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Abstract

Signal processing applications in wireless communications may sometimes
take advantage of multilinear algebra concepts. This can be done by model-
ing the signals as high order tensors. From this context, tensor decompositions
such as the Parallel Factor analysis (PARAFAC), may be found useful. On the
other hand, cooperative communications and Multiple-Input Multiple-Output
(MIMO) systems are ways for granting better data rates, capacity, fading mit-
igation and coverage. Joining the signal processing capabilities of tensor alge-
bra, MIMO and cooperative communications can bring great benefits in wireless
communications systems. In this dissertation, two receivers are proposed for two
system models that are a multiuser DS-CDMA (Direct-Sequence Code-Division
Multiple-Access) uplink based on multirelay cooperative communications. The
two system models are almost the same, except that in one of them, multiuser
interference is considered at the relays. The Amplify-and-Forward (AF) protocol
is used on all the relays, thus exploiting cooperative diversity. For the received
signal of the first system model, a quadrilinear PARAFAC decomposition will
be adopted and by doing so, the proposed tensor-based semi-blind receiver can
jointly estimate the transmitted symbols, channel gains and spatial signatures
of all users by assuming previous knowledge of the users spreading codes and a
few transmitted symbols. For the second system model, multiuser interference is
considered at the relays, then, a receiver based on a trilinear PARAFAC decom-
position is proposed. The estimation of the second receiver is done in two phases
with the first phase being a supervised stage where non-orthogonal training se-
quences are sent by all users. During the second phase, the users’ data symbols
are then estimated. Both receivers use the Alternating Least Squares (ALS) al-
gorithm to fit the tensor models, assuming no channel state information (CSI) at
the base station neither at the relays. With computational simulations, we will
also provide performance evaluation of the proposed receivers for various cases

and system variations.
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Resumo

As aplicagoes de processamento de sinal em sistemas de comunicacoes sem
fio as vezes podem tirar proveito de conceitos de algebra multilinear. Isso pode
ser feito modelando os sinais como tensores de ordem elevada. Neste contexto, as
decomposicoes tensoriais, tais como a andlise de fatores paralelos (Parallel Facor
- PARAFAC), podem ser tteis. Por outro lado, as comunicagoes cooperativas
e a area de sistemas de multiplas-entradas e multiplas-saidas (Multiple-Input
Multiple-Ouput - MIMO) sdo uma maneira de se alcancar melhores taxas de
dados, capacidade, qualidade de transmissao e cobertura. Juntando-se as ca-
pacidades de processamento de sinal da &lgebra tensorial, dos sistemas MIMO e
das comunicacoes cooperativas, podemos obter grandes beneficios nos sistemas
de comunicagoes sem fio. Nesta dissertacao, dois receptores sao propostos para
dois modelos de sistema, que sao o enlace reverso de um sistema DS-CDMA
multiusuério baseado em comunicagoes cooperativas auxiliadas por miltiplos re-
transmissores. Os dois modelos de sistema sao quase iguais, exceto que em um
deles, a interferéncia de miltiplos usuérios é considerada nos retransmissores.
O protocolo Amplify-and-Forward (AF) é aplicado em cada retransmissor, ex-
plorando a diversidade cooperativa. Para o sinal recebido no primeiro modelo
de sistema, uma decomposicao tensorial PARAFAC quadrilinear serd adotada e,
ao fazé-lo, o receptor semi-cego proposto pode estimar conjuntamente os simbo-
los transmitidos, ganhos de canais e assinaturas espaciais de todos os usuérios,
assumindo o conhecimento prévio dos cddigos de espalhamento dos usuarios e
alguns simbolos transmitidos. Para o segundo modelo de sistema, interferéncia
multiusuario é considerada nos retransmissores dos usuérios, entao, um recep-
tor baseado em uma decomposicao PARAFAC trilinear é proposto. O segundo
receptor realiza as estimacoes em duas fases, sendo a primeira fase um estagio
supervisionado em que todos os usuarios enviam sequéncias de treinamento nao
ortogonais. Durante a segunda fase, os simbolos de dados dos usuarios sao en-

tao estimados. Ambos os receptores usam o algoritmo ALS (Alternating Least

X



Squares) para ajustar os modelos tensoriais, assumindo nenhuma informacao de
estado do canal (CSI - Channel State Information) na esta¢do base nem nos re-
transmissores. Com simulagoes computacionais, também forneceremos avaliagao

de desempenho dos receptores propostos para varios casos e variagoes do sistema.

Palavras-chave: receptor semi-cego, DS-CDMA, comunicagbes cooperativas,
modelos tensoriais, PARAFAC, alternating least squares, MIMO.
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Chapter 1
Introduction

The constant growth of telecommunications systems implies in constant re-
search and improvements of the associated technologies used. Further steps are
needed to enhance the efficiency of communication networks. From generation to
generation we have significant improvements that include better spectrum and
channel utilization, better noise protection, better signal-to-noise ratio (SNR),
higher transmission rates, and so on. In recent years, wireless communications
networks have come up with a new way of network transmission, where a source
has to rely on the help of other network nodes to transmit or relay information to
a given destination. This new decentralized topology has inspired new ideas for
the design of communications systems and networks where cooperation between
nodes and users can be used to improve system performance, resulting in a new
communication paradigm called cooperative communications [3]. Certainly this
means that we have to answer how the performance can be improved through
cooperative communications.

Cooperative diversity is a recent paradigm that provides better capacity, fad-
ing mitigation, spatial diversity and coverage at wireless networks [3], [4]. The
characteristics of cooperative communications systems have put the topic into
research interest lately. The idea behind it is making the network nodes help
each other, allowing improvements on the system performance without increas-
ing the power at the transmitter. Cooperative diversity is now an important part
of telecommunications research and is already into consideration to become a
standard in wireless systems, such as in IEEE 802.16, which supports relaying in
order to extend cell coverage [5].

There are some cooperative protocols available, like the amplify-and-forward
(AF) [6], the decode-and-forward (DF) 7], variations of these two protocols and



others [8], [3]. In means of simplicity, the AF protocol is quite a good choice
because the relay node just amplify the other users signals and forward it to the
destination. Latency and complexity are then keep small on this protocol making
it preferable when these factors are of importance on the system deployment.

Multiple-Input Multiple-Output (MIMO) systems, in turn, allow an improve-
ment in the throughput by taking advantage of spatial diversity. Basically, MIMO
is a method for multiplying the capacity of a radio link or to enhance the trans-
mission quality by using multiple transmit and receive antennas to exploit rich
multipath propagation [9]. MIMO systems can provide high spectral efficiencies
by capitalizing on spatial multiplexing [10, 11| while also improving reliability
of the link by using space-time coding [12], [13]. Space-time codes can improve
the reliability of data transmission by distributing coded data over multiple an-
tennas and multiple time-slots, thus, providing both coding gain and diversity
gain [14]. An example of space-time code is the Khatri-Rao space-time (KRST)
code, introduced in [15]. We will use an alternative version of KRST coding in a
variation of the system model of Chapter 3.

Cooperative communications and MIMO systems can provide many bene-
fits for telecommunications systems, as explained earlier. However, when users
share these benefits, multiple-access can be a problem. A possibility to solve
this problem is by adopting a multiple-access scheme. In this dissertation, we
use Direct-Sequence Code-Division Multiple-Access (DS-CDMA) to handle mul-
tiple users on the system. A DS-CDMA system turns multiple access possible by
means of spread spectrum modulation. In DS-CDMA systems, the transmitted
symbols are spread in frequency by multiplying the narrowband symbols to be
transmitted by a spreading sequence, or code. Hence, the users share the same
frequency band to communicate and each user is identified by a unique spreading
code [16]. At the receiver, the recovery of the users’ signals uses the same spread-
ing sequence for spreading at the transmitter, in order to perform correlation
detection [16]. CDMA may be used to be obtained secrecy, multiuser separation
and greater resistance to unintentional and intentional interference [17], [18]. It
is also possible to increase reliability or performance by using direct-sequence
spreading on the transmitted signals in order to reduce overall signal interfer-
ence. The integration of multiple antennas and CDMA technologies has also been
subject of several studies [19], [20]. The system models that we introduce in this
dissertation are valid for both KRST coding systems and for DS-CDMA systems.

On the other hand, the application of linear and multilinear algebraic prop-



erties in signal processing has been explored for some time [21]|, and, with the
expansion and development of communications systems, this field allowed new
techniques for information processing to be developed. Currently, the use of the-
ories of linear and multilinear algebra contributed to the development of areas
such as [22], [23], [24], [25]:

e Telecommunications;

Numerical analysis;

Data mining;

Signal processing;

Big Data;

Computer vision;

Multilinear filtering.

But what would be the motivation to develop new information processing tech-
niques based on multilinear algebra? More precisely, multilinear algebra allows
certain areas mentioned above, such as signal processing and telecommunications,
to cover a wide range of system models, e.g., MIMO, CDMA and cooperative
communications. An important concept of multilinear algebra used in this work
are tensor models. Tensors basically are a generalization of higher order arrays,
with its use already demonstrated in several areas, as seen in |22] and in [23].
An advantage of using tensors in comparison to matrix algebra is due to the fact
that tensors allows us the use of multidimensional data, which contrasts with two
dimensions data represented by matrices, thus allowing a better understanding
and processing for a multidimensional perspective.

Tensor representation of data signals open us possibilities to exploit tensor
decompositions. The use of tensor decompositions has gained attention in some
signal processing applications for wireless communication systems, as described
in [26]. More precisely, in some wireless communications systems, the fact that
the received signal is a third or fourth-order tensor means that each received
signal sample is associated with a three or four-dimensional space, and it is
represented by three or four indices, each index associated with a variation of
the received signal. On a multidimensional perspective, each dimension of the

received signal tensor can be interpreted as a particular form of diversity [1].



>
A

Time diversity
K

>
Spreading diversity

Figure 1.1: Representation of tridimensional data.

In most of the cases, two of these dimensions represent space and time. The
space dimension corresponds to the number of receive antennas and the time
dimension corresponds to the length of the data block to be processed. The third
and four dimensions of the fourth-order tensor depends on the system itself. Thus,
tensor decompositions provide the capacity of modeling wireless communications
systems with multivariate data, instead of only two dimensions, as common in
linear algebra. For instance, spatial diversity or spatial multiplexing can now be
a dimension of the processed data alongside time, spreading and others. Fig. 1.1
illustrates tridimensional data including time, spatial and spreading diversity in
one signal.

One of the motivations for using tensor models in wireless communications
systems comes from the fact that is possible to perform multiuser signal sepa-
ration and channel estimation under uniqueness conditions more relaxed than
conventional matrix-based approaches [1]. A very popular decomposition is the
Parallel Factor (PARAFAC) decomposition, proposed by Harshman [27] and Car-
oll & Chang [28] (Carroll & Chang’s work presented the same decomposition as
Canonical Decomposition). The PARAFAC has been used as a component anal-
ysis tool in many fields, for instance, psychometrics [28], chemometrics |29, 30],
speech processing |31], independent component analysis (ICA) in signal process-
ing [32], principal component analysis (PCA) and many others that are described
in [22]. The main motivation for using the PARAFAC decomposition comes from
its intrinsic uniqueness. In comparison to matrix decompositions, where we often
have the problem of rotational freedom, the PARARAC decomposition of high
order tensors is unique up to scaling and permutation ambiguity. This uniqueness

property makes the PARAFAC decomposition a good solution to blind equaliza-



tion, blind multiuser detection, blind separation and so on.

Starting from the work of Sidiropoulos et al. in [2], the use of tensor decompo-
sitions in wireless communications proved to be valid and effective. In the referred
work, the authors showed that a set of DS-CDMA signals received at an uniform
linear array of antennas can be viewed as a third-order tensor, also admitting
a PARAFAC decomposition. In [33], the PARAFAC decomposition was used in
multiple invariance sensor array processing. Similar PARAFAC decompositions
were proposed for Wideband CDMA, OFDMA (Orthogonal Frequency-Division
Multiple-Access) systems and spatial signatures estimation in [34], [35] and [36]
respectively. Other works on tensor decomposition includes generalization of ten-
sor models for wireless communications [37, 38] and blind channel identification
[39]. For the applications described above, the principal characteristic of tensor
decompositions in signal processing is the following. It does not require the use
of training sequences or pilot symbols, nor the knowledge of channel impulse re-
sponses and antenna array responses, with weak identifiability conditions. More-
over, the PARAFAC decomposition does not rely on statistical independence
between the transmitted signals. Instead, the receiver algorithms are purely de-
terministic and explore the multilinear algebraic structure of the received signal
(a high order tensor) [1].

