = 5000) 1.547×10−2 −2.544
Local S-REVARB (H = 1) 1.295×10−2 −2.609
Local S-REVARB (H = 2) 2.372×10−2 −2.308
Global S-REVARB (H = 1)b 8.369×10−3 −2.606
Global S-REVARB (H = 2)b 5.664×10−3 −2.643

avariational sparse simulation
brecognition-based simulation

Table 15 – Comparison of the number of adjustable parameters (RNNs) or hyperparameters
and variational parameters (S-REVARB variants) in the experiments with the
Wiener-Hammerstein benchmark (N = 95,000).

Size

RNN (1 hidden layer) 2201
RNN (2 hidden layers) 4402
Local S-REVARB (H = 1) 194,206
Local S-REVARB (H = 2) 386,574
Global S-REVARB (H = 1) 8608
Global S-REVARB (H = 2) 15,378

The not so good results obtained by the Local S-REVARB in the experiments

with the Wiener-Hammerstein dataset may be related to the the information provided

by Tab. 15, which reports the number of adjustable parameters, hyperparameters and

variational parameters present in the models that had access to the entire training set. As
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Figure 35 – Comparison between the absolute test errors obtained by the Global S-
REVARB and the RNN on the Silverbox dataset, both with one hidden
layer. The smaller picture is a zoomed version of the last 5000 test samples,
the most difficult ones to predict correctly, since they were generated with
inputs outside the range used during the training step.

Figure 36 – Comparison between the absolute test errors obtained by the Global S-
REVARB and the RNN on the Wiener-Hammerstein dataset, both with
two hidden layers.

can be seen, the size of the Local S-REVARB implementation becomes considerably large

with the increase of the number of training samples N, which may turn the optimization

procedure more difficult, even though it is scalable in terms of computation and memory

demands due to the mini-batch training. Moreover, since we have used 10,000 optimization

iterations and mini-batches of B = 1000 size sampled from N = 95,000, each local variational

parameter was stochastically update only 106 times. The good result obtained by the Local

S-REVARB with one hidden for the Silverbox is possibly related to the simpler dynamics

of that dataset, which did not require so many update steps from the initialization to get
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a reasonable model.

On the other hand, the size of the Global S-REVARB implementation scales

(linearly) only with the number of hidden layers and do not increase with the amount of

available data, since there is no local variational parameters and the quantity of weights

of the sequential recognition models does not grow with N. The great difference in size

between the two S-REVARB methods, where the Local S-REVARB approach presents up

to 25 times more adjustable parameters than its Global equivalent in Tab. 15, may justify

the better performance of the latter in the reported results.

5.5 Discussion

In this chapter we have considered the challenge of learning dynamical models

from large sequential datasets. The scalability issues of GP-based models, which even in

their sparse versions still scale at least linearly with number of training samples, were

tackled by following stochastic optimization procedures.

More precisely, inspired by recent advances on stochastic variational inference

(SVI), we developed a non-collapsed factorizable modification to the original REVARB

lower bound to the model marginal log-likelihood presented in Chapter 3, resulting in the

S-REVARB framework, which aims for better scalable inference with the RGP model.

From such formulation, we described two stochastic learning algorithms, the Lo-

cal S-REVARB and the Global S-REVARB. The former more directly applies the standard

SVI ideas to the new factorized bound, keeping all the local variational parameters. The

latter incorporates sequential recognition models in order to include NN-based constraints

to the S-REVARB inference framework, which no longer contains local parameters and is

even further scalable. Both algorithms enable optimization using noisy mini-batch updates

via off-the-shelf stochastic gradient ascent strategies, such as the ADAM optimizer.

We evaluated the proposed solutions in the task of system identification from

datasets with up to 95,000 training points, much more than which is computationally

feasible with the original REVARB approach. The obtained results indicate that the

stochastic variational framework is a viable scalable alternative to the REVARB batch

approach, especially the Global S-REVARB variant, which avoids the increase of its

implementation size with the number of training samples and has presented the best

overall results.
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In summary, this chapter greatly extends the possible scenarios where GP-

based dynamical modeling can be applied, aiming for scalability without sacrificing the

expressiveness of the hierarchical recurrent structure of RGP models.
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6 CONCLUSIONS

“The charges have to do with conspiracy to augment an artificial intelligence.”

(William Gibson, Neuromancer)

In recent years the machine learning and dynamical modeling communities have

continued to share models, analyses and algorithms, presenting many interceptions and

application subjects in common. In that sense, the present thesis considered the relevant

problem of modeling dynamical systems only from their inputs and outputs, without the

explicit knowledge of the internal physical functioning of the related phenomena, which

characterizes the system identification task.

We pursued a Bayesian probabilistic approach to nonlinear system identification,

using Gaussian Processes models to handle uncertainty, represent sequential data and

make predictions via free simulation. In such context, we reviewed recent GP-based

dynamical approaches and proposed the novel class of Recurrent Gaussian Processes

models, specifically designed to treat dynamical data.

