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Abstract. In order to analyze and design insulation systems, numerical methods, such as the finite element method
and the boundary element method, are intensively used. In particular, for poroelastic materials models based on the
Biot-Allard theory, mathematical relations in a mixed formulation were developed using the structural displacement
u and the fluid pressure p as state variables. In this work, the simulation of the absorbing performance of poroelastic
samples, as if placed in impedance tube, is carried out using coupled poroelastic and acoustic finite element models.
The goal is to evaluate two methodologies in order to obtain the acoustic absorption response of foam materials
found on typical insulating systems. For the first procedure, the porous material model is coupled to a waveguide
using a modal expansion technique. For the second procedure, the full acoustic domain is solved using acoustic finite
elements and the acoustic absorption function is determined by evaluation of the acoustic pressure field. A systematic
comparison of the influence of waveguide modes on the absorption response in the frequency domain was made and
the validity of the modal approximation in coupled acoustic-poroelastic analysis is discussed.
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1. INTRODUCTION

The goal of this study is to evaluate methodologies for estimation of absorbing characteristics employed in design
acoustic insulating systems. The problem consists of a porous material placed into a semi-infinite waveguide with rigid
walls and acoustically excited by plane waves. The perforated material is introduced as periodic porous-acoustic cell and
can be formulated in meso-scale, Olny (1999). In this scale, we have the acoustic and porous phases. The new material
properties used in the acoustic absorbing material design was tested in Atalla et al. (2001) and Olny and Boutin (2003).
In this paper, we evaluated modal techniques and finite element discretization for modeling the acoustic domain in the
tube. In order to compare the methodologies, the acoustical surface impedance and the absorption frequencies functions
are performed. Several finite element formulations for sound absorbing materials have been developed in the last thirty
years. Coupled fluid-structure models based on the Biot theory have been introduced and improved by Kang and Bolton
(1995), Panneton and Atalla (1996) and Lamary et al. (2001). In Atalla et al. (1998), the classical Biot-Allard equations
have been rewritten in terms of the solid phase macroscopic displacement vector and interstitial fluid phase macroscopic
pressure. In this paper, a symmetric mixed formulation (u,p) developed by Panneton and Atalla (1996) is used. This
way, we can find a solid phase macroscopic displacement vector ui and the interstitial fluid macroscopic pressure p as the
state variables. The resultant coupled system is similar to the classical Fluid-Structure (u,p) system Panneton and Atalla
(1997a). The outline of the rest of the paper is as follows. In Section 2, the problem and some concepts are stated. In
the next section, the poroelastic model is described. Moreover, the basic assumptions are presented and the governing
equations for acoustic and solid phases are presented. A weak integral formulation is used. In this context, numerical
approaches are applied to solve the equilibrium problem. The methods for measurement the vibroacoustic parameters are
presented in Section 4 and 5. A full finite element description and a modal superposition are adapted to model the acoustic
domain in the tube. In Section 6, numerical demonstrations of the computational implementation are presented and the
performance of the method is illustrated. The conclusions are outlined in Section 7.

2. PROBLEM STATEMENT

The classical hypothesis for linear acoustic and elastic behavior are assumed Allard (1993). In this approach, the wave
propagation theory for the coupled medium is valid for low frequency range and fully saturated conditions. In this case, all
dependent quantities represent small fluctuations around a static reference value and the poroelastic properties (porosity,
tortuosity, etc) are continues in the domain.
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The interface conditions of the porous-acoustic system take into account the continuity of fluid normal displacements,
continuity of pressures, mass flow conservation and internal forces equilibrium. The mixed formulation (u,p) simplifies
the assemblage process of the porous-acoustic systems. Therefore, for coupling among poroelastic and acoustic medias
is not necessary calculate any interface matrix, Debergue et al. (1999).

Using the system geometric symmetry feature and the periodic system properties, we can adopt the hypothesis of the
plane wave excitation and solve the Kundt tube problem like is represented in detail in Fig. (1a). In Figure (1b), a typical
solution for the acoustic pressure diffusion in the porous-acoustic cell is presented.

