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RESUMO

A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar

que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera

canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida:

a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são

múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo.

O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total

em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade,

métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a

conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se

prova que é suficiente que a métrica seja conforme a uma métrica Einstein.

Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-

Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas

geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas

do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda

forma fundamental. Por fim, estudam-se folheações de classe C2 transversalmente orientadas de

codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas

por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.

Palavras-chave: Quase soliton de Ricci. Funcional curvatura escalar total total. P-laplaciano.

P-tom fundamental. Métricas de Einstein. Curvatura escalar. Tensor de cotton.



ABSTRACT

The present thesis is divided in three different parts. The aim of the first part is to prove that a

compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided

one of the following conditions associated to the Schouten tensor holds: the second symmetric

function is constant and positive; two consecutive symmetric functions are non null multiple or

some symmetric function is constant and the quoted tensor is positive.

The aim of the second part is to study the critical metrics of the total scalar curvature funcional on

compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics.

It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is

true for CPE metrics under a suitable integral condition and we also prove that it suffices the

metric to be conformal to an Einstein metric.

In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard

manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and

submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone

estimates of minimal submanifolds with certain conditions on the norm of the second fundamental

form. Finally, we study transversely oriented codimension one C2-foliations of open subsets Ω

of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean

curvature of the leaves in terms of the p-fundamental tone of Ω.

Keywords: Almost Ricci soliton. Total scalar curvature functional. P-Laplacian. P-fundamental

tone. Einstein metrics. Scalar curvature. Cotton tensor.
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1 INTRODUCTION

This thesis deal with three different problems. First we study compact

almost Ricci solitons, we investigate which geometric implication has the assumption of the

second symmetric function S2(A) associated to the Schouten tensor to be constant and positive

on a compact almost Ricci soliton. More precisely, we have the following result.

Theorem 1.0.1 Let (Mn,g,X ,λ ), n≥ 3, be a non-trivial compact oriented almost Ricci soliton

such that the Cotton tensor is identically zero. Then, Mn is isometric to a standard sphere Sn

provided that one of the next conditions is satisfied:

1. S2(A) is constant and positive.

2. Sk(A) is nowhere zero on M and Sk+1(A) = cSk(A), where c ∈ R\{0}, for some k =

1, · · · ,n−1.

3. Ric≥ R
n g, with R > 0, and

∫
M Sk(A)∆h≥ 0 for some 2≤ k ≤ n−1.

4. Sk(A) is constant for some k = 2, · · · ,n−1, and A > 0.

We highlight that the symmetric functions associated to the Schouten tensor were

used by Hu, Li and Simon (HU et al., 2008) to study locally conformally flat manifolds. By

assuming that the Weyl tensor vanishes, the conclusion of item 4 in the above theorem follows

directly from Theorem 1 obtained in (HU et al., 2008). In this direction, we point out that item 1

and item 4 of the above theorem improve Theorem 1 in (HU et al., 2008) for compact almost

Ricci solitons under the hypothesis of Cotton tensor identically zero.

Second, we study the CPE metric which is a 3-tuple (Mn, g, f ) where (Mn,g), n≥ 3

is a n-dimensional compact oriented Riemannian manifold with constant Ricci scalar curvature

and f is a smooth potential function that satisfies the equation

Ric− R
n

g = Hess f − f
(
Ric− R

n−1
g
)
,

There is a famous conjecture proposed in (BESSE, 2007) which says that a CPE metric is always

Einstein.

Recently, by considering the function h = |∇ f |2 + R
n(n−1) f 2, Leandro (NETO, 2015)

was able to show that CPE conjecture is true under the condition that h is a constant. Whereas,

Benjamin Filho (FILHO, 2015) improved this result requiring that h is constant along of the flow

of ∇ f .

Taking into account that height functions are eigenfunctions of the Laplacian on a

sphere Sn with standard metric g, we may conclude that (Sn, g, hv) is a CPE metric, where hv is
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a height function for an arbitrary fixed vector field v ∈ Sn ⊂Rn+1. Indeed, the existence of a non

constant solution is only known in the standard sphere for some height function.

Now we define ρm( f ,∇ f ), which for simplicity we denote by ρm, according to

ρm = (m−1)
∫

M
f m−2|∇ f |4dM− (n+2)R

n(n−1)

∫
M

f m|∇ f |2dM, (1.0.1)

where m ∈ N. It is easy to check that on Sn we have ρm = 0 for every m = {1,2,3, · · ·}. We also

recall that Benjamim Filho proved in (FILHO, 2015) that the CPE conjecture is true provided

ρ1 ≤ 0 and ρ2 = 0.

In this spirit, inspired by the historical development on the study of CPE conjecture,

we shall prove that the assumptions considered in (FILHO, 2015) as well as (NETO, 2015) can

be replaced by a weaker integral condition. We point out that this integral condition is satisfied in

the standard sphere, hence it is a natural hypothesis to consider. In this sense, we have established

the following result.

Theorem 1.0.2 The CPE conjecture is true provided that the function (1.0.1) satisfies

ρk +ρm ≤ 0,

for m > k, where m is even and k is odd.

We now deal another approach. In order to do so, we say that a conformal mapping between

two Riemannian manifolds (M,g) and (N,h) is a smooth mapping F : (M,g)→ (N,h) which

satisfies the property F∗h = α2g for a smooth positive function α : M→ R+. Here, we ask what

happens if a CPE metric is conformal to an Einstein manifold? The answer is the following

result:

Theorem 1.0.3 Let (Mn,g, f ) be a CPE metric. If g is conformal to an Einstein metric g̃, then

M is isometric to the standard sphere.

It is important to remark that, if a compact 4-dimension manifold is locally conformal

to an Einstein manifold then its Bach tensor vanishes, since the Bach tensor is a conformal

invariant in dimension four. On the other hand, Qing and Yuan in (QING; YUAN, 2013) proved

that the CPE conjecture is true provided the metric is Bach flat. Therefore, the previous theorem

is an extension of this result for any dimension.

Remark 1.0.1 We remark that the previous theorem is an extension for any dimension of a

particular result which is already true in dimension four. In fact, it is well known that if a
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compact 4-dimension manifold is locally conformal to an Einstein manifold then its Bach tensor

vanishes. In particular, any 4-dimensional CPE metric conformal to an Eienstein metric is Bach

flat. Thus, by Theorem 3.10 in (QING; YUAN, 2013) the CPE conjecture is true in this case.

In the third part we study with the p-fundamental tone. We denote by λ ∗p(M) the

p-fundamental tone of M, which is defined by

λ
∗
p(M) = inf

{∫
M |∇ f |pdM∫
M | f |pdM

: f ∈W 1,p
0 (M), f 6= 0

}
.

In this part, inspired in (BESSA; MONTENEGRO, 2003), we study lower bounds estimates

for the p-fundamental tone on geodesic ball and as a consequence we get lower bounds for

the p-fundamental tone of submanifolds with locally bounded mean curvature. We obtain the

following results.

Theorem 1.0.4 Let M be an n-dimensional complete Riemannian manifold. Denote by BM(q,r)

a geodesic ball with radius r < inj(q). Let κ(q,r) = sup{KM(x) : x ∈ BM(q,r)}, where KM(x)

denotes the sectional curvature of M at x. Then

λ
∗
p(BM(q,r))≥


1
pp max{np

rp , [(n−1)k coth(kr)]p} if κ(q,r) =−k2,

np

pprp if κ(q,r) = 0,
((n−1)k cot(kr)+1)p

pprp if κ(q,r) = k2 and r < π

2k ,

(1.0.2)

where k is a positive constant.

Theorem 1.0.5 Let ϕ : Mn→ Nm be an isometric immersion with locally bounded mean curva-

ture and let Ω be any connected component of ϕ−1(BN(q,r)) for q∈N\ϕ(M) and r > 0. Denote

by κ(q,r) the supremum of the sectional curvature of M in BM(q,r) as in Theorem 5.2.2. Then,

for a constant k > 0, we have the following:

1. If κ(q, inj(q)) = k2 <+∞ and

r < min

inj(q),
cot−1

(
h(q,inj(q))
(n−1)k

)
k

 ,

then

λ
∗
p(Ω)≥ [(n−1)k cot(kr)−h(q,r)]p

pp .

2. If κ(q,r)> 0 for all r > 0, limr→∞ κ(q,r) = ∞, inj(q) = ∞, and

r < r0 := max
s>0


cot−1

(
h(q,s)

(n−1)
√

κ(q,s)

)
√

κ(q,s)

 ,
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then

λ
∗
p(Ω)≥

[(n−1)
√

κ(q,r)cot(
√

κ(q,r)r)−h(q,r)]p

pp .

3. If κ(q, inj(q))= 0 and r <min{inj(q), n
h(q,inj(q))}, where n

h(q,inj(q)) =+∞ when h(q, inj(q))=

0, then

λ
∗
p(Ω)≥

[n
r −h(q,r)]p

pp .

4. If κ(q, inj(q)) =−k2, h(q, inj(q))< (n−1)k, and r < inj(q), then

λ
∗
p(Ω)≥ [(n−1)k−h(q,r)]p

pp .

5. If κ(q, inj(q)) =−k2, h(q, inj(q))≥ (n−1)k, and

r < min

inj(q),
coth−1

(
h(q,inj(q))
(n−1)k

)
k

 ,

then

λ
∗
p(Ω)≥ [(n−1)k coth(kr)−h(q,r)]p

pp .

Proceeding we study upper bound for the p-fundamental tone which combined with the above

lower bound give us the following result.

Theorem 1.0.6 Let Mn be an n-dimensional complete properly immersed minimal submanifold

in a Cartan-Hadamard manifold N of sectional curvature KN bounded from above by KN ≤ κ ≤ 0.

Suppose that

lim
R→∞

Q(R)< ∞.

Then

λ
∗
p(M) =

(n−1)p√−κ
p

pp .

As a consequence of the previous theorem , we get the following interesting intrinsic result in

the direction of the generalized McKean’s Theorem obtained by Lima, Montenegro and Santos

in (LIMA et al., 2010).
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Theorem 1.0.7 Let Mn be a complete simply connected manifold with sectional curvature

bounded from above KM ≤ κ < 0. Furthermore, suppose that there exists a point q ∈M such

that

sup
R>0

Vol(Bq
R)

Vol(Bκ
R)

<+∞, (1.0.3)

where Bq
R is the geodesic ball in M centered at q of radius R, and Bκ

R is the geodesic ball in

Hn(κ) of the same radius R. Then

λ
∗
p(M) =

(n−1)p√−κ
p

pp . (1.0.4)

Finally, we study transversely oriented codimension one C2-foliations of open subsets

Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean

curvature of the leaves in terms of the p-fundamental λ ∗p(Ω) tone of Ω, which are called

Bernstein-Heinz-Chern-Flanders type inequalities. Following Barbosa, Bessa, and Montenegro’s

idea (BARBOSA et al., 2008), we have the following result.

Theorem 1.0.8 Let F be a transversely oriented codimension one C2-foliation of a connected

open set Ω of (n+1)-dimensional Riemannian manifold M. Then

p p
√

λ ∗p(Ω)≥ n inf
F∈F

inf
x∈F
|HF(x)|,

where HF denotes the mean curvature function of the leaf F.

As an interesting consequence the above theorem we obtain a Haymann-Makai-

Osserman type inequality, which is given in the following result.

Theorem 1.0.9 Let γ : (α,β )→ Rn be a simple smooth curve and Tγ(ρ(t)) be an embedded

tubular neighborhood of γ with variable radius ρ(t) and a smooth boundary ∂Tγ(ρ(t)). Let

ρ0 = supt ρ(t)> 0 be its inradius. Then

λ
∗
p(Tγ(ρ(t)))≥

(n−1)p

ppρ
p
0

. (1.0.5)
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2 PRELIMINARIES

In this chapter we introduce the basic notations necessary to a properly comprehen-

sion of the results presents in this work. We recommend for the reader as a complementary

reading (BESSE, 2007), (PETERSEN, 2006) and (SCHOEN; YAU, 1994).