We tackled the challenging scenarios of learning dynamics directly from noisy

data, data containing non-Gaussian noise in the form of outliers and learning from large

datasets. In each case we have introduced novel models and inference methods, which were

comprehensively evaluated and compared with other solutions available in the literature in

several system identification benchmarks and other problems involving sequential records.

More specifically, we introduced the RGP/REVARB framework for general

probabilistic recurrent modeling, the GP-RLARX and RGP-t/REVARB-t approaches

to outlier-robust dynamical modeling and the S-REVARB approach, presented as two

variants, the Local and Global S-REVARB algorithms, for scalable stochastic recurrent

learning. In order to overcome the mathematical intractabilities of our models, we mainly

followed variational procedures, i.e., deterministic (not based on sampling) methodologies

which convert the inference step into an optimization problem. Tab. 16 summarizes the

features presented by the dynamical GP models used in this work, where the entries

marked with a “*” are our contributions.

The results obtained by the proposed probabilistic approaches throughout this

thesis and the advantages they present over other kernel-based methods or parametric

models are factors that justify the recent attention given to general GP modeling by the
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Table 16 – Summary of features presented by some of the different dynamical GP-based
models used in this work for nonlinear system identification. The models
marked with a “*” are our contributions. All the listed approaches share the
Bayesian nonparametric feature.

Latent
Hierarchical

Propagates
Likelihood Inference

states uncertainty

GP-NARX Gaussian analytical
Sparse GP-NARX Gaussian variational
GP-LEP Laplace EP
GP-tVB Student-t variational
*GP-RLARX X X Student-t variational
*RGP X X X Gaussian REVARB/S-REVARB
*RGP-t X X X Student-t REVARB-t

research community and encourage us to continue pursuing GP-based models as a valuable

approach to dynamical modeling in diverse practical learning scenarios.

6.1 Future Work

The versatility of the GP modeling framework and the expressiveness of the

probabilistic recurrent models considered in this thesis are themes for further theoretical

investigations and practical applications. Thus, we list below some interesting directions

for additional research.

Alternative dynamical structures One could think of very different ways to repre-

sent the dynamical latent states of RGPs, such as the incorporation of derivative

information (SOLAK et al., 2003; AŽMAN; KOCIJAN, 2011), dynamics learned

from the time steps (DAMIANOU et al., 2011) or even alternative approaches based

on the GP-LVM framework, with different priors and constraints (LAWRENCE;

QUIÑONERO-CANDELA, 2006).

In terms of deep GP modeling, Duvenaud et al. (2014) present some recommendations

for fixing pathologies that rise in deep architectures, such as the inclusion of direct

links between the input and each layer of the model. We have made few preliminary

experiments adapting that idea to RGPs, but the results were inconclusive and that

approach should be further explored.

Moreover, if one aims to model long term temporal dependences, which is usually not

required by the system identification tasks we have covered, the most promising works

on RNNs indicate the need of some kind of gating mechanism to control the influence

of past observations. This is the strategy pursued for instance by the powerful Long
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Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) and Gated

Recurrent Unit (GRU) (CHO et al., 2014) networks, which have been widely applied

to complex recurrent applications (SCHMIDHUBER, 2015). Such gating mechanism,

which can be implemented in several different forms (GREFF et al., 2016), could be

adapted to the Bayesian approach of RGPs, which itself constitutes an interesting

challenge.

Alternative inference implementation Our inference algorithms were implemented

following analytical gradients calculated “by hand”. This usually results in slightly

faster codes, but it is tedious to derive and time consuming. Alternatively, instead

of manually taking the gradients of the many variational lower bounds we have

derived, one could use automatic differentiation tools to ease the implementation,

such as the ones available in the Theano (Theano Development Team, 2016) or

TensorFlow (ABADI et al., 2016) programming frameworks. This purely practical

issue is actually a very important step towards more widespread use of GP-based

dynamical models.

Outlier-robust stochastic learning A notable absence in the Chapter 5 of this thesis,

which covers stochastic learning for dynamical GPs, is the lack of a stochastic scalable

version of the robust REVARB-t framework. Although we have tried to tackle this

additional modeling scenario, we could not develop a coherent approach to deal with

the issue of the variational parameters related to the noise precisions, as presented

in the REVARB-t formulation in Section 4.4, Chapter 4. A prototype based on

the Local S-REVARB algorithm did not work well, since it would take too many

iterations until an outlier-corrupted observation could be detected and suppressed by

the stochastic algorithm. A robust version of the Global S-REVARB also turned out

to be difficult to conceive, since such variational parameters could not be modeled by

a third recognition model, for they may be related to outliers, which do not present

any “learnable” pattern by definition. A frequentist alternative could be pursued,

such as the use of M-estimation methods (HUBER, 2011), but a Bayesian solution

would be preferable.