The joint use of tensor decompositions and MIMO systems was proposed in
the literature, as for example in [15], where a space-time coding model with blind
detection was proposed for a multiple-antenna scheme. In [40], a tensor model
is proposed for a MIMO-CDMA system with multiuser spatial multiplexing. We
must note that MIMO systems influenced the development of constrained tensor
models, as, for instance, the work presented in [41]. In [42], a new constrained
tensor model called PARATUCK was proposed, providing a tensor space—time
coding for MIMO wireless communication systems. An overview of some of these
tensor models can be found in [43]. It is clear then that tensor models can be
well exploited on modeling multiple-antenna systems.

There are also examples of tensor models in wireless cooperative communica-
tions, as in [44], where a receiver was proposed for a two-way AF relaying system
with multiple antennas at the relay nodes adopting tensor based estimation. In
[45], a blind receiver for an AF relaying uplink scenario was proposed, with dif-
ferent time slots for each relay transmission, a trilinear tensor model adopted
and the destination node employing an antenna array. Based on [45], a unified

multiuser receiver with a trilinear tensor model was proposed in [46| for a uplink



multiuser cooperative diversity system with different relaying schemes. In [47],
receivers were based on a trilinear tensor model on a cooperative scenario ex-
ploiting spreading diversity at the relays and simultaneous transmission towards
the destination. There are also recent works as the one shown in [48], where a
two-hop MIMO relaying system was proposed adopting two tensor approaches
(PARAFAC and PARATUCK) at the same time, and in [49|, where a one-way
two-hop MIMO AF cooperative scheme was employed with a nested tensor ap-
proach called nested Tucker. In [50], we proposed a generalization of some works
mentioned (more specifically [45], [46] and [47]) using a fourth-order PARAFAC
model in a cooperative DS-CDMA system. The results of [50] showed that a com-
bination of four types of diversity in a PARAFAC decomposition proved to be
better than other works present in the literature. In [51], the authors considered
a three-hop one-way AF cooperative system and a semi-blind receiver based on
the PARATUCK-3 is proposed.

In this dissertation, we use two system models. More specifically, they are
based on a cooperative DS-CDMA AF relay-aided scenario where direct-sequence
spreading is used at the relays and an antenna array is employed at the destina-
tion, thus taking advantage of cooperative and spatial diversities. Both systems
consist in a wireless uplink, with users transmitting towards a base station with
the help of relay-aided links. In the first scenario (considered in Chapter 3), inter-
ference between users is not considered at the relays. The second system model
(used in Chapter 4) is similar to the previous one, however, in this case, mul-
tiuser interference is assumed at the relays, thus a more realistic scenario than
the previous one. Based on these two system models, we propose two receivers,
one for each model. The tensor modeling developed for both system models is
also valid in the case where a distributed KRST (DKRST) coding [52] is used
by the relays instead of DS-CDMA, as we show in Chapter 3.

We adopt a quadrilinear PARAFAC model for the receiver of the first system
model of this dissertation (presented in Chapter 3). Indeed, we propose a semi-
blind multiuser receiver that is able to jointly estimate the channel gains, antenna
responses and transmitted symbols of all users, exploiting the uniqueness proper-
ties of a fourth order tensor. For the second system model (presented in Chapter
4), we use a trilinear tensor model for the receiver. By joinning the users symbols
dimension with the channel gains dimension, we reduce the number of dimen-
sions of the PARAFAC decomposition by one. The second receiver estimate the

data in two phases. During the first phase (a supervised stage), all users send a



training sequence known at the receiver, thus the receiver is able to estimate the
channel gains and spatial signatures of all users. Then, during the second phase,
the receiver is able to estimate the users symbols in a non-supervised stage.
This dissertation lies in a research field that connects tensor decompositions,
signal processing, wireless communications and cooperative communications. It
extends [2| by considering a cooperative link with relays in addition to the direct
link. Moreover, in comparison to [45] and [46], our work admits coding at the
relays and in contrast to [47], the adopted system considers the relays transmit-
ting in different time-slots instead of all relays transmitting simultaneously to the
destination (although a variation with the relays transmitting simultaneously is
presented in Chapter 3). An advantage of this work is its flexibility to system pa-
rameters, which can provide us generalizations of other works. Then, by choosing
the system parameters, such as the number of relays or spreading code length, we
get the models from [2], [45], [46] and [47]. It is also worth mentioning that the
proposed receiver models provides better performance than the others presented

above, as it will be shown by the simulations results of Chapter 3.

1.1 Dissertation Contribution

The main contributions of this dissertation will cover the following research

topics:
e Multiuser signal separation/detection;
e Multiple-antenna transmission structures;
e Channel and spatial signatures estimations;

o AF relaying.

In the context of multiuser signal separation/detection, we have proposed a uni-
fied PARAFAC decomposition for DS-CDMA and DKRST coding cooperative
multirelay uplinks, with the proposition of two receivers that can estimate the
transmitted symbols. Moreover, in the context of multiple-antenna transmission
structures and AF relaying, we covered some variations that can turn the system
models more versatile and flexible, as, for instance, three different possibilities
of relay setups: single antenna relays transmitting in different time-slots, single

antenna relays transmitting simultaneously and a single MIMO relay case. In the



context of channel and spatial signatures estimations, the proposed receivers can
also estimate the channel gains and spatial signatures of all users.

The different contributions of this work are associated with receiver process-
ing. We focus primarily on multiuser signal separation/detection, channel estima-
tion and spatial signatures estimations. To summarize, the major contributions

of this dissertation are the following:

e Development of a unified PARAFAC decomposition for DS-CDMA and
DKRST cooperative multirelay uplinks;

e Development of a PARAFAC tensor modeling for a cooperative multirelay

uplink with multiuser interference at the relays;

e Study of the uniqueness conditions of the presented tensorial decomposi-

tions;
e Development of two receivers for the adopted system models;

e Presentation of the link between one used system model and others systems

present in the literature;

e Simulation results that validate the performance of the proposed semi-blind

receivers.

1.2 Scientific Output

One paper was produced from the results obtained in this dissertation:

— A. A.T. Peixoto, C. A. R. Fernandes, "Tensor-Based Multiuser Detection
for Uplink DS-CDMA Systems with Cooperative Diversity” published in the
2017 XXXV Simpdésio Brasileiro de Telecomunicagoes e Processamento de
Sinais (SBrT 2017);

— A journal paper is being developed with the results of this dissertation.



1.3 Organization

This dissertation is structured as follows:

— Chapter 2 presents a multilinear algebra introduction, the PARAFAC de-
composition and its uniqueness properties. For last, a short introduction of

MIMO systems and cooperative communications is shown;

— Chapter 3 presents the adopted system model for a wireless cooperative
communication system uplink, the quadrilinear tensorial decomposition
for this system and the proposition of a semi-blind receiver for the sys-
tem model. Simulations results showing the performance of the proposed

receiver are also presented;

— Chapter 4 presents the second system model adopted for a wireless co-
operative communication system uplink with multiuser interference at the
relays, the trilinear PARAFAC decomposition used and the receiver pro-
posed. Simulation results showing the performance of the proposed receiver

are presented at the end of the chapter;

— Chapter 5 summarizes our conclusions and lists some research perspectives

in this dissertation subject;

— The paper mentioned in Section 1.2 is attached in Appendix A.



Chapter 2

Tensor Models, MIMO and

Cooperative Communications

This chapter is devoted to the presentation of a multilinear algebra introduc-
tion and to an explanation of MIMO and cooperative communications concepts,
which will be essential to understand the methods proposed in this dissertation.
First, we introduce a background of tensor algebra. Afterwards, the mathematical
formalism, tensor representations and basic operations are shown. Then, we out-
line tensor decompositions, where we present the PARAFAC decomposition and
its uniqueness properties are discussed. Finally, we present a short introduction

of MIMO systems and cooperative communications.

2.1 Background on Tensor Algebra

Multilinear algebra is the algebra of arrays of order higher than two. These
high order arrays are called tensors. The theory of tensors is nowadays known
as tensor algebra. The word “tensor” was first introduced in the XIX century
[1] but its use as we know nowadays was only introduced between the 60s and
70s by Kruskal [53], Richard A. Harshman [27] and L. R. Tucker [54|, who were
the pioneers on the development of tensor decompositions, analysis and factor-
izations for third order tensors. These decompositions of high order arrays can
be viewed as generalizations of matrix decompositions. The analysis that Har-
shamn proposed in [27] and in [55] is called Parallel Factor (PARAFAC) analysis
or PARAFAC decomposition, which has been extensively studied in the literature
and applied on several areas [22].

But what PARAFAC has that is so attractive? The answer is simple: its

10



uniqueness feature. The PARARAC decomposition of tensors is unique up to
permutation and scaling indeterminacies [53, 56]. A uniqueness proof was made
by Kruskal in [53]. Also, a generalization of the uniqueness results of [53] to
tensors of any order was given in [57] by N. Sidiropoulos and R. Bro, who also
applied tensor models to telecommunications and provided the uniqueness condi-
tions to complex tensor models in [2]. Another demonstration of the uniqueness
properties of the PARAFAC was shown in [58], providing different uniqueness
conditions. The use of tensor models and decompositions, more precisely the
PARAFAC, was found to be useful in Independent Component Analysis (ICA)
applications [59, 60]. ICA is a special case of blind source separation and is
defined as a computational method used to separate a multivariate signal into
additive subcomponents, contrasting to the fact that the PARAFAC decompo-
sition can describe the basic structure of high order cumulants of multivariate
data [29], [55], thus, showing that tensor decompositions can be an interesting
way to deal with multidimensional data [61] .

Even not being used on this dissertation, it is worth mentioning the tensor
decomposition Tucker-3, which can be used in interesting applications such as
Principal Component Analysis (PCA) [62]. PCA is a statistical procedure that
uses orthogonal transformations in order to convert a set of possibly correlated
variables into a set of linearly uncorrelated variables called principal components,
revealing the internal structure of the data in a way that best explains the vari-
ances in the data set [63]. It is mostly used as a tool in exploratory data analysis
and development of predictive models. The Tucker-3 decomposition is also know
as three mode PCA [54], [62] because of its intrinsic capabilities of component
analysis. For instance, the Tucker-3 was used in personal perception analysis
area [62], [64]. More recently, the use of tensors in neuroscience and biomedical
signal processing was proposed, with its use being improved so on and different
approaches being developed. For example, in [65], tensors were used in the mod-
eling the structure of an epilepsy seizure using PARAFAC. In [66], a noninvasive
technique for atrial activity extraction using tensors was proposed. There are
also many other examples provided in Chapter 1. It is clear then that tensor

decompositions can be applied to a wide range of disciplinary fields.
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Figure 2.1: Vectors, matrices and tensors.

2.2 Basics of Tensorial Algebra

A N-th order tensor is a multilinear mapping. If the space basis associated
to the mapping are fixed, then a tensor can be represented by a finite array, or
table, of N coordinates. Hence, a N-th order tensor is interpreted by an array
whose elements can be accessed by N indices. A tensor can be also called mul-
tidimensional array or multi-way array. The notation used in this dissertation is
presented now: scalars are denoted by lower-case letters (x,y,...), vectors as lower-
case boldface letters (x,y,...), matrices as upper-case boldface letters (X,Y,...)
and tensors as calligraphic letters (X,),...). To retrieve the element (4,j) of X,

we use |X; ;|. We may define now:

Definition 1 (order of a tensor). z € C is a scalar (order 0 tensor), x € Ch*1 s
a vector (order 1 tensor), X € C"*%2 s a matriz (order 2 tensor), X € Ch>*2xIs

(Cll XIoxI3x...xIn

15 an order 3, or third order, tensor and Xy € 1s an order N, or

N-th order, tensor.

In Fig. 2.1 we can see a representation of vectors, matrices and third order
tensors for illustrative purposes. Because a tensor is a multilinear form and has
its own associated linear vector space, common linear operations that are valid
and used for matrices can be extended and also used for tensors. For instance,

we have:

Definition 2 (scalar notation). Let X € Cl*2xIsx-xIN pe g N-th order tensor.

A scalar component of X is denoted by:

[X]il,ig,...m\; = Tiyig,...in> (2-1)

12



with in being the N-th dimension of X, also being called the mode-N of X.

Definition 3 (inner product). Being X € Chxl2xIsxxIn gnqdy e Clhrxfaxlsx..xIn

N-th order tensors, the inner product between X and Y s given by:

I I In

<X7y> = Z Z Z Liysig,osin Yin i, in s (2'2)

i1=lis=1 iy=1

where X and Y are said to be orthogonal if (X,Y) = 0.