2.1 Basic notations

Let (Mn,g) be a smooth, n-dimensional Riemannian manifold with metric g. We

denote by Rm(X ,Y )Z the Riemann curvature operator defined as follows

Rm(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z,

and we also denote by Ric(X ,Y ) = tr(Z→ Rm(Z,X)Y ) the Ricci tensor, and R = tr(Ric) the

scalar curvature. We have the well known formula

(divRm)(X ,Y,Z) = ∇X Ric(Y,Z)−∇Y Ric(X ,Z), (2.1.1)

where div means the divergence of the tensor. Let A = Ric− R
2(n−1)g denote the Schouten tensor,

which is a (0,2) symmetric tensor. The Weyl tensor is given by

Rm =W +
1

n−2
(A�g), (2.1.2)

where � means the Kulkarni-Nomizu product defined by the following formula

(α�β )i jkl = αilβ jk +α jkβil−αikβ jl−α jlβik, (2.1.3)

and α,β are (0,2) tensors. Finally, we define the Cotton tensor as follows

Ci jk = ∇iA jk−∇ jAik. (2.1.4)

It is well known that

∇
lWi jkl =

n−3
n−2

Ci jk. (2.1.5)

From identities (2.1.4) and (2.1.5) we see that for n ≥ 4 if the Weyl tensor vanishes, then the

Cotton tensor also vanishes. It is not difficult to check that when n = 3 the Weyl tensor always

vanishes, but the Cotton tensor does not vanish in general. Next, we say that a manifold has

harmonic Weyl tensor provided that divW = 0. Since (divW )i jk = ∇lWi jkl , by (2.1.5) we also

deduce that for n ≥ 4, the Cotton tensor is identically zero, if and only if, the Weyl tensor is

harmonic.
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2.2 Newton transformations

Let T be a symmetric (0,2) tensor and σk(T ) be the symmetric functions associated

to T defined as follows

det(I + sT ) =
n

∑
k=0

σk(T )sk,

where σ0 = 1 and s ∈ R. Since T is symmetric, then
(n

k

)
Sk(T ) = σk(T ) coincides with the k-th

elementary symmetric polynomial of the eigenvalues λi(T ) of T , i.e.,

σk(T ) = σ(λ1(T ), . . . ,λn(T )) = ∑
i1<···<ik

λi1(T ) · · ·λik(T ), 1≤ k ≤ n. (2.2.1)

For simplicity we do not distinguish between the (0,2) tensor T and the operator

T̃ :X(M)→X(M), that is a (1,1) tensor, such that T (X ,Y ) = 〈T̃ X ,Y 〉. We introduce the Newton

transformations Pk(T ) : X(M)→ X(M), arising from the operator T , by the following inductive

law

P0(T ) = I, Pk(T ) =
(

n
k

)
Sk(T )I−T Pk−1(T ), 1≤ k ≤ n (2.2.2)

or, equivalently,

Pk(T ) =
(

n
k

)
Sk(T )I−

(
n

k−1

)
Sk−1(T )T + · · ·+(−1)k−1

(
n
1

)
S1(T )T k−1 +(−1)kT k.

Using the Cayley-Hamilton Theorem we get Pn(T ) = 0.

Note that Pk(T ) is a self-adjoint operator that commutes with T for any k. Further-

more, if {e1, . . . ,en} is an orthonormal frame on TpM diagonalizing T , then

(Pk(T ))p(ei) = µi,k(T )pei, (2.2.3)

where

µi,k(T ) = ∑
i1<···<ik,i j 6=i

λi1(T ) · · ·λik(T ) =
∂σk+1

∂xi
(λ1(T ), . . . ,λn(T )).

Moreover, we have the well known formulae tr(T Pk(T )) = ckSk+1(T )

tr(Pk(T )) = ckSk(T ),
(2.2.4)

where

ck = (n− k)
(

n
k

)
= (k+1)

(
n

k+1

)
.
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The divergence of Pk(T ) is defined as follows

divPk(T ) = tr(∇Pk(T )) =
n

∑
i=1

∇eiPk(T )(ei),

where {e1, . . . ,en} is a local orthonormal frame on M. Our aim is to compute the divergence of

Pk(T ). The following definition is important in the sequel. Define the tensor D by

Di jk = ∇iTjk−∇ jTik. (2.2.5)

Note that when T is the Ricci tensor, then by equation (2.1.1) D = divRm, and when T is the

Schouten tensor, then D is just the Cotton tensor.

2.3 Algebraic lemmas

In this section we present some results that are essential for our purpose. We prove

some useful algebraic results.

2.3.1 Algebraic tools

First of all we show a lemma which concerns to suitable polynomials. Letting

I j(x) = x j, let us consider the polynomials pm,qm,rm,sm : R→ R given by

1. pm =
m−1

∑
k=1

(−1)k−1 k(2m+1− k)
2

Im−1−k.

2. qm =
m−1

∑
j=1

(−1) j+1 j( j+1)I j−1.

3. rm = mIm +
m+1

∑
i=2

(−1)iIm+1−i.

4. sm = m(Im + Im−1)− rm.

We also set

1. τm = rm + m(m+1)
2 (I +1).

2. υm,k = k(k+1)pm +m(m+1)pk.

3. µm = rm + m+1
m−1sm.

4. λm,k = k(k+1)rm +m(m+1)rk.

Lemma 2.3.1 For m > k, where m is even and k is odd, the above polynomials satisfy:

1. τm = (I +1)2 pm,

2. µm = 1
m−1(I +1)2qm,

3. λm,k = (I +1)2υm,k.
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Proof: Since rm(−1) = 0 we can decompose τm(x) = (x+1)τ̃m(x), where

τ̃m(x) = mxm−1− (m−1)xm−2 +(m−2)xm−3−·· ·+2x+
(m−1)(m+2)

2

=
m−1

∑
i=1

(−1)i−1(m+1− i)xm−i +
(m−1)(m+2)

2
.

In the same way, τ̃m(−1) = 0, enables us to write

τ̃m(x) = (x+1)
(

mxm−2− (2m−1)xm−3 +(3m−3)xm−4− (4m−6)xm−5

+ · · ·− (m−2)(m+3)
2

x+
(m−1)(m+2)

2

)
= (x+1)

m−1

∑
k=1

(−1)k−1 k(2m+1− k)
2

xm−1−k = (x+1)pm(x),

which gives τm(x) = (x+1)2 pm(x) that corresponds to the first item. Proceeding analogously

we write µm(x) = (x+1)µ̃m(x), where

µ̃m(x) = mxm−1 +
m−1

∑
k=1

(−1)k+1 2(m− k)
m−1

xm−1−k.

Arguing as in the first item we obtain

µ̃m(x) = (x+1)
(

mxm−2− (m−2)xm−3 +
(m−2)(m−3)

m−1
xm−4

− (m−3)(m−4)
m−1

xm−5 + · · ·− 6
m−1

x+
2

m−1

)
= (x+1)

(
mxm−2 +

m−2

∑
k=1

(−1)k (m− k)(m− k−1)
m−1

xm−2−k)
=

1
m−1

(x+1)
(
m(m−1)xm−2 +

m−2

∑
k=1

(−1)k(m− k)(m− k−1)xm−2−k)
=

1
m−1

(x+1)
m−2

∑
k=0

(−1)k(m− k)(m− k−1)xm−2−k

=
1

m−1
(x+1)

m−1

∑
k=1

(−1)k+1k(k+1)xk−1 =
1

m−1
(x+1)qm(x),

and this completes the proof of the second item. Following the same argument used in the first

item we write λm,k(x) = (x+1)υ̃m,k(x), where

υ̃m,k(x) = k(k+1)
m

∑
i=1

(−1)i+1(m+1− i)xm−i +m(m+1)
k

∑
j=1

(−1) j+1(k+1− j)xk− j,

and υ̃m,k(−1) = 0 enable us to write

υ̃m,k(x) = (x+1)(k(k+1)pm(x)+m(m+1)pk(x)) = (x+1)υm,k(x),

which proves the last item. �
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Lemma 2.3.2 Let pm(x) be the polynomial defined above. If m is even, then pm(x)> 0 for all

x ∈ R.

Proof: First note that p2(x) = 2. Hence it suffices to show that pm+2 > pm. Let us set

Jm+2 = pm+2− pm. Then we claim

Jm+2(x) = (m+2)xm +(2m+3)
m

∑
i=1

(−1)ixm−i. (2.3.1)

Indeed, we can write

Jm+2(x) =
m+1

∑
i=1

(−1)i−1 i(2m+5− i)
2

xm+1−i−
m−1

∑
i=1

(−1)i−1 i(2m+1− i)
2

xm−1−i

= (m+2)xm− (2m+3)xm−1

+
m+1

∑
i=3

(−1)i−1 i(2m+5− i)
2

xm+1−i−
m−1

∑
i=1

(−1)i−1 i(2m+1− i)
2

xm−1−i

= (m+2)xm− (2m+3)xm−1

+
m−1

∑
i=1

(−1)i−1 (i+2)(2m+3− i)
2

xm−1−i−
m−1

∑
i=1

(−1)i−1 i(2m+1− i)
2

xm−1−i

= (m+2)xm +(2m+3)
m

∑
i=1

(−1)ixm−i,

which gives the claim. Since m is even, by (2.3.1) we deduce that Jm+2(−x)> 0 if x≥ 0, with

Jm+2(0) = 2m+3. Now, we define um+2(x) = (x+1)Jm+2(x) and using once more (2.3.1) we

infer

(x+1)Jm+2(x) = (m+2)xm(x+1)+(2m+3)
m

∑
i=1

(
(−1)ixm+1−i +(−1)ixm−i

)
= (m+2)xm+1− (m+1)xm +2m+3.

Next noticing that um+2 achieves its minimum at x = m
m+2 we conclude that Jm+2(x)> 0 for any

x ∈ R, which gives that pm(x)≥ 2 for x ∈ R provided that m is even, which finishes the proof.

�

Lemma 2.3.3 Let qm(x) be the polynomial defined above. If m is even, then qm(x)> 0 for all

x ∈ R.

Proof: We notice that qm(−x)> 0 for every x≥ 0, since m is even. From now on we suppose

that x > 0. Under this choice we can write

qm(x) = xm−2Lm(x−1),
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where Lm(x) =
m−1

∑
k=1

(−1)k+1k(k + 1)xm−k−1. Hence, it suffices to show that Lm(x) is strictly

positive for every x > 0. Proceeding, it is easy to verify that L2(x) = 2, then it is enough to prove

that Lm+2(x)> Lm(x) for every x ∈ R and m even. Letting Tm+2 = Lm+2−Lm we have

Tm+2(x) =
m+1

∑
k=1

(−1)k+1k(k+1)xm−k+1−
m−1

∑
k=1

(−1)k+1k(k+1)xm−k−1

= 2xm−6xm−1 +
m−1

∑
k=1

(−1)k+12(2k+3)xm−k−1.

Whence we get

1
2

Tm+2(x)(x+1) = xm+1−2
(
xm− xm−1− . . .+ x2− x+1

)
+2m+3. (2.3.2)

Since m is even we have xm− xm−1− . . .+ x2− x+1 = 1
x+1

(
xm+1 +1

)
. Hence, we deduce

1
2

Tm+2(x)(x+1)2 = xm+2− xm+1 +(2m+3)x+2m+1. (2.3.3)

Since the right hand side of (2.3.3) is strictly positive for x > 0 we have the same conclusion for

Tm+2 and we complete the proof of the lemma. �

Lemma 2.3.4 Let υm,k(x) be the polynomial defined above. If m is even, k is odd and m > k,

then, υm,k(x)> 0 for all x ∈ R.