Predictive control As a complement to the nonlinear system identification task, focus of

this thesis, a compelling application for the presented dynamical GP models is within

Model Predictive Control (MPC) methodologies. Although GP-based MPC has been
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studied to some extent (KOCIJAN et al., 2004; LIKAR; KOCIJAN, 2007; ROCHA

et al., 2016; KLENSKE et al., 2016), it would be interesting to apply the proposed

models, especially the outlier-robust GP-RLARX and RGP-t, to challenging control

scenarios, where uncertainty propagation becomes even more relevant. Moreover,

as described in the Appendix A.1, the variational frameworks we have presented

can incorporate uncertain exogenous control inputs with minimal modifications,

which enables their use with probabilistic controllers and widens even more their

applicability.
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SMOLA, A. J.; SCHÖLKOPF, B. Learning with kernels. Cambridge, MA, USA: MIT
Press, 2002.

SNELSON, E.; RASMUSSEN, C. E.; GHAHRAMANI, Z. Warped Gaussian processes.
Advances in Neural Information Processing Systems 17 (NIPS), MIT Press,
Vancouver and Whistler, British Columbia, Canada, v. 16, p. 337–344, 2004.

SNOEK, J.; LAROCHELLE, H.; ADAMS, R. P. Practical Bayesian optimization of
machine learning algorithms. In: Advances in Neural Information Processing
Systems 25 (NIPS). Lake Tahoe, Nevada, USA: NIPS Foundation, 2012. p. 2951–2959.

http://homepages.vub.ac.be/~mschouke/benchmark2016.html
http://homepages.vub.ac.be/~mschouke/benchmark2016.html


172

SOLAK, E.; MURRAY-SMITH, R.; LEITHEAD, W. E.; LEITH, D. J.; RASMUSSEN,
C. E. Derivative observations in Gaussian process models of dynamic systems. Advances
in Neural Information Processing Systems 16 (NIPS), MIT Press, Cambridge,
MA, USA, v. 16, 2003.

SOLLICH, P. Bayesian methods for support vector machines: Evidence and predictive
class probabilities. Machine Learning, Springer, v. 46, n. 1, p. 21–52, 2002.

STEGLE, O.; FALLERT, S. V.; MACKAY, D. J.; BRAGE, S. Gaussian process robust
regression for noisy heart rate data. IEEE Transactions on Biomedical Engineering,
IEEE, v. 55, n. 9, p. 2143–2151, 2008.

STEIN, M. L. Interpolation of spatial data: some theory for kriging. Berlin,
Germany: Springer Science & Business Media, 2012.

SVENSSON, A. Learning probabilistic models of dynamical phenomena using
particle filters. PhD Thesis — Uppsala University, 2016.
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APPENDIX A – MATHEMATICAL DETAILS AND DERIVATIONS

“Go down deep enough into anything and you will find mathematics.”

(Dean Schlicter)

This appendix collects mathematical details of the modeling approaches pre-

sented in the main text of the thesis, following the same notation used so far.

A.1 Variational Lower Bound Statistics

Here we detail the statistics defined in Eq. (3.27), which are related to the ones

presented in the original paper on Bayesian GP-LVM (TITSIAS; LAWRENCE, 2010).

First, we define the notation of the following variational distribution based on

Eq. (3.14):

q
(

x̂xx(h)
i

)
= N

(
x̂xx(h)

i

∣∣∣µµµ(h)
i ,ΣΣΣ

(h)
i

)
, 1≤ i≤ N−L, 1≤ h≤ H + 1, (A.1)

where x̂xx(h)
i ∈ RDh , µµµ

(h)
i ∈ RDh , ΣΣΣ

(h)
i ∈ RDh×Dh and

Dh =


L + Lu, if h = 1,

2L, if 1 < h≤ H,

L, if h = H + 1.

(A.2)

The moments themselves are given by

µµµ
(h)
i =



[
µ

(1)
i−1, · · · ,µ

(1)
i−L,ui−1, · · · ,ui−Lu

]>
, if h = 1,[

µ
(h)
i−1, · · · ,µ

(h)
i−L,µ

(h−1)
i , · · · ,µ(h−1)

i−L+1

]>
, if 1 < h≤ H,[

µ
(H)
i , · · · ,µ(H)

i−L+1

]>
, if h = H + 1,

(A.3)

ΣΣΣ
(h)
i =


diag

([
λ

(1)
i−1, · · · ,λ

(1)
i−L,000Lu

])
, if h = 1,

diag
([

λ
(h)
i−1, · · · ,λ

(h)
i−L,λ

(h−1)
i , · · · ,λ (h−1)

i−L+1

])
, if 1 < h≤ H,

diag
([

λ
(H)
i , · · · ,λ H

i−L+1

])
, if h = H + 1,

(A.4)

where the function diag(·) builds a diagonal matrix from its argument. Note that 000Lu is

a vector of Lu zeros, related to the variances of the external inputs, which are actually

considered deterministic. Conveniently, if we have the uncertainty information about those
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variables, e.g., if they come from a Bayesian controller, we can simply replace this vector

by the vector of known variances, given that they are (at least approximately) Gaussian

distributed, without changing the RGP/REVARB framework. If that approach is pursued

it is equivalent to approximately marginalize the inputs ui, similar to the marginalization

of the dynamical latent variables x(1)
i of the first layer.