Definition 4 (outer product). Being X € Cl*fxlsx..XIn gpg ) e ChxJaxJsx..xJu
N-th and M-th order tensors, the outer product between X and Y is described as

follows:

[X © y]i17i2,~~~,’iNJ1,j27~~JM = Liyig,...in Uitz dmo (23)

where “o” denotes the outer product. The result of [X o Y] is a tensor with order

equal to the sum of the orders of X and Y (a (N + M)-th order tensor).

The rank of a tensor is a concept inherited from matrix algebra. An intuitive
way to describe the rank of a tensor is the following. First, let us consider that
a tensor represents a physical entity characterized by magnitude and multiple
directions [67]. The number of simultaneous directions R is called the rank of
the tensor. In a N dimensional space, it follows that a rank-0 tensor (i.e., a
scalar) can be represented by N° = 1 number since scalars represent quantities
with magnitude and no direction. Similarly, a rank-1 tensor (i.e., a vector) in a N
dimensional space can be represented by N! = N numbers and a general tensor
by NE numbers. From this perspective, a rank-2 tensor (one that requires N2
numbers to describe) is equivalent, mathematically, to an N x N matrix. The
rank of a tensor is independent of the number of dimensions of the underlying

space. Based on this, we have:

Definition 5 (rank-1 tensor [22]). Let X € Ch*xxIsxxIx pe q N-th order
tensor. X will be a rank-1 tensor if it can be represented as the outer product of
N vectors u) € CI, u® e C2,..., u™N) € CIV, as follows:

Liyig,...in — u(l) o ’U,(Q) 0...0 U(N) (24)

(N)

The vectors u'\") are so called the components of X. As an example, a rank-1

matriz is given by the outer product of two vectors.
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Figure 2.2: View of mode-1, mode-2 and mode-3 fibers of a third order tensor.

Definition 6 (rank of a tensor [22|). The rank of a tensor X € Ch>I2xlsx..xIn
denoted by R, is defined as the minimum number of rank-1 components that gives

X as a linear combination.

Definition 7 (Frobenius norm). The Frobenius norm of an N-th order tensor

X € Chixl2xIsxxIN 4s defined as:

I I In
2
EAPEIND D DT W T o (2.5)
i1=142=1 in=1

The Frobenius norm can be also expressed in terms of the wnner product
X = V(X X).

Definition 8 (tensor fiber [22]). The mode-n tensor fiber of a N-th order tensor
X € ChxlaxIsxxIn s defined as the vector formed by fizing every index but the
U -th.

For instance, consider a third order tensor ) € Ct*2%I3 Tts mode-1, mode-2,
and mode-3 fibers are given, respectively, by:
Yiisis € (Ch,
Yiyis € CI27
Yisis € C™,

where “-” denotes the varying index. In Fig. 2.2 we can see an illustration of

tensor fibers in different modes.

Definition 9 (tensor unfolding [22]). The mode-n unfolding of a N-th order ten-

sor X € ChxbxlsxXIN js q matriz Xm) € Clnxhlzdn—ilnir-IN yhose elements

14



Figure 2.3: Mode-1, mode-2 and mode-3 slices of a third order tensor.

are obtained from the tensor X in the following way:

N u—1
Xmling = [Xlivins 3=14+> (=1 ]] Lo
u=1 v=1
u#EN v#EN
Hence, as an example, the unfoldings of an arbitrary third order tensor X €

CIl ><[2><13 are

X(l) e CIl ><1213
X.(Q) e C]2><11[3
X(g) & (C]SXHIQ.

We may also note that the mode-n matrix unfolding can be seen as the con-
catenation of the mode-n fibers along the matrix columns. The mode-n unfolding
matrices of a tensor can also be obtained by stacking the tensor slices. The ten-
sor slices are two-dimensional sections of a tensor, defined by fixing all but two
indices [22]. As Figure 2.3 shows, from left to right we have the mode-1 (or first-
mode) slices, mode-2 (or second-mode) slices and mode-3 (or third-mode) slices.
Thus, for the first-mode slice we have Y;, , for the second-mode we have Y ;,
and for the third mode Y ,,. Figure 2.4 illustrates the generation of the first,

second and third mode slices of a third order tensor.

Definition 10 (vectorization [68]). Let vec( ) : Clixlxlsx.xIv _y Chilzls..In
denote the vectorization operator, which transforms a tensor X € Clhxl2xIax..xIn

into a vector vec(X') € Chl2lsIN wyth components defined as:

eV, = W ine G =i+ S (= D[] Lo (2.6)
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Figure 2.4: Generation of tensor slices. Adapted from [1].

The elements of the tensor are then stacked in reverse lexicographical order into

a long column vector, as follows:

T1,1,1

L1,1,13
vec(X) = (2.7)

T1,15,I3

| L1y,15,13 |

The inverse process (turning a vector into a tensor) is called "tensorization”.

Definition 11 (mode-n product [22], [68], [1]). The mode-n product between a
N-th order tensor X € ClixI2xIsx--XIN gnd q matriz U € C/>*! s defined as:

In,
[X Xn U]il ----- In—1,J5in41yIN = E :xil,iz ----- inWiin, J € L., J, (2'8)

-----

in=1
with “x,,” being the mode-n product operator.

The mode-n product is a good way for representing linear transformations

involving tensors.

2.3 Tensor Decompositions

In the last section, we have presented an introduction of multilinear algebra.
Based on the concepts detailed, we present now the tensor decompositions that

we will use in the rest of this dissertation. These decompositions, also known
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as multi-way factor analysis, describes a tensor as a linear combination of outer
product factors. Another important remark is that tensor decompositions can be
viewed, depending on the approach and point of view, as generalizations of Prin-
cipal Component Analysis (PCA) or Singular Value Decomposition (SVD) to
higher order arrays. A multidimensional variable can be interpreted as a tensor,
so, the analysis of a tensor in terms of its decomposed factors is useful in prob-
lems where a multilinear junction of different factors or contributions must be
identified or separated from the measured data. In this context, a tensor decom-
position of an observed variable modeled as a data tensor can separate the signals
transmitted by different sources, allowing the development of powerful multiuser
detection systems. In the following, the PARAFAC decomposition of third order
and fourth order tensors (or three-way and four-way arrays) is presented, since
they will be used in the applications encountered in this dissertation. We will
also show the generalization of the PARAFAC to N-th order tensors.

2.3.1 Trilinear PARAFAC model

The PARAFAC (Parallel Factor) decomposition was developed and presented
by Harshman [27] and Carroll & Chang [28] in the 70s. It was referred in Carroll
& Chang’s work as Canonical Decomposition, abbreviated to CANDECOMP,
but it can be also referred by the acronym CP (Candecomp-Parafac). For signal
processing, ICA, chemometrics and psychometrics purposes, the PARAFAC was
a good choice and there are many applications of the PARAFAC developed for
them [29]. Some examples of the use of the PARAFAC in wireless communications
are [33], [2], [37], [69], [38], and [70].

The PARAFAC decomposition of an arbitrary tensor Z € C1*2xIs can be
expressed by:

Q
Ri1,ig iz E bi1,qWis,qVis,q <2'9)

=1
where t;, 4, u;, 4 and v;, 4 are elements of matrices T, U and V respectively, with T
€ Ch*Q U e C2*Q and V € C**€ being the factor matrices of Z. @ is the rank
of the tensor. We may note that z;, ;, ;, in (2.9) is a sum of triple products. (2.9) is
also known as "the trilinear model", "trilinear decomposition" or "triple product

decomposition". Using the outer product notation, the PARAFAC decomposition
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Figure 2.5: PARAFAC decomposition of a third order tensor.

of Z can be rewritten in the following way:

Q
Z=) T,o0U,0V, (2.10)
q=1
Now Z is in function of the three factor matrices T, U and V, as Fig. 2.5
illustrates. The third mode matrix slice (Z ;) of the tensor Z is given by:

21,143 #1243 c-- Al
R2,143 2243 -+ *2Di3

Z;,=| . _ _ , : (2.11)
Zhlis Rl243 -+ Rl,lais

It can be shown that Z ;, admits the following factorization:

Z ;, = Tdiag;,[V]U", (2.12)

where the operator “diag;,[]” is used to create a diagonal matrix by extracting

the i3-th row of V. The first mode matrix slice of the tensor Z is given by:

Z;,.. = Udiag;, [T]V?, (2.13)
where Z;, is a Iy X I3 matrix with Z;, = [z, | and iy = 1,2,...,I;. The second
mode slice is denoted by:

Z.i2. = Vdiagzé [U]TTv (214)

where Z ;, is a I x I3 matrix with Z;, = [z ;, | and iy = 1,2,...,15. The received
data tensor Z can be unfolded into the form of three matrices Z, € C21x%s Z,

€ Chhxh and Zs € ChI3xI2 by stacking column-wise the matrix slices as follows:
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Z,

Zs

= 2= N
Z; . 7,
Z
Zzs = :
Z g,
(2, | [ Udiag,[T]]
Z;, . Udiagr, [T]
(2,]  [Vdiag[U]]

. — . TT
_Z_[2__ _Vdiag;z [U]_
-an ] _Tdiagl V]

| = : U
_Z..I3_ _Tdia’gIB [V]

These matrices admit, respectively, the following factorizations:

Z, = (ToU)VT,

Z, = (Uo V)T,

Zs = (VoT)UT,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

where “0” denotes the Khatri-Rao product, which is a column-wise Kronecker

product. The Khatri-Rao and Kronecker products are fairly described and ex-

plained in [71].

An interesting feature of the PARAFAC is its uniqueness property. The

PARAFAC decomposition of tensors with rank > 1 can be unique up to scaling

and permutation of factors, unlike matrix decompositions which are mostly not
unique for rank > 1. The first studies about the uniqueness of the PARAFAC
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model were done in the 70s, by Harshamn in [72] and by Kruskal in [53] for third
order tensors. Later on, a generalization for N-th order tensors was proposed by
Sidiropoulos and Bro in [57, 73] and more recently, a simplified proof of unique-
ness was proposed by Stegeman and Sidiropoulos in [56]. Also, the uniqueness
conditions were extended for the complex case by Sidiropoulos and others in
|2] (which allows the use of complex modulation in telecommunications applica-
tions). The PARAFAC uniqueness conditions are based on the concept of k-rank
(Kruskal-rank). To better understand the k-rank, let’s review what is the rank

of a matrix:

Definition 12 (rank of a matrix |2, 1]). The rank of a given matriz T € Ch*@
s denoted by rr, and it is equal to r if T contains at least one set of r linearly

independent columns but no set of r + 1 linearly independent columns.

The k-rank concept was brought by Kruskal in [53] but the term was later

coined by Harshman.

Definition 13 (Kruskal-rank [22|). The Kruskal-rank, or k-rank, kr of a given
matriv T € C1*Q is the mazimum value of k such that every set of k columns
of T is linearly independent. We must note that the k-rank is always less than or

equal to the rank rp of the matriz. Thus, we have:

]fT S ror S min([l, Q) (222)

The conditions that are sufficient to guarantee uniqueness of the trilinear
PARAFAC model [53] presented in (2.9), are given by:

kr + ku + ky > 2Q + 2. (2.23)

If condition (2.23) is satisfied, then the set of matrices T, U and V that generates
Z in (2.10), are unique up to scaling and permutation ambiguity of its columns
[53, 2]. It means that any set of matrices T', U and V' that satisfies condition
(2.23), are related to the set T, U and V by:

T = TIAT,
U = UllAy,
V' = VIIAy, (2.24)
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where IT € C?*? is a permutation matrix and Arp, Ay and Ay are diagonal

matrices that satisfies:

ArApAy =Io, (2.25)

with Iy € C?*? being the identity matrix of order Q. Kruskal’s result is non triv-
ial and has been analyzed many times over. Let us now make some observations.

It is clear that for > 1, a necessary condition for (2.23) is given by:

min(k;T,kU,k:V) Z 2 (226)

A matrix whose columns are drawn independently from an absolutely continuous
distribution has full column rank with probability one and also has full k-rank.
Thus, if we state that V is full column-rank, in other words, the rank of V is

equal to @, then, condition (2.26) turns into:

which means that the trilinear PARAFAC decomposition is unique only if neither
T nor U has a pair of proportional columns (note that if T and U does not have
a pair of proportional columns, we can say that the values of kt and ky are
greater than 2). This condition is shown in [74] and is a necessary, but not

sufficient condition to the uniqueness of the PARAFAC decomposition.