Proof: Note that it suffices to prove that υm+2,k(x)−υm,k(x)> 0 , since υk+1,k = (k+1)qk+1

and in the proof of Lemma 2.3.3 we showed that qk+1 > 0. After a straightforward computation

we obtain

υm,k(x) = k(k+1)
m−2

∑
j=k−1

(−1) j (m−1− j)(m+2+ j)
2

x j

+
k−2

∑
j=0

(−1) j ( j+1)( j+2)(m− k)(m+ k+1)
2

x j,

which implies that

υm+2,k(x)−υm,k(x) = k(k+1)(m+2)xm + k(k+1)(2m+3)
m−1

∑
j=k−1

(−1) jx j

+ (2m+3)
k−2

∑
j=0

(−1) j( j+1)( j+2)x j.

By the above expression υm+2,k(x)−υm,k(x) > 0 for every x ≤ 0. Now it remains to prove

that υm+2,k(x)−υm,k(x)> 0 for every x > 0. Defining Qm,k = (x+1)(υm+2,k−υm,k) a straight-

forward computation gives

Qm,k(x) = k(k+1)(m+2)xm+1− k(k+1)(m+1)xm +2(2m+3)
k−1

∑
j=0

(−1) j( j+1)x j.



23

Thus, for every x≥ 1 we have υm+2,k(x)−υm,k(x)> 0. Hence, we need to treat only the case

0 < x < 1. If we define ηm,k(x) = xm−2υm,k(x−1), we get

ηm,k(x) = k(k+1)
m−k−1

∑
i=0

(−1)i (i+1)(2m− i)
2

xi

+ (m− k)(m+ k+1)
m−2

∑
i=m−k

(−1)i (m− i−1)(m− i)
2

xi.

Defining Vm,k(x) = ηm+2,k(x)−ηm,k(x), we obtain after a direct computation that

Vm,k(x) = 2k(k+1)
m−k−1

∑
i=0

(−1)i(i+1)xi

+ (2m+3)
m−2

∑
i=m−k

(−1)i(m− i−1)(m− i)xi

+ (m− k+2)(m+ k+3)
m

∑
i=m−k

(−1)i(2m−2i+1)xi

+ ((k+1)(m+2)(m+3)+ k(k+1)2)xm−k.

We aim to prove that ηm+2,k(x)−ηm,k(x) > 0 provided that x > 1. To do so, we consider

Pm,k(x) = (x+1)3(ηm+2,k(x)−ηm,k(x)) = (x+1)3Vm,k(x). Whence we get

Pm,k(x) = 2k(k+1)(x+1)3
m−k−1

∑
i=0

(−1)i(i+1)xi

+ (2m+3)(x+1)3
m−2

∑
i=m−k

(−1)i(m− i−1)(m− i)xi

+ (m− k+2)(m+ k+3)(x+1)3
m

∑
i=m−k

(−1)i(2m−2i+1)xi

+ ((k+1)(m+2)(m+3)+ k(k+1)2)xm−k(x+1)3.

= Z1 +Z2 +Z3 +Z4.

Now, calculating separately Z1, Z2, andZ3 we get

Z1 = (x+1)3
m−k−1

∑
i=0

(−1)i(i+1)xi

= (m− k)xm−k+2 +(2m−2k+1)xm−k+1 +(m− k+1)xm−k + x+1,

Z2 = (x+1)3
m−2

∑
i=m−k

(−1)i(m− i−1)(m− i)xi

= 2xm+1− k(k+1)xm−k+2−2(k+1)(k−1)xm−k+1− k(k−1)xm−k
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and

Z3 = (x+1)3
m

∑
i=m−k

(−1)i(2m−2i+1)xi

= xm+3− xm+1− (2k+3)xm−k+2−4(k+1)xm−k+1− (2k+1)xm−k.

So, it is not difficult to check that

Pm,k(x) = 2k(k+1)(x+1)+2(2m+3)xm+1 +(m− k+2)(m+ k+3)(xm+3− xm+1)

+ (k+1)(m2 +5m+ k2 + k+6)xm−k+3 + k(m2 +5m+3k2 +6k+9)xm−k+2

+ (k+1)(−m2−m+3k2 +3k)xm−k+1 + k(−m2−m+ k2 +2k+1)xm−k.

Then, by the above expression Pm,k(x)> 0 for every x> 1, which implies ηm+2,k(x)≥

ηm,k(x) for all x > 1. Now we note that υk+1,k(x) = (k + 1)qk+1(x) > 0 for every x. Since

ηk+1,k(x) = xk−1υk+1,k(x−1) we obtain ηk+1,k(x)> 0 for all x. Therefore, ηm,k(x)> 0 for every

x > 1. Finally, since υm,k(x) = xm−2ηm,k(x−1) > 0 for all x−1 > 1, we have υm,k(x) > 0 for

0 < x < 1, which finishes the proof. �

2.4 CPE lemmas

Let S,T : H →H be operators defined over a finite dimensional Hilbert space H .

The Hilbert-Schmidt inner product is defined by

〈S,T 〉= tr
(
ST ∗

)
,

where tr and ∗ denote, respectively, the trace and the adjoint operation. Moreover, if I denotes

the identity operator on H of dimension n the traceless of an operator T is given by

T̊ = T − trT
n

I.

Using this notation we have the following lemmas.

Lemma 2.4.1 (FILHO, 2015) Let (Mn, g, f ) be a CPE metric. Then we have:

1. ( f + 1)R̊ic = ˚∇2 f . In particular, (Mn, g, f ) is Einstein if and only if ∇ f is a conformal

vector field.

2.
∫

M f m〈R̊ic, ∇̊2 f 〉dM =−
∫

M m f m−1R̊ic(∇ f ,∇ f )dM.

3.
∫

M
(

f +1
)
|∇̊2 f |2dM =−2

∫
M ∇̊2 f (∇ f ,∇ f )dM.

4.
∫

M f m〈R̊ic, ∇̊2 f 〉= ∑
m
i=1(−1)i+1 ∫

M f m−i|∇̊2 f |2.
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Lemma 2.4.2 (FILHO, 2015) Let (Mn,g) be a Riemannian manifold and f ,ϕ smooth functions

on M such that ∆ f + R
n−1 f = 0 and let h = |∇ f |2 + R

n(n−1) f 2. Then we have:

1. 1
2∆h = |∇̊2 f |2 + R̊ic(∇ f ,∇ f ),

2. 1
2〈∇ϕ,∇ f 〉= ∇̊2 f (∇ϕ,∇ f ).

2.5 Conformal geometry

A conformal mapping between two Riemannian manifolds (M,g) and (N,h) is a

smooth mapping F : (M,g)→ (N,h) which satisfies the property F∗h = α2g for a smooth

positive function α : M→ R+. We look to conformal variations of M, that is, those variations

of the form φ−2g, for a smooth positive function φ : M→ R. In the approach of conformal

geometry we have the following lemma, which is a well known result of the conformal geometry

theory whose proof is standard.

Lemma 2.5.1 Let (Mn,g) be a Riemannian manifold and g̃ = φ−2g a metric conformal to g.

Then, the following geometric data associated to the metric g̃ are given in terms of the metric g

by the following expressions:

(i) ∇̃XY = ∇XY − (Xφ)Y − (Y φ)X + 〈X ,Y 〉∇φ

(ii) R̃m(X ,Y )Z = Rm(X ,Y )Z−〈X ,Z〉∇2
φ(Y )+ 〈Y,Z〉∇2

φ(X)

+ (∇2
φ(Y,Z)+(Y φ)(Zφ)−〈Y,Z〉‖∇φ‖2)X

− (∇2
φ(X ,Z)+(Xφ)(Zφ)−〈X ,Z〉‖∇φ‖2)Y

+ (Xφ〈Y,Z〉−Y φ〈X ,Z〉)∇φ

(iii) R̃ic = Ric+φ
−1
(
(n−2)∇2

φ − (n−1)
|∇φ |2

φ
g+∆φg

)
,

(iv) R̃ = φ
2
(

R+φ
−1
(

2(n−1)∆φ − (n−1)n
|∇φ |2

φ

))
,

(v) ˜̊Ric = R̊ic+(n−2)φ−1
∇̊

2
φ

Proof: The proof of (i) and (ii) are straightforward, see (KÜHNEL, 1988) . To obtain (iii) we

take trace in (ii) to get

R̃ jk = R jk +φ
−1((n−2)φ jk− (n−1)

φiφ
i

φ
g jk +∆φg jk).

Taking the trace again we obtain

R̃ = φ
2(R+φ

−1(2(n−1)∆φ − (n−1)n
φiφ

i

φ
)).
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Finally we deduce

R̃ jk−
R̃
n

g̃ jk = R jk +φ
−1((n−2)φ jk− (n−1)

φiφ
i

φ
g jk +∆φg jk)

− φ 2

n
(R+φ

−1(2(n−1)∆φ − (n−1)n
φiφ

i

φ
))φ−2g jk

= R̊ jk +(n−2)φ−1(φ jk−
1
n

∆φg jk).

�

2.6 On the p-fundamental tone

Let (M,g) be a Riemannian manifold. For any p ∈ (1,∞) and any function u ∈

W 1,p
loc (M), the p-Laplacian is the differential operator defined by

∆pu =−div(|∇u|p−2
∇u).

The p-Laplacian appears naturally on the variational problems associated to the energy functional

Ep : W 1,p
0 (M)→ R

Ep(u) =
∫

M
|∇u|pdM.

In particular, if p = 2, the p-Laplacian ∆p is the usual Laplace operator ∆. We denote by λ ∗p(M)

the p-fundamental tone of M, which is defined by

λ
∗
p(M) = inf

{∫
M |∇ f |pdM∫
M | f |pdM

: f ∈W 1,p
0 (M), f 6= 0

}
. (2.6.1)

Let M be an n-dimensional complete noncompact manifold. Let {Ωi} be an exhaus-

tion of M by compact domains, i.e., {Ωi} are compact domains such that ∪∞
i=1Ωi = M and

Ωi ⊂ Ωi+1 for all i ∈ N. Consider the first eigenvalue λ1,p(Ωi) of the following Dirichlet

boundary value problem:  ∆pu = λ |u|p−2u in Ωi,

u = 0 on ∂Ωi.

In (VÉRON, 1991), Veron showed the existence of the above eigenvalue problem

and the variational characterization as in (2.6.1). Lindqvist (LINDQVIST, 1990) proved that

λ1,p(Ωi) is simple for each compact domain Ωi, i ∈ N (see also (BELLONI; KAWOHL, 2002)).

By definition, we see that λ ∗p(Ωi) = λ1,p(Ωi) for each compact domain Ωi, i ∈ N. Using the
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domain monotonicity of λ1,p(Ωi), we deduce that λ1,p(Ωi) is non-increasing in i ∈ N and has a

limit which is independent of the choice of the exhaustion of M. Therefore

λ
∗
p(M) = lim

i→∞
λ
∗
p(Ωi). (2.6.2)

2.7 Isometric immersions

Consider an isometric immersion ϕ : M ↪→ N, where Mn and Nm are complete

Riemannian manifolds. Denote by ∇, ∇
2

and ∆ the Riemannian connection, the Hessian and the

Laplacian on N, respectively, while by ∇, ∇2 and ∆ the Riemannian connection, the Hessian and

the Laplacian on M, respectively.

When M is an orientable hypersurface, consider η a unit normal vector field along M.