We can now detail the statistics in Eq. (3.27). We will drop the indexes h that

refer to the layer number to reduce clutter in the notation, but we emphasize that the

computations are separately performed for each layer. We consider that the exponentiated

quadratic covariance function was chosen.

The statistic Ψ0 = Tr
(〈

KKK f
〉

q(xxx)

)
∈ R is given by

Ψ0 =
N−L

∑
i=1

∫
x̂xxi

k (x̂xxi, x̂xxi)N (x̂xxi|µµµ i,ΣΣΣi)

= (N−L)σ
2
f . (A.5)

The computation of each element of ΨΨΨ1 =
〈
KKK f z
〉

q(xxx)
∈ R(N−L)×M is performed

as follows:

[ΨΨΨ1]i j =
∫

x̂xxi

k
(

x̂xxi,ζζζ j

)
N (x̂xxi|µµµ i,ΣΣΣi)

= σ
2
f

D

∏
d=1

exp
(
−1

2
wd(xid−ζ jd)2

wd [ΣΣΣi]dd+1

)
(wd[ΣΣΣi]dd + 1)

1
2

. (A.6)

The statistic ΨΨΨ2 =
〈(

KKK f z
)>KKK f z

〉
q(xxx)
∈RM×M is given by ΨΨΨ2 = ∑

N−L
i=1 ΨΨΨ

i
2, where

each element of the matrices ΨΨΨ
i
2 ∈ RM×M are given by

[
Ψ

i
2
]

j j′ =
∫

x̂xxi

k
(

x̂xxi,ζζζ j

)
k
(

x̂xxi,ζζζ j′

)
N (x̂xxi|µµµ i,ΣΣΣi)

= σ
4
f

D

∏
d=1

exp
(
−wd(ζ jd−ζ j′d)2

4 − wd(xid−ζ̃d)2

2wd [ΣΣΣi]dd+1

)
(2wd[ΣΣΣi]dd + 1)

1
2

, (A.7)

where ζ̃d =
(ζ jd+ζ j′d)

2 .

In the case of the robust REVARB-t method, we have slightly different statistics

exclusively in the output layer H + 1, which are calculated, also omitting the layer index,
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as follows:

Ψ
′
0 = Tr

(
RRR
〈
KKK f
〉

q(xxx)

)
= (N−L)σ

2
f

N−L

∑
i=1

ai

bi
, (A.8)

ΨΨΨ
′
1 = RRR

〈
KKK f z
〉

q(xxx)
,

where
[
ΨΨΨ
′
1
]

i j =
ai

bi
σ

2
f
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∏
d=1
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(
−1

2
wd(xid−ζ jd)2

wd [ΣΣΣi]dd+1

)
(wd[ΣΣΣi]dd + 1)

1
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, (A.9)

ΨΨΨ
′
2 =

〈(
KKK f z
)>RRRKKK f z

〉
q(xxx)

=
N−L

∑
i=1

[
Ψ
′i
2

]
j j′
,

where
[
Ψ
′i
2

]
j j′

=
ai

bi
σ

4
f

D

∏
d=1

exp
(
−wd(ζ jd−ζ j′d)2

4 − wd(xid−ζ̃d)2

2wd [ΣΣΣi]dd+1

)
(2wd[ΣΣΣi]dd + 1)

1
2

, (A.10)

where again ζ̃d =
(ζ jd+ζ j′d)

2 and RRR = diag
(

aL+1
bL+1

, · · · , aN
bN

)
is a diagonal matrix formed by the

variational parameters ai and bi that come from the variational gamma distribution, as

explained in Section 4.3.

A.2 Derivation of the REVARB Lower Bound

In this section we complement and detail the REVARB lower bound presentation

made in Section 3.3.

A.2.1 Output Layer

We begin by tackling the first line of Eq. (3.24), related to the output layer:

L1 =
N

∑
i=L+1

∫
fff ,xxx,zzz

q
(

xxx(H)
)

q
(

zzz(H+1)
)
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i
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i
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log p
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q
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2
log2πσ
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)2
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=−N−L
2

log2πσ
2
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− 1
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i −2yi
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f
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i
+
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f

]
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+
[
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f

]2

i
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.
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Changing to matrix notation and integrating over xxxH :

L1 =−N−L
2

log2πσ
2
H+1 +

∫
xxx,zzz

q
(

xxx(H)
)

q
(
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f +
(

aaa(H+1)
f

)>
aaa(H+1)

f + Tr
(

ΣΣΣ
(H+1)
f
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q
(

zzz(H+1)
)

(
− 1

2σ2
H+1

(
yyy>yyy−2yyy>

〈
KKK(H+1)

f z

〉
q(xxxH)

(
KKK(H+1)

z

)−1
zzz(H+1)

+
(

zzz(H+1)
)>(

KKK(H+1)
z

)−1
〈(

KKK(H+1)
f z

)>
KKK(H+1)

f z
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Now we can rewrite L1:

L1 =−N−L
2

log2πσ
2
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1
2σ2
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Ψ
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0 − 1
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zzz
q
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P1,

(A.11)

where

P1 =− 1
2σ2

H+1

(
−2yyy>ΨΨΨ
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1

(
KKK(H+1)

z

)−1
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z

)−1
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2
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z

)−1
zzz(H+1)

)
.