(a)Waveguide Model and Absorbing Material Cell (b)Pressure Distribution in the Porous-Acoustic Cell
Figure 1. Porous-Wave Guide Coupled System

In this conditions, the Porous-Acoustic System is excited by waveguide. A modal superposition technique is used
to model the pure acoustic domain. The development of the waveguide modal superposition theory can be found in the
works Atalla et al. (2001) and Sgard et al. (2005). The Porous-Waveguide interface Γ condition involving porous coatings
can be expressed as an inhomogeneous mixed Dirichlet-Neumann boundary condition, as described in Eq. (1).

k
∂p

∂n
= A(p− pb) (1)

where p is the acoustic pressure on the interface, k is a coefficient linked to the acoustic media impedance, A is the
admittance term of the porous-waveguide interface and pb is the blocked pressure amplitude and related by:

∂pb
∂n

∣∣∣∣
Γ

= 0 (2)

3. POROELASTIC FINITE ELEMENT MODEL

Using the Galerkin method, taking δp as the admissible virtual variation of the fluid phase pressure field (p), for the
acoustic domain, we can find the weak integral form for the acoustic domain, as follows in Eq. (3).

∫
Ω

1

ω2ρ0
p,iδp,idΩ−

∫
Ω

1

ρ0c20
pδpdΩ−

∫
Γ

1

ω2ρ0

∂p

∂n
δpdΓ = 0 (3)

where ω is the frequency, ρ0 is the mass density of the fluid (air), c0 is the speed of the sound propagation in the fluid
phase.

For the poroelastic domain, taking δui as the admissible virtual variation of the solid phase displacement vector (ui),
the weak integral form results in the following relations for the solid and fluid phase, Eq. (4) and (5), respectively.

∫
Ω

σ̂s
ijε

s
ij(δui)dΩ− ω2

∫
Ω

ρ̃uiδuidΩ−
∫
Ω

γ̃p,iδuidΩ−
∫
Γ

σ̂s
ij · nj · δuidΓ = 0 (4)

∫
Ω

h2

ω2ρ̃22
p,iδp,idΩ−

∫
Ω
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R̃
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∫
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∂p

∂n

)
δpdΓ = 0 (5)
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where the Ω and Γ denote the poroelastic domain and its boundary, respectively. The vector nj is the unitary normal
vector and pointing outward the boundary Γ, ∂p/∂n is the directional derivative of the fluid phase pressure. The term σ̂s

ij

represent the elastic linear skeleton stress tensor in vacuum, εsij is elastic strain tensor, ρ̃22 is the fluid mass coefficient
that take into account the fact that the relative flow in the pores is not uniform and ρ̃ is the complex effective density of the
porous domain, γ̃ is a new coupling term and defined in the works Panneton and Atalla (1997b) and Atalla et al. (1998).

The discrete form of dynamic equation of the coupled system is done by Eq. (6).

[
[K]− ω2 [M ] − [C]

− [C]
t

1
/
ω2 [H]− [Q] + [A]

]{
u
p

}
=

{
0

[A] pb

}
(6)

where [K] is the phase solid stiffness matrix and [M ] is the phase solid mass matrix of the Porous-Acoustic material. the
matrix [H] is the volumetric matrix of the Porous-Acoustic material domain and [Q] are the phase fluid compressibility
matrix. The rectangular matrix [C] is the coupling matrix among the solid and fluid phases in the poroelastic material. In
a compact form, the Eq. (6) can be rewritten as:

[DA]{U} = {F} (7)

where [DA] is the dynamic matrix coupled to waveguide contribution and can be expressed as [DA] = [D] + [A]. The
dynamic matrix of poroelastic phase is [D] and the contribution of the waveguide is expressed for [A].

