

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL MESTRADO EM RECURSOS HÍDRICOS

UDINART PRATA RABELO

SEGURANÇA HÍDRICA NO CEARÁ: ANÁLISE DE CENÁRIOS E DE ALTERNATIVAS DE INTERVENÇÃO

FORTALEZA 2017

UDINART PRATA RABELO

SEGURANÇA HÍDRICA NO CEARÁ: ANÁLISE DE CENÁRIOS E DE ALTERNATIVAS DE INTERVENÇÃO

Dissertação apresentada ao Departamento de Engenharia Hidráulica e Ambiental do Curso de Engenharia Civil da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Mestre em Recursos Hídricos

Orientador: Prof. Iran Eduardo Lima Neto, Ph.D.

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará
Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

R114s Rabelo, Udinart Prata.

Segurança Hídrica no Ceará: Análise de Cenários e de Alternativas de Intervenção / Udinart Prata Rabelo. – 2017.

208 f.: il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Fortaleza, 2017.

Orientação: Prof. Dr. Iran Eduardo Lima Neto.

1. Segurança Hídrica. 2. Demandas Hídricas. 3. Ofertas Hídricas. 4. Gestão dos Recursos Hídricos. 5. Semiárido. I. Título.

CDD 627

UDINART PRATA RABELO

SEGURANÇA HÍDRICA NO CEARÁ: ANÁLISE DE CENÁRIOS E DE ALTERNATIVAS DE INTERVENÇÃO

Dissertação apresentada ao Departamento de Engenharia Hidráulica e Ambiental do Curso de Engenharia Civil da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Mestre em Recursos Hídricos

Aprovada em: 22 / 06 / 2017

BANCA EXAMINADORA

Prof. Dr. Iran Eduardo Lima Neto (Orientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Francisco Osny Enéas da Silva (Membro Interno) Universidade Federal do Ceará (UFC)

Prof. Dr. Cristiano das Neves Almeida (Membro Externo) Universidade Federal da Paraíba (UFPB)

À minha mãe, Ticiana, que está presente em todos os momentos de minha vida e a quem devo tudo que sou.

AGRADECIMENTOS

À Deus, pelo dom da vida.

Aos meus pais, Ticiana e Flávio, ao meu irmão, Flávio Filho, à minha avó, Conceição, e às minhas tias, Renata e Tatiana, por todo o amor e carinho dedicados, pelo apoio e incentivo durante todos esses anos e por me ensinarem todos os valores na formação de quem sou hoje.

Ao meu orientador, Prof. Iran, pela grande ajuda e contribuição, pelo aprendizado em conjunto, pelo incentivo dado nos últimos cinco anos e meio, correspondendo ao período de graduação e de transição para o mestrado, e pela compreensão e conselhos dados, tanto nas orientações quanto no futuro profissional.

Aos meus professores do Mestrado em Recursos Hídricos do DEHA, que me forneceram toda a base e entendimento dos problemas relativos à água no estado, repassando seus conhecimentos com muita dedicação.

Ao Eng. Sousa Neto, que me apresentou sua experiência e me deu suporte no entendimento dos problemas relativos à água no Ceará, me incentivando como professional a sempre continuar estudando e me tornando cada vez mais competente e capacitado.

Às pessoas da Companhia de Gestão dos Recursos Hídricos do Estado do Ceará – COGERH, que se disponibilizaram a ajudar com informações e dados acerca da gestão dos recursos hídricos do Ceará.

Às pessoas da VBA Tecnologia e Engenharia S/A, que me deram todo o seu apoio e sua disponibilidade na recuperação dos projetos realizados para contribuição na gestão dos recursos hídricos do estado.

Aos meus amigos de curso, tanto de graduação quanto de pós-graduação, que me acompanharam nessa caminhada e me incentivaram a seguir buscando minhas conquistas.

A todos as pessoas que de alguma forma contribuíram para este trabalho, me apoiando, incentivando, auxiliando na revisão do texto e sugestões de correções.

A todos que estiveram comigo nesses anos e me auxiliaram em mais essa etapa da vida, o meu muito obrigado.

"Grandes realizações não são feitas por impulso, mas por uma soma de pequenas realizações." (Van Gogh)

RESUMO

A seca é um problema que tem causado prejuízos à população do Ceará desde o seu povoamento. Historicamente o estado tem sofrido com a variabilidade interanual de chuvas, passando por vários períodos de escassez, o que causa falta de água para consumo populacional, perda de lavouras e consequentemente intensa migração. Entre os anos de 2012 e 2016, o estado passou por um período de seca prolongada, com precipitações abaixo da média histórica durante a quadra chuvosa, período de maior ocorrência de chuvas no estado, com o agravante de três desses cinco estarem entre os dez anos com menores precipitações observadas no Ceará. A consequência direta desse período de escassez prolongada foi o quase esvaziamento dos reservatórios do estado, principais responsáveis pela manutenção hídrica. Tal fato acendeu o alerta para a busca de novas alternativas para o estado na mitigação das secas que historicamente ocorrem, tendo como base soluções já utilizadas em outros países e quem têm obtido sucesso com relação à falta de água, inclusive em cenários de disponibilidade e infraestrutura piores que o do Ceará. Nesse sentido foi adotada uma metodologia para análise dos cenários de oferta x demanda, com um horizonte de estudo entre os anos de 2020 e 2050, considerando as previsões de crescimento das principais demandas e as alternativas de ofertas já utilizadas em outros países e que têm obtido resultado. As demandas e ofertas, calculadas em bilhões de metros cúbicos, foram projetadas e comparadas ano a ano entre 2020 e 2050, a partir da combinação das alternativas de mitigação, tanto para cenários normatizados, quanto para cenários de secas severas pontuais e secas prolongadas. Complementar às análises técnicas foi feito um comparativo de custos de implantação de cada uma das alternativas. A combinação dessas duas análises gerou um ranking das alternativas de mitigação, de modo a selecionar as mais efetivas e que deverão concentrar os esforços do estado em termos de investimento. A Transposição do Rio São Francisco e a melhoria da eficiência dos sistemas de irrigação se apresentaram como as melhores soluções para segurança hídrica do estado durante o horizonte de estudo. O investimento nas águas subterrâneas, no reuso de água e na diminuição da demanda populacional possuem uma importância maior para os cenários futuros e para situações de secas prolongadas. A dessalinização da água do mar foi a alternativa com menor efeito, principalmente por ainda ser complexa e de elevado custo, mas também possui importância em cenários futuros. Os maiores déficits hídricos foram encontrados nos anos finais de cada década.

Palavras Chave: Segurança Hídrica. Demandas Hídricas. Ofertas Hídricas. Gestão dos Recursos Hídricos. Semiárido. Ceará.

ABSTRACT

Drought is a problem that has affected the population of Ceará state since its settlement. Historically the state has suffered from the interannual variability of rainfall, facing several periods of scarcity, which cause water shortage for population consumption, loss of crops and consequently intense migration. Between the years of 2012 and 2016, the state went through an extended drought period and all these years presented rainfall below the historical average during the rainy season, the period of greatest rainfall in the state, and three of these five were among the ten years with the lowest rainfall observed in Ceará. The direct consequence of this period of extended scarcity was the almost emptying of the reservoirs, the main ones being responsible for water maintenance. This fact turned on the alert for the search for new alternatives in the drought mitigation that historically occurs, based on solutions already used in other countries and those who have been successful in the lack of water, even in availability and infrastructure scenarios worse than Ceará. Therefore, a methodology was adopted to analyze the scenarios of water supply and demand, with a horizon spanning from 2020 and 2050. Several forecast models of growth population, industrial, irrigation, tourism and animal water demand were used. For water supply, the alternatives already used in other countries and that have obtained positive results have been considered in this study. The water demands and supplies, calculated in billions of cubic meters, were projected and compared year by year between 2020 and 2050, from the combination of mitigation alternatives for standardized scenarios and scenarios of severe annuals droughts and extended interannual droughts. Complementary to the technical analysis a comparison was made for costs of implementation of each one of the alternatives. The combination of these two analyzes generated a ranking of the mitigation alternatives, in order to select the most effective and that should concentrate the efforts of the state in terms of investment. The São Francisco River Transposition and the improvement of the efficiency of irrigation systems were presented as the best solutions for water security in the state during the study horizon. The investment in groundwater, in water reuse and the reduction of population demand have a greater importance for the future scenarios and for extended drought situations. The desalination of sea water was the alternative with less effect, mainly because it is still complex and costly, but it is also important in future scenarios. The largest water deficits were found in the final years of each decade.

Keywords: Water Security. Water demand. Water supply. Management of Water Resources. Semiarid. Ceará.

LISTA DE FIGURAS

Figura 1.1 – Percentual de Volume Armazenado pelos Reservatórios Separados por Bacia no Estado do Ceará no Final de 2016	23
Figura 1.2 – Mapa do Ceará com Indicação dos Municípios em Estado de Emergência Devido à Seca	26
Figura 2.1 – Visão Geral do Açude Cedro no ano de 1906	35
Figura 2.2 – Vista Aérea do Açude Castanhão no ano de 2004	39
Figura 2.3 – Visão Geral do Projeto do Cinturão de Águas do Ceará	56
Figura 2.4 – Formas Potenciais de Reuso de Água	69

LISTA DE TABELAS

Tabela 1.1 – Ordem de Chuvas Abaixo da Média no Estado do Ceará	20
Tabela 1.2 – Quadra Chuvosa para o Ano de 2016 no Ceará	. 21
Tabela 1.3 – Distribuição de Reservatórios por Bacias em Percentuais Acumulados	24
Tabela 1.4 – Evolução da Vazão Liberada pelos 7 Maiores Reservatórios do Ceará	24
Tabela 1.5 – Evolução dos Rios e da Extensão Perenizada no Ceará	25
Tabela 1.6 – Evolução da Vazão Liberada para Perímetro Irrigados no Ceará	25
Tabela 1.7 – Evolução da População Atendida pela Operação Carro-Pipa do Exército Brasileiro no Estado do Ceará	27
Tabela 2.1 – Reclassificação das Grandes Secas entre 1724 e 1845 do Estado do Ceará Segundo Gabaglia (1877)	
Tabela 2.2 – Açudes Construídos pelo DNOCS durante o Século XX	. 37
Tabela 2.3 – Compilação da Cronologia da Seca no Estado do Ceará	41
Tabela 2.4 — Demandas Hídricas por Bacia Hidrográfica do Ceará no Ano 2000	44
Tabela 2.5 — Ofertas Hídricas por Bacia Hidrográfica do Ceará no Ano 2000	45
Tabela 2.6 – Demandas dos Estados do Nordeste Apresentados no Ano de 2012 pela ANA	. 46
Tabela 2.7 – Demanda Média para Abastecimento Urbano nas Regiões Brasileiras	. 46
Tabela 2.8 – Projetos de Transposição de Águas ao Redor do Mundo	54
Tabela 2.9 – Resumo da Quantidade e da Capacidade Total dos Reservatórios da Regiã Nordeste Monitorados pela Agência Nacional de Águas	
Tabela 2.10 – Custos de Investimento da Disponibilização de Água por Barragens no Ceará	. 58
Tabela 2.11 – Custos de Disponibilização de Águas Subterrâneas no Ceará	64
Tabela 2.12 – Custos de Disponibilização do Efluente de ETE (Lagoas de Estabilização) para Reuso no Ceará	
Tabela 3.1a – Consumo Per Capita por População do Munícipio no Brasil	. 75
Tabela 3.1b – Consumo Per Capita por População do Município no Ceará	75
Tabela 3.2 – Projetos de Irrigação Implantados no Estado do Ceará	. 77
Tabela 3.3 – Projetos de Irrigação em Implantação no Estado do Ceará	78
Tabela 3.4 – Projetos de Irrigação em Estudo no Estado do Ceará	79
Tabela 3.5 – Evolução de Empregos Formais da Indústria do Ceará de 2000 a 2008	84
Tabela 3.6 – Comparação entre o Método dos Percentuais de Crescimento e os Valores Fornecidos pelo FIEC para o Ano de 2007	
Tabela 3.7 – Coeficientes de Demanda Específicos por Tipo de Indústria	85

Tabela 3.8 –	Demanda Hídrica por Município no Ano de 2010 para a Indústria Difusa
Tabela 3.9 –	Efetivos dos Rebanhos do Ceará e Crescimento Anual do BEDA 2002 – 2007
Tabela 3.10 –	Efetivos dos Rebanhos do Ceará e Crescimento Anual do BEDA 2009 – 2014
Tabela 3.11 –	Modelo Fornecido pela COGERH para o Monitoramento Realizado nos Açudes do Estado do Ceará
Tabela 3.12 –	Modelo de Planilha de Cálculo Realizado para Obtenção da Vazão e do Volume Liberados pelos Reservatórios Monitorados pela COGERH para cada Ano – Açude Castanhão no Ano de 2011
Tabela 3.13 –	Relação de Açudes Monitorados pela COGERH
Tabela 3.14 –	Poços Escavados por Bacia Hidrográfica no Estado do Ceará
Tabela 3.15 –	Situação de Funcionamento dos Poços do Estado do Ceará
Tabela 3.16 –	Síntese de custos de referência da água no Ceará (R\$ agosto de 2001)
Tabela 3.17 –	Síntese de Custos Médios para Alternativas de Mitigação da Seca
Tabela 3.18 –	Síntese de Volumes de Água Fornecidos ao Sistema para as Alternativas de Mitigação da Seca no Ceará
Tabela 4.1 –	Consolidação da Demanda de Abastecimento Humano do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.2 –	Consolidação da Demanda de Irrigação do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.3 –	Consolidação da Demanda Industrial do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.4 –	Consolidação da Demanda de Turismo do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.5 –	Consolidação do BEDA para o Ceará entre 2020 e 2050
Tabela 4.6 –	Consolidação da Demanda de Dessedentação Animal do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.7 –	Consolidação da Demanda Hídrica Normatizada do Ceará
Tabela 4.8 –	Oferta Hídrica Anual dos Açudes Monitorados pela COGERH de 1993 a 2016
Tabela 4.9 –	Consolidação da Oferta Hídrica dos Reservatórios do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.10 –	Vazão Ofertada pelos Poços do Ceará em 2016
Tabela 4.11 –	Consolidação da Oferta Hídrica dos Poços do Ceará em m³/s e em bilhões de m³ anuais
Tabela 4.12 –	Consolidação da Oferta Hídrica da Transposição do Rio São Francisco para o Ceará em m³/s e em bilhões de m³ anuais

Tabela 4.13 –	Consolidação da Oferta Hídrica da Dessalinização da Água do Mar para o Ceará em m³/s e em bilhões de m³ anuais	115
Tabela 4.14 –	Consolidação da Oferta Normatizada do Ceará	116
Tabela 4.15 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Normatizado para o Horizonte de Estudo no Ceará	117
Tabela 4.16 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 1 para o Horizonte de Estudo no Ceará	119
Tabela 4.17 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 2 para o Horizonte de Estudo no Ceará	120
Tabela 4.18 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 3 para o Horizonte de Estudo no Ceará	121
Tabela 4.19 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 1 para o Horizonte de Estudo no Ceará	123
Tabela 4.20 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 2 para o Horizonte de Estudo no Ceará	124
Tabela 4.21 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 3 para o Horizonte de Estudo no Ceará	125
Tabela 4.22 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 4 para o Horizonte de Estudo no Ceará	126
Tabela 4.23 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 1 para o Horizonte de Estudo no Ceará	128
Tabela 4.24 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 2 para o Horizonte de Estudo no Ceará	129
Tabela 4.25 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 3 para o Horizonte de Estudo no Ceará	130
Tabela 4.26 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 4 para o Horizonte de Estudo no Ceará	131
Tabela 4.27 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 5 para o Horizonte de Estudo no Ceará	132
Tabela 4.28 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 6 para o Horizonte de Estudo no Ceará	133
Tabela 4.29 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 7 para o Horizonte de Estudo no Ceará	134
Tabela 4.30 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 8 para o Horizonte de Estudo no Ceará	135
Tabela 4.31 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 9 para o Horizonte de Estudo no Ceará	136
Tabela 4.32 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 10 para o Horizonte de Estudo no Ceará	137
Tabela 4.33 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 11 para o Horizonte de Estudo no Ceará	138

Tabela 4.34 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 12 para o Horizonte de Estudo no Ceará	139
Tabela 4.35 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 1 para o Horizonte de Estudo no Ceará	141
Tabela 4.36 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 2 para o Horizonte de Estudo no Ceará	142
Tabela 4.37 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 3 para o Horizonte de Estudo no Ceará	143
Tabela 4.38 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 4 para o Horizonte de Estudo no Ceará	144
Tabela 4.39 –	Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 5 para o Horizonte de Estudo no Ceará	145
Tabela 4.40 –	Síntese de Custos para as Alternativas de Mitigação da Seca no Ceará para o Horizonte de Estudo no Ano de 2050	147
Tabela 4.41 –	Ranking de Alternativas para Investimento de Mitigação da Seca no Ceará	148
Tabela 4.42 –	Demanda Populacional por Bacia Hidrográfica de 2020 a 2050	150
Tabela 4.43 –	Demanda de Irrigação por Bacia Hidrográfica de 2020 a 2050	151
Tabela 4.44 –	Demanda Industrial por Bacia Hidrográfica de 2020 a 2050	151

LISTA DE GRÁFICOS

Gráfico 1.1.	_	Evolução do Reservatório Equivalente na Região Nordeste	19
Gráfico 1.2	_	Comparação da Precipitação Anual entre Nordeste e Ceará	17
Gráfico 1.3	_	Evolução do Aporte Hídrico dos Reservatórios Monitorados pela COGERH de 1986 a 2016	22
Gráfico 1.4	_	Volume Armazenado nos Reservatórios Monitorados pela COGERH	23
Gráfico 2.1	_	Crescimento da Capacidade de Dessalinização Diária entre 1965 e 2011	61
Gráfico 2.2	_	Distribuição das Plantas de Dessalinização no Mundo no Ano de 2012	61
Gráfico 2.3	_	Evolução da Taxa de Perda de Água em Fortaleza	68
Gráfico 4.1	_	Evolução Anual Estimada do Volume Total Liberado pelos 153 Reservatórios Monitorados pela COGERH	112
Gráfico 4.2	_	Evolução da Oferta x Demanda de Água no Cenário Normatizado no Ceará .	117
Gráfico 4.3	_	Evolução da Oferta x Demanda de Água no Cenário Otimista 1 no Ceará	119
Gráfico 4.4	_	Evolução da Oferta x Demanda de Água no Cenário Otimista 2 no Ceará	120
Gráfico 4.5	_	Evolução da Oferta x Demanda de Água no Cenário Otimista 3 no Ceará	121
Gráfico 4.6	_	Evolução da Oferta x Demanda de Água no Cenário Pessimista 1 no Ceará	123
Gráfico 4.7	_	Evolução da Oferta x Demanda de Água no Cenário Pessimista 2 no Ceará	124
Gráfico 4.8	_	Evolução da Oferta x Demanda de Água no Cenário Pessimista 3 no Ceará	125
Gráfico 4.9	_	Evolução da Oferta x Demanda de Água no Cenário Pessimista 4 no Ceará	126
Gráfico 4.10	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 1 no Ceará .	128
Gráfico 4.11	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 2 no Ceará .	129
Gráfico 4.12	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 3 no Ceará .	130
Gráfico 4.13	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 4 no Ceará .	131
Gráfico 4.14	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 5 no Ceará .	132
Gráfico 4.15	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 6 no Ceará .	133
Gráfico 4.16	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 7 no Ceará .	134
Gráfico 4.17	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 8 no Ceará.	135
Gráfico 4.18	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 9 no Ceará.	136
Gráfico 4.19	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 10 no Ceará	137
Gráfico 4.20	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 11 no Ceará	138
Gráfico 4.21	_	Evolução da Oferta x Demanda de Água no Cenário Combinado 12 no Ceará	139
Gráfico 4.22	_	Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará	141

Gráfico 4.23 – Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará	142
Gráfico 4.24 – Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará	143
Gráfico 4.25 – Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará	144
Gráfico 4.26 – Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará	145

SUMÁRIO

1	INTRODUÇÃO GERAL	16
1.1	Contextualização	16
1.2	Problema de Pesquisa	28
1.3	Objetivos	29
1.3.1	Objetivo Geral	29
1.3.2	Objetivos Específicos	29
2	REVISÃO BIBLIOGRÁFICA	30
2.1	Um Breve Histórico da Seca no Estado do Ceará	31
2.2	Discussões Sobre Segurança Hídrica	42
2.3	Alternativas de Combate à Seca	51
3	METODOLOGIA	71
3.1	Demandas Hídricas do Estado do Ceará	71
3.1.1	Abastecimento Humano	71
3.1.2	Irrigação	76
3.1.3	Indústria	81
3.1.4	Turismo	87
3.1.5	Dessedentação Animal	88
3.2	Ofertas Hídricas para o Estado do Ceará	90
3.2.1	Reservatórios	90
3.2.2	Água Subterrânea – Poços	96
3.2.3	Transposição do Rio São Francisco + Cinturão de Águas do Ceará	97
3.2.4	Dessalinização da Água do Mar	98
3.3	Cenários Oferta x Demanda no Ceará até 2050	99
3.4	Comparação de Custos das Alternativas no Horizonte de Estudo	103
4	RESULTADOS E DISCUSSÕES	106
4.1	Demandas Hídricas Consolidadas no Ceará para o Horizonte de Estudo	106
4.2	Ofertas Hídricas Consolidadas no Ceará para o Horizonte de Estudo	111
4.3	Cenários de Simulação Oferta x Demanda no Ceará	116
4.4	Comparação de Custo para Aplicação das Alternativas	146
5	CONCLUSÃO	
	REFERÊNCIAS	158
	APÊNDICES	

1 INTRODUÇÃO GERAL

1.1 Contextualização

A escassez de chuvas no Nordeste brasileiro não é um problema atual. As mudanças climáticas ocorridas nos últimos anos ao redor do globo, em especial o aquecimento global, trouxeram a discussão com relação as consequências para o número de secas, em especial as prolongadas. Apesar disso, o problema da ocorrência de anos consecutivos em que as precipitações são baixas em certos lugares preocupa a população há muito tempo. Os fatores principais para a não ocorrência de chuvas são: o relevo local da região, que naturalmente impede as massas de ar quente e úmida agirem causando precipitações, e fatores globais, como o aquecimento anômalo das águas do oceano Pacífico, alterando os padrões de vento e deslocamento de massas de ar, fenômeno conhecido para a população dessa região como El Niño, sendo um dos efeitos deste a intensificação da seca. Os longos períodos de estiagem são os responsáveis pelos prejuízos às populações dessas regiões, como falta de água para consumo humano, para irrigação e para criação de animais.

Com o passar do tempo e o desenvolvimento de novas tecnologias, as medições e previsões das chuvas tornaram-se mais confiáveis. Com os estudos realizados, os próprios mecanismos responsáveis pela chuva no Nordeste brasileiro (NEB) começaram a ser melhor avaliados. A Zona de Convergência Intertropical, as frentes frias e as ondas de leste são os mecanismos mais conhecidos que provocam chuvas no NEB (MOLION & BERNARDO, 2000; MOLION & BERNARDO, 2002). É de conhecimento comum que o período de chuvas no Nordeste ocorre somente no primeiro semestre do ano e os meses em que ocorrem está diretamente ligado a cada um desses fenômenos citados. Além disso, os padrões de circulação dos ventos ao redor do globo tem influência direta nas precipitações do Nordeste.

Segundo Trenberth (1997) os estudos de circulação global permitiram a descoberta de uma anomalia com as águas do oceano Pacífico. Tais anomalias na temperatura da superfície do mar no Pacífico Equatorial provocam um deslocamento das zonas de alta pressão global, fazendo com que uma dessas atinja diretamente o Nordeste brasileiro, impedindo que as precipitações ocorram. Com o passar dos anos, a descoberta desse fenômeno, denominado El Niño, e o surgimento de secas cada vez mais severas, definiu-se o El Niño como o grande fenômeno responsável pela seca no NEB. A previsão das chuvas tornou-se diretamente dependente das ocorrências do El Niño, que pode ocorrer em diferentes intensidades.

Um outro aspecto muito discutido atualmente é a influência do aquecimento global nas secas ao redor do mundo. De imediato espera-se que as secas passem a ser mais frequentes. Alguns estudos, como os de Dai (2013) apontaram um acréscimo das secas ao redor do globo, com os índices de aridez sendo aumentados desde 1950 e a relação precipitação-evaporação sugerindo um maior risco de secas no século XXI. Em contrapartida, Sheffield *et al.* (2012) apresentam um resultado contraditório em relação ao anterior: houve apenas uma pequena mudança nas frequências e severidades das secas nos últimos 60 anos ao redor do mundo. Trenberth *et al.* (2014) apresentam uma análise diferente das citadas: como os modelos ainda possuem dificuldades e incertezas, as conclusões com relação ao efeito do aquecimento global devem ser feitas cuidadosamente ao utilizar tais modelos.

O estado do Ceará é um dos mais atingidos pela escassez de chuvas no Nordeste brasileiro. Nos anos entre 2012 e 2016 o estado foi atingido por uma seca prolongada de 5 anos, ligando o alerta para a atual situação hídrica. Por exemplo até o início do ano de 2017, segundo publicação dos Decretos Oficiais do Estado (D.O.E.) do Ceará realizadas pelo Governo Federal, por meio da Secretaria Nacional de Proteção e Defesa Civil, foi reconhecida situação de emergência para 130 dos 184 municípios do estado devido à falta de água.

Segundo a Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME), as chuvas do Ceará em todos os anos do período 2012 – 2016 ficaram abaixo da média entre fevereiro e maio, com destaque para os anos de 2012 e 2016, apresentando desvios de -49,7% e -45,2% respectivamente em relação à normal climatológica. Este período é conhecido como a quadra chuvosa cearense, visto que as chuvas nos outros meses são pouco frequentes. Tais dados confirmam que o estado passou por 5 anos consecutivos de escassez de chuvas. Mesmo não sendo essa década a pior em termos de médias chuvosas registradas desde 1950, segundo a FUNCEME, a situação é preocupante, visto que secas prolongadas possuem um efeito maior sobre a infraestrutura hídrica do estado do que secas mais fortes, mas mais espaçadas.

Além das péssimas médias de chuva, a situação dos reservatórios no estado é bastante preocupante, uma vez que estes são os grandes responsáveis pela manutenção hídrica. Até o início de janeiro do ano de 2017, os 153 reservatórios monitorados pela Companhia de Gestão dos Recursos Hídricos (COGERH), com capacidade de 18,64 bilhões de metros cúbicos, possuíam um percentual de acúmulo de apenas 6,63%, o que representa 1,23 bilhões de metros cúbicos. Sem essa reserva hídrica, não é possível a regularização dos rios cearenses, o que torna crítica a situação do estado. Convém notar que segundo Lima Neto *et al.* (2011), a quantidade de reservatórios, considerando pequenos e médios, construídos no estado do Ceará aproximase dos 30.000, sendo uma das regiões mais densas em termos de quantidade de açudes por área

do mundo. Apesar dessa grande quantidade, os reservatórios de pequeno e médio porte são capazes somente de regularizações intraanuais, dado o grande percentual de evaporação de água no estado. A regularização interanual nos rios do Ceará é feita pelos reservatórios de grande porte, monitorados pela COGERH, com destaque para os açudes Castanhão, Banabuiú e Orós, que juntos possuem capacidade de armazenamento de 10,24 bilhões de metros cúbicos, 55% do potencial do estado do Ceará.

Diante do problema da seca, o estado do Ceará foi um dos que mais investiu em obras de infraestrutura no último século. Segundo os dados apresentados pela COGERH, no século XX, 92 açudes públicos foram construídos com capacidade total de armazenamento de 8,2 bilhões de metros cúbicos, 403,74 km de adutoras, 102 km em eixos de integração (canais e adutoras) e 11.028 poços. Já no presente século, o ritmo de investimento continua alto, com 26 reservatórios com capacidade total de 8,4 bilhões de metros cúbicos para armazenamento de água, com destaque para o açude Castanhão que sozinho tem potencial para acumular 6,7 bilhões de metros cúbicos, 825,83 km de adutoras, 321,31 km em eixos de integração (canais e adutoras) e 5.148 poços até o ano de 2016, além da principal obra de infraestrutura hídrica do país em andamento, a Transposição do rio São Francisco, com a integração regional ao Cinturão de Águas do Ceará. Apesar de todos os esforços, toda essa estrutura não se apresentou suficiente para a seca iniciada no ano de 2012.

Esse cenário apresentou-se em todos os estados do Nordeste brasileiro. O Gráfico 1.1 apresenta uma comparação entre o reservatório equivalente, conceito que define os reservatórios acima de 10 hm³ utilizados para fornecimento de água como se fossem um só, da região e de alguns dos respectivos estados. Dos dados apresentados pela Agência Nacional de Águas (ANA), o estado do Ceará foi o que apresentou a queda mais vertiginosa no nível do seu reservatório equivalente, saindo de um percentual de acúmulo de 53,4% em 2012 para 7,7% em 2016. Nesse mesmo período, a região Nordeste brasileira apresentou uma queda de 44,9% para 17,3% de 2012 a 2016. Ceará, Paraíba e Rio Grande do Norte foram bastante afetados pelo período de estiagem, enquanto Bahia e Piauí não sofreram impactos tão grandes.

As precipitações abaixo da média em relação à região Nordeste não são uma novidade para o estado do Ceará. Os dados de precipitação fornecidos pela ANA, montados no Gráfico 1.2, mostram a evolução de precipitação média anual comparando-se Nordeste e Ceará, comprovando que o total anual precipitado no estado foi sempre menor que a média encontrada para a região entre os anos de 2007 e 2016. O gráfico também mostra que dos últimos dez anos, sete apresentaram chuvas abaixo da média histórica, com apenas os anos de 2008, 2009 e 2011 apresentando chuvas acima da média histórica do estado do Ceará.

60,0 % % de Volume no Reservatório Equivalente 50,0 % 40,0 % 30,0 % 20,0 % 10,0 % 0,0 % Pernambuc Rio Grande Bahia Ceará Paraíba Piauí Nordeste do Norte 0 **2**012 32,7 % 53,4 % 45,1 % 35,6 % 52,7 % 56,4 % 48,9 % 2013 31,5 % 36,2 % 31,8 % 25,6 % 40,2 % 38,7 % 34,8 % **2**014 44,3 % 25,0 % 25,4 % 20,4 % 39,2 % 34,1 % 28,8 % **2**015 45,9 % 14,5 % 16,7 % 14,6 % 20,6 % 36,2 % 22,7 % **2**016 53,2 % 7,7 % 10,9 % 12,4 % 53,9 % 16,9 % 17,3 %

Gráfico 1.1 – Evolução do Reservatório Equivalente na Região Nordeste

Fonte: Agência Nacional de Águas (ANA)

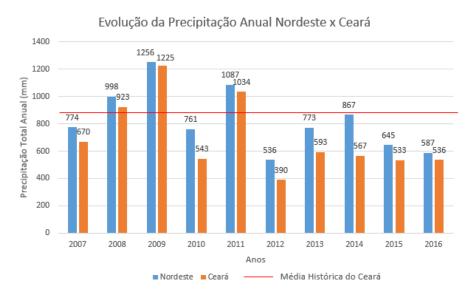


Gráfico 1.2 – Comparação da Precipitação Anual entre Nordeste e Ceará

Fonte: Agência Nacional de Águas (ANA)

Dos estudos apresentados pela FUNCEME relativos a ordem de anos em que as precipitações foram mais baixas, considerando-se a seca mais recente, iniciada em 2012, 3 anos

encontram-se entre os dez piores em termos de precipitação média observada na quadra chuvosa: 2012, 2013 e 2016. A Tabela 1.1 apresenta a ordem completa dos dez piores anos.

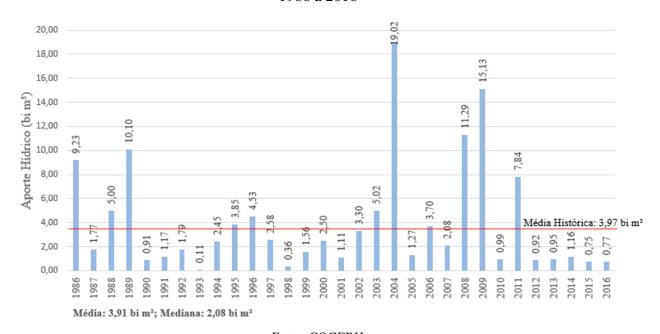
Tabela 1.1 – Ordem de Chuvas Abaixo da Média na Quadra Chuvosa do Estado do Ceará

Ordem	Ano	Precipitação Média (mm)	Desvio Média Histórica (%)
1 °	1958	206,9	-65,9
2 °	1998	241,5	-59,8
3 °	1993	289,3	-51,8
4 °	1951	297,3	-51,1
5 °	2012	302,5	-49,7
6°	2010	302,3	-49,6
7 °	1983	307,9	-48,8
8 °	2016	329,3	-45,2
9 °	2013	364,4	-39,3
10°	1970	370,3	-39,0

Fonte: FUNCEME

Dos relatórios de análise das precipitações das quadras chuvosas do Ceará, apresentados pela FUNCEME, para os últimos 5 anos, apresenta-se na Tabela 1.2 a quadra chuvosa de 2016, a oitava pior dos dez piores anos e a segunda pior do período mais recente, considerada entre 2012 e 2016. A análise da tabela mostra a variabilidade das chuvas nas diversas regiões do estado. Na região do Sertão Central e Inhamuns e em Jaguaribana, os resultados da quadra chuvosa apresentaram os valores mais críticos, enquanto o Litoral do Pecém e o Litoral de Fortaleza apresentaram resultado de praticamente o dobro da precipitação em relação a esses dois últimos. Em comum estão os valores abaixo da média histórica em todas as regiões, onde o Litoral do Pecém apresenta o menor desvio percentual, sendo 25,1% menor que sua média histórica na quadra chuvosa, e Jaguaribana, que apresentou o maior desvio percentual, sendo de 54,4% menor que sua média histórica na quadra chuvosa. O Ceará como um todo apresentou um resultado geral de 45,2% das precipitações na quadra chuvosa abaixo dos valores encontrados para sua média histórica. Em resumo, os resultados das precipitações nas quadras chuvosas para os anos da seca recente apresentam os seguinte resultados de desvio em relação à média histórica para o Ceará como um todo: -50,7 % no ano de 2012, -37,7% no ano de 2013, -24,0% no ano de 2014, -30,6% no ano de 2015 e -45,2% no ano de 2016.

Tabela 1.2 – Quadra Chuvosa para o Ano de 2016 no Ceará


2016	Precipitação (mm)	Fevereiro	Março	Abril	Maio	Fev- Mai
	Normal	161,2	267,2	237,2	119,3	784,9
Litoral Norte	Observado	97,6	137,6	188,7	56,1	480
	Desvio %	-39,5%	-48,5%	-20,4%	-53,0%	-38,8%
	Normal	129,4	233,7	206,4	111	680,5
Litoral do Pecém	Observado	90,9	147,1	215,5	56,2	509,7
	Desvio %	-29,8%	-37,1%	4,4%	-49,4%	-25,1%
	Normal	145,8	252,6	259,3	148,4	806,1
Litoral de	Observado	80,9	137,7	213,7	58,8	491,1
Fortaleza	Desvio %	-44,5%	-45,5%	-17,6%	-60,4%	-39,1%
	Normal	126,8	212	217,4	136,5	692,7
Maciço de Baturité	Observado	111,3	79,6	133	52,1	376
	Desvio %	-12,2%	-62,5%	-38,8%	-61,8%	-45,7%
	Normal	145,7	234,8	205	95,5	681
Ibiapaba	Observado	60	158,5	99,9	51,4	369,8
•	Desvio %	-58,8%	-32,5%	-51,3%	-46,2%	-45,7%
	Normal	114,5	193,7	180,3	100,3	588,8
Jaguaribana	Observado	55,7	94,4	85,5	32,6	268,2
	Desvio %	-51,4%	-51,3%	-52,6%	-67,5%	-54,4%
	Normal	166,8	218,4	173,7	63,6	622,5
Cariri	Observado	39,3	231	33,4	52,2	355,9
	Desvio %	-76,4%	5,8%	-80,8%	-17,9%	-42,8%
	Normal	105,3	174,1	153,9	69,6	502,9
Sertão Central e	Observado	28,4	106,5	58,4	46,4	239,7
Inhamuns	Desvio %	-73,0%	-38,8%	-62,1%	-33,3%	-52,3%
	Normal	118,6	203,4	188	90,6	600,6
Ceará	Observado	53	129,8	98,1	48,3	329,2
	Desvio %	-55,3%	-36,2%	-47,8%	-46,7%	-45,2%

Fonte: FUNCEME

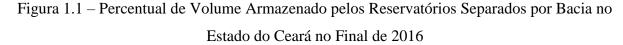
O impacto direto da escassez de chuvas é sentido nos reservatórios do estado, principais responsáveis pelo abastecimento hídrico das regiões do Ceará. O aporte hídrico dos reservatórios monitorados pela COGERH nos últimos 5 anos teve média de 0,91 bilhões de m³ por ano. O Gráfico 1.3 apresenta a evolução do aporte desde 1986 a 2016 dos reservatórios monitorados pela COGERH. Na seca mais recente, os aportes encontrados foram de 0,92

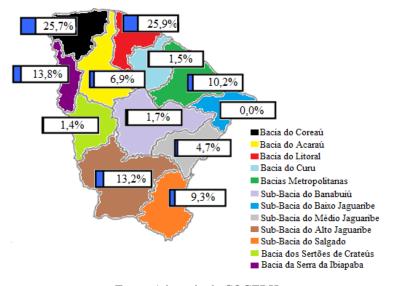
bilhões de m³ para o ano de 2012, 0,95 bilhões de m³ para o ano de 2013, 1,16 bilhões de m³ para o ano de 2014, 0,75 bilhões de m³ para o ano de 2015 e 0,77 bilhões de m³ para o ano de 2016. Todos esses valores muito distantes da média histórica de 3,97 bilhões de m³ anuais.

Gráfico 1.3 – Evolução do Aporte Hídrico dos Reservatórios Monitorados pela COGERH de 1986 a 2016

Fonte: COGERH

Além das precipitações abaixo da média, as grandes taxas de evaporação, tanto nos meses em que ocorrem as chuvas, quanto nos meses do ano em que não ocorrem chuvas, e as altas demandas do estado, atendidas em grande parte pelos reservatórios, influenciaram no agravamento dos efeitos da estiagem no Ceará. Com isso os reservatórios, além de não receberem recarga adequada, ainda perderam grande parte de sua capacidade por evaporação, causando a diminuição drásticas dos mesmos com o atendimento da demanda. O Gráfico 1.4 apresenta a evolução do percentual armazenado pelos reservatórios do estado desde o ano de 2011. Os dados fornecidos pela COGERH mostram que o nível dos reservatórios reduziu de 85,15% para 6,90% do final de 2011 ao final de 2016.


Uma análise por bacias também se faz necessária. No início de 2017, 136 açudes dos 153 monitorados pela COGERH apresentavam volumes abaixo de 30%. A Figura 1.1 apresenta o mapa de bacias e a porcentagem de acúmulo de água nos reservatórios da região no final do ano de 2016. Nota-se que a região central apresenta um volume de acúmulo praticamente nulo, enquanto que a zona do litoral ainda apresenta volumes acumulados


correspondentes a 25% da capacidade. A Tabela 1.3 apresenta a situação atualizada em agosto de 2016 pela COGERH para a distribuição dos reservatórios por bacias hidrográficas, dividindo em níveis percentuais de reserva: 0 – 10%, 10% - 30%, 30% - 50%, 50% - 80% e 80% - 100%, além de apresentar quantos açudes encontravam-se em situação de volume morto e quantos estavam completamente secos. Dos 153 açudes, 43 já haviam atingido o volume morto, enquanto 23 estavam completamente secos. Com relação ao percentual de reserva, 88 açudes apresentavam níveis entre 0 e 10% e 38 açudes entre 10% e 30%, enquanto por outro lado apenas 14 encontravam-se com níveis entre 50% e 80% e apenas 4 açudes encontravam-se com níveis acima de 80%, sendo esses reservatórios de passagem, mantidos artificialmente cheios.

100,00% 85,15% Vível dos Reservatórios (%) 71,12% 80,00% 60,00% 48,58% 32,50% 40,00% 20,00% 12,20% 6,90% 0,00% 2011 2012 2013 2014 2015 2016 Ano

Gráfico 1.4 – Volume Armazenado nos Reservatórios Monitorados pela COGERH

Fonte: COGERH

Fonte: Adaptado de COGERH

Tabela 1.3 – Distribuição de Reservatórios por Bacias em Percentuais Acumulados

BACIA	0% - 10%	10% - 30%	30% - 50%	50% - 80%	80% - 100%	Total	Vol. Morto	Seco
Alto Jaguaribe	12	8	2	2	0	24	7	3
Salgado	5	8	1	1	0	15	2	0
Banabuiú	16	2	0	1	0	19	8	6
Médio Jaguaribe	13	2	0	0	0	15	6	4
Baixo Jaguaribe	1	0	0	0	0	1	0	0
Acaraú	8	4	1	2	10	15	3	2
Coreaú	1	5	2	2	0	10	3	0
Curu	12	0	0	1	0	13	4	6
Sertões do Crateús	9	0	0	1	0	10	4	1
Metropolitanas	8	6	1	3	2	20	7	0
Litoral	3	2	2	1	2	10	1	1
Serra da Ibiapaba	0	1	0	0	0	1	0	0
Total	88	38	9	14	4	153	46	23

Fonte: COGERH

Juntando-se os 7 maiores açudes do estado, responsáveis pelo armazenamento de 12 bilhões de m³, o equivalente a 64,6% da capacidade total de armazenamento, a vazão liberada pelos mesmos caiu de 60,7 m³/s anuais para 15,81 m³/s anuais, de 2012 a 2016, uma queda de 74% na vazão liberada. Os dados fornecidos pela COGERH são apresentados na Tabela 1.4.

Com a diminuição da vazão liberada pelos reservatórios, a quantidade de rios perenizados no Ceará caiu vertiginosamente. De 2012 a 2016, a quantidade de rios perenizados caiu de 89 para 28, com uma diminuição de 78% da extensão de perenização: em 2012 havia 2479 km de rios perenizados no estado, enquanto em 2016 esse valor caiu para 557 km. Os dados fornecidos pela COGERH são apresentados na Tabela 1.5, que apresenta a evolução da quantidade de rios e a distância perenizada entre 2012 e 2016.

Tabela 1.4 – Evolução da Vazão Liberada pelos 7 Maiores Reservatórios do Ceará

Reservatório	2011	2012	2013	2014	2015	2016
Castanhão	20,00	32,00	34,26	28,00	22,00	15,00
Orós	7,70	9,20	8,50	7,00	4,00	-
Banabuiú	10,00	9,00	9,00	7,50	0,08	0,12
Araras	5,40	5,00	4,50	3,00	0,52	0,45
Pentecoste	3,36	2,60	1,40	0,07	0,06	0,04
General Sampaio	1,80	1,40	1,20	0,15	0,15	0,12
Caxitoré	1,68	1,50	1,30	0,16	0,10	0,07
Vazões Anuais (m³/s)	49,94	60,70	60,16	45,88	26,92	15,81

Obs 1: No ano de 2016 o açude Orós operou transferindo água para o açude Castanhão

Obs 2: Vazões aprovadas através de alocação participativa

Obs 3: Entre 2013 e 2014 o açude Banabuiú contribuiu para o abastecimento da região metropolitana de Fortaleza

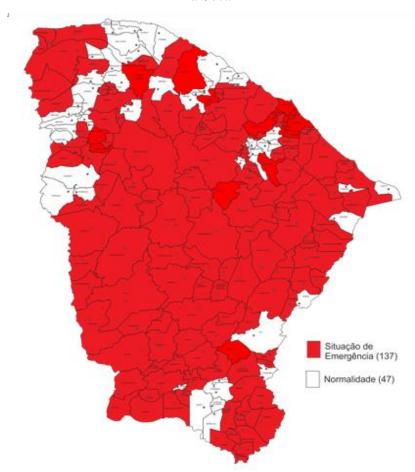
Fonte: COGERH

Tabela 1.5 – Evolução dos Rios e da Extensão Perenizada no Ceará

Situação Hídrica	2011	2012	2013	2014	2015	2016
N° de Açudes Monitorados	138	142	147	150	154	153
N° de Rios Perenizados	88	89	71	52	29	28
Extensão da Perenização (km)	2.535	2.479	2.166	1.460	680	557
Redução da Extensão (%)	-	-2,2%	-14,6%	-42,4%	-73,2%	-78,0%

Fonte: COGERH

É de conhecimento comum que a população do campo em geral tira o seu sustento da agricultura. O estado do Ceará é conhecidamente um exportador desse tipo de produto. Dessa forma a agricultura encaixa-se como a maior demanda de água do estado. O efeito direto da estiagem entre 2012 e 2016 é mostrado na Tabela 1.6, que apresenta a evolução dos perímetros irrigados nesses 5 últimos anos. Os dados fornecidos pela COGERH mostram que as vazões liberadas para os maiores perímetros irrigados do estado caiu de 22,95 m³/s para 3,58 m³/s, de 2012 a 2016, representando uma queda de 84,4% no volume de água disponibilizado para irrigação. Nota-se que desde 2015 a vazão liberada para 6 dos 8 principais perímetros irrigados do estado é nula ou praticamente nula.


Tabela 1.6 – Evolução da Vazão Liberada para Perímetro Irrigados no Ceará

Perímetro Irrigado	2012	2013	2014	2015	2016
Tabuleiro de Russas Fonte: Aç. Castanhão	2,80	2,50	2,20	2,02	1,35
Jaguaribe-Apodi Fonte: Aç. Castanhão	5,00	5,50	5,00	2,74	1,83
Morada Nova Fonte: Aç. Banabuiú	5,00	4,20	2,50	0,00	0,00
Araras-Norte Fonte: Aç. Araras	1,00	0,90	0,42	0,17	0,10
Baixo Acaraú Fonte: Aç. Araras	1,50	2,00	1,27	0,00	0,00
Curu-Pentecoste Fonte: Aç. General Sampaio e Pentecoste	2,20	1,45	0,00	0,00	0,00
Curu-Paraipaba Fonte: Aç. Pentecoste e Caxitoré	1,95	1,20	0,00	0,00	0,00
Icó-Lima Campos Fonte: Aç. Orós e Lima Campos	3,50	3,20	2,40	0,70	0,30
Vazões Anuais (m³/s)	22,95	20,95	13,79	5,63	3,58

Fonte: COGERH

Para o consumo residencial da população do campo a situação também é crítica. A defesa civil apresentou no início de 2017 uma atualização para os municípios que se encontram em estado de emergência. 137 municípios possuem situação reconhecida, enquanto que 47 apresentam normalidade em relação à falta de água. A Figura 1.2 apresenta um mapa do estado com a indicação dos municípios em situação de emergência por seca.

Figura 1.2 – Mapa do Ceará com Indicação dos Municípios em Estado de Emergência Devido à Seca

Fonte: Defesa Civil (2017)

As soluções utilizadas para os casos em que os municípios decretam estado de emergência devido à seca é a transferência, em caráter emergencial, da água de uma região para outra por meio de adutoras de montagem rápida e por meio de carros-pipa. Os dados levantados pelo exército brasileiro da evolução da quantidade de pessoas atendidas pela operação carropipa de 2012 a 2016 mostram que esse número subiu de 648.162 pessoas para 957.464 pessoas atendidas por carros-pipa. Isso mostra um aumento de 47,7% no número de pessoas atendidas,

o que representa 10,8% da população total do estado atendida pelos carros-pipa. Excluindo-se a região metropolitana de Fortaleza, que possui um atendimento diferenciado em termos de abastecimento hídrico, esse número de pessoas atendidas passa a representar 19,8% da população, ou seja, 20% da população do interior do estado está sendo atendida pelos carros-pipa do exército no início do ano de 2017, sendo esta uma solução crítica e emergencial. A Tabela 1.7 apresenta a evolução da quantidade de pessoas atendidas, os pontos de abastecimento e a quantidade de veículos disponibilizada pelo exército entre os anos de 2012 e 2016. Vale ressaltar que o exército brasileiro atua em distritos e comunidades rurais, enquanto que a defesa civil estadual apenas em sedes municipais, esta última atuando em 7 sedes até o momento. Os dados apresentados na Tabela 1.7 correspondem somente à população atendida pelo exército brasileiro.

Tabela 1.7 – Evolução da População Atendida pela Operação Carro-Pipa do Exército Brasileiro no Estado do Ceará

Situação	2012	2013	2014	2015	2016
População Atendida	648.162	810.877	858.636	874.147	957.464
Pontos de Abastecimento	7.744	9.682	11.290	14.510	15.997
Quantidade de Veículos	726	1.010	1.166	1.550	1.708

Fonte: COGERH apud Exército Brasileiro (2017)

Dos dados levantados dos últimos cinco anos percebe-se a gravidade em que se encontra o estado do Ceará em relação ao seu abastecimento hídrico. A população do campo sofre com a falta de água, implicando diretamente na redução de água disponível para agricultura familiar. Os perímetros irrigados que são responsáveis pelos produtos utilizados na exportação pelo estado também tiveram uma redução drástica em termos de abastecimento, o que impacta diretamente na economia. A própria população urbana, tanto na capital quanto no interior do Ceará encontram-se em estado inicial de racionamento, em termos de consumo humano. Dessa forma percebe-se que com a seca dos últimos cinco anos e com a possibilidade de secas cada vez mais severas no século que está começando, soluções mais definitivas e eficientes são necessárias para a solução do problema da escassez de água no estado. Para amenizar a situação da seca algumas soluções emergenciais podem ser adotadas: perfuração de poços, instalação de adutoras de montagem rápida, utilização de caminhões-pipa para distribuição; já para soluções mais definitivas podem ser adotadas transposições da água de grandes rios e dessalinização da água do mar. Dessas últimas, a transposições do Rio São Francisco já se encontra em fase de projeto e execução, que se integrará com o Cinturão de

Águas do Ceará, com obras também em andamento; o primeiro projeto de usina de dessalinização de água do mar no estado também teve seu edital publicado no ano de 2017. Tais obras serão de grande importância para a questão da seca no estado.

Nesse contexto, o presente trabalho tem por objetivo fazer uma análise de cenários demanda x oferta para avaliar a segurança hídrica do estado, em um horizonte de estudo até o ano de 2050, considerando alternativas para o problema da escassez das chuvas. Será realizada também uma análise técnica e financeira das ações que são e que podem ser utilizadas para solução definitiva, ou pelo menos de boa parte, da seca no estado do Ceará para o mesmo horizonte. Para tal estudo, serão levantadas informações técnicas e financeiras dos projetos que estão sendo desenvolvidos no estado, assim como as soluções que poderiam ser utilizadas para resolução do problema. Ao final essas soluções analisadas serão comparadas e ordenadas em termos de prioridade de investimento para os órgãos responsáveis pelo combate à seca.

1.2 Problema de Pesquisa

Diante do exposto no tópico introdutório, a seca no estado do Ceará é um fenômeno complexo e as causas deste possuem fatores tanto regionais, quanto globais. Isto impossibilita qualquer certeza com relação à quantidade de chuva que pode cair num dado ano na região, visto que tais fatores são controlados pela natureza.

Para análise e definição das ações a serem tomadas no combate à seca são realizadas análises estatísticas das precipitações ao longo dos anos. Além disso, outras variáveis climáticas são estudadas além das chuvas, por exemplo as temperaturas dos oceanos. Embora esses esforços tenham ajudado o ser humano no entendimento do problema, as séries históricas ainda são muito recentes e os dados em vários casos são escassos devido à dificuldade de obtenção dos valores em regiões de difícil acesso. A complexidade dos movimentos das massas de ar, que são influenciados pelas temperaturas dos oceanos, e a incerteza nos estudos estatísticos tornam quase impossível que se encontre uma solução definitiva para a falta de chuvas.

Dessa forma, a melhor maneira de amenizar o problema sem depender exclusivamente da natureza seria uma série de intervenções que garantissem as necessidades hídricas da população. Para o Ceará, tais intervenções podem ser a transposição das águas vindas do Rio São Francisco, a transposição das águas do Rio Tocantins, a dessalinização da água do mar, o aumento na quantidade de adutoras para transporte de água potável, a escavação de poços e a dessalinização dos mesmos que possuírem água salobra, o reuso de água e, em menor escala, a utilização dos carros-pipa. Podem ser feitas intervenções também na demanda,

visto que os percentuais de perda no consumo humano e no consumo da agricultura é bastante elevado e ações relacionadas à diminuição desses percentuais também seriam de grande ajuda para a falta de água. É necessário uma análise que compare ofertas e demandas ao longo do tempo para avaliar os impactos das alternativas e garanta a segurança hídrica do estado, seja em situações normais, seja em situações de secas prolongadas.

A grande dificuldade para a solução do problema também está no investimento que deve ser feito para cada uma dessas alternativas. Além dos problemas de viabilidade técnica e dos riscos ambientais inerentes a cada uma das soluções, existe também o viés financeiro, de modo que não há estudos consolidados que apresentem o real custo benefício para a população de cada uma dessas alternativas.

1.3 Objetivos

1.3.1 Objetivo Geral

O objetivo geral desse estudo é realizar uma análise da segurança hídrica no Ceará por meio da comparação da oferta e da demanda hídricas do estado ao longo do tempo.

1.3.2 Objetivos Específicos

- Elaborar um modelo de previsão de demandas ao longo do tempo para os vários tipos de demanda hídrica do estado do Ceará.
- Desenvolver modelos de previsão de ofertas hídricas ao longo do tempo no estado do Ceará considerando estrutura já em operação e projetos futuros.
- Analisar os efeitos ao longo do tempo das intervenções em demanda e oferta possíveis na mitigação dos efeitos da seca no Ceará.
- Comparar as intervenções hídricas e estabelecer uma classificação para as mais efetivas ao longo do tempo no combate à seca no Ceará.
- Comparar financeiramente as alternativas de demanda e oferta para mitigação dos efeitos da seca e estabelecer as mais viáveis do ponto de vista do custo.

2 REVISÃO BIBLIOGRÁFICA

Antes de iniciar qualquer descrição dos fenômenos surgidos a partir da seca é necessário primeiro defini-la. Existem várias definições de seca na literatura e o mais importante para entende-la inicialmente é que a seca pode ser dividida em vários tipos: seca climatológica, seca edáfica, seca social e seca hidrológica. Segundo Campos & Studart (2001) essas quatro são as secas mais comuns e é fundamental entender seus significados. Monzonis *et al.* (2015) definem os tipos de seca da seguinte forma:

Seca climatológica: é definida como uma diminuição contínua dos níveis de precipitação em relação aos níveis normais. Esse tipo de seca é a responsável pelo aparecimento dos outros tipos de seca, pois normalmente atinge grandes regiões. Essa diminuição das precipitações tem origem no comportamento global do sistema oceano-atmosfera, com fatores naturais e humanos exercendo forte influência.

Seca edáfica: é definida como o déficit de umidade nas zonas onde se encontram as raízes das culturas, podendo afetar as necessidades e o desenvolvimento das mesmas, levando assim à morte das plantações. Esse é o tipo de seca que afeta diretamente a região semiárida no Nordeste brasileiro, onde a população tira sustento diretamente da agricultura.

Seca social: é consequência direta da seca edáfica ou agrícola, cuja população sem ter de onde tirar o sustento passa a sofrer com a fome, já que a agricultura fica prejudicada. Com isso as famílias passam a sofrer um desmembramento, visto que é necessário migrar para outras regiões de modo a manter o sustento das famílias. Esse conjunto de características configura o que é conhecido por seca social.

Seca hidrológica: é definida como o período de baixas vazões em cursos d'água e baixos níveis em lagos e açudes, sendo esses níveis abaixo das normais hidrológicas da região. Esta seca está diretamente relacionada com o decréscimo dos níveis superficiais e subterrâneos das reservas de água em uma dada região. Com isso, apresenta-se uma situação de insuficiência de água com relação às demandas populacionais da região. Tal seca provoca o colapso dos sistemas de abastecimento de água e de irrigação.

Entendendo o significado dessas quatro principais seca, nota-se que o estado do Ceará, no período de 2012 – 2016, apresentou-se numa situação em que as quatro secas ocorreram simultaneamente, dada a baixa quantidade de precipitações que ocorreram nesses 5 anos; para entender a problemática da seca em sua totalidade foram divididos os diversos pontos da revisão bibliográfica.

Apresenta-se aqui uma revisão da literatura dividida em três partes: a primeira traz um histórico da seca no estado do Ceará, com as consequências e soluções encontradas para amenizar o problema; na segunda serão discutidas as ações de segurança hídrica realizadas no Ceará, no Brasil e no mundo, com os estudos, planos e políticas públicas para enfrentamento da situação em horizontes distintos; na terceira serão apresentadas as principais alternativas utilizadas no combate à seca, suas características, impactos e locais onde foram aplicadas

2.1 Um Breve Histórico da Seca no Estado do Ceará

A ausência de chuvas no semiárido nordestino traz preocupações ao seu povo desde que o homem começou sua ocupação nessa parte do território brasileiro. Segundo Pennington & Cech (2010) o desenvolvimento de uma população, de forma primária, passa diretamente pela presença de recursos naturais que possibilitem esse desenvolvimento. As primeiras civilizações humanas se desenvolveram próximas a rios que banhavam as terras e proporcionavam a utilização da agricultura como meio de obtenção de alimentos. Nesse contexto, a presença de água se mostra de fundamental importância para o progresso de uma civilização, como no Egito Antigo, onde seu povo se beneficiava das águas do rio Nilo e das populações que habitaram a Mesopotâmia, que utilizaram as águas dos rios Tigre e Eufrates.

Dessa forma, o desenvolvimento da região semiárida nordestina sempre foi prejudicada pela escassez das águas, apesar dos fatores políticos também apresentarem grande influência para o baixo desenvolvimento da região, conforme cita Rebouças (1997). No Nordeste brasileiro, um dos estados mais afetados pela instabilidade das chuvas é o Ceará. De fato, não é todo o estado que sofre com a falta de chuvas. A extensão da faixa litorânea cearense se estende por 573 km. As regiões próximas a essa faixa litorânea sofrem menos com a instabilidade das precipitações. Já as regiões centrais são fortemente atingidas nos períodos de seca, onde nesses períodos as chuvas se tornam realmente escassas. De fato, segundo Xavier & Xavier (1999) a chuva é o elemento climático mais importante para o semiárido, dado que a própria FUNCEME divide o estado em "regiões pluviometricamente homogêneas".

Essa situação acontece com quase todas os estados da região Nordeste. Isso dificultou inclusive os registros de escassez de chuvas nos primeiros séculos de habitação, dado que a ocupação do sertão se deu de forma demorada em relação ao litoral. Segundo Alves (2003) os primeiros relatos sobre a falta de chuvas e suas consequências foi feito pelo padre Fernão Cardim, que residindo em Pernambuco escreveu sobre uma seca ocorrida em 1583, afirmando que os engenhos não moeram, plantações de mandioca e canaviais morreram e muitos tiveram

de conviver com a fome no sertão desse estado. Nos séculos seguintes também houve carência de registros. Sombra (2008) afirma que no século XVII os anos identificados foram: 1603, 1608, 1614, 1645, 1652 e 1692. Já no século XVIII, com a ocupação maior do sertão nordestino, Carvalho *et al.* (1973) afirmam que ao longo do século as piores consequências ocorreram devido à alternância de escassez de chuvas e cheias entre os anos de 1721 e 1730. Sousa (2009) também afirma que segundo escritos de Rodolfo Teófilo, escritor da época, os anos de 1711, 1723-27, 1744-45 e 1776-77 foram anos de seca.

É no final do século XVIII que ocorre o primeiro relato de grande seca no estado do Ceará, ocorrida no ano de 1792. Segundo Alvargonzalez (1984), um terço da população do sertão acabou morrendo no decurso da seca. As chuvas foram poucas nos anos de 1791 e praticamente nulas nos ano de 1792.