Thereby, the Gauss and Weingarten formulae for the hypersurfaces in N are given, respectively,

by

∇XY = ∇XY −〈αX ,Y 〉η (2.7.1)

and

α(x) =−∇X η , (2.7.2)

for all tangent vector fields X ,Y ∈ X(M). Here α : X(M)→ X(M) defines the shape operator

of M with respect to η . For simplicty we identify the operator α with the symetric (0,2) tensor

α̃ associated to α defined by α̃(X ,Y ) = 〈α(X),Y 〉. We also define the mean curvature H by

H = trα . Thereby, using this notation we have the following well known theorem (for a proof

see for instance (MANFREDO, 1992)).

Theorem 2.7.1 (Gauss) Let p ∈M and X ,Y orthonormal vectors on the tangent space TpM.

Then,

K(X ,Y )− K̄(X ,Y ) = 〈α(X ,X),α(Y,Y )〉− |α(X ,Y )|2. (2.7.3)

Definition 2.7.1 Let ϕ : M ↪→ N be a isometric immersion. We say that ϕ is a proper immersion

if ϕ is a proper map, i.e., for every compact set K ⊂ N , the inverse image ϕ−1(K) is compact.
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2.7.1 Newton transformations for the shape operator

Let α be the shape operator, since α is a symmetric (0,2) tensor we may consider

the symmetric functions associated to α

det(I + sα) =
m

∑
k=0

σk(α)sk,

where σ0 = 1. Now we define Hk called the k-th mean curvature by

Hk =

(
m
k

)−1

σk(α),

which are precisely the average of the k-th elementary symmetric polynomial of the eigenvalues

λi(λ ). Moreover, the Newton transformations associated to the shape operator are given by

Pk(T ) =
(

m
k

)
HkI−

(
m

k−1

)
Hk−1α + · · ·+(−1)k−1

(
m
1

)
H1α

k−1 +(−1)k
α

k.

Note that our choice of the mean curvature H of Nm satisfies H = mH1.

2.7.2 Volume growth of submanifolds

Denote by Mn(κ) the n-dimensional simply connected real space form of constant

sectional curvature κ ≤ 0. Recall that the volume of the geodesic sphere Sκ
R and the geodesic

ball Bκ
R of radius R in Mn(κ) are given by

Vol(Sκ
R) = ωn−1Sκ(R)n−1 and Vol(Bκ

R) =
∫ R

0
Vol(Sκ

t )dt,

where ωn−1 stands for the volume of the unit sphere in Rn and Sκ(t) is

Sκ(t) =

 t if κ = 0,
sinh(

√
−κt)√
−κ

if κ < 0.

The mean curvature H̄(t) of the geodesic spheres of radius t in Mn(κ) is H̄(t) = (n−1)Hκ(t),

where

Hκ(t) =
S′κ(t)
Sκ(t)

. (2.7.4)

Let ϕ : M→ N be an immersion from a manifold M to a Cartan-Hadamard manifold

of sectional curvature KN bounded from above by KN ≤ κ ≤ 0. Given a point q∈M, the extrinsic

distance function rq : M→ R+ is defined by

rq(x) = distN(ϕ(q),ϕ(x)),
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where distN denotes the distance function in N. The extrinsic ball MR
q centered at q ∈M of radius

R is given by

MR
q := {x ∈M : rq(x)< R}.

The volume growth function Q : R+→ R+ is defined by

Q(R) :=
Vol(MR

q )

Vol(Bκ
R)

,

where Bκ
R is the geodesic ball of radius R in Mn(κ). It is well-known that the volume growth

function Q(R) of a minimal submanifold M in a Cartan-Hadamard manifold is non-decreasing

for 0 < R < distN(q,∂M) (see (ALLARD, 1972; ANDERSON, 1984; PALMER, 1999; SIMON

et al., 1983)). Using this monotonicity property of minimal submanifolds, Gimeno (GIMENO,

2014) proved the following useful fact:

Lemma 2.7.1 (GIMENO, 2014) Let ϕ : M → N be an isometric minimal immersion from a

manifold M to a Cartan-Hadamard manifold of sectional curvature KN bounded from above by

KN ≤ κ ≤ 0. Then

Q(t)Vol(Sκ
t )≤ Vol(Mt

q)
′ = (lnQ(t))′Vol(Bκ

t )Q(t)+Q(t)Vol(Sκ
t ). (2.7.5)

Now we present a couple of definitions which will be necessary for a better unders-

tand of the next three theorems presented in this section.

Definition 2.7.2 A noncompact manifold M is of finite topological type if there is a compact

domain Ω such that M\Ω is homeomorphic to ∂Ω× [1,∞).

Definition 2.7.3 Let M be a complete non-compact Riemannian manifold. Let K ⊂ M be a

compact set with non-empty interior and smooth boundary. We denote by EK(M) the number of

connected components U1, . . . ,UEK(M) of M\K with non-compact closure. Then M has EK(M)

ends with respect to K, and the global number of ends E (M) is given by

E (M) = sup
K⊂M

EK(M),

where K ranges on the compact sets of M with non-empty interior and smooth boundary.

In the sequel, we have the following results which relate some properties of the

extrinsic geometry of the submanifold with its volume growth.
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Theorem 2.7.2 (ANDERSON, 1984), (CHEN, 1995) and (GIMENO; PALMER, 2013) Let Mn

be a minimal submanifold immersed in the Euclidean space Rm. If Mn has finite total scalar

curvature ∫
M
|α|ndM < ∞.

Then

sup
R>0

Q(R)< ∞.

Theorem 2.7.3 (QING; YI, 2000) Let M2 be a minimal surface immersed in the hyperbolic

space Hn of has constant sectional curvature κ < 0 or in the Euclidean space Rn. If M has finite

total extrinsic curvature, namely
∫

M |α|2dM < ∞, then M has finite topological type, and

sup
R>0

Q(R)≤ 1
4

∫
M
|α|2dM+χ(M),

being χ(M) the Euler characteristic of M.

Theorem 2.7.4 (GIMENO; PALMER, 2014) Let Mn be a minimal n−dimensional submanifold

properly immersed in the hyperbolic space Hm of constant sectional curvature κ < 0. If n > 2

and the submanifold is of faster than exponential decay of its extrinsic curvature, namely, there

exists a point p ∈M such that

|α|(x)≤
δ (rp(x))

e2
√
−κrp(x)

,

where δ (r) is a function such that δ (r)→ 0 when r→ ∞. Then the submanifold has finite

topological type, and

sup
R>0

Q(R)≤ E (M),

being E (M) the (finite) number of ends of M.

2.8 Foliations

In this section we define and give a few important definition concerning to foliations.

Definition 2.8.1 A family F = {Fγ}γ∈A of connected subsets of a manifold Mn is said to be an

m-dimensional Cr foliation, if

1.
⋃
γ∈A

Fγ = M,
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2. γ 6= λ ⇒ Fγ ∩Fλ = /0,

3. For any point q ∈M there is a Cr chart (local coordinate system) ϕq : Uq→ Rn such that

q ∈Uq, ϕq(q) = 0, and if Uq∩Fγ 6= /0 the connected components of the sets ϕq(Uq∩Fγ)

are given by equations xm+1 = cm+1, . . . ,xn = cn, where c j’s are constants. The sets Fγ

are immersed submanifolds of M called the leaves of F .

The family of all the vectors tangent to the leaves is the integrable subbundle of T M

denoted by TF . If M carries a Riemannian structure, TF⊥ denotes the subbundle of all the

vectors orthogonal to the leaves. A foliation F is said to be orientable (respectively, transversely

orientable) if the bundle TF (respectively, TF⊥) is orientable.
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3 ALMOST RICCI SOLITONS

The results in this chapter can be found in (BARROS; EVANGELISTA, 2016), which

is a joint work with Professor Abdênago Barros. Here we study almost Ricci solitons with null

Cotton tensor.

3.1 Introduction

The concept of almost Ricci soliton was introduced by Pigola et al. in (PIGOLA et

al., 2010), where essentially they modified the definition of a Ricci soliton by permitting to the

parameter λ to be a variable function. More precisely,

Definition 3.1.1 We say that a Riemannian manifold (Mn, g) is an almost Ricci soliton if there

exist a complete vector field X and a smooth soliton function λ : Mn→ R satisfying

Ric+
1
2
LX g = λg, (3.1.1)

where Ric and L stand for the Ricci curvature tensor and the Lie derivative, respectively.

We shall refer to this equation as the fundamental equation of an almost Ricci soliton

(Mn,g,X ,λ ). We say that an almost Ricci soliton is shrinking, steady or expanding provided

λ > 0, λ = 0 or λ < 0, respectively, otherwise we say that it is indefinite. When X = ∇ f for

some smooth function f on Mn, we say that it is a gradient almost Ricci soliton. In this case

identity (3.1.1) becomes

Ric+∇
2 f = λg, (3.1.2)

where ∇2 f stands for the Hessian of f . Further, an almost Ricci soliton is trivial provided X is a

Killing vector field, otherwise it will be called a non-trivial almost Ricci soliton. We point out

that when X is a Killing vector field and n ≥ 3, we have that M is an Einstein manifold since

Schur’s lemma ensures that λ is constant.

We highlight that Ricci solitons also correspond to self-similar solutions of Hamil-

ton’s Ricci flow, for more details about Ricci soliton see e.g. (CAO, 2009). In this perspective

Brozos-Vázquez, García-Río and Valle-Regueiro (BROZOS-VÁZQUEZ et al., 2016) obser-

ved that some proper gradient almost Ricci solitons correspond to self-similar solutions of the

Ricci-Bourguignon flow, which is a geometric flow given by

∂

∂ t
g(t) =−2(Ric(t)− kR(t)g(t)),
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where k ∈ R and R stands for the scalar curvature. This flow can be seen as an interpolation

between the flows of Ricci and Yamabe. For more details on Ricci-Bourguignon flow we

recommend (GIOVANNI et al., 2015).

It is important to emphasize that the round sphere does not admit a (nontrivial) Ricci

soliton structure. However, Barros and Ribeiro Jr (BARROS; JR, 2012) showed an explicit

example of an almost Ricci soliton on the standard sphere. From this, it is interesting to know

if, in compact case, this example is the unique with soliton function λ non constant. In this

sense, Barros and Ribeiro Jr (BARROS; JR, 2012) proved that a compact gradient almost Ricci

soliton with constant scalar curvature must be isometric to a standard sphere. Afterward, Barros,

Batista and Ribeiro Jr (BARROS et al., 2014) proved that every compact almost Ricci soliton

with constant scalar curvature is gradient. In (BRASIL et al., 2014), Costa, Brasil and Ribeiro Jr

showed that under a suitable integral condition, a 4-dimensional compact almost Ricci soliton

is isometric to standard sphere S4. While Ghosh (GHOSH, 2014) was able to prove that if a

compact K-contact metric is a gradient almost Ricci soliton, then it is isometric to a unit sphere.

We also remark that Barros, Batista and Ribeiro Jr (BARROS et al., 2012) proved that under a

suitable integral condition a locally conformally flat compact almost Ricci soliton is isometric to

a standard sphere Sn. For more details see, for instance, (BARROS et al., 2014), (BARROS et

al., 2012), (GHOSH, 2014), (MASCHLER, 2015) and (SHARMA, 2014).

When M is a compact manifold the Hodge-de Rham decomposition theorem (see

for instance (WARNER, 2013)) asserts that X can be decomposed as a sum of a gradient of a

function h and a divergence-free vector field Y , i.e.

X = ∇h+Y,

where divY = 0. From now on we consider h the function given by this decomposition. Hence-

forth, in this chapter, we denote by Mn, n≥ 3, a compact connected oriented manifold without

boundary.