The Equation System (7) is solved to determine the dynamic response {U}, using direct solution method for each
frequency value. In this formulation, [DA] is complex, symmetric and frequency dependent. Each mode has four degrees
of freedom: three displacements and one pressure. The computational cost of this solution can be prohibited for large 3D
problems. In this case, partitioning techniques can be used. The porous material acoustic performance is evaluated by the
absorption coefficient:

α(ω) =
Πdiss

Πinc
(8)

where α is the acoustic absorption coefficient, Πdiss represents the dissipated potential and Πinc is the incidence poten-
tial (Sgard et al., 2005). The absorption coefficient α is a real and frequency dependent function. In a finite element
formulation, the dissipative potential Πdiss is determined as follows:

Πdiss =
1

2
ωℑ

(
{U}t[D]{U}

)
(9)

and the incident potential can be calculated as:

Πinc =
S|p20|
2ρ0c0

(10)

where S represents the transversal section of the tube.
Another important result of vibroacoustic is the surface acoustic impedance Zn. The acoustic impedance is the ratio

of acoustic pressure p and the normal velocity vn. In a frequency domain, the impedance function over the surface S is
done by:

Zn(ω) =

∫
Γ

p (x, y) dS∫
Γ

vn (x, y) dS
(11)

In a dynamic context, the normal velocity can be calculated as:

vn = jω (hUn + (1− h)un) (12)

where h is the porosity of the porous material sample, Un and un represent the normal displacements of the fluid and
solid phase over the surface S, respectively.

In the next section, the modal decomposition technique is presented.
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4. POROUS-WAVEGUIDE APPROACH

For the waveguide domain, one analytical model defined in Eq.(13) and determined by a discrete formulation described
in (Castel, 2005) is used. The coupling of the porous-acoustic numeric model with the semi-analytic waveguide model is
obtained by the imposition of pressure continuity at the porous-acoustic interface. Using the concept of the admittance
operator A from point P1 to point P2, as defined by Eq.(13), (Sgard et al., 2005), it is possible to represent the waveguide
domain using a modal superposition for the Admittance operator A given by:

A (P1, P2) =
∑
m,n

kmn

ρ0ωNmn
ψmn (P1)ψmn (P2) (13)

where ω is the frequency, ψmn represents the orthogonal modal shape of the transversal section of the waveguide, Nmn

is the quadratic norm of the modal shape and kmn is the wavenumber of the propagation wave in the Kundt tube. The
acoustic pressure p is written as the sum of the incidence average pressure pb = 2p0 and the radiated pressure from the
porous-acoustic interface.

In Figure (2), it is presented the harmonic mode shapes ψmn(x, y) of the rectangular tube section. The modes are
plotted by (m,n) series order and specific normalization Nmn.

m = 0, n = 0 m = 0, n = 1 m = 0, n = 2

m = 1, n = 0 m = 1, n = 1 m = 1, n = 2

m = 2, n = 0 m = 2, n = 1 m = 2, n = 2

Figure 2. Orthogonal Geometric Modes of rectangular section Lx × Ly

The boundary integral form of the acoustic interface, shown in Eq. (3), can be calculated using the modal discretization
of the waveguide, shown as follows:

∫
Γa

1

ω2ρ0

∂p

∂n
δp dΓ =

1

iω

∫
Γpa

∫
Γpa

A (P1, P2) p (P2) δp (P1) dΓ2 dΓ1−
1

iω

∫
Γpa

∫
Γpa

A (P1, P2) pb (P2) δp (P1) dΓ2 dΓ1

(14)

The admittance operator A is projected on the element mesh of the porous-acoustic interface. The effects of the local
admittance matrix can be assembled in the global numeric model, resulting in an equivalent fluid coupling represented by
coupling waveguide matrix [A].