No século XIX, mesmo ainda não sendo tão confiáveis, os anos de seca passam a ter mais relatos e em períodos mais específicos. Sombra (2008) cita os períodos de 1804, 1809-10, 1824-25, 1844-45 e 1877-79. Sousa (2009) também cita os mesmo períodos, que segundo escritos de Rodolfo Teófilo, foram anos de escassez de chuvas no estado, mudando-se somente as durações: 1809, 1824-27, 1844-45 e 1877-79, estas duas últimas coincidindo.

Mesmo com todos os relatos, o problema da falta de chuvas nem sempre foi a maior preocupação do governo cearense. Segundo Sousa (2009), até o final do século XIX, a maior preocupação das autoridades era com a violência vigente no estado. O marco que muda a visão quanto à gravidade do problema da escassez de chuvas, tanto da população, quanto do governo, é a seca de 1877-1879. Nesse período os três anos seguidos com ausência de chuvas, no que era chamado ainda de província, fez com que houvesse uma intensa migração da população do interior para as regiões menos atingidas pela seca, como a capital Fortaleza, Baturité e Aracati (MIRANDA, 2013).

Essa seca conseguiu repercussão na imprensa nacional, o que a transformou no marco citado. Além da repercussão nacional, a proporção das migrações ocorridas foram inimagináveis para a época, trazendo graves problemas para a capital cearense. A grande concentração de retirantes agravou o problema da miséria, com o aumento do número de pedintes. A violência também foi agravada, com o aumento do número de saques às propriedades. As epidemias também aumentaram, dadas as condições de vida desumanas em que os retirantes tinham de viver. Importante notar que as migrações não foram exclusividade apenas desse período. Os relatos de seca em 1792 mostram que uma parte da população migrou para as terras úmidas do Piauí, enquanto que em 1825 as migrações dos sertanejos foram ainda mais longe, atingindo o Pará (SOUSA, 2009).

Nesse período, segundo Ribeiro (1999), ocorreu o crescimento do "Nordeste algodoeiro", no sertão, substituindo o "Nordeste açucareiro", da zona da mata. Tal fato dá maior visibilidade ao semiárido, tornando qualquer problema na região passivo a maior repercussão. A mudança proporciona o aparecimento de uma elite econômica formada pelos "coronéis" do sertão, em detrimento dos barões do açúcar. Nisso surge também a nova imagem do Nordeste, representada pelo latifúndio do sertão, com uma imagem rústica e pobre.

Segundo Oliveira (1981), com a força das ideias deterministas em crescimento na época, é vulgarizado o discurso de que as condições físicas do semiárido nordestino, assolado pelas secas cíclicas, ideia defendida pelo senador Pompeu no estado do Ceará, é o maior responsável pelo subdesenvolvimento da região. Essa visão determinista clima ruim / atraso permeia o discurso da seca até hoje.

Nesse contexto surgem as primeiras soluções do governo para aliviar os efeitos da seca na população. O projeto Pompeu-Sinimbú ganha força, criado pelo senador Pompeu. Este propôs que a província utilizasse a mão de obra disponível, ou seja, dos desvalidos pela seca, na construção de obras públicas. O projeto se tornou uma grande ferramenta para angariar fundos do governo federal, afirmando que a seca era a grande responsável pelo subdesenvolvimento da região. O projeto então partia de dois pilares: socorros diretos, com a distribuição de alimentos para a população necessitada e socorros indiretos, com a utilização dessa mesma população como mão de obra, visto que a mesma não tinha como trabalhar na agricultura dada a seca que ocorria no interior. (SOUSA, 2009)

A seca, agora apresentada como catástrofe natural para toda a nação por meio da mídia da época, passava a ideia de que todas as regiões da província cearense eram atingidas pela falta de chuvas, mesmo isso não ocorrendo em certas partes, que mesmo com a estiagem prolongada não sofriam com o problema. Sousa (2009) afirma que a pressão do governo local a época era de que todos deviam migrar em busca dos socorros públicos. Isso se mostrou uma estratégia, tornando a população cada vez mais dependente desses socorros e alimentando os argumentos do governo da província para arrecadar recursos do governo federal e estimular a construção das obras públicas.

A seca no estado do Ceará acabou por sobrepujar-se a todos os outros problemas sociais, principalmente a violência. Dessa forma, tal problema possibilitou a atuação das elites locais na construção de obras públicas, como açudes, estradas, barragens e pontes. Era um meio de desenvolver a província utilizando a seca como plano de fundo. Uma visão mais crítica, apresentada por Ribeiro (1999) mostrou que as elites utilizaram desse argumento muito para benefício próprio, onde açudes e estradas eram construídos para benefícios de suas propriedades

privadas, como o açude Vacca Brava, sendo o mesmo um açude público, mas que beneficiava os proprietários de grandes terras na criação de gado.

Nessa época foi realizado um estudo na região acerca das alternativas mais indicadas para satisfazer as necessidades da população, tanto em termos de consumo próprio quanto para o gado e para a agricultura, em épocas de estiagem. Tal estudo foi realizado por uma comissão nomeada por Dom Pedro II, denominada Comissão da Seca e composta por uma equipe internacional e multidisciplinar (ALVARGONZALEZ, 1984).

É importante salientar que já durante o século XIX, a noção de grande seca e de ciclos de escassez de chuvas foi criticada por autores da época. Giácomo Raja Gabaglia decidiu estudar os anos que o senador Pompeu afirmou ser de grandes secas ou secas notáveis: 1724, 1778, 1792, 1809, 1817, 1825, 1827, 1837, 1841, 1845 e 1858. Das 11 datas citadas, Gabaglia notou que apenas 5 poderiam ser denominadas de grandes secas, enquanto que as outras foram provocadas por fatores que não a falta de chuvas. Gabaglia reclassificou os intervalos em que ocorreram o que ele denominou grande seca e chegou à conclusão que os episódios não eram cíclicos, muito menos respondiam a uma lei periódica, apresentando o resultado na Tabela 2.1 apresentada a seguir (SOUSA, 2009 *apud* GABAGLIA, 1877).

Tabela 2.1 – Reclassificação das Grandes Secas entre 1724 e 1845 do Estado do Ceará Segundo Gabaglia (1877)

Grandes secas	Intervalos
1724-1778	54 anos
1778-1792	14 anos
1792-1809	17 anos
1809-1817	08 anos
1817-1827	10 anos
1827-1845	18 anos

Fonte: SOUSA, 2009 apud GABAGLIA, 1877

Como não encontrou regularidade nas secas, Gabaglia chegou à conclusão que a teoria do senador Pompeu não passou de uma lei forçada para se aproveitar da falta de chuvas e afirmar que esse era o motivo do atraso no desenvolvimento da região. Da mesma forma ponderou outro fator que não justificava a seca ser o motivo do atraso no estado afirmando que não eram todas as regiões atingidas pela escassez de chuvas, como as serras de Meruoca, Ibiapaba, as zonas litorâneas e muitas outras que eram imunes à estiagem (SOUSA, 2009).

As decisões tomadas nesse período pós seca de 1877 tiveram bastante influência no rumo tomado pelos governantes do estado durante todo o século XX. A Comissão da Seca, criada pelo governo imperial, baseando-se nas experiências e modelos estrangeiros para a solução do problema, propôs a construção de reservatórios públicos e açudes no combate aos efeitos da estiagem (SOMBRA, 2008). A construção de açudes foi bastante incentivada na época e o primeiro grande açude a ser construído foi o Cedro, considerado o primeiro açude público do Brasil. Sua construção foi iniciada no ano de 1884, com término no ano de 1906. Atualmente a obra é considerada superdimensionada, mas ao longo dos anos o açude apresentou sangrias nos anos de 1924-25 e 1974-75. A Figura 2.1 apresenta uma ilustração do açude na época. Os investimentos iniciais não surtiram efeito no combate a estiagem na região, uma vez que nos anos 1888-89 uma nova seca teve início, atingindo o estado ainda com as obras em construção (SOUSA, 2009).

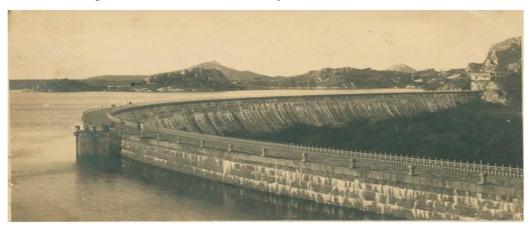


Figura 2.1 – Visão Geral do Açude Cedro no ano de 1906

Fonte: SOUSA, J. B. Quixadá: de fazenda à cidade. IBGE, Conselho Nacional de Estatística, 1960

Pode-se dizer que juntamente com a política de açudagem, que ganhava cada vez mais força, foram criadas as primeiras comissões de combate à seca, impulsionadas pela Lei Orçamentária criada no início do século XX, responsável por destinar uma parcela dos recebimentos da província para as obras contra a seca, proporcionando assim o aparecimento dessas obras. As primeiras comissões foram instaladas no ano de 1904: Comissão de Açudes e Irrigação, Comissão de Estudos e Obras Contra as Secas e Comissão de Perfuração de Poços. Essas comissões se uniram no ano de 1906 para a criação do primeiro órgão de combate à seca no estado, a Superintendência dos Estudos e Obras Contra os Efeitos da Seca. Tal órgão foi insuficiente no combate à seca, visto que uma análise das obras realizadas pelo governo federal mostrou que muitas demandaram bastante tempo para sua conclusão, vide caso do açude Cedro,

o que obrigou o governo a criar a Inspetoria de Obras Contra as Secas (IOCS) no ano de 1909 (SOMBRA, 2008). Dez anos depois, em 1919, a IOCS recebeu uma alteração, passando a denominar-se Inspetoria Federal de Obras Contra as Secas (IFOCS). Em seguida a IFOCS passou ao nome de Departamento Nacional de Obras Contra as Secas (DNOCS) em 1945, nome que permanece até os dias de hoje (RÊGO, 2008 *apud* ARAÚJO, 1990).

No século XX as medidas de chuva tornaram-se mais exatas, proporcionando uma análise melhor do problema da falta de precipitações no Ceará. Dessa forma foi possível identificar de forma confiável o volume precipitado e determinar os anos com maiores escassez. Xavier & Xavier (1984) utilizando-se dos conceitos de quantis estabeleceram um critério para definição dos anos considerados secos e muito secos. Em seu estudo Alves *et al.* (1998) afirmam que não há padrão canônico na distribuição sazonal de chuvas ao longo do estado nos anos de seca do século XX; isso quer dizer que em cada ano diferentes regiões são afetadas e não somente o sertão central. Alves *et al.* (1998) consideraram anos de seca extrema os anos em que os desvios anuais normalizados de precipitação entre os meses de fevereiro a maio apresentavam valores inferiores ou iguais a -40% de precipitação. Com uma compilação desse estudos definiram os anos 1911, 1915, 1919, 1928, 1930-32, 1936, 1941-43, 1951-54, 1958, 1966, 1970, 1979, 1983, 1993, 1998 como anos de seca.

Nesse mesmo século registra-se a construção de 92 açudes públicos no Ceará pelo DNOCS, sendo estes de médio a grande porte, como mostra a Tabela 2.2. Os que merecem maior destaque são o açude Orós e o açude Banabuiú, concluídos em 1961 e 1966 respectivamente. Mesmo a construção dessa grande quantidade de reservatórios não foi suficiente no que diz respeito ao combate eficaz da seca e a falta de estudos de posicionamento geográfico, além do próprio clima e relevo da região, proporcionando elevados índices de evaporação, acabaram sendo os principais motivos para que a solução apontada pela Comissão da Seca no início do século XX não estivesse sendo suficiente, fazendo com que outras alternativas fossem buscadas (SOUSA, 2009).

Sendo o estado que mais aproveitou o DNOCS para construção de reservatórios, o Ceará passou o século XX quase que dependendo exclusivamente das águas estocadas em seus reservatórios para ultrapassar as secas que ocorriam frequentemente. Como não se apresentava suficiente, uma nova gestão dos recursos hídricos na região se fez necessária e uma mudança de postura do governo estadual ocorreu no final do século, inicialmente no ano de 1987 com a criação da Secretaria de Recursos Hídricos (SRH), conjuntamente com a Superintendência de Obras Hidráulicas (SOHIDRA), consolidando-se como os principais órgãos executores de planos e obras hidráulicas para o estado. De 1988 a 1991 elaborou-se o Plano Estadual dos

Recursos Hídricos (PLANERH). Em 1992 ocorreu a promulgação da Lei Estadual dos Recursos Hídricos e em 1993 é criada a Companhia de Gestão dos Recursos Hídricos do Ceará (COGERH). Estes marcos definem uma nova política de gestão dos recursos hídricos no estado. (RÊGO, 2008).

Tabela 2.2 – Açudes Construídos pelo DNOCS durante o Século XX

Açude	Capacidade (10³ m³)	Ano de Conclusão	Açude	Capacidade (10³ m³)	Ano de Conclusão
Acarape do Meio	31.500	1924	Mundau	21.300	1988
Acarau Mirim	52.000	1907	Nova Floresta	7.610	1926
Adauto Bezerra	5.250	1984	Orós	1.940.000	1961
Aires de Sousa (Jaibara)	104.430	1936	Parazinho	2.602	1917
Alto Alegre	628	1921	Patos	7.550	1918
Amanary	11.010	1921	Patu	71.829	1987
Ant. Ferreira Antero (Fogareiro)	118.820	1996	Pau Preto	1.809	1960
Araras (Paulo Sarasate)	891.000	1958	Pedras Brancas	434.051	1978
Arrojado Lisboa (Banabuiú)	1.601.000	1966	Pereira de Miranda (Pentecoste)	395.638	1957
Atalho	108.250	1991	Poco Verde	13.650	1955
Baú	1.067	1917	Pompeu Sobrinho (Choró)	143.000	1934
Bonito	6.000	1924	Poço Salgado	400	1921
Brequedofe	272	1910	Poço da Pedra	52.000	1958
Caio Prado	2.215	1917	Podo do Barro	54.703	1956
Caiçaras	1.070	1988	Prazeres	32.500	1988
Carao	26.230	1980	Premuoca	5.203	1981
Caxitore	202.000	1962	Quinquê	7.130	1990
Cedro	125.694	1906	Quixabinha	31.780	1967
Chaval	569	1922	Quixeramobim	54.000	1960
Colina	3.250	1998	Rajada	4.000	1920
Cupim	4.550	1970	Realejo	31.551	1980
Diamante	13.200	1988	Riachinho	505	1920
Edson Queiroz (Serrote)	254	1987	Riacho do Sangue	61.424	1918
Ema	10.390	1932	Riachão	46.950	1981
Farias de Sousa	12.230	1983	Salão	6.049	1918
Favelas	30.100	1988	Santa Maria do Aracatiaçu	8.200	1923
Formosa	1.156	1932	Santo Antonio do Aracatiaçu	24.340	1924
Forquilha	50.132	1927	Santo Antonio de Russas	24.000	1927
Forquilha II	3.400	1988	Serafim Dias	43.000	1995
Frios	33.020	1989	Serrota	4.571	1943
Gaviao	32.900	1973	Sobral (Cachoeira)	4.675	1921
General Sampaio	322.200	1935	São Francisco	230	1920
Gomes	2.394	1967	São Gabriel	4.566	1965
Guaiúba	2.441	1916	São Mateus	10.340	1957
Hipolito	6.500	1975	São Miguel	1.400	1910
Jaburu II	116.000	1984	São Pedro Timbaúba	19.259	1916
Janguruçu	1.000	1922	São Vicente	9.845	1923
Jenipapeiro	17.000	1997	Tejucuoca	28.110	1990
Joaquim Távora (Feiticeiro)	26.773	1933	Thomas Osterne (Umari)	28.780	1982
Lagoa das Pombas	2.231	1910	Trici	16.500	1987
Lima Campos (Estreito I)	66.382	1932	Trussu	301.000	1996
Manoel Balbino	37.180	1985	Tucunduba	41.430	1919
Martinopole	23.200	1984	Velame	2.556	1920
Mocambinho	1.332	1910	Vierão	20.960	1988
Mons. José Cândido	3.963	1967	Várzea de Volta	12.500	1919
Mulungu	991	1917	Várzea do Boi	51.910	1954

Fonte: Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará (2017)

Na década de 90 do século XX já se percebe uma mudança nas políticas de recursos hídricos. As adutoras, a partir da criação da SRH/SOHIDRA, ganham importância e registra-se a execução de 70 adutoras nessa década, enquanto que apenas duas haviam sido construídas até

o ano de 1990. A escavação de poços, que desde a década de 80 havia ganho notoriedade, continua em ascensão, com a década de 90 sendo responsável pela escavação de 5.462 poços. Ganham destaque os estudos de dessalinização e transposição de rios, bem como a utilização dos canais de integração (COGERH, 2017).

A discussão acerca da importância dos pequenos e grandes reservatórios ainda gerava desconfianças. Durante a seca de 1993 ganhou força a construção de mais um açude de grande porte, que viria a ser o maior reservatório do estado, o açude Castanhão, com volume de 6,7 bilhões de m³. Segundo Campos (1999) os opositores da obra, além de criticarem o investimento numa obra considerada faraônica, cujo potencial acreditava-se nunca ser completamente utilizado, visto suas dimensões, acreditavam que seria mais satisfatório construir uma série de pequenos açudes ao longo da bacia onde seria construído o Castanhão. Além do elevado custo, criticavam também as altas taxas de evaporação que um açude de grande porte sofreria. Campos (1999) afirma que a eficiência hídrica de um grande reservatório com certo volume de armazenamento evapora menos que uma quantidade maior de pequenos reservatórios que armazenem essa mesma quantidade. Da mesma forma, afirma que os custos por vazão regularizada são menores para o caso dos grandes reservatórios. O mesmo conclui que a solução da seca não provém da utilização de uma ou outra solução, mas que cada uma possui um foco: para atravessar secas prolongadas, com estoque suficiente, deve-se utilizar grandes açudes; para fazer a distribuição entre pequenas e médias propriedades, os pequenos açudes são a melhor solução. A conclusão do Castanhão ocorreu no ano de 2003, tendo o mesmo atingido a capacidade máxima no ano seguinte, com as chuvas de 2004. A Figura 2.2 dá uma noção das dimensões desse reservatório e da sua área de inundação.

As obras de infraestrutura hídrica continuaram a todo vapor no final do século XX e início do século XXI. A construção de canais foi bastante utilizada após a instituição dos órgãos SRH/SOHIDRA. Os mais importantes foram: o Canal da Integração e o Eixão das Águas. O primeiro, construído no ano de 1993, motivado pela seca desse mesmo ano, captando as águas do açude Orós e transpondo as águas da bacia do Jaguaribe, garantido o abastecimento da região metropolitana de Fortaleza. O canal possui 113 km de extensão e conduz água a uma vazão de 6 m³/s. Com a mesma proposição, o segundo foi concluído em cinco trechos, com finalização no ano de 2012. Já este último canal possui extensão de 225 km e conduz uma vazão de 22 m³/s. Importante citar que os dois canais possuem grande importância para o abastecimento da capital do estado, mas não ajudam no combate à seca na região do sertão (COGERH, 2017).

Figura 2.2 – Vista Aérea do Açude Castanhão no ano de 2004

Fonte: Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará (2017)

A obra de maior destaque a partir do século XXI para o combate à seca no interior do estado do Ceará é a Transposição das Águas do Rio São Francisco. As discussões acerca da viabilidade de um projeto de tal porte vêm desde o início do século XIX. Na época, discutia-se qual política deveria ser seguida para mitigação dos efeitos das estiagens: construção de açudes ou a transposição do rio São Francisco. Venceu a primeira. Campos (1999) defende que naquele momento a decisão foi a mais acertada, visto as limitação técnicas da época, impediriam que o projeto pudesse ser feito da maneira correta, retardando ainda mais o processo de construção de açudes no Nordeste, que não deixam de ter fundamental importância como uma das ferramentas de combate à seca. Bahia (2006), Henkes (2014) *apud* Villa (2004) e Leite (2005) afirmam que a ideia não foi esquecida ao longo do século XX e vários estudos foram realizados ao longo do rio: em 1912, pelo IOCS; em 1980, durante o governo de Figueiredo; em 1994, durante o governo Itamar; em 1996, durante o governo FHC, destinando 500 milhões de reais na retomada do projeto; e principalmente no ano de 2014, durante o primeiro mandato do governo Lula, elegendo a transposição como uma das principais obras do seu governo.

O projeto pretende retirar águas do rio em dois pontos, conduzindo aos estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte. O eixo Norte é o responsável por conduzir as águas ao estado do Ceará, onde haverá a integração com o projeto do Cinturão de Águas do Ceará (CAC). Tal obra tem como objetivo receber as vazões do rio São Francisco e transpô-las para todas as macrobacias hidrográficas do estado. O CAC é um sistema adutor extenso, sendo dividido em três trechos, com cerca de 1.300 km de comprimento no total, quase integralmente sem bombeamento com trechos em canais em corte e/ou aterro, obras de travessia de talvegues e elevações topográficas através de sifões, aquedutos e túneis. Essa obra proporcionará ao estado 80% de beneficiamento em termos hídricos pelo Projeto de Integração do Rio São Francisco com o Nordeste Setentrional (PIRSF), e não somente as bacias do Jaguaribe e Metropolitanas, como previsto inicialmente no projeto. Dessa forma, quando associado ao projeto da transposição, do Canal da Integração e do Eixo de Integração, o CAC estabelecerá um verdadeiro cinturão ao redor do estado, contornando a maior parte dos municípios numa configuração espacial muito próxima a do Ceará (SRH, 2017).

O estado do Ceará passou por grandes transformações ao longo dos anos com a problemática da seca. Um resumo da seca pode ser enunciado da seguinte forma: no início do século XVI, passando pelos séculos XVII, XVIII não havia confiabilidade nos relatos de seca, era difícil mensurar a quantidade de chuva que caía e era difícil concluir que os problemas sociais eram causados diretamente por esta. No final do século XIX a seca passa a ser o maior problema para os governantes do estado. A partir do século XX as medidas de chuva passam a ser mais exatas, e a gravidade das secas que assolam o Ceará passa a ser estudado e identificado de forma mais confiável. É nessa época que uma grande quantidade de açudes públicos é construída, com execução do DNOCS. Mas é somente no final do século, percebendo que os reservatórios sozinhos não eram a solução do problema, que a seca é atacada de uma nova forma, com várias ações de infraestrutura. A seguir é apresentada a Tabela 2.3 com a cronologia da seca e as medidas tomadas em cada época para mitigação dos efeitos da seca.

Tabela 2.3 – Compilação da Cronologia da Seca no Estado do Ceará

Pedro Anos de Seca Situação Padre Femão Cardim, residindo em Não havia alermativas a epoca, os habitantes seca ocorrido no nordeste. Seculo XVII 1583 Pernambuco, descrevo e primeiro relato de socia ocorrido no nordeste. Seculo XVII 1644 Ocorriam em alguns períodos pedos Em relação ao período anterior, uma barenario a propulação maior primeiro relato de seca ocorreción no marcia mem alguns períodos pedos Em relação ao período anterior, uma barenario apulação entanda não primeiro pedos pedos Em relação ao período anterior, uma barenario apulação entanda não primeiro pedos de seca acontecem? Podemos considerar que arte o século XVIII 1744-45 Seculo XVIII 1776-77 Podemos população entante de chaise se escasos período se maior precoupação. O primeiro relato de desculo se comparado e propulação entante propu	CRONOLOGIA DA SECA NO ESTADO DO CEARÁ						
Século XVII 1583 Pernambuco, descreve o primerio relato de sofisim diretamente os impactos da falla de contra corrido no nordeste. Em relação ao período anterior, uma população como corriam em algams períodos pelos propulação eram forma ainda não haviam a como corriam em algams períodos pelos propulação eram forma ainda não haviam a população eram forma ainda não haviam a como corriam em algams períodos pelos para a minor recompação do sor primeiras fortas ainda se cos impactos na população eram diretos. Joaquim Abes Sorbaba 172327 A ocupação das zonas centrais do nordeste se intensifica o sor relatos de seca acontecement podemos considerar que aid o século XVIII 1776-77 em minor preocupação do sos primeiras fontes excusses foi população eram minor preocupação do sos promeiras do estado de la 179130 população acadou momendo. 179130 179130 179130 1884-45 179130 1884-45 1888-80 difinal dia poblema da escusace as escas es	Período	Anos de Seca			Fonte		
Século XVII 1883 Permambuco, descrive o primero relato de solaria diretamente os impactos da falta de seca corrido no nordeste. 1608 Carência de fortes confláveis. Os relatos optical, o maior já habitava o sertão central. 1645 1645 1652			Padre Fernão Cardim, residindo em	Não havia alternativas a época, os habitantes	Ioaquim Alvas		
Século XVIII 1613 Caréncia de fontes confideveis. Os relatos população maior já habítava o sertão central. 1614 docorriam em algams periodos pelos Da 1652 16	Século XVI	1583			*		
Século XVIII 1614 Curência de fortes confiáveis. Os relatos propulação muizo já abhativa o seráto central. Josquim Abes propulação muizo já abhativa o seráto central. Josquim Abes propulação eram diretos. 1692 1723-27 Interestincia e os relatos de seca acontecem propulação eram diretos. 2008) 2008 1744-45 1744-45 1776-77 1744-45 1746-47		1,000	seca ocorrido no nordeste.	chuvas na região.	(
Século XVIII 1645				Em relação ao período anterior, uma			
Século XVIII 1645 responsáveis pelas capitantais. População caram diretos. Info? 1652 responsáveis pelas capitantais. População eram diretos. População do problem da escase escase se escases ciclass. População eram diretos. População eram diretos	Século XVII -			* * * * * * * * * * * * * * * * * * *	*		
1692 A ocupação das zonas centrais do nordeste 1723-27 Seculo XVII 1723-27 A ocupação das zonas centrais do nordeste 1724-45 confáveis começam a aparecer no Ceard, come maior número. As primeiras fontes mais a problemática da seca foi ignorada pelos como escreve Rodolfo Teófilo, escritor da depoca, ainda nemera maior preocupação. O primeiro relato de degrande seca no Ceard ocorre no ano de 1791-93 população carabou morrendo. 1791-93 população carabou morrendo. 1809-10 Somente com a seca de 1877-79 e com a 1824-27 população carabou morrendo. Somente com a seca de 1877-79 e com a 1824-27 população escapa o escas esca	Século XVII						
Século XVIII 1723-27 A ocupação das zonas centrais do nordeste se intensifica e os relatos de seca acontecem maior número. As primeiras fotoses mais governantes do que na época, ainda nem era confláveis começam a aparecer no Ceará, governantes do que na época, ainda nem era come escreve Rodolfo Teófilo, escritor da un estado, apenas uma capitania. A legoca. A alternática de cheias e secasses foi população acabou morrendo. 1776-77 1804		1652	responsáveis pelas capitanias.	1	(2008)		
Século XVIII 1744-45		1692		população eram difetos.			
Século XVIII 1744-45 confidência começarma a paracer mo Ceard a governantes do que na época, a inda nem entra com escreve Roda la paracer mo Ceard a governantes do que na época, a inda nem entra com escreve Roda la paracer mo Ceard a governantes do que na época, a inda nem entra procupação. O primeiro relato de grande seca no Ceard ocorre no ano de população acabou morrendo. 1791-93 1792. com a afirmação de que 1/3 da população acobim morrendo. 1791-93 1792. com a afirmação de que 1/3 da população acabou morrendo. 1809-10 1824-27 noção de grandes secas e secas cíclicus 1844-45 sometic com a seca de 1877-79 e com a 1877-79 problema de secassez de chavas ganha 1878-79 problema de secassez de chavas ganha 1900 construção de obra para 1900 construção de obras públicos 1915 construção de obra para 1900 construção de obras públicos 1928 problemática da seca é cada vez mais 1930-32 discutida, de modo a achar uma solação 1936 1941-43 definitiva para o problema. A construção de sexudo incomplema de seca de lada vez mais 1936 1936 conceçam a ser busidos sola construção de sexudo sola finad do seculo 1951-54 suficiente e novas soluções mitigadoras 1951-54 suficiente e novas soluções mitigadoras 1998 rabalhador. 2001-02 O estado do Ceará toma-se neferência ma gestão dos recursos háfricos do seculo, como o Canal do 1983 Trabalhador. 2007 O estado do Ceará toma-se neferência ma gestão dos recursos háfricos e no combate a seca. Uma grande quantidade de obras de de aínda sofier diretamente os impactos da gestão dos recursos háfricos e no combate a seca. Borpulações mais afetuadas recebem a juda de caminhões-pipa, além de muitos recorrerma a escavações de poços. 2012-2016 201		1723-27		Podamos considerar que etá o sáculo VVIII	Ioaquim		
Século XVIII 1776-77				1	-		
Século XVIII 1776-77 Formation Especia A alternância de cheias e escassez foi população continuava a softer os impactos a maior procoupação. O primeiro relato de da escassez de chuvas e as contagens de população acabou morrendo. 1791-93 1792, com a afirmação de que 1/3 da assustar. Seculo XIX 1809-10 1809-10 1824-27 1844-45 1824-27 1844-45 1877-79 com la escassez de chuvas paria de seca no estado do Ceará. A seca de 1877 ganha repercussão nacional difindida pelo senador Pompeu, que orobema da escassez de chuvas garia difinad que a solução passa pelos socorror de la maior procupação do estado do bra para cidera de que solução passa pelos socorror de la ses problema no Ceará. A solução encontrada na época é a construção de obras para construção de obras problemática da seca é cada vez mais problemática da seca é cada vez mais problemática da seca é cada vez mais problemática de secavacións públicos não se mostra solução enconstruído no estado. Ao longo do século a problemática da seca é cada vez mais problemática da seca é cada vez mais que problema de secavacións públicos não se mostra soluçõe a começam a ser buscadas no final do século. Os principas são Oros e da transposição são construídos ma última década do século, como o Canal do Trabalhador. Século XXI 2001-02 O estado do Ceará toma-se referência na gestão dos recursos hídricos e no combate a poste de construídas em apoio sos reservatórios. Um novo aqued de grande social de ainda sofere diretamente os impactos da infraestrutura hídrica são iniciadas. Apesar de ainda sofere diretamente os impactos da rispactos da r		1744 45			•		
população continuava a softer os impactos colorados de escassez foi população continuava a softer os impactos continuava a softer os impactos de a escassez de chiuvas e as contagens de grande seca no Ceará ocorre no ano de mortos nesse período já começava a propulação acabou morrendo. 1804 Até esse século a seca não era a maior procupação dos governantes do estado. Somente com a seca de 1877-79 e com a noção de grandes secas e secas cíkicas, difundida pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão nacional o definidada pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão nacional o desculo a seca difundida pelo senador Pompeu, que o problema de escassez de chuvas ganha repercussão nacional o desculo a seca de la 877-79 e com a noção de grandes secas e secas cíkicas, difundida pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão nacional o desculo a ses problema no Ceará. A solução encontrada na época é a construção de aqueles públicos construção de obras paíblicos construção de obras públicos do construção de definitiva para o problema. A construção de definitiva para o problema. A construção de la directo de morto de acqueles públicos do problema da seca no estado: O sestado: O se principa são Ordos e construção problemá da seca no estado: O se problema da seca no estado: O se problema da seca no estado: O se setado: O se problema da seca no estado: O s	C41- XXIII	1744-43		I	Euclides da		
grande seca no Ceará ocorre no ano de mortos nesse período já começava a 1791-93 população acabou morrendo. 1809-10 Até esse século a seca não era a maior preocupação dos governantes do estado. Somente com a seca de 1877-79 e com a noção de grandes secas e secas cíclicas difundida pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão. Nesse período ganha força a idéia de que a solução passa pelos socorros diretos (tórnecimento de alimentos) e indiretos (tórnecimento de alimentos) e indiretos (tórnecimento de alimentos) e indiretos (túnicação da mão de obra para construção de e traves para discutida, de modo a achar uma solução de finitiva para o problema. A construção de finitiva para o problema a construção de finitiva para o problema. A construção de responsável pelo desenvolvimento da acutagem no estado. Os principais são Orós de finitiva para o problema compacto se seculo. Os principais são Orós de finitiva para o problema compacto se canais de transposição são construídos na útima década do século, como o Canal do Trabalhador. 2001-02 O estado do Ceará torna-se referência ma gestão dos recursos hídricos e no combate a seculo seculo porte é construído, o Castanhão. Novas alternativas surgem com a criação da infraestrutura hídrica são iniciados. Apesar como o Eixão das Águas. A Transposição do seca danida de camishões-pipa, além de muitos recorrerem a escavações de	Seculo AVIII	400 4 00	•		-		
1791-93 1792, com a afirmação de que 1/3 da população acabou mormendo. 1809-10 1809-10 1824-27 1824-27 1844-45 1869-10 1877-79 1888-89 1888-89 1898 1898 1898 1898 18		1//6-//		1			
População acabou morrendo. Até esse século a seca não era a maior procoupação dos governantes do estado. Somente com a seca de 1877-79 e com a noção de grandes secas e secas e cáclicas. A seca de 1877 ganha repercussão nacional e difindidad pelo senador Pompeu, que o problema da escassez de chuvas ganha repercusão. Nesse período ganha força idide de que a solução passa pelos socorros direitos (fornecimento de afimentos) e indireitos (utilização da mão de obra para construção de construção de construção de obras públicas). 1919				1	` ′		
1804 Até esse século a seca não era a maior preocupação dos governantes do estado. Somente com a seca de 1877-79 e com a noção de grandes secas e secas cíclicas difundida pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão. Nesse período ganha força sideia de que a solução passa pelos socorros directos (forecimento de almentos) e indiretos (utilização da mão de obra para construção de obras públicas). 1911		1791-93	,	assustar.	30usa (2009)		
Século XIX 1809-10 procupação dos governantes do estado. Somente com a seca de 1877-79 e com a 1824-27 noção de grandes secas e secas cícicas, difundida pelo senador Pompeu, que o problema da escassez de chuvas ganha repercussão. Nesse período ganha força a sideia de que a solução passa pelos socorros diretos (túrnecimento de alimentos) indiretos (túltização da mão de obra para construção de obras públicas). 1910 1915 1915 1915 1915 1915 1916		1804					
Seculo XIX 1844-45			preocupação dos governantes do estado.	No final do século XIX ocorre o marco que			
Século XIX 1844-45				1			
Século XIX 1877-9	Século XIX -			A seca de 1877 ganha repercussão nacional	_		
repercussão. Nesse período ganha força a dicia de que a solução passa pelos socorros diretos (ufilização da mão de obra para construção de acudes públicos, de modo a reservar água travessar os anos de estiagem. 1900 construção de obras públicas). Ecresce o número de açudes públicos de acudes públicos, de modo a reservar água atravessar os anos de estiagem. Ecresce o número de açudes públicos de acudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de racivessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de racivessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de açudes públicos de aruvessar os anos de estiagem. Ecresce o número de acudes públicos de obras de avez mais discrida, de modo a achar uma solução problemá da seca no restado. NOCS (1945). Esse último foi o grande responsável pelo desenvolvimento da expudsem no estado. Os principais são Oros e Banabuíú, atualmente segundo e terceiro maio de arus posição são construídos as emeraradorios da SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da SRH. Adutoras são construídos, o Castanhão. Novos alternativas surgem com a criação de infraestrutura hídri		1844-45		l ~			
1898 sicula de quie a solução passas peros socorros diretos (fornecimento de alimentos) e indiretos (utilização da mão de obra para construção de obras públicas). 1910 1928 1915 1928 1930-32 1936 1941-43 1951-54 1958 1966 1966 1970		1877-79	·	_	-		
1900 1900		1888-89			(2008) e		
1910 Cresce o número de açudes públicos		1898		1	Sousa (2009)		
1911 1915 Cresce o número de açudes públicos construído no estado. Ao longo do século a problemática da seca é cada vez mais definitiva para o problema. A construção de reservatórios públicos não se mostra suficiente e novas soluções mitigadoras começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do seculo, como o Canal do 1998 2001-02 O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a a gestão dos recursos hídricos e no combate a problema da seca no reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios do estado. A fundamente segundo e terceiro maiores reservatórios dos SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da SRH. Adutoras são construídas em apoio aos reservatórios. Um novo açude de grande porte é construído, o Castanhão. Novos acea. Uma grande quantidade de obras de ainda sofirer diretamente os impactos da fundamente com o Cinturão de Águas de ainda sofirer diretamente os impactos da receira a necessidade de finalização dessas obras e a receira na necessidade de finalização dessas obras e a receira de fundamente com o cinturão de Águas de caminhões-pipa, além de muitos recorrerem a escavações de poços.		1900					
Século XXI Século XXI Século XXI Seculo XXI		1911	constração de octas pasteas).	É concluído o primeiro açude público do			
construído no estado. Ao longo do século a problemática da seca é cada vez mais discutida, de modo a achar uma solução definitiva para o problema. A construção de reservatórios públicos não se mostra 1951-54 sufficiente e novas soluções mitigadoras 1970 transposição são construídos na última 1970 transposição são construídos na última 1983 transposição são construídos na última 1998 transposição da SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da SRH. Adutoras são construídas em apoio O estado do Ceará torma-se referência na agos reservatórios. Um novo açude de grande gestão dos recursos hídricos e no combate a seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do apuda de caminhões-pipa, além de muitos cará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços.		1915	Crasas a número de egudos núblicos				
problemática da seca é cada vez mais discutida, de modo a achar uma solução definitiva para o problema. A construção de reservatórios públicos não se mostra suficiente e novas soluções mitigadoras suficiente e novas soluções mitigadoras começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do 1970 década do século, como o Canal do 1998 desenvolvimento da açudagem no estado, construindo 92 açudes nesse século. Os principais são Orós e Banabuiú, atualmente segundo e terceiro maiores reservatórios do estado. A insuficiência dessa solução motiva a criação da SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da COGERH estabelecem o novo marco da gestão dos recursos hídricos e no combate a seca. Uma grande quantidade de obras de infraestrutura hídrica são iniciadas. Apesar 2007 agual de caminhões-pipa, além de muitos recorrerem a escavações de poços. Século XXI 2007 agual de caminhões-pipa, além de muitos recorrerem a escavações de poços.			, ,				
Século XX 1936 1941-43 1951-54 1958 1966 1960							
Século XX 1951-54 reservatórios públicos não se mostra suficiente e novas soluções mitigadoras suficiente e novas soluções mitigadoras começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do 1993 Trabalhador. Seculo XXI 2001-02 20			discutida, de modo a achar uma solução	1			
Século XX 1951-54 reservatorios publicos não se mostra suficiente e novas soluções mitigadoras suficiente e novas soluções mitigadoras começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do Trabalhador. 1983							
começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do Trabalhador. Começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do Trabalhador. Começam a ser buscadas no final do século. As primeiras adutoras e canais de transposição motiva a criação da SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da COGERH estabelecem o novo marco da gestão dos recursos hídricos no estado. Novas alternativas surgem com a criação da SRH. Adutoras são construídas em apoio aos reservatórios. Um novo açude de grande gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos seca. Uma grande quantidade de obras de de ainda sofirer diretamente os impactos da seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos recorrerem a escavações de poços. Como o Eixão das Águas. A Transposição do canais de transposição são construídos, juntamente com o Cinturão de Águas do Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. Como o Eixão das Águas. A Transposição do Ceará. Uma nova seca, iniciada no ano de 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a	Século XX		<u> </u>	-			
As primeiras adutoras e canais de transposição são construídos na última década do século, como o Canal do Trabalhador. 1970 1983 1993 1998 2001-02 O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a gestão dos recursos hídricos e no combate a gestão dos recursos hídricos. Um novo açude de grande gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos seca. Uma grande quantidade de obras de de ainda sofrer diretamente os impactos da seca, as populações mais afetadas recebem a guida de caminhões-pipa, além de muitos recorrerem a escavações de poços. 2012-2016 As primeiras adutoras e canais de transposição motiva a criação da SRH em conjunto com a SOHIDRA, no ano de 1987, que juntamente com a criação da SRH. Adutoras são construídas em apoio aos reservatórios. Um novo açude de grande porte é construído, o Castanhão. Novos canais de transposição são construídos, infraestrutura hídrica são iniciadas. Apesar como o Eixão das Águas. A Transposição do de ainda sofrer diretamente os impactos da rio São Francisco inicia suas obras, juntamente com o Cinturão de Águas do Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		1958	, ,	Banabuiú, atualmente segundo e terceiro			
transposição são construídos na última década do século, como o Canal do 1983 1993 1998 2001-02 O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos seca. Uma grande quantidade de obras de ainda sofrer diretamente os impactos da como o Eixão das Águas. A Transposição do de ainda sofrer diretamente os impactos da recorrerem a escavações de poços. 2012-2016 Trabalhador. O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos canais de transposição são construídos, como o Eixão das Águas. A Transposição do de ainda sofrer diretamente os impactos da rio São Francisco inicia suas obras, juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a					(1776)		
Trabalhador. 1983 1993 Trabalhador. 2001-02 O estado do Ceará torna-se referência na gestão dos recursos hídricos no estado. Novas alternativas surgem com a criação da SRH. Adutoras são construídas em apoio aos reservatórios. Um novo açude de grande porte é construído, o Castanhão. Novos seca. Uma grande quantidade de obras de infraestrutura hídrica são iniciadas. Apesar como o Eixão das Águas. A Transposição do de ainda sofirer diretamente os impactos da seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a			*	insuficiência dessa solução motiva a criação			
1993 1rabalhador. da COGERH estabelecem o novo marco da gestão dos recursos hídricos no estado.			década do século, como o Canal do	=			
Século XXI 2007 Destado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a seca. Uma grande quantidade de obras de de ainda sofirer diretamente os impactos da seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. Novas alternativas surgem com a criação da SRH. Adutoras são construídas, em apoio aos reservatórios. Um novo açude de grande porte é construído, o Castanhão. Novos camais de transposição são construídos, infraestrutura hídrica são iniciadas. Apesar como o Eixão das Águas. A Transposição do de ainda sofirer diretamente os impactos da rio São Francisco inicia suas obras, seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a			Trabalhador.				
Século XXI O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a seca. Uma grande quantidade de obras de infraestrutura hídrica são iniciadas. Apesar de ainda sofirer diretamente os impactos da seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos recorrerem a escavações de poços. SRH. Adutoras são construídas em apoio aos reservatórios. Um novo açude de grande porte é construído, o Castanhão. Novos canais de transposição são construídos, como o Eixão das Águas. A Transposição do rio São Francisco inicia suas obras, juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos ceará. Uma nova seca, iniciada no ano de 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		1998		gestão dos recursos hídricos no estado.			
O estado do Ceará torna-se referência na gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos canais de transposição são construídos, como o Eixão das Águas. A Transposição do rio São Francisco inicia suas obras, seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		2001-02					
Século XXI 2005 gestão dos recursos hídricos e no combate a porte é construído, o Castanhão. Novos seca. Uma grande quantidade de obras de canais de transposição são construídos, infraestrutura hídrica são iniciadas. Apesar como o Eixão das Águas. A Transposição do de ainda sofrer diretamente os impactos da rio São Francisco inicia suas obras, seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos (Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		2001-02	O catada da Casaá tamas sa mafamânais na				
seca. Uma grande quantidade de obras de infraestrutura hídrica são iniciadas. Apesar de ainda sofrer diretamente os impactos da seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos recorrerem a escavações de poços. 2010		2005					
Século XXI 2007 infraestrutura hídrica são iniciadas. Apesar como o Eixão das Águas. A Transposição do de ainda sofrer diretamente os impactos da rio São Francisco inicia suas obras, seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		2003					
de ainda sofrer diretamente os impactos da río. São Francisco inicia suas obras, seca, as populações mais afetadas recebem juntamente com o Cinturão de Águas do ajuda de caminhões-pipa, além de muitos Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012 - 2016 2012-2016	C41- VVI	2007			EUNICEME		
ajuda de caminhões-pipa, além de muitos Ceará. Uma nova seca, iniciada no ano de recorrerem a escavações de poços. 2012-2016 ajuda de caminhões-pipa, além de muitos Ceará. Uma nova seca, iniciada no ano de 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a	Seculo XXI	2007	de ainda sofrer diretamente os impactos da	rio São Francisco inicia suas obras,	FUNCEME		
recorrerem a escavações de poços. 2012 e com 5 anos de duração acelera a necessidade de finalização dessas obras e a		2010					
2012-2016 necessidade de finalização dessas obras e a		2010					
2012 2010		2012 2016	reconcienta escavações de poços.				
		2012-2016		procura de mais soluções.			

Fonte: Autor

2.2 Discussões Sobre Segurança Hídrica

A segurança hídrica está entre as maiores preocupações sociais do século XXI, visto que a mesma está conectada com outros problemas globais, como os relacionados ao clima, a saúde e migração humana, a demanda por alimentos, a perda de biodiversidade, a sustentabilidade urbana, entre outros (KUMAR, 2015).

Singh (2017) define segurança hídrica como o acesso suficiente em qualquer período à água de boa qualidade para atender variadas necessidades, sendo construída sobre quatro pilares: a oferta para o uso da água de boa qualidade deve ser baseada nos conhecimentos de tratamento e de qualidade da água; o acesso a água de boa qualidade inclui ter recursos e facilidades suficientes para obter quantidades que satisfaçam as necessidades; a oferta de água inclui disponibilidade em quantidade suficiente de forma consistente em termos sociais e ambientais; a disponibilidade inclui a identificação e o desenvolvimento dos recursos hídricos. Em resumo, as ofertas devem ser de fácil acesso para uso e utilizadas de forma racional.

Grey & Sadoff (2007) alertam que a segurança hídrica em termos sociais e ambientais deve considerar o potencial construtivo e destrutivo da água. O potencial construtivo da água é representado em toda a cadeia produtiva, seja na indústria, na agricultura, no transporte, na energia e na saúde humana e dos ecossistemas. O potencial destrutivo é representado pelas mortes, devastações e pobrezas causadas, potencializadas pelas secas, inundações, deslizamentos, epidemias, entre outros. Definem assim o termo segurança hídrica como a disponibilidade da quantidade de água com qualidade de forma aceitável para saúde, subsistência, ecossistemas e produção acompanhado de um nível razoável de riscos relacionados para as pessoas, o meio ambiente e as economias.

Dessa forma a segurança hídrica possui dimensões espaciais e temporais. A dimensão espacial é representada pelas diferenças entre lugares ao redor do mundo em que a água ocorre em quantidade e qualidade disponíveis para uso, enquanto em outros essa disponibilidade é escassa. A dimensão temporal é representada pelas diferenças na escala do tempo em termos de disponibilidade hídrica: uma certa região pode ter segurança hídrica durante certo período e escassez durante outro período. Segundo Singh (2017) em algumas partes de Rajasthan, na Índia, a falta de água é tão aguda no verão que milhares de pessoas, juntamente com seus rebanhos, mudam-se para o norte da Índia em busca de água para sobreviver; quando o verão termina as pessoas retornam às suas regiões natais.

As grandes preocupações futuras com relação à segurança hídrica são o crescimento populacional, causando aumento na demanda de água, e o aquecimento global, com um possível

aumento nas variações climáticas, que afetam a disponibilidade hídrica. O clima em cada região muda naturalmente em todas as escalas de tempo, mas os dados climáticos em grande parte do planeta estão disponíveis somente para os últimos 50 ou 100 anos, tornando impossível a documentação de alterações em intervalos de tempos mais longos (WINSTANLEY, 2005). As projeções atuais e futuras com relação às alterações climáticas indicam que nem todas as regiões do globo serão afetadas da mesma forma com relação à temperatura e às precipitações. A segurança hídrica é um problema multifacetado, indo além do simples equilíbrio de oferta e demanda. As primeiras tentativas de quantificá-la utilizaram abordagens baseadas em índices estáticos que não reconheceram que a ação humana é intrínseca ao ciclo da água. A adaptação humana às mudanças ambientais e o aumento da especialização espacial no mundo moderno exigem uma visão mais flexível e dinâmica da segurança hídrica (SRINIVASAN *et al.*, 2017).

Novos conceitos têm surgido no âmbito das preocupações futuras com a escassez de água: a hidrocomplexidade visa abordar a segurança hídrica e os riscos emergentes através do desenvolvimento de ciência, métodos e práticas com potencial para promover uma "Revolução Azul" semelhante à "Revolução Verde" para a segurança alimentar, de tal forma que a mesma combina soluções de infraestrutura rígida com aumento na gama de planejamento, gerenciamento, mitigação e adaptação de cenários, além de fornecer uma estrutura conceitual e sintética que permite integrar descobertas da ciência e engenharia, observação e informação, sistemas computacionais e de comunicação e abordagens sociais e institucionais para lidar com os consequentes desafios hídricos e ambientais (KUMAR, 2015).

Modelos econômicos-hidrológicos também já são desenvolvidos para apoio à gestão dos recursos hídricos, com o objetivo de apoiar as decisões sobre alocação ótima de água entre os usos alternativos. Moraes *et al.* (2008) apresentam um modelo não-linear para servir de ferramenta de auxílio na avaliação de políticas de água na bacia do rio Pirapama em Pernambuco. Os autores argumentam que a multiplicidade das interações existentes entre os diversos usos da água em aspectos técnicos, econômicos e sociais podem ser modelados de forma integrada, permitindo uma alocação mais justa.

No Brasil a segurança hídrica é uma preocupação desde o início do século passado, com o Código de Águas brasileiro sendo aprovado em 1934, a primeira legislação que possibilitava a gestão dos recursos hídricos no Brasil. A reforma do sistema de gestão dos recursos hídricos teve a Reforma da Constituição de 1988 como base para instituição de uma Política Nacional de Recursos Hídricos. Nessa época dois estados foram pioneiros na elaboração de seus próprios planos e sistemas de gestão das águas: São Paulo, o primeiro a

instituir uma lei estadual de gestão dos recursos hídricos, em 1991 e o Ceará, logo em seguida, instituindo sua lei estadual em 1992 (GALVÃO E BERMANN, 2015).

Com relação ao Nordeste brasileiro e mais especificamente ao estado do Ceará, dois Planos nortearam o gerenciamento dos recursos hídricos nessa região. Na década de 1980 a SUDENE elaborou o Plano de Aproveitamento Integrado dos Recursos Hídricos do Nordeste do Brasil - PLIRHINE, uma obra com vários volumes e várias frentes de ações para enfrentamento dos problemas relativos à seca no Nordeste. Tais documentos foram complementados pelo Plano Diretor de Recursos Hídricos – Documento Preliminar, conhecido como Plano Zero, elaborado para o Ceará em 1983 e pelo Plano Estadual de Recursos Hídricos – PLANERH, elaborado em 1992. Os Planos realizaram um diagnóstico de ofertas e demandas no estado entre os anos de 1980 e 2000, sendo uma referência no planejamento de bacias hidrográfica no Ceará e no Brasil. Tais Planos também incluíam conflitos de vários tipos dos usos da água, como irrigação x consumo humano, geração de energia x irrigação, projeção contra cheias x irrigação e indústria x consumo humano (PINHEIRO et al., 2003; REBOUÇAS, 1997). No ano de 2005 foi realizada a atualização do Plano Estadual de Recursos Hídricos do Estado do Ceará. Nesse documento foi compilado o diagnóstico do balanço hídrico por bacia hidrográfica no estado, de modo a avaliar os Planos Diretores iniciados na década de 1980, além de traçar as diretrizes para os anos seguintes. A Tabela 2.4 apresenta as demandas hídricas e a Tabela 2.5 apresenta as ofertas hídricas, com vazão de 90% de garantia considerando os níveis de alerta e o total considerando 80% desse valor somado à oferta subterrânea.

Tabela 2.4 – Demandas Hídricas por Bacia Hidrográfica do Ceará no Ano 2000

Região Hidrográfica	Demanda Humana (m³/s)	Demanda Indústria (m³/s)	Demanda Irrigação (m³/s)	Demanda Hídrica Total (m³/s)
Alto Jaguaribe	0,35	0,11	0,64	1,10
Salgado	0,85	0,15	2,53	3,53
Médio Jaguaribe	0,13	0,05	4,90	5,08
Banabuiú	0,32	0,23	8,75	9,31
Baixo Jaguaribe	0,23	0,21	1,72	2,17
Bacias Metropolitanas	7,48	4,82	0,74	13,04
Acaraú	1,10	0,06	6,22	7,37
Coreaú	0,50	0,02	0,09	0,60
Parnaíba (Potí)	0,52	0,01	0,72	1,26
Curu	0,31	0,23	2,63	3,18

Região Hidrográfica	Demanda Humana (m³/s)	Demanda Indústria (m³/s)	Demanda Irrigação (m³/s)	Demanda Hídrica Total (m³/s)
Bacias Litorâneas	0,20	0,15	0,02	0,38
Ceará	12,00	6,06	28,95	47,00
Demanda Percentual	26%	13%	62%	100%

Fonte: Atualização do Plano Estadual de Recursos Hídricos do Ceará (2005)

Tabela 2.5 – Ofertas Hídricas por Bacia Hidrográfica do Ceará no Ano 2000

Região Hidrográfica	Oferta Reservatórios Q90+ (m³/s)	Oferta Poços Instalados (m³/s)	Oferta Hídrica Total (m³/s)
Alto Jaguaribe	16,91	0,61	14,14
Salgado	2,05	0,08	1,72
Médio Jaguaribe	28,52	0,47	23,29
Banabuiú	15,74	2,95	15,55
Baixo Jaguaribe	0,50	0,25	0,65
Bacias Metropolitanas	12,21	0,17	9,94
Acaraú	9,25	0,35	7,75
Coreaú	2,29	0,13	1,97
Parnaíba (Potí)	5,27	0,21	4,42
Curu	8,81	0,16	7,21
Bacias Litorâneas	0,61	0,15	0,64
Ceará	102,16	5,53	87,26

Fonte: Atualização do Plano Estadual de Recursos Hídricos do Ceará (2005)

Alguns estudos feitos pelos órgãos responsáveis pela gestão dos recursos hídricos no Brasil realizaram diagnósticos de situações atuais e futuras da região com relação à segurança hídrica. O documento "A Questão da Água no Nordeste" foi um desses, publicado no ano de 2012 e apresentando as demandas hídricas dos vários estados da região. A Tabela 2.6 apresenta essas o resumo das demandas animais, industriais, humanas rurais, humanas urbanas e de irrigação. O mesmo documento alerta que a primeira preocupação com relação ao desenvolvimento de qualquer região é a segurança hídrica das populações, com o Atlas Nordeste de Abastecimento Urbano (ANA, 2006) e o Atlas Brasil de Abastecimento Urbano (ANA, 2010) sendo os responsáveis por identificarem as necessidades futuras a serem atendidas para o abastecimento humano. No Ceará, mais especificamente, o documento aponta que apesar dos investimentos em infraestrutura hídrica no estado, 70% dos municípios ainda são abastecidos por sistemas isolados, com apenas 30% utilizando sistemas integrados.

Tabela 2.6 – Demandas dos Estados do Nordeste Apresentados no Ano de 2012 pela ANA

Estado	Animal	Industrial	Irrigação	Rural	Urbano	Total
Estado	m³/s	m³/s	m³/s	m³/s	m ³ /s	m³/s
Ceará	2,2	9,7	44,6	1,9	13,4	71,8
Alagoas	0,7	4,1	28,9	0,8	4,5	39,0
Bahia	8,4	8,2	89,5	5,2	24,1	135,4
Maranhão	4,6	1,4	18,4	2,1	9,7	36,2
Paraíba	0,9	1,2	7,8	0,9	5,1	15,9
Pernambuco	1,9	8,2	53,7	1,6	18,4	83,8
Piauí	1,9	1,2	7,8	0,9	5,1	16,9
Rio Grande do Norte	0,8	2,6	30,7	0,7	6,8	41,6
Sergipe	0,7	1,3	6,2	0,5	4,0	12,7
Total por Demanda	22,1	37,9	287,6	14,6	91,1	453,3

Fonte: A Questão da Água no Nordeste – ANA (2012)

Os estudos feitos pela ANA no Atlas Nordeste (2006) e no Atlas Brasil (2010) realizaram estimativas das demandas urbanas para os anos de 2005, 2015 e 2025. Os valores encontrados estimaram um crescimento de 27,5% na demanda populacional urbana considerando todo o Brasil. No Nordeste esse crescimento estimado foi de 31,3%. A Tabela 2.7 apresenta o resumo das demandas urbanas nas regiões geográficas brasileiras. Para o estado do Ceará, no ano de 2025, essa demanda seria de 25,7 m³/s, equivalente a 17% do Nordeste. O estudo compila que dos 184 municípios cearenses, 133 necessitavam de investimentos em obras de abastecimento de água no horizonte de 2025. No Atlas Nordeste as estimativas do estado foram descriminadas por tipo no ano de 2025. Em 2025 a previsão era de uma necessidade total no Ceará de 85,1 m³/s de água para atender todos os usos: desse valor, a irrigação seria responsável por 63% da demanda, equivalente a 53,6 m³/s; o abastecimento humano seria responsável por 28,1%, equivalente a 23,9 m³/s; a indústria seria responsável por 5,9%, equivalente a 5,0 m³/s; a dessedentação animal seria responsável por 2,9%, equivalente a 2,5 m³/s. Todos esses estudos e valores servem de base para diagnósticos e tomadas de decisão com relação à segurança hídrica de cada região.

Tabela 2.7 – Demanda Média para Abastecimento Urbano nas Regiões Brasileiras

Ano	Demanda Urbana por Região Geográfica (m³/s)					
Ano	Norte	Nordeste	Centro-Oeste	Sudeste	Sul	Brasil
2005	34	115	33	247	65	494
2015	45	136	39	275	75	570
2025	54	151	44	298	83	630

Fonte: Atlas Brasil de Abastecimento Urbano – ANA (2010)

Os estudos e planos presentes e futuros com relação aos impactos em segurança hídrica ao redor do mundo têm apresentado vários resultados. Mudanças no gerenciamento das águas têm acontecido em várias regiões, bem como estudos do impacto climático nos recursos hídricos. A seguir serão apresentadas discussões sobre segurança hídrica no Brasil e no mundo.

Ross (2014) ilustra a importância de um gerenciamento cíclico e integrado das águas superficiais e subterrâneas como oportunidade para uso flexível e eficiente da água de forma a ajudar na adaptação às variações climáticas e às incertezas. O autor defende que o gerenciamento hídrico centrado nas águas superficiais e as políticas inflexíveis de alocação de águas no caso do Colorado, nos EUA, e de New South Gales, na Austrália, restringiram o desenvolvimento do gerenciamento integrado das águas. No caso do Colorado poderia ser melhorada a flexibilidade de alocação de águas para permitir o bombeamento de águas subterrâneas em períodos secos, enquanto em New South Gales poderia ser reconsiderado o atual sistema de armazenamento de água superficial, com altas perdas evaporativas, com uma recuperação e utilização do armazenamento em aquíferos.

Hellegers *et al.* (2013) fazem uma análise do balanço oferta x demanda no Irã, no Marrocos e na Arábia Saudita para os anos de 2040 – 2050 sob projeções climáticas secas, médias e úmidas, encontrando em todos os casos, exceto no Irã com projeção de clima úmido, que a demanda de água deve ser consideravelmente diminuída para resolver o desequilíbrio em relação a oferta, que já acontece atualmente. Kliem (2009) afirma que a demanda de água em Israel, na Palestina e na Jordânia irá exceder a oferta de água em 2040 e que novos planos com soluções para a escassez hídrica devem ser estudados, com novas alternativas de alocação numa das regiões mais críticas do mundo em termos de conflitos.

Grouillet *et al.* (2015) apresentam um estudo em duas bacias do mediterrâneo, a bacia de Herault (2500 km²), na França, e a bacia de Ebro (85.000 km²), na Espanha, com relação aos impactos sociais e climáticos na demanda de água até 2050. Os resultados mostraram que nos últimos 40 anos a demanda cresceu 29% na bacia de Herault e 57% na bacia de Ebro, mostrando a variabilidade espacial no crescimento de demanda. Para o ano de 2050 as estimativas encontraram valores de 38% a 50% de acréscimo de demanda na bacia de Herault e de 35% a 58% na bacia de Ebro, com tais projeções mostrando que os impactos das atividades humanas influenciará o balanço hídrico de forma mais acentuada do que os aspectos climáticos. Milano *et al.* (2013) também encontraram para a bacia do Ebro uma redução percentual de 15% a 35% nos recursos hídricos para o ano de 2050, aumentando as disputas pela água e causando severa escassez para a agricultura irrigada.