3.2 Auxiliaries lemmas

In this section we calculate the divergence of the Newton transformations of a

general symmetric (0,2) tensor and obtain an explicit relation with the tensor D defined by

Di jk = ∇iTjk−∇ jTik. This result will be useful when T is the Schouten tensor A. In this case the

divergence of the Newton transformations will be related to the Cotton tensor.
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Lemma 3.2.1 Let Pk(T ) be the Newton transformations associated with T defined Section 2.2

and let {e1, . . . ,en} be a local orthonormal frame on M. Then, for all Z ∈ X(M), the divergence

of Pk(T ) are given recursively as

divP0(T ) = 0

〈divPk(T ),Z〉=−〈T (divPk−1(T )),Z〉−
n

∑
i=1

D(ei,Z,Pk−1(T )ei),
(3.2.1)

or equivalently

〈divPk(T ),Z〉=
k

∑
j=1

n

∑
i=1

(−1) jD(ei,T j−1Z,Pk− j(T )ei). (3.2.2)

Proof: Since P0(T ) = I, then divP0(T ) = 0. By the inductive definition of Pk(T ) we have

∇ZPk(T )Y = 〈∇σk(T ),Z〉Y −∇Z(T ◦Pk−1(T ))Y

= 〈∇σk(T ),Z〉Y − (∇ZT ◦Pk−1(T ))Y − (T ◦∇ZPk−1(T ))Y,

so that

divPk(T ) =
n

∑
i=1

(∇eiPk(T ))ei = ∇σk(T )−
n

∑
i=1

(∇eiT )(Pk−1(T )ei)− (T divPk−1(T )).

Now, by using (2.2.5) we get

〈(∇eiT )(Pk−1(T )ei),Z〉 = 〈(∇eiT )Z,Pk−1(T )ei〉

= (∇eiT )(Z,Pk−1(T )ei)

= D(ei,Z,Pk−1(T )ei)+∇ZT (ei,Pk−1(T )ei)

= D(ei,Z,Pk−1(T )ei)+ 〈(∇ZT )ei,Pk−1(T )ei〉

= D(ei,Z,Pk−1(T )ei)+ 〈(Pk−1(T )◦∇ZT )(ei),ei〉.

Therefore, letting ρ =
n

∑
i=1

D(ei,Z,Pk−1(T )ei), we deduce

〈divPk(T ),Z〉= 〈∇σk(T ),Z〉− tr(Pk−1(T )◦∇ZT )− (T divPk−1(T ))−ρ. (3.2.3)

Now we just need to prove that

tr(Pk−1(T )◦∇ZT ) = 〈∇σk(T ),Z〉. (3.2.4)

We prove the above equation using a local orthonormal frame that diagonalizes T .

We point out that such a frame does not always exist, since the multiplicity of the eigenvalues

may changes. Therefore, we will work in a subset MT ⊂M consisting of points at which the
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multiplicity of the eigenvalues is locally constant. We recall that such subset is open and dense

in M, and in every connected component of MT the eigenvalues form mutually smooth distinct

eigenfunctions and, for such a function λ , the assignment p→Vλ (p)(p)⊂ TpM defines a smooth

eigenspace distribution Vλ of T (consult (BESSE, 2007), Paragraph 16.10). Therefore, for every

p ∈MT there exists a local orthonormal frame defined on a neighborhood of p that diagonalizes

T , i.e.,

(∇ZT )ei = Z(λi)ei +∑
j 6=i

(λi−λ j)ω
j

i (Z)e j,

where we use the standard notation ω
j

i (Z) = 〈∇Zei,e j〉. Using (2.2.3) we get

tr(Pk−1(T )◦∇ZT ) =
n

∑
i=1

µi,k−1Z(λi)

=
n

∑
i=1

Z(λi) ∑
i1<···<ik,i j 6=i

λi1 · · ·λik−1

= Z
(

∑
i1<···<ik

λi1(T ) · · ·λik(T )
)
= 〈∇σk(T ),Z〉.

This proves the statement on MT , and by continuity on M. Substituting (3.2.4) into

(3.2.3), we get (3.2.1). In order to arrive at (3.2.2) it suffices to use an inductive argument. �

In particular, when D ≡ 0 all the Newton transformations are divergence free. In

general we have the following.

Corollary 3.2.1 If D = 0, then the Newton transformations are divergence free: divPk(T ) = 0

for each k.

3.3 Integral formulae

In this section we take T to be the Schouten tensor, i.e., T = A = Ric− R
2(n−1)g. Now

we obtain some integral formulae for the symmetric functions associated to the Schouten tensor

A, which will be used to prove our main result. Thereby, we have the following lemma.

Lemma 3.3.1 Let (M,g,X ,λ ) be a compact oriented almost Ricci soliton. For each k, the

following integral formula holds:∫
M
〈divPk(A),X〉dM+ ck

∫
M

((
S1(A)+

1
n

∆h
)
Sk(A)−Sk+1(A)

)
dM = 0. (3.3.1)

Proof: Note that ∇Y Pk(A) is self-adjoint for all Y ∈ X(M). A straightforward computation

shows that

div(Pk(A)X) = 〈divPk(A),X〉+
n

∑
i=1
〈∇eiX ,Pk(A)ei〉, (3.3.2)
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where {e1, . . . ,en} is a local orthonormal frame. If we take such a local orthonormal frame that

diagonalizes A, then by (2.2.3) we have

〈∇eiX ,Pk(A)ei〉= µi,k〈∇eiX ,ei〉= 〈∇Pk(A)eiX ,ei〉.

By the almost Ricci soliton equation (3.1.1) we get

〈∇Pk(A)eiX ,ei〉 = λ 〈Pk(A)ei,ei〉−Ric(Pk(A)ei,ei)

=
(

λ − R
2(n−1)

)
〈Pk(A)ei,ei〉−〈APk(A)ei,ei〉,

(3.3.3)

hence, using equations (3.3.3) and (2.2.4), equation (3.3.2) becomes

div(Pk(A)X) = 〈divPk(A),X〉+
(

λ − R
2(n−1)

)
trPk(A)− tr(APk(A))

= 〈divPk(A),X〉+
(

λ − R
2(n−1)

)
ckSk(A)− ckSk+1(A),

Taking trace in (3.1.1) we get R+divX = nλ . Since S1(A) =
(n−2)R
2n(n−1) we obtain

div(Pk(A)X) = 〈divPk(A),X〉+
(

S1(A)+
1
n

divX
)

ckSk(A)− ckSk+1(A). (3.3.4)

When M is a compact manifold and h is the function given by the Hodge-de Rham decomposition

theorem it is easy to see that identity (3.3.4) becomes

div(Pk(A)X) = 〈divPk(A),X〉+
(

S1(A)+
1
n

∆h
)

ckSk(A)− ckSk+1(A). (3.3.5)

Integrating (3.3.5) we get the desired result. �

Note that when the Cotton tensor vanishes Corollary 3.2.1 implies that∫
M
〈divPk(A),X〉dM = 0. (3.3.6)

Therefore, we obtain the next corollary.

Corollary 3.3.1 Let (M,g,X ,λ ) be a compact oriented almost Ricci soliton such that the Cotton

tensor vanishes. Then, ∫
M

((
S1(A)+

1
n

∆h
)
Sk(A)−Sk+1(A)

)
dM = 0. (3.3.7)

3.4 Rigidity result

In this section we present our main result which concern to hypothesis on the

symmetric functions Sk(A) associated to the Schouten tensor A. Thereby, since S1(A) =
(n−2)R
2n(n−1) ,
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we may conclude that S1(A) is constant if and only if R is constant, in this case Barros and others

in (BARROS et al., 2014) proved that the almost Ricci soliton is isometric to a round sphere. In

the next theorem we consider the other symmetric functions Sk(A), k = 2, ...,n−1 and under the

additional hypothesis on the nullity of the cotton tensor we obtain a rigidity result for the almost

Ricci soliton. We also note that n2(S1(A))2 = n(n− 1)S2(A)+ |A|2, hence S2(A) constant, in

general, does not implies that S1(A) constant.

We remark that Hu and others in (HU et al., 2008) used the symmetric functions

of the Schouten tensor to study locally conformally flat manifolds. They proved that under

conditions on item 1 and item 4 of the next theorem, a compact locally conformally flat manifold

with semi-positive definite Schouten tensor is isometric to a space form of constant sectional

curvature. In this direction, the next theorem improves the results obtained in (HU et al., 2008)

for compact almost Ricci solions with null cotton tensor, since null cotton tensor does not

imply locally conformally flat in general. For example, the complex projective space CPn

with Fubini–Study metric is Einstein, hence has null cotton tensor, however CPn is not locally

conformally flat.

Remark 3.4.1 Before presenting the proofs of the results, we recall that the symmetric functions

satisfy Newton’s inequalities:

Sk(A)Sk+2(A)≤ S2
k+1(A) for 0≤ k < n−1, (3.4.1)

which is a generalized Cauchy-Schwarz inequality. Moreover, if equality occurs for k = 0 or

1 ≤ k < n with Sk+2(A) 6= 0, then λ1(A) = λ2(A) = . . . = λn(A). As an application, provided

that λk(A)> 0 for 1≤ k ≤ n, we obtain Gårding’s inequalities

S1 ≥ S
1
2
2 ≥ S

1
3
3 ≥ ·· · ≥ S

1
n
n . (3.4.2)

Here equality holds, for some 1≤ k < n, if and only if, λ1(A) = λ2(A) = . . .= λn(A). Note that

(3.4.2) implies that S
k+1

k
k ≥ Sk+1 for 1≤ k < n. For a proof see for instance (HARDY et al., 1952)

Theorem 51, p. 52 or Proposition 1 in (CAMINHA, 2006).

Theorem 3.4.1 Let (Mn,g,X ,λ ), n≥ 3, be a non-trivial compact oriented almost Ricci soliton

such that the Cotton tensor is identically zero. Then, Mn is isometric to a standard sphere Sn

provided that one of the next condition is satisfied:

1. S2(A) is constant and positive.
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2. Sk(A) is nowhere zero on M and Sk+1(A) = cSk(A), where c ∈ R\{0}, for some k =

1, · · · ,n−1.

3. Ric≥ R
n g, with R > 0, and

∫
M Sk(A)∆h≥ 0 for some 2≤ k ≤ n−1.

4. Sk(A) is constant for some k = 2, · · · ,n−1, and A > 0.

Proof: In item 1 we suppose that S2(A) is constant and positive. Thereby, choosing k = 2 in

(3.3.7) we obtain ∫
M

((
S1(A)+

1
n

∆h
)
S2(A)−S3(A)

)
dM = 0. (3.4.3)

Since S2(A) is constant we deduce∫
M

(
S2(A)S1(A)−S3(A)

)
dM = 0. (3.4.4)

On the other hand,

S2
1(A)−S2(A)≥ 0, (3.4.5)

by Newton’s inequality (3.4.1). Moreover, equality in (3.4.5) holds, if and only if, λ1(A) = · · ·=

λn(A), which means that A is umbilical (a multiple of g). In this case it is easy to check that

A =
(n−2)R
2n(n−1)

g. (3.4.6)

We know from (3.4.5) that S2
1(A) ≥ S2(A) > 0, then S1(A) does not vanish, this means that

either S1(A)< 0 or S1(A)> 0. Now we prove that S2(A)S1(A)−S3(A) is positive or negative,

according to the sign of S1(A).