Instead of directly integrating out zzz(H+1), we go back to Eq. (3.24) and collect

the remaining terms containing zzz(H+1):

L ∗
1 =−N−L

2
log2πσ

2
H+1−

1
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Ψ
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2
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zzz
q
(

zzz(H+1)
)

P1

−
∫

zzz
q
(

zzz(H+1)
)

logq
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log
q
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) , (A.12)



179

where the last term is a “KL-like” term. The optimal distribution q∗
(

zzz(H+1)
)

that

maximizes the bound is proportional to the denominator inside the logarithm:

q∗
(

zzz(H+1)
)

∝ exp(P1)p
(

zzz(H+1)
)

(A.13)

logq∗
(

zzz(H+1)
)

∝ P1 + log p
(

zzz(H+1)
)

(A.14)

∝− 1
2σ2

H+1

(
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)−1
zzz(H+1)

+
(

zzz(H+1)
)>(
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− 1

2
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z

)−1
zzz(H+1),

where we have omitted some terms that did not contain zzz(H+1). Rearranging the expression

we get:

logq∗
(
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)
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z

)−1
)

zzz(H+1),

which is proportional to the logarithm of a Gaussian distribution. The moments of such

distribution can be found by “completing the square” (BISHOP, 2006):

q∗
(
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= N
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yyy.

Rewriting these expressions we get the optimized moments of q∗
(

zzz(H+1)
)

:
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z

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1

KKK(H+1)
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)>
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Replacing the optimal distribution q∗
(

zzz(H+1)
)

back in Eq. (A.14) we get:

logq∗
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The terms of P2 can be found using the optimized moments of q∗
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(
σ2

H+1
)2 yyy>ΨΨΨ

(H+1)
1

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy.

Now we can rewrite the last term of Eq. (A.12):

−
∫

zzz
q
(

zzz(H+1)
)

log
q
(

zzz(H+1)
)

exp(P1)p
(
zzz(H+1)

) ≤ ∫
zzz
q∗
(

zzz(H+1)
)

log
exp(P1)p

(
zzz(H+1)

)
q∗
(
zzz(H+1)

)
≤ log

∫
zzz
exp(P1)p

(
zzz(H+1)

)
≤ log

∫
zzz
N
(

zzz(H+1)
∣∣∣mmm(H+1)SSS(H+1)

)
exp(P2)

≤P2,

where we have reversed the Jensen’s inequality and made the bound tighter. This trick is

also explained by King and Lawrence (2006).

Finally, Eq. (A.12) becomes:

L ∗
1 =−N−L

2
log2πσ

2
H+1−

1
2σ2

H+1

(
yyy>yyy + Ψ

(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ

(H+1)
2

))
+

1
2

log
∣∣∣KKK(H+1)

z

∣∣∣− 1
2

log

∣∣∣∣∣KKK(H+1)
z +

1
σ2

H+1
ΨΨΨ

(H+1)
2

∣∣∣∣∣
+

1

2
(
σ2

H+1
)2 yyy>ΨΨΨ

(H+1)
1

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy.

(A.17)
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A.2.2 Hidden Layers

We now tackle the second line of Eq. (3.24), related to the hidden layers. Note

that its format resembles the first line we have just solved, so we follow similar procedures

of the previous section:

L2 =
N

∑
i=L+1

H

∑
h=1

∫
fff ,xxx,zzz

(
H

∏
h′=1

q
(

xxx(h′)
))

q
(

zzz(h)
)

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
log p

(
x(h)

i

∣∣∣ f (h)
i

)
=−N−L

2

H

∑
h=1

log2πσ
2
h +

H

∑
h=1

∫
fff ,xxx,zzz

(
H

∏
h′=1

q
(

xxx(h′)
))

q
(

zzz(h)
)

p
(

fff (h)
∣∣∣zzz(h), x̂xx(h)

i

)
(
− 1

2σ2
h

((
xxx(h)
)>

xxx(h)−2
(

xxx(h)
)>

fff (h) +
(

fff (h)
)>

fff (h)

))
=−N−L

2

H

∑
h=1

log2πσ
2
h +

H

∑
h=1

∫
xxx,zzz

(
H

∏
h′=1

q
(

xxx(h′)
))

q
(

zzz(h)
)