McFarlane *et al.* (2012) realizaram um estudo que apresenta os impactos climáticos na oferta e na demanda de água no sudoeste da Austrália no ano de 2030. Os resultados encontrados foram uma redução média de 24% nas águas superficiais, em alinhamento com a redução média de 25% nos escoamentos diretos. As águas subterrâneas sofrerão um efeito menor, com reduções de 4%, onde os níveis de recarga podem inclusive aumentar em áreas com pouca utilização de água subterrânea, mesmo em situações de clima mais quente e seco no futuro. Dessa forma, com os níveis atuais de consumo de água per capita, o crescimento rápido populacional e econômico, juntamente com as reduções de oferta, déficits apreciáveis tendem a ocorrer próximos a cidade de Perth e de outras cidades do sudoeste australiano até 2030.

Drangert & Sharatchandra (2017) apresentam que em Bangalore, na Índia, de 1964 a 2015 a demanda era atendida principalmente a partir da drenagem dos rios, mentalidade que foi desafiada pelo "Water Disputes Tribunal" e por órgãos de financiamento internacional, visto que população e indústria não acreditavam mais na instabilidade de oferta apresentada. Bangalore é uma região com precipitações anuais muito próximas as de estados do semiárido do Nordeste brasileiro, em torno de 900 mm. O estudo apresenta um balanço hídrico feito para o ano de 2050, indicando não haver um cenário de escassez declarado, mas sim de oportunidades perdidas, caso haja falta de água. Uma gestão flexível de águas, com a utilização de políticas de redução, tratamento e reuso mostrou que com os recursos hídricos provenientes das chuvas que normalmente caem na região seria possível atender a população e ainda recarregar as águas subterrâneas.

Com relação à resiliência dos sistemas de abastecimento de água devido às reduções nas precipitações, Amarasinghe *et al.* (2016) apresentam um estudo no estado de Queensland, na Austrália, para mostrar a importância da utilização de indicadores para avaliar a resiliência dos sistemas de oferta de água, sendo capazes de identificar condições críticas, bem como a máxima redução de precipitação para o sistema operar sem falhar. Watts et al. (2012) também apresentam estudos de resiliência de sistemas de abastecimento hídrico contra longos eventos de baixas precipitações, salientando que a gestão da seca é uma parte importante no gerenciamento dos recursos hídricos, muitas vezes negligenciado.

Paton *et al.* (2013) apresentam um estudo com relação à confiabilidade do sistema de oferta de água da cidade de Adelaide, na Austrália, com projeções até 2050. O estudo de caso mostra que a confiabilidade naturalmente diminui com o avanço do horizonte de estudo, como decorrência do aumento de demanda e decréscimo de precipitações devido às mudanças climáticas. Dessa forma, numa perspectiva política, essa redução de confiabilidade sugere a produção de planos flexíveis para alcançar a segurança hídrica e a necessidade constante de

iniciativas para complementar a oferta de água em Adelaide. Da mesma forma, Romano *et al.* (2017) estudaram a aplicação do método de confiabilidade, resiliência e vulnerabilidade ao reservatório Ridracoli, na Itália, onde tais estudos são cruciais para o gerenciamento avançado na mitigação de secas e de ocorrência de eventos extremos.

Em Salt Lake City, nos EUA, foi estudado a influência do aquecimento global nos escoamentos diretos sobre a região. Os resultados de Bardsley *et al.* (2013) mostram que o fluxo anual médio varia sensivelmente entre as bacias hidrográficas da região, com uma média de decréscimo de 3,8% por grau fahrenheit de acréscimo na temperatura, variando e -1,8% a -6,5% por grau de aquecimento e com as maiores reduções acontecendo exatamente nos meses de maiores demandas de água, entre maio e setembro. Os impactos na redução do escoamento ameaça a capacidade do sistema em manter fluxo e armazenamento adequados para satisfazer as demandas de água da população nesses períodos.

Guo & Shen (2016) apresentam um estudo de projeção de demandas da agricultura e de descargas anuais nos rios na região do noroeste da China. Previu-se que as demandas de agricultura cresceriam de 4,27 bi m³ para 6,15 bi m³ nos próximos 60 anos nessa região, enquanto que as descargas anuais irão crescer 4,8 bi m³ para 8,5 bi m³, mas o aumento nas descargas não é aproveitado em todo seu potencial. O estudo não considera os acréscimos em demandas industriais, domésticas e ecológicas. A previsão é de que no futuro as crises de escassez em oferta x demanda cresçam e a disponibilidade de água em algumas bacias não atenderá a demanda. As sugestões são tomar medidas efetivas, como melhorar a eficiência da utilização da água de irrigação, reduzir as áreas de plantio de culturas e ajustar as estruturas de plantio para aliviar os impactos das futuras mudanças climáticas e atividades humanas. Ward et al. (2006) apresentavam resultados não só na redução de oferta, mas também de perdas econômicas para a agricultura em casos de cenários de escassez. No Novo México as estimativas de perda média para a agricultura era de 8 milhões de dólares por ano, dadas reduções médias de 52% na água ofertada, enquanto que no Texas, nas piores condições de escassez, as reduções de oferta de água chegam a 80% e no sul do Colorado as perdas atingem 56 milhões de dólares anuais. Já Multsch et al. (2017) afirmam que, em projeções até 2050, melhorias na eficiência dos sistemas de irrigação irão contribuir substancialmente para diminuir a crise hídrica na bacia no rio Nilo, mas não atenderão completamente a demanda, mesmo em cenários hipotéticos de máxima eficiência possível na irrigação.

Wilder *et al.* (2016) estudaram os impactos sociais, ambientais e políticos para segurança hídrica na fronteira EUA-México a partir da utilização da dessalinização da água do mar. As principais conclusões obtidas foram que sistemas de dessalinização sozinhos não são

uma alternativa sustentável para o gerenciamento de águas e essa oferta de água deve ser cuidadosamente considerada, se possível apenas quando todas as outras forem descartadas, visto que tais sistemas são caros e complexos, com anos de planejamento e execução. Srinivasan et al. (2010) em seus estudos de sustentabilidade hídrica no sul da Índia avaliaram os impactos de três políticas: aumento de oferta pela dessalinização, eficientização dos sistemas e utilização de maiores áreas de cultivo com precipitação direta. Os resultados encontrados foram que nenhuma das três é autossuficiente, com os resultados mais positivos encontrados para uma intervenção combinada na melhoria dos sistemas de abastecimento e no aumento de áreas cultiváveis com precipitação direta. Já para o Bahrein, com graves problemas de ofertas superficiais e subterrâneas, a dessalinização da água do mar é uma fonte importante de água, segundo Hajjaj & Hashim (2013), assim como em outros países do Oriente Médio. Mesmo com essa importância, os autores salientam que políticas de reuso e de redução de perda devem ser incentivados e utilizados para todos os tipos de demanda.

No Brasil, um programa bem sucedido com relação a oferta de água foi desenvolvido pela cooperação entre o Ministério da Saúde e o Instituto de Assuntos Interamericanos dos Estados Unidos, onde o Serviço Especial de Saúde Pública (SESP) construiu centenas de pequenos sistemas de abastecimento de água entre os anos de 1942 e 1991 ao redor do Brasil, com percentual de falha muito pequeno. Mayberry & Baker (2011) afirmam que o programa e os princípios utilizados para o desenvolvimento sustentável das comunidades podem ser replicados em países subdesenvolvidos.

Interessante notar que as soluções de segurança hídrica não dependem necessariamente de investimentos em novas fontes de água. Brichieri-Colombi (2004) apresenta dez intervenções que poderiam ser feitas para alcançar a segurança em termos de água, como redução dos percentuais de crescimento populacional, expandir áreas cultiváveis em territórios abastecidos por precipitações, aumento da eficiência dos sistemas de abastecimento e de uso de água, aumentar os percentuais de reuso de água.

Dessa forma, torna-se necessário o desenvolvimento sustentável dos recursos hídricos de uma região, não apenas a partir de um balanço hídrico de oferta e demanda, mesmo essa sendo uma condição indispensável para o processo de implementação da mesma. Sistemas integrados para gestão dos recursos hídricos regionais acoplados a sistemas nacionais e estaduais propiciam o uso racional da água em todas as esferas, de forma a utilizar as disponibilidades hídricas para vencer a vulnerabilidade apresentada por regiões com escassez de chuvas e proporcionar um desenvolvimento econômico e ambiental estável e socialmente justo (CRUZ & TUCCI, 2008; VIEIRA, 2003).

2.3 Alternativas de Combate à Seca

• Transposição de Rios

A transposição de cursos d'água não é uma novidade em termos de alternativa para irrigação de regiões áridas e semiáridas, sendo exatamente esse o objetivo: amenizar o problema de falta d'água nessas regiões, seja a escassez permanente ou temporária. Os primeiros povos a realizarem obras de transposição foram os chineses, utilizando tal alternativa no rio Amarelo milênios antes de Cristo. Os mesopotâmios realizaram transposições nos rios Tigres e Eufrates, enquanto que os egípcios realizaram no rio Nilo. Tais transposições visavam evitar as inundações que poderiam vir a ocorrer e conduzir água para os extremos do deserto. Pode-se considerar que as primeiras grandes intervenções do homem sobre os recursos hídricos foram realizadas por esses dois povos. Os romanos também foram responsáveis por obras de grande relevância na transposição de rios. Com o crescimento da população, o rio Tibre mostrou-se insuficiente para abastecer a cidade e a solução encontrada foi a construção de aquedutos que trouxessem água de regiões mais afastadas. O aqueduto Appia, concluído em 313 a.C., foi o primeiro, enquanto que em 90 a.C. já haviam sido construídos outros oito (NEVES & CARDOSO, 2009).

Com o desenvolvimento de técnicas mais modernas, as obras de transposição ao redor do mundo se tornaram mais comuns, utilizando-se de canais, adutoras, aquedutos, barragens e várias outras obras que mostravam-se necessárias para o desvio de águas de bacias hidrográficas. Essas obras foram feitas em vários países, como Estados Unidos, China, Espanha, Egito, Israel, Austrália, Peru, entre outros.

Uma das principais e mais bem sucedidas obras de transposição de bacia hidrográfica ocorreu no rio Colorado, nos EUA. Tratou-se de um projeto para uso múltiplo, de forma a possibilitar a geração de energia elétrica, navegação, irrigação e o controle de enchentes, além de fornecer água para a população (NEVES & CARDOSO, 2009). A bacia desse rio compõe uma área de 440.000 km², correspondendo a um doze avos da área continental dos Estados Unidos, sendo mais água exportada a partir dessa bacia do que de qualquer outra bacia norte americana. O rio Colorado é responsável pelo abastecimento de mais de 24 milhões de pessoas em 7 estados norte-americanos, sendo também responsável pela geração de 4000 megawatts de energia elétrica, irrigação de uma área de mais de 8 bilhões de metros quadrados e recebendo ainda a visitação de mais de 20 milhões de pessoas anualmente para recreação

(ANDERSON, 2002). Por todo o uso múltiplo e pela importância em termos de abastecimento populacional, o rio Colorado é considerado o mais regulamentado do mundo, sendo regido por um complexo sistema de leis federais, estaduais, tratados, decisões judiciais e acordos. Por fim, é importante salientar que a região da Califórnia possui uma média pluviométrica de 220 mm/ano, sendo este um valor considerado baixo em termos de chuva e, mesmo assim, conseguiu ao longo dos anos ser referência na produção de alimentos, dada a importância da transposição na irrigação da região, sendo assim responsável pelo desenvolvimento do oeste e do centro-sul dos Estados Unidos (NEVES & CARDOSO, 2009 apud CAÚLA & MOURA, 2006).

Da mesma forma que nos Estados Unidos, o Canadá também possui uma grande quantidade de projetos de transposição que possibilitam o abastecimento de suas cidades, totalizando cerca de 60 transposições de médio e grande porte, além de estudos de implantação em âmbito internacional, em parceria com os americanos, como os projetos North America Water & Power Alliance e o Grand Canal, que beneficiaria ambos os países (NEVES e CARDOSO, 2009 *apud* CAÚLA e MOURA, 2006).

Já na China os projetos de transposição visam contornar o problema da discrepância entre o norte e o sul em termos de disponibilidade hídrica. A parte sul do país, cujo principal rio é o Yang Tsé, possui boa disponibilidade de água, enquanto que a parte norte do país, cujo rio principal é o Huang Ho, conhecido como rio Amarelo, possui graves problemas com relação a falta d'água. O projeto é bastante ambicioso, sendo considerado a maior obra de transposição da história, visando levar água do sul para o norte do país pelo rio Yang Tsé através de três rotas: a primeira, já construída, levará água por um canal de 1200 km de extensão, partindo do curso médio do rio; a segunda, conduzirá a água através de um canal de 1000 km de extensão, partindo do curso inferior do rio; a terceira rota partirá do curso superior do rio. Quando estiver pronta, a transposição vai ser responsável pelo desvio de 45 bilhões de metros cúbicos de água por ano (EXAME, 2014; MINISTÉRIOS DA INTEGRAÇÃO NACIONAL, 2017).

Outra experiência internacional bastante valiosa em termos de sucesso ocorre em Israel. A situação no país é bastante crítica devido aos 60% de áreas desérticas. Em algumas regiões os níveis pluviométricos são de apenas 70 mm por ano. Nesses locais a transposição retira água do lago Tibiríades, utilizando-se de estações elevatórios que bombeiam água até 260 metros. A situação mais preocupante é a do Mar Morto, onde o desvio da água que alimenta o mar e a instalação de indústrias de extração de minérios, além das grandes taxas de evaporação, são considerados os responsáveis pela diminuição do seu nível. O nível do Mar Morto vem decrescendo 90 cm por ano e estima-se que no ano de 2040 este tenha sido reduzido à metade

do tamanho que possuía no ano de 2010, visto que o principal rio que alimentava o Mar Morto, o rio Jordão, vem sendo utilizado quase que totalmente pelas populações locais para irrigação (NEVES & CARDOSO, 2009). Um dado importante é que nos anos 1960, o Mar Morto recebia um volume de 1,3 milhões de metros cúbicos, enquanto que já em 2005 o volume recebido já havia caído para 200 mil metros cúbicos (AMBRÓSIO, 2005). A solução encontrada para a recuperação veio após muita polêmica e discussão internacional entre Israel, Jordânia e a Palestina, que chegaram a um acordo em dezembro de 2013 de fazer uma transposição de águas do Mar Vermelho até o Mar Morto através de um rede de tubulações que os conectará. Serão então retirados 200 milhões de metros cúbicos do Mar Morto a cada ano, onde 80 milhões de metros cúbicos serão dessalinizados, fornecendo 50 milhões para o sul de Israel e 30 milhões para a Jordânia. O restante, juntamente com os resíduos da dessalinização será despejado no Mar Morto. O projeto é bastante criticado principalmente pelos impactos ambientais que causará (ASMAR, 2002; QDAIS, 2007).

Já na Espanha, o projeto de transposição não foi tão bem sucedido. O aqueduto Tajo-Segura, que transpõe água do rio Taja para a bacia do rio Segura era responsável pelo transporte de 33 m³/s de água em uma extensão de 242 km e com altura de bombeamento igual a 267 m (MINISTÉRIO DA INTEGRAÇÃO NACIONAL, 2017; NEVES & CARDOSO, 2009). Os principais problemas que surgiram do projeto foi a indução de uma demanda maior de água, visto que o mesmo não se mostrou suficiente, além dos problemas decorrentes do aumento de salinidade no solo, provindos da irrigação (ANDRADE, 2002). Com isso os espanhóis estão tendo que reanalisar seus projetos de transposição para atender as demandas da região minimizando os impactos ambientais (NEVES & CARDOSO, 2009 *apud* PEREIRA, 2002). No Peru os mesmo problemas foram encontrados no projeto Chavimochic, que funciona com uma vazão de 130 m³/s retirados do rio Santa através de canais e adutoras. Além do problema de salinização, o projeto também passou por problemas financeiros com relação aos custos de manutenção da obra (NEVES & CARDOSO, 2009).

A Austrália, possuindo uma região com clima muito parecido ao semiárido do Nordeste brasileiro, também possui seus projetos de transposição de rios. O sistema hidrelétrico das montanhas Snowy, composto por um conjunto de 16 reservatórios, 7 usinas, uma estação de bombeamento, 145 km de túneis e 80 km de adutoras que coleta e armazena água que normalmente iria do leste para o litoral, sendo desviada do rio Snowy para os rios Murray e Murrumbidgee (MINISTÉRIO DA INTEGRAÇÃO NACIONAL, 2017).

Além dos projetos citados, muitos outros países também possuem seus projetos de transposição, sendo esta alternativa largamente utilizada ao redor do mundo para minimizar os

efeitos da falta de água dessas regiões. Um quadro resumo dos projetos em alguns países disponibilizados pelo Ministério da Integração Nacional é apresentado na Tabela 2.8. Com isso, nota-se que um projeto bem estudado e planejado pode ser bastante efetivo no combate à seca em uma região. Muitos desses projetos serviram de base para os estudos da principal obra de transposição brasileira, que é a transposição do Rio São Francisco. Tal projeto, compatibilizado com o Cinturão de Águas do Ceará comporia a alternativa de transposição para mitigação da seca no estado do Ceará.

Tabela 2.8 – Projetos de Transposição de Águas ao Redor do Mundo

País	Obra de Transposição	Prazo de Conclusão	Estimativa de Custo
EUA	Projeto Colorado-Big Thompson	21 Anos (1938 a 1959)	US\$ 1,4 bilhão
Austrália	Sistema Hidrelétrico das Montanhas Snowy	25 Anos (1949 a 1974)	US\$ 820 milhões
China	Projeto de Transferência de Água de Wanjiazhai	10 anos (2001 a 2011)	US\$ 1,5 bilhão
Lesotho e África do Sul	Projeto Hídrico das Montanhas do Lesotho	19 anos (1983 a 2002)	US\$ 4 bilhões
Espanha	Transposição Tejo- Segura	40 anos (1933 a 1973)	US\$ 5,3 bilhões
Ásia Central, Rússia, Uzbequistão e Kazaquistão	Mar de Aral	Projetado Conclusão em 20 anos	US\$ 30 bilhões
Egito	Projeto do canal El- Salaam	Em Fase de Projeto	US\$ 2,8 bilhões
Peru	Projeto Especial Chavimochic	10 anos (1986 a 1996)	US\$ 2,15 bilhões

Fonte: Ministério da Integração Nacional (2017)

O Projeto de Integração do Rio São Francisco é considerado a maior obra de infraestrutura hídrica do país, dentro da política nacional de recursos hídricos. A obra divide-se em dois eixos (leste e norte) num total de 477 km de extensão em canal, levando água para Ceará, Pernambuco, Rio Grande do Norte, e Paraíba. No total são 13 aquedutos, 9 estações de bombeamento, 27 reservatórios e 4 túneis. O projeto possui como prioridade suprir a o abastecimento humano e a dessedentação animal. Em segundo plano, o projeto também visa promover o desenvolvimento das regiões com mais carência de água dos estados citados. Tal desenvolvimento econômico poderá ser obtido com o aproveitamento da água a partir dos açudes da região. Os estudos de implantação do projeto utilizaram softwares de simulação que estimaram que a vazão que pode ser captada do rio é de 26,4 m³/s em períodos de seca e 127

m³/s em períodos de cheia, sem prejudicar o rio São Francisco (MINISTÉRIO DA INTEGRAÇÃO NACIONAL, 2017).

O início das obras da transposição do Rio São Francisco ocorreu no ano de 2007, com um custo de 8,2 bilhões de reais. Após a primeira data de término ter sido ultrapassada pelos atrasos da obra, prevista inicialmente para 2012, o governo federal estima que no início de 2017 as obras do PIRSF tenham sido concluídas (MINISTÉRIO DA INTEGRAÇÃO NACIONAL, 2017).

No estado do Ceará, o projeto de integração do rio São Francisco foi compatibilizado com o projeto do Cinturão de Águas do Ceará. Tal projeto tem como objetivo aduzir as vazões captadas do rio São Francisco para todas as macrobacias hidrográficas do estado do Ceará. O sistema de adução possui extensão com cerca de 1300 km de comprimento, quase integralmente sem bombeamento, ou seja, com trechos em canais, obras de travessia de talvegues, com elevações topográficas sendo ultrapassadas com a utilização de sifões, aquedutos e túneis. A obra permite que 80% do território do estado seja beneficiado pelo PISF e não somente as bacias do Jaguaribe e Metropolitanas, como era previsto inicialmente. O nome cinturão provém do fato de que, quando associado aos traçados do Canal da Integração, do Eixão das Águas e do próprio projeto de transposição do Rio São Francisco dentro do Ceará, o projeto estabelecerá um verdadeiro cinturão com uma configuração espacial muito próximo do estado, contornando a maioria dos municípios. A Figura 2.3 ilustra em aspectos gerais o projeto do CAC, com os trechos e ramais que compõem a obra. (RABELO, 2014; SRH – SECRETARIA DE RECURSOS HÍDRICOS, 2010).

O Cinturão de Águas do Ceará é dividido originalmente em 3 trechos. O primeiro trecho, denominado Jati-Cariús, recebe as águas da transposição do rio São Francisco na barragem de Jati, transportando água a uma vazão de 30 m³/s (divididas em três fases: a primeira com vazão de 10 m³/s até o ano de 2020, a segunda com vazão de 20 m³/s até o ano de 2030 e a terceira com vazão de 30 m³/s até o ano de 2040) em uma extensão de aproximadamente 145 km; o segundo trecho é denominado Cariús-Jaguaribe/Poti, com uma extensão estimada de 380 km e vazão de 35 m³/s; o terceiro trecho é denominado Jaguaribe/Poti-Acaraú, esses dois últimos ainda em fase de estudos (SRH – SECRETARIA DE RECURSOS HÍDRICOS, 2010).

O custo da água a partir da transposição do Rio São Francisco para o Eixo Norte, que chega a Ceará, Rio Grande do Norte e Paraíba, considerando os custos de amortização dos investimentos e os custos de operação e manutenção está estimado em 0,50 R\$/m³. O custo aparentemente baixo será suportável sem subsídios apenas para abastecimento público e industrial. Para a irrigação o sistema precisará de fortes subsídios (PEREIRA JÚNIOR, 2005).



Figura 2.3 - Visão Geral do Projeto do Cinturão de Águas do Ceará

Fonte: SRH – SECRETARIA DE RECURSOS HÍDRICOS, 2010

• Reservatórios de Regularização Superficial

Em termos de capacidade de armazenamento de águas superficiais, o estado do Ceará possui uma infraestrutura bastante satisfatória. A Companhia de Gestão dos Recursos Hídricos do Ceará (COGERH) possui uma rede de monitoramento de 153 reservatórios de médio e grande porte, responsável pelo acúmulo potencial de 18,64 bilhões de metros cúbicos. Lima Neto *et al* (2011) afirmam que o número de reservatórios de pequeno porte é muito maior, chegando a um número próximo a 30 mil. No semiárido nordestino Suassuna (2002) cita a

presença de 70 mil açudes de pequeno porte, os quais são caracterizados por volumes entre 10.000 m³ e 200.000 m³ e representam 80% dos corpos d'água nos estados do Nordeste. Segundo Campos (1999) desde a metade do século XX havia a discussão se o investimento em açudes de grande porte era mais eficiente do que o investimento em grande número de reservatórios de pequeno e médio porte, mas com a mesma capacidade total. Cada tipo de reservatório possui sua importância: os açudes de médio e grande porte são necessários na mitigação dos efeitos de secas plurianuais, visto que esse tipo de reservatório é capaz de transportar água no tempo para maiores durações; os açudes de pequeno porte auxiliam no combate às secas anuais, distribuindo de forma mais eficiente a água para onde for necessária. Campos (1999) afirma ainda que não existe uma solução melhor que a outra para o combate às estiagens no estado do Ceará, visto que as duas têm seu papel e devem ser utilizadas de forma integrada.

Segundo análise dos dados do Boletim de Acompanhamento dos Reservatórios do Nordeste n. 06, realizado pela Agência Nacional de Águas em 2016, a capacidade de armazenamento dos reservatórios do estado do Ceará possui a mesma ordem de grandeza da soma de todos os outros estados do Nordeste considerados no monitoramento juntos (Bahia, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte e Sergipe), sendo 18,16 bilhões de metros cúbicos para os açudes do Ceará contra 18,63 bilhões de metros cúbicos para a soma dos açudes dos outros estados. Tal fato ilustra o grande potencial hídrico do Ceará para regularização dos seus rios. Apesar disso, segundo o Plano Estratégico dos Recursos Hídricos do Estado do Ceará, apresentado em 2009 pelo Conselho de Altos Estudos e Assuntos Estratégicos da Assembleia Legislativa do Estado do Ceará, a capacidade de regularização dos reservatórios do estado é de aproximadamente 22% do volume máximo estocável, principalmente devido aos efeitos das altas taxas de evaporação sofridos por esses açudes. A Tabela 2.9 apresenta os dados por estado de número de reservatórios monitores e capacidade total de armazenamento em hectômetros cúbicos segundo monitoramento da ANA.

Tabela 2.9 – Resumo da Quantidade e da Capacidade Total dos Reservatórios da Região Nordeste Monitorados pela Agência Nacional de Águas

Estado	Número de Reservatórios Monitorados	Capacidade Total de Armazenamento (hm³)
Bahia	45	4.404,97
Ceará	151	18.164,12*
Maranhão	1	1.014,00

Estado	Número de Reservatórios Monitorados	Capacidade Total de Armazenamento (hm³)
Paraíba	123	3.737,79
Pernambuco	101	3.200,21
Piauí	24	1.714,27
Rio Grande do Norte	56	4.541,86
Sergipe	10	19,35

^{*}Foram retirados os volumes referentes aos açudes Curral Velho, Gavião, Pacajus, Pacoti e Riachão, que são reservatórios de passagem

Fonte: Agência Nacional de Águas (2017)

A análise de custo da água pela distribuição feita pelos reservatórios deve considerar a vazão que pode se extrair do mesmo para regularizar os rios, vazão que por sua vez está associada a uma garantia de oferta anual, de forma que quanto maior a vazão regularizável menor a garantia de oferta de água anual. As bacias hidrográficas do semiárido são projetadas normalmente com 90% de garantia, o que significa dizer que as vazões regularizáveis apresentam uma probabilidade de escassez de 10% a cada ano. Araújo *et al.* (2005) compila em seu estudo uma análise de custo de distribuição de água em 37 açudes no Ceará para essa garantia de oferta de 90%. A abordagem utilizada para avaliar tal custo considera a recuperação de investimentos da seguinte forma: calcularam-se as anuidades para 50 anos, considerando juros de 8% ao ano; dessa forma os custos unitários (R\$/m³) são calculados pela razão entre a anuidade do investimento (R\$/ano) e a vazão regularizável para a garantia de oferta hídrica de 90% anual (m³/ano). A Tabela 2.10 apresenta os resultados compilados para os 37 reservatórios participantes do estudo.

Tabela 2.10 - Custos de Investimento da Disponibilização de Água por Barragens no Ceará

Barragem	Q90 (hm³/ano)	Custo Total (R\$)	Anuidade (R\$/ano)	Custo Unitário (R\$/m³)
Angicos	22,93	7.831.736,30	943.071,55	0,041
Aracoiaba	58,72	17.362.126,70	2.090.689,37	0,036
Arrebita	3,81	2.518.604,82	303.281,99	0,08
Atalho	44,12	57.475.187,52	6.920.970,31	0,157
Barra Velha	15,77	8.899.770,69	1.071.680,69	0,068
Bengüê	6,28	4.192.844,04	504.888,29	0,080
Canafístula	1,82	2.049.230,01	246.761,44	0,135
Canoas	14,51	12.733.270,45	1.337.570,69	0,092
Carão	5,41	7.199.955,03	866.994,56	0,160
Castanhão	688,75	520.000.000,00	62.616.665,02	0,091

Barragem	Q90 (hm³/ano)	Custo Total (R\$)	Anuidade (R\$/ano)	Custo Unitário (R\$/m³)
Castro	17,35	7.487.798,40	901.655,71	0,052
Catu	6,72	7.317.671,41	881.169,58	0,131
Cahuipe	4,86	4.778.617,16	575.425,13	0,118
Caxitoré	73,16	9.073.000,03	1.092.540,39	0,015
Cipoada	7,95	7.894.591,88	950.640,41	0,120
Favelas	31,54	84.001.849,61	10.115.222,46	0,321
Flor do Campo	11,98	10.312.614,74	1.241.810,66	0,104
Frios	16,71	9.559.045,91	1.151.068,41	0,069
Gangorra	6,72	5.755.715,13	693.084,01	0,103
Itaúna	35,76	4.012.124,54	483.126,65	0,014
Jerimum	7,59	5.742.272,82	691.465,33	0,091
Melancia	8,83	7.505.576,88	903.796,53	0,102
Mons. Tabosa	2,96	1.817.175,45	218.818,21	0,074
Muquém	10,75	6.486.675,69	781.103,84	0,073
Patu	23,06	26.076.964,66	3.140.101,08	0,136
Paulo	12,30	5.516.787,41	664.313,13	0,054
Pedras Brancas	69,98	19.621.927,33	2.362.807,02	0,034
Pentecoste	134,03	14.216.008,21	1.711.844,28	0,013
Premuoca	1,00	2.014.945,81	242.633,05	0,243
Realejo dos Carneiros	4,82	9.788.764,67	1.178.730,38	0,245
Riacho	15,35	16.125.279,38	1.941.752,34	0,127
Sítios Novos	34,37	15.054.495,68	1.812.812,14	0,053
Souza	9,46	5.329.614,47	641.774,39	0,068
Tejuçuoca	12,42	11.845.176,11	1.426.356,59	0,115
Trapiá	2,98	2.229.572,60	268.477,69	0,090
Trussu	32,48	43.567.715,34	5.246.278,92	0,162
Ubaldinho	7,88	5.734.115,60	690.483,07	0,088

Fonte: Araújo et al. (2005)

Dessalinização da Água do Mar

A dessalinização é um processo mais antigo do que imaginamos. O processo de formação das chuvas na atmosfera, através da transformação da água salgada do mar em nuvens e consequentemente em precipitações é considerado um processo de dessalinização. Gregos e Romanos utilizavam técnicas básicas para dessalinização da água. No século XVI as embarcações em alto mar se utilizaram deste processo. Em terra, foi no início do século XVIII que começou a ser mais utilizada, ganhando destaque ainda maior nos anos 1940 e 1950 nos países do Golfo Árabe, nos EUA e nas Ilhas do Caribe. O marco da dessalinização ocorreu

durante a segunda guerra mundial, quando os estabelecimento militares norte-americanos situados em regiões áridas utilizaram técnicas de dessalinização para suprir as tropas. O Governo dos EUA financiou o desenvolvimento de técnicas por mais de 30 anos, investindo cerca de 300 milhões de dólares no processo através da criação do Office of Saline Water (OSW), no princípio dos anos 50, e suas organizações sucessoras, como o Office of Water Research and Technology (OWRT) (SOUZA, 2006).

Com o passar dos anos, as reservas de água doce ao redor do mundo ficam cada vez mais escassas. Até o final de 2014, apenas 0,5% da água potável do mundo era considerada potável. Uma das medidas para contornar esse cenário é a transformação da água salgada em água potável, através de processos de dessalinização, visto que as águas salgadas podem ser consideradas um recurso ilimitado (ROCHA, 2014).

As técnicas de dessalinização têm se desenvolvido nos últimos anos. O processo de dessalinização resulta na geração da água doce, contendo baixa concentração de íons dissolvidos e a salmoura, com alta concentração de sólidos totais dissolvidos (TORRI, 2015). O processo de separação requer energia que poder ser fornecida por várias fontes: eletricidade, calor ou pressão e variadas técnicas de separação (KHAWAJI *et al.*, 2008). Os dois tipos principais de processos de separação são os processos térmicos e os processos de separação com auxílio de membranas (CHARCOSSET, 2009).

Segundo Khawaji *et al.* (2008), em 2001, 60% da água dessalinizada em todo o mundo era proveniente da água do mar, sendo o principal uso para converter a água salgada em potável para o uso populacional, na faixa dos 60%. A utilização em irrigação e na indústria possuíam respectivamente as faixas de utilização de 2% e 28%.

A capacidade de dessalinização mundial vêm crescendo bastante nos últimos anos. Segundo dados da International Desalination Association (IDA), no ano de 2012, 77,3 milhões de metros cúbicos de água dessalinizada por dia eram produzidos ao redor do mundo. A Global Water Inteligence (GWI) informa que o crescimento da capacidade diária de dessalinização no mundo de 2002 a 2007 foi de 12% ao ano (TORRI, 2015). O Gráfico 2.1 apresenta o crescimento na taxa média diária de dessalinização entre os anos de 1965 e 2011.

A distribuição das plantas de dessalinização de água salgada ao redor do mundo apresenta uma concentração bastante alta nos países do Oriente Médio. O IDA Desalting Inventory 2004 Report apresentado no ano de 2012 mostra que das 17.348 unidades de dessalinização em 10.350 plantas instaladas ao redor do mundo, 53,3% se encontram em países do Oriente Médio, com destaque para Arábia Saudita (17,4%), Emirados Árabes Unidos (14,7%) e Kuwait (5,8%). Os EUA também possuem bastante destaque, com 16,2% das plantas

de dessalinização ao redor do mundo. O Gráfico 2.2 apresenta a distribuição da localização das plantas de dessalinização (TORRI, 2015).

80 70 60 50 40 30 20 10 1965 1970 1975 1980 1985 1990 2000 2005 2011

Gráfico 2.1 – Crescimento da Capacidade de Dessalinização Diária entre 1965 e 2011

Fonte: TORRI, 2015 apud GWI DesalData (2012)

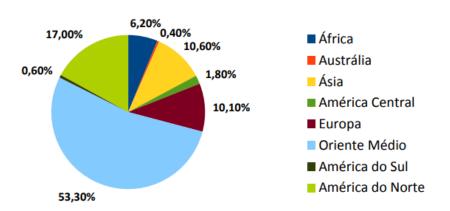


Gráfico 2.2 – Distribuição das Plantas de Dessalinização no Mundo no Ano de 2012

Fonte: TORRI, 2015 apud IDA Desalting Inventory 2004 Report

As porcentagens encontradas no Gráfico 2.2 se justificam pela dependência dos países do Oriente Médio de obtenção de água potável estritamente através do processo de dessalinização. Nos EUA várias cidades aumentaram a utilização da dessalinização da água do mar para suprir suas demandas. Na Austrália o crescimento populacional fez com que a demanda superasse a oferta proveniente dos reservatórios; dessa forma foi instalada uma das maiores usinas de dessalinização de água do mar do mundo, para atendimento de 1,5 milhão de

habitantes, mas com custo 2 vezes maior do que se a água fosse proveniente dos reservatórios (TORRI, 2015 *apud* MIDDLE EAST ELECTRICITY, 2005; ROYAL ACADEMY OF ENGINEERING, 2010; SYDNEY DESAL, 2017).

A Espanha construiu sua primeira planta de dessalinização em 1965, produzindo 2.300 m³/dia de água dessalinizada. Segundo Habibi *et al.* (2013), no ano de 2013, o país possuía mais de 800 plantas de dessalinização, produzindo 5,2 bilhões de m³/dia de água dessalinizada, atendendo dez milhões de pessoas, sendo o quarto país que mais dessaliniza água salgada do mundo. A maior planta de dessalinização do país fica na cidade de Torrevieja, instalada em 2010 a um custo de 408 milhões de dólares, com capacidade de produção de 240.000 m³/dia (CALA, 2013).

Israel possui mais da metade do seu território em áreas de deserto. Segundo Tenne (2015) 76% da água para consumo populacional provém da dessalinização da água do mar. As usinas fornecem 670 milhões de metros cúbicos por ano, sendo a planta da cidade de Sorek a maior do país, com capacidade diária de produção de 560.000 m³/dia. Os investimentos em dessalinização são tão fortes no país que segundo Flint (2014) é mais barato utilizar água dessalinizada do que utilizar alternativas de transposição. Até 2005, a capital Tel Aviv era abastecida pelo Canal Nacional, provindo do mar da Galileia, que se encontra a 150 km de distância. Desde então a dessalinização passou a ser utilizada em larga escala no país.

O país que mais dessaliniza água do mar no mundo é a Arábia Saudita, tendo suas primeiras plantas instaladas desde 1928. A capacidade de dessalinização do país provém de duas frentes: a partir do Mar Vermelho são dessalinizados 2.428.880 m³/dia; do Golfo Árabe são dessalinizados 2.727.414 m³/dia, perfazendo um total de 5.156.294 m³/dia. Até o ano de 2020 o governo planeja um aumento de 3.000.000 m³/dia, enquanto que as projeções para o ano de 2030 apresentam um valor da capacidade total de dessalinização do país de 12.526.294 m³/dia (AL-ALSHAIKH, 2015).

Apesar dos grandes investimentos ao redor do mundo na dessalinização de água do mar, o Brasil encontra-se em estágios iniciais para esse tipo de alternativa. Um exemplo recente de utilização dessa alternativa acontece em Fernando de Noronha, sendo o maior sistema de dessalinização de água do mar do Brasil para produção de água potável. Com uma capacidade de 27 m³/h a usina possui um período de funcionamento de apenas 10 a 14 horas, visto que a oscilação das marés faz com que somente seja possível recolher água no período de maré alta. Atualmente o sistema de dessalinização tem sua oferta de água complementado por um açude com capacidade de armazenamento de 200.000 m³ de água e dos poços artesianos, mas estes dois últimos são bastante dependentes das chuvas e secam nos períodos de estiagem. Antes da

instalação da usina, a população obtinha água somente uma vez a cada dez dias; após a construção da usina, a população consegue obter água uma vez a cada seis dias. Por isso, uma obra de ampliação da captação da água do mar se encontrava em estudo para que a dessalinização pudesse ocorrer 24 horas por dia, alterando a capacidade de dessalinização para 60 m³/h e acabando com os problemas de rodízio de água para a população (RODRIGUES & BRENHA, 2014; TAVARES, 2015). No Ceará a primeira usina de dessalinização está em fase de edital para implantação e os exemplos ao redor do mundo podem servir de inspiração.

Os custos com dessalinização da água do mar ainda são altos, mas com a evolução das tecnologias, se tornam cada vez mais acessíveis. Em 2005, os custos de disponibilização de água potável a partir da dessalinização giravam em torno de 2,00 US\$/m³. Atualmente o custo da dessalinização está na faixa de 1,00 US\$/m³. Novos projetos têm buscado tecnologias para tornar o processo ainda mais barato, mas por enquanto sem sucesso para aplicação em larga escala (PEREIRA JÚNIOR, 2005; SENADO FEDERAL, 2014).

• Águas Subterrâneas

As águas subterrâneas são uma fonte hídrica alternativa às águas superficiais comumente utilizados no abastecimento populacional. Países como Alemanha, Bélgica, Holanda e Suécia têm sua população totalmente abastecida por águas subterrâneas (HELLER & PÁDUA, 2006 *apud* UNESCO, 1998). Normalmente a captação das águas subterrâneas é feita através do bombeamento pelos poços. No Brasil, estima-se que até 2009 haviam cerca de 400.000 poços, onde 15,6% do abastecimento populacional do país era feito pela água subterrânea (MENEZES, 2009). Estima-se que o subsolo brasileiro possua um volume armazenado de águas da ordem de 112.000 km³ (MINISTÉRIO DO MEIO AMBIENTE, 2001). Na região Nordeste, a mais atingida pela falta de chuvas, segundo estudos da Associação Brasileira de Águas Subterrâneas (ABAS), poderiam ser retirados 19,5 bilhões de m³ anuais de água, o que correspondia a 40 vezes o volume extraído em 2006. Apesar da disponibilidade, o uso dessa água é limitado pelo alto teor de sais encontrados na água dos poços nordestinos (SOARES *et al.*, 2006).

Durante os períodos de estiagem, as águas subterrâneas são fundamentais no suprimento hídrico dos rios da região. Esses períodos também são conhecidos pelo aumento nos programas de construção de poços, principalmente nas regiões mais secas e carentes. Muitas vezes é constatado que essa água é imprópria para o consumo, com o poço logo sendo

abandonado, prejudicando tanto em termos populacionais, que não tem sua demanda atendida, quanto em termos de custo, visto que o investimento é perdido. O resultado é a população consumir água com sais acima dos limites de ppm, estabelecidos pela Organização Mundial da Saúde (OMS), visto que muitas vezes os poços são a única fonte de água. (CARVALHO; 2000; OLIVEIRA & BARROS, 1999). Uma correlação feita entre indicadores socioeconômicos no Ceará e salinização das águas de abastecimento indiciou que os dez piores municípios em termos de indicados sociais e econômicos possuíam 70% dos poços com altos teores de sais, enquanto que os dez melhores possuíam apenas 16% de salinidade nos poços (MONTEIRO & PINHEIRO, 2004).

No Ceará estima-se que até o ano de 2003, haviam 23.000 poços instalados no estado. Dos poços monitorados pela COGERH, os 21.473 poços possuíam uma capacidade total de oferta de água de 21,7 m³/s, equivalente a 685 milhões de m³ anuais. Desses poços, 78% da oferta era efetivamente aproveitada (COGERH, 2017). O real potencial de exploração do estado ainda é uma incógnita e fonte de vários estudos (SILVA *et al.*, 2007).

O desenvolvimento das técnicas de dessalinização de água fez com que os Governos Federal e Estaduais investissem nessa técnica para melhoria da qualidade das águas subterrâneas salobras desde o ano de 2002. Até 2004 já haviam sido instalados na região Nordeste 3.000 dessalinizadores de águas salobras (SOARES *et al.*, 2006).

Os custos de disponibilização da água subterrânea consideram tanto os custos em investimentos quanto os custos em operação e manutenção dos mesmos. Barbosa (2000) compila em seu estudo tais custos, divididos por bacias hidrográficas do estado do Ceará. Os custos de investimento foram atualizados para o prazo de 30 anos para poços e seis anos para estações de bombeamento, com taxas de juros de 8% ao ano; os custos de operação e manutenção incluíram gastos com energia, administração e manutenção. A Tabela 2.11 apresenta os dados de custos de disponibilização de águas subterrâneas no estado ajustados por Araújo *et al.* (2005) em relação aos estudos feitos por Barbosa (2000).

Tabela 2.11 – Custos de Disponibilização de Águas Subterrâneas no Ceará

Região Hidrográfica	Cristalino			Sedimentar		
	Invest.	O&M	Total	Invest.	O&M	Total
Alto Jaguaribe	0,084	0,043	0,128	0,038	0,044	0,082
Médio Jaguaribe	0,103	0,046	0,149	(-)	(-)	(-)
Baixo Jaguaribe	0,069	0,041	0,110	0,068	0,037	0,01
Salgado	0,061	0,041	0,102	0,029	0,036	0,065

Região Hidrográfica	Cristalino			Sedimentar			
	Invest.	O&M	Total	Invest.	O&M	Total	
Banabuiú	0,076	0,043	0,120	(-)	(-)	(-)	
Metropolitana	0,055	0,043	0,099	0,068	0,034	0,102	
Curu	0,069	0,041	0,110	0,091	0,032	0,122	
Litorânea	0,117	0,047	0,164	0,059	0,025	0,084	
Acaraú	0,065	0,04	0,105	0,076	0,036	0,113	
Coreaú	0,061	0,039	0,100	0,067	0,035	0,103	
Parnaíba	0,074	0,043	0,117	0,093	0,045	0,137	
Média	0,076	0,042	0,118	0,065	0,036	0,101	

Fonte: Barbosa (2000) adaptado por Araújo et al. (2005)

Análises dos custos de disponibilização de água subterrânea a partir do processo de dessalinização apontam que as tecnologias vêm se desenvolvendo com o tempo, tornando esse custo mais barato. Um estudo para o custo da água apresentado por Abreu *et al.* (2001) a partir de dados fornecidos pela prefeitura de Mauá e atualizados por Araújo *et al.* (2005), obteve-se um custo de 3,31 R\$/m³ no ano de 2001. A Associação Brasileira de Águas Subterrâneas informa que atualmente é possível obter água potável a partir de dessalinizadores a um custo inferior a 0,30 R\$/m³. Apesar de o custo depender da qualidade da água e do volume de água a ser tratada, nota-se a evolução dos custos de dessalinização de águas subterrâneas.

• Diminuição da Demanda de Irrigação – Melhoria das Técnicas

Segundo a Foundation Water Research (2011) os problemas de escassez de água pelo aumento da demanda podem ser solucionados de várias formas, por exemplo a redução de perdas na distribuição e uso e no desenvolvimento de técnicas mais avançadas na irrigação, sendo esta a maior responsável pela demanda de água mundial. No Brasil, segundo Rebouças (2003), 63% de toda a demanda é para a agricultura, onde, segundo Christofidis (2002), a área irrigada corresponde a 18 % da área cultivada total do país. A FAO estima que cerca de 60% da água fornecida para os projetos de irrigação se perdem por evaporação ou percolação. Por sua vez, uma redução de 10% da água utilizada para irrigação seria suficiente para abastecer o dobro da população mundial atual (ONU, 2017).

O desperdício de água na irrigação é justificado: no Brasil, com 3 milhões de hectares irrigados, 93% utilizam os métodos de irrigação menos eficientes no mundo, com o

espalhamento superficial representando 56% da área, pivô central representando 19% da área e aspersão convencional representando 18% da área (REBOUÇAS, 2003). Um estudo feito a partir de dados do Censo Agropecuário de 2005-2006 acerca dos cenários de irrigação na região Nordeste, o estado do Ceará possui como método mais utilizado a aspersão, com 33,84%, seguido dos métodos de superfície, com 28,34% e dos métodos localizados, com 15,68% (SARAIVA *et al.*, 2012).

No caso da irrigação por aspersão, método mais utilizado no Ceará, os sistemas de aspersão convencional de alta pressão do tipo canhão são os de mais baixa eficiência no aproveitamento da água ofertada, com rendimentos entre 50 % e 60 %. Para sistemas de baixa e média pressão a eficiência encontra-se entre 60 % e 75 %. Os sistemas de pivô central e de movimento linear possuem maior eficiência, dependendo da altura dos aspersores entre a linha do solo e a linha principal: para aspersores à meia altura entre a superfície do solo e a linha principal, a eficiência obtida é de 80 % a 85 %. Quando os aspersores de pressão são mantidos dentro da cultura, de 30 cm a 90 cm da superfície do solo dentro da cultura ou quando os aspersores são colocados a 45 cm da superfície do solo a eficiência encontrada é 85 % a 90 %. Essa eficiência pode aumentar para 90 % a 95 %, quando os aspersores ficam a 20 cm da superfície e com uso de sulcos no solo (COELHO *et al.*, 2005).

Atualmente, a utilização de sistemas de irrigação por superfície possibilitam o uso racional da água. A irrigação por sulcos com uso de pulso pode reduzir significativamente as perdas por percolação. Métodos como a microaspersão e o gotejamento, que são sistemas de irrigação localizada promovem a redução substancial nas perdas de água. O gotejamento subsuperficial, por exemplo, possui eficiência acima de 90% a partir da minimização das perdas por evaporação. Mesmo nos países desenvolvidos, em apenas 1 % das áreas irrigadas é adotado o método de gotejamento. A microaspersão e o gotejamento superficial possuem uma eficiência um pouco menor, visto que expõem maior área molhada ou área de evaporação de água (COELHO *et al.*, 2005).

• Combate ao Desperdício Populacional e Reúso de Água

Segundo a Foundation Water Research (2011), assim como a eficientização das técnicas agrícolas, os problemas de escassez de água pelo aumento da demanda podem ser solucionados também pelo incentivo ao combate do desperdício de água pela população e ao

reuso de água. Para a implantação dessas alternativas, os governos e órgãos responsáveis têm fundamental importância na conscientização populacional acerca das crises hídricas.

A importância da conscientização é muito bem exposta no exemplo de Zaragoza, na Espanha, nos anos 1990. As secas severas dessa época deixaram milhões de espanhóis sem água, mas o maior problema do país não estava ligado diretamente à falta de chuvas, e sim à "cultura do desperdício". Uma campanha maciça foi realizada na cidade de Zaragoza, com a conscientização sendo realizada nas escolas, nos espaços públicos e pela imprensa. 30 mil dos 700 mil habitantes da cidade se comprometeram formalmente a diminuir o desperdício. A meta estabelecida em 1997 era de reduzir o consumo doméstico em pouco mais de 1 bilhão de litros de água em um ano. Tal meta conseguiu ser atingida, com 2/3 das casas adotando as medidas de economia de água após a campanha. Antes da campanha a Comissão Europeia afirma que apenas 1/3 das casas adotava tais medidas. Na África do Sul, na cidade de Khayelitsha, com 450 mil habitantes, descobriu-se no início dos anos 2000 que cerca de uma piscina olímpica era perdida por hora devido aos vazamentos na rede de abastecimento, sendo a principal fonte os encanamentos domésticos que não suportavam a pressão da rede. Uma iniciativa de reforma dos encanamentos, aliada a uma campanha de conscientização de combate ao desperdício, a cidade conseguiu economizar 9 milhões de m³ de água por ano, a um custo de menos de US\$ 1 milhão. (IDOETA & BARIFOUSE, 2014).

A capital do estado do Ceará, Fortaleza, registrou em 2016 uma taxa de desperdício de 34,15% de água, segundo dados da CAGECE. O valor é alto, mas já representa um grande avanço, visto que no ano anterior a taxa de desperdício foi de 45,74%. As taxas de perda na distribuição de água em Fortaleza são representadas no Gráfico 2.3, com a evolução desde o ano de 2011. As medidas de desperdício consideram vazamentos, furtos, ligações clandestinas, falta de medição e medições incorretas do consumo de água. A redução de perdas é um desafio a longo prazo, demandando investimentos para substituição de tubulações antigas e ataque aos pontos de vazamento. No Ceará, a taxa de desperdício obtida para o ano de 2016 foi de 42%. Há cidades brasileiras com taxas de perda de água abaixo dos 20%, mas nenhuma no Nordeste. (ZARANZA, 2017)

44,71 43,76 42,04 45,73 45,74 34,15 2011 2012 2013 2014 2015 **2016**

Gráfico 2.3 – Evolução da Taxa de Perda de Água em Fortaleza

Fonte: CAGECE (2017)

O combate à perda de água é bastante potencializado por investimentos em reuso de água. O reuso, inclusive, é uma alternativa que pode ser utilizada em qualquer demanda de água, seja populacional, animal, industrial, irrigação ou turismo. A Figura 2.4 ilustra as formas potenciais de reuso de água. O reuso ganhou importância a partir da indicação aos países participantes da Conferência das Nações Unidas sobre o Meio Ambiente e o Desenvolvimento (ECO-92) pela Agenda 21 (1994) a partir da implementação de políticas de gestão dirigidas para o uso e reciclagem de efluentes. No Brasil ainda não existe nenhuma legislação relativa ao reuso de água e ainda que a "Lei das Águas" (Lei 9.433 de 8 de janeiro de 1997) não mencione tal alternativa, há uma demonstração de vontade política, direcionada para a institucionalização do reuso, a partir da "Conferência Interparlamentar sobre Desenvolvimento e Meio Ambiente" realizada em Brasília, em dezembro de 1992, recomendando a institucionalização da reciclagem e do reuso sempre que possível (HESPANHOL, 2002).

A experiência internacional mostra que os investimentos em reuso de água são bem sucedidos e podem ser de grande valia em situações de crise hídrica. Em Israel a utilização de reuso é política nacional desde 1955, ocorrendo 80% do reuso da água doméstica, o que equivale a reutilização de 400 bilhões de litros por ano. Espanha, com taxas de reuso de 14%, Austrália, com 9% e Itália, com 8% são outros exemplos de países que investem nessa política. A própria indústria têm conseguido utilizar água com mais eficiência. O Japão hoje gasta um volume inferior a 12 milhões de litros para produzir US\$ em mercadorias, enquanto 50 anos atrás o país gastava quase 50 milhões de litros para a mesma produção. Nos EUA, as primeiras experiências com reuso ocorreram na década de 1930, na Califórnia e na Flórida, este último reutilizando atualmente 2,7 bilhões de litros de água por dia, com o objetivo principal de

abastecimento da indústria e dos extensos campos de golfe característicos desses dois estados. Mesmo assim, novas tecnologias têm espaço para a produção de água potável a partir do reuso e seu uso poderá ser de grande importância no futuro (SENADO FEDERAL, 2014).

A principal forma de reuso de água é o tratamento a partir de efluentes de estações de tratamento de esgotos (ETE), principalmente pelo método das lagoas de estabilização, muito utilizado no Brasil. Até o início do século XXI, o estado do Ceará possuía 40 lagoas de estabilização, com a Região Metropolitana de Fortaleza contendo 17 dessas. Uma análise de custos para reuso de água a partir de lagoas de estabilização depende principalmente da população a ser atendida, com os custos unitários reduzindo com o crescimento da população (ARAÚJO *et al.*, 2005; BARBOSA, 2000; SILVA & SILVA, 1999). A Tabela 2.12 apresenta os custos para treze sistemas de lagoa de estabilização do Ceará.

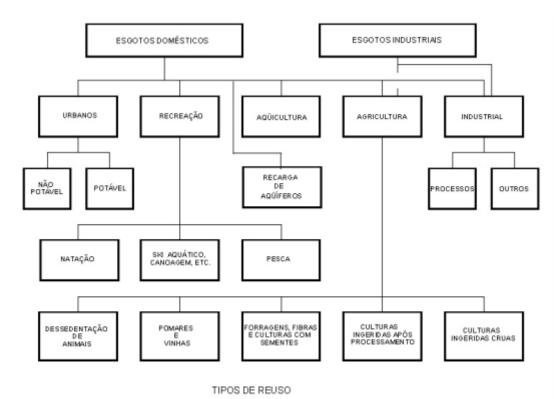


Figura 2.4 – Formas Potenciais de Reuso de Água

Fonte: HEPANHOL, 2002 apud HESPANHOL, 1997

Tabela 2.12 – Custos de Disponibilização do Efluente de ETE (Lagoas de Estabilização) para Reuso no Ceará

Duoista	Pop. Projeto	Custos (R\$/m³)				
Projeto	2017	Invest.	O&M	Total		
Jaguaretama	13.400	0,091	0,013	0,104		
Mons. Tabosa	11.050	0,170	0,017	0,187		
Cariré	7.170	0,139	0,016	0,155		
Martinópole	11.000	0,045	0,015	0,060		
Barbalha	56.680	0,071	0,009	0,080		
Marinheiro	1.120	0,170	0,055	0,225		
Tauá	46.970	0,049	0,008	0,057		
Aquiraz	37.980	0,046	0,008	0,054		
São Gonçalo	9.550	0,148	0,019	0,167		
Baleia	1.660	0,174	0,035	0,209		
Guaiúba	15.950	0,089	0,011	0,100		
Lagoinha	3.310	0,279	0,019	0,298		
Novo Oriente	22.000	0,054	0,011	0,065		

Fonte: Barbosa (2000) adaptado por Araújo et al. (2005)

3 METODOLOGIA

Este capítulo tratará da metodologia que será utilizada no presente trabalho. Dos capítulos anteriores conclui-se que o estado do Ceará sofre com falta de chuvas desde o início do seu povoamento. Nos últimos cinco anos instalou-se uma das maiores secas prolongadas da história, deixando em estado de alerta os órgãos responsáveis pela manutenção hídrica do estado. A metodologia no presente estudo consistirá de uma análise preliminar geral para o Ceará em termos de demandas e ofertas hídricas, com estimativas para os anos de 2020, 2030, 2040 e 2050. Inicialmente serão apresentadas as principais demandas hídricas do estado e o método utilizado para previsão dos valores para os diferentes tipos de demanda. Em seguida serão apresentadas as ofertas hídricas e o método de estimativa utilizados para os anos considerados. Por fim será apresentado a metodologia utilizada para a simulação entre oferta e demanda de água para o estado nos diferentes cenários adotados. As possíveis intervenções, tanto em demanda quanto em oferta serão analisadas tanto em termos técnicos quanto em termos de custo.

3.1 Demandas Hídricas do Estado do Ceará

3.1.1 Abastecimento Humano

Em 8 de janeiro de 1997 foi lançada a Lei N° 9433, conhecida como "Lei das Águas", responsável por instituir uma política nacional de recursos hídricos. Um dos fundamentos dessa lei baseia-se que, em situações de escassez hídrica, o uso prioritário dos recursos hídricos deve ser dado ao abastecimento humano. De fato a disponibilidade de água é fundamental para a sobrevivência de uma população, considerando-se seus múltiplos usos: uso residencial, tanto no meio urbano quanto no meio rural, para os afazeres domésticos; uso comercial em lojas e estabelecimentos públicos; uso industrial, para atendimento das necessidades das pessoas que trabalham no meio. Segundo publicação da Agência Nacional de Águas (ANA) realizado em 2012, "A questão da água no Nordeste", o abastecimento humano no Ceará é responsável pela segunda maior demanda de água bruta do estado, correspondendo a 18,6%, com as estimativas de consumo de água per capita na cidade de Fortaleza, capital do estado, sendo igual a 155 L/hab/dia e considerando o Ceará como um todo o consumo médio é de 128 L/hab/dia.

O estudo de demanda hídrica humana no presente trabalho teve como objetivo estimar os valores esperados nos horizontes de 2020, 2030, 2040 e 2050 para todos os municípios do estado. A premissa inicial do estudo considerou que não ocorrerão mudanças substanciais nos padrões históricos de crescimento populacional. Dessa forma, o estudo compreendeu as seguintes atividades:

- 1. Obtenção dos últimos 4 Censos, junto ao IBGE, considerando população urbana e rural de cada município;
- Estudo de projeção populacional para os anos citados, com base nos métodos convencionais: crescimento exponencial, crescimento logístico e crescimento logarítmico;
- 3. Cálculo das demandas hídricas por município, separando as parcelas urbana e rural, a partir de parâmetros de consumo "per capita".

O estudo de projeção populacional se constitui de uma tarefa complexa tendo em vista uma grande quantidade de variáveis que devem ser analisadas, como os problemas migratórios naturais, por exemplo a própria seca que afeta as migrações no semiárido nordestino, e os problemas migratórios decorrentes da ação humana, por exemplo as políticas regionais que influenciam na migração para zonas localizadas ou onde ocorram projetos de desenvolvimento. Nesse último contexto, projetos como a implementação do complexo industrial e portuário do Pecém, os empreendimentos turísticos da faixa litorânea do estado, Fortaleza e região metropolitana que apresentam elevado potencial turístico são responsáveis pela concentração de pessoas em torno dessas regiões. Todo esse tipo de peculiaridade é responsável pelas discrepâncias encontradas entre os resultados dos censos e das projeções de alguns estudos, como o PLIRHINE — Plano de Aproveitamento Integrado dos Recursos Hídricos do Nordeste do Brasil, elaborado pela SUDENE na década de 1980, considerado um dos marcos no planejamento da região (SRH, 2009).

Seguindo tais peculiaridades, foram consideradas, além das técnicas tradicionais de análise do crescimento populacional, com projeções logísticas e logarítmicas, estimativas especiais para as seguintes regiões específicas, dado o grande potencial de crescimento populacional das mesmas: a Região Metropolitana de Fortaleza, formada por Fortaleza, Caucaia, Maracanaú, Eusébio, Aquiraz, Cascavel, Chorozinho, Guaiuba, Horizonte, Itaitinga, Maranguape, Pacajus, Pacatuba, Pindoretama, São Gonçalo do Amarante, São Luís do Curu, Paraipaba, Paracuru e Trairi, visto que é a região mais desenvolvida do estado, contando com diversos pólos industriais e turísticos; a região entre a foz do rio Curu e a região de Itarema, também com elevado potencial turístico; para os municípios de Fortaleza, Caucaia, Maracanaú, Eusébio e Aquiraz, na população urbana, utilizou-se uma abordagem mista, com um

crescimento maior até 2030, seguindo o método exponencial, enquanto a partir de 2030 o crescimento populacional segue o método logístico. Para os outros municípios da região, as populações urbanas e rurais foram estimadas de acordo com o melhor ajuste entre crescimento logístico e logarítmico. Os métodos clássicos de projeção populacional foram utilizados da forma apresentada a seguir:

Método Logístico

O método logístico de previsão de crescimento populacional utiliza a curva logística de Verhulst, possuindo três trechos distintos: o primeiro trecho corresponde a um crescimento acelerado da população, seguido de um segundo trecho que corresponde a um crescimento retardado, onde um ponto de inflexão separa os dois trechos; o terceiro e último trecho apresenta a tendência da população à estabilização (DACACH, 1967). O equacionamento da curva logística é apresentado a seguir.

$$\frac{dP}{P} = K \cdot (P_s - P)$$

Onde, P é a população num determinado tempo t, Ps é a população de saturação e K é a constante de proporcionalidade. A solução dessa equação diferencial dá o resultado da população em qualquer período de tempo, apresentada a seguir.

$$P = \frac{P_{S}}{1 + (\frac{P_{S}}{P_{o}} - 1) \cdot e^{K \cdot P_{S} \cdot (t_{o} - t)}}$$

A representação mais comum da curva logística é feita utilizando o ponto de inflexão como o ponto (t_o, P_o), de forma que este ponto ocorre para o tempo t' em que a população atinge a metade da população de saturação. A equação final para determinação da população pelo crescimento logístico é apresentada a seguir.

$$P = \frac{P_{S}}{1 + e^{K \cdot P_{S} \cdot (t'-t)}}$$

A equação possui três parâmetros para determinação completa, sendo a constante de proporcionalidade K, a população de saturação Ps e o tempo t' no qual a população é metade da população de saturação. Por esse motivo é necessário o conhecimento de pelo menos três populações de épocas diferentes.