Indeed, from (3.4.1) we get S2
2(A)−S1(A)S3(A)≥ 0. Supposing S1(A)> 0 we obtain

S2(A)S1(A)−S3(A)≥ S2(A)S1(A)−
S2

2(A)
S1(A)

=
S2(A)
S1(A)

(
S2

1(A)−S2(A)
)
≥ 0. (3.4.7)

On the other hand, if S1(A)< 0 we have

S2(A)S1(A)−S3(A)≤ S2(A)S1(A)−
S2

2(A)
S1(A)

=
S2(A)
S1(A)

(
S2

1(A)−S2(A)
)
≤ 0. (3.4.8)

In both cases S2(A)S1(A)−S3(A) has a sign. Using this fact together with equation (3.4.4), we

get S2(A)S1(A)−S3(A) = 0, and hence equality in (3.4.1), obtaining identity (3.4.6). Therefore

(Mn,g) is an Einstein manifold, by Schur’s Lemma (M,g) has constant scalar curvature and by

Corollary 1 in (BARROS et al., 2014) we conclude that (Mn,g) is isometric to a standard sphere

Sn, which concludes the proof of the first item of Theorem 3.4.1.
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Proceeding, in item 2 we assume that Sk(A) is nowhere zero on M and Sk+1(A) =

cSk(A), where c ∈ R\{0}, for some k = 1, · · · ,n−1. Thus we can use Corollary 3.3.1 to infer∫
M

((
S1(A)+

1
n

∆h
)
cSk(A)− cSk+1(A)

)
dM = 0 (3.4.9)

and ∫
M

((
S1(A)+

1
n

∆h
)
Sk+1(A)−Sk+2(A)

)
dM = 0. (3.4.10)

By hypothesis Sk+1(A) = cSk(A), whence using (3.4.10) and (3.4.9) we deduce∫
M

(
cSk+1(A)−Sk+2(A)

)
dM = 0. (3.4.11)

Using once more that Sk+1(A) = cSk(A) we invoke inequality (3.4.1) to get

Sk(A)(cSk+1(A)−Sk+2(A))≥ 0.

We recall that Sk(A) is nowhere zero on M by hypothesis, and by connectedness it does not change

sign on M. Hence cSk+1(A)−Sk+2(A) also does not change sign on M. This fact together with

equation (3.4.11) gives cSk+1(A)−Sk+2(A) = 0, which implies S2
k+1(A)−Sk(A)Sk+2(A) = 0 and

consequently Sk+2(A) 6= 0 on M. Then equality in the inequality (3.4.1) implies that A= (n−2)R
2n(n−1)g

and g is an Einstein metric on M and we conclude the proof reasoning as in the previous case.

We suppose in item 3 that Ric≥ R
n g, , hence A≥ (n−2)R

2n(n−1)g, which implies that A > 0,

since R > 0. This allows us to use all inequalities presented in Remark 3.4.1. By identity (3.3.7)

we have ∫
M

((
S1(A)+

1
n

∆h
)
Sk(A)−Sk+1(A)

)
dM = 0. (3.4.12)

Taking into account that
∫

M Sk(A)∆hdM ≥ 0, we deduce from the last identity∫
M

(
S1(A)Sk(A)−Sk+1(A)

)
dM ≤ 0. (3.4.13)

Next we make use of (3.4.2) to arrive at

S1(A)Sk(A)−Sk+1(A)≥ S1(A)Sk(A)−Sk(A)
k+1

k = Sk(A)(S1(A)−Sk(A)
1
k )≥ 0. (3.4.14)

Hence, using (3.4.13) and (3.4.14) we obtain S1(A)Sk(A)−Sk+1(A) = 0. Since A > 0 and hence

Sk(A),Sk+2(A)> 0, using (3.4.14) again we obtain S1(A) = Sk(A)
1
k . By equality in (3.4.2) we

get A = (n−2)R
2n(n−1)g and g is an Einstein metric on M. Now, in order to complete the proof it suffices

to use once more Corollary 1 in (BARROS et al., 2014).
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Finally, we assume in item 4 that Sk(A) is constant for some k = 2, · · · ,n−1, and A>

0. Hence applying the same argument used to prove item 3 we conclude that S1(A) = Sk(A)
1
k > 0

and Sk+2(A)> 0, which implies that g is an Einstein metric on M. Since S1(A) =
(n−2)

2n(n−1)R, we

get R > 0. The result follows by the same arguments used to conclude item 3, completing the

proof of the theorem. �
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4 CPE CONJECTURE

The results in this chapter can be found in (BARROS; EVANGELISTA, 2018) which

is a joint work with Professor Abdênago Barros. Here we study the CPE conjecture.

4.1 Introduction

Let (Mn, g) be a compact oriented manifold and M the set of smooth Riemannian

structures on Mn of volume 1. Given a metric g ∈M we define the total scalar curvature

functional R : M → R by

R(g) =
∫

Mn
RgdM, (4.1.1)

where Rg and dM stand, respectively, for the scalar curvature and the volume form of the metric

g. It is well-known that the critical metrics of the functional R restricted to M are Einstein, for

more details see Chapter 4 in (BESSE, 2007).

We recall that the Yamabe problem guarantees that there exists a constant scalar

curvature metric in every conformal class of Riemannian metrics on a compact manifold Mn.

From this, we may consider the set

C = {g ∈M ; Rg is constant}.

In (KOISO, 1979), Koiso showed that, under generic condition, C is an infinite dimensional

manifold. Moreover, we recall that the linearization Lg of the scalar curvature operator is given

by

Lg(h) =−∆g(trg(h))+div(div(h))−g(h,Ricg),

where h is any symmetric bilinear form on Mn. Moreover, the formal L2-adjoint L∗g of Lg is

given by

L∗g( f ) =−(∆g f )g+Hess f − f Ricg, (4.1.2)

where f is a smooth function on Mn.

It has been conjectured that the critical points of the total scalar curvature functional

R restricted to C are Einstein. More precisely, in (BESSE, 2007) the authors wrote:
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“When restricting the total scalar curvature functional to C , are there

other critical points besides the Einstein metric?"[see (BESSE,

2007), p. 128.]

When restricting the total scalar curvature to a pointwise conformal class of metrics

a large critical set is obtained. Formally the Euler-Lagrangian equation of Hilbert-Einstein action

on the space of Riemannian metrics g with unit volume and constant Ricci scalar curvature is

given by

Ric− 1
n

Rg = Hess f − f
(
Ric− R

n−1
g
)
.

Definition 4.1.1 A CPE metric is a 3-tuple (Mn, g, f ) where (Mn,g), n≥ 3 is a n-dimensional

compact oriented Riemannian manifold with constant Ricci scalar curvature and f is a smooth

potential function that satisfies the equation

Ric− R
n

g = Hess f − f
(
Ric− R

n−1
g
)
, (4.1.3)

where Ric and Hess f stand, respectively, for the Ricci tensor and the Hessian of f .

In order to proceed we notice that, computing the trace in (4.1.3), we obtain

∆ f +
R

n−1
f = 0. (4.1.4)

Therefore, R lies on the spectrum of Mn, thus it must be positive.

The conjecture proposed in (BESSE, 2007) in the middle of 1980’s can be announced

in terms of CPE definition, see also (BARROS; RIBEIRO, 2014), (QING; YUAN, 2013) and

(HWANG, 2003). More precisely, the authors proposed the following conjecture.

Conjecture 4.1.1 A CPE metric is always Einstein.

It should be emphasized that Einstein metrics are recovered when f = 0. In the last

years many mathematicians have contributed to the proof of the CPE Conjecture. However, none

has obtained its complete proof. Among its partial answers, Lafontaine (LAFONTAINE, 1983)

proved that the CPE Conjecture is true under locally conformally flat assumption. Recently,

Ribeiro Jr and Barros (BARROS; RIBEIRO, 2014) showed that Conjecture 4.1.1 is also true for

4-dimensional half conformally flat manifolds. While Qing and Yuan (QING; YUAN, 2013)

obtained a positive answer for Bach-flat manifolds in any dimension. In 2014 Chang, Hwang and

Yun (YUN et al., 2014) proved that the conjecture is true if the manifold has harmonic curvature.
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In (BARROS et al., 2015), Barros et al. showed that a 4-dimensional CPE metric with harmonic

tensor W+ must be isometric to a round sphere S4.

4.2 Integral Formulae

Proceeding we focus our attention to a smooth function f defined on a Riemannian

manifold Mn such that ∆ f =− R
n−1 f , where R is constant. Then we have

1
m

∆ f m =− R
n−1

f m +(m−1) f m−2|∇ f |2. (4.2.1)

Whence, for Mn compact, we immediately obtain from (4.2.1)

R
n−1

∫
M

f mdM = (m−1)
∫

M
f m−2|∇ f |2dM (4.2.2)

as well as (m−1)
∫

M f m−2|∇ f |4dM = R
n−1

∫
M f m|∇ f |2dM+ 1

m
∫

M |∇ f |2∆ f mdM, which gives

(m−1)
∫

M
f m−2|∇ f |4dM =

R
n−1

∫
M

f m|∇ f |2dM−2
∫

M
f m−1

∇
2 f (∇ f ,∇ f )dM. (4.2.3)

On the other hand we remember that for operators S,T : H →H defined over a

finite dimensional Hilbert space H the Hilbert-Schmidt inner product is defined according to

〈S,T 〉= tr
(
ST ∗

)
, (4.2.4)

where tr and ∗ denote, respectively, the trace and the adjoint operation. Moreover, if I denotes

the identity operator on H of dimension n the traceless of an operator T is given by

T̊ = T − trT
n

I. (4.2.5)

We notice that identity (4.1.3) becomes

( f +1)R̊ic = ∇̊
2 f . (4.2.6)

Now we use (4.2.3) to write

ρm =−2
∫

M
f m−1

∇̊
2 f (∇ f ,∇ f )dM. (4.2.7)

Proceeding, given a (0,2) symmetric tensor field T and any vector field X on a

Riemannian manifold Mn we have

div
(
ψ T (X)

)
= ψ(divT )(X)+ψ〈T,∇X〉+T (∇ψ,X), (4.2.8)
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where ψ is a smooth function on Mn. In particular, choosing T = R̊ic, X = ∇u where u in any

smooth function on Mn and using the second contracted Bianchi identity we derive

div
(
ψ R̊ic(∇u)

)
=

(n−2)
2n

ψ〈∇R,∇u〉+ψ〈R̊ic, ∇̊2u〉+ R̊ic(∇ψ,∇u). (4.2.9)

On the other hand, for any smooth function u on Mn the Ricci-Bochner identity

in tensorial language says div(∇2u) = Ric(∇u, .)+∇∆u. In particular, when ∆u = − R
n−1u we

obtain div( ˚∇2u) = R̊ic(∇u, .). Using this in (4.2.8) we have

div
(
ψ ∇̊

2 f (∇ f )
)
= ψ

(
R̊ic(∇ f ,∇ f )+ | ˚∇2 f |2

)
+ ˚∇2 f (∇ψ,∇ f ). (4.2.10)

Now we choose ψ = f m in (4.2.10) to obtain∫
M

f m(R̊ic(∇ f ,∇ f )dM+ |∇̊2 f |2
)
dM =−m

∫
M

f m−1 ˚∇2 f (∇ f ,∇ f )dM. (4.2.11)

Using (4.2.7) we deduce

ρm =
2
m

∫
M

f m(R̊ic(∇ f ,∇ f )+ |∇̊2 f |2
)
dM. (4.2.12)

4.3 Integral condition for the CPE conjecture

For a better understanding of the reader, we prove two particular cases of the main

result of this section which will help the reader to understand how we arrived at the main theorem.

Using the previous integral formulae we have the following results.

Theorem 4.3.1 Conjecture 4.1.1 is true for CPE metrics (Mn, g, f ), provided that the functions

(1.0.1) satisfy

ρ1 +ρm ≤ 0, (4.3.1)

where m is even.

Proof: To begin with, taking ψ = f m+1 and u = f in (4.2.9) (or see for instance item (2) of

Lemma 2.4.1), we obtain from (4.2.12)

ρm =
2
m

∫
M

f m∣∣∇̊2 f |2dM− 2
m(m+1)

∫
M

f m+1〈R̊ic, ∇̊2 f 〉dM. (4.3.2)

Next we claim that

ρm =
2

m(m+1)

∫
M

rm( f )| ˚∇2 f |2dM, (4.3.3)
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where rm(x) = mxm +∑
m+1
i=2 (−1)ixm+1−i is one of the polynomials given before in Section 2.3.