2.3.2 Quadrilinear PARAFAC model

The PARAFAC decomposition of a fourth order tensor works the same way as
for a third order tensor, but with the addition of one factor, thus one more factor
matrix on the equations. Similarly to the trilinear model, for an arbitrary 4-way
array 2 € Chx2xIsxls the quadrilinear PARAFAC decomposition in scalar form

turns out to [73]:

Q
R in,isia — E Sihqtimqui&qvum (2'28)
q=1

where s;, o, ti,4, Uiy q and v;, 4 are elements of matrices S, T, U and V respec-
tively, also with S € C'"*?, T € C2*Q U € C»*? and V € C"*? being the
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factor matrices. (2.28) can be rewritten as:

Q
Z=) 8,0T,0U,0V,, (2.29)

q=1

which gives us similar factorizations to (2.19)-(2.21):

Z,=(SoToU)VT, (2.30)
Zy, = (VoSoT)U, (2.31)
Z;=(UoVoS)TT, (2.32)
Z,=(ToUoV)ST (2.33)

Any 4-way array can be unfolded into a 3-way array, much like a matrix can be
unfolded into a vector via the vectorization operator, hence, the uniqueness of a
quadrilinear decomposition follows from the uniqueness of a trilinear decomposi-
tion. The uniqueness conditions for a quadrilinear PARAFAC decomposition are
described by Sidiropoulos et al in |57, 73| and are based on Kruskal’s original

trilinear conditions. Then, we have:

ks + kr + ky + kv > 2Q + 3. (2.34)

If condition (2.34) is satisfied, then, the set of matrices S, T, U and V that
generates Z in (2.29), are unique up to scaling and permutation ambiguity. It
means that any set of matrices S, T, U’ and V' that satisfies condition (2.34),

are related to the set S, T, U and V, similarly to the trilinear case.

2.3.3 N-th order PARAFAC model

The generalization of the PARAFAC decomposition for N-th order tensors,

such as Z € Clvxf2xIx.xIN " ig oiven by:

1 2 N
Zi17i2ai3>"'7in = Z ugl,)qugz,)q“'ugj\],)q7 (235)
q=1
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where uz(:,)q is an element of the matrix U” € C»*?, with n = 1,2,...,N and 1,
= 1,2,....Iy. For this case, there will be N matrix factors and at least N matrix

unfoldings. A sufficient condition for uniqueness was provided in [57] and is given
by:

N

Y ky(n) >2Q+ (N —1). (2.36)

A proof for condition (2.36) was given by Sidiropoulos et al in [73] and in [57].

2.3.4 Alternating Least Squares Algorithm

The algorithm that we will use on the proposed receivers through the rest of
this dissertation is explained in this subsection. Regarding the trilinear PARAFAC
decomposition in (2.10), we have three factor matrices: T, U and V. The esti-
mation of these three factor matrices is carried out by minimizing the nonlinear

quadratic cost function:

2
HZ — 222:1 T,oU,0V, .

1211

f(T,U,V) = (2.37)

The Alternating Least Squares (ALS) algorithm is a possible solution to mini-
mize this cost function. It is an iterative algorithm that alternates among the
estimations of T, U and V. The ALS algorithm divides the nonlinear problem
into three independent linear Least Squares (LS) problems |75, 64]. At each it-
eration, we have three LS estimation steps. For each step, one factor matrix,
for instance, T, is updated while the two others (U and V) are fixed to their
previous estimations. The algorithm makes use of the unfolded matrices Zi, Z,

and Zj given in (2.19)-(2.21). The algorithm is summarized as follows:
1. Set ¢ = 0; Initialize ﬂ(izo) and V(izo);
2. i —it 1
3. From Z,, find a LS estimate of T: T?;) = (ﬂ(i,l) Ov(i,l))TZQ;
4. From Zs, find a LS estimate of U: Uy = (V1) o Tpp)!Zs:

5. From Z, find a LS estimate of V: VZ;) = (Tu o fj(i))le;

6. Repeat 2-5 until convergence.
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The convergence at the ¢-th iteration is declared when the error between
two consecutive iterations is below some threshold. An error measure at the i-th

iteration can be calculated from the following formula:

o(i) = 12~ (T o Ua) VI
1Z1]|%

(2.38)

When we have |e(i) —e(i — 1)| < J, convergence is assumed (6 can be, for in-
stance, 107%). The algorithm always converges, however, the ALS algorithm is
strongly dependent on the initialization and convergence can sometimes be slow.
Indeed, in some cases, a bad initialization of the matrices can affect negatively the
estimations, then, the error between two consecutive iterations does not decrease

and convergence takes more time.

2.4 Multiple-Input Multiple-Output Systems

In telecommunications, Multiple-Input Multiple-Output, or MIMO, is a method
for multiplying the capacity or increasing the diversity of a radio link by using
multiple transmit and receive antennas to exploit multipath propagation [9], con-
trary to SISO systems (Single-Input Single-Output), which use only one antenna
both at the transmitter and receiver. The possible gains that can be achieved
with MIMO systems led to its standardization in past, actual and upcoming
mobile communications systems as IEEE 802.11n (Wi-Fi) [76], HSPA+ (High
Speed Packet Access) [77], WIMAX and Long Term Evolution (LTE) [78]. By
using MIMO, sending and receiving more than one data signal simultaneously
over the same radio channel, or at different frequencies, is possible. MIMO sys-
tems are commonly used to enhance the data rates through multiplexing or to
improve link quality (performance) by exploring diversity gain. A combination
of both can also be used.

Figure 2.6 illustrates a configuration of N transmit antennas and M receive
antennas, thus there are NM decorrelated channels. Studies that led to the de-
velopment of MIMO date back to 1970s, with research papers concerning multi-
channel digital transmission systems, but it was only in the 1990s, with the
development of methods to improve the performance of cellular radio networks,
such as SDMA (Space-Division Multiple Access), that the use of multiple anten-
nas has been proven effective. The principle of SDMA is to use directional or

even smart antennas to communicate with the users on the same frequency, in
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Figure 2.6: MIMO schematic.

the range of a base station, at different locations [79]. The “invention” of MIMO
came in 1994 by Paulraj and Kailath [80], with the development of a SDMA
based technique to multiplex broadcasts at high data rates by splitting a high
rate signal into several low rate signals to be transmitted from spatially separated
transmitters and recovered by the receive antenna array based on different direc-
tions of arrival. The contributions of Paulraj put MIMO systems into research
interest and into use in wireless communications systems.

In this dissertation, we will use an array of antennas at the base station
of the proposed system models but only one antenna on the relays and users
devices, thus consisting in a multiuser SIMO (Single-Input Multiple-Output)
system, which can be viewed as a multiuser MIMO (MU-MIMO) system. A
variation of one proposed system model that employs a single MIMO relay will
be described in the next chapter. Figures 2.7 and 2.8 depicts schematics of SISO,
SIMO, MISO and MIMO systems. An example of MIMO deployment is 2x2 (2
antennas at the transmitter and 2 antennas at the receiver), 4x4 or even 8x8
(both on LTE releases). Not necessarily the number of antennas on both ends
must be equal, as, for instance, a 4x2 configuration is possible. MIMO differs
from smart antenna techniques developed to enhance the performance of a single
data signal, such as beamforming or SDMA.

MIMO can be also used to apply space-time coding on the system. Basically,
a space-time code (STC) is a method employed to improve the reliability and
consequently the quality of a data transmission in wireless communication sys-
tems using multiple transmit antennas [13|. Space time codes rely on transmitting
multiple and redundant copies of a data stream across a number of antennas, in

order to exploit the various received versions of the data to improve the relia-
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Figure 2.8: MISO and 2x2 MIMO schematics .

bility of the transmission. At the receiver, all the copies of the received signal
are combined in an optimal way to extract the transmitted information. Exam-
ples of space-time codes are the Alamouti codes [12], the Khatri-Rao space-time
(KRST) code [15] and its alternative version: Distributed Khatri-Rao space-time
(DKRST) code [52]. The DKRST coding is used on a variation of the system
model of this dissertation, as it will be detailed in Chapter 3.

2.5 Cooperative Communications

A non-cooperative communication model inside a network is described as a
source node transmitting information directly to a destination node, without in-
tervention of any other node during the transmission process. This model follows
the paradigm that each device should treat only the signals addressed to itself
and discards any other transmission from other devices. This approach seems
simple and effective, so why bother changing this old and common paradigm?
We will answer this question in a elegant manner. Let us assume that the chan-
nel in which the signals are transmitted is suddenly unavailable or its quality
went down drastically. In this case, the transmission from the source node to the
destination node will be severely compromised. So, the answer to que question

above is: non-cooperative communications are simple, effective, but do not cover
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all possible scenarios that may occur in a wireless communications system.

An alternative to this problem would be a scenario where a secondary link
between the source and destination is available, with the help of another node
acting as a repeater. This last described scenario follows the cooperative commu-
nications paradigm |3|, which exploits the cooperation between nodes of the same
network to achieve better transmission quality. In Fig. 2.9 we can see a schematic
comparing both the non-cooperative and cooperative scenarios in wireless com-
munications systems for a one-way half-duplex transmission. In a cooperative
communications model, paths with uncorrelated fading between the destination
and the source node are generated through the introduction of one or more re-
transmission channels [4]. Such retransmission channels are obtained through
small fixed stations or through the users’s own devices. Transmission commonly
takes place in two phases. In the first phase, the source node sends the infor-
mation simultaneously to the destination and to the relay. In the second phase,
the relay retransmits the information to the destination. Both phases can also
be multiplexed on frequency domain, although less common. This approach may
also consider that there are no direct link between source and destination. In
this case, in the first transmission phase, the source sends the information only
to the relay. Another option would be a transmission from the source to the
relay link only if the direct link between source and destination is shut down or
compromised.

In comparison with the conventional non-cooperative model, the cooperative
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one has the following advantages [4], [3], [81]:
e Small path loss experienced;
e Increase of coverage area;

e Similar diversity to that existing in the MIMO model, without the need to

insert more antennas on the same terminal;

e Costs of implementation can be reduced if the devices of the network acts

as relays;
e EBasier and cheaper to install relays than a base station;
e Less power required to transmissions;

e Truly uncorrelated channels (unlike MIMO).

Also, if we augment the number of relays, the coverage and link quality would
greatly improves because more decorrelated alternative links would be available
and, therefore, we increase the chance that at least one of the signals reach the
destination with good quality. Figure 2.10 illustrates a cooperative transmission
schematic with the availability of N relay-aided links.

For implementing cooperative communications, some strategies can be adopted,

which are classified in: fixed and adaptive. In adaptive strategies, the use of relays
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is controlled by some quality parameter, such as, for example, the SNR of the
signal received. The implementation of these strategies becomes more complex
compared to the implementation of fixed strategies, due to the need of more in-
formation about the system at the relays and due to the extra processing made.
Adaptive strategies will not be used in this dissertation. More details about adap-
tive cooperative strategies can be found in [82] and in [3]. In fixed cooperative
strategies, the relays always retransmit the information received regardless the
conditions of the cooperative link. Such strategy have the advantage of being
easily implemented, but, in the meantime, it has the disadvantage of low spec-
tral efficiency. This disadvantage occurs due to the reduction of the overall rate
caused by the division of the channel between the source’s and relay’s transmis-
sions. The most common fixed cooperation strategies, and widely used in the
literature, are the fixed amplify-and-forward (AF) and decode-and-forward (DF)
protocols. In this dissertation, we will use the AF protocol on the upcoming
chapters. In the AF protocol, the signal received by the relay is simply amplified
by a factor g, where g is called the relay gain. Note that the amplification of
the signal is intended to compensate the channel fading, so that, g is inversely
proportional to the power received by the relay [3].

In Fig. 2.11 we can see a simple schematic showing the operation of a co-
operative wireless communications network with AF relaying. Xgp denotes the
signal transmitted from source to destination (source-destination link), Xgg de-
notes the signal transmitted from the source to the relay node (source-relay link)
and gXgsg denotes the signal amplified and retransmitted from the relay node to

the destination (relay-destination link). The relay gain g is, in general, given by

6]

_ Fe (2.39)
=\ Thsal2Pr + Ny’ ‘
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where P; is the source power, P, the relay power, hggr the channel coefficient of
the source-relay link and N is the variance of the noise present on the link. By
means of simplicity, the AF protocol is of good choice because the relay node will
just amplify the users signals and forwards it to the destination. Latency and
complexity issues are kept small with this protocol. However, one of the disad-
vantages of the AF protocol is that the noise is also amplified and retransmitted
to the destination. About the other fixed strategy, the decode-and-forward, the
signal received by the relay will be decoded, recoded, then transmitted to the
destination. The main advantage of this approach in comparison to the AF pro-
tocol is the non-propagation of noise on the transmitted signal [81], [3]. One of
the main problems of this approach is the greater computational load at the
relay.