(
− 1

2σ2
h

((
xxx(h)
)>

xxx(h)−2
(

xxx(h)
)>

aaa(h)
f +

(
aaa(h)

f

)>
aaa(h)

f + Tr
(

ΣΣΣ
(h)
f

)))
=−N−L

2

H

∑
h=1

log2πσ
2
h +

H

∑
h=1

∫
zzz
q
(

zzz(h)
)

(
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h)−2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z

)−1
zzz(h)

+
(

zzz(h)
)>(

KKK(h)
z

)−1
ΨΨΨ

(h)
2

(
KKK(h)

z

)−1
zzz(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

)))
=−N−L

2

H

∑
h=1

log2πσ
2
h

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

+
∫

zzz
q
(

zzz(h)
)

T
(h)

1

}
,

where

T
(h)

1 =− 1
2σ2

h

(
−2
(

µµµ
(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z

)−1
zzz(h)

+
(

zzz(h)
)>(

KKK(h)
z

)−1
ΨΨΨ

(h)
2

(
KKK(h)

z

)−1
zzz(h)

)
.

Note that the integration of the latent variables xxx(h) followed the statistics defined in Eq.

(3.27) and detailed in the Appendix A.1.
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As in the previous section, we can get the optimal distribution q∗
(

zzz(h)
)

:

q∗
(

zzz(h)
)

= N
(

zzz(h)
∣∣∣mmm(h),SSS(h)

)
, (A.18)

SSS(h) = KKK(h)
z

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1

KKK(h)
z , (A.19)

mmm(h) =
1

σ2
h

KKK(h)
z

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h). (A.20)

Note that the difference to the output layer is that we replaced yyy by µµµ(h).

Following the same argument we used for the output layer, we get:

L ∗
2 =−N−L

2

H

∑
h=1

log2πσ
2
h

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

+
1
2

log
∣∣∣KKK(h)

z

∣∣∣− 1
2

log
∣∣∣∣KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

∣∣∣∣
+

1

2
(
σ2

H+1
)2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h)

}
.

(A.21)

A.2.3 Final REVARB Lower Bound

Putting together Eqs. (A.17) and (A.21) and adding the remaining terms from

Eq. (3.24) we get the final form of the REVARB lower bound:

log p(yyy)≥−N−L
2

H+1

∑
h=1

log2πσ
2
h −

1
2σ2

H+1

(
yyy>yyy + Ψ

(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ

(H+1)
2

))
+

1
2

log
∣∣∣KKK(H+1)

z

∣∣∣− 1
2

log

∣∣∣∣∣KKK(H+1)
z +

1
σ2

H+1
ΨΨΨ

(H+1)
2

∣∣∣∣∣
+

1
2(σ2

H+1)2 yyy>ΨΨΨ
(H+1)
1

(
KKK(H+1)

z +
1

σ2
H+1

ΨΨΨ
(H+1)
2

)−1(
ΨΨΨ

(H+1)
1

)>
yyy

+
H

∑
h=1

{
− 1

2σ2
h

(
N

∑
i=L+1

λ
(h)
i +

(
µµµ

(h)
)>

µµµ
(h) + Ψ

(h)
0 −Tr

((
KKK(h)

z

)−1
ΨΨΨ

(h)
2

))

+
1
2

log
∣∣∣KKK(h)

z

∣∣∣− 1
2

log
∣∣∣∣KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

∣∣∣∣
+

1
2(σ2

h )2

(
µµµ

(h)
)>

ΨΨΨ
(h)
1

(
KKK(h)

z +
1

σ2
h

ΨΨΨ
(h)
2

)−1(
ΨΨΨ

(h)
1

)>
µµµ

(h)

−
N

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

∫
x(h)

i

q
(

x(h)
i

)
log p

(
x(h)

i

)}
.
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The terms in the last line of the final bound involves only Gaussian distributions

and are, hence, tractable. They are calculated as follows:∫
x(h)

i

q
(

x(h)
i

)
logq

(
x(h)

i

)
=−1

2
log2πλ

(h)
i −

1
2
,∫

x(h)
i

q
(

x(h)
i

)
log p

(
x(h)

i

)
=−1

2
log2πλ

(h)
0i −

1

2λ
(h)
0i

[
λ

(h)
i +

(
µ

(h)
i

)2
−2µ

(h)
i µ

(h)
0i +

(
µ

(h)
0i

)2
]
.

A.3 Derivation of the GP-RLARX Variational Lower Bound

The lower bound to the marginal log-likelihood log p(yyy) of the GP-RLARX

model in Eq. (4.20) can be written as follows:

log p(yyy)≥
N

∑
i=L+1

∫
τττ,xxx

q(τττ)q(xxx) log p(yi|xi,τi)−KL(q(τττ)||p(τττ))

+
N

∑
i=L+1

∫
fff ,xxx,zzz

q(xxx)q(zzz)p( fi|zzz, x̂xxi) log p(xi| fi)

−
∫

zzz
q(zzz) logq(zzz)+

∫
zzz
q(zzz) log p(zzz)

−
N

∑
i=1

∫
xxx

q(xi) logq(xi)+
L

∑
i=1

∫
xxx

q(xi) log p(xi),

(A.22)

where the KL-divergence KL(q(τττ)||p(τττ)) between two factorized gamma distributions was

defined in Eq. (4.33).