Indeed, we use item (3) of Lemma 2.4.1 to deduce

ρm =
2
m

∫
M

f m∣∣∇̊2 f |2dM− 2
m(m+1)

m+1

∑
i=1

(−1)i+1
∫

M
f m+1−i|∇̊2 f |2dM.

Jointing the first two terms of the above identity it becomes

ρm =
2

m(m+1)

∫
M

(
m f m +

m+1

∑
i=2

(−1)i f m+1−i
)
| ˚∇2 f |2dM, (4.3.4)

which gives our claim. Thus, we have

ρm +ρ1 =
2

m(m+1)

∫
M

rm( f )|∇̊2 f |2dM+
∫

M
( f +1)|∇̊2 f |2dM

=
2

m(m+1)

∫
M
(rm( f )+

m(m+1)
2

( f +1))|∇̊2 f |2dM

=
2

m(m+1)

∫
M

τm( f )| ˚∇2 f |2dM,

applying Lemma 2.3.1 we get

ρ1 +ρm =
2

m(m+1)

∫
M
( f +1)2 pm( f )| ˚∇2 f |2dM. (4.3.5)

In particular, for m even we deduce that
∫

M( f + 1)2 pm( f )| ˚∇2 f |2dMg = 0. In fact, we are

supposing that ρm +ρ1 ≤ 0, and according to Lemma 2.3.4 pm( f )> 0. On the other hand, since

f−1(−1) has measure zero, we conclude that ∇̊2 f = 0. Now the result follows by Lemma 2 in

(FILHO, 2015) or equation 4.2.6. �

Remark 4.3.1 Note that
∫

M
˚∇2 f (∇ f ,∇ f )dM =

∫
M〈1

2∇|∇ f |2,∇ f 〉dM +
∫

M
R

n(n−1) f |∇ f |2dM.

Integrating by parts and using (4.1.4) we get
∫

M
˚∇2 f (∇ f ,∇ f )dM = (n+2)R

2n(n−1)
∫

M f |∇ f |2dM. Since∫
M f |∇ f |2dM = R

2(n−1)
∫

M f 3dM, we may apply Lemma 2.4.1 to deduce

ρ1 =−2
∫

M

˚∇2 f (∇ f ,∇ f )dM =− (n+2)R2

2n(n−1)2

∫
M

f 3dM. (4.3.6)

Thus, we may conclude that if
∫

M f 3 = 0 then ρm ≥ 0 for every m even.

Proceeding, now we give a similar condition for the summation of two consecutive

ρm.
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Theorem 4.3.2 Conjecture 4.1.1 is true for CPE metrics (Mn, g, f ), provided that the functions

(1.0.1) satisfy

ρm +ρm−1 ≤ 0, (4.3.7)

where m is even.

Proof: Proceeding analogously to the previous theorem, we have

ρm +ρm−1 =
2

m(m+1)

∫
M

rm( f )|∇̊2 f |2 + 2
m(m−1)

∫
M

rm−1( f )|∇̊2 f |2

=
2

m(m−1)(m+1)

∫
M
((m−1)rm( f )+mrm−1( f ))|∇̊2 f |2

=
2

m(m+1)

∫
M

µm( f )|∇̊2 f |2,

where µm = rm + (m+1)
m−1 sm = 1

m−1((m−1)rm +mrm−1), since sm = rm−1. By item (2) in Lemma

2.3.1, we have

ρm +ρm−1 =
2

m(m−1)(m+1)

∫
M
( f +1)2qm( f )|∇̊2 f |2.

Hence, for m even we may apply Lemma 2.3.3 and the hypothesis ρm +ρm−1 ≤ 0 to deduce that∫
M( f +1)2qm( f )|∇̊2 f |2 = 0, and the result follows by the same argument used in the previous

theorem. �

Now we state and prove our main result of this section, which concerns to a general

condition on the summation of two different ρm.

Theorem 4.3.3 Conjecture 4.1.1 is true for CPE metrics (Mn, g, f ), provided that the functions

(1.0.1) satisfy

ρk +ρm ≤ 0, (4.3.8)

for m > k, where m is even and k is odd.

Proof: Note that

ρm +ρk =
2

m(m+1)

∫
M

rm( f )| ˚∇2 f |2dM+
2

k(k+1)

∫
M

rk( f )| ˚∇2 f |2dM

=
2

m(m+1)k(k+1)

∫
M
(k(k+1)rm( f )+m(m+1)rk( f ))| ˚∇2 f |2dM

=
2

m(m+1)k(k+1)

∫
M

λm,k( f )| ˚∇2 f |2dM.
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By item 3 in Lemma 2.3.1 we have

ρm +ρk =
2

m(m+1)k(k+1)

∫
M
( f +1)2

υm,k( f )| ˚∇2 f |2dM.

Therefore, for m > k, m even and k odd, we may use Lemma 2.3.4 and the hyothesis ρm+ρk ≤ 0

to conclude that
∫

M( f +1)2υm,k( f )| ˚∇2 f |2dM = 0. Then, the result follows by applying the same

argument used in Theorem 4.3.1. �

Recalling that h = |∇ f |2 + R
n(n−1) f 2, and choosing ψ = 1 in identity (4.2.10) we

obtain ∆h = 2R̊ic(∇ f ,∇ f )+2|∇̊2 f |2 (see also Lemma 2.4.2). Thereby, (4.2.12) becomes

ρm =− 1
m

∫
M
〈∇ f m,∇h〉dM. (4.3.9)

Therefore, (4.3.9) enable us to conclude that the hypotheses in (NETO, 2015) as well as in

(FILHO, 2015) imply that ρm = ρk = 0 for every m and every k, this shows that the conditions in

Theorem 4.3.3 are weaker than that one of (NETO, 2015) and (FILHO, 2015).

4.3.1 The conformal case

We already know that if a non-trival CPE metric is Einstein then it is isometric to

the round sphere, which is a straightforward consequence of Theorem 2 in (OBATA, 1962).

Lafontaine in (LAFONTAINE, 1983) proved that the CPE conjecture is true provided the metric

is locally conformally flat. In this direction, a natural question arises:

Question 4.3.1 Let (M,g, f ) be CPE metric which is conformal to an Einstein metric, can we

conclude that it is isometric to a round sphere?

It is well known that if a compact 4-dimension manifold is locally conformal to an Einstein

manifold then its Bach tensor vanishes. In particular, any 4-dimensional CPE metric conformal

to an Eienstein metric is Bach flat. Thus, by Theorem 3.10 in (QING; YUAN, 2013) the CPE

conjecture is true in this case.

In this section we give a positive answer for Question 4.3.1 in the general case.

Theorem 4.3.4 Let (Mn,g, f ) be a CPE metric. If g is conformal to an Einstein metric g̃, then

M is isometric to the standard sphere.

Proof: Considering the CPE metric g̃ as "background"metric on M, we can write g̃ = φ−2g,

where φ ∈C∞(M) is strictly positive. Then, by Lemma 2.5.1 we have

R̃ic = Ric+φ
−1
(
(n−2)∇2

φ − (n−1)
|∇φ |2

φ
g+∆φg

)
,
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in which the covariant derivatives and Laplacian are to be taken with respect to g, not with

respect to g̃. Since g̃ is Einstein, we have

0 = ˜̊Ric = R̊ic+(n−2)φ−1
∇̊

2
φ .

Using the last equation we get∫
M

φ |R̊ic|2dM =
∫

M
φ〈R̊ic, R̊ic〉dM

= −(n−2)
∫

M
〈R̊ic, ∇̊2

φ〉dM,

taking ψ = 1 and u = φ in (4.2.9) we obtain∫
M

φ |R̊ic|2dM = −(n−2)
∫

M
〈R̊ic, ∇̊2

φ〉dM = 0.

Then, R̊ic is identically zero which implies that g is Einstein and this finishes the proof of the

theorem. �
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5 ON THE P-FUNDAMENTAL TONE ESTIMATES

The results in this chapter can be found in (EVANGELISTA; SEO, 2017), which

is a joint work with Professor Keomkyo Seo. Here we study estimates for the p-fundamental

tone on geodesic ball and submanifolds with bounded mean curvature. Moreover we provide the

p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the

second fundamental form. Finally, we study transversely oriented codimension one C2-foliations

of open subsets of Riemannian manifolds.

5.1 introduction

Let (M,g) be a Riemannian manifold. We denote by λ ∗p(M) the p-fundamental tone

of M, which is defined by

λ
∗
p(M) = inf

{∫
M |∇ f |pdM∫
M | f |pdM

: f ∈W 1,p
0 (M), f 6= 0

}
. (5.1.1)

Bessa and Montenegro (BESSA; MONTENEGRO, 2003) introduced the following

interesting constant c(Ω), which was used to get lower bounds for the fundamental tone and later

for the p-fundamental tone as we will see soon.

Definition 5.1.1 (BESSA; MONTENEGRO, 2003) Let Ω be a domain in a smooth Riemannian

manifold (Mn,g). Let X(Ω) be the set of all smooth vector fields X on Ω such that ‖X‖∞ =

supΩ ‖X‖< ∞ and infΩ divX > 0, where ‖X‖= g(X ,X)
1
2 . Define c(Ω) by

c(Ω) = sup
{ infΩ divX
‖X‖∞

: X ∈ X(Ω)
}
. (5.1.2)

Note that X(Ω) 6= /0. In fact, consider the boundary value problem

 ∆u = 0 in Ω,

u = 0 on ∂Ω,

and set X = ∇u, then divX = 1 and ||X ||∞ < ∞. In terms of the constant c(Ω), Lima, Montenegro

and Santos (LIMA et al., 2010) obtained a lower bound of the p-fundamental tone of the domain

Ω. This lower bound will play an important role to obtain lower bounds for the p-fundamental

tone of submanifolds in a Riemannian manifold with bounded mean curvature.
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Theorem 5.1.1 (LIMA et al., 2010) Let Ω be a domain in a Riemannian manifold M such that

∂Ω 6= /0. Then

λ
∗
p(Ω)≥ c(Ω)p

pp . (5.1.3)

Remark 5.1.1 The proof of Theorem 5.1.1 in (LIMA et al., 2010) uses the divergence theorem

as follows: ∫
Ω

div( f pX) = 0

for all positive f ∈C∞
0 (Ω) and X ∈ X(Ω). However, the condition on X can be weakened by

considering almost everywhere smooth vector fields in Ω, which was also mentioned in (BESSA;

MONTENEGRO, 2003). This observation will be useful to obtain some lower bounds for the

p-fundamental tone, since it allows us to choose a suitable vector field X on a larger set of vector

fields.

When p = 2, Theorem 5.1.1 was obtained by Bessa and Montenegro (BESSA;

MONTENEGRO, 2003). Applying Theorem 5.1.1, they were able to obtain eigenvalue estimates

for submanifolds with locally bounded mean curvature. As a consequence, they proved the

following:

Theorem 5.1.2 (BESSA; MONTENEGRO, 2003) Let M be an n-dimensional complete noncon-

pact submanifold with bounded mean curvature H in a Cartan-Hadamard manifold N with sectio-

nal curvature KN satisfying KN ≤ κ < 0 for some negative constant κ . If ‖H‖≤ β < (n−1)
√
−κ ,

then

λ
∗
2 (M)≥ ((n−1)

√
−κ−β )2

4
.