Método Logarítmico

O método logarítmico de crescimento populacional parte da progressão populacional por meio de um ajuste logarítmico da equação. O método não prevê uma diminuição do crescimento populacional, portanto a população tende a crescer indefinidamente (VON SPERLING, 2005). A equação que expressa o método é apresentada a seguir.

$$P = a \cdot \ln t + b$$

Onde P é a população projetada no tempo t e "a" e "b" são os parâmetros do ajuste logarítmico da equação. A qualidade do ajuste é avaliada pela determinação do coeficiente "r²".

Método Exponencial

O método exponencial utiliza os conceitos de crescimento geométrico da população, cujo crescimento populacional é função da população existente a cada instante. O método é utilizado para estimativas de menor prazo e, assim como o método logarítmico, a população tende a crescer indefinidamente. O ajuste da curva pode ser também feito por análise da regressão (VON SPERLING, 2005). A equação utilizada no método é apresentada a seguir.

$$P = a \cdot e^t + b$$

Onde P é a população projetada no tempo t e "a" e "b" são os parâmetros do ajuste logarítmico da equação. A qualidade do ajuste é avaliada pela determinação do coeficiente "r²".

O coeficiente "r²" é chamado de coeficiente de determinação, sendo a medida do ajuste linear entre duas variáveis, sendo muito utilizado nas regressões lineares. O valor do coeficiente de determinação informa o percentual em que a variável dependente é explicada pela outra variável do modelo. Seu valor é calculado por meio da seguinte equação:

$$r^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (\widehat{y}_{i} - y_{i})^{2} + \sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})}$$

Onde os valores representam a razão entre a soma dos quadrados da regressão e a soma de quadrados total. y_i é o valor observado, \bar{y} é a média das observações e $\hat{y_i}$ é o valor estimado de y_i .

Com toda a população do estado projetada, tanto no meio urbano quanto no meio rural, para os anos de 2020, 2030, 2040 e 2050, fez-se a previsão da demanda nos anos citados a partir de dados de demanda per capita fornecidos pela Secretaria de Recursos Hídricos do Ceará – SRH. Tais dados, baseados no Estudo de Inserção Regional da oferta hídrica proveniente do projeto da Transposição do Rio São Francisco, realizado em 2000, são bastante próximos aos sugeridos por Von Sperling (2005), como mostrado na Tabela 3.1a apresentada posteriormente. Os dados dos valores utilizados para consumo per capita de acordo com a dimensão da comunidade, para a população urbana, considerando 25% de perdas, é apresentado na Tabela 3.1b.

Tabela 3.1a – Consumo Per Capita por População do Munícipio no Brasil

Porte da Comunidade	Faixa da População (habitantes)	Consumo per capita (L/hab/dia)
Povoado Rural	< 5.000	90 a 140
Vila	5.000 a 10.000	100 a 160
Pequena Localidade	10.000 a 50.000	110 a 180
Cidade Média	50.000 a 250.000	120 a 220
Cidade Grande	> 250.000	150 a 300

Fonte: Von Sperling (2005)

Tabela 3.1b – Consumo Per Capita por População do Município no Ceará

Dimensão da Comunidade (Hab.)	Consumo Per Capita Líquido (L/hab/dia)	Consumo Per Capita Bruto (L/hab/dia)
População < 5.000	95	127
5.000 < População < 20.000	103	137
20.000 < População < 100.000	112	150
População > 100.000	150	200

Fonte: Estudos de Inserção Regional do PIRSF - SRH, 2000

Para a população rural, o mesmo estudo sugere um coeficiente de demanda per capita fixo, de 100 L/hab/dia. No presente trabalho utilizou-se esse valor para a previsão das demandas de consumo humano no meio rural.

Por fim, a partir dos dados recenseados fornecidos pelo IBGE, da projeção populacional obtido pelos ajustes aplicados pelos métodos citados para cada município, tanto no meio urbano quanto no meio rural, e dos consumos per capita por tamanho da população, para o meio urbano, e do consumo per capita fixo, para o meio rural, obteve-se a demanda hídrica de consumo populacional de cada cidade pelo produto direto entre a população estimada no ano em questão e o consumo per capita identificado para aquela comunidade. O Apêndice A apresenta os dados do Censo para cada município obtidos do IBGE para os anos de 1996, 2000, 2007 e 2010 para população urbana, bem como apresenta o método de ajuste considerado para essa população. O Apêndice B apresenta os dados do Censo para cada município obtidos do IBGE para os anos de 1996, 2000, 2007 e 2010 para população rural, bem como apresenta o método de ajuste considerado para essa população. Os Apêndices C e D apresentam os resultados de projeção populacional de cada município para os anos de 2020, 2030, 2040 e 2050, para o meio urbano e rural respectivamente. Tal tabela encontra-se na seção Resultados e Discussões do presente trabalho. Os Apêndices E e F apresentam os resultados de demanda de consumo humano de cada município para os anos de 2020, 2030, 2040 e 2050, para o meio urbano e rural respectivamente. Por fim, na seção de Resultados e Discussões também é apresentada a Tabela 4.1 com a soma total consolidada da demanda populacional para os anos de 2020, 2030, 2040 e 2050, tanto em m³/s, quanto em bilhões de m³ por ano.

3.1.2 Irrigação

O setor de irrigação é atualmente a maior demanda hídrica do estado do Ceará. Segundo publicação da Agência Nacional de Águas (ANA) realizado em 2012, "A questão da água no Nordeste", a irrigação no Ceará é responsável pela maior demanda de água bruta do estado, correspondendo a aproximadamente 62%. Visto o grande impacto desse tipo de demanda para os recursos hídricos do estado, o cálculo da demanda de irrigação para o Ceará considera 4 cenários: projetos existentes já implantados, projetos existentes em implantação e projetos em estudo e irrigação difusa. Para cada um desses casos é apresentada a metodologia de obtenção das demandas hídricas a seguir.

Projetos de Irrigação Implantados

A identificação dos projetos implantados foram feitas junto ao Atlas Digital dos Recursos Hídricos, da Secretaria dos Recursos Hídricos do Ceará, e ao documento "Diagnóstico dos Projetos de Irrigação do Ceará" elaborado pela SRH, com a síntese de todos os projetos públicos de irrigação (estaduais e federais) do Ceará existentes. A Tabela 3.2 apresenta o levantamento dos projetos existentes, com o nome do projeto, a bacia hidrográfica, o município, a área e a fonte hídrica que abastece o projeto.

Tabela 3.2 – Projetos de Irrigação Implantados no Estado do Ceará

Projeto	Bacia Hidrográfica	Município	Área(ha)	Fonte Hídrica
Alagamar	Médio Jaguaribe	Jaguaretama	312	Açude Castanhão
Altinho	Baixo Jaguaribe	Tabuleiro do Norte	204	Rio Jaguaribe
Araras Norte - 1ª Etapa	Coreaú	Reriutaba	1.600	Aç. Paulo Sarasate
Baixo Acaraú - 1ª Etapa	Acaraú	Marco	8.426	Rio Acaraú
Banabuiú	Banabuiú	Banabuiú	94	Rio Banabuiú
Cachoeirinha	Alto Jaguaribe	Tauá	31	Rio Jaguaribe
Califórnia	Banabuiú	Quixadá	69	Rio Choró
Chapada do Apodi - 1ª e 2ª Etapas	Baixo Jaguaribe	Limoeiro do Norte	5.393	Rio Jaguaribe
Choró-Limão	Metropolitana	Choró	36	Rio Choró
Curupati	Médio Jaguaribe	Jaguaribara	528	Açude Castanhão
Curu-Pentecoste	Curu	Pentecoste	1.068	Sistema Curu
Curu-Paraipaba	Curu	Paraipaba	6.299	Sistema Curu
Forquilha	Coreaú	Forquilha	218	Açude Forquilha
Graça - 1ª Etapa	Poti	Crateús	82	Açude Carnaubal
Jaburu II	Poti	Crateús	95	Açude Jaburu II
Jaguaruana	Médio Jaguaribe	Jaguaruana	202	Rio Jaguaribe
Jaibaras	Coreaú	Sobral	615	Aç. Aires de Sousa
Jucás I e II	Alto Jaguaribe	Jucás	56	Rio Jucás
Icó-Lima Campos	Salgado	Icó	2.712	Açudes Lima Campos e Orós
Mandacarú	Médio Jaguaribe	Jaguaribara	510	Açude Castanhão
Morada Nova	Banabuiú	Morada Nova	3.737	Rio Banabuiú
Patu	Banabuiú	Senador Pompeu	69	Açude Patu
Quixeré	Baixo Jaguaribe	Quixeré	199	Rio Jaguaribe
Realejo	Parnaíba	Crateús	400	Açude Realejo
Senador Pompeu	Banabuiú	Senador Pompeu	164	Açude Patu
St. Antonio de Russas - 1 ^a Etapa	Baixo Jaguaribe	Russas	189	Aç. Santo Antônio de Russas
Tabuleiro de Russas - 1ª Etapa	Baixo Jaguaribe	Russas	10.600	Rio Banabuiú
Tucunduba - 1ª Etapa	Coreaú	Martinópole	75	Açude Tucunduba
Várzea do Boi	Alto Jaguaribe	Tauá	326	Aç. Várzea do Boi
Xique-Xique	Médio Jaguaribe	Alto Santo	125	Rio Jaguaribe

Projeto	Bacia Hidrográfica	Município	Área(ha)	Fonte Hídrica
Áreas do Baixo Curu	Baixo Jaguaribe	Diversos	10.000	Rio Jaguaribe
Áreas do Curu	Curu	Diversos	3.000	Sistema Curu
Áreas do Médio Acaraú	Acaraú	Diversos	3.000	Rio Acaraú
Áreas do Médio Jaguaribe	Médio Jaguaribe	Diversos	4.000	Rio Jaguaribe
Áreas do Rio Salgado	Salgado	Diversos	4.200	Rio Salgado
Várzeas do Iguatu	Alto Jaguaribe	Iguatu	2.800	Rio Jaguaribe

Fonte: Adaptado de SRH (2009)

Projetos de Irrigação em Implantação

A identificação dos projetos em implantação foram feitas com apenas três projetos apresentados pelo DNOCS, referindo-se às segundas etapas dos projetos de irrigação das regiões de Araras Norte, Baixo Acaraú e Tabuleiro de Russas, cujas obras estão incluídas no Programa de Aceleração do Crescimento – PAC do Governo Federal. Tais áreas possuirão uma tecnologia maior em termos de irrigação, além de serem áreas com certa representatividade no estado. A Tabela 3.3 apresenta o levantamento dos três projetos, com o nome, a bacia hidrográfica, o município, a área e a fonte hídrica que abastece o projeto.

Tabela 3.3 – Projetos de Irrigação em Implantação no Estado do Ceará

Projeto	Bacia Hidrográfica	Município	Área(ha)	Fonte Hídrica
Araras Norte - 2ª Etapa	Coreaú	Reriutaba	1.423	Aç. Paulo Sarasate
Baixo Acaraú - 2ª Etapa	Acaraú	Marco	4.416	Rio Acaraú
Tabuleiro de Russas - 2ª Etapa	Baixo Jaguaribe	Russas	3.600	Rio Banabuiú

Fonte: Adaptado de SRH (2009)

Projetos de Irrigação em Estudo

Da mesma forma que nos projetos já implantados, a identificação dos projetos em estudo foram feitas junto ao Atlas Digital dos Recursos Hídricos, da Secretaria dos Recursos Hídricos do Ceará, e ao documento "Estudos de Demandas Industriais, de Turismo e de Irrigação" elaborado pela SRH. A Tabela 3.4 apresenta o levantamento dos projetos, com o nome, a bacia hidrográfica, o município, a área e a fonte hídrica que abastece o projeto.

Tabela 3.4 – Projetos de Irrigação em Estudo no Estado do Ceará

1 a		de Irrigação em Estudo	no Estado de	O CEALA
Projeto	Bacia Hidrográfica	Município	Área (ha)	Fonte Hídrica
Arvoredo / Canto / Quirino	Parnaíba	Crateús	430	Rio Poti
Áreas do Longo do Canal do Trabalhador	Metropolitana	Diversos	4.000	Canal do Trabalhador
Baixo Acaraú - 3ª Etapa	Acarau	Morrinhos	4.000	Rio Acaraú
Camocim	Coreaú	Camocim	860	Rio Coreau
Canaã	Médio Jaguaribe	Russas	5.000	Rio Jaguaribe
Carão	Coreaú	Tamboril	16	Acude Carao
Cariri Oriental I e II	Salgado	Brejo Santo	4.400	Açude Atalho/PTRSF
Chapada do Moura / Barro Alto / Gadelha	Alto Jaguaribe	Iguatu	5.000	Rio Jaguaribe
Chapada do Castanhão	Médio Jaguaribe	São João do Jaguaribe	10.000	Rio Jaguaribe
Curu - 3ª Etapa	Curu	Paraipaba	4.600	Sistema Curu
Frecheirinha	Coreaú	Frecheirinha	2.475	Aç. Frecheirinha
Graça - 2ª Etapa	Parnaíba	Crateús	400	Acude Carnaubal
Granja	Coreaú	Graça	2.900	Rio Coreaú
Ibicuitinga	Banabuiu	Ibicuitinga	1.000	Aç. Castanhão/Eixão
Lagoa Queimada / Várzea Redonda / Médio Acaraú	Acarau	Sobral	430	Rio Acaraú
Mundaú	Litoral	Uruburetama	100	Rio Mundaú
Nutrir	Metropolitana	Itaiçaba	273	
Parazinho	Coreaú	Granja	2.400	Rio Coreau
Pindoretama	Metropolitanas	Pindoretama	2.000	Aç. Castanhão/Eixão
Piquet Carneiro	Banabuiú	Piquet Carneiro	118	Açude São José
Platôs do Poti - Áreas 1 e 2	Parnaíba	Crateús	3.500	Rio Poti
Quixelô	Alto Jaguaribe	Quixelô	420	Açude Orós
Riacho do Sangue	Médio Jaguaribe	Solonópole	279	Açude Riacho do Sangue
Roldão	Banabuiu	Morada Nova	2.500	Aç. Castanhão/Eixão
São Braz	Médio Jaguaribe	São João do Jaguaribe	5.000	Rio Jaguaribe
St. Antonio de Russas - 2ª Etapa	Baixo Jaguaribe	Russas	1.094	
Tabuleiros de Morada Nova	Baixo Jaguaribe	Morada Nova	1.000	Aç. Castanhão/Eixão
Tucundubá - 2ª Etapa	Coreaú	Martinópole	330	Acude Tucunduba
Val Paraíso	Coreaú	Tianguá	50	Açude Jaburu I
Xique-Xique - 2ª Etapa	Médio Jaguaribe	Alto Santo	500	Rio Jaguaribe
Fonte: Adaptado de SRH (2009)				

Fonte: Adaptado de SRH (2009)

Com as áreas obtidas para cada projeto de irrigação implantado, em implantação e em estudo no estado do Ceará, aplicou-se um coeficiente de vazão média por unidade de área. Para a obtenção desse coeficiente, algumas considerações são importantes: os projetos aqui apresentados foram desenvolvidos em diferentes períodos, com as mais distintas técnicas de irrigação e de avaliação de consumo; a utilização de técnicas mais modernas de irrigação tende a ser uma tendência natural, visto que os projetos mais antigos utilizavam métodos de irrigação, como por gravidade, aspersão e pivô, que provocavam um consumo excessivo, consequentemente, dada a crescente escassez de água, métodos mais modernos, como o gotejamento, são alternativas mais econômicas e que serão consideradas somente nas alternativas para diminuição de consumo; essa variabilidade de métodos empregados nos projetos torna mais difícil a aplicação de um consumo unitário por área comum sem as efetivas considerações; por fim o consumo real de projetos em operação não é facilmente conhecido, dada a ausência de medições e de informações confiáveis quanto aos mesmos.

A metodologia empregada para a obtenção das demandas consistiu da utilização de um único consumo padrão unitário por unidade de área, conforme sugestão do documento "Estudos de Demandas Industriais, de Turismo e de Irrigação" desenvolvido pela Secretaria de Recursos Hídricos do Ceará – SRH no projeto do Cinturão de Águas do Ceará, mas com algumas adaptações para os cenários da irrigação no estado do Ceará. Cabe aqui uma breve descrição da metodologia utilizada para obtenção desse consumo padrão por hectare: utilização do Modelo de Umidade do Solo para Fins Agrícolas (MUSAG) para o balanço de massa diário e avaliação da umidade no solo, sendo estes estabelecidos de acordo com as necessidades das culturas; a partir desses valores foram obtidas as séries pseudo-históricas dos déficits hídricos das culturas, sendo ajustada a distribuição de probabilidade Log-Pearson III para uma frequência de 90%; a eficiência considerada foi de 75% para aplicação da irrigação e de 85% para condução e distribuição da água para as culturas. Dessa metodologia obtém-se o consumo unitário por unidade de área para um modelo padrão de exploração irrigada intensiva baseado em fruticultura e culturas temporárias, como é o caso do Ceará, de 0,55 L/(s x ha).

Irrigação Difusa

A partir dos dados de irrigação privadas obtidas da atualização do Plano Estadual de Recursos Hídricos do Ceará – PLANERH (2005) foram obtidos os valores para a demanda hídrica dessas áreas irrigadas para o ano 2000. O crescimento projetado para o ano 2020 baseou-

se nos mesmos percentuais de crescimento anual obtidos para as demandas dos projetos públicos de irrigação entre os anos 2000 e 2020. O crescimento da demanda de irrigação difusa foi considerado bastante conservador, sendo feito um escalonamento do crescimento das demandas: uma taxa de crescimento de 10% de 2020 a 2030, uma taxa de crescimento de 7,5% de 2030 a 2040 e uma taxa de 5% de 2040 a 2050. O Apêndice J consolida as demandas hídricas de irrigação difusa para o estado do Ceará no horizonte de estudo considerado.

Por fim, os cenários de utilização da demanda para os anos de 2020, 2030, 2040 e 2050 foram considerados da seguinte forma: os projetos já implantados possuem a demanda total exigida desde o ano de 2020; os projetos em implantação teriam metade de sua demanda total exigida a partir de 2020 e sua demanda total exigida a partir do ano de 2030; os projetos em estudo teriam um quarto da sua demanda total exigida a partir do ano de 2030, metade de sua demanda total exigida a partir de 2040 e a demanda total exigida a partir de 2050. Os Apêndices G, H, I e J mostram a projeção de demandas dos projetos implantados, em implantação, em estudo e de irrigação difusa respectivamente. A Tabela 4.2 apresentada na seção de Resultados e Discussões mostra a consolidação dos resultados encontrados para a demanda hídrica por irrigação para o horizonte de estudo considerado.

3.1.3 Indústria

A projeção de demandas hídricas industriais é uma tarefa bastante complexa, visto que se baseia nas expectativas de desenvolvimento industrial de uma região, estando isso diretamente ligado ao crescimento da economia da própria região. Tal fato aliado a própria dificuldade em se estabelecer valores e parâmetros unitários para o consumo de cada tipo de indústria dada sua grande variabilidade implicam um acentuado grau de incerteza independente da metodologia empregada para estimar os consumo industriais ao longo do tempo.

Dada a atual situação do estado do Ceará, com a implementação do Complexo Industrial e Portuário do Pecém sendo uma das principais ações políticas dos últimos anos no estado, decidiu-se dividir as demandas industriais em 3 níveis, com base em suas diferentes características e planos de ações, utilizando como base os estudos realizados pela Secretaria de Recursos Hídricos do Ceará – SRH, no projeto do Cinturão de Águas do Ceará conforme exposto no documento "Estudos de Demandas Industriais, de Turismo e de Irrigação", que são: Demandas do Complexo Industrial e Portuário do Pecém (CIPP) considerando-se o atual Plano Diretor do CIPP; Demandas de Distritos Industriais considerando-se os níveis de saturação e

uma taxa de consumo por unidade de área; Demandas de Indústria Difusa considerando-se o número de empregados por tipo de indústria e um correspondente coeficiente de demanda hídrica. Por fim, esses 3 tipos de demandas são somados, tendo a consolidação da demanda hídrica final.

Demandas Hídricas do Complexo Industrial e Portuário do Pecém

As demandas hídricas consideradas para o CIPP são apresentadas no Apêndice K. Foram consideradas as indústrias referentes aos 4 setores de implantação, bem como as áreas dedicadas às refinarias, que em primeira instância haviam sido descartadas, mas que atualmente são procuradas parcerias para implantação das mesmas. Para essas áreas foram calculadas as vazões máximas de projeto, implantadas até o ano de 2020, com exceção da refinaria, que foi considerada nos cálculos com uma previsão de implantação até o ano de 2030.

Demandas Hídricas de Distritos Industriais

Para o cálculo das demandas hídricas dos distritos industriais foi necessário primeiro identificá-los no estado, os quais são: Barreira, Cascavel, Caucaia, Horizonte, Itaitinga, Maracanaú e Pacajus. Em seguida o cálculo da demanda para cada distrito industrial foi realizado pela metodologia tradicional, utilizando o consumo específico característico dos mesmos, as áreas consideradas de cada um e as seguintes premissas: nos distritos industriais existentes, a demanda específica média é de 0,5 L/(s x ha), que foi o valor utilizado nas estimativas; os distritos industriais existentes foram considerados já saturados desde 2020, enquanto os distritos industriais em implantação estarão saturados em 2030 e os distritos industriais a implantar estarão com 50% da ocupação em 2030 e saturados em 2040. O Apêndice L mostra os valores encontrados para a demanda hídrica dos distritos industriais no período considerado até 2050.

Demandas Hídricas Industriais Difusas

A obtenção das demandas hídricas industriais difusas é o mais incerto dentre os 3 aqui considerados. A metodologia empregada baseou-se no número de operários de cada indústria, onde incide um coeficiente de demanda específico para cada tipo de indústria. Tal metodologia foi utilizado no Plano de Aproveitamento Integrado dos Recursos Hídricos do Nordeste do Brasil – PLIRHINE, elaborado pela SUDENE em 1980.

Os cálculos realizados para as demandas hídricas industriais difusas parte dos valores fornecidos pela Secretaria de Recursos Hídricos do Ceará - SRH, conforme exposto no documento "Estudos de Demandas Industriais, de Turismo e de Irrigação", para o ano de 2010. Cabe aqui explicar de forma resumida como foi a metodologia para chegada desses dados que serviram como base para as projeções de 2020, 2030, 2040 e 2050: primeiramente calculou-se a evolução do número de empregos formais na indústria no estado do Ceará entre os anos de 2000 e 2008 conforme dados fornecidos pela FIEC. Em seguida aplicou-se as porcentagens de crescimento para os municípios de maior interesse: São Gonçalo do Amarante, Aquiraz, Caucaia, Eusébio, Fortaleza, Itaitinga, Maracanaú, Cascavel, Pindoretama, Barreira, Chorozinho, Horizonte e Pacajus. A partir desse valores obteve-se a projeção para o ano de 2007 por esse método para o número de empregos formais dos vários tipos de indústria e comparou-se com o valores consolidados fornecidos pelo FIEC para o mesmo ano, obtendo-se um coeficiente de ajustamento de 0,88 que foi aplicado às demandas hídricas de cada município para o ano de 2010. O método foi aplicado então para a projeção do número de empregos formais no ano de 2010 e utilizou-se os coeficientes de demanda tabelados para obtenção da demanda hídrica do ano de 2010. A Tabela 3.5 apresenta evolução de empregos formais da indústria no Ceará de 2000 a 2008, a Tabela 3.6 apresenta a comparação entre o método dos percentuais de crescimento e os valores fornecidos pelo FIEC para o ano de 2007, a Tabela 3.7 apresenta os coeficientes de demanda específicos por tipo de indústria e a Tabela 3.8 apresenta a consolidação das demandas hídricas a partir da projeção do número de empregos formais para o ano de 2010, sendo este o valor de partida para as projeções aqui consideradas para os anos de 2020, 2030, 2040 e 2050.

A partir dos valores obtidos para o ano de 2010, partiu-se da sugestão, também dos estudos realizados pela Secretaria de Recursos Hídricos do Ceará – SRH para a projeção para os anos de 2020, 2030, 2040 e 2050. As premissas utilizadas foram bastante cautelosas, visto que novas indústrias tendem a se instalar em zonas industriais já estabelecidas, como é o caso da área do CIPP e dos distritos industriais, além do que o gerenciamento dos recursos hídricos tende a ficar cada vez mais rigoroso, diminuindo os coeficientes unitários utilizados para as demandas, devido aos cenários futuros de escassez. Nessa perspectiva foi feito um escalonamento do crescimento das demandas industriais difusas: uma taxa anual de crescimento de 3,0% de 2010 a 2020, uma taxa anual de crescimento de 2,5% de 2020 a 2030, uma taxa anual de crescimento de 2,0% de 2030 a 2040 e uma taxa anual de 1,5% de 2040 a 2050. O Apêndice M consolida as demandas hídricas industriais difusas para o estado do Ceará no horizonte de estudo considerado.

Tabela 3.5 – Evolução de Empregos Formais da Indústria do Ceará de 2000 a 2008

Setores de Atividade	Empregos				Cresc.	Cresc.	
da Indústria	12/00	12/05	12/06	12/07	12/08	00/08 (%)	Anual (%)
Indústria de produtos minerais não metálicos	7.186	7.495	8.637	9.179	9.469	31,77%	3,51%
Indústria metalúrgica	5.502	7.601	9.139	10.044	11.051	100,85%	9,11%
Indústria mecânica	2.364	2.776	3.701	4.345	4.427	87,27%	8,16%
Indústria do material elétrico e de comunicações	1.321	2.049	1.737	1.788	1.877	42,09%	4,49%
Indústria do material de transporte	1.211	2.212	2.310	2.516	2.807	131,79%	11,08%
Indústria da madeira e do mobiliário	4.955	5.619	6.308	6.604	6.838	38,00%	4,11%
Indústria do papel, papelão, editorial e gráfica	4.336	5.862	6.241	6.695	6.969	60,72%	6,11%
Borracha, fumo, couros, similares, ind. diversas	3.894	6.009	6.235	6.707	6.470	66,15%	6,55%
Química, fármacos, veterinários, perfumaria	6.162	9.284	10.520	11.045	11.625	88,66%	8,26%
Indústria têxtil do vestuário e artefatos de tecidos	48.485	52.449	52.598	57.465	62.214	28,32%	3,17%
Indústria de calçados	27.287	44.268	48.498	52.251	49.501	81,41%	7,73%
Produtos alimentícios, bebidas e álcool etílico	30.900	35.641	39.364	39.989	42.096	36,23%	3,94%
Total da Indústria de Transformação	143.603	181.265	195.288	208.628	215.344	49,96%	5,20%

Fonte: FIEC (2010)

Tabela 3.6 – Comparação entre o Método dos Percentuais de Crescimento e os Valores Fornecidos pelo FIEC para o Ano de 2007

Indústria	Crecimento do setor período 2000/2007 (%)	Projeção do nº empregos 2007	Participação nos setores da indústria (%)	Nº empregos 2007 - FIEC
Transformações de Produtos Minerais não Metálicos	27,73%	3.935	2,72%	3.488
Metalúrgica	82,55%	19.056	9,56%	12.263
Mecânica	83,80%	1.390	1,06%	1.358
Material Elétrico e de Comunicação	35,35%	4.226	3,23%	4.137

Indústria	Crecimento do setor período 2000/2007 (%)	Projeção do nº empregos 2007	Participação nos setores da indústria (%)	Nº empregos 2007 - FIEC
Material de Transporte	107,76%	6.160	2,72%	3.483
Madeira + Mobiliária	33,28%	3.184	2,19%	2.806
Papel e Papelão + Editorial e Gráfica	54,40%	3.787	2,25%	2.882
Borracha + Couros e Peles, Calçados e Artigos de Vestuário + Produtos de materiais plásticos	72,24%	14.294	11,49%	14.735
Química + Produtos Farmacêuticos e Veterinários + Perfumaria, Sabões e Velas	79,24%	15.269	7,98%	10.230
Têxtil + Vestuário, Calçados e Artefatos de Tecido	18,52%	38.070	29,97%	38.423
Produtos Alimentares + Bedidas	29,41%	36.623	26,84%	34.421
TOTAL		145.995		128.227

Fonte: SRH (2009)

Tabela 3.7 – Coeficientes de Demanda Específicos por Tipo de Indústria

Gênero da Indústria Descrição	Coeficiente de Demanda (m³/oper./dia)
Extração Mineral	0,2
Transformações de Produtos Minerais não Metálicos	0,3
Metalúrgica	0,5
Mecânica	0,3
Material Elétrico e de Comunicação	0,2
Material de Transporte	0,3
Madeira	0,2
Mobiliária	0,2
Papel e Papelão	0,3
Borracha	0,02
Couros e Peles, Calçados e Artigos de Vestiário	2,8
Química	9,8
Produtos Farmacêuticos e Veterinários	9,8
Perfumaria, Sabões e Velas	2,0
Produtos de Materiais Plásticos	0,82
Têxtil	2,5
Vestuário, Calçados e Artefatos de Tecido	0,2

Gênero da Indústria Descrição	Coeficiente de Demanda (m³/oper./dia)
Produtos Alimentares	5,0
Bebidas	10,0
Editorial Gráfica	0,3
Indústria e/ou Serviços de Construção	0,2

Fonte: SRH (2009)

Tabela 3.8 – Demanda Hídrica por Município no Ano de 2010 para a Indústria Difusa

	Demanda 2010 Deman		Demanda 2010
Município	(L/s)	Município	(L/s)
Acaraú	3,75	Itaitinga	9,29
Acopiara	8,82	Jaguaribara	2,25
Alto Santo	0,65	Jaguaribe	22,18
Aquiraz	275,20	Jaguaruana	37,65
Aracati	65,59	Jardim	1,84
Aracoiaba	2,56	Jijoca de Jericoacoara	0,23
Aurora	6,54	Juazeiro do Norte	55,02
Banabuiú	1,20	Lavras da Mangabeira	5,87
Barbalha	57,78	Limoeiro do Norte	14,82
Barreira	4,52	Maracanaú	517,88
Barro	2,42	Maranguape	169,22
Bela Cruz	1,64	Marco	13,61
Brejo Santo	4,04	Milagres	0,22
Camocim	21,66	Missão Velha	3,03
Cascavel	390,19	Morada Nova	20,78
Caucaia	918,75	Morada Nova	20,78
Cedro	7,12	Morrinhos	0,21
Chorozinho	4,83	Nova Olinda	2,67
Coreaú	0,21	Orós	10,30
Crato	44,54	Pacajus	423,86
Eusébio	23,76	Pacatuba	126,90
Farias Brito	12,37	Palhano	0,70
Forquilha	14,24	Pindoretama	2,12
Fortaleza	2.001,03	Quixadá	33,08
Frecheirinha	4,58	Quixelô	2,55
Granja	0,29	Redenção	15,70
Guaiúba	11,49	Russas	25,96
Guaraciaba do Norte	1,38	São Benedito	1,08
Horizonte	87,91	São G. do Amarante	20,25
Ibiapina	0,34	São João do Jaguaribe	0,22
Icapuí	3,47	Sobral	468,63
Icó	11,51	Solonópole	0,06

Município	Demanda 2010 (L/s)	Município	Demanda 2010 (L/s)
Iguatu	30,29	Tabuleiro do Norte	17,10
Ipaumirim	4,27	Tianguá	4,47
Ipu	2,11	Ubajara	7,30
Ipueiras	0,08	Várzea Alegre	5,81
Iracema	1,60	Viçosa do Ceará	0,42
Itaiçaba	2,54	Total	6.099,34

Fonte: SRH (2009)

A Tabela 4.3 apresentada na seção de Resultados e Discussões mostra a consolidação dos resultados encontrados para a demanda hídrica industrial para o horizonte de estudo considerado.

3.1.4 Turismo

O estudo de demandas hídricas para o setor de turismo se justifica pelo grande potencial turístico do estado do Ceará, principalmente pela presença da extensa faixa litorânea. Essas áreas, que naturalmente possuem uma alta concentração de pessoas, são ainda alvo da implantação de empreendimentos turísticos de alto padrão, como hotéis resorts, que possuem um elevado consumo de água devido aos parques aquáticos e demandas da população residente.

Para a demanda de turismo foram consideradas três situações: a primeira relacionada ao resort "Aquiraz Riviera Golf & Beach Villas", a segunda relacionada ao resort "Cumbuco Golfe Resort" e a terceira relacionada à faixa litorânea entre a foz do rio Curú e região de Itarema e a foz do rio Acaraú, com potencial para construção de 5 resorts com as mesmas características do "Cumbuco Golfe Resort".

As características do resort "Aquiraz Riviera Golf & Beach Villas" são apresentadas a seguir, sendo projetado para uma população de 16,3 mil pessoas:

- 1.012 unidades de apartamentos;
- hotéis com 1.500 apartamentos;
- 634 unidades de casas;
- Village Mall;
- 2 unidades poliesportivas;
- 1 club house, com campo de golfe.

As características do resort "Cumbuco Golfe Resort" são apresentadas a seguir, sendo projetado para uma população de 20 mil habitantes:

- 17 condomínios de casas:
- 12 condomínios de moradias;
- 12 condomínios de praia;
- 14 outros equipamentos, incluindo campo de golfe.

As demandas hídricas para esses dois empreendimentos serão utilizadas conforme sugestão do estudo feito pela Secretaria de Recursos Hídricos do Ceará - SRH no documento "Estudos de Demandas Industriais, de Turismo e de Irrigação" para o projeto do Cinturão de Águas do Ceará, baseada no número total de pessoas, tipo de equipamentos e na aplicação de diferentes coeficientes de demandas, para as diversas categorias.

As demandas previstas para o resort "Aquiraz Riviera Golf & Beach Villas", as demandas previstas para o resort "Cumbuco Golfe Resort" e as demandas dos 5 resorts com as mesmas características do "Cumbuco Golfe Resort" na região relacionada à faixa do rio Curu e região de Itarema e a for do rio Acaraú são apresentadas no Apêndice N. Por fim, na seção de Resultados e Discussões, será apresentada a Tabela 4.4, com a consolidação das demandas de turismo do estado.

3.1.5 Dessedentação Animal

Da mesma forma que o abastecimento humano é considerado uso prioritário para os recursos hídricos em situações de escassez, a dessedentação animal também o é segundo a Lei N° 9433, conhecida como "Lei das Águas". Para a projeção da população animal também captou-se dados de censo obtidos do IBGE, mas para a quantificação de todos os tipos de animais, utilizou-se uma unidade denominada BEDA (Bovino Equivalente para Demanda d'Água) que, segundo Rebouças *et al.* (2006), agrega todos os tipos de rebanho, sejam eles bovinos, equinos, ovinos, caprinos, suínos, bubalinos, asininos e muares. A relação que expressa o BEDA é apresentada a seguir.

$$BEDA = BOV + \frac{EQUI}{1,25} + \frac{(OVI + CAP)}{6,25} + \frac{SUI}{5} + \frac{AVI}{250}$$

Onde, BOV representa o somatório dos rebanhos bovinos e bubalinos, EQUI representa o somatório dos rebanhos equinos, OVI representa o somatório do rebanho ovino,

CAP representa o somatório do rebanho caprino, SUI representa o somatório do rebanho suíno e AVI representa o somatório da criação de aves.

Dada a mobilidade histórica da zona rural do sertão cearense, a variação do rebanho ao longo do tempo é bastante aleatória nessa região, dificultando o ajuste de qualquer projeção matemática para prever os rebanhos (Estudo de Demandas Humana e Animal Georreferenciadas, SRH, 2009). Dessa forma, estimou-se a projeção do rebanho animal do estado conforme a taxa média de crescimento do setor pecuário do Ceará, observada entre os anos de 2002 e 2007 e 2009 e 2014, com os dados fornecidos pelo IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará, nos documentos "Desenvolvimento Econômico – Ceará em Números 2008" e "Desenvolvimento Econômico – Ceará em Números 2015" retirados diretamente do IBGE. A Tabela 3.9 apresenta os dados do efetivo de rebanhos para o estado do Ceará entre os anos de 2002 e 2007 e a Tabela 3.10 apresenta os dados entre os anos de 2009 e 2014 bem como a consolidação do BEDA e a taxa de crescimento anual desse unidade.

A quantificação da demanda para dessedentação animal foi feita utilizando a sugestão dada pela Secretaria de Recursos Hídricos do Ceará - SRH em seu "Estudo de Demandas Humana e Animal Georreferenciadas" para o projeto do Cinturão de Águas do Ceará, que prevê um consumo diário básico de 50 L/cabeça para cada unidade BEDA. Dessa forma, a Tabela 4.6 encontrada na seção de Resultados e Discussões apresenta a consolidação da demanda animal para os anos de 2020, 2030, 2040 e 2050, tanto em m³/s, quanto em bilhões de m³ por ano.

Tabela 3.9 – Efetivos dos Rebanhos do Ceará e Crescimento Anual do BEDA 2002 - 2007

Rebanhos	2002	2003	2004	2005	2006	2007			
Bovinos	2.230.159	2.254.262	2.269.567	2.299.233	2.352.589	2.424.290			
Bubalinos	1.046	1.272	1.050	1.186	1.123	1.631			
Equinos	137.023	138.314	139.102	139.782	140.159	141.370			
Asininos	199.938	201.951	202.150	203.533	203.716	201.079			
Muares	77.295	77.823	78.477	78.858	79.516	80.367			
Suínos	1.054.008	1.067.314	1.082.993	1.089.530	1.101.360	1.132.673			
Ovinos	1.718.818	1.781.951	1.852.448	1.909.182	1.961.724	1.998.165			
Caprinos	836.813	869.045	904.258	931.634	946.715	976.880			
Coelhos	2.167	2.345	2.424	2.297	2.241	1.953			
Galináceo	21.294.113	21.662.462	21.929.075	22.118.707	22.545.204	24.063.274			
BEDA	3.224.911	3.270.963	3.307.942	3.354.843	3.423.149	3.514.852			
Crescimento Anual (%)	-	1,43%	1,13%	1,42%	2,04%	2,68%			
Média Crescimento Anual		1,74%							

Fonte: Desenvolvimento Econômico – Ceará em Números 2008 apud Instituto Brasileiro de Geografia e

Rebanhos	2009	2010	2011	2012	2013	2014			
Bovinos	2.494.482	2.546.134	2.614.604	2.714.713	2.591.067	2.597.139			
Bubalinos	1.645	2.027	2.076	1.827	1.514	1.470			
Equinos	137.727	138.346	138.720	136.071	128.602	131.851			
Suínos	1.160.410	1.167.731	1.193.630	1.173.077	1.138.424	1.188.106			
Ovinos	2.071.098	2.098.893	2.142.567	2.071.096	2.062.654	2.229.327			
Caprinos	1.015.927	1.024.594	1.044.998	1.024.255	1.029.763	1.055.937			
Galináceo	32.635.641	33.616.520	34.218.295	35.139.411	37.353.927	28.141.656			
Codorna	75.318	78.643	104.676	113.186	114.635	121.874			
BEDA	3.463.158	3.526.923	3.613.684	3.696.279	3.567.808	3.580.407			
Crescimento Anual (%)	-	1,84%	2,46%	2,29%	-3,48%	0,35%			
Média Crescimento Anual		0,69%							

Tabela 3.10 - Efetivos dos Rebanhos do Ceará e Crescimento Anual do BEDA 2009 - 2014

Fonte: Desenvolvimento Econômico – Ceará em Números 2015 *apud* Instituto Brasileiro de Geografia e Estatística (IBGE), Produção da Pecuária Municipal 2009-2014

3.2 Ofertas Hídricas para o Estado do Ceará

3.2.1 Reservatórios

Os reservatórios construídos no Ceará durante os séculos XX e XXI são os grandes responsáveis pela manutenção hídrica do estado do Ceará. Segundo o documento "Resenha Diária de Monitoramento" disponibilizada pela COGERH em 4 de janeiro de 2017, os açudes do estado possuem uma capacidade de armazenamento de 18,64 bilhões de metros cúbicos. Tal valor representa o valor máximo estocável, mas esse número não corresponde ao valor real que pode ser disponibilizado para oferta hídrica. Segundo o Plano Estratégico dos Recursos Hídricos do Estado do Ceará, apresentado em 2009, a capacidade de regularização dos reservatórios do estado é de aproximadamente 22% do volume máximo estocável, o que atualmente significa um valor de 4,1 bilhões de metros cúbicos por ano. Importante notar da "Resenha Diária de Monitoramento" que o aporte hídrico dos reservatórios possui uma média de 4,08 bilhões de metros cúbicos por ano com os dados a partir de 1986. Contando a partir de 2004, ano da construção do açude Castanhão, o maior do estado com capacidade para 6,7 bilhões de metros cúbicos, a média de aporte até o ano de 2016 é de 5,07 bilhões de metros cúbicos por ano. Considerando os 5 últimos anos de seca, a média cai para 0,91 bilhões de metros cúbicos por ano de aporte para os reservatórios do estado. Aplicando o percentual de 22% de capacidade de regularização a esses valores de média de aporte, obtemos os seguintes resultados preliminares: 0,90 bilhões de metros cúbicos por ano de água para regularização considerando a média desde 1986 até 2016; 1,12 bilhões de metros cúbicos por ano de água

para regularização considerando a média a partir do ano de 2004; 0,20 bilhões de metros cúbicos por ano de água para regularização considerando os últimos 5 anos de seca no Ceará.

Essa primeira análise serviu de base para definição da metodologia estabelecida para o cálculo da demanda hídrica ofertada pelos açudes no estado do Ceará. Primeiramente concluiu-se que a capacidade total dos açudes não poderia ser utilizada como referência para a vazão ofertada. Dessa forma, obteve-se os dados da COGERH para a vazão liberada pelos reservatórios monitorados por esta. Dada a extensão dos dados, cabe informar que foram fornecidas as vazões medidas em datas específicas, a cota em que o reservatório se encontrava e o volume reservado, tanto em termos absolutos quanto em termos percentuais. A Tabela 3.11 apresenta um exemplo do monitoramento feito para o açude Castanhão em 2001 que foi disponibilizado pela COGERH.

Tabela 3.11 – Modelo Fornecido pela COGERH para o Monitoramento Realizado nos Açudes do Estado do Ceará

Data de Medição	Vazão Liberada (m³/s)	Cota (m)	Volume (m³)	Volume (%)
03/03/11	5,25	100,57	4,80	69,2%
04/03/11	10,00	100,7	4,81	69,9%
14/03/11	15,00	101,04	4,72	71,6%
18/03/11	0,00	101,07	4,70	71,8%
01/04/11	50,00	100,81	5,46	70,5%
08/04/11	15,00	100,75	5,39	70,2%
05/08/11	16,00	102,86	4,66	81,4%
23/08/11	16,00	102,68	4,56	80,4%

Fonte: COGERH (2017)

Os dados foram obtidos desde o ano de 1993 até o ano de 2016, com todos os 153 reservatórios monitorados pela COGERH. A partir desses dados montou-se a vazão total e o volume total liberados pelos açudes anualmente. Como as datas de medição muitas vezes não coincidiam com os primeiros dias do ano, fez-se a extrapolação dos valores para essas datas, mantendo-se como vazão liberada nelas a mesma da última obtida da medição do ano anterior. Por exemplo, a extrapolação para a vazão liberada pelo açude Castanhão em 01/01/2011 possui o mesmo valor da última medição em 2010, realizada em 22/12/2010 e com vazão liberada de 15 m³/s. Assim, a mudança de vazão liberada ocorre apenas na data de 02/02/2016, com nova vazão liberada de 5,25 m³/s.

Para o cálculo final da vazão liberada pelo reservatório em determinado ano multiplicou-se a quantidade de dias pela vazão liberada obtida pela medição, obtendo-se o

volume de água liberado naquele período. O volume liberado foi somado para todos os períodos em que ocorreram medições e mudanças nas vazões liberadas, perfazendo completamente o ano em questão. Assim, com o volume total liberado, bastou a divisão pela quantidade de dias do ano em questão e a respectiva conversão para a unidade de m³/s para a obtenção da vazão liberada naquele ano para o reservatório considerado. A Tabela 3.12 ilustra o procedimento de cálculo utilizado para o açude Castanhão no ano de 2011. Nota-se que o reservatório liberou 488 milhões de metros cúbicos naquele ano, com uma vazão média de 15,48 m³/s.

Tabela 3.12 – Modelo de Planilha de Cálculo Realizado para Obtenção da Vazão e do Volume Liberados pelos Reservatórios Monitorados pela COGERH para cada Ano – Açude Castanhão no Ano de 2011

Data de	Dias	Vazão Liberada	Volume Liberado no Período			
Medição	Dias	(m^3/s)	(mi m³)			
01/01/11	61	15	79,06			
03/03/11	1	5,25	0,45			
04/03/11	10	15	12,96			
14/03/11	4	15	5,18			
18/03/11	14	0	0,00			
01/04/11	7	50	30,24			
08/04/11	119	15	154,22			
05/08/11	18	16	24,88			
23/08/11	131	16	181,09			
Total	365		488,10			
Estimativa da Va	Estimativa da Vazão Liberada no Ano de 2011 pelo Açude Castanhão = 15,48 m³/s					

Fonte: Autor

O procedimento de cálculo descrito foi utilizado para todos os reservatórios entre o período de 1993 e 2016. Dessa forma obteve-se a evolução das vazões liberadas pelos açudes monitorados ano a ano. A Tabela 4.8 apresentada na seção de Resultados e Discussões contém a consolidação da vazão média liberada e do volume total liberado somando-se todos os açudes monitoras pela COGERH do estado. A Tabela 3.13 a seguir apresenta os reservatórios considerados no cálculo. Os 153 açudes monitorados pela COGERH possuem capacidade de armazenamento de 18,21 bilhões de metros cúbicos, representando 97,7% do total da capacidade do Ceará.

Tabela 3.13 – Relação de Açudes Monitorados pela COGERH

#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)
1	Acarape do Meio	31,50	52	Forquilha II	3,40	103	Poço Verde	13,65
2	Acaraú Mirim	52,00	53	Frios	33,02	104	Pompeu Sobrinho	143,00
3	Adauto Bezerra	5,25	54	Gameleira	52,64	105	Potiretama	6,33
4	Amanary	11,01	55	Gangorra	62,50	106	Prazeres	32,50
5	Angicos	56,05	56	Gavião	32,90	107	Premuoca	5,20
6	Aracoiaba	170,70	57	General Sampaio	322,20	108	Quandú	4,00
7	Araras	891,00	58	Gerardo Atimbone	4,00	109	Quincoé	7,13
8	Arneiroz II	197,06	59	Gomes	2,39	110	Quixabinha	31,78
9	Arrebita	19,60	60	Itapajé	4,85	111	Quixeramobim	54,00
10	Atalho	108,25	61	Itapebussu	8,80	112	Realejo	31,55
11	Ayres de Sousa	104,43	62	Itaúna	77,50	113	Riachão	46,95
12	Banabuiú	1.601,00	63	Jaburu I	138,13	114	Riacho da Serra	23,47
13	Barra Velha	99,50	64	Jaburu II	116,00	115	Riacho do Sangue	61,42
14	Barragem do Batalhão	1,55	65	Jatobá	1,07	116	Rivaldo de Carvalho	19,52
15	Batente	28,90	66	Jatobá II	6,00	117	Rosário	47,20
16	Benguê	19,56	67	Jenipapeiro	17,00	118	S, Pedro Timbaúba	19,26
17	Bonito	6,00	68	Jenipapeiro II	43,40	119	Salão	6,05
18	Broco	17,50	69	Jenipapo	3,50	120	Santa Maria	5,87
19	Cachoeira	34,33	70	Jerimum	20,50	121	Santa Maria de Aracatiaçu	8,20
20	Caldeirões	5,00	71	João Luís	4,30	122	Santo Antônio	0,83
21	Canafístula	13,11	72	Joaquim Távora	26,77	123	Santo Antônio de Aracatiaçu	24,34

#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)
22	Canoas	69,25	73	Junco	2,03	124	Santo Antônio de Russas	24,00
23	Capitão Mor	6,00	74	Lima Campos	66,38	125	São Domingos	3,04
24	Carão	26,23	75	Macacos	10,32	126	São Domingos II	2,25
25	Carmina	13,63	76	Madeiro	2,81	127	São José I	7,67
26	Carnaubal	87,69	77	Malcozinhado	37,84	128	São José II	29,14
27	Castanhão	6.700,00	78	Mamoeiro	20,68	129	São José II	29,14
28	Castro	63,90	79	Manoel Balbino	37,18	130	São Mateus	10,34
29	Catucinzenta	24,90	80	Maranguapinho	9,35	131	São Vicente	9,85
30	Cauhipe	12,00	81	Martinópole	23,20	132	Serafim Dias	43,00
31	Caxitoré	202,00	82	Missi	65,30	133	Sítios Novos	126,00
32	Cedro	125,69	83	Mons, Tabosa	12,10	134	Sobral	4,68
33	Cipoada	86,09	84	Monte Belo	3,96	135	Sousa	30,84
34	Colina	3,25	85	Mundaú	21,30	136	Sucesso	10,00
35	Cupim	4,55	86	Muquém	47,64	137	Taquara	274,00
36	Curral Velho	12,17	87	Nova Floresta	7,61	138	Tatajuba	2,72
37	Desterro	5,01	88	Olho D'água	21,00	139	Tejuçuoca	28,11
38	Diamante	13,20	89	Orós	1.940,00	140	Thomás Osterne	28,78
39	Diamantino II	17,13	90	Pacajus	240,00	141	Tigre	3,51
40	Do Coronel	1,77	91	Pacoti	380,00	142	Tijuquinha	0,88
41	Edson Queiroz	254,00	92	Parambu	8,53	143	Trapiá II	18,19
42	Ema	10,39	93	Patos	7,55	144	Trapiá III	5,51
43	Escuridão	3,70	94	Patu	71,83	145	Trici	16,50
44	Facundo	1,75	95	Pau Preto	1,81	146	Trussu	301,00
45	Faé	24,41	96	Pedras Brancas	434,05	147	Tucunduba	41,43
46	Farias de Sousa	12,23	97	Penedo	2,41	148	Ubaldinho	31,80
47	Favelas	30,10	98	Pentencoste	395,64	149	Umari	35,04
48	Figueiredo	519,60	99	Pesqueiro	8,20	150	Valério	2,02
49	Flor do Campo	111,30	100	Pirabibu	74,00	151	Várzea da Volta	12,50

#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)	#	Açude	Capac. (hm³)
50	Fogareiro	118,82	101	Poço da Pedra	52,00	152	Várzea do Boi	51,91
51	Forquilha	50,13	102	Poço do Barro	54,70	153	Vieirão	20,96

Fonte: COGERH (2017)

Como a cada ano há uma variação no volume liberado pelos reservatórios, decidiuse utilizar a média dos volumes liberados entre os anos de 2004 e 2016 como volume liberado pelos reservatórios para o horizonte de estudo considerado. Tal fato justifica-se por dois motivos: 2004 foi o ano da conclusão do acude Castanhão, o que provocou um aumento substancial na capacidade de armazenamento de água do estado, inclusive este tendo seu volume total utilizado já neste ano. Dito isso, o período entre 2004 e 2016 parece representativo pelo fato de incluir anos com cheias que foram capazes de utilizar praticamente toda a capacidade de armazenamento do estado, quanto de secas capazes de consumir quase completamente as reservas hídricas dos açudes do estado; o segundo motivo é a dificuldade em encontrar regiões para construção de novos reservatórios de grande porte, que alterem significativamente a capacidade de armazenamento do Ceará. Lima Neto et al. (2011) apresentam em seu estudo uma estimativa de 3200 açudes no ano de 2002 para uma área de captação de 6 km² na região da bacia hidrográfica do Alto Jaguaribe, uma das bacias do estado, representando uma altíssima concentração por km², sendo a razão reservatório por área 50 vezes maior que a encontrada na região da Califórnia, nos Estados Unidos. Dos 3200, apenas 5 são considerados estratégicos, ou seja, com capacidade acima de 50 hm³. Dito isso, foi razoável considerar que não haverá alteração significativa na capacidade de armazenamento do estado, e consequentemente na oferta hídrica, até o ano de 2050 pela inserção de novos reservatórios de grande porte, visto que tal cenário é muito similar em todas as bacias do estado do Ceará. Com relação aos pequenos e médios açudes, com capacidade até 50 hm³, as estimativas para o Ceará de 30.000 açudes mostram uma capacidade de armazenamento total em torno de 10% em relação aos grandes açudes, sendo esse valor considerado para os cálculos. Dessa forma, a Tabela 4.9 apresentada na seção de Resultados e Discussões consolida os valores considerados para a oferta hídrica dos reservatórios para os anos de 2020, 2030, 2040 e 2050 no Ceará em m³/s e em bilhões de m³ anuais.

3.2.2 Água Subterrânea – Poços

A exploração das águas subterrâneas no Ceará vem crescendo significativamente nas duas últimas décadas. Segundo Silva *et al* (2007), até 2003 havia cerca de 23.000 poços perfurados no Ceará, onde 63% estavam em embasamento cristalino, 29% em litologia sedimentar e os 8% restantes em aluviões e formações cársticas. A vazão específica dos poços localizados na bacia cristalina do estado possuem vazão média específica de 13% em relação à poços localizados em bacias sedimentares, estes últimos tendo profundidade 35% maior que os anteriores. Tais fatos justificam a dificuldade de obtenção de águas subterrâneas em grande quantidade para oferta hídrica em relação às aguas superficiais no estado. Apesar do potencial de exploração ainda desconhecido, as águas subterrânea são responsáveis pela segunda maior oferta de água do Ceará.

A oferta de água subterrânea disponível foi estimada a partir de dados fornecidos pela COGERH, disponibilizados no Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará. A quantidade de poços instalados por bacia hidrográfica é apresentada na Tabela 3.14. O total informado de poços cadastrados é 21.473, mas nem todos esses poços estão em operação atualmente no estado. Desse total, um terço dos poços estão em situação de não aproveitamento do seu potencial, seja por estarem abandonados, fechados, não instalados, não utilizáveis, obstruídos, parados, precários ou secos. A Tabela 3.15 apresenta a situação dos poços do estado do Ceará. A metodologia para projeção dos poços não segue uma lei de crescimento para a oferta hídrica subterrânea, visto que é muito influenciada pelos cenários de seca, mais do que por programas de investimento que preveem aumento da escavação dos mesmos.

Tabela 3.14 – Poços Escavados por Bacia Hidrográfica no Estado do Ceará

Região	Quantidade de	Profundidade Média	Vazão Média
Hidrográfica	Poços	(m)	(m³/hr)
Acaraú	1.895	42,7	2,2
Alto Jaguaribe	2.212	56,4	3,3
Baixo Jaguaribe	1.162	50,5	6,6
Banabuiú	1.414	48,4	1,5
Coreaú	991	41,2	2,8
Curu	1.094	48,8	1,6
Litoral	947	46,3	2,8
Metropolitana	6.245	43,5	2,4
Médio Jaguaribe	697	48,2	1,5
Parnaíba	1.878	52,5	1,8

Região	Quantidade de	Profundidade Média	Vazão Média
Hidrográfica	Poços	(m)	(m³/hr)
Salgado	2.613	68,8	11,0
Sem Informação	325	21,0	4,9

Fonte: Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará (2017)

Tabela 3.15 – Situação de Funcionamento dos Poços do Estado do Ceará

Situação	Quantidade de Poços	Profundidade Média (m)	Vazão Média (m³/h)
Funcionando	5.303	55,3	4,8
Abandonado	1.673	39,3	0,8
Bombeando	418	60,5	9,2
Equipado	8.554	45,0	3,7
Fechado	2.285	40,3	1,3
Não instalado	2.483	57,7	3,8
Não utilizável	30	53,9	1,9
Obstruído	43	58,8	1,1
Parado	146	84,1	21,5
Precário	2	63,0	-
Seco	536	74,1	0,0

Fonte: Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará (2017)

A metodologia utilizada na estimativa consistiu do cálculo inicial da vazão total disponibilizada pelos poços em funcionamento no estado para os anos de 2010 a 2016, baseado nos dados fornecidos pelo Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará. A média de crescimento dessa vazão foi extrapolada para os anos seguintes, no caso do horizonte de estudo, até o ano de 2050. A Tabela 4.11 apresentada na seção de Resultados e Discussões consolida os valores considerados para a oferta hídrica das águas subterrâneas para os anos de 2020, 2030, 2040 e 2050 no Ceará em m³/s e em bilhões de m³ anuais.

3.2.3 Transposição do Rio São Francisco + Cinturão de Águas do Ceará

A oferta considerada para a Transposição do Rio São Francisco consistiu das vazões estabelecidas do Projeto de Integração do Rio São Francisco (PIRSF) em conjunto com a integração regional para o Ceará, feito por intermédio do Projeto do Cinturão de Águas do Ceará. Segundo os estudos de integração do Rio São Francisco para o estado do Ceará, a vazão a ser disponibilizada para o estado é de 30 m³/s, divididas em 3 fases: a primeira fase

disponibilizaria 10 m³/s, a segunda fase disponibilizaria 20 m³/s e a terceira fase disponibilizaria 30 m³/s. Dado o atraso atual das obras, a previsão é de que, com a conclusão do projeto até 2020, o estado passaria a ter a oferta de 10 m³/s até o ano de 2030, que seria a previsão de conclusão da segunda fase do projeto, liberando a vazão de 20 m³/s até 2040, que da mesma forma é a previsão de conclusão da terceira fase e da liberação da vazão de 30 m³/s, até o ano de 2050, que é o final do horizonte de estudo aqui apresentado. A Tabela 4.12 apresentada na seção de Resultados e Discussões consolida as vazões disponibilizadas pela Transposição do Rio São Francisco para o estado do Ceará.

3.2.4 Dessalinização da Água do Mar

A dessalinização da água do mar no Ceará teve seu primeiro edital de projeto lançado no ano de 2017, pelo Governo do Estado do Ceará (CAVALCANTE, 2017). Inicialmente previsto para abastecimento da Região Metropolitana de Fortaleza, o projeto apresenta a capacidade de 12% do consumo humano de Fortaleza, o equivalente a 1,0 m³/s. Apesar dos esforços iniciais em utilizar tal alternativa para mitigação dos efeitos da seca, o custo da obtenção de água para consumo por meio desta ainda é considerado caro, o que inviabiliza momentaneamente a utilização em larga escala. Por outro lado, Dubai, considerada referência em dessalinização de água do mar, instalou em 2010 a maior usina desse tipo do mundo, com capacidade de produção diária de 636.400 m³ de água, com 8 unidades de dessalinização integradas, construída pela mesma empresa italiana que demonstrou interesse em investir em dessalinização no estado do Ceará. (GOVERNO DO ESTADO DO CEARÁ, 2017). Tais valores correspondem a uma produção anual de 0,23 bilhões de metros cúbicos de água, o que em termos de vazão representa 7,4 m³/s.