We start to tackle Eq. (A.22) from the integral that contains the observations

yyy, where we first variationally integrate τττ and then xxx:

L1 =
N

∑
i=L+1

∫
τττ,xxx

q(τττ)q(xxx) log p(yi|xi,τi)

=
N

∑
i=L+1

∫
τττ,xxx

q(τττ)q(xxx)

[
−1

2
log2π +

1
2

logτi−
τi

2
(
y2

i −2yixi + x2
i
)]

=−N−L
2

log2π +
1
2

N

∑
i=L+1

(ψ(ai)− logbi)+
N

∑
i=L+1

∫
xxx

q(xxx)

[
− ai

2bi

(
y2

i −2yixi + x2
i
)]

=−N−L
2

log2π +
1
2

N

∑
i=L+1

(ψ(ai)− logbi)+−1
2

N

∑
i=L+1

[
ai

bi

(
y2

i −2yiµi + λi + µ
2
i
)]

,

(A.23)

where we have applied the following properties of the gamma distribution:

τi ∼ Γ(ai,bi), E{τi}=
ai

bi
, E{logτi}= ψ(ai)− logbi.
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The second line in Eq. (A.23) actually presents similar integrals to the hidden

layers of the REVARB method presented in Appendix A.2.2 if we simply ignore the layer

indexes. Consequently, the GP-RLARX version of Eq. (A.21) will be given by

L ∗
2 =−N−L

2
log2πσ

2
x −

1
2σ2

x

[
N

∑
i=L+1

(
λi + µ

2
i
)

+ Ψ0−Tr
(
KKK−1

z ΨΨΨ2
)]

+
1
2

log |KKKz|−
1
2

log
∣∣∣∣KKKz +

1
σ2

x
ΨΨΨ2

∣∣∣∣+ 1

2(σ2
x )

2 (µµµ)>ΨΨΨ1

(
KKKz +

1
σ2

x
ΨΨΨ2

)−1

ΨΨΨ
>
1 µµµ.

(A.24)

The final lower bound for the GP-RLARX model is finally given by summing

Eqs. (A.23) and (A.24) and including the remaining terms of Eq. (A.22):

log p(yyy)≥−N−L
2

log2πσ
2
x −

N−L
2

log2π +
1
2

N

∑
i=L+1

(ψ(ai)− logbi)

− 1
2

N

∑
i=L+1

[
ai

bi

(
y2

i −2yiµi + λi + µ
2
i
)]
− 1

2σ2
x

[
N

∑
i=1

(
λi + µ

2
i
)

+ Ψ0−Tr(KKK−1
z ΨΨΨ2)

]

+
1
2

log |KKKz|−
1
2

log
∣∣∣∣KKKz +

1
σ2

x
ΨΨΨ2

∣∣∣∣+ 1
2(σ2

x )2 µµµ
>

ΨΨΨ1

(
KKKz +

1
σ2

x
ΨΨΨ2

)−1

ΨΨΨ
>
1 µµµ

−
N

∑
i=1

∫
xi

q(xi) logq(xi)+
L

∑
i=1

∫
xi

q(xi) log p(xi)−KL(q(τττ)‖ p(τττ)).

(A.25)

A.4 Derivation of the REVARB-t Lower Bound

The REVARB-t lower bound to the marginal log-likelihood log p(yyy) in Eq.

(4.42) can be detailed as follows:

log p(yyy)≥
N

∑
i=L+1

{∫
τττ, fff ,xxx,zzz

q(τττ)q
(

xxx(H)
)

q
(

zzz(H+1)
)

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

)
log p

(
yi

∣∣∣ f (H+1)
i ,τi
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−KL(q(τττ)||p(τττ))

+
N

∑
i=L+1

H

∑
h=1

∫
fff ,xxx,zzz

(
H

∏
h′=1

q
(

xxx(h′)
))

q
(

zzz(h)
)

p
(

f (h)
i

∣∣∣zzz(h), x̂xx(h)
i

)
log p

(
x(h)

i

∣∣∣ f (h)
i

)
−

H+1

∑
h=1

∫
zzz
q
(

zzz(h)
)

logq
(

zzz(h)
)

+
H+1

∑
h=1

∫
zzz
q
(

zzz(h)
)

log p
(

zzz(h)
)

−
N

∑
i=1

H

∑
h=1

∫
xxx

q
(

x(h)
i

)
logq

(
x(h)

i

)
+

L

∑
i=1

H

∑
h=1

∫
xxx

q
(

x(h)
i

)
log p

(
x(h)

i

)
.