Even being an interesting alternative, cooperative communications may not
be the best case for every scenario. In a situation where the direct link is not
subjected to much pathloss, shadowing or is close to the source, the cooperative
link may not bring many improvements or may even give a worse performance.
For an AF based relay link, retransmission amplifies useful signals but also ampli-
fies the noise. Another important factor is that non-cooperative communications
guarantees a high level of security and privacy of the data that travels in the
network, since each device only has access to the information destined to it, in-
stead of cooperative communications whereas information can be intercepted by

other nodes of the network, which may provoke security issues.
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Chapter 3

Multiuser Detection for Wireless

Cooperative Uplink

In this chapter, a receiver based on a fourth-order PARAFAC tensor decom-
position is proposed for a cooperative wireless communications uplink with M
users transmitting to a base station with the help of relay-aided links implement-
ing the AF protocol. The base station employs an array of antennas and the relays
spreads the users signals using DS-CDMA. First, we describe the main scenario.
Next we describe the tensorial model, its uniqueness conditions and properties,
then we present the proposed receiver for this case. For last, the simulation results

are presented and discussed.

3.1 System Model

The system model considered in this chapter is a cooperative DS-CDMA
uplink. We have M users transmitting to a base station with the help of relay-
aided links and there is no direct link between the users and the base station.
The links between a given user and one relay are called source-relay (SR) and
the ones between a relay and the base station are called relay-destination (RD).
The base station has an uniform linear array of K antennas, each of the M users
transmit to its R associated AF relays. The R relays of a given user will use
direct-sequence spreading on the user signal, with a spreading code of length P,
where the same code is used by all relays of a given user. Also, the relays and
users are single antenna (SISO) devices operating in half-duplex mode.

It is assumed synchronization at chip level, frequency-flat fading is considered

and all channels are independent to each other. We are considering that each
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Base Station

Figure 3.1: Cooperative DS-CDMA Uplink with M users and its clusters of R
relays.

user communicates with its R associated relays and that each relay forwards the
signal using a different time-slot. We also assume that a user and its relays are
all located inside a cluster, such that the signal received at a relay located within
the cluster of the m-th user contains no significant interference from the other
users. This assumption was also made in [46] and [45]. An interpretation of this
assumption is that a user and its relays are located in a cell, while the other users
and their associated relays are located in other cells, being modeled as co-channel
interferers. Fig. 3.1 illustrates the proposed system model.
The signal received by the r-th relay of the m-th user is given by:

(5F) — p50g, 4 o SE) (3.1)

r,m,n r,m r,m,n’

where h,(f;,}f) is the channel coefficient between the m-th user and its r-th relay,
Sn,m 1s the n-th symbol of the m-th user and vﬁfﬁ% is the additive white gaussian
noise (AWGN) component. All the data symbols s,, ,,, are independent and identi-
cally distributed, with 1 < m < M, and uniformly distributed over a Quadrature
Amplitude Modulation (QAM) or a Phase-Shift Keying (PSK) alphabet. The
signal received at the k-th antenna of the base station, trough the r-th time slot
(relay-destination link), on the n-th symbol period and p-th chip, on the RD link

is given by:

M
RD RD RD
xgc,'r',n),p = Z hi,r,nzgnm@%)ncp,m + vlg:,r,n),m (32)

m=1

32



where h(

P, is the channel coefficient between the k-th receive antenna and the

(RD)

r-th relay associated with the m-th user, v

is the corresponding noise of the
RD link, g,,, is the amplification factor applied by the r-th relay of the m-th
user and ¢, ,,, is the p-th chip of the spreading code of the m-th user. Substituting

(3.1) into (3.2), we get:

M
(SRD)
krn,p Z hk Ty Tm ngSn ;mCp,m + Uk ,7n,p ) (33)
m=1
M
(SRD) _ (RD) SR (RD)
Uk,r,n,p - Z hk )Ty mIr, mv7(" m, %vam + Uk,r,n,p' (34)
m=1
The term v,(fiil?p) is the total noise component through the source-relay-destination

(SRD) link, from user to base station.

We assume that all links are subject to multipath propagation and all possible
scatters are located far away from the base station, so that all the signals trans-
mitted by the relays of a given user arrive at the destination with approximately
the same angle of arrival. This means that, considering the signals transmitted
from a given cluster of relays, the angle spread is small compared to the spatial
resolution of the antenna array at the base station, as Figure 3.2 shows. This
is truly valid when the user and its relays are close to each other and the base
station experiences no scattering around its antennas. This is very common in
suburban areas where the base station is on the top of a tall building or in a

tower [83]. The channel coefficient h""”) may then be expressed as:

krm

L{ED)
W = " a(Bn) B (3.5)
=1

where 6,, is the mean angle of arrival of the m-th scattering cluster, ay(6,,) is the
response of the k-th antenna of the m-th scattering cluster, defined as ay(6,,) =
exp(j60,,*71), where 6, is a uniform random variable with zero mean and variance
of 2m, z(ff@) is the fading envelope of the [-th path between the r-th relay of the
m-th user and the base station. L, ,, is the total number of multipaths. (3.5) can

be rewritten as follows:
hy) & g (O )Y, (3.6)

k,r,m r,m

(1D)
where ’yﬁm is defined as *y(RD ZZL RD).
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Figure 3.2: Representation of the multipath propagation scenario. Adapted from

[1]

Now, by substituting (3.6) into (3.3), we get:

(RD) _

T =" a0V RS g SnmCpm + Vi (3.7)

r,m k,r,n,p

M=

1

3
I

and again, substituting (3.6) into (3.4), we get:
M
ksrljll,)p Z a (0 PYﬁIan 9r mvﬁifzch,m + Ul(cl—j’lzz)p (3.8)
m=1

The transmission rate for each user is given by 1/(R+1), thus, the total trans-

mission rate on the system is M /(R+1).

3.2 Variations of the System Model

Here we present some variations and considerations that can be incorporated
or changed in the adopted system model. We compare some of these variations

with the main model (presented on Section 3.1) in the simulation results section.
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Base Station

Figure 3.3: Addition of a direct link between user and base station, among the
relay aided links.

3.2.1 Direct Link

The addition of a direct link between the users and the base station provides
another possible scenario, as Figure 3.3 illustrates, so we have now the direct link
and the cooperative links available. The direct link is called source-destination
(SD) link. So, the discrete-time baseband received signal trough the SD link at

the k-th base station antenna and n-th symbol period is described as follows:

M
x,gif)) = Z h,g?nlz)sn,m 1 l®P) (3.9)

kn
m=1

where h,(f;f ) is the channel coefficient between the m-th user and the k-th receive
antenna, S, ,, is the n-th symbol of the m-th user and U,(an) is the additive white
gaussian noise at the k-th antenna and n-th symbol. The channel coefficient hﬁf )

may be also defined as:

LED)

o =" an(0)85,, (3.10)

=1

where 51(7‘:1]3) is the rayleigh fading envelope for the [-th path between the m-th

user and the base station and L,(f D) is the total number of multipaths on the SD
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link. There is also a approximation for h,(i? ) as follows:

SD
B = ar(0m) 75", (3.11)
where 7(SD)
L(SD)

~5D) — Z B, (3.12)

We can rewrite (3.9) this way:

M
e =N a0V s+ 0 (3.13)
m=1

The direct link implementation presented above can be used alongside CDMA,
thus giving us the system model of [2] if we do not consider the relay aided links.
In Section 3.5 we compare the receiver of 2| with the proposed technique. The

total transmission rate of the system for this case is M.

3.2.2 Simultaneous Transmission of the Relays

If we consider that all R relays of the system transmits at the same time

instead of a transmission in R time-slots, then (3.7) turns into:

M R
i) = SN (BB gy S + 0 (314)

and (3.8) turns out to:

(SRD RD
k N,D ) Z Z ak ’774 m gr mU7(qS1;§LCP7m + ’U](C np) (315)

m=1 r=1
This approach was proposed in [47]. The transmission rate of the system is M /2.
In fact, this alternative model increases the transmission rate but the model
presented in Section 3.1 explores cooperative diversity by transmitting in dif-
ferent time-slots, which brings performance advantages, contrarily to the model

presented in this subsection.
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Figure 3.4: Variation of the system model by substituting R relays by a single
MIMO R x R relay.

3.2.3 Distributed Khatri-Rao Space Time Coding

Instead of using direct-sequence spreading at the relays, we could use Dis-
tributed Khatri-Rao space-time (DKRST) coding, as presented in [15, 52|. In
this case, the transmission of the data stream by the relays is done in blocks.
By adopting DKRST coding at the relays, the model of Section 3.1 does not
change, it is exactly the same. The term ¢, ,, was represented as the p-th chip of
the spreading sequence of the m-th user. Now, with DKRST coding, ¢, ,, with
p = 1,...,P, denotes the time-spreading code of the m-th user, with P being the
length of the transmission block. By considering DKRST coding at the relays,
we do not need to consider synchronization at chip level. The transmission rate
for this case is M /(R+1).

3.2.4 Single MIMO Relay

On this alternative model, we have only one MIMO relay for each user, to-
talizing M users and M relays. The same propagation scenario can be assumed
here. The difference is that instead of R relays transmitting in different time-
slots towards the base station, the users will have only one MIMO relay with R
antennas, each antenna transmitting in different time-slots.

The index r no more represents the r-th relay, but the r-th transmit or r-th

receive antenna of the MIMO relay. Hence, the mathematical model of Section
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Figure 3.5: Alternate scenario where a user transmits to a single MIMO relay.

3.1 does not change. Fig. 3.5 shows the single MIMO relay schematic.

3.3 Proposed Tensor Model

The RD link described in Section 3.1 can be viewed as a four-way array with
its dimensions directly related to space (receive antennas at base station), coop-
erative slots (cooperative channels), time (symbols) and spreading codes (chip).
At this section, we model the received signal as a 4-th order tensor using a
PARAFAC decomposition. For some variations of the system presented on Sec-
tion 3.2, such as the direct link scenario and the simultaneous transmissions of
the relays, we do not show their respective tensor models. For the system con-
figurations using DKRST coding or a single MIMO relay per user, the following
tensor model can be used with no changes.

Let Y be a quadrilinear PARAFAC model, so that Y € CEKXEXNXP jg 5 4-th

order tensor representing the baseband RD data signals at the base station:

Vg = T (3.16)

for k = 1,..,K, r = 1,..R, n = 1,...N and p = 1,....,P. In order to simplify
presentation we are going to omit the AWGN terms and assume that the channel
is constant for N symbol periods throughout the rest of this section. A typical
element of Y, denoted by Yirnp = [Virnyp| is given by:

M
Ykrmp = Z ak(em)hr,msn,mcp,my (317)
m=1
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where the channel coefficient h, ,, is defined as:
hnm = ’ngf;D) hﬁaﬁf)gr,m (318)

(3.17) corresponds to a PARAFAC model with spatial, cooperative slots, time
and code indices, in other words, a quadrilinear data tensor, as the one presented

in (2.28). The data tensor ) can be expressed in another way:

M
Y=>) AoH,08,0C,, (3.19)
m=1

CEXM ig the antenna array response

where o denotes the outer product, A €
matrix with [Alx, = ar(0,), H € C*M is the channel matrix with [H],,,
= hym, S € CVM ig the symbol matrix with [S],,, = S,m and C € CPM
is the spreading code matrix with [Cl,,, = ¢,m- In (3.19), we have the CP
decomposition of the data tensor ) as a sum of M rank-1 components and A,
H, S and C are the factor matrices of the decomposition. This PARAFAC model
is irreducible in the sense that vy, ., cannot be represented using less than M
components (this is the same to say that the 4-way array with typical element

Yk.rnp has rank M) [73].