Os cenários considerados para oferta hídrica por essa alternativa são bastante conservadoras até o ano de 2030, sendo utilizada somente o valor de 1,0 m³/s do único projeto em licitação no estado. A partir do ano de 2030, com o avanço da tecnologia e a diminuição do custo da água por essa alternativa, utilizou-se uma projeção de 2,5 m³/s produzidos pela dessalinização até o ano de 2040. De 2040 a 2050 a capacidade de produção de água para consumo pela dessalinização dobraria, sendo de 5,0 m³/s. A partir do ano de 2050 foi considerado então que o estado chegaria a produção de 10,0 m³/s. A Tabela 4.13 apresentada na seção de Resultados e Discussões consolida as vazões projetadas pela dessalinização da água do mar para o estado do Ceará.

3.3 Cenários Oferta x Demanda no Ceará até 2050

Com os cenários padronizados para oferta e demanda do estado do Ceará, conforme descrito nos dois itens anteriores, iniciou-se o processo de simulação para vários cenários no horizonte de projeto entre 2020 e 2050 no estado. A simulação inicial, utilizada como referência, utiliza os dados obtidos para oferta e demanda como situações mais prováveis de acontecer, considerando abastecimento humano, animal, irrigação, indústria, turismo, reservatórios, poços, transposição e dessalinização.

A partir desse cenário padronizado, uma série de intervenções propostas foram simuladas, para avaliação de todos os cenários, sejam eles otimistas, pessimistas ou combinados, para estudo da situação hídrica do Ceará no horizonte de estudo considerado. As intervenções estudadas no presente trabalho são descritas a seguir:

Cenário Otimista 1 – redução na demanda da irrigação em 25%: a eficiência considerada no cenário normatizado foi de 75% para aplicação da irrigação e de 85% para condução e distribuição da água para as culturas, considerando tais perdas. Nesse cenário seria utilizado o potencial de melhoria das técnicas de irrigação pelos métodos de gotejamento e microaspersão anteriormente citados, elevando a eficiência de aplicação para 90% e diminuindo as perdas de condução e distribuição da água para culturas, aumentando a eficiência para 95%.

Cenário Otimista 2 – redução na demanda de consumo humano em 25%: o percentual de perdas no estado do Ceará foi de 42% em 2016, considerando vazamentos na rede, hidrômetros e nas residências, além de fraudes e furtos. Nesse cenário seria conseguir reduzir 25% da demanda pela redução de perdas e pelo reuso de água. O Japão, referência em economia de água, possui um percentual de perda na rede de 9%.

Cenário Otimista 3 – redução na demanda de consumo humano em 25% e na demanda de irrigação em 25%: tal cenário é a combinação dos dois anteriores. Irrigação e consumo humano são as duas maiores demandas do estado. Uma ação conjunto para diminuição das perdas nessas duas frentes seria a projeção mais otimista para o horizonte considerado.

Cenário Pessimista 1 – projetos de dessalinização da água do mar completamente descartados: nesse cenário, os custos de implantação de usinas de dessalinização inviabilizaram qualquer investimento nessa área por todo o horizonte de projeto.

Cenário Pessimista 2 – conclusão das fases da integração do Rio São Francisco com o estado do Ceará com atrasos de 5 anos: nesse cenário as obras do CAC atrasariam 5 anos em relação ao previsto no cenário normatizado. Assim, apenas em 2035 chegaria a oferta de 20 m³/s e apenas em 2045 chegaria a oferta de 30 m³/s. Atrasos em obras são comuns no estado.

Cenário Pessimista 3 – conclusão apenas da primeira fase de implantação da integração do Rio São Francisco para o estado do Ceará: nesse cenário, apenas a primeira oferta de 10 m³/s seria concluída, com as demais fases sendo descartadas. Tal oferta valeria para todo o horizonte de estudo aqui considerado. O cenário se justifica pela diminuição de gastos do Governo do Ceará, para situações de crise na economia do país.

Cenário Pessimista 4 – conclusão apenas das primeira e segunda fases de implantação da integração do Rio São Francisco para o estado do Ceará: nesse cenários, as duas primeiras fases seriam concluídas, com oferta de 10 m³/s até 2030 e oferta de 20 m³/s até o ano de 2050. Tal cenário reflete o descarte apenas da última fase de implantação.

Cenário Combinado 1 – combinação do cenário otimista 1 com cenário pessimista 1: redução na demanda da irrigação em 25% somado aos projetos de dessalinização da água do mar completamente descartados.

Cenário Combinado 2 – combinação do cenário otimista 1 com cenário pessimista 2: redução na demanda da irrigação em 25% somado a conclusão das fases da integração do Rio São Francisco com o estado do Ceará com atrasos de 5 anos.

Cenário Combinado 3 – combinação do cenário otimista 1 com cenário pessimista 3: redução na demanda da irrigação em 25% somado a conclusão apenas da primeira fase de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Combinado 4 – combinação do cenário otimista 1 com cenário pessimista 4: redução na demanda da irrigação em 25% somado a conclusão apenas das primeira e segunda fases de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Combinado 5 – combinação do cenário otimista 2 com cenário pessimista 1: redução na demanda de consumo humano em 25% somado aos projetos de dessalinização da água do mar completamente descartados.

Cenário Combinado 6 – combinação do cenário otimista 2 com cenário pessimista 2: redução na demanda de consumo humano em 25% somado a conclusão das fases da integração do Rio São Francisco com o estado do Ceará com atrasos de 5 anos.

Cenário Combinado 7 – combinação do cenário otimista 2 com cenário pessimista 3: redução na demanda de consumo humano em 25% somado a conclusão apenas da primeira fase de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Combinado 8 – combinação do cenário otimista 2 com cenário pessimista 4: redução na demanda de consumo humano em 25% somado a conclusão apenas das primeira e segunda fases de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Combinado 9 – combinação do cenário otimista 3 com cenário pessimista 1: redução na demanda de consumo humano em 25% e na demanda de irrigação em 25% somado aos projetos de dessalinização da água do mar completamente descartados.

Cenário Combinado 10 – combinação do cenário otimista 3 com cenário pessimista 2: redução na demanda de consumo humano em 25% e na demanda de irrigação em 25% somado a conclusão das fases da integração do Rio São Francisco com o estado do Ceará com atrasos de 5 anos.

Cenário Combinado 11 – combinação do cenário otimista 3 com cenário pessimista 3: redução na demanda de consumo humano em 25% e na demanda de irrigação em 25% somado a conclusão apenas da primeira fase de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Combinado 12 – combinação do cenário otimista 3 com cenário pessimista 4: redução na demanda de consumo humano em 25% e na demanda de irrigação em 25% somado a conclusão apenas das primeira e segunda fases de implantação da integração do Rio São Francisco para o estado do Ceará.

Cenário Especial 1 – combinação do cenário otimista 3 com a situação em que secas severas ocorram e causem a diminuição da oferta hídrica dos reservatórios pela metade: dada a grande dependência hídrica do estado da oferta dos seus açudes, tal cenário representa o efeito da diminuição drástica que pode ser causada pelo aporte insuficiente dos reservatórios. A diminuição da metade da oferta hídrica foi aplicada nos anos de 2020, 2030, 2040 e 2050, representando uma seca a cada dez anos.

Cenário Especial 2 – combinação do cenário otimista 3 com a situação em que secas severas ocorram e causem a diminuição da oferta hídrica dos reservatórios durante quatro anos e que no quinto ano ocorra a diminuição total da oferta: dada a grande dependência hídrica do estado da oferta dos seus açudes, tal cenário representa o efeito da diminuição drástica que pode ser causada pelo aporte insuficiente dos reservatórios. A diminuição da oferta hídrica foi aplicada entre os anos de 2040 e 2044, semelhante seca prolongada de 2012 a 2016.

Cenário Especial 3 – situação em que secas prolongadas ocorram e causam o colapso hídrico dos reservatórios do estado, provocando a diminuição total da oferta hídrica dos reservatórios: nesse caso serão considerados somente as demandas hídricas humanas e animas, conforme a "Lei das Águas" que sugere que, em caso de colapso, os dois principais atendimentos devem ser consumo populacional e dessedentação animal. A diminuição da demanda hídrica foi aplicada no ano de 2045 e a seca prolongada de 2040 a 2044.

Cenário Especial 4 – situação em que secas prolongadas e causam o colapso hídrico dos reservatórios do estado, provocando a diminuição total da oferta hídrica dos reservatórios: nesse caso serão considerados somente as demandas hídricas humanas e animas, conforme a "Lei das Águas" que sugere que, em caso de colapso, os dois principais atendimentos devem ser consumo populacional e dessedentação animal. A diminuição da demanda hídrica foi aplicada no ano de 2035 e a seca prolongada de 2030 a 2034.

Cenário Especial 5 – situação em que secas prolongadas ocorram e causam o colapso hídrico dos reservatórios do estado, provocando a diminuição total da oferta hídrica dos reservatórios: nesse caso serão considerados somente as demandas hídricas humanas e animas, conforme a "Lei das Águas" que sugere que, em caso de colapso, os dois principais atendimentos devem ser consumo populacional e dessedentação animal. A diminuição da demanda hídrica foi aplicada no ano de 2025 e a seca prolongada de 2020 a 2024.

Todos os cenários foram analisados em termos de viabilidade técnica e nas consequências do acontecimento de tais cenários. Além disso, foram analisados também a viabilidade financeira de cada intervenção, comparando-se os custos associados à água para cada uma delas: diminuição das perdas, aumento da eficiência dos dispositivos de irrigação, utilização da dessalinização da água do mar, utilização da água provinda da transposição do Rio São Francisco, além da comparação com os custos do m³ da água pela utilização de reservatórios e de poços subterrâneos.

3.4 Comparação de Custos das Alternativas no Horizonte de Estudo

Os custos das alternativas de mitigação da seca no estado do Ceará foram estimados a partir de dados de bibliografia, obtendo-se os valores médios para cada uma das alternativas. Araújo *et al.* (2003) apresenta um resumo de custo médio para algumas alternativas de distribuição de água. A Tabela 3.16 apresenta uma síntese de custos para agosto de 2001.

Tabela 3.16 - Síntese de custos de referência da água no Ceará (R\$ agosto de 2001)

Descrição	Unidade	Valor
Custo médio de investimento da disponibilização da água por barragens, vazão regularizável 90% de garantia	R\$/ m 3	0,072
Idem, vazão outorgável, 90% de garantia	R\$/m³	0,142
Custo mediano de investimento da disponibilização da água por barragens, vazão regularizável 90% de garantia	R\$/ m 3	0,091
Custo médio de investimento da disponibilização da água subterrânea no cristalino	R\$/m³	0,118
Idem, no sedimentar	$R\$/m^3$	0,101
Custo da disponibilização da água para reúso, população de projeto 20.000 habitantes	R\$/m³	0,090
Custo médio da disponibilização da água por cisternas de placas	R\$/m³ R\$/hab/ano	1,240 11,250

Fonte: Araújo et al. (2003)

No presente estudo serão analisados os custos ao longo do horizonte de estudo para as seguintes alternativas: transposição de rios, dessalinização da água do mar, reservatórios de regularização, águas subterrâneas a partir da dessalinização, disponibilização pelo reuso de água, investimentos em conscientização para diminuição de consumo e melhorias nas redes de distribuição e tecnologias de irrigação. Para o custo de disponibilização de reservatórios e de disponibilização para reuso serão usados os mesmo coeficientes sugeridos por Araújo *et al.* (2003), visto que o horizonte de reajuste considerado foi o mesmo do estudo aqui apresentado.

Para o custo de dessalinização da água do mar e de águas subterrâneas a partir de dessalinização será utilizado um custo médio de 1,00 US\$/m³ e 1,00 R\$/m³ respectivamente, conforme valores médios fornecidos pela ABAS para o segundo. Para o custo de investimento em conscientização para diminuição do consumo será utilizado o custo 0,11 U\$\$/m³, conforme experiência citada na cidade de Zaragoza. Para a transposição do Rio São Francisco serão utilizados os valores informados pelo Governo Federal do custo da obra. Para a melhoria das técnicas de irrigação será utilizado um custo de 10.000 R\$/ha como investimento médio entre os métodos de irrigação por gotejamento e microaspersão, conforme Marouelli & Silva (1998), que são métodos que proporcionam até 90% de eficiência, alinhados a proposta de redução de demanda na irrigação apresentada na metodologia. Utilizando a taxa de 0,45 L/s/ha de consumo para o estado do Ceará e convertendo o custo unitário para reais por metro cúbico, obtém um coeficiente de 0,70 R\$/m³ na irrigação por técnicas mais eficientes. A Tabela 3.17 apresenta o resumo dos custos por m³. A taxa de conversão utilizada foi de US\$ 1,00 = R\$ 3,20 Os custos dessas alternativas serão estimadas até o ano de 2050, em função dos volumes de água que serão disponibilizados ao sistema por cada uma, representados na Tabela 3.18, sendo feita uma comparação entre as mesmas. Ao final as alternativas serão comparadas tanto em termos técnicos quanto em termos de custo, gerando uma classificação geral de quais devem ser priorizadas.

Tabela 3.17 - Síntese de Custos Médios para Alternativas de Mitigação da Seca

Descrição de Alternativa para Mitigação da Seca	Custos	Fonte	
Reservatórios de Regularização	$0,09 \text{ R}$ $/\text{m}$ 3	Araújo <i>et al.</i> (2003)	
Água Subterrânea Dessalinizada	1,00 R\$/m³	ABAS (2017)	
Dessalinização da Água do Mar (Usinas Térmicas)	3,20 R\$/m³	Senado Federal (2014)	
Reuso de Água por ETE	0,09 R5/m³	Araújo <i>et al.</i> (2003)	
Campanhas de Conscientização Populacional e Manutenção da Rede de Distribuição	0,35 R\$/m³	Adaptado de Idoeta & Barifouse (2014)	
Melhoria das Técnicas de Irrigação	0,70 R\$/m³	Adaptado de Marouelli & Silva (1998)	
Transposição do Rio São Francisco	0,50 R\$/m³	Pereira Júnior (2005)	

Fonte: Autor

Tabela 3.18 – Síntese de Volumes de Água Fornecidos ao Sistema para as Alternativas de Mitigação da Seca no Ceará

Descrição de Alternativa para Mitigação da Seca	Oferta de Água em 2020 (bi m³)	Oferta de Água em 2030 (bi m³)	Oferta de Água em 2040 (bi m³)	Oferta de Água em 2050 (bi m³)
Reservatórios de Regularização	2,01	2,01	2,01	2,01
Água Subterrânea Dessalinizada	0,05	0,17	0,29	0,40
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Reuso de Água por ETE	0,08	0,08	0,08	0,08
Campanhas de Conscientização Populacional e Manutenção da Rede de Distribuição	0,11	0,11	0,11	0,11
Melhoria das Técnicas de Irrigação	0,40	0,49	0,57	0,71
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95

Fonte: Autor

4 RESULTADOS E DISCUSSÕES

O presente capítulo apresenta e discute os resultados obtidos, vindo a ser de grande importância para obtenção das conclusões desse estudo e das propostas para trabalhos posteriores. Dessa forma, inicia-se com a apresentação dos valores obtidos para as demandas hídricas do estado, bem como a consolidação final para os anos de 2020, 2030, 2040 e 2050. Em seguida são apresentados os valores obtidos de oferta hídrica do estado, valendo-se da consolidação final para o mesmo horizonte de estudo das demandas hídricas. Por fim são apresentados os cenários de simulação oferta x demanda para vários intervenções, bem como a comparação de custos para aplicação dessas alternativas.

4.1 Demandas Hídricas Consolidadas no Ceará para o Horizonte de Estudo

Os resultados aqui consolidados seguirão a mesma ordem estabelecida na seção de Metodologia para as demandas do estado do Ceará: abastecimento humano, irrigação abastecimento industrial, turismo e dessedentação animal. Em cada um desses tipos de demanda serão apresentadas as tabelas individuais por tipo de demanda, que ao final serão somadas e apresentadas no formato consolidado para os anos de 2020, 2030, 2040 e 2050.

Abastecimento Humano

O primeiro resultado obtido para o cálculo da demanda de abastecimento humano é a projeção da população urbana e rural para o período considerado. Dessa forma os Apêndices C e D apresentam tais projeções obtidas para o meio urbano e para o meio rural respectivamente.

A partir dos resultados obtidos da projeção populacional e da aplicação dos consumos unitários por tamanho da população apresentados na Tabela 3.1b para a população urbana e o consumo de 100 L/hab/dia para a população rural, obteve-se os Apêndices E e F com as demandas hídricas populacionais para cada tipo de população no horizonte considerado.

Por fim, somando-se as demandas hídricas populacionais urbanas e rurais de todos os municípios e fazendo-se as conversões para m³/s e para bilhões de m³ anuais, obteve-se a consolidação da demanda hídrica de abastecimento populacional do estado do Ceará no horizonte de estudo, como apresentado na Tabela 4.1.

Tabela 4.1 – Consolidação da Demanda de Abastecimento Humano do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Demanda de Abastecimento Humano do Ceará								
Demanda Hídrica 2020 2030 2040 2050								
m³/s 18,19 21,73 23,24 24,17								
bi m³ anuais	0,57	0,69	0,73	0,76				

Fonte: Autor

Irrigação

Os resultados obtidos na consolidação da demanda hídrica de irrigação do estado do Ceará foram divididos em 4 seções: projetos implantados, projetos em implantação, projetos em fase de estudo e áreas de irrigação difusa. Os Apêndices G, H, I e J apresentam as demandas hídricas em m³/s para cada projeto, com a fonte hídrica responsável pelo abastecimento no caso dos três primeiros.

Por fim, somando-se as demandas hídricas de irrigação dos projetos implantados, dos projetos em implantação e dos projetos em estudo e fazendo-se as conversões para m³/s e para bilhões de m³ anuais, obteve-se a consolidação da demanda hídrica de irrigação do estado do Ceará para o horizonte de estudo, como apresentado na Tabela 4.2.

Tabela 4.2 - Consolidação da Demanda de Irrigação do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Demanda de Irrigação do Ceará						
Demanda Hídrica 2020 2030 2040 2050						
m ³ /s 50,08 62,45 72,07 90,45						
bi m³ anuais	1,58	1,97	2,27	2,85		

Fonte: Autor

Indústria

Os resultados obtidos na consolidação da demanda hídrica da indústria do estado do Ceará foram divididos em 3 partes a saber: demanda do complexo industrial e portuário do Pecém (CIPP), demanda dos distritos industriais e a demanda industrial difusa. A demanda do

CIPP é apresentada no Apêndice K com a consideração de todos os 4 setores industriais do complexo de acordo com seu Plano Diretor. A demanda dos distritos industriais é apresentada no Apêndice L, conforme descrito na seção de Metodologia. A demanda da indústria difusa para os municípios que a possuem é apresentada no Apêndice M, conforme descrito na seção de Metodologia.

Por fim, somando-se as demandas hídricas das indústrias do CIPP, dos distritos industriais e da indústria difusa e fazendo-se as conversões para m³/s e para bilhões de m³ anuais, obteve-se a consolidação da demanda hídrica de indústria do estado do Ceará para o horizonte de estudo, como apresentado na Tabela 4.3.

Tabela 4.3 - Consolidação da Demanda Industrial do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Demanda da Indústria do Ceará						
Demanda Hídrica 2020 2030 2040 2050						
m³/s 14,76 18,63 21,01 23,03						
bi m³ anuais	0,47	0,59	0,66	0,73		

Fonte: Autor

Turismo

A consolidação da demanda hídrica de turismo no estado do Ceará considerou 3 situações de potencial para resorts: a primeira considerando o resort "Aquiraz Riviera Golf & Beach Villas", a segunda considerando o resort "Cumbuco Golfe Resort" e a terceira considerando o potencial para construção de 5 resorts similares ao "Cumbuco Golfe Resort" na faixa litorânea entre a foz do rio Curú e região de Itarema e a foz do rio Acaraú. O Apêndice N apresenta as demandas relacionadas ao resort "Aquiraz Riviera Golf & Beach Villas", as demandas relacionadas ao resort "Cumbuco Golfe Resort" e as demandas relacionadas aos 5 resorts similares ao "Cumbuco Golfe Resort" na faixa litorânea entre a foz do rio Curú e região de Itarema e a foz do rio Acaraú, com a finalização de um empreendimento até 2020, dois empreendimentos até o ano de 2030, quatro empreendimentos até o ano de 2040 e os cinco empreendimentos até o ano de 2050.

Por fim, somando-se as demandas hídricas referentes à área de turismo do estado e fazendo-se as conversões para m³/s e para bilhões de m³ anuais, obteve-se a consolidação da

demanda hídrica de turismo do estado do Ceará para o horizonte de estudo, como apresentado na Tabela 4.4.

Tabela 4.4 – Consolidação da Demanda de Turismo do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Demanda de Turismo do Ceará						
Demanda Hídrica 2020 2030 2040 2050						
m³/s 0,43 0,59 0,91 1,20						
bi m³ anuais	0,014	0,019	0,029	0,038		

Fonte: Autor

Dessedentação Animal

Os resultados da demanda hídrica para dessedentação animal no estado do Ceará considera a projeção do BEDA para os anos de 2020, 2030, 2040 e 2050. Conforme a Tabela 3.9, a média de crescimento entre os anos de 2002 e 2007 para o BEDA no estado do Ceará foi de 1,74%. Conforme a Tabela 3.10, a média de crescimento entre os anos de 2009 e 2014 foi de 0,69%. Utilizou-se a média entre esses dois períodos para a projeção do horizonte considerado, que é de 1,22% de crescimento anual do BEDA. A média de crescimento foi aplicada a partir do BEDA obtido para o ano de 2007, conforme Tabela 3.9, já que esta apresentada dados mais completos com relação aos tipos de rebanho do estado. A Tabela 4.5 apresenta a consolidação do BEDA para o horizonte de estudo.

Tabela 4.5 – Consolidação do BEDA para o Ceará entre 2020 e 2050

Ano	2020	2030	2040	2050
BEDA	4.111.894	4.639.310	5.234.375	5.905.766

Fonte: Autor

A aplicação do coeficiente de 50 L/cabeça para cada unidade de BEDA foi feita aos resultados obtidos na Tabela 4.5. Com isso, obteve-se a consolidação da demanda hídrica de dessedentação do estado do Ceará para o horizonte de estudo, com as conversões para m³/s e bilhões de m³ anuais, como apresentado na Tabela 4.6.

Tabela 4.6 – Consolidação da Demanda de Dessedentação Animal do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Demanda de Dessedentação Animal do Ceará							
Demanda Hídrica	Demanda Hídrica 2020 2030 2040 2050						
m³/s 2,38 2,68 3,03 3,42							
bi m³ anuais 0,075 0,085 0,096 0,108							

Fonte: Autor

Demanda Final Normatizada

Com a obtenção de todas as demandas individuais por tipo para os anos de 2020, 2030, 2040 e 2050 obteve-se a consolidação final do estado do Ceará, de modo a criar um cenário normatizado para o horizonte de estudo. A Tabela 4.7 apresenta a consolidação da demanda normatizada do estado, considerando abastecimento humano, dessedentação animal, indústria, turismo e irrigação, tanto em m³/s quanto em bilhões de m³. Essa Tabela 4.7 representa o cenário padrão de demandas onde serão feitas as simulações e comparações de intervenções para mitigação da seca no Ceará.

Tabela 4.7 – Consolidação da Demanda Hídrica Normatizada do Ceará

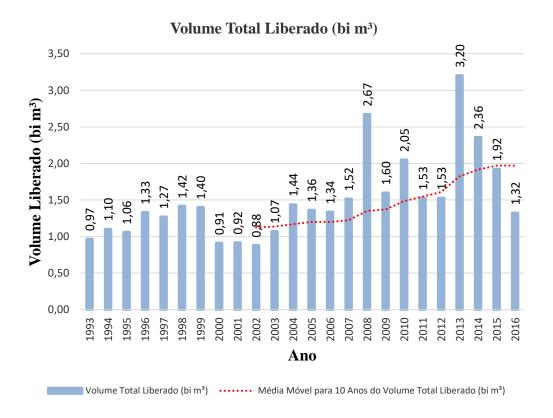
Consolid	lação da Dei	manda em i	m³/s		
Consumo	Demandas Hídricas (m³/s)				
Consumo	2020	2030	2040	2050	
Abastecimento Humano	18,19	21,73	23,24	24,17	
Dessedentação Animal	2,38	2,68	3,03	3,42	
Setor Industrial	14,76	18,63	21,01	23,03	
Setor de Turismo	0,43	0,59	0,91	1,20	
Setor de Irrigação	50,08	62,45	72,07	90,45	
Total	85,84	106,08	120,26	142,27	
Consolidação da	Demanda e	m bilhões d	le m³ anuai	S	
Consumo	Demandas Hídricas Anuais (bi m³)				
Consumo	2020	2030	2040	2050	
Abastecimento Humano	0,57	0,69	0,73	0,76	
Dessedentação Animal	0,08	0,08	0,10	0,11	
Setor Industrial	0,47	0,59	0,66	0,73	
Setor de Turismo	0,01	0,02	0,03	0,04	
Setor de Irrigação	1,58 1,97 2,27 2				
Total	2,71	3,35	3,79	4,49	

4.2 Ofertas Hídricas Consolidadas no Ceará para o Horizonte de Estudo

Os resultados aqui consolidados seguirão a mesma ordem estabelecida na seção de Metodologia para as ofertas do estado do Ceará: reservatórios, água subterrânea, transposição do Rio São Francisco e dessalinização da água do mar. Em cada um desses tipos de oferta serão apresentadas as tabelas individuais por tipo de demanda, que ao final serão somadas e apresentadas no formato consolidado para os anos de 2020, 2030, 2040 e 2050.

Reservatórios

A oferta hídrica dos reservatórios foi obtida diretamente dos dados de monitoramento fornecidos pela COGERH, conforme explicado na seção de Metodologia. A Tabela 4.8 apresenta os resultados da vazão média liberada e o volume total liberado pelos 153 reservatórios monitorados pela COGERH, calculados conforme metodologia explicada. O Gráfico 4.1 ilustra a oferta anual, com a inclusão da média móvel para um fator de 10 anos.


Tabela 4.8 – Oferta Hídrica Anual dos Açudes Monitorados pela COGERH de 1993 a 2016

Ano	Vazão Média Liberada (m³/s)	Volume Total Liberado (bi m³)
1993	30,62	0,97
1994	34,94	1,10
1995	33,62	1,06
1996	42,21	1,33
1997	40,26	1,27
1998	44,90	1,42
1999	44,41	1,40
2000	28,87	0,91
2001	29,09	0,92
2002	27,94	0,88
2003	33,95	1,07
2004	45,56	1,44
2005	43,18	1,36
2006	42,33	1,34
2007	48,07	1,52
2008	84,79	2,67
2009	50,69	1,60
2010	65,00	2,05
2011	48,48	1,53

Ano	Vazão Média Liberada (m³/s)	Volume Total Liberado (bi m³)
2012	48,37	1,53
2013	101,57	3,20
2014	74,77	2,36
2015	60,99	1,92
2016	41,96	1,32

Fonte: Autor

Gráfico 4.1 – Evolução Anual Estimada do Volume Total Liberado pelos 153 Reservatórios Monitorados pela COGERH

Fonte: Autor

Fazendo-se a média da vazão liberada desde o ano de 2004, ano que marca a construção do açude Castanhão, obtém-se o valor de 1,83 bilhões de m³ de água liberada, ou 58,14 m³/s. Considerando-se que a pequena açudagem do estado representa cerca de 10% do total de água fornecida por açudes, teremos um total de 2,01 bilhões de m³ de água liberada, ou 63,95 m³/s. Esse valor será utilizado como estimativa para o horizonte de estudo, conforme explicado na metodologia. Nota-se que a média móvel tende a um valor próximo a esse e, considerando que não haverá grandes mudanças em termos de ampliação da capacidade de reservação do estado em açudes de grande porte, o valor está justificado inicialmente.

Importante notar que nas simulações será utilizado um valor médio, mas verifica-se do Gráfico 4.1 que há anos em que a oferta é bem maior, como em 2013, no total de 3,20 bilhões de m³, enquanto há anos em que a oferta é bem menor, como em 2016, no total 1,32 bilhões de m³. Tais valores justificam-se pelo fato de em 2013 os reservatórios serem bastante exigidos com o início da última seca, enquanto em 2016 a diminuição drástica se justifica pelo fato da capacidade ter sido quase utilizada por completo, estando os mesmo em situação crítica. A Tabela 4.9 apresenta a consolidação dos valores de oferta hídrica dos reservatórios para os anos de 2020, 2030, 2040 e 2050.

Tabela 4.9 – Consolidação da Oferta Hídrica dos Reservatórios do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Oferta dos Reservatórios do Ceará							
Oferta Hídrica 2020 2030 2040 2050							
m³/s 63,95 63,95 63,95 63,95							
bi m³ anuais							

Fonte: Autor

Água Subterrânea – Poços

A oferta hídrica dos poços no Ceará foi feita a partir dos dados disponibilizados pela COGERH, em seu Atlas Eletrônico dos Recursos Hídricos do Estado do Ceará. Como os dados estão atualizados para o ano de 2016, calculou-se a oferta dos poços em situação de funcionamento, conforme apresentado na Tabela 4.10, onde tal situação de funcionamento é representada pela coloração verde na tabela.

Somando-se tais valores, obtemos uma vazão total disponível de 60.950 m³/hr ou de 16,93 m³/s. Para esse mesmo ano, o potencial total dos poços é de 77.937 m³/hr, ou 21,65 m³/s. Dessa forma temos um aproveitamento de aproximadamente 78% do potencial instalado no estado. A partir dos dados de poços instalados no Ceará desde 2000, obteve-se a média de 1.722 m³/hr por ano. Tal média foi considerada como o valor absoluto do crescimento da oferta de água subterrânea total. Como só são aproveitados 78% do potencial instalado, essa média, multiplicada por esse valor percentual, significa um crescimento 1.343,2 m³/hr a cada ano na oferta dos poços. Tais dados extrapolados para os anos de 2020, 2030, 2040 e 2050 são

apresentados na Tabela 4.11, com a consolidação da oferta hídrica de águas subterrâneas para o horizonte de estudo do presente trabalho.

Tabela 4.10 – Vazão Ofertada pelos Poços do Ceará em 2016

Situação	Quantidade de Poços	Profundidade Média (m)	Vazão Média (m³/h)	Vazão Total (m³/hr)
Funcionando	5.303	55,3	4,8	25.454,4
Abandonado	bandonado 1.673 39,3		0,8	1.338,4
Bombeando	418	60,5	9,2	3.845,6
Equipado	8.554	45,0	3,7	31.649,8
Fechado	2.285	40,3	1,3	2.970,5
Não instalado	2.483	57,7	3,8	9.435,4
Não utilizável	30	53,9	1,9	57,0
Obstruído	43	58,8	1,1	47,3
Parado	146	84,1	21,5	3.139,0
Precário	Precário 2		0,0	0,0
Seco	536	74,1	0,0	0,0

Fonte: Autor

Tabela 4.11 – Consolidação da Oferta Hídrica dos Poços do Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Oferta dos Poços do Ceará						
Oferta Hídrica 2020 2030 2040 2050						
m³/s 18,42 22,15 25,89 29,62						
bi m³ anuais	0,58	0,70	0,82	0,93		

Fonte: Autor

■ Transposição do Rio São Francisco + Cinturão de Águas do Ceará

A oferta hídrica fornecida pela Transposição do Rio São Francisco foi retirada diretamente dos relatórios do projeto executivo do Cinturão de Águas do Ceará, que fará a integração das águas aduzidas. A Tabela 4.12 apresenta a consolidação dessa oferta para o horizonte de estudo do presente trabalho.

Tabela 4.12 – Consolidação da Oferta Hídrica da Transposição do Rio São Francisco para o Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Oferta do PISF para o Ceará					
Oferta Hídrica	2020	2030	2040	2050	
m³/s	10,00	20,00	30,00	30,00	
bi m³ anuais	0,32	0,63	0,95	0,95	

Fonte: Autor

Dessalinização da Água do Mar

A oferta hídrica fornecida pela dessalinização da água do mar foi estimada inicialmente pelo edital divulgado pelo governo do estado para a primeira usina de dessalinização, de modo bastante conservador. Até 2020 e 2030, estariam disponíveis 30 e 80 milhões de m³ anuais respectivamente. Como a mesma empresa responsável pela construção da maior usina de dessalinização do mundo, em Dubai, demonstrou interesse em investir na dessalinização para o Ceará, foi projetado que para o ano de 2040 a produção dobraria, atingindo 160 milhões de m³ e até o ano de 2050 seria atingida uma produção 40% acima da produção atual dessa usina, que é de 230 milhões de m³ anuais. A Tabela 4.13 apresenta a consolidação dessa oferta para o horizonte de estudo do presente trabalho.

Tabela 4.13 – Consolidação da Oferta Hídrica da Dessalinização da Água do Mar para o Ceará em m³/s e em bilhões de m³ anuais

Consolidação da Oferta da Dessalinização da Água do Mar para o Ceará					
Oferta Hídrica	2020	2030	2040	2050	
m³/s	1,00	2,50	5,00	10,00	
bi m³ anuais	0,03	0,08	0,16	0,32	

Fonte: Autor

Oferta Final Normatizada

Com a obtenção de todas as ofertas individuais por tipo para os anos de 2020, 2030, 2040 e 2050 obteve-se a consolidação final do Ceará, de modo a criar um cenário normatizado para o horizonte de estudo. A Tabela 4.14 apresenta a consolidação da oferta normatizada do

estado, considerando reservatórios, poços, transposição do São Francisco e dessalinização, tanto em m³/s quanto em bilhões de m³. Essa Tabela 4.14 representa o cenário padrão de ofertas onde serão feitas as simulações e comparações de intervenções para mitigação da seca no Ceará.

Tabela 4.14 – Consolidação da Oferta Normatizada do Ceará

Consolidação da Oferta em m³/s				
Oferta	Ofertas Hídricas (m³/s)			
Olerta	2020	2030	2040	2050
Reservatórios	63,95	63,95	63,95	63,95
Poços	18,42	22,15	25,89	29,62
Transposição do Rio São Francisco	10,00	20,00	30,00	30,00
Dessalinização da Água do Mar	1,00	2,50	5,00	10,00
Total	93,37	108,60	124,84	133,57
Consolidação da Ofe	rta em bilhô	ões de m³ an	uais	
Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	3,94	4,21

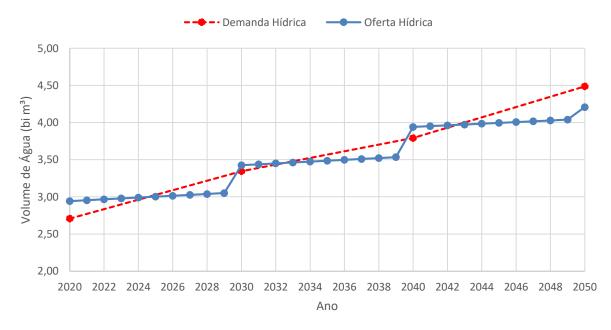
Fonte: Autor

4.3 Cenários de Simulação Oferta x Demanda

O estudo dos cenários em que foram simulados a projeção da demanda hídrica e da oferta hídrica e a comparação entre as duas no horizonte de estudo foi feita por meio do cruzamento de seus respectivos gráficos de progressão. Como referência os valores obtidos nas Tabelas 4.7 e 4.14, que apresentam respectivamente a consolidação de demanda e oferta normatizados, ou seja, de acordo com as premissas até aqui consideradas, os cenários mais prováveis de ocorrer no horizonte de estudo, são considerados a base em que foi possível identificar as mudanças de acordo com as medidas a serem implantadas. A Tabela 4.15 apresenta o resumo da oferta e da demanda, com o saldo hídrico final disponível em cada ano. O Gráfico 4.2 ilustra a evolução da oferta e demanda para o Ceará até o ano de 2050, a partir dos dados da Tabela 4.15. Importante notar que as descontinuidades apresentadas na curva de oferta é gerada pela mudança brusca na água disponibilizada pela transposição do Rio São Francisco e pela dessalinização da água do mar, onde os projetos de implantação preveem aumento de oferta pontual a cada fase finalizada.

Tabela 4.15 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Normatizado para o Horizonte de Estudo no Ceará

Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,71	3,35	3,79	4,49


Oferta	Ofertas Hídricas Anuais (bi m³)				
Oferta	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,42	3,94	4,21	

	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,24	0,08	0,15	-0,27

Fonte: Autor

Gráfico 4.2 – Evolução da Oferta x Demanda de Água no Cenário Normatizado no Ceará

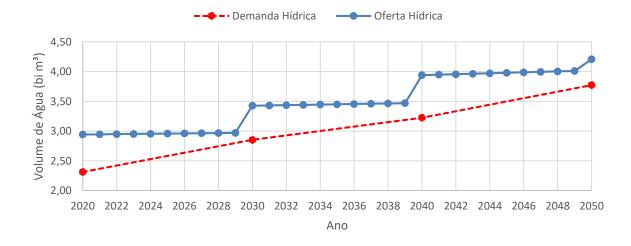
Oferta x Demanda de Água no Ceará 2020 - 2050

Uma análise inicial da tabela confirma o esperado de que a irrigação é e continuará sendo o maior responsável pela demanda de água do estado. A projeção é que a demanda cresça 80%, passando de 1,58 bilhões de metros cúbicos em 2020 a 2,85 bilhões de metros cúbicos em 2050. Com o crescimento populacional ficando mais desacelerado, a projeção de crescimento da demanda populacional foi de 33%, passando de 0,57 bilhões de metros cúbicos em 2020 a 0,76 bilhões de metros cúbicos em 2050. Para o setor industrial, a projeção foi de um crescimento de 55% na demanda, passando de 0,47 bilhões de metros cúbicos em 2020 para 0,73 bilhões de metros cúbicos em 2050. Para dessedentação animal e turismo, os valores são bem abaixo de irrigação, consumo humano e indústria. Para as ofertas, confirmam-se os reservatórios como os grandes responsáveis pela manutenção hídrica do estado até 2050, de acordo com as premissas aqui seguidas, mesmo sem previsão no aumento da quantidade dos mesmos. Apesar potencial hídrico das águas subterrâneas ainda ser uma incógnita para o estado, o crescimento total projetado de 2020 a 2050 de 60% na oferta disponibilizada por essa fonte é de fundamental importância. Bem como a Transposição do Rio São Francisco, que será responsável pela oferta de quase 1 bilhão de metros cúbicos anuais quando as 3 fases das obras forem implantadas. A dessalinização da água do mar, pelos valores projetados, teria mais importância se aplicada de forma pontual, principalmente num horizonte mais próximo. Dessa forma, pela Tabela 4.15, o saldo hídrico só se tornaria negativo no ano de 2050, em 0,27 bilhões de metros cúbicos. A análise do Gráfico 4.2 apresenta um resultado um pouco mais preocupante. Os períodos de 2025 - 2029, 2033 - 2039 e 2043 - 2050 teriam déficit na quantidade de água para atender as demandas hídricas do estado. Um ponto importante a citar é que nas considerações da oferta dos reservatórios, os mesmos são capazes de ofertar mais água do que o considerado, visto que foi utilizada a média ofertada entre 2004 e 2016. Em casos pontuais, não há problemas nessa disponibilização, mas em casos de essas condições estabelecerem-se em períodos de seca prolongada, que são anos em que a oferta dos reservatórios diminui drasticamente, podem ocorrer situações críticas para esses períodos.

Com o cenário normatizado consolidado, procedeu-se com a aplicação das intervenções nesse cenário de acordo com as várias possibilidades de alterações na oferta e na demanda do estado, considerando os cenários pessimistas, otimistas e a combinação dos dois. Os resultados obtidos são apresentados no mesmo formato do cenário normatizado, inicialmente com a tabela resumo e em seguida com o gráfico de evolução ao longo do tempo.

Cenário Otimista 1 – redução na demanda da irrigação em 25% a partir da melhoria das técnicas de irrigação, com aumento da eficiência de aplicação para 90% e diminuição das perdas de condução e distribuição, aumentando a eficiência para 95%.

Tabela 4.16 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 1 para o Horizonte de Estudo no Ceará


Consumo	Demand	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050	
Abastecimento Humano	0,57	0,69	0,73	0,76	
Dessedentação Animal	0,08	0,08	0,10	0,11	
Setor Industrial	0,47	0,59	0,66	0,73	
Setor de Turismo	0,01	0,02	0,03	0,04	
Setor de Irrigação	1,18	1,48	1,70	2,14	
Total	2,31	2,85	3,22	3,77	

Oferta	Ofertas Hídricas Anuais (bi m³)				
Oferta	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,42	3,94	4,21	

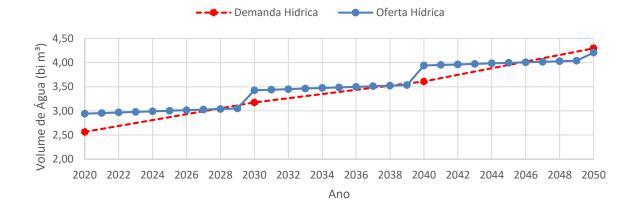
Calda Hidwiga Dignaniyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,63	0,57	0,72	0,44

Fonte: Autor

Gráfico 4.3 – Evolução da Oferta x Demanda de Água no Cenário Otimista 1 no Ceará

Cenário Otimista 2 – redução na demanda de consumo humano em 25% a partir de uma política de combate a vazamentos na rede, nos hidrômetros e nas residências, bem como a fraudes e furtos, além de conscientização populacional de diminuição de consumo e de políticas para reuso de água.

Tabela 4.17 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 2 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,56	3,17	3,61	4,30

Oferta	Ofertas Hídricas Anuais (bi m³)				
Oferta	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,42	3,94	4,21	

Calda Híduiaa Diananíval	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,38	0,25	0,33	-0,08

Fonte: Autor

Gráfico 4.4 – Evolução da Oferta x Demanda de Água no Cenário Otimista 2 no Ceará

Cenário Otimista 3 – redução na demanda de consumo humano em 25% e na demanda de irrigação em 25%, considerando que a ação conjunto para diminuição das perdas nessas duas frentes seria a projeção mais otimista para o horizonte considerado.

Tabela 4.18 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Otimista 3 para o Horizonte de Estudo no Ceará

Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,16	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	3,94	4,21

Calda Hidriga Disponíval	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,78	0,74	0,91	0,63

Fonte: Autor

Gráfico 4.5 – Evolução da Oferta x Demanda de Água no Cenário Otimista 3 no Ceará

Os três primeiros cenários apresentados ilustram as intervenções positivas que podem ser realizadas de forma a melhorar a situação do estado em relação ao balanço oferta x demanda, auxiliando na mitigação de possíveis secas. Tais intervenções consideram o efeito da melhor eficiência de aplicação das técnicas da irrigação e da diminuição dos gastos e perdas no consumo humano, que são as duas maiores demandas hídricas do estado.

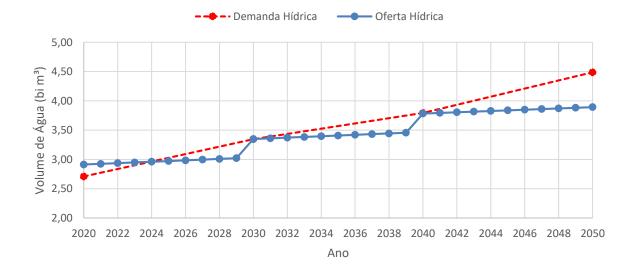
O cenário otimista 1 simulou somente a consideração das intervenções positivas geradas pela técnicas de irrigação mais avançadas, como as técnicas localizadas de gotejamento e subsuperficial. Os investimentos desse tipo são fundamentais, tanto na inserção de novos projetos de irrigação quanto na adaptação dos projetos antigos, uma vez que a demanda de irrigação foi projetada entre a faixa de 1,58 bilhões de metros cúbicos a 2,85 bilhões de metros cúbicos de 2020 a 2050. Com a redução de 25% nessa demanda, somente pela eficientização das técnicas, percebemos da Tabela 4.16 que o déficit hídrico não ocorre mais nem para o ano de 2050. A análise do Gráfico 4.3 também ilustra o grande efeito da diminuição da demanda de irrigação, onde os períodos críticos citados no cenário normativo deixam de apresentar déficit hídrico, e a oferta hídrica supriria a demanda hídrica em todos os anos até 2050.

O cenário otimista 2 simulou somente a consideração das intervenções positivas geradas pelos investimentos em redução de consumo humano pelo reuso de água e pela conscientização populacional, combatendo desperdícios, fraudes e furtos, além da melhoria das condições das tubulações de distribuição de água e dos hidrômetros, ou seja, proporcionando um uso racional da água disponível para consumo humano em todos os sentidos. A importância de investimentos desse tipo se dá pelo consumo humano ser a segunda maior demanda do estado e, em tempos de secas, a própria população sentir os efeitos dos possíveis racionamentos. Analisando a Tabela 4.17, a redução de 25% dessa demanda amorteceria a condição de déficit hídrico para o horizonte de estudo em relação ao cenário normatizado, mas ainda deixaria o ano de 2050 em situação de déficit. A comparação direta em 2050 mostra que o cenário otimista 2 apresentaria déficit hídrico de 0,08 bilhões de metros cúbicos, enquanto que o cenário normativo apresentaria um déficit hídrico 3 vezes maior, sendo de 0,27 bilhões de metros cúbicos. O Gráfico 4.4 ilustra visualmente o efeito menos pronunciado, com apenas no final de cada década a demanda superando a oferta hídrica.

O cenário otimista 3, considerado o melhor horizonte em termos de intervenções positivas, combina os dois cenários descritos acima. As reduções combinadas de 25% das demandas de irrigação e de consumo humana, como vistos pela Tabela 4.18 e pelo Gráfico 4.5 ilustram que o saldo hídrico seria positivo e com folga para todos os anos até 2050, gerando inicialmente uma perspectiva boa para a manutenção hídrica do estado no horizonte de estudo.

Cenário Pessimista 1 – projetos de dessalinização da água do mar completamente descartados pela inviabilização a partir dos custo de implantação.

Tabela 4.19 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 1 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,71	3,35	3,79	4,49

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,00	0,00	0,00	0,00
Total	2,91	3,34	3,78	3,89

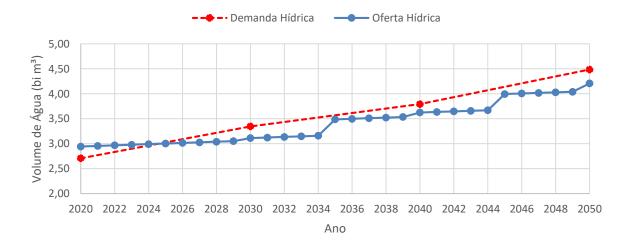
Calda Hidwiga Digwayiyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,21	0,00	0,00	-0,59

Fonte: Autor

Gráfico 4.6 – Evolução da Oferta x Demanda de Água no Cenário Pessimista 1 no Ceará

Cenário Pessimista 2 – conclusão das fases da integração do Rio São Francisco com o estado do Ceará com atrasos de 5 anos em relação ao previsto no cenário normatizado.

Tabela 4.20 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 2 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,71	3,35	3,79	4,49

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oleria	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,63	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,62	4,21

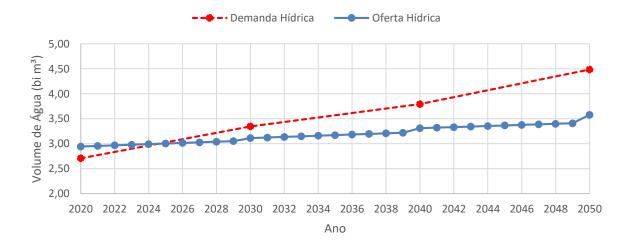
Calda Hidriga Dianoniyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,24	-0,23	-0,17	-0,27

Fonte: Autor

Gráfico 4.7 – Evolução da Oferta x Demanda de Água no Cenário Pessimista 2 no Ceará

Cenário Pessimista 3 – conclusão apenas da primeira fase de implantação da integração do Rio São Francisco para o estado do Ceará, onde apenas 10 m³/s chegariam como oferta hídrica dessa fonte.

Tabela 4.21 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 3 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,71	3,35	3,79	4,49

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,32	0,32
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,31	3,58

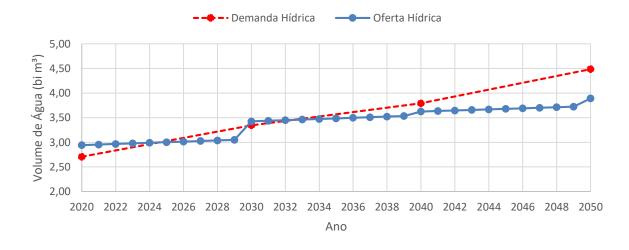
Calda Hídriga Diananíval	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,24	-0,23	-0,48	-0,90

Fonte: Autor

Gráfico 4.8 – Evolução da Oferta x Demanda de Água no Cenário Pessimista 3 no Ceará

Cenário Pessimista 4 – conclusão apenas das primeira e segunda fases de implantação da integração do Rio São Francisco para o estado do Ceará, onde a oferta seria de 10 m^3 /s até $2030 \text{ e de } 20\text{m}^3$ /s de 2030 a 2050.

Tabela 4.22 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Pessimista 4 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,71	3,35	3,79	4,49

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,63	0,63
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	3,62	3,89

Calda Hidriga Dianoniyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,24	0,08	-0,17	-0,59

Fonte: Autor

Gráfico 4.9 – Evolução da Oferta x Demanda de Água no Cenário Pessimista 4 no Ceará

Os quatro segundos cenários apresentados ilustram as intervenções negativas que podem ocorrer de forma a piorar a situação do estado em relação ao balanço oferta x demanda, ocorrendo situações críticas com o aparecimento de secas. Tais intervenções consideram o efeito de problemas que possam ocorrer nas duas principais ações do estado para aumento de oferta hídrica, que são a dessalinização da água do mar e a transposição do Rio São Francisco.

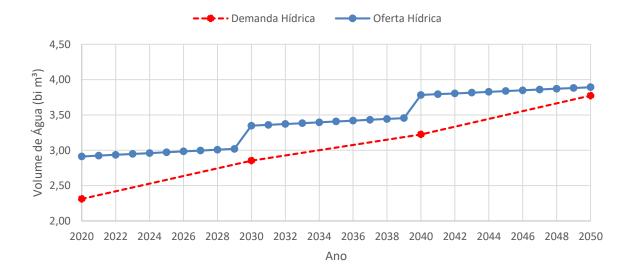
O cenário pessimista 1 simulou a desistência total da oferta a partir da dessalinização da água do mar. Israel, obtendo grande sucesso nesse tipo de alternativa para falta de água, é considerado motivação para construção das usinas de dessalinização, mas que possuem um alto custo de investimento. A análise da Tabela 4.19 mostra que a situação geral do estado não seria alterada em relação ao cenário normatizado, uma vez que apenas o ano de 2050 continuaria com déficit hídrico, mas sendo bem mais pronunciado, no valor de 0,59 bilhões de metros cúbicos, quase 2 vezes maior que o déficit normatizado deste ano. A análise do Gráfico 4.6 mostra um aumento nos períodos críticos, sendo agora representados pelos períodos 2024 – 2029, 2031 – 2039 e 2041 – 2050, com a demanda superando a oferta.

O cenário pessimista 2 simulou uma situação muito comum com as obras públicas brasileiras, visto o grande percentual de obras concluídas fora do prazo. Como as obras da primeira etapa estão bastante próximas à conclusão, a consideração de atrasos de 5 anos no previsto pelo cenário normatizado nas outras duas etapas foi considerado. A análise da Tabela 4.20 mostra que apenas em 2020 o estado estaria em situação favorável, com 2030, 2040 e 2050 apresentando déficits hídricos de 0,23, 0,17 e 0,27 bilhões de metros cúbicos respectivamente. A análise do Gráfico 4.7 mostra a importância da não ocorrência de atrasos nas obras da transposição, visto que os atrasos deixariam o estado em situação crítica a partir do ano de 2025, sempre em déficit hídrico.

Os cenários pessimistas 3 e 4 simulam situações de abandono total das etapas seguintes da transposição do Rio São Francisco. O cenário pessimista 3 considerou somente a oferta de 10 m³/s para o estado, com a conclusão somente da primeira etapa. A análise da Tabela 4.21 mostra a situação de déficit para 2030, 2040 e 2050 de 0,23, 0,48 e 0,90 bilhões de metros cúbicos respectivamente no estado. O Gráfico 4.8 ilustra a situação crítica da evolução do déficit hídrico a partir do ano de 2025, muito parecido com o cenário pessimista 2, mas numa escala maior de déficit. O cenário pessimista 4 considera a oferta de 10 m³/s até o ano de 2030 e de 20 m³/s de 2030 até 2050, com a conclusão da primeira e segunda etapas. A análise da Tabela 4.22 mostra a situação de déficit nos anos de 2040 e 2050 de 0,17 e 0,59 bilhões de metros cúbicos respectivamente. O Gráfico 4.9 ilustra dois períodos de déficit, o primeiro entre 2026 – 2029 e o segundo entre 2034 – 2050.

Cenário Combinado 1 – combinação do cenário otimista 1 com cenário pessimista 1

Tabela 4.23 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 1 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,31	2,85	3,22	3,77

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,00	0,00	0,00	0,00
Total	2,91	3,34	3,78	3,89

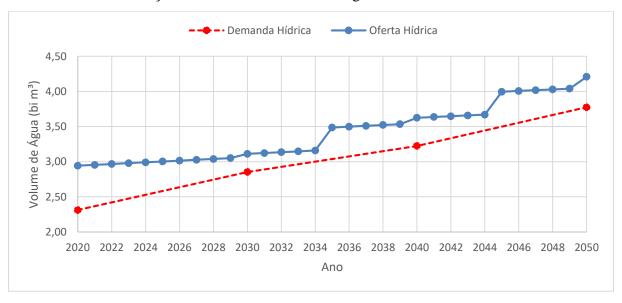
Calda II/daisa Diaman/and	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,60	0,49	0,56	0,12

Fonte: Autor

Gráfico 4.10 – Evolução da Oferta x Demanda de Água no Cenário Combinado 1 no Ceará

Cenário Combinado 2 – combinação do cenário otimista 1 com cenário pessimista 2

Tabela 4.24 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 2 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,31	2,85	3,22	3,77

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,63	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,62	4,21

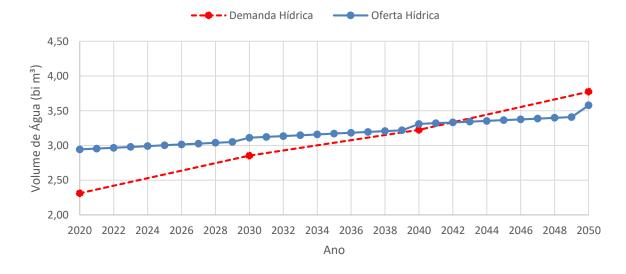
Saldo Hídrico Disponível	Saldo Hídrico (bi m³)			
	0,63	0,26	0,40	0,44

Fonte: Autor

Gráfico 4.11 – Evolução da Oferta x Demanda de Água no Cenário Combinado 2 no Ceará

Cenário Combinado 3 – combinação do cenário otimista 1 com cenário pessimista 3

Tabela 4.25 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 3 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,31	2,85	3,22	3,77

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,32	0,32
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,31	3,58

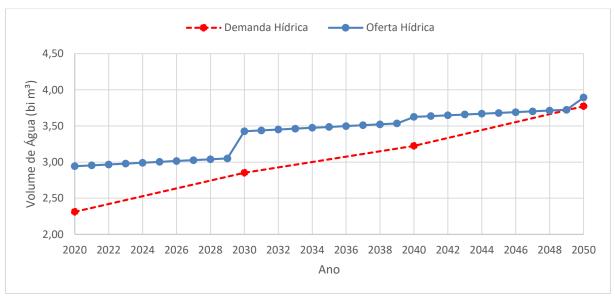
Calda III duias Dianantus	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,63	0,26	0,09	-0,19

Fonte: Autor

Gráfico 4.12 – Evolução da Oferta x Demanda de Água no Cenário Combinado 3 no Ceará

Cenário Combinado 4 – combinação do cenário otimista 1 com cenário pessimista 4

Tabela 4.26 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 4 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,57	0,69	0,73	0,76
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,31	2,85	3,22	3,77

Oferta	Ofertas Hídricas Anuais (bi m³)				
	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,63	0,63	0,63	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,42	3,62	3,89	

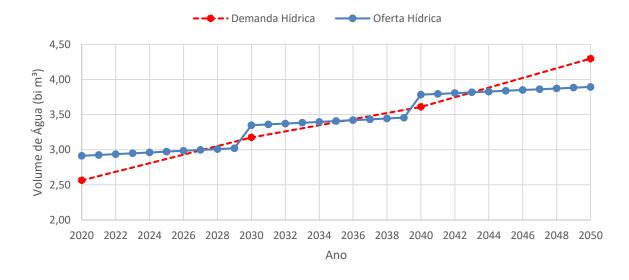
Coldo Hidrigo Dianonivol	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,63	0,57	0,40	0,12

Fonte: Autor

Gráfico 4.13 – Evolução da Oferta x Demanda de Água no Cenário Combinado 4 no Ceará

Cenário Combinado 5 – combinação do cenário otimista 2 com cenário pessimista 1

Tabela 4.27 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 5 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,56	3,17	3,61	4,30

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,00	0,00	0,00	0,00
Total	2,91	3,34	3,78	3,89

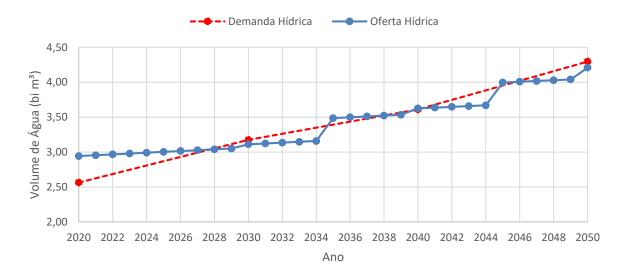
Coldo Hídrigo Dianonívol	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,35	0,17	0,17	-0,40

Fonte: Autor

Gráfico 4.14 – Evolução da Oferta x Demanda de Água no Cenário Combinado 5 no Ceará

Cenário Combinado 6 – combinação do cenário otimista 2 com cenário pessimista 2

Tabela 4.28 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 6 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,58	1,97	2,27	2,85
Total	2,56	3,17	3,61	4,30

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,63	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,62	4,21

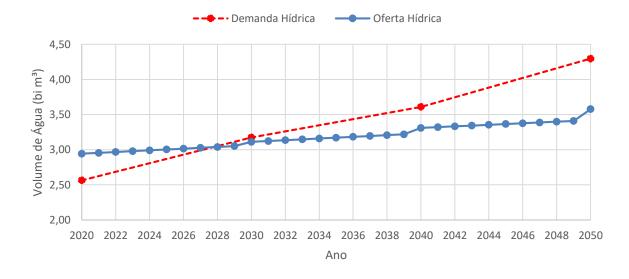
Calda II(duias Diaman(us)	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,38	-0,06	0,01	-0,08

Fonte: Autor

Gráfico 4.15 – Evolução da Oferta x Demanda de Água no Cenário Combinado 6 no Ceará

Cenário Combinado 7 – combinação do cenário otimista 2 com cenário pessimista 3

Tabela 4.29 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 7 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)				
Consumo	2020	2030	2040	2050	
Abastecimento Humano	0,43	0,51	0,55	0,57	
Dessedentação Animal	0,08	0,08	0,10	0,11	
Setor Industrial	0,47	0,59	0,66	0,73	
Setor de Turismo	0,01	0,02	0,03	0,04	
Setor de Irrigação	1,58	1,97	2,27	2,85	
Total	2,56	3,17	3,61	4,30	

Oferta	Ofertas Hídricas Anuais (bi m³)			
	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,32	0,32
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,31	3,58

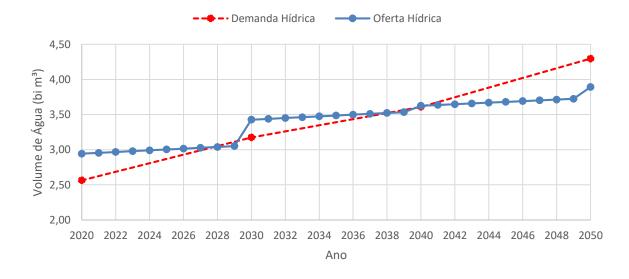
Calda Hidriga Digmoniyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,38	-0,06	-0,30	-0,71

Fonte: Autor

Gráfico 4.16 – Evolução da Oferta x Demanda de Água no Cenário Combinado 7 no Ceará

Cenário Combinado 8 – combinação do cenário otimista 2 com cenário pessimista 4

Tabela 4.30 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 8 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)				
Consumo	2020	2030	2040	2050	
Abastecimento Humano	0,43	0,51	0,55	0,57	
Dessedentação Animal	0,08	0,08	0,10	0,11	
Setor Industrial	0,47	0,59	0,66	0,73	
Setor de Turismo	0,01	0,02	0,03	0,04	
Setor de Irrigação	1,58	1,97	2,27	2,85	
Total	2,56	3,17	3,61	4,30	

Oferta	Ofertas Hídricas Anuais (bi m³)				
	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,63	0,63	0,63	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,42	3,62	3,89	

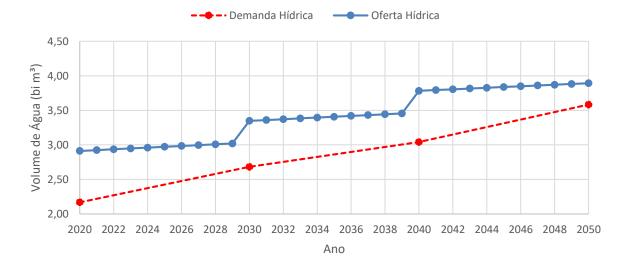
Calda Hídriaa Dignaníval	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,38	0,25	0,01	-0,40

Fonte: Autor

Gráfico 4.17 – Evolução da Oferta x Demanda de Água no Cenário Combinado 8 no Ceará

Cenário Combinado 9 – combinação do cenário otimista 3 com cenário pessimista 1

Tabela 4.31 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 9 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,00	0,00	0,00	0,00
Total	2,91	3,34	3,78	3,89

Calda Hídriga Diananíval	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,74	0,66	0,74	0,31

Fonte: Autor

Gráfico 4.18 – Evolução da Oferta x Demanda de Água no Cenário Combinado 9 no Ceará

Cenário Combinado 10 – combinação do cenário otimista 3 com cenário pessimista 2

Tabela 4.32 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 10 para o Horizonte de Estudo no Ceará

Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,32	0,63	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,11	3,62	4,21

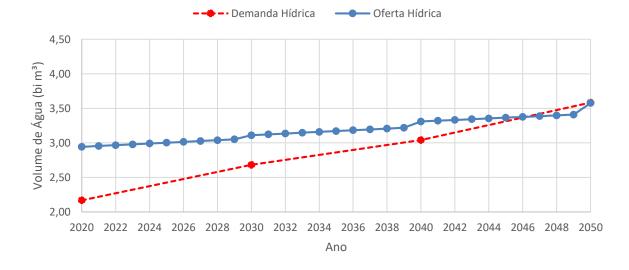
Calda Uídriaa Diananíval	S	aldo Hídrico (bi m³))
Saldo Hídrico Disponível	0,77	0,43	0,58	0,63

Fonte: Autor

Gráfico 4.19 – Evolução da Oferta x Demanda de Água no Cenário Combinado 10 no Ceará

Cenário Combinado 11 – combinação do cenário otimista 3 com cenário pessimista 3

Tabela 4.33 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 11 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)				
Consumo	2020	2030	2040	2050	
Abastecimento Humano	0,43	0,51	0,55	0,57	
Dessedentação Animal	0,08	0,08	0,10	0,11	
Setor Industrial	0,47	0,59	0,66	0,73	
Setor de Turismo	0,01	0,02	0,03	0,04	
Setor de Irrigação	1,18	1,48	1,70	2,14	
Total	2,17	2,68	3,04	3,58	

Oferta	Ofertas Hídricas Anuais (bi m³)				
	2020	2030	2040	2050	
Reservatórios	2,01	2,01	2,01	2,01	
Poços	0,58	0,70	0,82	0,93	
Transposição do Rio São Francisco	0,32	0,32	0,32	0,32	
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32	
Total	2,94	3,11	3,31	3,58	

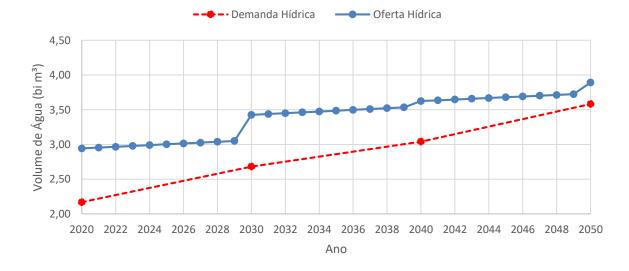
Calda Hidwiga Diamaniyal	Saldo Hídrico (bi m³)				
Saldo Hídrico Disponível	0,77	0,43	0,27	0,00	

Fonte: Autor

Gráfico 4.20 – Evolução da Oferta x Demanda de Água no Cenário Combinado 11 no Ceará

Cenário Combinado 12 – combinação do cenário otimista 3 com cenário pessimista 4

Tabela 4.34 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Combinado 12 para o Horizonte de Estudo no Ceará


Conguma	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,63	0,63
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	3,62	3,89

Coldo Hidrigo Dienonicol	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,77	0,74	0,58	0,31

Fonte: Autor

Gráfico 4.21 – Evolução da Oferta x Demanda de Água no Cenário Combinado 12 no Ceará

Os doze cenários combinados apresentados analisam o resultado obtido pela influência de fatores positivos e negativos na relação oferta x demanda de água no estado do Ceará. Dessa forma os efeitos da diminuição das perdas na irrigação e no consumo humano puderam ter seu efeito avaliado também a partir da diminuição da oferta pela falta de investimentos na dessalinização de água e na Transposição do Rio São Francisco.