(A.26)

The bound in Eq. (A.26) differs from the original REVARB bound only on the terms

related to the output layer and the included KL-divergence KL(q(τττ)||p(τττ)) defined in Eq.
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(4.33). It also differs from the GP-RLAX bound in Eq. (A.22), since it includes multiple

transition (hidden) layers and a GP prior in the observation layer.

We proceed by variationally integrating out τττ from the output layer, similar to

the GP-RLARX model in the previous section:

L1 =
N

∑
i=L+1

{∫
τττ, fff ,xxx,zzz

q(τττ)q
(

xxx(H)
)

q
(

zzz(H+1)
)

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

)
log p

(
yi

∣∣∣ f (H+1)
i ,τi
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=

N

∑
i=L+1
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τττ, fff ,xxx,zzz

q(τττ)q
(

xxx(H)
)

q
(

zzz(H+1)
)

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

)
(
−1

2
log2π +

1
2

logτi−
τi

2

(
y2

i −2yi f (H+1)
i +

(
f (H+1)
i

)2
))}

=−N−L
2

log2π +
1
2

N

∑
i=L+1

(ψ(ai)− logbi)

+
N

∑
i=L+1

{∫
fff ,xxx,zzz

q
(

xxx(H)
)

q
(

zzz(H+1)
)

p
(

f (H+1)
i

∣∣∣zzz(H+1), x̂xx(H)
i

)
(
− ai

2bi

(
y2

i −2yi f (H+1)
i +

(
f (H+1)
i

)2
))}

.

If we define RRR = diag
(

aL+1
bL+1

, · · · , aN
bN

)
and follow the same steps we did for RE-

VARB in the Appendix A.2 in order to integrate fff (H+1) and xxx(H), we get the REVARB-t

version of Eq. (A.17):

L ∗
1 =−N−L

2
log2π +

1
2

N

∑
i=L+1

(ψ(ai)− logbi)

− 1
2

(
yyy>RRRyyy + Ψ

′(H+1)
0 −Tr

((
KKK(H+1)

z

)−1
ΨΨΨ
′(H+1)
2
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+

1
2

log
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z

∣∣∣− 1
2

log
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z + ΨΨΨ
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2

∣∣∣
+

1
2

yyy>ΨΨΨ
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1

(
KKK(H+1)

z + ΨΨΨ
′(H+1)
2

)−1(
ΨΨΨ
′(H+1)
1

)>
yyy,

(A.27)

where we have used the modified statistics defined in the Eqs. (4.49), (4.50) and (4.51)

and detailed in the Appendix A.1.

The bound terms related to the hidden layers are equal to the ones for the

REVARB with Gaussian likelihood, detailed in the Appendix A.2.2. Thus, the final lower
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bound for REVARB-t is given by

log p(yyy)≥−N−L
2

H

∑
h=1

log2πσ
2
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ΨΨΨ
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∣∣∣KKK(H+1)

z + ΨΨΨ
′(H+1)
2

∣∣∣
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1
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2

)−1(
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ΨΨΨ
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−
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+

L

∑
i=1

∫
x(h)
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(A.28)

A.5 Derivation of the S-REVARB Lower Bound

In this section we detail the S-REVARB lower bound presentation made in

Section 5.3. Although it is derived from the same REVARB initial bound, this time we

aim for a non-collapsed bound, explicitly parametrized by the moments of the distributions

q
(

zzz(h)
)

in each layer. This approach will result in a fully factorized expression and enable

stochastic updates.

A.5.1 Output Layer

Before factorization, the S-REVARB lower bound is the same in Eq. (3.24).

Similar to REVARB, we will first consider the output layer, expressed in Eq. (A.11) and

replicated below:
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Such expression can be rewritten as a sum of terms related to each observation

as follows:
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where we have redefined the statistics Ψ
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2 with respect to each sample

(or mini-batch), given by
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The expressions are similar to the REVARB statistics presented in the Appendix A.1.

Now we can integrate out zzz(H+1) by explicitly defining the variational distri-

bution q
(
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)

= N
(
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)
, where mmm(H+1) ∈ RM and SSS(H+1) ∈ RM×M:
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(A.29)

We also need to include the negative KL term recognized in Eq. (3.24), which

involve only Gaussians and is, hence, tractable:
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(A.30)
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Finally, the non-collapsed lower bound terms related to the output layer become:
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(A.31)

As expected, the new expression is fully factorized with respect to the training samples.

A.5.2 Hidden layers

The lower bound terms related to the hidden layers resemble the ones of the

output layer, but the outputs of the hidden layer are latent and must be also integrated

out, similar to the standard REVARB approach.

In order to obtain the new expressions, we start by replacing the terms in Eq.

(A.29) which contain yi by E
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we have:
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Besides the KL term, which is identical as before in Eq. (A.30), we also need

to include the entropy and the terms associated to the priors in Eq. (3.24) to obtain the

bound expression related to the hidden layers:
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A.5.3 Final S-REVARB Lower Bound

The final S-REVARB non-collapsed lower bound is obtained by putting together

Eqs. (A.31) and (A.32):
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