3.3.1 Unfolding Matrices

We can rewrite (3.19) in an unfolding matricial form. The unfoldings can be
obtained from the slices of the data tensor. The slices are defined by fixing all
but two indices, resulting in a matrix. In this work, the 4-th order array is sliced

in 4 different ways. The following slices are used:

Yy = Sdiag,[H] diag,[A] CT, (3.20)
Y. ., = Hdiag,[A] diag,[C] S”, (3.21)
Y. ., = A diag,[C] diag,[S] H”, (3.22)
Y .. = Cdiag,[S] diag,[H] AT, (3.23)
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the operator diag;| | denotes the diagonal matrix formed with the j-th row of
the matrix argument. The unfolded matrices, denoted by Y;-Y, are obtained by

stacking the slices above, as follows:

Y. Y 1
Y, = Yy = ;
_YK‘,R,‘,._ _YK:.,.,P_
(Y ] (Y 1, |
v.=| . |vi=| . | (3.24)
_Y.,..,N,P_ _Y.,I‘%,N,._

We have that Y; € CKENXP ig the tensor ) € CF*EXNXP ynfolded into a matrix,
as follows:
Y, = (AocHoS)CT, (3.25)

The other unfolding matrices are defined as:

Y; = (CoAoH)ST, (3.26)
Y;=(SoCoA)HT, (3.27)
Y,=(HoSoC)AT, (3.28)

with Yy € CPEEXN 'y, ¢ CNPEXR a1d Y, € CRNPXK,

3.3.2 Uniqueness Properties

One of the most important properties of the tensor model obtained in (3.17)
and (3.19) is its essential uniqueness under certain conditions [73, 57]. The
uniqueness properties of the quadrilinear PARAFAC model presented by Kruskal

and described in |73, 57| are given as follows:

ka + kg + ks + ke > 2M + 3, (329)
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where kp is the Kruskal rank of the matrix A, (similarly to H, S and C). If the
condition (3.29) is satisfied, the factor matrices A, H, S and C are essentially
unique, hence, each factor matrix can be determined up to column scaling and
permutation. This uniqueness properties of the PARAFAC decomposition means
that any other set of matrices (A", H, C" and S') that satisfies (3.19), is related
with the original matrix set (A, H, C and 8) by A' = AIIA,, H = HIIAg, C
— CIIAG and S’ = SIIAg, where IT € CM*M ig a permutation matrix and A,
Ag, Ac and Ag are diagonal matrices that meet Ay AgAcAs — Iyy.

Now, let us assume that A, H, C and S are all full k-rank (a matrix is said
to have full k-rank if its k-rank is equal to minimum between the number of rows

and columns), thus, condition (3.29) becomes:

min(K, M) + min(R, M) + min(N, M) + min(P, M) > 2M + 3. (3.30)

Given that a matrix whose elements are drawn independently from an contin-
uous distribution has full k-rank with probability one [2|, then matrix H has
full k-rank with probability one. Such assumption is valid when the user signals
undergo independent fading channels which is one of the propagation scenario
assumptions made earlier. Also, the matrix A is full k-rank because we are mod-
eling it as a Vandermonde matrix with distinct generators, as the different users
signals arrives at the base station array with different angles of arrival. The
symbols matrix S is full k-rank with high probability if N is sufficiently large
in comparison to the modulation cardinality and the number of users. At last,
for the matrix C, full k-rank is possible if a certain length of spreading codes
are used. Fig. 3.6 depicts the boundary of the identifiability region of condition
(3.30) for M = 8 and N = 16.

With the assumptions above made, we can determine some parameters of the
adopted system, for example, the number of users that the proposed receiver can
handle and the minimum acceptable parameters (number of antennas at base
station, length of the spreading code, number of relays or the data block length)
that match a target number of users channels to be detected. Hence, we have
flexibility when choosing K, R, N and P, which is the one of the main reasons
for considering the tensor approach. It provides different tradeoffs for the system
model based on the parameters. We may note that the adoption of CDMA codes
when the relays do not transmit simultaneously may seem unnecessary, but the

addition of one more index to the data tensor may provide more flexibility when
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Figure 3.6: Boundary of identifiability region for K — 4 antennas and N = 16.

exploiting the uniqueness of condition (3.30). Indeed, we have:

o If P> M, N> M, then min(K,M) + min(R,M) > 3. For example, if K
= 2 and R = 1, we satisfy condition (3.30), which means that 1 relay per
user and 2 antennas at the base station (or 2 relay per user and 1 antenna
at the base station) are sufficient for M users. Thus the system supports

more users than relays and sensors.

e I[f P> M N> Mand K> 2, then we may set R = 1, which can give us
a possible scenario of [47], a cooperative DS-CDMA uplink with one relay

per user. In this scenario, there is no cooperative diversity.

o [f K> M, N> M, then R =2 and P = 1 is sufficient for M users. Setting P
= 1 1is equivalent to no spreading at the relays, thus a non-CDMA scenario.
Therefore, we get the models from [45] and [46].

o If K> M, P> M, then R =1 and N = 2 are enough to guarantee

uniqueness. It means that a short block length is sufficient for detection.

Based on the assumptions above, we can conclude that the proposed tensor
model gives us flexibility about many parameters and different kinds of diversity
tradeoffs. For example, let M =8 K< M, R < M, N< M and P < M, then
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condition (3.30) turns into:

K+ R+ N+ P >19. (3.31)

So, when modeling the system parameters to handle 8 users, the number of
antennas at the base station, number o relays, lengths of the spreading codes and
data blocks will have to match condition (3.31) in order to guarantee uniqueness.
We can then design the system based on the number of users and then distribute

the parameters according to availability (number of antennas, relays and etc).

3.4 Receiver Algorithm

Assuming that there is no channel information at the receiver or transmitter,
the algorithm presented in this section is based on the ALS (Alternating Least
Squares) method, which consists in fitting the quadrilinear model to the received
data tensor [75, 64]. The idea behind the ALS procedure is very simple: at each
time, update one of the factor matrices by using the least squares estimation
technique with the previous estimations of the other factor matrices. Each factor
matrix is estimated, in an alternate way, always using the previous estimations
of the other factor matrices. This procedure goes on until convergence. Two
factor matrices are randomly initialized before the first iteration. The unfolding
matrices in (3.25)-(3.28) will be used to estimate A, H and S for the proposed
semi-blind receiver, where we are assuming knowledge of the spreading codes
(matrix C) at the receiver and the first row of matrix S, which are pilot symbols.

Let us consider the noisy data tensor 5), then j/ is unfolded into the matrices
Y:-Y,, the noisy versions of Y;-Y,. From (3.28), the Least Squares update for
A is given by:

A=Y, (HoSoC), (3.32)

where H and S are the Least Squares updates previously obtained for H and S

respectively and (.)7 denotes the pseudo-inverse. Similarly, we have:

~ ~

S =[Y,(CoAoH), (3.33)

H =[Y;(SoCoA). (3.34)
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The Quadrilinear ALS algorithm is shown in Algorithm 1. The error at the end
of the ¢-th iteration is given by:

Y1 — (A o Hgy 0 S@)CT
el

e(i) = (3.35)

where ||.||r denotes the Frobenius norm. The convergence of the algorithm is
obtained when |e(i) —e(i — 1)| < 107°.

Algorithm 1 ALS FITTING - Semi-Blind Receiver

1)Initialization : Set i = 0; Initialize A(izo) and I:I(Z-ZO);

1=1+1;
3)Using Y, find a LS estimate of S : S(Z) (COA(Z- 1)<>I:I(Z~ 1))“?2;
~T N

2)
)
4)Using Y, find a LS estimate of H: H(l (Sq <>C<>A(Z 1) Y,
5)
6)

Using Y4, find a LS estimate of A : AZ) (ﬂ <>S(l <>C)TY4,

Repeat steps 2 — 5 until convergence;

After obtaining the estimation of A, H and S, it is necessary to remove scal-
ing ambiguity. Permutation ambiguity is not present on the semi-blind receiver
because one matrix is assumed known (matrix C). The scaling ambiguity of A
is removed by considering that the first row of A is known (the first row of A is
composed of 1’s). Then, the scaling matrix A of A is obtained by dividing the
first row of A by the first row of A. To remove the scaling ambiguity of A, we

have:
A = A diag [(Aa)71]. (3.36)

The same can be done to remove scaling ambiguity from S. Is assumed the first
row of S as known (one pilot symbol per user ) and the scaling ambiguity is

removed as follows:

S =S diag [(As)1], (3.37)

where Ag is the scaling matrix of S. After obtaining the scaling matrix of A and

S, we can find the scaling matrix Ay of H by:

ApaAgAg =1y (3.38)
and again, we can remove the scaling ambiguity of H:
H = H diag [(Ax)"1]. (3.39)
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If the knowledge of matrix C is not possible, the ALS algorithm will have one
step added, as shown in Algorithm 2. In terms of convergence, Algorithm 1
converges in much less time than Algorithm 2. Convergence of Algorithm 2 is
obtained when |e(i) — e(i — 1)| < 107%, with the error e(i) given by (3.35). After
the estimation, scaling ambiguity of matrix C can be removed by assuming that
the first row of C is known. This is possible because C is a Hadamard matrix
with the first row composed only by 1’s. Then, scaling ambiguity of matrix C is

removed the same way showed earlier for matrix A.

Algorithm 2 ALS FITTING - Semi-Blind Receiver with C Estimation

1)Initialization : Set i = 0; Initialize A(izo), C(izo) and I:I(Z-ZO);
2)i =i+ 1;
3)Using Y,, find a LS estimate of S : (T)
4)Using Y, find a LS estimate of H: I:IZ :( (i) © C <>A(Z 1)) 1Y
5)Using Y., find a LS estimate of A :

)

)

6)Using Y1, find a LS estimate of C: (l) =
7)Repeat steps 2 — 6 until convergence;

3.5 Simulation Results

This section presents computer simulations results for performance evalua-
tion purposes with the following scenario. The wireless links have frequency-flat
Rayleigh fading with path loss exponent equal to 3, the base station antenna
array is composed by K antennas, 16-QAM modulation is used and Hadamard
orthogonal codes are considered for spreading sequences. The signals transmit-
ted by the relays of a given user arrive at the destination with the same angle of
arrival and the angle spread is zero. Also, the number of multipaths Lgﬁf)) was
considered 30. The symbol error rate (SER), bit error rate (BER) and channel
normalized mean square error (NMSE) curves are shown in function of the mean
signal-to-noise ratio (SNR) of the RD link. The mean results were obtained us-
ing 10000 independent Monte Carlo samples with each run corresponding to a
different realization of channel’s gains, spatial signatures, modulation symbols

and noise. The AF gain used at simulations is given by:

3.40
\/yh SR)|2P + Ny (3:40)
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Figure 3.7: SER versus SNR performance of the proposed semi-blind receiver for
different values of K (number of receive antennas).

where P; is the source power, P, the relay power and Ny the noise variance. We
considered P, — P, — 1.

In Fig. 3.7, we assume a datablock of N = 16 symbols, M = 4 users, P =
8 chips and R = 2 relays. This figure shows the performance of the SER for
different values of K (number of receive antennas). From this figure, it can be
viewed that the SER performance improves when the number of antennas at the
base station is increased. We can then affirm that the proposed receiver exploits
spatial diversity at the receiver.

Figure 3.8 shows the SER versus SNR for the proposed technique with P
= 8 chips, a datablock of N = 16 symbols, K = 2 receive antennas and M
= 4 users. Then we have curves for various values of R (number of relays on
the cluster). From Fig. 3.8 we can observe a better SER performance when we
increase the number of relays on the system. This happens because when the
number of relays is augmented, the model turns to a more cooperative scenario,
exploiting cooperative diversity and resulting in better link quality. Comparing
Figures 3.7 and 3.8, we can conclude that an increase in the number of relays

per user R provides a high performance gain than an increase in the number
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Figure 3.8: SER versus SNR performance of the proposed semi-blind receiver for
a different number of relays on the system.

of receive antennas K. However, when we increase the number of relays we also
decrease the spectral efficiency of the system and latency is increased.

Figure 3.9 shows the influence of the spreading code length P on the SER,
where we assumed R = 2 relays, K = 3 antennas, N = 16 symbols and M = 2
users. In this figure it is possible to see a slightly decrease on the SER as the length
of the spreading code is augmented. Comparing Figs. 3.7, 3.8 and 3.9, we can view
that an increase in P provides a smaller performance gain than an increase in
K and R. This happens because the considered communication system does not
exploit frequency diversity, due to the fact that we are considering frequency-flat
fading. In addition, if we assume a DKRST coding at the relays, it can be viewed
as a time-spreading operation, without time diversity. Generally, the introduction
of CDMA codes waives the successive transmission of the relays, since they can
transmit simultaneously and share the same channel.