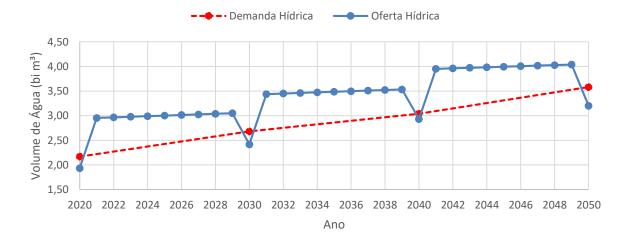
Os cenários combinados de 1 a 4 consideram todos a demanda influenciada pela melhoria das técnicas de irrigação, reduzida em 25%. Dessa forma a análise das Tabelas 4.23, 4.24 e 4.26 mostra que essa redução é suficiente nos casos de redução da oferta de dessalinização da água do mar, do atraso de 5 anos das obras da transposição e da conclusão de somente as primeira e segunda etapas da transposição respectivamente. Os Gráficos 4.10, 4.11 e 4.13 mostram que não haveria déficit para nenhum ano até 2050. No caso da Tabela 4.25, o ano de 2050 apresentaria déficit hídrico de 0,19 bilhões de metros cúbicos, ilustrando que a redução em 25% da demanda de irrigação não seria suficiente para o caso da transposição ser concluída apenas a primeira etapa, com oferta de 10 m³/s. O Gráfico 4.12 mostra que no período de 2043 – 2050 haveria déficit hídrico no estado do Ceará.

Os cenários combinados de 5 a 8 consideram todos a demanda influenciada pela redução de perdas no abastecimento populacional, reduzida em 25%. Dessa forma a análise das Tabelas 4.27, 4.28, 4.29 e 4.30 mostra que em todos os casos de redução de oferta, haveria algum ano em que a demanda de água superaria a oferta. Os Gráficos 4.14, 4.15, 4.16 e 4.17 ilustram uma visão ano a ano desses períodos, respectivamente: para o caso da desistência na dessalinização os períodos do final de cada década e 2044 – 2050; para o caso dos atrasos de 5 anos nas obras da transposição os períodos de 2029 – 2034, 2041 – 2044 e 2047 – 2050; para o caso da conclusão apenas da primeira etapa da transposição o período de 2029 – 2050; para o caso da conclusão da primeira e segunda etapas da transposição o período de 2041 – 2050.

Os cenários combinados de 9 a 12 consideram todos a demanda influenciada pelas duas reduções, tanto na irrigação, quanto no abastecimento populacional, reduzidas em 25%. Dessa forma a análise das Tabelas 4.31, 4.32, 4.33 e 4.34 mostra que não haveriam cenários de déficit hídrico no horizonte de estudo, sendo as intervenções na demanda suficientes até para o pior caso, em que a transposição só teria a conclusão da primeira etapa. Os Gráficos 4.18, 4.19, 4.20 e 4.21 ilustram que mesmo na visão ano a ano não haveriam cenários de déficit hídrico para o estado nessas condições. A exceção é a Tabela 4.33 e o Gráfico 4.20 em que apenas nos anos de 2047 – 2049 ocorreriam os déficits, sendo desta forma, algo pontual.

Cenário Especial 1 – combinação do cenário otimista 3 com a situação em que secas severas ocorram e causem a diminuição da oferta hídrica dos reservatórios pela metade

Tabela 4.35 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 1 para o Horizonte de Estudo no Ceará


Conguma	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	1,01	1,01	1,01	1,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	1,94	2,42	2,94	3,21

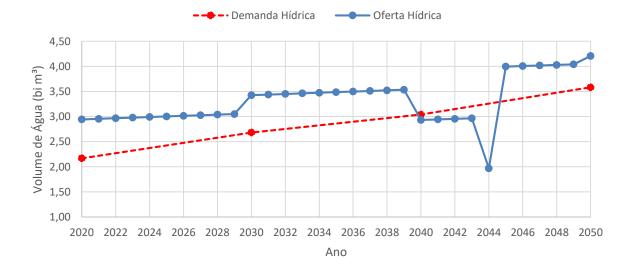
Coldo Hidrigo Disponívol	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	-0,23	-0,27	-0,10	-0,38

Fonte: Autor

Gráfico 4.22 – Evolução da Oferta x Demanda de Água no Cenário Especial 1 no Ceará

Cenário Especial 2 – combinação do cenário otimista 3 com a situação em que secas severas ocorram e causem a diminuição total da oferta hídrica dos reservatórios

Tabela 4.36 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 2 para o Horizonte de Estudo no Ceará


Canguma	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	1,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	2,94	4,21

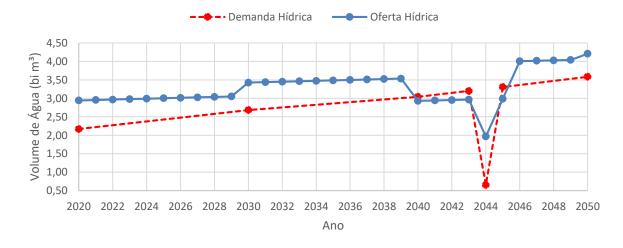
Calda Hidwiga Diamaniyal	Saldo Hídrico (bi m³)			
Saldo Hídrico Disponível	0,77	0,74	-0,10	0,63

Fonte: Autor

Gráfico 4.23 – Evolução da Oferta x Demanda de Água no Cenário Especial 2 no Ceará

 Cenário Especial 3 – situação em que secas prolongadas causam o colapso dos reservatórios do estado (2040 a 2044), mas para atendimento somente da demanda populacional e animal no ano de 2044.

Tabela 4.37 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 3 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Ofouto	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	2,01	1,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	3,42	2,94	4,21

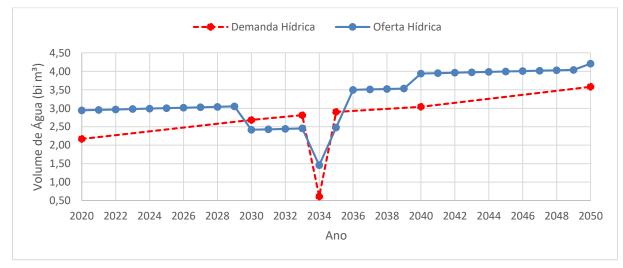
Calda Hídriaa Dignaníval	S	aldo Hídr	ico (bi m³)	
Saldo Hídrico Disponível	0,77	0,74	-0,11	0,63

Fonte: Autor

Gráfico 4.24 – Evolução da Oferta x Demanda de Água no Cenário Especial 3 no Ceará

Cenário Especial 4 – situação em que secas prolongadas causam o colapso dos reservatórios do estado (2030 a 2034), mas para atendimento somente da demanda populacional e animal no ano de 2034.

Tabela 4.38 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 4 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Ofanta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	2,01	1,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	2,94	2,42	3,94	4,21

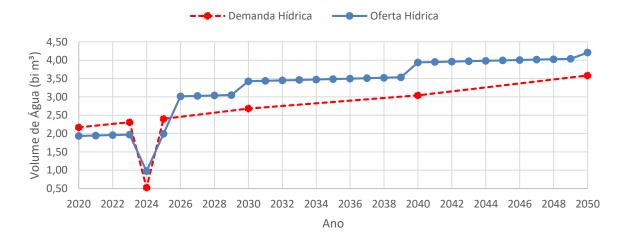
Calda Hídriaa Dignaníval	S	aldo Hídr	ico (bi m³)	
Saldo Hídrico Disponível	0,77	-0,26	0,90	0,63

Fonte: Autor

Gráfico 4.25 – Evolução da Oferta x Demanda de Água no Cenário Especial 4 no Ceará

Cenário Especial 5 – situação em que secas prolongadas causam o colapso dos reservatórios do estado (2020 a 2024), mas para atendimento somente da demanda populacional e animal no ano de 2024.

Tabela 4.39 – Resumo da Consolidação das Demandas e Ofertas e Saldo Hídrico do Cenário Especial 5 para o Horizonte de Estudo no Ceará


Consumo	Demandas Hídricas Anuais (bi m³)			
Consumo	2020	2030	2040	2050
Abastecimento Humano	0,43	0,51	0,55	0,57
Dessedentação Animal	0,08	0,08	0,10	0,11
Setor Industrial	0,47	0,59	0,66	0,73
Setor de Turismo	0,01	0,02	0,03	0,04
Setor de Irrigação	1,18	1,48	1,70	2,14
Total	2,17	2,68	3,04	3,58

Oferta	Ofertas Hídricas Anuais (bi m³)			
Oferta	2020	2030	2040	2050
Reservatórios	1,01	2,01	2,01	2,01
Poços	0,58	0,70	0,82	0,93
Transposição do Rio São Francisco	0,32	0,63	0,95	0,95
Dessalinização da Água do Mar	0,03	0,08	0,16	0,32
Total	1,94	3,42	3,94	4,21

Calda Hídriaa Dignaníval	S	aldo Hídr	ico (bi m³))
Saldo Hídrico Disponível	-0,23	0,74	0,90	0,63

Fonte: Autor

Gráfico 4.26 – Evolução da Oferta x Demanda de Água no Cenário Especial 5 no Ceará

Os cinco cenários especiais apresentados ilustram a influência de períodos de seca, sejam pontuais ou prolongados, como a ocorrida entre os anos de 2012 e 2016, para o cenário otimista 3, considerado o melhor cenário em termos de oferta x demanda hídrica do estado. O grande impacto de secas prolongadas ocorre na oferta dos reservatórios, que têm seus volumes drasticamente reduzidos e tornam-se incapazes de fornecer água na mesma proporção que nos períodos normais. Dessa forma o cenário especial 1 considerou a situação em que os reservatórios não tiveram recarga suficiente e que em certos anos só foi possível disponibilizar metade da oferta considerada no cenário normatizado. O efeito foi considerado pontualmente nos anos de 2020, 2030, 2040 e 2050, onde qualquer um desses anos poderia representar um ano de forte seca, consideradas ocorrendo uma vez a cada dez anos, com os reservatórios estando comprometidos. A análise da Tabela 4.35 mostra que 2020, 2030, 2040 e 2050 seriam anos com déficit hídrico no estado, respectivamente de 0,23, 0,27, 0,10 e 0,38 bilhões de metros cúbicos. A análise do Gráfico 4.22 mostra que todos os anos em que houvessem redução da oferta pela metade dos reservatórios apresentariam déficit. O cenário especial 2 considerou uma situação ainda mais crítica, onde uma seca prolongada ocorreu entre os anos de 2040 e 2044. A análise da Tabela 4.36 mostra que apenas o ano de 2040 calculado no horizonte seria de déficit hídrico no estado. A análise do Gráfico 4.23 mostra que exatamente o período 2040 – 2044 teria a oferta sendo superada pela demanda, com 2044 apresentando forte déficit hídrico, o que representa uma dependência grande do estado com relação aos reservatórios. Os cenários especiais 3, 4 e 5 ilustram as situações em que ao final da seca prolongada a única demanda atendida pela oferta hídrica seriam as humanas e animais. O cenário especial 3 representa a seca prolongada entre 2040 e 2044. O cenário especial 4 representa a seca prolongada entre 2030 e 2034. O cenário especial 5 representa a seca prolongada entre 2020 e 2024. Em todos esses cenários, o ano em que houve demanda hídrica apenas humana e animal foi atendido pela oferta, sendo 2044, 2034 e 2024 para os cenários especiais 3, 4 e 5 respectivamente. Tais resultados podem ser verificados pelas Tabelas 4.37, 4.38 e 4.39 e pelos Gráficos 4.24, 4.25 e 4.26. Isso ilustra a importância principalmente da oferta feita pela transposição do Rio São Francisco, garantindo demandas humanas e animais para os casos de colapso hídrico dos reservatórios.

4.4 Comparação de Custo para Aplicação das Alternativas

Os custos foram calculados diretamente pela aplicação dos consumos unitários à quantidade de água que a alternativa fornece (transposição, dessalinização e águas subterrâneas)

ou retira (reuso, diminuição de consumo populacional e melhoria de técnicas de irrigação) do sistema. A Tabela 4.40 ilustra a síntese de custo para o Ceará no horizonte do ano de 2050.

Tabela 4.40 – Síntese de Custos para as Alternativas de Mitigação da Seca no Ceará para o Horizonte de Estudo no Ano de 2050.

Descrição de Alternativa para Mitigação da Seca	Custos Unitários	Custo Direto Investido na Oferta de Água	Oferta de Água para o Sistema de 2020 a 2050
Reservatórios de Regularização	0,09 R\$/m³	-	60,39 bi m³
Água Subterrânea Dessalinizada	1,00 R\$/m³	R\$ 6.750.000.000,00	6,75 bi m³
Dessalinização da Água do Mar	3,20 R\$/m³	R\$ 9.152.000.000,00	2,86 bi m³
Reuso de Água por ETE	0,09 R\$/m³	R\$ 205.200.000,00	2,28 bi m³
Campanhas de Conscientização Populacional e Manutenção da Rede de Distribuição	0,35 R\$/m³	R\$ 1.197.000.000,00	3,42 bi m³
Melhoria das Técnicas de Irrigação	0,70 R\$/m³	R\$ 10.106.250.000,00	16,61 bi m³
Transposição do Rio São Francisco	0,50 R\$/m³	R\$ 9.500.000.000,00	19,00 bi m³

Fonte: Autor

Nota-se que o custo mais elevado está nos investimentos em dessalinização da água do mar e melhoria das técnicas de irrigação. Apesar disso, os investimentos em novas tecnologias pode tornar o processo mais vantajoso em termos de custo benefício. O desenvolvimento de tecnologias em irrigação é ainda mais importante, visto que possui um potencial muito maior de economia de água, calculados em 16,61 bilhões de m³. Apesar dos altos custos da transposição, a alta oferta de água oferecida pela alternativa é o grande diferencial, uma vez que uma oferta de 19 bilhões de m³ de água de 2020 a 2050 custaria 9,5 bilhões de reais investidos. A oferta por água subterrânea dessalinizada apresentou um custo de 6,75 bilhões de reais para uma oferta de 6,75 bilhões de m³ de água de 2020 a 2050. Campanhas de conscientização populacional, reparos nas redes de abastecimento e reuso de água também apresentam suas vantagens pelo baixo custo do processo, principalmente do reuso de água, que possui um custo unitário equivalente aos investimentos em reservatórios, considerada a melhor solução em termos de custo-benefício estudada, sendo importantíssimas em cenários de escassez hídrica, pois estão ligadas diretamente ao abastecimento populacional.

Dessa forma, montou-se um ranking de alternativas de mitigação em que os esforços possam ser concentrados e desenvolvidos para melhorar o cenário hídrico do estado

até o horizonte de 2050. A Tabela 4.41 apresenta tal ranking, considerando custo e a oferta de água disponibilizada pelas alternativas consideradas no estudo.

Tabela 4.41 – Ranking de Alternativas para Investimento de Mitigação da Seca no Ceará

Descrição de Alternativa para Mitigação da Seca	Ranking
Reservatórios de Regularização	-
Transposição do Rio São Francisco	1°
Melhoria das Técnicas de Irrigação	2°
Água Subterrânea Dessalinizada	3°
Reuso de Água por ETE	4°
Campanhas de Conscientização Populacional e Manutenção da Rede de Distribuição	5°
Dessalinização da Água do Mar (Usinas Térmicas)	6°

Fonte: Autor

Os reservatórios de regularização foram colocados no ranking para norteá-lo, uma vez que são a principal alternativa em termos técnicos e financeiros, de forma que é fundamental a manutenção dos mesmos. A transposição do Rio São Francisco foi definida como a principal alternativa a ser investida principalmente pela alta oferta de água, capaz de aliviar num curto prazo a dependência do estado em relação aos reservatórios, que são dependentes das chuvas sobre o estado. A melhoria das técnicas de irrigação aparece em segundo lugar pela alta economia oferecida, visto que a irrigação é a maior demanda do Ceará. A dessalinização das águas subterrâneas aparece em terceiro, formando a trinca das três principais alternativas com maior potencial de oferta de água, apesar dos altos custos. O reuso de água aparece logo em seguida, diferenciando apenas pelo potencial de oferta de água ser menor que os três anteriores, mesmo com custo unitário baixo. Campanhas de conscientização populacional e manutenção da rede são fundamentais para economia de água, mas os impactos são mais vistos em situações de escassez; mesmo assim são fundamentais para redução de demanda a longo prazo. A dessalinização da água do mar a partir do processo em usinas térmicas aparece em último não por ser uma alternativa ruim, mas por ainda não são capazes de atender uma demanda alta como a do Ceará. Investimentos em dessalinização são bastante promissores, visto a quantidade de experiências bem sucedidas ao redor do mundo, mas buscar um projeto a um custo mais baixo é fundamental, uma vez que as tecnologias caminham para diminuição dos custos em dessalinização de água do mar.

• Discussão dos Resultados

Dos resultados obtidos percebe-se que no estado do Ceará ainda há muito a ser feito para a garantia da segurança hídrica. Nessa seção serão discutidos e comparados os resultados com a literatura pesquisada.

Primeiramente pode-se fazer uma comparação com relação às demandas hídricas do estado, obtidas pelos planos de recursos hídricos. De acordo com o PLANERH (2005), o estado possuía uma demanda total de 47 m³/s de água, sendo 62% de agricultura, 26% de consumo populacional e 13% de consumo industrial. Para o ano de 2050, considerando o cenário normatizado, essa demanda total teria aumentado um valor próximo a três vezes, atingindo os 142,27 m³/s, sendo 64% para a agricultura, 17% para consumo humano e 16% para consumo industrial (os 3% restantes estão distribuídos entre dessedentação animal e turismo). Nota-se que a demanda de irrigação mudará muito pouco em relação ao total, mas que a demanda industrial crescerá, atingindo valores próximos à demanda populacional. Tal fato pode ser explicado pelos modelos de crescimento populacional preverem um ritmo de crescimento menos acelerado, enquanto a atividade industrial ainda possui muito campo para se desenvolver no estado do Ceará.

Da mesma forma, para as ofertas hídricas, segundo o PLANERH (2005) a oferta dos reservatórios, considerando um grau de confiança de 10% e os níveis de alerta, era de 102,16 m³/s e a oferta dos poços de 5,53 m³/s para o ano 2000. Como os reservatórios não têm trabalhado com sua capacidade máxima, o valor médio encontrado para a oferta hídrica foi de 63,95 m³/s. Convém lembrar que o açude Castanhão já estava sendo considerado nos estudos do PLANERH (2005), o que mostra que a média de vazões liberadas encontrada entre 2004 e 2016 está com um valor próximo a 60% da oferta projetada. Os valores aqui obtidos para a oferta dos poços foram de 18,42 m³/s no ano de 2020 e 29,62 m³/s no ano de 2050. Tal crescimento é explicado tanto pela utilização da dessalinização das águas subterrâneas a partir do ano 2000, quando muitos poços eram escavados, mas não eram possíveis de aproveitamento devido à qualidade da água, quanto pelas políticas de escavação de poços, principalmente nas épocas de estiagem.

No ano de 2012, o documento "A Questão da Água no Nordeste" elaborado pela ANA (2012) apresenta também um diagnóstico das demandas do Ceará. A demanda animal em 2012 encontrava-se em 2,20 m³/s, enquanto os valores obtidos estimaram um crescimento de 2,38 m³/s a 3,42 m³/s entre os anos de 2020 e 2050. A demanda industrial encontrava-se em

9,70 m³/s e os valores estimados cresceram de 14,76 m³/s para 23,03 m³/s entre os anos de 2020 e 2050, já considerando um crescimento da atividade industrial no estado, com a consolidação da região do Porto do Pecém e dos distritos industriais. A irrigação estava com uma demanda de 44,6 m³/s e as estimativas cresceram de 50,08 m³/s para 90,45 m³/s de 2020 a 2050, correspondentes à maior demanda de água do estado. O consumo populacional encontrava-se em 13,40 m³/s para a população urbana e 1,90 m³/s para a população rural, totalizando 15,30 m³/s, enquanto as projeções obtidas cresceram em 2020 de 18,19 m³/s, sendo 15,71 m³/s para a população urbana e 2,48 m³/s para a população rural, para 2050 de 24,17 m³/s, sendo 21,58 m³/s para a população urbana e 2,59 m³/s para a população rural. Tais estudos mostram que o estado têm condições de planejar os seus recursos hídricos para atender todos os valores de demanda, que são bem conhecidos e estimados para vários horizontes de projeto. Como o planejamento é feito por bacia hidrográfica, as Tabelas 4.42, 4.43 e 4.44 apresentam as demandas de consumo populacional, irrigação e industrial por região hidrográfica respectivamente. Os valores aqui apresentados então servem de base para a gestão até o ano de 2050.

Tabela 4.42 – Demanda Populacional por Bacia Hidrográfica de 2020 a 2050

Região Hidrográfica	Demanda Hídrica Ano 2020 (m³/s)	Demanda Hídrica Ano 2030 (m³/s)	Demanda Hídrica Ano 2040 (m³/s)	Demanda Hídrica Ano 2050 (m³/s)
Alto Jaguaribe	0,85	0,98	1,06	1,15
Salgado	1,81	2,04	2,25	2,47
Médio Jaguaribe	0,26	0,29	0,31	0,34
Banabuiú	0,75	0,82	0,90	0,97
Baixo Jaguaribe	0,53	0,57	0,61	0,65
Bacia Metropolitana	10,38	12,92	13,62	13,76
Acaraú	1,39	1,55	1,70	1,85
Coreaú	0,58	0,64	0,69	0,74
Parnaíba	0,53	0,57	0,60	0,62
Curu	0,56	0,64	0,73	0,78
Bacia do Litoral	0,53	0,71	0,78	0,84
Ceará	18,19	21,73	23,24	24,17

Tabela 4.43 – Demanda de Irrigação por Bacia Hidrográfica de 2020 a 2050

Região Hidrográfica	Demanda Hídrica Ano 2020 (m³/s)	Demanda Hídrica Ano 2030 (m³/s)	Demanda Hídrica Ano 2040 (m³/s)	Demanda Hídrica Ano 2050 (m³/s)
Alto Jaguaribe	2,34	3,14	3,94	5,45
Salgado	4,94	5,66	6,36	7,63
Médio Jaguaribe	5,36	8,45	11,50	17,33
Banabuiú	2,92	3,63	4,32	5,62
Baixo Jaguaribe	12,04	13,93	14,79	16,30
Bacias Metropolitanas	0,98	1,11	1,23	1,36
Acaraú	1,66	2,28	2,89	4,11
Coreaú	7,67	10,54	11,77	14,27
Parnaíba (Poti)	0,79	1,44	2,07	3,30
Curu	11,34	11,99	12,64	13,91
Bacia do Litoral	0,03	0,32	0,61	1,20
Ceará	50,08	62,45	72,07	90,45

Fonte: Autor

Tabela 4.44 – Demanda Industrial por Bacia Hidrográfica de 2020 a 2050

Região Hidrográfica	Demanda Hídrica Ano 2020 (m³/s)	Demanda Hídrica Ano 2030 (m³/s)	Demanda Hídrica Ano 2040 (m³/s)	Demanda Hídrica Ano 2050 (m³/s)
Alto Jaguaribe	0,09	0,12	0,14	0,16
Salgado	0,28	0,36	0,44	0,51
Médio Jaguaribe	0,04	0,05	0,06	0,07
Banabuiú	0,10	0,13	0,16	0,18
Baixo Jaguaribe	0,23	0,29	0,35	0,41
Bacia Metropolitana	13,29	16,75	18,72	20,40
Acaraú	0,68	0,87	1,06	1,23
Coreaú	0,04	0,05	0,07	0,08
Parnaíba	0,01	0,02	0,02	0,02
Curu	0,00	0,00	0,00	0,00
Bacia do Litoral	0,00	0,00	0,00	0,00
Ceará	14,76	18,63	21,01	23,06

Fonte: Autor

Com relação aos cenários simulados, percebe-se a complexidade em se manter a segurança hídrica em uma região semiárida. O cenário normativo aqui considerado apresentou que a partir de 2043 a demanda hídrica superaria a oferta definitivamente, isso considerado todas as demandas do estado. Resultados parecidos de desequilíbrio entre oferta e demanda

foram encontrados nos estudos de Hellegers *et al.* (2013) para o Irã, o Marrocos e a Arábia Saudita no período 2040 – 2050. Da mesma forma Kliem (2009) encontrou que Israel, Palestina e Jordânia terão sua oferta superadas pela demanda em 1940 e McFarlane *et al.* (2012) sugere déficits apreciáveis para algumas cidades do sudoeste australiano até o ano de 1930. A conclusão é a mesma para qualquer parte do mundo, onde novos planos têm de ser feitos para um futuro próximo com relação à segurança hídrica, visto que os cenários de escassez são e serão uma realidade.

Nesse ponto os resultado aqui obtidos concordam com Ross (2014), onde o gerenciamento hídrico de uma região deve considerar o ciclo e a integração das águas superficiais e subterrâneas, de modo a proporcionar uma alocação eficiente e evitar grandes efeitos com relação às variações climáticas e as incertezas. O estado do Ceará ainda utiliza um gerenciamento centrado nas águas superficiais, representado aqui pelo monitoramento e pela grande quantidade de água ofertada pelos reservatórios, da mesma forma que Ross (2014) cita para o Colorado e para New South Gales, nos EUA e na Austrália respectivamente. Os atuais sistemas de armazenamento superficiais para essas cidades possuem altas perdas evaporativas e o armazenamento em aquíferos subterrâneos pode ser uma alternativa eficiente.

Com relação aos cenários simulados para as intervenções futuras para o Ceará, a Transposição do Rio São Francisco e o aumento de eficiência das técnicas de irrigação apresentaram o maior potencial para aumento da oferta de água e diminuição da demanda respectivamente. A transposição está em andamento e por ser uma obra bastante complexa, seus efeitos sociais e ambientais são bastante questionados, não só no caso da transposição brasileira, mas em outros países do mundo, conforme Neves & Cardoso (2009). De qualquer forma, muitos países, como Estados Unidos, Canadá e China já se beneficiaram dessa alternativa de mitigação de secas. Por outro lado, a melhoria das técnicas de irrigação proporcionariam uma redução de consumo de 16,6 bilhões de metros cúbicos com a eficiência aumentada em 25% para o estado do Ceará entre 2020 e 2050. Os investimentos em técnicas de irrigação são citados como fundamentais para a segurança hídrica em todas as partes do mundo, conforme Guo & Shen (2016) para a China e Ward et al. (2006) para os Estados unidos, mais especificamente Colorado, Novo México e Texas. Multsch et al. (2017) encontrou que a melhoria da eficiência dos sistemas de irrigação serão fundamentais para diminuição do déficit hídrico da bacia do rio Nilo, mas que não atenderão completamente a demanda em projeções feitas até 2050. Tal cenário é muito próximo ao encontrado nas simulações aqui feitas para o Ceará, caso ocorram secas prolongadas, onde as demandas não seriam completamente atendidas mesmo com a eficientização das técnicas de irrigação e a diminuição de consumo populacional.

Para a dessalinização da água do mar, Wilder et al. (2016) e Srinivasan et al. (2010) encontraram resultados de que essa alternativa sozinha não é autossuficiente ou sustentável para o gerenciamento de crises hídricas, resultados esses muito próximos aos efeitos sentidos pelas simulações aqui apresentadas com a utilização da dessalinização na oferta de água para o Ceará. A dessalinização é uma alternativa que deve ser cuidadosamente analisada devido aos custos e a complexidade do sistema, sendo aplicada somente quando as outras alternativas forem descartadas. O ranking obtido e apresentado na Tabela 4.41 ilustra exatamente esse efeito. Tal alternativa é uma importante fonte de água no Oriente Médio, conforme Hajjaj & Hashim (2013), visto que os países dessa região apresentam graves problemas de ofertas superficiais e subterrâneas.

O reuso de água e a redução de consumo populacional a partir de políticas de incentivo têm fundamental importância em cenários futuros e em situações de secas prolongadas no Ceará, apesar do efeito não ser tão pronunciado quanto transposição de rios e aumento de eficiência da irrigação no estado. Brichieri-Colombi (2004) já alertava que os investimentos em segurança hídrica não dependem exclusivamente da procura de novas fontes de abastecimento, mas que soluções como reuso, aumento de eficiência de redes de abastecimento e redução dos percentuais de consumo e crescimento populacional são importantes alternativas para o balanço oferta e demanda de uma região.

As soluções atuais consideram a integração entre todas alternativas, aliadas ao planejamento e gestão dos recursos hídricos da região. Drangert & Sharatchandra (2017) encontram para Bangalore na Índia precipitações anuais próximas às regiões do semirárido nordestino e o problema da escassez hídrica até o ano de 2050 poderá ocorrer mais pela perda das oportunidades de investir em gestão do que propriamente por um cenário de déficit declarado. Da mesma forma, para o Ceará, os cenários aliando a Transposição do Rio São Francisco com redução de consumo populacional e na irrigação mostraram que é possível o estado chegar até 2050 sem anos com déficit hídrico, bastando que os investimentos e a gestão das águas seja feita de forma eficiente. Mesmo no caso de secas prolongadas, há possibilidade do atendimento às demandas populacional e animal, que são prioritárias.

Estudos que ainda devem ser feitos para o estado são os de resiliência dos sistemas de abastecimento devido às reduções nas precipitações e de confiabilidade do sistema de oferta de água com projeções futuras de escassez. Amarasinghe *et al.* (2016) e Watts et al. (2012) dissertam sobre a importância da utilização de indicadores de resiliência da oferta de água pelos sistemas de abastecimento, identificado as condições críticas de precipitação para que o sistema não falhe, salientando ainda que a gestão da seca é parte importante do gerenciamento dos

recursos hídricos, sendo que tal parte muitas vezes é negligenciada. Paton *et al.* (2013) e Romano *et al.* (2017) mostram estudos de confiabilidade da oferta na Austrália e na Itália respectivamente, sugerindo que a redução natural da confiabilidade com o avanço do horizonte de estudo requer a produção de planos flexíveis para alcançar a segurança hídrica. A seca de 2012 – 2016 ocorrida no Ceará é uma possibilidade de estudo de base para a resiliência e confiabilidade do sistema de oferta de água do estado, com principal foco nos reservatórios. Estudos no Castanhão, por exemplo, com projeções até 2050 podem ser realizados em termos de confiabilidade, resiliência e vulnerabilidade.

Todas as alternativas consideradas nesse estudo têm sua importância para atingimento da segurança hídrica do Ceará. A conclusão final concorda com Cruz & Tucci (2008) e Vieira (2003) de que o desenvolvimento sustentável da região não deve ocorrer apenas a partir do balanço hídrico de oferta e demanda, mas aliados a uma integração da gestão dos recursos hídricos regionais e nacionais para uso racional da água em todas as suas demandas.

5 CONCLUSÃO

O presente estudo apresentou uma metodologia de avaliação de cenários oferta x demanda hídrica no estado do Ceará para um horizonte de estudo de 2020 a 2050. Tal estudo foi motivado pela estiagem ocorrida no estado entre os anos de 2012 e 2016, responsável por diminuir drasticamente os recursos hídricos disponíveis nos reservatórios do Ceará, maiores responsáveis pela manutenção hídrica.

A pesquisa bibliográfica apresentou dados bastante críticos para o estado: o reservatório equivalente do Ceará apresentou uma diminuição de 53,4% a 7,7% da sua capacidade entre os anos de 2012 e 2016; três dentre esses cinco anos, 2012, 2013 e 2016, aparecem entre os dez piores em termos de precipitações médias em relação à média histórica do estado; o resultado direto das baixas precipitações foi o baixo aporte, calculado em 0,95 bilhões de m³ anuais considerando a média desses cinco anos; dessa forma o volume armazenado nos reservatórios monitorados pela COGERH caiu de 85,15% a 6,90% de sua capacidade; a vazão liberada pelos sete maiores reservatórios caiu de 60,7 m³/s para 15,8 m³/s, causando a diminuição de rios perenizados de 89 para 28, entre os anos de 2012 e 2016; o resultado final encontrado foi que 75% dos municípios do estado apresentaram-se em situação de emergência devido à seca, ligando o alerta para cenários futuros de seca prolongadas.

Dessa forma, foram estudados cenários de previsão de oferta x demanda para o horizonte de estudo. Os cenários apresentados permitiram as seguintes conclusões:

- O cenário normatizado apresentou situações de déficit hídrico no final de cada década, nos períodos de 2025 a 2029, 2033 a 2039 e 2043 a 2050. A situação de déficit é superada pelo aumento da oferta vinda da transposição do Rio São Francisco, mas apresenta-se insuficiente para o crescimento da demanda no final do horizonte de estudo.
- Investimentos em diminuição de demanda são fundamentais para a segurança hídrica do estado. O cenário otimista 1, que apresenta a diminuição da demanda de irrigação pela utilização de técnicas mais eficientes, obteve um resultado de garantia hídrica em todo o horizonte de estudo. O cenário otimista 2, que apresenta a diminuição da demanda populacional pela utilização de políticas de conscientização, manutenção da rede de abastecimento e reuso de água apresentou déficit hídrico somente nos anos de 2047 a 2050. A combinação dos dois cenários garante a segurança hídrica do estado com folgas para o horizonte de estudo.
- A dessalinização da água do mar possui impacto maior em cenários futuros. A desistência em investimentos nessa tecnologia não altera o cenário normativo de forma sensível.

Como os investimentos foram considerados baixos no início do horizonte de estudo, a oferta hídrica não altera a situação do estado, com o déficit entre os anos de 2025 e 2029 aparecendo da mesma forma. Para a década seguinte, entre 2030 e 2039 o déficit foi mais acentuado, com a última década aparecendo quase toda em déficit hídrico, entre os anos de 2040 e 2050. A tecnologia é promissora, mas um investimento inicial em oferta de apenas 12% do consumo populacional do Ceará é muito baixo, visto que outros países já investem em dessalinização para o abastecimento humano em quase sua totalidade.

- Atrasos nas obras da transposição do Rio São Francisco deixam o estado em situação de déficit hídrico para quase todo o horizonte de estudo. Atrasos de 5 anos para conclusão da 2ª e 3ª etapas provocam cenários críticos de 2025 a 2050.
- Investimentos somente na 1ª etapa da transposição, esquecendo-se a 2ª e 3ª etapas, provocam o mesmo nível de déficit que os atrasos de 5 anos na conclusão dessas etapas; o estado se apresentaria em cenários críticos de 2025 a 2050. No caso de desistência somente da 3ª etapa a situação melhora, visto que os cenários críticos aconteceriam de 2034 a 2050.
- A redução na demanda de irrigação é capaz de manter a segurança hídrica do estado para os casos de desistência de investimento em dessalinização da água do mar, atrasos nas obras da transposição e conclusão apenas da 1ª e 2ª etapas desta última. O único caso em que o estado apresentaria déficit da oferta em relação a demanda, com diminuição da demanda de irrigação seria o da conclusão apenas da 1ª etapa da transposição, com o período crítico de 2043 a 2050.
- A redução na demanda de abastecimento populacional não é capaz de manter a segurança hídrica para o horizonte de estudo. No caso de falta de investimentos em dessalinização, o período crítico apresenta-se entre 2043 e 2050. No caso de atrasos de 5 anos nas obras da transposição os períodos críticos são entre 2029 a 2034, 2041 a 2044 e 2047 a 2049. No caso de conclusão apenas da 1ª etapa da transposição os períodos críticos são 2029 a 2050 e no caso de conclusão apenas da 1ª e 2ª etapas os períodos críticos são 2041 a 2050.
- A redução conjunta na demanda de irrigação e no abastecimento populacional seria capaz de manter a segurança hídrica do estado para os casos de desistência de investimento em dessalinização, de atraso nas obras e de conclusão de apenas a 1ª e de apenas a 1ª e a 2ª etapas da transposição. A única exceção seria no período de 2047 a 2049 no caso de conclusão apenas da 1ª etapa da transposição, cenário que poderia ser corrigido por um leve aumento na oferta dos reservatórios, caso os mesmos estivessem em boas condições de reserva.

- Para o caso de secas pontuais e severas, ocorridas uma vez a cada 10 anos, nem mesmo a redução conjunta na demanda de irrigação e no abastecimento populacional seriam capazes de evitar o déficit hídrico no estado, apesar deste déficit não senr tão grande.
- Para o caso de secas prolongadas, como a ocorrida de 2012 a 2016, a redução de demanda de irrigação e populacional não seria capaz de evitar o déficit hídrico no Ceará, apresentando-se em proporção bem maior ao final da seca. Isso mostra a dependência do estado em relação aos reservatórios. Os investimentos em dessalinização de água do mar e em dessalinização de águas subterrâneas deve ser suficiente para, aliados a transposição do Rio São Francisco, suprirem o estado em caso de falha dos reservatórios.
- Em caso de secas prolongadas, as demandas humanas e animais são atendidas pelas outras ofertas de água mesmo em falha total da oferta dos reservatórios. Tal cenário é importante, pois em casos mais críticos de seca, transposição, águas subterrâneas e dessalinização da água do mar são capazes de manter as demandas principais, conforme disposto na "Lei das Águas".

A análise de custos permite concluir que a alternativa mais promissora em termos de custo é o reuso de água, onde os custos apresentam-se baixos, mais até do que as tecnologias utilizadas no mundo atualmente, como transposição e dessalinização a partir de usinas térmicas, além de possuírem potencial elevando de desenvolvimento de oferta de águas em maiores escalas. Para o Ceará, dadas as atuais condições de escassez, transposição e melhoria das técnicas de irrigação apresentam-se como as melhores alternativas para superação da seca no estado, visto que a oferta de água para o sistema é bastante elevada nas duas alternativas.

REFERÊNCIAS

ABAS – Associação Brasileira de Águas Subterrâneas. **ABAS Informa.** Edição N° 121. Disponível em: http://www.abas.org/abasinforma/121/paginas/22.htm. Acesso em: 06 mai. 2017.

ABREU, C.B.R., ARAÚJO, J. C. de, BARBOSA, C. P. Avaliação in situ da qualidade das águas da bacia do rio Jaguaribe, Ceará. Anais do XXI Congresso de Engenharia Sanitária e Ambiental, ABES, João Pessoa, set. 2001.

AL-ALSHAIKH. A. The World's Largest Desalination Market: Saudi Arabia. IDA Water Reuse and Desalination Conference for Latin America Development, Rio de Janeiro, 2015.

ALVAGONZALEZ, R. **O desenvolvimento do Nordeste árido**. Ministério do Interior / DNOCS: Fortaleza, 539 p., 1984.

ALVES, Joaquim. **História das secas (séculos XVII a XIX).** Ed. fac-sim. Fortaleza: Fundação Waldemar Alcântara, 2003.

ALVES, Joaquim. **História das Secas: séc. XIX e XX**. Ed. Fac-similar. Fortaleza:Fundação Waldemar Alcântara, 2003.

ALVES, J. M. B., SOUZA, E. B., REPELLI, C. A. **Principais Secas Ocorridas Neste Século no Estado do Ceará: Uma Avaliação Pluviométrica.** Anais do X Congresso Brasileiro de Meteorologia e VIII Congresso da FLISMET. Brasília, DF, 1998.

AMARASINGHE, P; LIU, A; EGODAWATTA, P.; BARNES, P.; MCGREE, J.; GOONETILLEKE, A. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change. **Journal of Hydrology**, 540, p. 1043 – 1052, 2016.

AMBROSIO, M. Canal da Paz, a Diplomacia da Água. Jornal do Brasil, Opinião. p. A14, 5 jun. 2005.

ANA. **Agência Nacional de Águas**. Disponível em: http://www2.ana.gov.br/Paginas/default.aspx. Acesso em: 16 jan. 2017.

ANA – Agência Nacional de Águas. **Atlas Brasil: abastecimento urbano de água: panorama nacional.** Engecorps/Cobrape. Brasília, 2010.

ANA – Agência Nacional de Águas. **Atlas Nordeste: abastecimento urbano de água: alternativas de oferta de água para as sedes municipais da Região Nordeste do Brasil e do Norte de Minas Gerais.** Superintendência de Planejamento de Recursos Hídricos. Consórcio Engecorps/Projetec/Geoambiente/Riverside Technology. Brasília, 2006.

ANA – Agência Nacional de Águas. **A Questão da Água no Nordeste.** Centro de Gestão e Estudos Estratégicos. Brasília, DF: CGEE, 2012.

ANA — Agência Nacional de Águas. **Boletim de Acompanhamento dos Reservatórios do Nordeste do Brasíl.** Brasília, v. 11, n. 23, p. 1-21, dez. 2016.

ANDERSON, D.L. **Utah's Perspective: The Colorado River.** Utah Department of Natural Resources. Second Edition, 2002.

ANDRADE, R. M. T. de. **Da Transposição das Águas do Rio São Francisco à Revitalização da Bacia: As Várias Visões de um Rio.** Fórum Permanente de Defesa do São Francisco / International Rivers Network / Coalizão Rios Vivos. 2002.

ARAÚJO, J.C., MOLINAS, P.A., JOCA, E.L.L., BARBOSA, C.P., BEMFEITO, C.J.S., BELO, P.S.C. **Avaliação de Custos de Disponibilização da Água na Região Semiárida.** XV Simpósio Brasileiro de Recursos Hídricos. Curitiba, 2003.

ARAÚJO, J.C., MOLINAS, P.A., JOCA, E.L.L., BARBOSA, C.P., BEMFEITO, C.J.S., BELO, P.S.C. Custo de Disponibilização e Distribuição da Água por Diversas Fontes no Ceará. **Revista Econômica do Nordeste**, Fortaleza, v.36, n. 2, abr – jun. 2005.

ASMAR, B.N.; ERGENZINGER, P. Environmental Effects of The Dead Sea-Red Sea Canal. **International Journal of Environmental Studies**, v. 59, p. 647 – 664, 2002.

ASSEMBLEIA LEGISLATIVA DO ESTADO DO CEARÁ. **Plano Estratégico dos Recursos Hídricos do Estado do Ceará.** Conselho de Altos Estudos e Assuntos Estratégicos. Fortaleza: INESP, 409 p., 2009.

ATLAS SRH. **Atlas Eletrônico da Secretaria de Recursos Hídricos**. Governo do Estado do Ceará. SIRH/CE – Sistema de Informações dos Recursos Hídricos do Estado do Ceará. Disponível em: http://atlas.srh.ce.gov.br. Acesso em 25 abr. 2017.

BAHIA, C. M. O Projeto da integração do rio São Francisco às bacias do Nordeste Setentrional e a Lei n. 9433/1997. 22p., 2006.

BARBOSA, C. P. Avaliação dos Custos de Água Subterrânea e de Reúso de Efluentes no Estado do Ceará. Dissertação (Mestrado em Recursos Hídricos), Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Fortaleza, 102f., 2000.

BARDSLEY, T.; WOOD, A,; HOBBINS, M.; KIRKHAM, T.; BRIEFER, L.; NIERMEYER, J.; BURIAN, S. Planning for an Uncertain Future: Climate Change Sensitivity Assessment toward Adaptation Planning for Public Water Supply. **Earth Interactions**. Paper 23, v. 17, 2013.

BRICHIERI-COLOMBI, J.S. Hydrocentricity: A Limited Approach to Achieving Food and Water Security. **Water International**, v. 29, N. 3, p. 318 – 328, 2004.

CAGECE. **Companhia de Água e Esgoto do Ceará.** Disponível em: https://www.cagece.com.br/>. Acesso em: 5 mar. 2017.

CALA, A. **A Spain's Desalination Ambitions Unravel**. The International Herald Tribune, New York, out. 2013. Disponível em: http://www.nytimes.com/2013/10/10/business/energy-environment/spains-desalination-ambitions-unravel.html. Acesso em: 23 abr. 2017.

CAMPOS, J.N.B. **A água e a vida: textos e contextos** / José Nilson B. Campos. - Fortaleza: ABC Fortaleza, 142 p., 1999.

CAMPOS, J.N.B., STUDART, T.M.C. Secas no Nordeste do Brasil: Origens, Causas e Soluções. IN: IV Dialógo Interamericano de Gerenciamento de Águas. ABRH, Foz do Iguaçu, 2001.

CARVALHO, J.O. (Organizador). **Plano Integrado para o Combate Preventivo aos Efeitos das Secas no Nordeste**. Brasília: Ministério do Interior, 267 p., 1973.

CARVALHO, P. Água Potável Via Energia Solar. **Ciência Hoje**, Rio de Janeiro, v. 27, n. 158, p. 72 – 74, 2000.

CAVALCANTE, I. Governo lança edital para estudo de usina de dessalinização da água do mar. Jornal O Povo, mar. 2017. Disponível em:

http://www.opovo.com.br/noticias/economia/2017/03/governo-lanca-edital-para-estudo-de-usina-de-dessalinizacao-da-agua-do.html. Acesso em: 13 abr. 2017.

CHARCOSSET, C. A Review of Membrane Processes and Renewable Energies for Desalination. **Desalination**, v. 245, p. 214 – 231, set. 2009.

CHRISTOFIDIS, D. Irrigação, a fronteira hídrica na produção de alimentos. **Irrigação e Tecnologia Moderna**, Brasília: ABID, n.54, p. 46 – 55, 2002.

COELHO, E.F., COELHO FILHO, M.A., OLIVEIRA, S.L. Agricultura Irrigada: Eficiência de Irrigação e de Uso de Água. **Revista Bahia Agrícola**, v. 7, n. 1, set. 2005.

COGERH. **Companhia de Gestão dos Recursos Hídricos**. Disponível em: http://www.hidro.ce.gov.br/>. Acesso em: 7 jan. 2017.

COGERH – Companhia de Gestão dos Recursos Hídricos. **Resenha Diária do Monitoramento - 04/01/17.** Governo do Estado do Ceará. 2017.

CRUZ, J.C.; TUCCI, C.E.M. Estimativa da Disponibilidade Hídrica Através da Curva de Permanência. **Revista Brasileira de Recursos Hídricos,** V. 13, n. 1, p. 111 – 124, 2008.

DACACH, N.G. Previsão e Distribuição da População nos Centros Urbanos. **Revista D.A.E.** n. 67, 1967.

DAI, A. Increasing Drought Under Global Warming in Observations and Models. **Nature Climate Change**, v. 3, jan 2013.

DRANGERT, J.O.; SHARATCHANDRA, H.C. Addressing urban water scarcity: reduce, treat and reuse – the third generation of management to avoid local resources boundaries. **Water Policy**, v. 19, n. 4, 2017.

DEFESA CIVIL. **Municípios em Situação de Emergência por Estiagem / Seca.** Disponível em

. Acesso em: 15 jan. 2017.

DNOCS. **Departamento Nacional de Obras Contra à Seca.** Disponível em: http://www2.dnocs.gov.br/. Acesso em: 25 out. 2016.

EXAME. **Água de Rio Chega a Pequim em Maior Transposição da História.** Disponível em: http://exame.abril.com.br/mundo/agua-do-yang-tse-chega-a-pequim-em-maior-transposicao-da-historia>. Acesso em: 8 fev. 2017.

FIEC – Federação das Indústrias do Estado do Ceará. **Guia Industrial do Ceará 2009.** Fortaleza, 2010.

FLINT, G. Para engenheiro israelense, dessalinizar água do mar é opção para amenizar crises hídricas em SP. Opera Mundi, nov. 2014. Disponível em:

http://operamundi.uol.com.br/conteudo/noticias/38650/para+engenheiro+israelense+dessalinizar+agua+do+mar+e+opcao+para+amenizar+crises+hidricas+em+sp.shtml. Acesso em: 27 abr. 2017.

FOUNDATION FOR WATER RESEARCH. **Desalination for Water Supply**. Bucks, UK, 35 p., 2011.

FUNCEME. **Fundação Cearense de Meteorologia e Recursos Hídricos.** Disponível em: http://www.funceme.br/>. Acesso em: 10 set. 2016.

GALVÃO, J.; BERMANN, C. Crise hídrica e energia: conflitos no uso múltiplo das águas. **Estudos Avançados**, São Paulo, v. 29, n. 84, 2015.

GOVERNO DO ESTADO DO CEARÁ. **Em Dubai, governador visita maior usina de dessalinização do mundo.** Disponível em: http://www.ceara.gov.br/sala-de-imprensa/noticias/19186-em-dubai-governador-visita-maior-usina-de-dessalinizacao-domundo>. Acesso em: 20 abr. 2017.

GREY, D.; SADOFF, C.W. Sink or Swim? Water security for growth and development. **Water Policy**, n. 9, p. 545 – 571, 2007.

GROUILLET, B.; FABRE, J.; RUELLAND, D.; DEZETTER, A. Historical reconstruction and 2050 projections of water demand under anthropogenic and climate changes in two contrasted Mediterranean catchments. **Journal of Hydrology**, 522, p. 684 – 696, 2015.

GUO, Y; SHEN, Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. **Journal of Hydrology**, 540, p. 257 – 273, 2016.

HABIBI, A., SABATO, R. SCHAEFER, P. **Escassez de água: desafio ameaçador, mas com um futuro promissor.** University of Pennsylvania, Wharton, jan. 2013. Disponível em: http://www.knowledgeatwharton.com.br/article/escassez-de-agua-desafio-ameacador-mas-com-um-futuro-promissor/. Acesso em: 27 abr. 2017.

HAJJAJ, M.E.; HASHIM, A.H. Water security and stability in the Kingdom of Bahrain. **Desalination and Water Treatment**, 51, p. 67 – 74, 2013.

HELLEGERS, P.; IMMERZEEL, W.; DROOGERS, P. Economic concepts to address future water supply–demand imbalances in Iran, Morocco and Saudi Arabia. **Journal of Hydrology**, 502, p. 62 – 67, 2013.

HELLER, L., PÁDUA, V.L. (organização). Capítulo 9 - Captação de Água Subterrânea: Abastecimento de Água para Consumo Humano. Editora UFMG, 859p., 2006.

HENKES, S.L. A Política, o Direito e o Desenvolvimento: Um Estudo Sobre a Transposição do Rio São Francisco. **Revista Direito GV**, São Paulo 10(2), p. 497 – 534, 2014.

HESPANHOL, I. Potencial de Reuso de Água no Brasil: Agricultura, Industria, Municípios, Recarga de Aqüíferos. **Revista Brasileira de Recursos Hídricos**, v. 7, n. 4, p. 75 – 95, 2002.

IBGE. **Instituto Brasileiro de Geografia e Estatística**. Disponível em: http://www.ibge.gov.br/home/>. Acesso em: 17 jan. 2017.

IDOETA, P.A., BARIFOUSE, R. Conheça soluções para a crise de água em 6 cidades do mundo. BBC Brasil, São Paulo, nov. 2014. Disponível em: http://www.bbc.com/portuguese/noticias/2014/11/141105_crise_agua_6cidades_pai. Acesso em 13 mar. 2017.

IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará. **Ceará em Números – 2008**. Governo do Estado do Ceará. 2009.

IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará. **Ceará em Números – 2015**. Governo do Estado do Ceará. 2016.

KHAWAJI, A.D., KUTUBKHANAH, I.K., WIE, J.M. Advances in Seawater Technologies. **Desalination**, v. 221, p. 47 – 69, 2008.

KLIEM, J.A. **Framework for Improving Water Security in the Middle East.** World Environmental and Water Resources Congress 2009. p. 3887 – 3896. 2009.

KUMAR, P. Hydrocomplexity: Addressing water security and emergent environmental risks. **Water Resources Research**, 51, p. 5827 – 5838, 2015.

LEI DAS ÁGUAS. **Lei N° 9.433, de 8 de Janeiro de 1997: Da Política Nacional de Recursos Hídricos**. Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. 1997. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/19433.htm. Acesso em: 25 nov. 2016.

LEITE, M. **Política serve projetos de tempos em tempos**. Folha de São Paulo, São Paulo, p. especial 7, out. 2005.

LIMA NETO, I. E., WIEGAND, M. C., ARAÚJO, J. C. Sediment Redistribution due to a Dense Reservoir Network in a Large Semi-Arid Brazilian Basin. **Hydrological Sciences Journal.** 56(2), p. 319 – 333, 2011.

MAROUELLI, W.A., SILVA, W.L.C. **Seleção de Sistemas de Irrigação para Hortaliças.** Circular Técnica da EMBRAPA Hortaliças. Empresa Brasileira de Pesquisa Agropecuária. Brasília, 1998.

MAYBERRY, A.L.; BAKER, T.D. Sustainability of small water supplies: lessons from a Brazilian Program (SESP/FSESP). **Water Policy**, 13, p. 393 – 396, 2011.

MCFARLANE, D.; STONE, R.; MARTENS, S.; THOMAS, J.; SILBERSTEIN, R.; ALI, R.; HODGSON, G. Climate change impacts on water yields and demands in south-western Australia. **Journal of Hydrology**, 475, p. 488 – 498, 2012.

MENEZES, S.J. Desenvolvimento de Dispositivo Caseiro para Dessalinização de Água Salobra para Dessedentação Humana. Dissertação (Mestrado em Química), Instituto de Química, Universidade Federal da Bahia, Salvador, 115 f., 2009.

MILANO, M.; RUELLAND, D.; DEZETTER, A.; FABRE, J.; ARDOIN-BARDIN, S.; SERVAT, E. Modeling the current and future capacity of water resources to meet water demands in the Ebro basin. **Journal of Hydrology**, 500, p. 114 – 125, 2013.

MINISTÉRIO DA INTEGRAÇÃO NACIONAL. **Transposições pelo Mundo.** Projeto de Integração do Rio São Francisco. Disponível em: http://www.mi.gov.br/web/projeto-sao-francisco/transposicoes-pelo-mundo. Acesso em: 2 fev. 2017.

MIRANDA, A. **A Grande Seca de 1877.** Jornal O Povo. Fortaleza, mar. 2013. Disponível em:

http://www20.opovo.com.br/app/colunas/anamiranda/2013/03/09/noticiasanamiranda,30188 32/a-grande-seca-de-1877.shtml>. Acesso em: 24 out. 2016.

MMA – Ministério do Meio Ambiente. **Águas Subterrâneas: Programa de Águas Subterrâneas.** Brasília, 2001.

MOLION, L.C.B., BERNARDO, S.O. **Dinâmica das Chuvas no Nordeste Brasileiro**. XI Congresso Brasileiro de Meteorologia, Rio de Janeiro, 2000.

MOLION, L.C.B., BERNARDO, S.O. Uma Revisão da Dinâmica das Chuvas no Nordeste Brasileiro. **Revista Brasileira de Meteorologia**, v. 17, n. 1, p. 1 – 10, 2002.

MONTEIRO, V.P., PINHEIRO, J.C.V. Critério para Implantação de Tecnologias de Suprimentos de Água Potável em Municípios Cearenses Afetados pelo Alto Teor de Sal. **Revista de Economia e Sociologia Rural.** Rio de Janeiro, v. 42, n. 2, p. 365 – 387, 2004.