5. FULL ACOUSTIC MODEL

This method is based on the Norm ASTM-E-1050 (1998). That uses an impedance tube with a sound source connected
to one end and the test sample mounted at the other end. In this application, the acoustic pressure is determined by finite
element discretization of the Kundt tube environment. After the pressure field in the tube is calculated, it is proceed
the estimation of the absorption coefficient. The method is based on the transfer function value H among two pressure
responses provided from two points in the domain acoustic inside the tube. This way, the coefficient of reflection R can
be determined by Eq. (15) as follows:
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R =

(
H − e−jks

ejks −H

)
e2k(l+s) (15)

where k is the wave number, s is the distance of the microphones and l is the distance among the surface of absorbing
material and the microphone nearest the sample. Therefore, the coefficient of absorption α can be evaluated by:

α = 1− |R2| (16)

In Equation (17), it is described a relevant relationship of specific impedance and the coefficient of reflection.

Zn

ρ0c0
=

1 +R

1−R
(17)

In the next section, the methodologies for determination of acoustic absorption function are evaluated by numerical
simulations.

6. NUMERICAL TESTS

The evaluation of the methods consists in the absorption and impedance frequency functions of a rectangular section
cell with dimensions 0.085 x 0.085 m and thickness is 0.115m. There is a rectangular perforation of 0.0283 m in all
extension of the sample. For the present procedure, the domain is divided in meshes of eight-node tree-dimensional
elements. It is implemented a porous-acoustic system coupled to the acoustic waveguide excitation and a full acoustic
domain. In this paper, the numeric tests were performed using porous material properties given in Table (1).

Table 1. Properties of typical Poroelastic Materials.

Material ν ηs N [kN/m2] h ρs[kg/m
3] α∞ σ[Ns/m4] Λ[µm] Λ′[µm]

GlassWool 0.3 0.055 55 0.97 31 2.52 87000 37 119
RockWool 0.0 0.1 2200 0.94 130 1.06 40000 56 110

In Figure (3), it is presented the influence of the modes employed in the modal superposition approach. By convergence
analysis, it was calculated several acoustic absorption responses for two different material samples. The average acoustic
impedance over the porous-acoustic interface is used to validate the modal approach with respect the full acoustic domain
discretization. The same result of impedance function was found for both methodologies and it is presented in Fig. (4).
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Figure 3. Convergence of absorption response with the modal superposition approximation
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Figure 4. Acoustic Impedance of the Poroelastic Material Samples

The next results consist in the evolution of pressure and solid displacement in the longitudinal section of porous-
acoustic cell systems with the variation of frequency value. In this context, the pressure field of the Rock Woll perforated
sample is plotted in Fig. (5) and the displacement resultant is presented in Fig. (6). The results are presented in real and
imaginary part solutions.

Real - 200 Hz Real - 400 Hz Real - 600 Hz Real - 800 Hz Real - 1000 Hz

Imag - 200 Hz Imag - 400 Hz Imag - 600 Hz Imag - 800 Hz Imag - 1000 Hz
Figure 5. Evolution of the Pressure with frequency

Real - 200 Hz Real - 400 Hz Real - 600 Hz Real - 800 Hz Real - 1000 Hz

Imag - 200 Hz Imag - 400 Hz Imag - 600 Hz Imag - 800 Hz Imag - 1000 Hz
Figure 6. Evolution of the Solid Displacement with frequency
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7. CONCLUSIONS

In this work, typical absorbing materials were performed in a Kundt tube by numerical methods. A convergence
analysis of modal superposition for rectangular acoustic cavities was evaluated. For the numerical tests presented in
this work, a few number of modes is necessary to reach a tolerable convergence. It can be noted, the number of modes
is dependent of domain size and frequency range of analysis. The semi-analytical model of waveguide propagation
is adapted in a finite element mesh and this approach was validated with a full acoustic discretization model. In this
context, several numerical analysis were done in order to determine the dynamic response of acoustic pressure and solid
phase displacement in the porous-acoustic system. For the poroelastic materials perforated samples, the absorbing curves
obtained presented interesting evolutions. Thus, the absorbing cell system proposed has a good performance of acoustic
absorption in the low frequency domain. Further works will include experimental analysis, axi-symmetric analysis for
circular section tubes and studies about the influence of the material parameters in acoustic absorption process.
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