Fig. 3.10 depicts the SER performance for several values of the data block
length N, where we have P = 8 chips, K = 2 receive antennas, R = 2 relays
and M = 4 users. It is observed from Figure 3.10 that there is little change on
SER for different data block lengths. Starting from a small length of 2, we note a
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Figure 3.9: SER versus SNR performance of the proposed semi-blind receiver for
different values of P (spreading code length).

small decrease of the SER performance as N is increased to 8. From a datablock
length change of 8 to 256 there is almost no variation on the SER. As we increase
N, we have more symbols to estimate, which explains the better performance for
a short symbol block of 2. Moreover, as above explained, because the system
does not exploit time diversity, we should not expect significant variations on
the SER when the value of N is changed. We may also note that we assume
knowledge of the first row of matrix S, thus, smaller values of N, such as 2 or
3 means knowledge of half or one third of the matrix S, respectively. Hence, for
small values of N, the receiver should perform better than for greater values such
as 32 or 256.

For Figure 3.11, we have the SER performance for different values of M (users
on the system), where we consider P = 16, K = 2, R = 2 and N = 16. From Fig.
3.11, we can see that the number of users has no impact on the SER. This can be
explained by the fact that multiuser interference at the relays is not considered,
then, when M is increased, the error rate does not change. Also, the total number
of relays is also increased when M is augmented (total number of relays is MR).

Now we compare the SER performance of the proposed semi-blind receiver
for four different coding sequences. For Fig. 3.12, we considered K = 2 receive
antennas, R = 3 relays, N = 16 and M = 8 users. We compared the Hadamard

orthogonal code matrix, a DFT (Discrete Fourier Transform) matrix, a random
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Figure 3.10: SER versus SNR performance of the proposed semi-blind receiver
for different values of N (data block length).

code matrix (generated by a normal distribution with mean 0 and unitary vari-
ance) and a PN (Pseudo-Noise) sequence [84]. We set P = 8 for each configura-
tion. From Fig. 3.12 we can see that the performance of the semi-blind receiver
operating under direct-sequence orthogonal spreading or using the DFT coding
scheme is almost identical. This happens because the DFT matrix and the or-
thogonal Hadamard codes provides orthogonal decorrelation. For the Random
matrix and the PN sequences, performance went worse because there is noise
amplification. In a practical system, Hadamard codes would be the best option
as spreading sequences.

On Figure 3.13, we compare the SER of the proposed receiver with the ones
of the following techniques: Zero Forcing (ZF) receiver that works under com-
plete knowledge of A, H and C, the semi-blind DS-CDMA receiver proposed in
[2] (non-cooperative DS-CDMA), the receiver proposed in [46] using AF (same
cenario of the present work, but without spreading codes) and the receiver shown
in [47], where the relays transmit at the same time. The ZF receiver estimates S

as follows:

A

Szr=[(CoAoH)Y,". (3.41)

For Figure 3.13, we set N =16, P =2, M =4, K = 3 and R = 2 for both the

ZF and the proposed receiver. For the receiver proposed in [46], only one relay is
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Figure 3.11: SER versus SNR performance of the proposed semi-blind receiver
for different values of M (users on the system).

used and we set K = 3, N = 16 and M = 2. P is not considered because there
is no CDMA in [46]. For [2], we set P = 4, K = 3, N = 16 and M = 4. The
last receiver, the one of [47], we set N = 16, P =2, M =4, K =3 and R = 1).
These simulations parameters were chosen to give us the same or similar spectral
efficiency for all the receivers. The spectral efficiency for each configuration is:
M / (PR + 1) for the proposed receiver and the ZF, M / (R + 1) for the receiver
described in [46], M / P for [2] and M /2P for [47]. The link between user and
base station used on |2] has three times the distance than the SR link (user to
relay) with path loss coefficient equal to 3. We see in Fig. 3.13 that the ZF receiver
went better in comparison with the proposed model, which is expected. However,
the proposed receiver still showed good performance even without knowing the
factor matrices (A, H and S). Both the ZF and the proposed receiver went better
than the non-cooperative CDMA semi-blind receiver described in [2], the receiver
of [46], and the one of [47].

The addition of one dimension to the received signal tensor (chip dimen-
sion) makes the proposed receiver to have a better performance in comparison
to [46]. The proposed model also went better than [2| due to the cooperative sce-
nario (short relay-aided links instead of extended direct links) and showed better

performance than the receiver presented in [47] because the proposed receiver ex-
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Figure 3.12: SER versus SNR performance of the proposed semi-blind receiver
for four possible coding schemes.

ploits cooperative diversity. On the next result we provide another comparison of
the receivers (except [2] and the ZF), but this time with the same configurations
for each one, independently of spectral efficiency or transmission rate.

In Fig. 3.14 weset K =3, R=3, P =8 N = 16 and M = 4 for all the
receivers. As we can see from Figure 3.14, the proposed receiver showed better
SER performance in comparison to the ones of [46] and [47]. Even with the same
number of relays and spreading code length, the proposed receiver was able to
surpass the other two in SER performance. This is due to the fact that the
proposed receiver exploits transmission in different time slots and spreading at
the relays, characteristics of the receivers of [46] and [47] respectively. Thus we
can say the proposed receiver may act as junction of both [46] and [47].

Now, we compare the semi-blind receiver with the MMSE receiver [85]. The
MMSE receiver works under complete knowledge of the matrix A and H. Fig-
ure 3.15 presents the bit error rate (BER) performance for the proposed semi-
blind and MMSE receivers. It is shown from Fig. 3.15 that the proposed receiver
has performance equal to the one of the MMSE receiver. This means that the
proposed receiver is able to obtain the same performance as if it had previous
knowledge of the spatial signatures and channel matrices.

We show on the next figures the NMSE performance of the semi-blind receiver
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Figure 3.13: SER versus SNR performance for different receivers with the same
spectral efficiency.

for the estimation of matrices A and H. The NMSE of matrix A can be obtained
by:

NMEEs = ZHAU Al (3.42)
||A E <=

where Mc is the number of Monte Carlo runs, A is the matrix A generated
during the /-th Monte Carlo run and AA(Z) represent the estimation of A on the
[-th Monte Carlo run. A similar expression was used to find the NMSE of the
matrix H. Figures 3.16 and 3.17 shows the NMSE performance versus SNR. of
the matrices H and A for a variation of the number of relays on the system. For
this result, we set K =3, P =8, M = 4 and N = 16. As we can see from Figures
3.16 and 3.17, when we increase the number of relays the NMSE diminishes. The
explanation for this behavior is the same as for Fig. 3.8, that is, when we increase
the number of relays, we take advantage a higher degree of cooperative diversity.

In Figure 3.18, we have the NMSE of matrix H in function of the SNR for a
variation in the number of users on the system. We set K =2, R =2, P = 16
and N = 16. It is possible to see that an increase on M from 2 to 8 decreases the
NMSE. This happens because of the same motives as for Fig. 3.11. Increasing
the number of users also increases the number of relays on the system. As the

number of users is increased from 8 to 16, there is no change in the NMSE of
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Figure 3.14: SER versus SNR performance for different receivers with similar
configurations.

matrix H, as multiuser interference at the relays is not considered. In Figure 3.19
we have the NMSE performance versus SNR of matrix A for a variation of the
number of users M. For Fig. 3.19 weset K =2, R =2, P =8 and N = 16. It
is observed from Figure 3.19 that there is almost no change on the NMSE for
a different number of users. As we increase M, we have more data to estimate,
however, with the behavior of the proposed semi-blind receiver on Fig. 3.11, we
can see that increasing the number of users do not interfere neither on the SER
nor on the NMSE of A, as said earlier, multiuser interference at the relays is not
considered.

Fig. 3.20 shows the NMSE of the matrix A for a variation of K. The con-
figuration for this result is R = 2, P = 8, M = 4 and N = 16. By increasing
the number of receive antennas at the base station we also increase the number
of spatial signatures that we have to estimate, thus, the proposed semi-blind
receiver provides little better NMSEs for small values of K.

Figures 3.21 and 3.22 shows the NMSE of matrices A and H for a variation
of N. We can see from Fig 3.21 that an increase on N decreases the NMSE of
matrix A. It means that an increase on the data block length does not interfere
negatively on the spatial signatures estimation. This happens because larger
datablocks allows better estimations of the spatial signatures. Figure 3.22 shows

that an increase on the data block length provides almost no change on the NMSE
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Figure 3.15: BER versus SNR performance for the proposed semi-blind receiver
and the MMSE receiver.

of matrix H. By augmenting the data block length N, the NMSE of matrix H
does not increase, thus, the proposed receiver is able to estimate the channel
gains of all users independently of the number of symbols sent.

The next results shows the number of iterations for convergence of the ALS
algorithm versus the SNR of the proposed semi-blind receiver for computational
complexity evaluation purposes. In Fig. 3.23 we have the number of iterations for
convergence of the ALS algorithms of the proposed semi-blind receiver in function
of the SNR. We compare the Algorithms 1 and 2 (presented on Section 3.4). The
configuration that was set for this result is K =2, R =2, P =8 M =4, N =
16. We can see from Figure 3.23 that Algorithm 2 takes many more iterations
to converge in comparison to Algorithm 1. The explanation for this result is
simple: more data to estimate means more iterations for the receiver to run. The
simple knowledge of the spreading codes matrix increases the convergence by
many iterations.

Figure 3.24 shows the number of iterations for convergence of Algorithm 1
versus the SNR for a variation on the datablock length N. For Figure 3.24 we set
K =2 R=3, M =28, and P = 8. By increasing N, we increase the data block
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Figure 3.16: NMSE of matrix H versus SNR performance for a different number
of relays.

length, thus, the quantity of data symbols to be estimated. We explain the result
of Figure 3.24 as we explained the result of Figure 3.23: more data to estimate
means more iterations for convergence.

Fig. 3.25 shows the number of iterations for convergence of Algorithm 1 of the
proposed semi-blind receiver and the receiver algorithm of [2| (non-cooperative
CDMA). For Figure 3.25, weset K =2, R =3, P =8, M =4 and N = 16. The
result presented in Figure 3.25 shows us that the proposed receiver algorithm
converges in fewer iterations than the receiver algorithm of [2|. The algorithm
used on [2] is based on a trilinear PARAFAC decomposition while the proposed
algorithm is based on a quadrilinear PARAFAC decomposition. The addition of
one dimension (cooperative dimension) to the quadrilinear decomposition implies
in more data to be estimated during the iterations. Even so, the proposed receiver
algorithm is able to estimate more data with fewer iterations, due to the higher

number of received signals.
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Figure 3.17: NMSE of matrix A versus SNR performance for a different number
of relays.
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Figure 3.18: NMSE of matrix H versus SNR performance for a different number
of users.
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Figure 3.19: NMSE of matrix A versus SNR performance for a different number
of users.
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Figure 3.20: NMSE of matrix A versus SNR performance for a different number
of receive antennas.
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Figure 3.21: NMSE of matrix A versus SNR performance for a variation of N
(data block length).
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Figure 3.22: NMSE of matrix H versus SNR performance for a variation of N
(data block length).
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Figure 3.23: Number of ALS iterations versus SNR for the proposed semi-blind
receiver algorithms.

—©— Algorithm 1, N = 16
| =B Algorithm 1, N = 128 | |

ALS iterations

0 5 10 15 20 25 30
SNR (dB)

Figure 3.24: Number of ALS iterations versus SNR for Algorithm 1 with N
varying.
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Figure 3.25: Number of ALS iterations versus SNR for the proposed semi-blind
receiver and the semi-blind receiver of [2].
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Chapter 4

Multiuser Detection for Wireless
Cooperative Uplink with Multiuser

Interference at the Relays

In this chapter, we present the second system model of this dissertation as
well as a receiver for this communication system. The model is similar to the
one presented on the previous chapter: a cooperative DS-CDMA uplink with
M users transmitting to a base station with the help of AF relay-aided links.
The base station employs an array of antennas and direct-sequence spreading
is used at the relays. On this scenario, a trilinear PARAFAC decomposition is
proposed to represent the received signal. The difference between the system
model of Chapter 3 and the one we present here is that multiuser interference is
considered at the relays, thus a more realistic scenario. The receiver will estimate
the parameters in two phases: a supervised phase with a training sequence sent
by all users for the estimation of channel gains and spatial signatures, then a
non-supervised second phase where the users symbols are then estimated. First,
we describe the system model itself, then we describe the tensorial decomposition
adopted, its uniqueness conditions and properties. Next, we show the proposed
receiver algorithm for this case and for last, the simulation results are shown and

discussed.