- MONZONIS, M.P., SOLERA, A., FERRER, J., ESTRELA, T., ARQUIOLA, J.P. A Review of Water Scarcity and Drought Indexes in Water Resources Planning and Management. **Journal of Hydrology**. 527, p. 482 493, 2015.
- MORAES, M.M.G.A.; SAMPAIO, Y.; CIRILO, J.A.; CAI, X. Apoio a Decisão na Gestão de Recursos Hídricos Usando Modelo Econômico-Hidrológico Integrado para Alocação Ótima de Água: Uma Aplicação na Bacia do Rio Pirapama. **Revista Brasileira de Recursos Hídricos**, v. 13, n. 1, p. 29 42, 2008.
- MULTSCH, S.; ELSHAMY, M.E.; BATARSEH, S.; SEID, A.H.; FREDE, H.G.; BREUER, L. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. **Journal of Hydrology: Regional Studies,** 12, p. 315 330, 2017.
- NEVES, C., CARDOSO, A.P. A Experiência Internacional com Projetos de Transposição de Águas Lições para o do Rio São Francisco. Anais do XXIX Encontro Nacional de Engenharia de Produção. Salvado, BA, 2009.
- OLIVEIRA, F. Elegia para uma Re(li)gião: SUDENE, Nordeste. Planejamento e conflito de classes. 3ª ed. Rio de Janeiro, Paz e Terra, 132 p., 1981.
- OLIVEIRA, E.M., BARROS, S.I. Unidades de Dessalinização d'Água Experiência Pioneira no Semiárido Nordestino no Estado do Rio Grande do Norte. In. Associação Brasileira de Engenharia Sanitária e Ambiental; AIDIS. Desafios para o saneamento ambiental no terceiro milênio. Rio de Janeiro, ABES, p.1 10, 1999.
- ONU Organização das Nações Unidas. **Agriculture and Consumer Protection Department.** Disponível em: http://www.fao.org/ag/portal/ag-home/en/>. Acesso em: 17 mar. 2017.
- PATON, F.J.; MAIER, H.R.; DANDY, G.C. Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply security for the southern Adelaide water supply system. **Water Resources Research**, v. 49, p. 1643 1667, 2013.
- PENNINGTON, K.L.; CECH, V.T. Water Resources and Environmental Issues. 1 Ed. New York, Cambridge University Press. 2010.
- PEREIRA JÚNIOR. J.S. Dessalinização de Água do Mar no Litoral Nordestino e Influência da Transposição de Água na Vazão do Rio São Francisco. Biblioteca Digital da Câmara dos Deputados. 2005.
- PINHEIRO, M.I.T.; CAMPOS, J.N.B.; STUDART, T.M.C. Conflitos pelo Uso da Água no Estado do Ceará: Um Estudo de Caso. XV Simpósio Brasileiro de Recursos Hídricos. Curitiba: ABRH, 2003.
- PLANERH. Consolidação da Política e dos Programas de Recursos Hídricos do Estado do Ceará: Atualização do Plano Estadual de Recursos Hídricos: Diagnóstico 2005. Secretaria de Recursos Hídricos. 2005.
- QDAIS, H.A. Environmental Impacts of the Mega Desalination Project: The Red–Dead Sea Conveyor. Amman, Jordânia, 2007.

RABELO, U.P. Modelagem do Escoamento Subterrâneo em Regime Permanente para Drenagem Profunda de Canais : Estudo de Caso Cinturão de Águas do Ceará – Trecho I. Trabalho de Conclusão de Curso (Engenharia Civil), Universidade Federal do Ceará, Fortaleza, 95 f., 2014.

REBOUÇAS, A.C. Água na Região Nordeste: Desperdício e Escassez. **Bahia Análise & Dados**, Salvador, v. 13, n. Especial, p. 341 – 345, 2003.

REBOUÇAS, A.C. Água no Brasil: Abundância, Desperdício e Escassez. **Estudos Avançados**, São Paulo, v. 11, n. 29, p. 127 – 154, 1997.

REBOUÇAS, A.C., BRAGA, B., TUNDISI, J.G. Águas Doces no Brasil: Capital Ecológico, Uso e Conservação. 3° ed. São Paulo: Escrituras, 748 p., 2006.

RÊGO, T.C.C.C. **Proposta Metodológica para Gestão de Secas: O Caso da Bacia do Alto Jaguaribe, Ceará.** Tese (Doutorado em Recursos Hídricos), Universidade Federal do Ceará, Fortaleza, 193 f., 2008.

RIBEIRO, R.W. **Seca e Determinismo: A Gênese do Discurso do Semi-árido Nordestino**. Anuário do Instituto de Geociências – UFRJ, v. 22, Rio de Janeiro, p. 60 – 91, 1999.

ROCHA, P.F.C. **Dessalinização de Água do Mar.** Dissertação (Mestrado em Engenharia Eletrônica Industrial e Computadores), Universidade do Minho, Braga, 88 f., 2014.

RODRIGUES, A., BRENHA, H. **Dessalinização atenuou racionamento em Fernando de Noronha.** Folha de São Paulo, São Paulo, set. 2014. Disponível em: http://www1.folha.uol.com.br/cotidiano/2014/09/1512291-dessalinizacao-atenuou-racionamento-em-arquipelago.shtml. Acesso em: 25 abr. 2017.

ROMANO, E.; GUYENNON, N.; DEL BON, A.; PETRANGELI, A.B.; PREZIOSI, E. Robust Method to Quantify the Risk of Shortage for Water Supply Systems. **Journal of Hydrologic Engineering**, v. 22, n. 8, 2017.

ROSS, A. Banking for the future: Prospects for integrated cyclical water management. **Journal of Hydrology**, 519, p. 2493 – 2500, 2014.

ROYAL ACADEMY OF ENGINEERING. Global Water Security – an engineering perspective. abr. 2010.

SARAIVA, K.R., SOUZA, F. de, SANTOS, E.M. dos, LIMA, A.D. **Cenário da Irrigação no Nordeste do Brasil Segundo o Censo Agropecuário 2005-2006.** IV WINOTEC - Workshop Internacional de Inovações Tecnológicas na Irrigação. Fortaleza : CE, 2012.

SENADO FEDERAL. Dessalinizar água é cada vez mais viável. **Revista em Discussão**, n. 23, Brasília, DF, 2014.

SENADO FEDERAL. Israel quer atingir 100% de dessalinização em cinco anos. **Revista em Discussão**, n. 23, Brasília, DF, 2014.

- SHEFFIELD, J., WOOD, E.F., RODERICK, M.L. Little change in global drought over the past 60 years. **Nature**, v. 491, p. 435 440, 2012.
- SILVA, F.J.A, ARAÚJO, A.L., SOUZA, R.O. Águas Subterrâneas no Ceará Poços Instalados e Salinidade. **Revista Tecnologia**, UNIFOR, v. 28, n. 2, p. 136 159, 2007.
- SILVA, F. J. A., SILVA, S. A. Lagoas de Estabilização no Ceará: Prospectos e Tendências. 20° Congresso Brasileiro de Engenharia Sanitária e Ambiental. Rio de Janeiro, 1999.
- SINGH, V.P. Challenges in meeting water security and resilience. **Water International**, v. 22, n. 4, p. 349 359, 2017.
- SOARES, T.M., SILVA, I.J.O., DUARTE, S.N. SILVA, E.F.F. Destinação de Águas Residuárias Provenientes do Processo de Dessalinização por Osmose Reversa. **Revista Brasileira de Engenharia Agrícola. Ambiental,** v. 10, n. 3, p. 730 737, 2006.
- SOMBRA, I.P. Caracterização Através de Indicadores dos Impactos da Seca na Bacia do Alto Jaguaribe. Dissertação (Mestrado em Recursos Hídricos), Universidade Federal do Ceará, Fortaleza, 100 f., 2008.
- SOUSA, J. B. **Quixadá: de fazenda à cidade (1775 1955).** Rio de Janeiro, DF: Serviço Gráfico do IBGE, 1960.
- SOUSA, J.W.F. Política e Seca no Ceará. Um Projeto de Desenvolvimento para o Norte (1869 1905). Tese (Doutorado em História Econômica), Universidade de São Paulo, São Paulo, 265 f., 2009.
- SOUZA, L. F. Dessalinização como Fonte Alternativa de Água Potável. **Norte Científico**, [S.l.], v. 1, n. 1, p. 84 97, 2006.
- SRH. **Secretaria dos Recursos Hídricos Governo do Estado do Ceará.** Disponível em: http://www.srh.ce.gov.br/#site. Acesso em: 11 jan. 2017.
- SRH SECRETARIA DE RECURSOS HÍDRICOS DO CEARÁ. **Diagnóstico dos Projetos de Irrigação do Estado do Ceará.** Estudo de Viabilidade Técnico-Econômica, Estudo Ambiental e Ante-Projeto do Trecho Jati-Cariús do Cinturão de Águas do Ceará CAC. Governo do Estado do Ceará, VBA Tecnologia e Engenharia S/A, 2009.
- SRH SECRETARIA DE RECURSOS HÍDRICOS DO CEARÁ. **Estudo de Demandas Humana e Animal Georeferenciadas.** Estudo de Viabilidade Técnico-Econômica, Estudo Ambiental e Ante-Projeto do Trecho Jati-Cariús do Cinturão de Águas do Ceará CAC. Governo do Estado do Ceará, VBA Tecnologia e Engenharia S/A, 34 f., 2009.
- SRH SECRETARIA DE RECURSOS HÍDRICOS DO CEARÁ. **Estudo de Demandas Industriais, de Turismo e de Irrigação.** Estudo de Viabilidade Técnico-Econômica, Estudo Ambiental e Ante-Projeto do Trecho Jati-Cariús do Cinturão de Águas do Ceará CAC. Governo do Estado do Ceará, VBA Tecnologia e Engenharia S/A, 45 f., 2009.

- SRH SECRETARIA DE RECURSOS HÍDRICOS DO CEARÁ. **Estudos de Inserção Regional do PIRSF**. Estudo de Viabilidade Técnico-Econômica, Estudo Ambiental e Ante-Projeto do Trecho Jati-Cariús do Cinturão de Águas do Ceará CAC. Governo do Estado do Ceará, VBA Tecnologia e Engenharia S/A, 2000.
- SRH SECRETARIA DE RECURSOS HÍDRICOS DO CEARÁ. **Relatório Final do Estudo de Viabilidade Técnico Econômica.** Estudo de Viabilidade Técnico-Econômica, Estudo Ambiental e Ante-Projeto do Trecho Jati-Cariús do Cinturão de Águas do Ceará CAC. Governo do Estado do Ceará, VBA Tecnologia e Engenharia S/A, 192 f., 2010.
- SRINIVASAN, V.; GORELICK, S.M.; GOULDER, L. Sustainable urban water supply in south India: Desalination, efficiency improvement, or rainwater harvesting? **Water Resources Research**, v. 46, 2010.
- SRINIVASAN, V.; KONAR, M.; SIVAPALAN, M. A dynamic framework for water security. **Water Security**, v. 1, p. 12 20, 2017.
- SUASSUNA, J. **A pequena e média açudagem no semi-árido nordestino: uso da água na produção de alimentos.** Disponível em: http://www.fundaj.gov.br/docs/text/textrop.html Acesso em 19 ago. 2017.
- SYDNEY DESAL. **Sydney Desalination Plant.** Disponível em: http://www.sydneydesal.com.au/who-we-are/our-history/>. Acesso em: 29 abr. 2017.
- TAVARES, R. **Desalination Experience in Fernando de Noronha Archipelago**. IDA Water Reuse and Desalination Conference for Latin America Development, Rio de Janeiro, 2015.
- TENNE, A. Closing the gap: The Israeli Experience. IDA Water Reuse and Desalination Conference for Latin America Development, Rio de Janeiro, 2015.
- TORRI, J.B. **Dessalinização de Água Salobra e/ou Salgada: Métodos, Custos e Aplicações.** Trabalho de Diplomação (Engenharia Química), Universidade Federal do Rio Grande do Sul, Porto Alegre, 51 f., 2015.
- TRENBERTH, K.E. The Definition of El Niño. **Bulletin of the American Meteorological Society**, v. 78, n. 12, p. 2771 2777, 1997.
- TRENBERTH, K.E., DAI, A., SCHRIER, G. v.d., JONES, P.D., BARICHIVICH, J. BRIFFA, K.R., SHEFFIELD, J. Global warming and Changes in Drought. **Nature Climate Change**, v. 4, p. 17 22, 2014.
- VIEIRA, V.P.P.B. Desafios da Gestão Integrada de Recursos Hídricos no Semi-árido. **Revista Brasileira de Recursos Hídricos**, v. 8, n. 2, p. 7 17, 2003.
- VON SPERLING, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental. Ed. da UFMG, 2005.

WARD, F.A.; HURD, B.H.; RAHMANI, T.; GOLLEHON, N. Economic impacts of federal policy responses to drought in the Rio Grande Basin. **Water Resources Research**, v. 42, 2006.

WATTS, G.; von CHRITIERSON, B.; HANNAFORD, J.; LONSDALE, K. Testing the resilience of water supply systems to long droughts. **Journal of Hydrology**, 414–415, p. 255 – 267, 2012.

WILDER, M.O.; AGUILAR-BARAJAS, I.; PINEDA-PABLOS, N.; VARADY, R.G.; MEGDAL, S.B.; MCEVOY, J.; MERIDETH, R.; ZUÑIGA-TERAN, A.A.; SCOTT, C.A. Desalination and water security in the US–Mexico border region: assessing the social, environmental and political impacts. **Water International**, v. 41, p. 756 – 775, 2016.

WINSTANLEY, D. Climate Aspects of Water Supply Planning. World Water and Environmental Resources Congress, Anchorage, Alaska, United States, 2005.

XAVIER, T.M.B.S., XAVIER, A.F.S. Caracterização de Períodos Secos ou Extremamente Chuvosos no Estado do Ceará Através da Técnica dos Quantis. **Revista Brasileira de Meteorologia**, v. 14, n. 2, p. 63 – 78, 1999.

XAVIER, T.M.B.S., XAVIER, A.F.S. Classificação de Anos Secos e Chuvosos na Região Nordeste do Brasil e sua Distribuição Espacial. Anais do Congresso Brasileiro De Meteorologia, Belo Horizonte, Edição III, p. 267 – 289, 1984.

ZARANZA, K. Fortaleza registra 34,15% de perda de água em 2016. Diário do Nordeste, Fortaleza, fev. 2017. Disponível em:

http://diariodonordeste.verdesmares.com.br/cadernos/cidade/fortaleza-registra-34-15-deperda-de-agua-em-2016-1.1708415. Acesso em: 13 abr. 2017.

APÊNDICES

APÊNDICE A – Ajuste Definido para População Urbana no Ceará

N° Município População Urbana Recenseada IBGE Ajuste Definido 1 Abaiara 2 747 3 208 4 138 4 552 Logarítmica 2 Acarape 6 321 7 025 7 781 7 982 Logística 3 Acarape 6 321 7 025 7 781 7 982 Logística 4 Acopiara 19 637 22 230 24 494 25 228 Logarítmica 5 Aluaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcántaras 2 467 2 762 3 088 3 448 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logástica 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística			N-Ajuste D		<u> </u>		
1 Abaiara 2 747 3 208 4 138 4 552 Logarítmica 2 Acarape 6 321 7 025 7 781 7 982 Logística 3 Acaraú 21 271 24 582 27 135 28 242 Logística 4 Acopiara 19 637 22 230 24 494 25 228 Logarítmica 5 Aluaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcântaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonia do Norte 3 798 4 429 4 657 4 999 Logástica 11 Apuirac 46 164 54 682 59 894 67 083 Exponencial / Log	N°	Município	Popula	Ajuste Definido			
2 Acarape 6 321 7 025 7 781 7 982 Logística 3 Acaraú 21 271 24 582 27 135 28 242 Logística 4 Acopiara 19 637 22 230 24 494 25 228 Logártica 5 Aiuaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcántaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logárítmica 9 Amontada 10 279 11 802 14 125 15 947 Logárítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logárítmica 11 Apuiraz 46 164 54 682 59 894 67 083 Exponencial/ 10 Aricati 34 713 39 179 41 742 44 035 Logárítmica			1996	2000	2007	2010	
3 Acaraú 21 271 24 582 27 135 28 242 Logística 4 Acopiara 19 637 22 230 24 494 25 228 Logística 5 Aiuaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcântaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logástica 11 Apuiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035<	1	Abaiara	2 747	3 208	4 138	4 552	Logarítmica
4 Acopiara 19 637 22 230 24 494 25 228 Logistica 5 Aiuaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcântaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiarés 4 422 5 453 6 056 5 772 Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial/ Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial/ Logística 13 Aracati 34 713 39 179 41 742 44	2	Acarape	6 321	7 025	7 781	7 982	Logística
5 Aiuaba 2 734 3 162 3 630 3 951 Logarítmica 6 Alcântaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logástica 11 Apuiarés 4 422 5 453 6056 5 772 Logástica 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logástica 13 Aracati 34 713 39 179 41 742 44 035 Logástica 14 Aracoiaba 10 972 12 205 13 175 13 737 Logástica 15 Ararendá 3 455 4 075 4 863 4 906	3	Acaraú	21 271	24 582	27 135	28 242	Logística
6 Alcantaras 2 467 2 762 3 088 3 448 Logarítmica 7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logártica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logástica 14 Aracoiaba 10 972 12 205 13 175 13 737 Logástica 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12	4	Acopiara	19 637	22 230	24 494	25 228	Logística
7 Altaneira 3 383 3 787 4 485 4 957 Logarítmica 8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logástica 14 Aracoiaba 10 972 12 205 13 175 13 737 Logástica 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3	5	Aiuaba	2 734	3 162	3 630	3 951	Logarítmica
8 Alto Santo 4 391 5 447 7 509 8 041 Logarítmica 9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiarés 4 422 5 453 6 056 5 772 Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logástica 14 Aracoiaba 10 972 12 205 13 175 13 737 Logástica 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952	6	Alcântaras	2 467	2 762	3 088	3 448	Logarítmica
9 Amontada 10 279 11 802 14 125 15 947 Logarítmica 10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiarés 4 422 5 453 6 056 5 772 Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logística 14 Aracoiaba 10 972 12 205 13 175 13 737 Logarítmica 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825	7	Altaneira	3 383	3 787	4 485	4 957	Logarítmica
10 Antonina do Norte 3 798 4 429 4 657 4 999 Logística 11 Apuiarés 4 422 5 453 6 056 5 772 Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logística 14 Aracoiaba 10 972 12 205 13 175 13 737 Logística 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 L	8	Alto Santo	4 391	5 447	7 509	8 041	Logarítmica
11 Apuiarés 4 422 5 453 6 056 5 772 Logística 12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logística 14 Aracoiaba 10 972 12 205 13 175 13 737 Logística 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítm	9	Amontada	10 279	11 802	14 125	15 947	Logarítmica
12 Aquiraz 46 164 54 682 59 894 67 083 Exponencial / Logística 13 Aracati 34 713 39 179 41 742 44 035 Logística 14 Aracoiaba 10 972 12 205 13 175 13 737 Logística 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logáritmica 22 Banabulú 6 266 7 622 8 435 8 753 Logári	10	Antonina do Norte	3 798	4 429	4 657	4 999	Logística
12 Aquiraz 46 164 54 652 39 894 67 083 Logística 13 Aracati 34 713 39 179 41 742 44 035 Logística 14 Aracoiaba 10 972 12 205 13 175 13 737 Logística 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabulú 6 266 7 622 8 435 8 753 Logárítmica	11	Apuiarés	4 422	5 453	6 056	5 772	Logística
14 Aracoiaba 10 972 12 205 13 175 13 737 Logística 15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logártica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logást	12	Aquiraz	46 164	54 682	59 894	67 083	
15 Ararendá 3 455 4 075 4 863 4 906 Logarítmica 16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logárítmica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítm	13	Aracati	34 713	39 179	41 742	44 035	Logística
16 Araripe 8 684 10 151 12 851 12 733 Logarítmica 17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logárítmica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logás	14	Aracoiaba	10 972	12 205	13 175	13 737	Logística
17 Aratuba 1 836 2 157 3 042 3 769 Logarítmica 18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logarítmica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logáritmica 28 Beberibe 10 350 19 697 19 881 21 611 Log	15	Ararendá	3 455	4 075	4 863	4 906	Logarítmica
18 Arneiroz 1 741 2 146 2 572 3 879 Logarítmica 19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logárítica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logástica 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logástica 27 Baturité 19 130 20 846 22 912 24 437 Logástica 28 Beberibe 10 350 19 697 19 881 21 611 Log	16	Araripe	8 684	10 151	12 851	12 733	Logarítmica
19 Assaré 7 897 9 428 10 117 11 952 Logarítmica 20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logárítica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logáritica 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logáritica 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logástica 29 Bela Cruz 10 457 11 585 12 274 12 997	17	Aratuba	1 836	2 157	3 042	3 769	Logarítmica
20 Aurora 9 158 10 080 10 873 11 825 Logarítmica 21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logárítmica 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logárítmica 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logástica 30 Boa Viagem 17 304 20 820 25 770 26 604	18	Arneiroz	1 741	2 146	2 572	3 879	Logarítmica
21 Baixio 2 401 2 585 2 948 3 304 Logarítmica 22 Banabuiú 6 266 7 622 8 435 8 753 Logística 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055	19	Assaré	7 897	9 428	10 117	11 952	Logarítmica
22 Banabuiú 6 266 7 622 8 435 8 753 Logística 23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logárítmica 32 Camocim 36 701 40 684 43 234 44 657 </td <td>20</td> <td>Aurora</td> <td>9 158</td> <td>10 080</td> <td>10 873</td> <td>11 825</td> <td>Logarítmica</td>	20	Aurora	9 158	10 080	10 873	11 825	Logarítmica
23 Barbalha 27 617 30 669 34 133 38 022 Logarítmica 24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	21	Baixio	2 401	2 585	2 948	3 304	Logarítmica
24 Barreira 5 556 6 375 7 227 8 127 Exponencial / Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	22	Banabuiú	6 266	7 622	8 435	8 753	Logística
24 Barreira 5 556 6 3/5 7 227 8 127 Logística 25 Barro 10 049 10 866 12 006 13 160 Logarítmica 26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	23	Barbalha	27 617	30 669	34 133	38 022	Logarítmica
26 Barroquinha 6 882 9 096 9 717 9 770 Logística 27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	24	Barreira	5 556	6 375	7 227	8 127	
27 Baturité 19 130 20 846 22 912 24 437 Logarítmica 28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	25	Barro	10 049	10 866	12 006	13 160	Logarítmica
28 Beberibe 10 350 19 697 19 881 21 611 Logística 29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	26	Barroquinha	6 882	9 096	9 717	9 770	Logística
29 Bela Cruz 10 457 11 585 12 274 12 997 Logística 30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	27	Baturité	19 130	20 846	22 912	24 437	Logarítmica
30 Boa Viagem 17 304 20 820 25 770 26 604 Logarítmica 31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	28	Beberibe	10 350	19 697	19 881	21 611	Logística
31 Brejo Santo 18 477 22 678 24 346 28 055 Logarítmica 32 Camocim 36 701 40 684 43 234 44 657 Logística	29	Bela Cruz	10 457	11 585	12 274	12 997	Logística
32 Camocim 36 701 40 684 43 234 44 657 Logística	30	Boa Viagem	17 304	20 820	25 770	26 604	Logarítmica
	31	Brejo Santo	18 477	22 678	24 346	28 055	Logarítmica
33 Campos Sales 16 234 17 135 18 309 19 081 Logística	32	Camocim	36 701	40 684	43 234	44 657	Logística
	33	Campos Sales	16 234	17 135	18 309	19 081	Logística

N°	Município	Popula	IBGE	Ajuste Definido		
		1996	2000	2007	2010	
34	Canindé	36 161	39 573	44 392	46 875	Logarítmica
35	Capistrano	4 890	5 252	5 790	6 212	Logarítmica
36	Caridade	7 059	8 381	9 656	11 523	Logarítmica
37	Cariré	4 673	5 459	7 816	8 301	Logarítmica
38	Caririaçu	8 702	10 618	11 797	14 031	Logarítmica
39	Cariús	5 571	7 170	7 678	8 310	Logarítmica
40	Carnaubal	6 469	6 925	7 617	7 960	Logística
41	Cascavel	42 578	47 453	53 947	56 157	Exponencial / Logística
42	Catarina	4 641	6 465	8 585	8 728	Logarítmica
43	Catunda	3 439	4 068	5 130	5 395	Logarítmica
44	Caucaia	188 739	226 088	285 215	290 220	Exponencial / Logística
45	Cedro	12 208	13 501	14 480	15 159	Logística
46	Chaval	7 857	8 497	8 816	9 168	Logística
47	Choró	2 319	2 849	3 511	3 794	Logarítmica
48	Chorozinho	9 033	9 469	10 624	11 426	Logarítmica
49	Coreaú	10 170	11 263	12 112	14 223	Logarítmica
50	Crateús	41 867	47 549	49 847	52 644	Logística
51	Crato	77 899	83 917	92 884	100 916	Logarítmica
52	Croatá	6 389	7 298	7 072	9 038	Logarítmica
53	Cruz	7 428	8 218	9 539	9 569	Logarítmica
54	Dep. Irapuan Pinheiro	1 935	2 721	3 717	4 133	Logarítmica
55	Ererê	1 788	2 262	3 291	3 458	Logarítmica
56	Eusébio	27 206	31 500	38 189	46 033	Exponencial / Logística
57	Farias Brito	6 917	8 726	8 091	8 871	Logística
58	Forquilha	10 096	11 619	13 550	15 473	Logarítmica
59	Fortaleza	1 965 513	2 141 402	2 431 415	2 452 185	Exponencial / Logística
60	Fortim	7 099	8 610	9 589	9 608	Logística
61	Frecheirinha	5 818	6 459	7 102	7 636	Logarítmica
62	General Sampaio	1 798	2 316	2 685	3 648	Logarítmica
63	Graça	3 896	4 838	5 697	5 815	Logarítmica
64	Granja	19 447	22 564	25 217	25 892	Logística
65	Granjeiro	994	1 234	1 312	1 370	Logística
66	Groaíras	5 171	5 588	6 499	7 076	Logarítmica
67	Guaiúba	11 420	15 611	17 461	18 877	Logarítmica
68	Guaraciaba do Norte	11 986	14 826	17 250	17 403	Logarítmica

N°	Município	Popula	IBGE	Ajuste Definido		
	-	1996	2000	2007	2010	
69	Guaramiranga	1 654	2 330	2 387	2 495	Logística
70	Hidrolândia	8 049	9 122	10 503	11 054	Logarítmica
71	Horizonte	15 051	28 122	42 457	51 049	Exponencial / Logística
72	Ibaretama	2 564	3 366	4 190	4 447	Logarítmica
73	Ibiapina	7 328	8 231	9 687	10 743	Logarítmica
74	Ibicuitinga	3 902	4 387	5 602	5 742	Logarítmica
75	Icapuí	5 014	4 662	5 578	5 787	Logarítmica
76	Icó	23 385	26 047	28 817	30 463	Logarítmica
77	Iguatu	54 786	62 366	69 748	74 627	Logarítmica
78	Independência	9 264	10 265	10 833	11 473	Logística
79	Ipaporanga	2 673	3 203	3 596	4 136	Logarítmica
80	Ipaumirim	5 473	6 199	6 639	7 133	Logarítmica
81	Ipu	18 436	22 404	23 496	25 581	Logística
82	Ipueiras	14 277	15 775	18 247	18 358	Logarítmica
83	Iracema	7 936	8 279	9 977	9 819	Logarítmica
84	Irauçuba	9 017	10 873	13 362	14 343	Logarítmica
85	Itaiçaba	3 565	3 672	4 018	4 279	Logarítmica
86	Itaitinga	22 747	26 546	28 519	35 565	Exponencial / Logística
87	Itapagé	23 440	27 459	31 951	33 990	Logarítmica
88	Itapipoca	41 697	48 481	60 240	66 909	Logarítmica
89	Itapiúna	6 191	7 684	8 393	8 819	Logística
90	Itarema	9 302	9 901	13 950	15 938	Exponencial / Logística
91	Itatira	5 420	6 030	7 812	9 522	Logarítmica
92	Jaguaretama	6 436	7 295	8 208	8 469	Logarítmica
93	Jaguaribara	3 426	3 539	6 415	7 212	Logarítmica
94	Jaguaribe	18 881	21 051	22 455	23 268	Logística
95	Jaguaruana	12 666	16 580	18 037	19 135	Logarítmica
96	Jardim	6 122	7 358	7 910	8 994	Logarítmica
97	Jati	2 798	3 016	4 399	4 489	Logarítmica
98	Jijoca de Jericoacoara	1 662	3 434	4 615	5 556	Logarítmica
99	Juazeiro do Norte	180 142	202 227	230 032	240 128	Logarítmica
100	Jucás	9 341	11 856	12 495	14 150	Logarítmica
101	Lavras da Mangabeira	15 769	16 730	16 954	18 132	Logística
102	Limoeiro do Norte	26 308	28 213	30 188	32 483	Logarítmica
103	Madalena	4 865	5 459	6 228	8 915	Logarítmica

N°	Município	Popula	Ajuste Definido			
	_	1996	2000	2007	2010	·
104	Maracanaú	159 493	179 170	197 301	207 635	Exponencial / Logística
105	Maranguape	61 183	65 268	80 792	86 309	Logarítmica
106	Marco	9 422	11 687	14 037	15 435	Logarítmica
107	Martinópole	5 479	6 487	7 966	8 007	Logarítmica
108	Massapê	16 379	19 173	22 660	23 983	Logarítmica
109	Mauriti	16 058	18 079	21 277	23 285	Logarítmica
110	Meruoca	4 774	5 627	6 490	7 420	Logarítmica
111	Milagres	9 928	11 291	11 508	13 556	Logarítmica
112	Milhã	4 445	5 054	6 559	5 969	Logarítmica
113	Miraíma	3 911	4 772	6 208	6 847	Logarítmica
114	Missão Velha	12 178	12 785	14 617	15 419	Logarítmica
115	Mombaça	14 706	16 052	18 693	18 816	Logarítmica
116	Monsenhor Tabosa	6 883	7 823	8 771	9 362	Logarítmica
117	Morada Nova	30 232	33 869	33 807	35 401	Logística
118	Moraújo	3 232	3 352	3 232	3 604	Logística
119	Morrinhos	6 668	7 746	8 878	9 612	Logarítmica
120	Mucambo	5 864	7 574	8 487	9 066	Logarítmica
121	Mulungu	3 618	3 715	4 077	4 198	Logística
122	Nova Olinda	5 299	6 393	7 750	9 696	Logarítmica
123	Nova Russas	19 448	20 844	22 194	23 244	Logística
124	Novo Oriente	10 841	12 709	13 755	14 230	Logística
125	Ocara	5 785	6 372	7 131	7 605	Logarítmica
126	Orós	14 747	15 800	15 562	16 023	Logística
127	Pacajus	28 172	34 301	44 339	50 675	Exponencial / Logística
128	Pacatuba	40 144	47 028	57 244	62 095	Logarítmica
129	Pacoti	2 859	3 809	4 490	4 745	Logarítmica
130	Pacujá	2 785	3 276	3 700	3 723	Logística
131	Palhano	4 135	4 259	4 379	4 515	Logística
132	Palmácia	3 824	4 417	4 510	4 957	Logística
133	Paracuru	13 351	16 673	19 650	20 589	Exponencial / Logística
134	Paraipaba	8 641	12 680	13 231	13 435	Exponencial / Logística
135	Parambu	10 615	12 550	12 891	14 106	Logística
136	Paramoti	3 176	4 175	5 149	5 540	Logarítmica
137	Pedra Branca	14 710	17 347	20 720	24 510	Logarítmica
138	Penaforte	3 369	4 478	5 517	6 399	Logarítmica

N°	Município	Popula	Ajuste Definido			
		1996	2000	2007	2010	Ů
139	Pentecoste	18 149	19 212	20 359	21 394	Logística
140	Pereiro	4 756	5 109	5 518	5 433	Logística
141	Pindoretama	4 912	6 818	10 375	11 280	Logarítmica
142	Piquet Carneiro	5 056	5 582	6 475	7 440	Logarítmica
143	Pires Ferreira	2 185	2 813	3 058	3 354	Logarítmica
144	Poranga	5 734	7 135	7 805	7 798	Logística
145	Porteiras	3 967	4 480	5 093	6 189	Logarítmica
146	Potengi	3 551	3 985	3 968	5 714	Logarítmica
147	Potiretama	1 834	2 197	2 469	2 703	Logarítmica
148	Quiterianópoles	3 602	5 068	5 952	6 305	Logarítmica
149	Quixadá	43 477	46 888	52 991	57 485	Logarítmica
150	Quixelô	3 703	4 165	4 720	4 929	Logarítmica
151	Quixeramobim	26 835	30 600	39 576	43 424	Logarítmica
152	Quixeré	8 614	9 857	11 111	11 930	Logarítmica
153	Redenção	11 305	12 787	14 790	15 134	Logarítmica
154	Reriutaba	7 958	9 734	9 840	10 590	Logística
155	Russas	31 454	35 323	40 839	44 952	Logarítmica
156	Saboeiro	6 929	7 798	8 366	8 455	Logística
157	Salitre	3 668	4 489	5 818	6 263	Logarítmica
158	Santa Quitéria	10 356	19 355	20 736	22 260	Logarítmica
159	Santana do Acaraú	7 359	12 454	14 481	15 372	Logarítmica
160	Santana do Cariri	15 137	8 178	8 955	8 822	Logística
161	São Benedito	17 719	20 970	23 322	24 554	Logarítmica
162	São G. do Amarante	20 094	22 077	25 141	28 537	Exponencial / Logística
163	São João do Jaguaribe	2 642	2 744	3 075	3 169	Logarítmica
164	São Luis do Curu	6 824	7 384	7 827	7 961	Logística
165	Senador Pompeu	14 478	15 682	14 866	15 706	Logística
166	Senador Sá	3 405	3 802	4 587	5 068	Logarítmica
167	Sobral	115 883	134 508	150 361	166 310	Logarítmica
168	Solonópole	6 903	7 716	8 129	9 106	Logarítmica
169	Tabuleiro do Norte	14 619	15 852	17 365	18 806	Logarítmica
170	Tamboril	10 638	12 401	13 233	14 202	Logística
171	Tarrafas	1 454	1 947	2 203	2 624	Logarítmica
172	Tauá	24 125	26 721	29 440	32 259	Logarítmica
173	Tejuçuoca	2 998	4 157	5 140	6 335	Logarítmica
174	Tianguá	30 773	37 299	42 648	45 819	Logarítmica

N°	Município	Popula	ção Urbana	Ajuste Definido		
		1996	2000	2007	2010	
175	Trairi	8 364	14 413	15 178	18 784	Exponencial / Logística
176	Tururu	4 351	5 278	5 439	5 288	Logística
177	Ubajara	11 159	12 490	14 195	15 350	Logarítmica
178	Umari	3 121	3 540	3 869	3 918	Logística
179	Umirim	8 369	10 060	10 697	11 091	Logística
180	Uruburetama	10 229	11 170	13 021	14 689	Logarítmica
181	Uruoca	5 257	6 121	7 243	7 671	Logarítmica
182	Varjota	11 177	13 479	13 854	14 416	Logística
183	Várzea Alegre	16 781	19 268	21 997	23 896	Logarítmica
184	Viçosa do Ceará	12 534	14 478	16 504	17 827	Logarítmica
	TOTAL	4 713 049	5 315 318	6 053 131	6 346 569	

APÊNDICE B – Ajuste Definido para População Rural no Ceará

1996	N°	Município	Popula	Ajuste Definido			
2 Acarape 4 641 5 902 6 877 7 356 Logaritmica 3 Acaraú 24 071 24 386 24 988 29 309 Logaritmica 4 Acopiara 27 796 24 907 24 209 25 932 Logística 5 Aiuaba 11 029 11 290 11 955 12 252 Logística 6 Alcântaras 6 699 6 786 7 182 7 323 Logística 7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logística 12 Aquiraz 6 118 5 787 7 371 5 545 Logística		·	1996	2000	2007	2010	v
3 Acaraú 24 071 24 386 24 988 29 309 Logarítmica 4 Acopiara 27 796 24 907 24 209 25 932 Logística 5 Aiuaba 11 029 11 290 11 955 12 252 Logística 6 Alcántaras 6 699 6 786 7 182 7 323 Logística 7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logística 12 Aquiraz 6 118 5 787 7 371 5 545 Logística	1	Abaiara	4 742	5 177	6 089	5 944	Logística
4 Acopiara 27 796 24 907 24 209 25 932 Logística 5 Aiuaba 11 029 11 290 11 955 12 252 Logística 6 Alcântaras 6 699 6 786 7 182 7 323 Logística 7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logística 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracati 22 265 22 080 24 307 25 124 Logística </td <td>2</td> <td>Acarape</td> <td>4 641</td> <td>5 902</td> <td>6 877</td> <td>7 356</td> <td>Logarítmica</td>	2	Acarape	4 641	5 902	6 877	7 356	Logarítmica
5 Aiuaba 11 029 11 290 11 955 12 252 Logística 6 Alcántaras 6 699 6 786 7 182 7 323 Logística 7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiraz 6 118 5 787 7 571 5 545 Logástica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Arariendá 6 769 5 933 5 786 5 585 Logística <td>3</td> <td>Acaraú</td> <td>24 071</td> <td>24 386</td> <td>24 988</td> <td>29 309</td> <td>Logarítmica</td>	3	Acaraú	24 071	24 386	24 988	29 309	Logarítmica
6 Alcântaras 6 699 6 786 7 182 7 323 Logística 7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiraré 6 118 5 787 7 593 8 153 Logártica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracati 22 265 22 008 24 307 25 124 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística	4	Acopiara	27 796	24 907	24 209	25 932	Logística
7 Altaneira 2 052 1 900 1 932 1 899 Logística 8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiraz 6 118 5 787 7 593 8 153 Logística 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística	5	Aiuaba	11 029	11 290	11 955	12 252	Logística
8 Alto Santo 9 041 9 947 11 645 8 318 Logística 9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuirac 6 180 7 7 087 7 593 8 153 Logástica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística	6	Alcântaras	6 699	6 786	7 182	7 323	Logística
9 Amontada 17 840 20 531 23 388 23 285 Logística 10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logástica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística	7	Altaneira	2 052	1 900	1 932	1 899	Logística
10 Antonina do Norte 1 983 2 080 2 104 1 985 Logística 11 Apuiarés 6 807 7 087 7 593 8 153 Logarítmica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística	8	Alto Santo	9 041	9 947	11 645	8 318	Logística
11 Apuiarés 6 807 7 087 7 593 8 153 Logarítmica 12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística	9	Amontada	17 840	20 531	23 388	23 285	Logística
12 Aquiraz 6 118 5 787 7 371 5 545 Logística 13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística	10	Antonina do Norte	1 983	2 080	2 104	1 985	Logística
13 Aracati 22 265 22 008 24 307 25 124 Logística 14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística <tr< td=""><td>11</td><td>Apuiarés</td><td>6 807</td><td>7 087</td><td>7 593</td><td>8 153</td><td>Logarítmica</td></tr<>	11	Apuiarés	6 807	7 087	7 593	8 153	Logarítmica
14 Aracoiaba 12 848 11 859 11 248 11 654 Logística 15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística <t< td=""><td>12</td><td>Aquiraz</td><td>6 118</td><td>5 787</td><td>7 371</td><td>5 545</td><td>Logística</td></t<>	12	Aquiraz	6 118	5 787	7 371	5 545	Logística
15 Ararendá 6 769 5 933 5 786 5 585 Logística 16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística	13	Aracati	22 265	22 008	24 307	25 124	Logística
16 Araripe 8 905 9 455 8 363 7 952 Logística 17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística	14	Aracoiaba	12 848	11 859	11 248	11 654	Logística
17 Aratuba 9 688 10 202 9 087 7 760 Logística 18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística	15	Ararendá	6 769	5 933	5 786	5 585	Logística
18 Arneiroz 5 387 5 392 4 730 3 771 Logística 19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logística <	16	Araripe	8 905	9 455	8 363	7 952	Logística
19 Assaré 11 159 11 454 11 499 10 493 Logística 20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logástica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística	17	Aratuba	9 688	10 202	9 087	7 760	Logística
20 Aurora 15 364 15 127 13 607 12 741 Logística 21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logástica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística </td <td>18</td> <td>Arneiroz</td> <td>5 387</td> <td>5 392</td> <td>4 730</td> <td>3 771</td> <td>Logística</td>	18	Arneiroz	5 387	5 392	4 730	3 771	Logística
21 Baixio 3 618 3 139 2 832 2 722 Logística 22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística	19	Assaré	11 159	11 454	11 499	10 493	Logística
22 Banabuiú 8 846 8 551 9 013 8 562 Logística 23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística	20	Aurora	15 364	15 127	13 607	12 741	Logística
23 Barbalha 15 679 16 362 16 253 17 301 Logística 24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logís	21	Baixio	3 618	3 139	2 832	2 722	Logística
24 Barreira 11 398 10 649 11 226 11 446 Logística 25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logíst	22	Banabuiú	8 846	8 551	9 013	8 562	Logística
25 Barro 9 465 9 141 8 667 8 354 Logística 26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logí	23	Barbalha	15 679	16 362	16 253	17 301	Logística
26 Barroquinha 6 125 4 825 5 095 4 706 Logística 27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	24	Barreira	11 398	10 649	11 226	11 446	Logística
27 Baturité 10 337 9 015 8 757 8 884 Logística 28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	25	Barro	9 465	9 141	8 667	8 354	Logística
28 Beberibe 27 789 22 646 26 274 27 700 Logarítmica 29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	26	Barroquinha	6 125	4 825	5 095	4 706	Logística
29 Bela Cruz 17 360 16 773 17 292 17 881 Logística 30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	27	Baturité	10 337	9 015	8 757	8 884	Logística
30 Boa Viagem 30 447 29 486 27 768 25 894 Logística 31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	28	Beberibe	27 789	22 646	26 274	27 700	Logarítmica
31 Brejo Santo 16 361 15 806 15 267 17 138 Logística 32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	29	Bela Cruz	17 360	16 773	17 292	17 881	Logística
32 Camocim 14 832 14 764 15 236 15 501 Logística 33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	30	Boa Viagem	30 447	29 486	27 768	25 894	Logística
33 Campos Sales 7 730 8 431 7 244 7 425 Logística 34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	31	Brejo Santo	16 361	15 806	15 267	17 138	Logística
34 Canindé 29 415 30 028 29 486 27 598 Logística 35 Capistrano 10 614 10 578 10 613 10 850 Logística	32	Camocim	14 832	14 764	15 236	15 501	Logística
35 Capistrano 10 614 10 578 10 613 10 850 Logística	33	Campos Sales	7 730	8 431	7 244	7 425	Logística
	34	Canindé	29 415	30 028	29 486	27 598	Logística
	35	Capistrano	10 614	10 578	10 613	10 850	Logística
36 Caridade 6 740 7 223 8 321 8 497 Logarítmica	36	Caridade	6 740	7 223	8 321	8 497	Logarítmica

N°	Município	Popula	Ajuste Definido			
		1996	2000	2007	2010	
37	Cariré	13 550	13 158	10 711	10 046	Logística
38	Caririaçu	14 701	15 115	14 528	12 362	Logística
39	Cariús	11 908	11 274	10 971	10 257	Logística
40	Carnaubal	8 324	8 305	8 384	8 786	Logística
41	Cascavel	7 444	9 676	9 985	9 985	Logística
42	Catarina	7 867	9 082	8 443	10 017	Logística
43	Catunda	5 540	5 218	5 378	4 557	Logística
44	Caucaia	20 411	24 391	31 691	35 221	Logarítmica
45	Cedro	11 094	10 561	10 127	9 368	Logística
46	Chaval	3 418	3 666	3 399	3 447	Logística
47	Choró	9 126	9 152	9 279	9 059	Logística
48	Chorozinho	6 998	9 238	7 637	7 489	Logística
49	Coreaú	8 843	8 718	9 059	7 731	Logística
50	Crateús	23 362	23 349	22 539	20 168	Logística
51	Crato	17 622	20 729	18 314	20 512	Logística
52	Croatá	9 428	8 766	10 245	8 031	Logística
53	Cruz	10 287	11 561	12 605	12 910	Logística
54	Dep. Irapuan Pinheiro	5 997	5 664	5 391	4 962	Logística
55	Ererê	4 344	4 040	3 636	3 382	Logística
56	Eusébio	-	-	-	-	-
57	Farias Brito	12 533	11 589	11 153	10 136	Logística
58	Forquilha	6 498	5 869	6 631	6 313	Logística
59	Fortaleza	-	-	-	-	-
60	Fortim	3 887	3 456	4 483	5 209	Logarítmica
61	Frecheirinha	5 062	5 373	5 728	5 355	Logística
62	General Sampaio	3 042	2 550	3 855	2 570	Logística
63	Graça	10 473	9 975	9 600	9 234	Logística
64	Granja	24 637	25 920	26 193	26 753	Logística
65	Granjeiro	3 884	4 061	3 619	3 259	Logística
66	Groaíras	3 182	3 153	2 957	3 152	Logística
67	Guaiúba	5 640	4 273	4 944	5 214	Logarítmica
68	Guaraciaba do Norte	19 996	20 211	19 455	20 372	Logística
69	Guaramiranga	3 841	3 384	1 920	1 669	Logística
70	Hidrolândia	8 858	8 565	8 031	8 271	Logística
71	Horizonte	10 331	5 668	6 203	4 138	Logística
72	Ibaretama	8 293	9 195	8 538	8 475	Logística
73	Ibiapina	13 577	13 926	13 401	13 065	Logística

N°	Município	Popula	Ajuste Definido			
		1996	2000	2007	2010	•
74	Ibicuitinga	4 974	5 048	5 398	5 593	Logística
75	Icapuí	10 652	11 390	12 608	12 605	Logística
76	Icó	34 931	36 474	34 445	34 993	Logística
77	Iguatu	23 434	23 249	22 512	21 868	Logística
78	Independência	14 183	14 997	14 580	14 100	Logística
79	Ipaporanga	8 333	8 044	7 757	7 207	Logística
80	Ipaumirim	5 458	5 340	4 952	4 876	Logística
81	Ipu	16 855	16 674	15 942	14 715	Logística
82	Ipueiras	21 428	22 444	19 797	19 504	Logística
83	Iracema	5 551	4 876	4 336	3 903	Logística
84	Irauçuba	7 969	8 687	8 559	7 981	Logística
85	Itaiçaba	2 714	2 907	3 444	3 037	Logística
86	Itaitinga	3 139	2 671	2 588	252	Logística
87	Itapagé	14 188	13 634	13 475	14 360	Logística
88	Itapipoca	38 552	45 888	47 041	49 156	Logística
89	Itapiúna	7 949	8 592	9 209	9 807	Logística
90	Itarema	16 491	20 446	20 346	21 533	Logística
91	Itatira	9 010	9 511	9 877	9 372	Logística
92	Jaguaretama	10 874	10 729	9 643	9 394	Logística
93	Jaguaribara	4 498	5 191	3 365	3 187	Logística
94	Jaguaribe	13 900	14 011	12 782	11 141	Logística
95	Jaguaruana	15 700	13 155	12 928	13 101	Logística
96	Jardim	18 884	19 056	17 943	17 694	Logística
97	Jati	3 957	4 249	2 871	3 171	Logística
98	Jijoca de Jericoacoara	8 089	8 655	10 827	11 446	Logarítmica
99	Juazeiro do Norte	9 019	9 906	12 107	9 811	Logística
100	Jucás	11 383	10 776	10 395	9 657	Logística
101	Lavras da Mangabeira	15 169	14 473	12 918	12 958	Logística
102	Limoeiro do Norte	18 780	21 407	23 101	23 781	Logística
103	Madalena	9 083	9 405	10 823	9 173	Logística
104	Maracanaú	572	562	-	1 422	Logarítmica
105	Maranguape	20 881	22 867	22 190	27 252	Logarítmica
106	Marco	9 044	8 740	9 070	9 268	Logística
107	Martinópole	1 834	2 115	2 338	2 207	Logística
108	Massapê	9 176	10 401	10 596	11 208	Logística
109	Mauriti	22 319	24 320	20 402	20 955	Logística

N°	Município	Popula	ıção Rural I	Ajuste Definido		
		1996	2000	2007	2010	
110	Meruoca	5 995	5 712	5 658	6 273	Logística
111	Milagres	14 210	15 668	15 847	14 760	Logística
112	Milhã	7 662	7 974	7 552	7 117	Logística
113	Miraíma	6 668	6 645	5 923	5 953	Logística
114	Missão Velha	17 361	19 801	19 073	18 855	Logística
115	Mombaça	24 697	25 163	25 671	23 874	Logística
116	Monsenhor Tabosa	8 568	8 521	7 786	7 343	Logística
117	Morada Nova	30 194	30 531	27 944	26 664	Logística
118	Moraújo	3 457	3 694	4 773	4 466	Logarítmica
119	Morrinhos	9 073	10 182	12 233	11 088	Logística
120	Mucambo	6 631	6 237	5 520	5 036	Logística
121	Mulungu	4 579	5 182	6 898	7 287	Logarítmica
122	Nova Olinda	6 004	5 684	5 224	4 560	Logística
123	Nova Russas	9 968	8 503	8 421	7 721	Logística
124	Novo Oriente	14 614	13 410	13 663	13 223	Logística
125	Ocara	14 543	15 212	16 228	16 402	Logística
126	Orós	6 589	6 223	5 706	5 366	Logística
127	Pacajus	8 904	9 769	10 542	11 163	Logística
128	Pacatuba	3 450	4 668	8 528	10 204	Logarítmica
129	Pacoti	8 113	7 120	6 607	6 862	Logística
130	Pacujá	2 568	2 377	2 250	2 263	Logística
131	Palhano	3 593	3 907	4 418	4 351	Logística
132	Palmácia	6 049	5 442	5 842	7 048	Logarítmica
133	Paracuru	9 667	10 868	11 015	11 047	Logística
134	Paraipaba	12 162	12 782	14 961	16 606	Logarítmica
135	Parambu	20 333	19 752	17 705	17 203	Logística
136	Paramoti	8 091	6 795	6 424	5 768	Logística
137	Pedra Branca	23 113	23 395	20 042	17 380	Logística
138	Penaforte	2 869	2 539	2 198	1 827	Logística
139	Pentecoste	10 526	13 388	13 358	14 006	Logística
140	Pereiro	9 112	10 116	9 773	10 324	Logística
141	Pindoretama	8 665	8 133	6 768	7 403	Logística
142	Piquet Carneiro	7 709	7 549	8 261	8 027	Logística
143	Pires Ferreira	8 272	5 830	6 425	6 862	Logarítmica
144	Poranga	5 647	4 602	4 100	4 203	Logística
145	Porteiras	11 187	11 178	9 699	8 872	Logística
146	Potengi	4 763	5 153	5 702	4 562	Logística
147	Potiretama	3 982	3 571	4 009	3 423	Logística

N°	Município	Popul	ação Rural I	IBGE	Ajuste Definido	
		1996	2000	2007	2010	· ·
148	Quiterianópoles	14 107	13 287	14 127	13 616	Logística
149	Quixadá	20 965	22 766	23 114	23 119	Logística
150	Quixelô	11 364	11 431	10 988	10 071	Logística
151	Quixeramobim	29 862	28 635	29 390	28 463	Logística
152	Quixeré	6 660	7 005	7 541	7 482	Logística
153	Redenção	10 667	12 206	10 912	11 281	Logística
154	Reriutaba	12 156	11 490	9 470	8 865	Logística
155	Russas	20 456	21 997	23 136	24 881	Logística
156	Saboeiro	9 415	8 428	7 916	7 297	Logística
157	Salitre	8 774	9 436	9 980	9 190	Logística
158	Santa Quitéria	15 157	23 020	22 608	20 503	Logística
159	Santana do Acaraú	8 941	13 744	14 260	14 574	Logística
160	Santana do Cariri	24 348	8 669	8 619	8 348	Logística
161	São Benedito	20 097	18 924	19 755	19 624	Logística
162	São G. do Amarante	12 593	13 531	15 171	15 353	Logística
163	S. João do Jaguaribe	5 721	5 906	5 235	4 731	Logística
164	São Luis do Curu	4 176	4 113	4 225	4 371	Logística
165	Senador Pompeu	10 686	11 543	10 424	10 763	Logística
166	Senador Sá	2 107	1 803	1 687	1 784	Logística
167	Sobral	22 682	20 768	26 534	21 923	Logística
168	Solonópole	9 295	9 186	9 211	8 559	Logística
169	Tabuleiro do Norte	12 073	11 246	10 926	10 398	Logística
170	Tamboril	16 627	13 572	12 226	11 249	Logística
171	Tarrafas	6 426	7 266	6 531	6 286	Logística
172	Tauá	26 133	25 227	24 833	23 457	Logística
173	Tejuçuoca	8 288	9 362	9 922	10 492	Logística
174	Tianguá	18 470	20 770	21 964	23 073	Logística
175	Trairi	31 034	30 114	33 442	32 638	Logística
176	Tururu	6 302	6 220	7 911	9 120	Logarítmica
177	Ubajara	15 005	14 605	15 374	16 437	Logística
178	Umari	4 469	3 895	3 722	3 627	Logística
179	Umirim	6 887	7 283	7 498	7 711	Logística
180	Uruburetama	5 116	5 274	6 197	5 076	Logística
181	Uruoca	4 858	5 358	5 730	5 212	Logística
182	Varjota	3 084	3 114	3 233	3 177	Logística
183	Várzea Alegre	16 117	15 576	15 743	14 538	Logística
184	Viçosa do Ceará	30 604	30 949	36 351	37 128	Logarítmica
	TOTAL	2 096 241	2 115 343	2 132 155	2 105 812	

APÊNDICE C – Projeção da População Urbana do Ceará por Município

N°	Município	Consolidação da População Urbana do Cea				
		2020	2030	2040	2050	
1	Abaiara	5 823	7 104	8 379	9 648	
2	Acarape	8 007	8 007	8 007	8 007	
3	Acaraú	28 434	28 434	28 434	28 434	
4	Acopiara	25 329	25 329	25 329	25 329	
5	Aiuaba	4 754	5 574	6 391	7 203	
6	Alcântaras	4 028	4 672	5 312	5 950	
7	Altaneira	5 980	7 064	8 142	9 214	
8	Alto Santo	10 819	13 470	16 108	18 733	
9	Amontada	19 526	23 372	27 200	31 008	
10	Antonina do Norte	5 163	5 163	5 163	5 163	
11	Apuiarés	5 818	5 864	5 875	5 878	
12	Aquiraz	84 389	107 303	136 440	136 440	
13	Aracati	44 888	44 889	44 889	44 889	
14	Aracoiaba	13 889	13 889	13 889	13 889	
15	Ararendá	6 100	7 153	8 200	9 242	
16	Araripe	16 297	19 375	22 437	25 485	
17	Aratuba	4 947	6 279	7 604	8 922	
18	Arneiroz	4 790	6 098	7 399	8 694	
19	Assaré	14 024	16 500	18 963	21 414	
20	Aurora	13 398	15 125	16 844	18 555	
21	Baixio	3 835	4 444	5 049	5 651	
22	Banabuiú	8 792	8 792	8 792	8 792	
23	Barbalha	44 130	50 959	57 754	64 516	
24	Barreira	10 319	13 290	17 117	17 117	
25	Barro	15 011	17 081	19 140	21 189	
26	Barroquinha	9 771	9 771	9 771	9 771	
27	Baturité	27 871	31 451	35 013	38 558	
28	Beberibe	21 792	21 792	21 792	21 792	
29	Bela Cruz	13 367	13 368	13 368	13 368	
30	Boa Viagem	33 921	40 618	47 282	53 913	
31	Brejo Santo	33 313	39 197	45 051	50 877	
32	Camocim	44 980	44 980	44 980	44 980	
33	Campos Sales	19 461	19 461	19 461	19 461	
34	Canindé	54 270	61 691	69 076	76 425	
35	Capistrano	7 048	7 944	8 836	9 723	
36	Caridade	13 990	16 857	19 709	22 547	
37	Cariré	11 146	13 863	16 567	19 258	

N°	Município	Consolida	ação da Popu	lação Urbana	do Ceará
		2020	2030	2040	2050
38	Caririaçu	16 908	20 240	23 555	26 854
39	Cariús	10 064	11 772	13 471	15 163
40	Carnaubal	8 077	8 077	8 077	8 077
41	Cascavel	69 048	83 984	102 150	102 150
42	Catarina	12 060	14 998	17 921	20 830
43	Catunda	6 887	8 297	9 701	11 097
44	Caucaia	413 149	566 085	566 085	566 085
45	Cedro	15 388	15 388	15 388	15 388
46	Chaval	9 339	9 339	9 339	9 339
47	Choró	4 845	5 869	6 888	7 901
48	Chorozinho	12 952	14 620	16 280	17 931
49	Coreaú	16 167	18 672	21 164	23 645
50	Crateús	53 810	53 811	53 811	53 811
51	Crato	115 002	130 472	145 867	161 186
52	Croatá	9 826	11 235	12 637	14 032
53	Cruz	11 380	12 976	14 564	16 144
54	Dep. Irapuan Pinheiro	5 705	7 233	8 754	10 267
55	Ererê	4 789	6 027	7 260	8 486
56	Eusébio	63 388	90 313	128 674	128 674
57	Farias Brito	9 874	9 894	9 896	9 896
58	Forquilha	18 706	22 275	25 827	29 361
59	Fortaleza	2 945 489	3 470 228	3 470 228	3 470 228
60	Fortim	9 608	9 608	9 608	9 608
61	Frecheirinha	8 793	10 002	11 205	12 402
62	General Sampaio	4 532	5 671	6 804	7 931
63	Graça	7 325	8 666	10 001	11 330
64	Granja	25 959	25 959	25 959	25 959
65	Granjeiro	1 379	1 379	1 379	1 379
66	Groaíras	8 324	9 652	10 974	12 289
67	Guaiúba	23 914	28 699	33 460	38 199
68	Guaraciaba do Norte	21 767	25 561	29 337	33 094
69	Guaramiranga	2 507	2 507	2 507	2 507
70	Hidrolândia	13 216	15 312	17 396	19 471
71	Horizonte	122 819	279 678	279 678	279 678
72	Ibaretama	5 844	7 150	8 449	9 742
73	Ibiapina	12 934	15 268	17 590	19 901
74	Ibicuitinga	7 249	8 637	10 017	11 391

N°	Município	Consolida	ıção da Popul	lação Urbana	do Ceará
	•	2020	2030	2040	2050
75	Icapuí	6 412	7 095	7 774	8 451
76	Icó	35 266	40 060	44 831	49 579
77	Iguatu	87 866	101 195	114 459	127 657
78	Independência	11 815	11 816	11 816	11 816
79	Ipaporanga	4 981	5 917	6 848	7 775
80	Ipaumirim	8 158	9 223	10 283	11 338
81	Ipu	26 576	26 577	26 577	26 577
82	Ipueiras	21 771	24 799	27 812	30 809
83	Iracema	11 620	13 171	14 714	16 250
84	Irauçuba	18 181	21 905	25 611	29 298
85	Itaiçaba	4 722	5 219	5 714	6 206
86	Itaitinga	44 265	58 215	76 562	76 562
87	Itapagé	41 454	48 712	55 935	63 122
88	Itapipoca	83 920	101 459	118 913	136 281
89	Itapiúna	8 890	8 890	8 890	8 890
90	Itarema	23 510	35 192	35 192	35 192
91	Itatira	11 909	14 703	17 483	20 249
92	Jaguaretama	9 991	11 408	12 818	14 220
93	Jaguaribara	10 095	13 027	15 946	18 849
94	Jaguaribe	23 460	23 460	23 460	23 460
95	Jaguaruana	23 551	27 668	31 766	35 843
96	Jardim	10 597	12 376	14 146	15 907
97	Jati	5 947	7 293	8 633	9 966
98	Jijoca de Jericoacoara	8 113	10 659	13 193	15 715
99	Juazeiro do Norte	283 853	325 776	367 494	409 007
100	Jucás	16 870	19 781	22 677	25 559
101	Lavras da Mangabeira	24 446	27 041	28 932	30 233
102	Limoeiro do Norte	36 100	40 132	44 144	48 137
103	Madalena	10 514	12 972	15 419	17 853
104	Maracanaú	249 745	298 772	357 423	357 423
105	Maranguape	104 632	123 153	141 583	159 923
106	Marco	19 515	23 587	27 639	31 672
107	Martinópole	10 127	11 990	13 844	15 688
108	Massapê	29 494	34 797	40 073	45 324
109	Mauriti	28 073	33 052	38 006	42 936
110	Meruoca	9 003	10 738	12 464	14 181