4.1 System Model

On the system model considered in this chapter, we also adopt the fact that

each user communicates with its R associated relays and that each relay forwards
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Base Station

Figure 4.1: Cooperative uplink with M users and multiuser interference at the
relays.

the signal using a different time-slot, but now, the signal sent by a user to its
associated cluster of relays will act as interference to the relays of other users on
the system (as Fig. 4.1 shows), being a more realistic scenario than the previous
one. This means that we no longer make the assumption that the signal received
at a relay located within the cluster of a user contains no significant interfer-
ence from the other users. The R relays of a given user will use direct-sequence
spreading on the user signal with a spreading code of length P, where the same
code is used by all relays of a given user. It is worth mentioning that, as well
as in Chapter 3, the system model presented in also holds when the DS-CDMA
spread carried out by the relays is replaced by a DKRST coding, with P being
the number of transmission blocks of the coding. Then, the signal received by

the r-th relay of the m-th user is given by:
M
uﬁfﬁ% = Z hf,ii)fsn,f + vﬁiﬁ%, (4.1)
f=1

where hgﬁ)f is the channel coefficient between the f-th user and the r-th relay of
the m-th user. Thus, the signal of the m-th user will be added with the signals
of the other users on the system, leading to a more realistic and challenging
scenario. Note that in (3.1) there is no summation in the variable f, contrarily
to 4.1. For the RD link, the signal received at the k-th antenna of the base
station, trough the r-th time slot, on the n-th symbol period and p-th chip of

62



the spreading code is given by:

S

(RD RD
xk rnp Z hkr’nzgr me7mu7(fs;§)n + Ul(crn)p7 (42)
m=1

which, by substituting (4.1) into (4.2), gives us:

SR) RD
:Uk Tn,p Z hk: ngT mCp,m (Z hf’ m fSn + Ur m ZL> + Ul(€ r,n),p' (43)
m=1

Reorganizing (4.3), we get:

M M
(SR) (SRD)
k‘?"n,p Zzhkrmng p: hrmfsn + kT’le (44)

m=1 f=1
The same assumptions made about the propagation scenario on Chapter 3 will

be considered on this system model, hence, from (3.6) we have:

M M
SR SRD
krn,p Zzakz ’yrm grme7 h( fSn +U/(€7“np)7 (45)
(SRD) .. . o .
where v, is given by (3.8). The total transmission rate of the system is
M/(R+1).

4.2 Proposed Tensor Model

In this section, we represent the received signal presented in (4.5) as trilinear
PARAFAC decomposition. To simplify presentation, we are going to omit the
AWGN terms and assume that the channels are constant for N symbol periods.
So let ) be a M-component, quadrilinear model, so that ) € CEXEXNXP jg 4

4-th order tensor collecting the baseband RD data signals at the base station:

Vkrinp = T (4.6)

A typical element of ), denoted by yirnp = [Virnp| s given by:

M M
SR
Yk,rnp = ZZ rm Cpmhg’m)fsn»f (47)

m=1 f=1
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fork=1,..K,r=1,..,.R, n=1,.,N, p = 1,...,P, where the relay-destination

channel coefficient hgan) is defined as :

h(ED) — A(ED)g (4.8)

r,m - ’77',

Now, let us define a global channel coefficient, denoted by hfm #» accounting for

the channel coefficients of both SR and RD links, defined as follows:

WG s = RO hURD) (4.9)
then, (4.7) turns out to:
M M
Ykrmp = Z Z ak(6m>hgm7fcp,msn,f- (410)
m=1 f=1

To generate a trilinear model from a quadrilinear model, we have to join two
dimensions into one, in order to obtain 3 dimensions. Thus, we merge indices r
and n into one index, [, where | = (n-1)R + r and | = 1,...,L, with L = NR. To

RXMxN

accomplish that, we define a third order tensor Z € C given by:

Z=H" x38, (4.11)

where H € CP*M*F i a third order tensor with [H], . f = hS, ;, S € CVM
is the users symbols matrix and “ x3” is the mode-3 product. Z follows a Tucker-1

model [1|. The tensor Z can also be expressed as follows:

M
Zramn = Z hfmvfsmf, (4.12)
F=1

where [Z],.nn = Zrmm. Two of the unfoldings of Z, Z; € CN®*M and Z, €

CEMX*N “are obtained as follows:

Z, = (S®Ix)HY, (4.13)

Z, = HYST, (4.14)

where I € C**® is the identity matrix, “®” denotes the kronecker product and
HY € CMEXM and HY € CRM*M are matrix unfoldings of HE. Then, let X be

(CKXPXL

a M-component trilinear model, so that X € is a third order tensor

collecting the baseband RD signals at the base station, with [X]i,1 = Ykrnp,
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where [ = (n — 1)R + r. By using Z; as a factor matrix of (4.7), we get the
trilinear PARAFAC model of X' (with xy,; = [X]kp.):

M
Tkpl = Z ak(em)cp,mzll,ma (4.15)

m=1
where 2y, ,, denotes the elements of matrix Z;. (4.15) can be represented with a

matricial notation, as follows:

M
X = Z A.,m o C.,m o Zl.,ma (416)
m=1

where A, C and Z; are the factor matrices of the decomposition, and, similarly
to the previous system model presented in Chapter 3, this trilinear PARAFAC
decomposition is irreducible in the sense that xy,; cannot be represented using
less than M components, such that the 3-way array with typical element wy, ,;
has rank M). We may also note that we reduced the model of (4.10), which is
a four order tensor, to a third order tensor in (4.15) that follows a PARAFAC
decomposition with the factor matrix Z; given by (4.13).

4.2.1 Tensor unfoldings

The tensor X unfoldings that we will use are obtained as follows:

X, =(AoQ)ZT, (4.17)
Xy = (Z,0A)CT, (4.18)
X3 = (CoZ)AT, (4.19)

with X; € CEP*L X, € CHEXP and X3 € CPE*E | By moving from a quadrilinear
model to a trilinear model we reduced the number of factor matrices and tensor

unfoldings by one.
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4.2.2 Uniqueness Properties

For this case, the trilinear PARAFAC decomposition has uniqueness granted

if the condition below is satisfied:

ka + ke + kz1 > 2M + 2, (4.20)

where kgz; is the Kruskal rank of matrix Z;. Again, if condition (4.20) is satisfied,
the factor matrices A, C, and Z; are essentially unique, meaning these matrices
can be determined up to column scaling and permutation. Thus, any other set
of matrices (A', C" and Z)) that satisfies (4.16) is related to the original matrix
set (A, C and Z;) by A" = AIIA,, C' = CIIA¢ and Z; — Z;11Az;, where
AaAAcAzr = I If we assume that A, C and Z; are all full k-rank, we have:

min(K, M)+ min(P, M) + min(L, M) > 2M + 2. (4.21)

The matrix A is full k-rank because we are modeling it as a Vandermonde matrix
with distinct generators because the different users signals arrives at the base
station array with different angles of arrival. Matrix C can be full k-rank if a
certain length of spreading codes are used. For Z; to be full k-rank, a certain
data block length and a continuous distribution for the channels coefficients is
necessary. With the assumptions made above, we can determine some parameters
of the adopted system, as the number of users the proposed receiver can handle
and the minimum acceptable parameters that match a predefined target. So, we
are interested in exploiting the uniqueness of condition (4.21). Based on this, we

have:

o If K> Mand P> M then min(L,M) > 2. It means that RN > 2, which
could give us, for example, R = 1 and N = 2, thus a short block length

and a single relay simultaneously would be sufficient to handle M users.

o If L. > M, then we go back to the other cases presented in Chapter 3 where
K or P < M, thus showing similarities between the uniqueness conditions

of the two proposed system models.

For instance, if we have M = 8 users, K < M, P < M and L < M, then

condition (4.21) turns into:

K+ P+ RN >18. (4.22)

66



Condition (4.22) shows us system requirements for choosing the parameters to
handle 8 users. The number of antennas at the base station, number of relays,
spreading code length and data block length will have to match condition (4.22)
in order to guarantee uniqueness. With condition (4.22) we can design the system

according to availability (number of antennas, relays and etc).

4.3 Receiver Algorithm

In this section we present the proposed receiver for the system model of Sec-
tion 4.1. The receiver estimates the parameters of the system in two phases. The
first phase is a supervised stage where a short non-orthogonal training sequence is
transmitted from all users to help the receiver estimate the channel information.
On the second phase, the users’ data symbols are transmitted (non-supervised
stage), then the receiver is able to estimate the symbols using the channel gains
obtained during the first phase. It is assumed previous knowledge of the spread-
ing codes matrix C. During the supervised stage (first phase) we do not use the
Z, defined in (4.13), instead, it is used Z4, which is obtained by:

Zi; = (S ® Ig)HY, (4.23)

where the matrix S; € C"V*M is composed of training sequences, known at the
receiver. The dimension W (with w = 1,...,W) of matrix S; is usually smaller
than dimension N of matrix S, and it represents the number of pilot symbols
per data stream. Thus, during the supervised stage we have Z,, € CWV#*M_ With

Z;, the tensor unfoldings are generated, as follows:

Xy = (Ao C)ZL, (4.24)
where X;; € CEP*L and
Xs = (CoZy)AT. (4.25)

where X3, € CP2XK_ During the first phase, the ALS algorithm is used and the

factor matrices A and Zq; will be estimated, as follows:

A = [Xy(CoZ)TT, (4.26)
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where ZAU is the Least Squares update previously obtained for Z,; and the matrix

th is the noisy version of X3;. The estimation of Zj; is given by:

Zo, = [Xu(A o O, (4.27)

with A being the Least Squares update obtained for A and X;; being the noisy
version of Xi;. Algorithm 3 depicts the two phases of estimation of the proposed
semi-blind receiver for the adopted system model. The ALS is used in steps 1-5
of Algorithm 3 (during the first phase).

Algorithm 3 Proposed Receiver - Two Phase Estimation

First Phase (Supervised Stage) K

1)Initialization : Set i = 0; Initialize A (—p);

2)i =1+1;

3)Using X1, find a LS estimate of Zuy ZAltz;) = (A(i,l) OC)TXU;
4)Using X5, find a LS estimate of A : A?;) = (ZAlt(i) <>C)TX3t;
)Repeat steps 3-95 unéil convergence;
JReorganize Zy; into Zoy;

VFrom Zs, estimate HS I—iQG = Zoy (ST,

Second Phase (End of Supervised Stage)

8)Using X, find a estimate of Zj : ZlT = (AA(i) OC)T)NQ;
9)Reorganize Zy into Zs;

10)From Z,, estimate S : S = ((I:IS)TZQ)T;

3
6
7

The measured error at the end of the i-th iteration is given by:

. T
X — (A )OC)W( 1%
X413

e(i) = (4.28)

The criteria to stop the ALS is when |e(i) — e(i — 1)| < 107%. After estimating
matrices A and Z;, we remove the scaling ambiguity of matrix A by assuming
that the first row of A is known. To remove the scaling ambiguity of matrix Z1;
we use the following identity: AxAziy = Iy, where Agzyg is the scaling matrix
of Zy;. As we know Ay, it is easy to find Azy¢. We can then estimate the global
channel tensor H¢. To do so, we must reorganize th into th (the estimated
version of Z, during the supervised stage) by folding Z1; into Z, (the estimated
version of Z during the supervised stage) then unfold Zg into ZQt. This is done

by reorganizing the elements of Z1; as follows:

A ~

[Zt]r,m,w = [th](wfl)RJrr,ma (429)
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and
[ZQt](T—l)]W—l—m,w = [ZAt]r,m,w- (430)

Hence, HS (the estimation of HS) is obtained as follows:

~

H, = Z,(S])". (4.31)
~ G N
Now we can just rearrange H, to get H®, the estimation of HE, as follows:

~ e
(H s = [Hy Jor—1)Mm g (4.32)

~ G
With H, obtained, the supervised stage is over and the second phase starts.

During the second phase, the estimation of Z; is done as follows:

Z, = [X1(A o )T, (4.33)

where the matrix X; is the noisy version of X; and A is the estimation of A
obtained during the first phase of the algorithm. After obtaining Z1, we simply
reorganize it into £ (the estimated version of Z) then we unfold Z into Z,, as
follows:

~

{Z]r,m,n = [Zl](n—l)R-‘rr,ma (434)

~ A

[ZQ](T—I)]V[—l—m,n = [Z]T,m,n- (435)
Then we can estimate S using the channel coefficients estimated during the
supervised stage. The estimation of S is obtained by:
~ ~ G b T
S =(Hy)'Zs)". (4.36)

Assuming no knowledge of the spreading codes will add another step to the ALS
estimation of Algorithm 3. After the estimations, scaling ambiguity of matrix C

can be removed the same way as in Chapter 3.

4.4 Simulation Results

In this section we present the comput