N°	Município	Consolida	ação da Popul	ação Urbana	do Ceará
		2020	2030	2040	2050
111	Milagres	15 103	17 196	19 279	21 353
112	Milhã	7 714	9 023	10 325	11 621
113	Miraíma	8 919	10 985	13 040	15 085
114	Missão Velha	17 698	20 039	22 368	24 686
115	Mombaça	22 276	25 364	28 437	31 495
116	Monsenhor Tabosa	11 032	12 705	14 369	16 026
117	Morada Nova	36 455	36 458	36 458	36 458
118	Moraújo	3 676	3 750	3 825	3 901
119	Morrinhos	11 578	13 565	15 542	17 509
120	Mucambo	11 268	13 355	15 431	17 498
121	Mulungu	4 235	4 235	4 235	4 235
122	Nova Olinda	12 085	14 930	17 761	20 579
123	Nova Russas	23 773	23 773	23 773	23 773
124	Novo Oriente	14 300	14 300	14 300	14 300
125	Ocara	8 820	10 063	11 300	12 531
126	Orós	16 545	16 554	16 555	16 556
127	Pacajus	76 192	114 725	114 725	114 725
128	Pacatuba	77 445	92 750	107 979	123 134
129	Pacoti	6 118	7 389	8 652	9 910
130	Pacujá	3 723	3 723	3 723	3 723
131	Palhano	4 663	4 666	4 666	4 666
132	Palmácia	5 499	5 508	5 509	5 509
133	Paracuru	28 510	38 386	51 683	51 683
134	Paraipaba	18 610	24 410	32 018	32 018
135	Parambu	15 055	15 059	15 059	15 059
136	Paramoti	7 244	8 864	10 477	12 082
137	Pedra Branca	30 212	36 667	43 091	49 483
138	Penaforte	8 326	10 333	12 330	14 317
139	Pentecoste	22 133	22 136	22 136	22 136
140	Pereiro	5 554	5 832	6 077	6 289
141	Pindoretama	16 132	20 748	25 341	29 911
142	Piquet Carneiro	8 816	10 404	11 984	13 556
143	Pires Ferreira	4 093	4 828	5 560	6 288
144	Poranga	7 934	8 108	8 171	8 193
145	Porteiras	7 318	8 732	10 140	11 540
146	Potengi	6 309	7 498	8 680	9 857
147	Potiretama	3 262	3 831	4 398	4 962
148	Quiterianópoles	8 263	10 060	11 848	13 627

N°	Município	Consolida	ação da Popul	lação Urbana	do Ceará
		2020	2030	2040	2050
149	Quixadá	66 405	76 006	85 559	95 065
150	Quixelô	5 819	6 672	7 521	8 366
151	Quixeramobim	55 161	67 048	78 876	90 647
152	Quixeré	14 145	16 377	18 599	20 810
153	Redenção	18 140	20 888	23 622	26 343
154	Reriutaba	10 946	10 947	10 947	10 947
155	Russas	53 601	62 766	71 885	80 960
156	Saboeiro	8 460	8 460	8 460	8 460
157	Salitre	8 174	10 020	11 857	13 686
158	Santa Quitéria	30 420	37 677	44 899	52 086
159	Santana do Acaraú	21 151	26 329	31 481	36 608
160	Santana do Cariri	8 998	9 178	9 362	9 549
161	São Benedito	29 334	33 894	38 432	42 947
162	São G. do Amarante	35 293	44 706	56 631	56 631
163	São João do Jaguaribe	3 567	3 957	4 346	4 733
164	São Luis do Curu	7 979	7 979	7 979	7 979
165	Senador Pompeu	15 706	15 706	15 706	15 706
166	Senador Sá	6 168	7 326	8 478	9 625
167	Sobral	197 383	230 353	263 161	295 809
168	Solonópole	10 251	11 606	12 955	14 298
169	Tabuleiro do Norte	21 357	24 141	26 912	29 669
170	Tamboril	14 617	14 618	14 618	14 618
171	Tarrafas	3 295	4 028	4 758	5 485
172	Tauá	37 162	42 512	47 836	53 134
173	Tejuçuoca	8 299	10 458	12 606	14 744
174	Tianguá	56 112	66 177	76 191	86 157
175	Trairi	30 571	49 546	49 546	49 546
176	Tururu	5 288	5 288	5 288	5 288
177	Ubajara	18 104	20 952	23 786	26 607
178	Umari	3 921	3 921	3 921	3 921
179	Umirim	11 151	11 151	11 151	11 151
180	Uruburetama	17 377	20 399	23 407	26 401
181	Uruoca	9 419	11 106	12 785	14 455
182	Varjota	14 531	14 531	14 531	14 531
183	Várzea Alegre	28 574	33 369	38 141	42 889
184	Viçosa do Ceará	21 358	24 927	28 479	32 014
	TOTAL	7 679 009	9 209 575	9 876 695	10 341 551

APÊNDICE D – Projeção da População Rural do Ceará por Município

N°	Município	Consolida	ação da Popul	lação Rural d	o Rural do Ceará	
		2020	2030	2040	2050	
1	Abaiara	5 914	5 885	5 590	5 311	
2	Acarape	9 268	11 091	12 904	14 709	
3	Acaraú	30 821	33 863	36 890	39 903	
4	Acopiara	25 802	25 673	24 390	23 170	
5	Aiuaba	12 377	12 377	12 377	12 377	
6	Alcântaras	7 376	7 376	7 376	7 376	
7	Altaneira	1 890	1 880	1 871	1 861	
8	Alto Santo	8 276	8 235	8 194	8 153	
9	Amontada	24 386	27 094	29 678	32 077	
10	Antonina do Norte	1 975	1 965	1 955	1 946	
11	Apuiarés	8 922	9 818	10 710	11 597	
12	Aquiraz	5 517	5 490	5 462	5 435	
13	Aracati	25 596	25 597	25 597	25 597	
14	Aracoiaba	11 596	11 538	11 480	11 423	
15	Ararendá	5 557	5 529	5 502	5 474	
16	Araripe	7 912	7 873	7 833	7 794	
17	Aratuba	7 721	7 683	7 644	7 606	
18	Arneiroz	3 752	3 733	3 715	3 696	
19	Assaré	10 441	10 388	10 336	10 285	
20	Aurora	12 677	12 614	12 551	12 488	
21	Baixio	2 708	2 695	2 681	2 668	
22	Banabuiú	8 519	8 477	8 053	7 650	
23	Barbalha	17 214	17 128	16 272	15 458	
24	Barreira	11 389	11 332	10 765	10 227	
25	Barro	8 312	8 271	8 229	8 188	
26	Barroquinha	4 682	4 659	4 636	4 613	
27	Baturité	8 840	8 795	8 751	8 708	
28	Beberibe	27 516	28 354	29 188	30 018	
29	Bela Cruz	17 792	17 703	16 818	15 977	
30	Boa Viagem	25 765	25 636	25 508	25 380	
31	Brejo Santo	17 052	16 967	16 119	15 313	
32	Camocim	15 940	15 963	15 968	15 969	
33	Campos Sales	7 388	7 351	7 314	7 278	
34	Canindé	27 460	27 323	27 186	27 050	
35	Capistrano	10 796	10 742	10 205	9 694	
36	Caridade	9 900	11 207	12 508	13 802	

N°	Município	Consolida	ação da Popu	lação Rural d	lo Ceará
11		2020	2030	2040	2050
37	Cariré	9 996	9 946	9 896	9 847
38	Caririaçu	12 300	12 239	12 177	12 117
39	Cariús	10 206	10 155	10 104	10 053
40	Carnaubal	8 742	8 698	8 263	7 850
41	Cascavel	10 007	10 020	10 022	10 022
42	Catarina	10 313	10 883	11 259	11 499
43	Catunda	4 534	4 512	4 489	4 467
44	Caucaia	45 509	55 931	66 301	76 621
45	Cedro	9 321	9 275	9 228	9 182
46	Chaval	3 430	3 413	3 396	3 379
47	Choró	9 014	8 969	8 924	8 879
48	Chorozinho	7 452	7 414	7 377	7 340
49	Coreaú	7 692	7 654	7 616	7 578
50	Crateús	20 067	19 967	19 867	19 768
51	Crato	20 409	20 307	20 206	20 105
52	Croatá	7 991	7 951	7 911	7 872
53	Cruz	12 947	12 947	12 947	12 947
54	Dep. Irapuan Pinheiro	4 937	4 913	4 888	4 864
55	Ererê	3 365	3 348	3 332	3 315
56	Eusébio	-	-	-	-
57	Farias Brito	10 085	10 035	9 985	9 935
58	Forquilha	6 281	6 250	5 938	5 641
59	Fortaleza	-	-	-	-
60	Fortim	5 965	6 977	7 983	8 985
61	Frecheirinha	5 328	5 302	5 275	5 249
62	General Sampaio	2 557	2 544	2 417	2 296
63	Graça	9 188	9 142	9 096	9 051
64	Granja	27 039	27 040	27 040	27 040
65	Granjeiro	3 243	3 226	3 210	3 194
66	Groaíras	3 136	3 121	3 105	3 089
67	Guaiúba	4 875	4 790	4 706	4 622
68	Guaraciaba do Norte	20 424	20 531	20 610	20 668
69	Guaramiranga	1 661	1 652	1 644	1 636
70	Hidrolândia	8 230	8 188	8 148	8 107
71	Horizonte	4 117	4 097	4 076	4 056
72	Ibaretama	8 433	8 390	8 349	8 307
73	Ibiapina	13 000	12 935	12 870	12 806

N°	Município	Consolidação da População Rural do Ce				
		2020	2030	2040	2050	
74	Ibicuitinga	5 736	5 736	5 736	5 736	
75	Icapuí	12 542	12 479	11 855	11 263	
76	Icó	34 818	34 644	34 471	34 298	
77	Iguatu	21 759	21 650	21 542	21 434	
78	Independência	14 030	13 959	13 890	13 820	
79	Ipaporanga	7 171	7 135	7 099	7 064	
80	Ipaumirim	4 852	4 827	4 803	4 779	
81	Ipu	14 641	14 568	14 495	14 423	
82	Ipueiras	19 406	19 309	19 213	19 117	
83	Iracema	3 883	3 864	3 845	3 826	
84	Irauçuba	7 941	7 901	7 862	7 823	
85	Itaiçaba	3 075	3 145	3 189	3 216	
86	Itaitinga	251	249	248	247	
87	Itapagé	14 288	14 217	13 506	12 831	
88	Itapipoca	49 699	49 699	49 699	49 699	
89	Itapiúna	10 221	10 222	10 222	10 222	
90	Itarema	21 928	21 928	21 928	21 928	
91	Itatira	9 325	9 279	9 232	9 186	
92	Jaguaretama	9 347	9 300	9 254	9 208	
93	Jaguaribara	3 171	3 155	3 139	3 124	
94	Jaguaribe	11 085	11 030	10 975	10 920	
95	Jaguaruana	13 035	12 970	12 905	12 841	
96	Jardim	17 606	17 518	17 430	17 343	
97	Jati	3 155	3 139	3 124	3 108	
98	Jijoca de Jericoacoara	13 980	16 485	18 978	21 458	
99	Juazeiro do Norte	9 762	9 713	9 665	9 616	
100	Jucás	9 609	9 561	9 513	9 465	
101	Lavras da Mangabeira	12 893	12 829	12 765	12 701	
102	Limoeiro do Norte	23 881	23 881	23 881	23 881	
103	Madalena	9 127	9 081	9 036	8 991	
104	Maracanaú	1 131	1 423	1 713	2 002	
105	Maranguape	28 931	32 271	35 595	38 902	
106	Marco	9 222	9 176	8 717	8 281	
107	Martinópole	2 222	2 237	2 242	2 243	
108	Massapê	11 572	11 572	11 572	11 572	
109	Mauriti	20 850	20 746	20 642	20 539	

N°	Município	Consolida	ação da Popu	lação Rural d	lo Ceará
		2020	2030	2040	2050
110	Meruoca	6 242	6 210	5 900	5 605
111	Milagres	14 686	14 613	14 540	14 467
112	Milhã	7 081	7 046	7 011	6 976
113	Miraíma	5 923	5 894	5 864	5 835
114	Missão Velha	18 761	18 667	18 574	18 481
115	Mombaça	23 755	23 636	23 518	23 400
116	Monsenhor Tabosa	7 306	7 270	7 233	7 197
117	Morada Nova	26 531	26 398	26 266	26 135
118	Moraújo	5 590	6 474	7 354	8 230
119	Morrinhos	11 392	12 017	12 475	12 801
120	Mucambo	5 011	4 986	4 961	4 936
121	Mulungu	9 387	11 403	13 409	15 405
122	Nova Olinda	4 537	4 515	4 492	4 469
123	Nova Russas	7 682	7 644	7 606	7 568
124	Novo Oriente	13 157	13 091	13 026	12 961
125	Ocara	16 420	16 420	16 420	16 420
126	Orós	5 339	5 312	5 286	5 259
127	Pacajus	11 455	11 456	11 456	11 456
128	Pacatuba	14 960	19 848	24 713	29 554
129	Pacoti	6 828	6 794	6 760	6 726
130	Pacujá	2 252	2 240	2 229	2 218
131	Palhano	4 329	4 308	4 092	3 888
132	Palmácia	7 173	7 813	8 448	9 081
133	Paracuru	11 048	11 048	11 048	11 048
134	Paraipaba	19 357	22 458	25 543	28 612
135	Parambu	17 117	17 031	16 946	16 862
136	Paramoti	5 739	5 710	5 682	5 654
137	Pedra Branca	17 293	17 207	17 121	17 035
138	Penaforte	1 818	1 809	1 800	1 791
139	Pentecoste	14 149	14 149	14 149	14 149
140	Pereiro	11 895	12 117	12 200	12 229
141	Pindoretama	7 366	7 329	7 293	7 256
142	Piquet Carneiro	7 987	7 947	7 550	7 172
143	Pires Ferreira	5 689	5 002	4 319	3 639
144	Poranga	4 182	4 161	4 140	4 120
145	Porteiras	8 828	8 784	8 740	8 696
146	Potengi	4 539	4 516	4 494	4 471
147	Potiretama	3 406	3 389	3 372	3 355

N°	Município	Consolid	ação da Popu	lação Rural d	lo Ceará
		2020	2030	2040	2050
148	Quiterianópoles	13 548	13 480	12 806	12 166
149	Quixadá	23 119	23 119	23 119	23 119
150	Quixelô	10 021	9 971	9 921	9 871
151	Quixeramobim	28 321	28 179	28 038	27 898
152	Quixeré	7 445	7 407	7 037	6 685
153	Redenção	11 225	11 168	11 113	11 057
154	Reriutaba	8 821	8 777	8 733	8 689
155	Russas	27 188	27 241	27 248	27 248
156	Saboeiro	7 261	7 224	7 188	7 152
157	Salitre	9 144	9 098	9 053	9 008
158	Santa Quitéria	20 400	20 298	20 197	20 096
159	Santana do Acaraú	14 586	14 586	14 586	14 586
160	Santana do Cariri	8 306	8 265	8 223	8 182
161	São Benedito	19 526	19 428	18 457	17 534
162	São G. do Amarante	15 364	15 364	15 364	15 364
163	S. João do Jaguaribe	4 707	4 684	4 660	4 637
164	São Luis do Curu	4 349	4 327	4 111	3 905
165	Senador Pompeu	10 709	10 656	10 602	10 549
166	Senador Sá	1 775	1 766	1 757	1 749
167	Sobral	21 813	21 704	20 619	19 588
168	Solonópole	8 516	8 474	8 431	8 389
169	Tabuleiro do Norte	10 346	10 294	10 243	10 192
170	Tamboril	11 193	11 137	11 081	11 026
171	Tarrafas	6 255	6 223	6 192	6 161
172	Tauá	23 340	23 223	23 107	22 991
173	Tejuçuoca	10 726	10 726	10 726	10 726
174	Tianguá	23 477	23 477	23 477	23 477
175	Trairi	32 475	32 312	30 697	29 162
176	Tururu	10 829	12 869	14 899	16 919
177	Ubajara	16 355	16 273	15 459	14 686
178	Umari	3 609	3 591	3 573	3 555
179	Umirim	7 811	7 811	7 811	7 811
180	Uruburetama	5 051	5 025	5 000	4 975
181	Uruoca	5 186	5 160	5 134	5 109
182	Varjota	3 161	3 145	2 988	2 839
183	Várzea Alegre	14 465	14 393	14 321	14 249
184	Viçosa do Ceará	42 521	47 715	52 884	58 027
	TOTAL	2 146 139	2 187 266	2 213 769	2 240 289

APÊNDICE E – Projeção das Demandas Hídricas Populacionais Urbanas do Ceará por Município

N°	Município	Consolidação da Demanda Urbana do Ceará (m³/dia)				
		2020	2030	2040	2050	
1	Abaiara	797,72	973,27	1147,96	1321,79	
2	Acarape	1097	1097	1097	1097	
3	Acaraú	4265,14	4265,14	4265,14	4265,14	
4	Acopiara	3799,38	3799,38	3799,38	3799,38	
5	Aiuaba	603,71	763,67	875,55	986,88	
6	Alcântaras	511,5	593,28	727,78	815,14	
7	Altaneira	819,32	967,73	1115,41	1262,37	
8	Alto Santo	1482,22	1845,42	2206,83	2566,48	
9	Amontada	2675,1	3505,86	4079,94	4651,22	
10	Antonina do Norte	707,37	707,39	707,39	707,39	
11	Apuiarés	797,11	803,42	804,93	805,29	
12	Aquiraz	12658,4	21460,6	27288	27288	
13	Aracati	6733,26	6733,3	6733,3	6733,3	
14	Aracoiaba	1902,74	1902,74	1902,74	1902,74	
15	Ararendá	835,73	979,93	1123,41	1266,2	
16	Araripe	2232,65	2654,31	3365,58	3822,74	
17	Aratuba	628,3	860,2	1041,74	1222,38	
18	Arneiroz	608,38	835,42	1013,69	1191,08	
19	Assaré	1921,33	2260,46	2597,92	3212,12	
20	Aurora	1835,52	2072,18	2307,67	2542	
21	Baixio	487,11	564,35	691,7	774,2	
22	Banabuiú	1204,49	1204,49	1204,49	1204,49	
23	Barbalha	6619,5	7643,82	8663,12	9677,43	
24	Barreira	1413,7	1820,73	2345,03	2345,03	
25	Barro	2056,53	2340,03	2622,15	3178,34	
26	Barroquinha	1338,59	1338,59	1338,59	1338,59	
27	Baturité	4180,58	4717,58	5251,95	5783,71	
28	Beberibe	3268,73	3268,73	3268,73	3268,73	
29	Bela Cruz	1831,33	1831,39	1831,39	1831,39	
30	Boa Viagem	5088,2	6092,71	7092,29	8086,97	
31	Brejo Santo	4997,02	5879,5	6757,65	7631,5	
32	Camocim	6746,97	6746,97	6746,97	6746,97	
33	Campos Sales	2666,11	2666,16	2666,16	2666,16	
34	Canindé	8140,44	9253,66	10361,4	11463,7	
35	Capistrano	965,55	1088,33	1210,5	1332,08	

N°	Município	Consolidação da Demanda Urbana do Ceará (m³/dia)				
	•	2020	2030	2040	2050	
36	Caridade	1916,65	2309,34	2700,11	3382,08	
37	Cariré	1527,01	1899,28	2269,71	2638,34	
38	Caririaçu	2316,35	3035,94	3533,27	4028,17	
39	Cariús	1378,72	1612,73	1845,59	2077,31	
40	Carnaubal	1106,5	1106,5	1106,5	1106,5	
41	Cascavel	10357,2	12597,6	20430	20430	
42	Catarina	1652,27	2054,73	2455,21	3124,53	
43	Catunda	943,52	1136,73	1328,98	1520,3	
44	Caucaia	82629,8	113217	113217	113217	
45	Cedro	2108,11	2108,12	2108,12	2108,12	
46	Chaval	1279,44	1279,46	1279,46	1279,46	
47	Choró	615,35	804,05	943,62	1082,5	
48	Chorozinho	1774,4	2002,92	2230,31	2456,6	
49	Coreaú	2214,92	2558,07	3174,67	3546,7	
50	Crateús	8071,56	8071,64	8071,64	8071,64	
51	Crato	23000,3	26094,5	29173,4	32237,2	
52	Croatá	1346,14	1539,16	1731,22	1922,34	
53	Cruz	1559,12	1777,74	1995,29	2211,77	
54	Dep. Irapuan Pinheiro	781,53	990,9	1199,25	1406,58	
55	Ererê	608,19	825,75	994,59	1162,6	
56	Eusébio	9508,2	13547	25734,8	25734,8	
57	Farias Brito	1352,8	1355,49	1355,79	1355,82	
58	Forquilha	2562,68	3341,26	3874,03	4404,2	
59	Fortaleza	589098	694046	694046	694046	
60	Fortim	1316,31	1316,31	1316,31	1316,31	
61	Frecheirinha	1204,67	1370,31	1535,13	1699,14	
62	General Sampaio	575,6	776,89	932,09	1086,54	
63	Graça	1003,48	1187,28	1370,17	1552,17	
64	Granja	3893,84	3893,84	3893,84	3893,84	
65	Granjeiro	175,17	175,17	175,17	175,17	
66	Groaíras	1140,39	1322,35	1503,41	1683,59	
67	Guaiúba	3587,11	4304,85	5019,06	5729,78	
68	Guaraciaba do Norte	3265,03	3834,16	4400,5	4964,08	
69	Guaramiranga	318,42	318,42	318,42	318,42	
70	Hidrolândia	1810,65	2097,68	2383,31	2667,55	
71	Horizonte	24563,8	55935,6	55935,6	55935,6	
72	Ibaretama	800,67	979,55	1157,56	1334,69	
73	Ibiapina	1771,97	2091,7	2409,85	2726,45	

N°	Município	Consolidação da Demanda Urbana do Ceará (m³/dia)				
	•	2020	2030	2040	2050	
74	Ibicuitinga	993,11	1183,21	1372,37	1560,61	
75	Icapuí	878,46	972	1065,09	1157,72	
76	Icó	5289,88	6009,05	6724,69	7436,83	
77	Iguatu	13180	20239,1	22891,7	25531,5	
78	Independência	1618,71	1618,77	1618,77	1618,77	
79	Ipaporanga	632,55	810,57	938,16	1065,11	
80	Ipaumirim	1117,63	1263,57	1408,78	1553,29	
81	Ipu	3986,47	3986,58	3986,58	3986,58	
82	Ipueiras	3265,71	3719,84	4171,73	4621,41	
83	Iracema	1591,88	1804,4	2015,87	2226,31	
84	Irauçuba	2490,79	3285,76	3841,62	4394,77	
85	Itaiçaba	599,71	715,05	782,82	850,27	
86	Itaitinga	6639,75	8732,25	11484,3	11484,3	
87	Itapagé	6218,12	7306,87	8390,26	9468,36	
88	Itapipoca	12588	20291,9	23782,6	27256,2	
89	Itapiúna	1217,92	1217,92	1217,92	1217,92	
90	Itarema	3526,5	5278,8	5278,8	5278,8	
91	Itatira	1631,51	2014,26	2395,13	3037,37	
92	Jaguaretama	1368,83	1562,89	1756	1948,16	
93	Jaguaribara	1383,01	1784,76	2184,55	2582,37	
94	Jaguaribe	3519,04	3519,04	3519,04	3519,04	
95	Jaguaruana	3532,59	4150,24	4764,85	5376,46	
96	Jardim	1451,75	1695,45	1937,95	2179,26	
97	Jati	814,72	999,18	1182,74	1365,4	
98	Jijoca de Jericoacoara	1111,43	1460,31	1807,48	2152,95	
99	Juazeiro do Norte	56770,6	65155,3	73498,7	81801,3	
100	Jucás	2311,23	2709,96	3401,54	3833,85	
101	Lavras da Mangabeira	3666,92	4056,2	4339,79	4534,98	
102	Limoeiro do Norte	5414,97	6019,79	6621,63	7220,53	
103	Madalena	1440,41	1777,21	2112,37	2445,88	
104	Maracanaú	49949	59754,4	71484,6	71484,6	
105	Maranguape	20926,3	24630,5	28316,5	31984,5	
106	Marco	2673,53	3538,06	4145,89	4750,75	
107	Martinópole	1387,43	1642,65	1896,61	2149,32	
108	Massapê	4424,09	5219,5	6010,99	6798,62	
109	Mauriti	4210,99	4957,79	5700,91	6440,41	
110	Meruoca	1233,47	1471,07	1707,5	1942,78	
111	Milagres	2069,05	2355,87	2641,29	3202,9	

	Município	Consolidação da Demanda Urbana do Ceará (m³/dia)				
	_	2020	2030	2040	2050	
112	Milhã	1056,86	1236,14	1414,54	1592,07	
113	Miraíma	1221,9	1504,89	1786,49	2066,71	
114	Missão Velha	2424,68	3005,88	3355,27	3702,95	
115	Mombaça	3341,43	3804,65	4265,6	4724,29	
116	Monsenhor Tabosa	1511,34	1740,52	1968,57	2195,5	
117	Morada Nova	5468,21	5468,68	5468,7	5468,7	
118	Moraújo	466,86	476,2	485,72	495,44	
119	Morrinhos	1586,15	1858,36	2129,23	2398,77	
120	Mucambo	1543,72	1829,62	2114,11	2397,21	
121	Mulungu	537,84	537,84	537,84	537,84	
122	Nova Olinda	1655,58	2045,4	2433,31	3086,85	
123	Nova Russas	3565,88	3565,96	3565,96	3565,96	
124	Novo Oriente	1959,1	1959,1	1959,1	1959,1	
125	Ocara	1208,34	1378,63	1548,08	1716,7	
126	Orós	2266,61	2267,94	2268,09	2268,11	
127	Pacajus	11428,8	22945	22945	22945	
128	Pacatuba	11616,8	13912,5	21595,8	24626,8	
129	Pacoti	838,22	1012,23	1185,38	1357,69	
130	Pacujá	472,88	472,88	472,88	472,88	
131	Palhano	592,25	592,56	592,59	592,6	
132	Palmácia	753,36	754,58	754,7	754,71	
133	Paracuru	4276,5	5757,9	7752,45	7752,45	
134	Paraipaba	2549,57	3661,5	4802,7	4802,7	
135	Parambu	2062,5	2063,06	2063,08	2063,08	
136	Paramoti	992,4	1214,43	1435,36	1655,21	
137	Pedra Branca	4531,73	5500,05	6463,61	7422,45	
138	Penaforte	1140,67	1415,6	1689,18	1961,42	
139	Pentecoste	3319,92	3320,35	3320,37	3320,37	
140	Pereiro	760,85	798,98	832,5	861,54	
141	Pindoretama	2210,13	3112,19	3801,12	4486,69	
142	Piquet Carneiro	1207,84	1425,34	1641,76	1857,13	
143	Pires Ferreira	519,8	613,18	761,71	861,46	
144	Poranga	1086,89	1110,85	1119,43	1122,45	
145	Porteiras	1002,57	1196,33	1389,13	1580,99	
146	Potengi	864,37	1027,18	1189,19	1350,41	
147	Potiretama	414,21	486,54	558,52	630,14	
148	Quiterianópoles	1132,01	1378,17	1623,12	1866,88	
149	Quixadá	9960,78	11400,8	12833,8	14259,8	

N°	Município	Consolidação da Demanda Urbana do Ceará (m³/dia)				
		2020	2030	2040	2050	
150	Quixelô	797,15	914,04	1030,37	1146,12	
151	Quixeramobim	8274,13	10057,2	11831,4	13597	
152	Quixeré	1937,8	2243,69	2548,08	3121,51	
153	Redenção	2485,13	3133,15	3543,32	3951,49	
154	Reriutaba	1499,66	1499,69	1499,69	1499,69	
155	Russas	8040,22	9414,87	10782,8	12144	
156	Saboeiro	1158,99	1158,99	1158,99	1158,99	
157	Salitre	1119,83	1372,77	1624,46	1874,92	
158	Santa Quitéria	4562,95	5651,59	6734,88	7812,87	
159	Santana do Acaraú	3172,65	3949,32	4722,17	5491,24	
160	Santana do Cariri	1232,79	1257,44	1282,59	1308,24	
161	São Benedito	4400,07	5084,09	5764,74	6442,07	
162	São G. do Amarante	5293,95	6705,9	8494,65	8494,65	
163	São João do Jaguaribe	452,97	502,6	551,98	601,12	
164	São Luis do Curu	1093,08	1093,08	1093,08	1093,08	
165	Senador Pompeu	2151,77	2151,78	2151,78	2151,78	
166	Senador Sá	845,08	1003,68	1161,5	1318,56	
167	Sobral	39476,6	46070,6	52632,2	59161,7	
168	Solonópole	1404,33	1590,07	1774,89	1958,82	
169	Tabuleiro do Norte	3203,57	3621,2	4036,77	4450,31	
170	Tamboril	2002,59	2002,62	2002,62	2002,62	
171	Tarrafas	418,41	511,58	604,3	751,41	
172	Tauá	5574,28	6376,83	7175,44	7970,14	
173	Tejuçuoca	1136,99	1432,74	1727,04	2019,9	
174	Tianguá	8416,85	9926,49	11428,7	12923,6	
175	Trairi	4585,65	7431,9	7431,9	7431,9	
176	Tururu	724,47	724,47	724,47	724,47	
177	Ubajara	2480,19	3142,8	3567,97	3991,06	
178	Umari	497,93	497,93	497,93	497,93	
179	Umirim	1527,71	1527,71	1527,71	1527,71	
180	Uruburetama	2380,58	3059,9	3511,09	3960,08	
181	Uruoca	1290,38	1521,5	1751,49	1980,35	
182	Varjota	1990,69	1990,69	1990,69	1990,69	
183	Várzea Alegre	4286,14	5005,39	5721,11	6433,33	
184	Viçosa do Ceará	3203,63	3739,09	4271,91	4802,13	
	TOTAL	1.356.847	1.658.583	1.786.279	1.864.448	

APÊNDICE F – Projeção das Demandas Hídricas Populacionais Rurais do Ceará por Município

N°	Município	Consolidação da Demanda l do Ceará (m³/dia)				
		2020	2030	2040	2050	
1	Abaiara	591,43	588,47	559,05	531,09	
2	Acarape	926,83	1109,08	1290,43	1470,89	
3	Acaraú	3082,05	3386,27	3689	3990,25	
4	Acopiara	2580,23	2567,33	2438,97	2317,02	
5	Aiuaba	1237,67	1237,68	1237,68	1237,68	
6	Alcântaras	737,57	737,58	737,58	737,58	
7	Altaneira	188,95	188,01	187,07	186,13	
8	Alto Santo	827,64	823,5	819,39	815,29	
9	Amontada	2438,63	2709,41	2967,8	3207,66	
10	Antonina do Norte	197,51	196,52	195,54	194,56	
11	Apuiarés	892,18	981,8	1070,98	1159,72	
12	Aquiraz	551,73	548,97	546,22	543,49	
13	Aracati	2559,57	2559,66	2559,66	2559,66	
14	Aracoiaba	1159,57	1153,78	1148,01	1142,27	
15	Ararendá	555,71	552,93	550,16	547,41	
16	Araripe	791,22	787,27	783,33	779,41	
17	Aratuba	772,12	768,26	764,42	760,6	
18	Arneiroz	375,21	373,34	371,47	369,61	
19	Assaré	1044,05	1038,83	1033,64	1028,47	
20	Aurora	1267,73	1261,39	1255,08	1248,81	
21	Baixio	270,84	269,48	268,14	266,8	
22	Banabuiú	851,92	847,66	805,28	765,01	
23	Barbalha	1721,45	1712,84	1627,2	1545,84	
24	Barreira	1138,88	1133,18	1076,52	1022,7	
25	Barro	831,22	827,07	822,93	818,82	
26	Barroquinha	468,25	465,91	463,58	461,26	
27	Baturité	883,96	879,54	875,14	870,76	
28	Beberibe	2751,59	2835,4	2918,79	3001,77	
29	Bela Cruz	1779,16	1770,26	1681,75	1597,66	
30	Boa Viagem	2576,45	2563,57	2550,75	2538	
31	Brejo Santo	1705,23	1696,7	1611,87	1531,28	
32	Camocim	1593,97	1596,29	1596,78	1596,89	
33	Campos Sales	738,79	735,09	731,42	727,76	
34	Canindé	2746	2732,27	2718,61	2705,02	
35	Capistrano	1079,58	1074,18	1020,47	969,44	

N°	Municípia	Consolidação da Demanda Rural do Ceará (m³/dia)				
IN °	Município	2020	2030	2040	2050	
36	Caridade	990	1120,7	1250,76	1380,18	
37	Cariré	999,58	994,58	989,61	984,66	
38	Caririaçu	1230,02	1223,87	1217,75	1211,66	
39	Cariús	1020,57	1015,47	1010,39	1005,34	
40	Carnaubal	874,21	869,84	826,34	785,03	
41	Cascavel	1000,7	1002,03	1002,17	1002,18	
42	Catarina	1031,29	1088,29	1125,89	1149,91	
43	Catunda	453,42	451,15	448,9	446,65	
44	Caucaia	4550,9	5593,07	6630,12	7662,09	
45	Cedro	932,12	927,46	922,82	918,2	
46	Chaval	342,98	341,26	339,56	337,86	
47	Choró	901,37	896,86	892,38	887,92	
48	Chorozinho	745,16	741,43	737,72	734,03	
49	Coreaú	769,23	765,39	761,56	757,75	
50	Crateús	2006,72	1996,68	1986,7	1976,77	
51	Crato	2040,94	2030,74	2020,59	2010,48	
52	Croatá	799,08	795,09	791,11	787,16	
53	Cruz	1294,67	1294,67	1294,67	1294,67	
54	Dep. Irapuan Pinheiro	493,72	491,25	488,79	486,35	
55	Ererê	336,51	334,83	333,15	331,49	
56	Eusébio	0	0	0	0	
57	Farias Brito	1008,53	1003,49	998,47	993,48	
58	Forquilha	628,14	625	593,75	564,07	
59	Fortaleza	0	0	0	0	
60	Fortim	596,52	697,67	798,33	898,5	
61	Frecheirinha	532,82	530,16	527,51	524,87	
62	General Sampaio	255,72	254,44	241,71	229,63	
63	Graça	918,78	914,19	909,62	905,07	
64	Granja	2703,92	2703,96	2703,96	2703,96	
65	Granjeiro	324,27	322,65	321,04	319,43	
66	Groaíras	313,62	312,06	310,5	308,94	
67	Guaiúba	487,49	479,02	470,6	462,21	
68	Guaraciaba do Norte	2042,43	2053,08	2060,99	2066,84	
69	Guaramiranga	166,07	165,24	164,41	163,59	
70	Hidrolândia	822,96	818,85	814,76	810,68	
71	Horizonte	411,73	409,67	407,62	405,59	
72	Ibaretama	843,26	839,05	834,85	830,68	
73	Ibiapina	1299,97	1293,47	1287	1280,57	

N°	Município	Consolidação da Demanda Rural do Ceará (m³/dia)			
11	Municipio	2020	2030	2040	2050
74	Ibicuitinga	573,57	573,64	573,64	573,64
75	Icapuí	1254,2	1247,93	1185,53	1126,25
76	Icó	3481,8	3464,39	3447,07	3429,84
77	Iguatu	2175,87	2164,99	2154,16	2143,39
78	Independência	1402,95	1395,94	1388,96	1382,01
79	Ipaporanga	717,1	713,51	709,94	706,39
80	Ipaumirim	485,16	482,74	480,32	477,92
81	Ipu	1464,14	1456,82	1449,54	1442,29
82	Ipueiras	1940,65	1930,94	1921,29	1911,68
83	Iracema	388,35	386,41	384,47	382,55
84	Irauçuba	794,11	790,14	786,19	782,26
85	Itaiçaba	307,52	314,52	318,89	321,57
86	Itaitinga	25,07	24,95	24,82	24,7
87	Itapagé	1428,82	1421,68	1350,59	1283,06
88	Itapipoca	4969,86	4969,87	4969,87	4969,87
89	Itapiúna	1022,06	1022,19	1022,2	1022,2
90	Itarema	2192,77	2192,78	2192,78	2192,78
91	Itatira	932,51	927,85	923,21	918,6
92	Jaguaretama	934,7	930,03	925,38	920,75
93	Jaguaribara	317,11	315,52	313,94	312,37
94	Jaguaribe	1108,53	1102,99	1097,47	1091,98
95	Jaguaruana	1303,55	1297,03	1290,55	1284,09
96	Jardim	1760,55	1751,75	1742,99	1734,28
97	Jati	315,51	313,94	312,37	310,81
98	Jijoca de Jericoacoara	1397,99	1648,49	1897,76	2145,81
99	Juazeiro do Norte	976,19	971,31	966,46	961,62
100	Jucás	960,87	956,07	951,29	946,53
101	Lavras da Mangabeira	1289,32	1282,87	1276,46	1270,08
102	Limoeiro do Norte	2388,08	2388,08	2388,08	2388,08
103	Madalena	912,71	908,15	903,61	899,09
104	Maracanaú	113,1	142,26	171,28	200,16
105	Maranguape	2893,14	3227,12	3559,46	3890,17
106	Marco	922,17	917,56	871,68	828,09
107	Martinópole	222,17	223,75	224,18	224,3
108	Massapê	1157,17	1157,24	1157,24	1157,24
109	Mauriti	2085,02	2074,6	2064,22	2053,9
110	Meruoca	624,16	621,04	589,99	560,49
111	Milagres	1468,62	1461,28	1453,97	1446,7

310	Município	Consolidação da Demanda Rural do Ceará (m³/dia)				
N°			T .	· · · ·	2050	
110	N 4'11 ~	2020	2030	701.09	2050	
112	Milhã	708,14	704,6	701,08	697,57	
113	Miraíma	592,32	589,36	586,42	583,48	
114	Missão Velha	1876,07	1866,69	1857,36	1848,07	
115	Mombaça	2375,46	2363,59	2351,77	2340,01	
116	Monsenhor Tabosa	730,63	726,98	723,34	719,72	
117	Morada Nova	2653,07	2639,8	2626,6	2613,47	
118	Moraújo	558,97	647,43	735,45	823,04	
119	Morrinhos	1139,21	1201,73	1247,49	1280,08	
120	Mucambo	501,08	498,58	496,08	493,6	
121	Mulungu	938,7	1140,28	1340,86	1540,47	
122	Nova Olinda	453,72	451,45	449,19	446,95	
123	Nova Russas	768,24	764,4	760,58	756,77	
124	Novo Oriente	1315,69	1309,11	1302,56	1296,05	
125	Ocara	1641,97	1641,97	1641,97	1641,97	
126	Orós	533,92	531,25	528,59	525,95	
127	Pacajus	1145,53	1145,55	1145,55	1145,55	
128	Pacatuba	1495,95	1984,84	2471,32	2955,42	
129	Pacoti	682,77	679,36	675,96	672,58	
130	Pacujá	225,17	224,04	222,92	221,81	
131	Palhano	432,92	430,76	409,22	388,76	
132	Palmácia	717,34	781,25	844,85	908,13	
133	Paracuru	1104,77	1104,77	1104,77	1104,77	
134	Paraipaba	1935,75	2245,77	2554,26	2861,24	
135	Parambu	1711,7	1703,14	1694,62	1686,15	
136	Paramoti	573,92	571,05	568,19	565,35	
137	Pedra Branca	1729,31	1720,66	1712,06	1703,5	
138	Penaforte	181,79	180,88	179,97	179,07	
139	Pentecoste	1414,85	1414,85	1414,85	1414,85	
140	Pereiro	1189,49	1211,75	1219,96	1222,94	
141	Pindoretama	736,6	732,92	729,25	725,6	
142	Piquet Carneiro	798,69	794,69	754,96	717,21	
143	Pires Ferreira	568,89	500,23	431,9	363,91	
144	Poranga	418,2	416,11	414,03	411,96	
145	Porteiras	882,76	878,35	873,96	869,59	
146	Potengi	453,92	451,65	449,39	447,14	
147	Potiretama	340,59	338,89	337,19	335,51	
148	Quiterianópoles	1354,79	1348,02	1280,62	1216,59	
149	Quixadá	2311,9	2311,9	2311,9	2311,9	

N°	Município	Consolidação da Demanda Rural do Ceará (m³/dia)				
		2020	2030	2040	2050	
150	Quixelô	1002,06	997,05	992,07	987,11	
151	Quixeramobim	2832,07	2817,91	2803,82	2789,8	
152	Quixeré	744,46	740,74	703,7	668,51	
153	Redenção	1122,46	1116,85	1111,26	1105,71	
154	Reriutaba	882,07	877,66	873,27	868,9	
155	Russas	2718,77	2724,1	2724,77	2724,85	
156	Saboeiro	726,05	722,42	718,81	715,22	
157	Salitre	914,41	909,83	905,28	900,76	
158	Santa Quitéria	2040,05	2029,85	2019,7	2009,6	
159	Santana do Acaraú	1458,61	1458,61	1458,61	1458,61	
160	Santana do Cariri	830,63	826,47	822,34	818,23	
161	São Benedito	1952,59	1942,83	1845,68	1753,4	
162	São G. do Amarante	1536,43	1536,43	1536,43	1536,43	
163	São João do Jaguaribe	470,73	468,38	466,04	463,71	
164	São Luis do Curu	434,91	432,74	411,1	390,55	
165	Senador Pompeu	1070,92	1065,56	1060,24	1054,93	
166	Senador Sá	177,51	176,62	175,74	174,86	
167	Sobral	2181,34	2170,43	2061,91	1958,81	
168	Solonópole	851,62	847,36	843,13	838,91	
169	Tabuleiro do Norte	1034,6	1029,43	1024,28	1019,16	
170	Tamboril	1119,28	1113,68	1108,11	1102,57	
171	Tarrafas	625,46	622,33	619,22	616,12	
172	Tauá	2333,97	2322,3	2310,69	2299,14	
173	Tejuçuoca	1072,63	1072,64	1072,64	1072,64	
174	Tianguá	2347,67	2347,68	2347,68	2347,68	
175	Trairi	3247,48	3231,24	3069,68	2916,2	
176	Tururu	1082,94	1286,93	1489,92	1691,92	
177	Ubajara	1635,48	1627,3	1545,94	1468,64	
178	Umari	360,89	359,08	357,29	355,5	
179	Umirim	781,12	781,13	781,13	781,13	
180	Uruburetama	505,06	502,54	500,02	497,52	
181	Uruoca	518,59	516	513,42	510,85	
182	Varjota	316,11	314,53	298,8	283,86	
183	Várzea Alegre	1446,53	1439,3	1432,1	1424,94	
184	Viçosa do Ceará	4252,06	4771,5	5288,39	5802,75	
	TOTAL	214.614	218.727	221.377	224.029	

APÊNDICE G – Demandas Hídricas dos Projetos de Irrigação Implantados no Ceará

D 14	Demanda	Demanda	Demanda	Demanda William 2050
Projeto	Hídrica 2020 (m³/s)	Hídrica 2030 (m³/s)	Hídrica 2040 (m³/s)	Hídrica 2050 (m³/s)
Alagamar	0,17	0,17	0,17	0,17
Altinho	0,17	0,17	·	
Araras Norte - 1ª Etapa	0,88	<u> </u>	0,11	0,11
Baixo Acaraú - 1ª Etapa	4,63	0,88	0,88	0,88
Banabuiú	0,05	4,63	4,63	4,63
Cachoeirinha	0,03	0,05	0,05	0,05
Califórnia	· · · · · · · · · · · · · · · · · · ·	0,02	0,02	0,02
	0,04 2,97	0,04	0,04	0,04
Chapada do Apodi - 1 ^a e 2 ^a Etapas	<u> </u>	2,97	2,97	2,97
Choró-Limão	0,02	0,02	0,02	0,02
Curupati	0,29	0,29	0,29	0,29
Curu-Pentecoste	0,59	0,59	0,59	0,59
Curu-Paraipaba	3,46	3,46	3,46	3,46
Forquilha	0,12	0,12	0,12	0,12
Graça - 1ª Etapa	0,05	0,05	0,05	0,05
Jaburu II	0,05	0,05	0,05	0,05
Jaguaruana	0,11	0,11	0,11	0,11
Jaibaras	0,34	0,34	0,34	0,34
Jucás I e II	0,03	0,03	0,03	0,03
Icó-Lima Campos	1,49	1,49	1,49	1,49
Mandacarú	0,28	0,28	0,28	0,28
Morada Nova	2,06	2,06	2,06	2,06
Patu	0,04	0,04	0,04	0,04
Quixeré	0,11	0,11	0,11	0,11
Realejo	0,22	0,22	0,22	0,22
Senador Pompeu	0,09	0,09	0,09	0,09
St. Antonio de Russas - 1ª Etapa	0,10	0,10	0,10	0,10
Tabuleiro de Russas - 1ª Etapa	5,83	5,83	5,83	5,83
Tucunduba - 1ª Etapa	0,04	0,04	0,04	0,04
Várzea do Boi	0,18	0,18	0,18	0,18
Xique-Xique	0,07	0,07	0,07	0,07
Áreas do Baixo Curu	5,50	5,50	5,50	5,50
Áreas do Curu	1,65	1,65	1,65	1,65
Áreas do Médio Acaraú	1,65	1,65	1,65	1,65
Áreas do Médio Jaguaribe	2,20	2,20	2,20	2,20
Áreas do Rio Salgado	2,31	2,31	2,31	2,31
Várzeas do Iguatu	1,54	1,54	1,54	1,54
		,-	,-	,-

APÊNDICE H – Demandas Hídricas dos Projetos de Irrigação em Implantação no Ceará

Projeto	Demanda Hídrica 2020 (m³/s)	Demanda Hídrica 2030 (m³/s)	Demanda Hídrica 2040 (m³/s)	Demanda Hídrica 2050 (m³/s)
Araras Norte - 2ª Etapa	0,39	0,78	0,78	0,78
Baixo Acaraú - 2ª Etapa	1,21	2,43	2,43	2,43
Tabuleiro de Russas - 2ª Etapa	0,99	1,98	1,98	1,98

APÊNDICE I – Demandas Hídricas dos Projetos de Irrigação em Estudo no Ceará

Projeto	Demanda Hídrica 2020 (m³/s)	Demanda Hídrica 2030 (m³/s)	Demanda Hídrica 2040 (m³/s)	Demanda Hídrica 2050 (m³/s)
Arvoredo / Canto / Quirino	0,00	0,06	0,12	0,24
Áreas ao Longo do Canal do Trabalhador	0,00	0,55	1,10	2,20
Baixo Acaraú - 3ª Etapa	0,00	0,55	1,10	2,20
Camocim	0,00	0,12	0,24	0,47
Canaã	0,00	0,69	1,38	2,75
Carão	0,00	0,00	0,00	0,01
Cariri Oriental I e II	0,00	0,61	1,21	2,42
Chapada do Moura / Barro Alto / Gadelha	0,00	0,69	1,38	2,75
Chapada do Castanhão	0,00	1,38	2,75	5,50
Curu - 3ª Etapa	0,00	0,63	1,27	2,53
Frecheirinha	0,00	0,34	0,68	1,36
Graça - 2ª Etapa	0,00	0,06	0,11	0,22
Granja	0,00	0,40	0,80	1,60
Ibicuitinga	0,00	0,14	0,28	0,55
Lagoa Queimada / Várzea Redonda / Médio Acaraú	0,00	0,06	0,12	0,24
Mundaú	0,00	0,01	0,03	0,06
Nutrir	0,00	0,04	0,08	0,15
Parazinho	0,00	0,33	0,66	1,32
Pindoretama	0,00	0,28	0,55	1,10
Piquet Carneiro	0,00	0,02	0,03	0,06
Platôs do Poti - Áreas 1 e 2	0,00	0,48	0,96	1,93
Quixelô	0,00	0,06	0,12	0,23
Riacho do Sangue	0,00	0,04	0,08	0,15
Roldão	0,00	0,34	0,69	1,38
São Braz	0,00	0,69	1,38	2,75
St. Antonio de Russas - 2 ^a Etapa	0,00	0,15	0,30	0,60
Tabuleiros de Morada Nova	0,00	0,14	0,28	0,55
Tucundubá - 2ª Etapa	0,00	0,05	0,09	0,18
Val Paraíso	0,00	0,01	0,01	0,03
Xique-Xique - 2ª Etapa	0,00	0,07	0,14	0,28

APÊNDICE J – Demandas Hídricas de Irrigação Difusa no Ceará

Região Hidrográfica	Demanda Hídrica Ano 2000 (m³/s)	Demanda Hídrica Ano 2020 (m³/s)	Demanda Hídrica Ano 2030 (m³/s)	Demanda Hídrica Ano 2040 (m³/s)	Demanda Hídrica Ano 2050 (m³/s)
Alto Jaguaribe	0,40	0,57	0,62	0,67	0,70
Salgado	0,81	1,14	1,25	1,35	1,41
Médio Jaguaribe	1,60	2,24	2,46	2,65	2,78
Banabuiú	0,46	0,64	0,71	0,76	0,80
Baixo Jaguaribe	1,38	1,93	2,13	2,29	2,40
Bacias Metropolitanas	0,68	0,96	1,05	1,13	1,19
Acaraú	0,01	0,01	0,02	0,02	0,02
Coreaú	0,04	0,06	0,07	0,07	0,08
Parnaíba (Poti)	0,34	0,47	0,52	0,56	0,59
Curu	0,10	0,14	0,16	0,17	0,18
Bacias Litorâneas	0,02	0,03	0,03	0,03	0,04
Ceará	5,85	8,20	9,02	9,70	10,18

APÊNDICE K – Síntese das Demandas Hídricas Industriais Associadas ao CIPP

Setor	Categoria / Empreendimento	Área (ha)	Demanda Hídrica 2020 (L/s)	Demanda Hídrica 2030 (L/s)	Demanda Hídrica 2040 (L/s)	Demanda Hídrica 2050 (L/s)
	Companhia Siderúrgica do Pecém	1.255,00	1.500,00	1.500,00	1.500,00	1.500,00
	MPX	302,80	620,66	620,66	620,66	620,66
	MPX - 2 ^a Etapa	_	372,39	372,39	372,39	372,39
I	GENPOWER Termoelétrica	139,50	500,00	500,00	500,00	500,00
	Área Industrial Disponível I	106,60	319,80	319,80	319,80	319,80
	Área Industrial antiga USC	269,50	125,50	125,50	125,50	125,50
	Cimento Apodi	30,00	7,50	7,50	7,50	7,50
	Outras	-	1,38	1,38	1,38	1,38
II	Gás Butano	34,80	8,70	8,70	8,70	8,70
11	Área Industrial Disponível II	670,20	167,55	167,55	167,55	167,55
	Refinaria Petrobrás 1ª Etapa+TECÉM	(1.942+130)	0,00	1.389,00	1.389,00	1.389,00
Refinaria	WOBBEN	24,40	6,10	6,10	6,10	6,10
	Votorantim	10,30	2,63	2,63	2,63	2,63
III	UTE José de Alencar (Agroenergia do Norte)	-	138,89	138,89	138,89	138,89
	Área Industrial	2.301,00	575,25	575,25	575,25	575,25
IV	Zona de processamento de Exportação - ZPE 2	3.105,00	776,25	776,25	776,25	776,25
	Área Institucional	429,80	107,45	107,45	107,45	107,45
	ENDESA-CGTF	-	155,00	155,00	155,00	155,00
	Termoceará	-	89,00	89,00	89,00	89,00
	Termoceará - 2a Etapa	-	45,00	45,00	45,00	45,00
	Área Disponível Térmicas	(75+48)	369,00	369,00	369,00	369,00
T.,4.,	Terminal Intermodal de Cargas	260,26	65,00	65,00	65,00	65,00
Intermodal	Jota Dois	8,74	2,20	2,20	2,20	2,20
	Total	11.142,90	5.955,25	7.344,25	7.344,25	7.344,25

APÊNDICE L – Síntese das Demandas Hídricas Associadas aos Distritos Industriais

Distrito Industrial	Área		Deman	da (L/s)	
Distrito industriai	(ha)	2020	2030	2040	2050
D.I. de Barreira	7,0	1,75	3,49	3,49	3,49
D.I. de Cascavel	44,6	11,16	22,31	22,31	22,31
D.I. de Caucaia	213,1	53,26	106,53	106,53	106,53
D.I. de Horizonte	59,0	0,00	14,75	29,50	29,50
D.I. de Itaitinga	135,0	33,75	67,50	67,50	67,50
D.I. de Maracanaú I	1.013,0	506,50	506,50	506,50	506,50
D.I. de Maracanaú III	164,0	0,00	41,00	82,00	82,00
D.I. de Pacajus I	80,5	0,00	20,13	40,25	40,25
D.I. de Pacajus II	35,4	0,00	8,84	17,68	17,68
Total	1.751,5	606,41	791,04	875,76	875,76

APÊNDICE M – Síntese das Demandas Hídricas Associadas a Indústria Difusa

Manaladala	Demanda Industrial Difusa (L/s)					
Município	2020	2030	2040	2050		
Acaraú	5,04	6,45	7,86	9,13		
Acopiara	11,85	15,17	18,50	21,46		
Alto Santo	0,87	1,12	1,36	1,58		
Aquiraz	369,85	473,43	577,11	669,76		
Aracati	88,15	112,84	137,55	159,63		
Aracoiaba	3,44	4,40	5,36	6,22		
Aurora	8,79	11,26	13,72	15,93		
Banabuiú	1,61	2,06	2,51	2,91		
Barbalha	77,65	99,40	121,17	140,62		
Barreira	6,07	7,77	9,47	10,99		
Barro	3,25	4,17	5,08	5,89		
Bela Cruz	2,20	2,82	3,44	3,99		
Brejo Santo	5,43	6,95	8,47	9,83		
Camocim	29,11	37,26	45,42	52,71		
Cascavel	524,38	671,25	818,26	949,62		
Caucaia	1.234,73	1.580,55	1.926,69	2.236,00		
Cedro	9,57	12,26	14,94	17,34		
Chorozinho	6,49	8,30	10,12	11,75		
Coreaú	0,28	0,36	0,44	0,51		
Crato	59,86	76,63	93,41	108,41		
Eusébio	31,93	40,87	49,83	57,83		
Farias Brito	16,62	21,27	25,93	30,10		
Forquilha	19,14	24,50	29,86	34,66		
Fortaleza	2.689,22	3.442,43	4.196,30	4.869,97		
Frecheirinha	6,16	7,88	9,60	11,15		
Granja	0,39	0,50	0,61	0,71		
Guaiúba	15,45	19,77	24,11	27,98		
Guaraciaba do Norte	1,85	2,37	2,89	3,36		
Horizonte	118,14	151,23	184,35	213,95		
Ibiapina	0,46	0,58	0,71	0,83		
Icapuí	4,67	5,97	7,28	8,45		
Icó	15,47	19,81	24,15	28,02		
Iguatu	40,71	52,11	63,52	73,72		
Ipaumirim	5,74	7,35	8,96	10,40		
Ipu	2,84	3,63	4,42	5,14		
Ipueiras	0,11	0,14	0,17	0,19		
Iracema	2,14	2,74	3,34	3,88		
Itaiçaba	3,42	4,37	5,33	6,19		
Itaitinga	12,49	15,98	19,48	22,61		

Manionio	Demanda Industrial Difusa (L/s)					
Município	2020	2030	2040	2050		
Jaguaribara	3,02	3,87	4,71	5,47		
Jaguaribe	29,81	38,16	46,52	53,99		
Jaguaruana	50,60	64,77	78,95	91,63		
Jardim	2,47	3,16	3,85	4,47		
Jijoca de Jericoacoara	0,31	0,40	0,48	0,56		
Juazeiro do Norte	73,94	94,64	115,37	133,89		
Lavras da Mangabeira	7,89	10,10	12,31	14,29		
Limoeiro do Norte	19,92	25,50	31,09	36,08		
Maracanaú	695,99	890,92	1.086,03	1.260,38		
Maranguape	227,41	291,11	354,86	411,83		
Marco	18,29	23,41	28,54	33,12		
Milagres	0,30	0,38	0,46	0,54		
Missão Velha	4,07	5,22	6,36	7,38		
Morada Nova	27,93	35,75	43,58	50,57		
Morada Nova	27,93	35,75	43,58	50,57		
Morrinhos	0,28	0,36	0,44	0,51		
Nova Olinda	3,59	4,59	5,60	6,50		
Orós	13,84	17,72	21,60	25,07		
Pacajus	569,64	729,18	888,87	1.031,57		
Pacatuba	170,54	218,31	266,12	308,84		
Palhano	0,94	1,20	1,46	1,69		
Pindoretama	2,85	3,64	4,44	5,15		
Quixadá	44,46	56,91	69,38	80,51		
Quixelô	3,43	4,39	5,36	6,22		
Redenção	21,10	27,01	32,92	38,21		
Russas	34,89	44,66	54,44	63,18		
São Benedito	1,45	1,85	2,26	2,62		
São G. do Amarante	27,22	34,84	42,47	49,29		
São João do Jaguaribe	0,29	0,38	0,46	0,53		
Sobral	629,80	806,20	982,75	1.140,52		
Solonópole	0,09	0,11	0,13	0,16		
Tabuleiro do Norte	22,98	29,42	35,86	41,62		
Tianguá	6,01	7,69	9,37	10,87		
Ubajara	9,81	12,56	15,31	17,77		
Várzea Alegre	7,81	10,00	12,19	14,14		
Viçosa do Ceará	0,56	0,72	0,88 1,0			
Total	8.197,01	10.492,86	12.790,74	14.844,18		

APÊNDICE N – Demandas Associadas ao resort "Aquiraz Riviera Golf & Beach Villas", ao resort "Cumbuco Golfe Resort" e aos 5 resorts com características similares ao "Cumbuco Golfe Resort" na região de Itarema

Descrição das demandas do resort	Demanda (L/s)			
"Aquiraz Riviera Golf & Beach Villas"	2020	2030	2040	2050
Demanda do consumo humano	•	•	•	
Apartamentos	21,08	21,08	21,08	21,08
Hotéis	14,64	14,64	14,64	14,64
Loteamento	17,61	17,61	17,61	17,61
Equipamentos	3,17	3,17	3,17	3,17
Sub-total consumo humano	57,91	57,91	57,91	57,91
Irrigação e paisagismo	60,15	60,15	60,15	60,15
Demanda Total	118,06	118,06	118,06	118,06

Descrição das demandas do resort	Demanda (L/s)			
"Cumbuco Golf Resort"	2020	2030	2040	2050
Demanda do consumo humano				
Condomínios de casas	8,00	8,00	8,00	8,00
Condomínios de moradia	17,80	17,80	17,80	17,80
Condomínios de praia	32,20	32,20	32,20	32,20
Equipamentos	7,90	7,90	7,90	7,90
Sub-total consumo humano	67,55	67,55	67,55	67,55
Irrigação e paisagismo	90,23	90,23	90,23	90,23
Demanda Total	157,78	157,78	157,78	157,78

Descrição das demandas dos 5 resorts	Demanda (L/s)			
similares ao "Cumbuco Golf Resort"	2020	2030	2040	2050
Demanda do consumo humano				
Condomínios de casas	8,00	16,00	32,00	40,00
Condomínios de moradia	17,80	35,60	71,20	89,00
Condomínios de praia	32,20	64,40	128,80	161,00
Equipamentos	7,90	15,80	31,60	39,50
Sub-total consumo humano	67,55	135,10	270,19	337,74
Irrigação e paisagismo	90,23	180,46	360,92	451,15
Demanda Total	157,78	315,56	631,11	788,89