We remark that Theorem 5.1.2 was obtained by Cheung and Leung (CHEUNG; LEUNG, 2001)

when the ambient space N is a hyperbolic space Hm(κ) of constant sectional curvature κ < 0 (see

also (SEO, 2012)). In Section 5.2, we obtain lower bounds for the p-fundamental tone of geodesic

balls and submanifolds with bounded mean curvature, following Bessa and Montenegro’s idea

(BESSA; MONTENEGRO, 2003).

Let M be a complete properly immersed minimal submanifold in a Cartan-Hadamard

manifold N of sectional curvature KN bounded from above by a negative constant κ . Thereby,

Theorem 5.1.2 shows that

λ
∗
2 (M)≥−(n−1)2κ

4
. (5.1.4)
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It would be interesting to characterize the equality case in the above inequality. Gimeno

(GIMENO, 2014) proved that the equality in (5.1.4) is attained under the assumption that M has

a finite volume growth (see Section 5.4 for definition). In Section 5.4, we extend Gimeno’s result

to the cases where 1 < p < ∞. Indeed, we obtain that the p-fundamental tone λ ∗p(M) is exactly
(n−1)p√−κ

p

pp under the same assumption as above (see Theorem 5.4.1). As applications, we

determine the p-fundamental tone for complete immersed minimal submanifolds in a Euclidean

or hyperbolic space under certain conditions on the norm of the second fundamental form.

Finally, we study the infimum of the mean curvature of the leaves of transversely

oriented C2 foliation of codimension one. The motivation of this study is the following. Let

z(x,y) be a C2 function defined on {(x,y) ∈ R2 : x2 + y2 < r}. Denote by H(x,y) and K(x,y)

the mean and Gauss curvatures of the graph of z = z(x,y). Heinz (HEINZ, 1955) proved that

if |H| ≥ β > 0, then r ≤ 1
β

and if K ≥ β > 0, then r ≤ 1√
β

, which improves the result of

Bernstein (BERNSTEIN, 1910a; BERNSTEIN, 1910b) and Efimov (EFIMOV, 1953). Later,

Chern (CHERN, 1965) and Flanders (FLANDERS, 1966) obtained independently a natural

generalization for graphs of C2 functions z = z(x1, . . . ,xn) defined on a bounded domain Ω⊂ Rn

with smooth boundary. More precisely, they obtained that if |H| ≥ β > 0, then nβ ≤ Vol(∂Ω)
Vol(Ω) and

if S≥ β > 0, then
√

n(n−1)β ≤ Vol(∂Ω)
Vol(Ω) , where H and S denote the mean and scalar curvature,

respectively. The above inequalities are known as the Chern-Heinz inequalities for graphs.

From these inequalities, it follows that if an entire graph of C2 function defined on Rn has

constant mean curvature H, then H = 0 and if it has a constant scalar curvature S≥ 0, then S = 0.

Salavessa (SALAVESSA, 1989) generalized the Chern-Heinz inequality to graphs of smooth

functions defined on a Riemannian manifold. On the other hand, given a Riemannian manifold

M, a graph of a C∞ function f : Ω⊂M→ R can be regarded as a leaf of transversely oriented

smooth foliation of codimension one of Ω×R, which is obtained by vertical translation of the

graph. In this point of view, Barbosa, Bessa, and Montenegro (BARBOSA et al., 2008) gave

another generalization of the Chern-Heinz inequalities. They were able to estimate the infimum

of the mean curvature HF of the leaves of a C2 foliation of an open set Ω of a Riemannian

manifold M in terms of the fundamental tone of the open set Ω. We extend their results into the

case where 1 < p < ∞ in Theorem 5.5.1.
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5.2 Lower bounds for the p-fundamental tone on geodesic balls

Let M be an n-dimensional complete noncompact Riemannian manifold with sec-

tional curvature bounded from above by a constant. In this section, we obtain lower bounds

for the p-fundamental tone of geodesic balls BM(q,r) of radius r centered at q ∈ M, where

r < inj(q). Following Bessa and Montenegro’s idea in (BESSA; MONTENEGRO, 2003), we

obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with locally

bounded mean curvature. For this purpose, we begin with the well-known Hessian compa-

rison theorem (see e.g (BESSA; MONTENEGRO, 2003; CHEEGER; EBIN, 1975; JORGE;

KOUTROUFIOTIS, 1981; SCHOEN; YAU, 1994)).

Theorem 5.2.1 Let M be an n-dimensional complete Riemannian manifold and x0,x1 ∈M. Let

γ : [0,ρ(x)]→M be a minimizing geodesic joining x0 and x1 where ρ(x) is the distance function

distM(x0,x). Let K be the sectional curvature of M. Define µ(ρ) by

µ(ρ) =


k coth(kρ(x)) if supγ K =−k2,

1
ρ(x) if supγ K = 0,

k cot(kr) if supγ K = k2 and ρ(x)< π

2k .

(5.2.1)

Then the Hessian of ρ and ρ2 satisfies

∇
2
ρ(x)(X ,X)≥µ(ρ(x))‖X‖2 and ∇

2
ρ(x)(γ ′,γ ′) = 0

∇
2
ρ

2(x)(X ,X)≥2ρ(x)µ(ρ(x))‖X‖2 and ∇
2
ρ

2(x)(γ ′,γ ′) = 2,

where X is any vector in TxM perpendicular to γ ′(ρ(x)).

From Theorem 5.2.1, it follows that

∆ρ(x) ≥ (n−1)µ(ρ(x)),

∆ρ2(x) ≥ 2(n−1)ρ(x)µ(ρ(x))+2.
(5.2.2)

We now state our result on lower bounds for the p-fundamental tone on geodesic

balls.

Theorem 5.2.2 Let M be an n-dimensional complete Riemannian manifold. Denote by BM(q,r)

a geodesic ball with radius r < inj(q). Let κ(q,r) = sup{KM(x) : x ∈ BM(q,r)}, where KM(x)

denotes the sectional curvature of M at x. Then

λ
∗
p(BM(q,r))≥


1
pp max{np

rp , [(n−1)k coth(kr)]p} if κ(q,r) =−k2,

np

pprp if κ(q,r) = 0,
((n−1)k cot(kr)+1)p

pprp if κ(q,r) = k2 and r < π

2k ,

(5.2.3)
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where k is a positive constant.

Proof: Applying Theorem 5.1.1, we have

λ
∗
p(BM(q,r))≥ c(BM(q,r))p

pp . (5.2.4)

Let ρ(x) = distM(q,x). Consider X = ∇ρ2. From (5.2.2), it follows

divX = ∆ρ
2(x)≥


2(n−1)kρ coth(kρ)+2≥ 2n if κ(q,r) =−k2,

2n if κ(q,r) = 0,

2(n−1)kρ cot(kρ)+2 if κ(q,r) = k2 and r < π

2k .

(5.2.5)

Since ‖X‖∞ = 2r, using (5.2.4) and (5.2.5) we get the desired results in the cases where κ(q,r) =

0 and κ(q,r) = k2. For the case κ(q,r) = −k2, we have an additional estimate of the lower

bound as follows.

Consider a vector field X = ∇ρs on BM(q,r), for 1 < s < 2. Note that X is smooth

in BM(q,r)\{q} and continuous in BM(q,r). Thus by the divergence theorem and the dominated

convergence theorem, we still have ∫
BM(q,r)

div( f pX) = 0 (5.2.6)

for all positive f ∈C∞
0 (BM(q,r)) (for details on the proof of (5.2.6) see e.g. (BESSA; MONTE-

NEGRO, 2003) p. 286). Therefore, by Remark 5.1.1, equation (5.2.4) and the definition of c(Ω)

we have

λ
∗
p(BM(q,r))≥ 1

pp

[
inf{s(s−1)ρs−2 + s(n−1)kρs−1 coth(kρ)}

srs−1

]p

.

Letting s→ 1, we obtain

λ
∗
p(BM(q,r))≥ 1

pp [(n−1)k coth(kr)]p ,

which completes the proof. �

5.3 Submanifolds with locally bounded mean curvature

Definition 5.3.1 Let ϕ : Mn→ Nm be an isometric immersion. Let H be the mean curvature

vector field along M. We say that the immersion has locally bounded mean curvature if for every

q ∈ N and r > 0, the number h(q,r) = sup{|H(x)| : x ∈ ϕ(M)∩BN(q,r)} is finite.
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In the sequel, we obtain lower bounds for the p-fundamental tone for domains on

submanifolds with locally bounded mean curvature. Consider an isometric immersion ϕ : M ↪→N,

where Mn and Nm are complete Riemannian manifolds. We denote by ∇ and ∇ the Riemannian

connections on M and N, respectively, while by ∇2 and ∇
2

the Hessian on M and N, respectively.

First we need to establish a relationship between the Hessian of a smooth function g : N→ R

and the Hessian of f = g ◦ϕ : M → R, which is well-known in the literature (see (BESSA;

MONTENEGRO, 2003; CHEUNG; LEUNG, 2001; JORGE; KOUTROUFIOTIS, 1981) for

example). Note that dϕ(X) can be identified with X . For every q ∈M and for every X ∈ TqM,

〈∇ f ,X〉= d f (X) = dg(X) = 〈∇g,X〉.

Thus

∇g = ∇ f +(∇g)⊥, (5.3.1)

where (∇g)⊥ is perpendicular to TqM. Applying the Gauss equation, we see

∇
2 f (q)(X ,Y ) = ∇

2
g(ϕ(q))(X ,Y )+ 〈∇g,α(X ,Y )〉ϕ(q), (5.3.2)

where α(q)(X ,Y ) and ∇2 f (q)(X ,Y ) stand for the second fundamental form of the immersion

ϕ and the Hessian of f at q ∈ M, X ,Y ∈ TqM, respectively. Choosing an orthonormal basis

{e1,e2, . . . ,en} for TqM and taking trace in (5.3.2) with respect to this basis we get

∆ f (q) =
n

∑
i=1

∇
2 f (q)(ei,ei)

=
n

∑
i=1

∇
2
g(ϕ(q))(ei,ei)+ 〈∇g,

n

∑
i=1

α(ei,ei)〉. (5.3.3)

Applying Theorem 5.1.1 and Theorem 5.2.1, we give the following lower bounds estimates for

the p-fundamental tone for domains on submanifolds with locally bounded mean curvature.

Theorem 5.3.1 Let ϕ : Mn→ Nm be an isometric immersion with locally bounded mean curva-

ture and let Ω be any connected component of ϕ−1(BN(q,r)) for q∈N\ϕ(M) and r > 0. Denote

by κ(q,r) the supremum of the sectional curvature of N in BN(q,r) as in Theorem 5.2.2. Then,

for a constant k > 0, we have the following:

1. If κ(q, inj(q)) = k2 <+∞ and

r < min

inj(q),
cot−1

(
h(q,inj(q))
(n−1)k

)
k

 ,
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then

λ
∗
p(Ω)≥ [(n−1)k cot(kr)−h(q,r)]p

pp .

2. If κ(q,r)> 0 for all r > 0, limr→∞ κ(q,r) = ∞, inj(q) = ∞, and

r < r0 := max
s>0


cot−1

(
h(q,s)

(n−1)
√

κ(q,s)

)
√

κ(q,s)

 ,

then

λ
∗
p(Ω)≥

[(n−1)
√

κ(q,r)cot(
√

κ(q,r)r)−h(q,r)]p

pp .

3. If κ(q, inj(q))= 0 and r <min{inj(q), n
h(q,inj(q))}, where n

h(q,inj(q)) =+∞ when h(q, inj(q))=

0, then

λ
∗
p(Ω)≥

[n
r −h(q,r)]p

pp .

4. If κ(q, inj(q)) =−k2, h(q, inj(q))< (n−1)k, and r < inj(q), then

λ
∗
p(Ω)≥ [(n−1)k−h(q,r)]p

pp .

5. If κ(q, inj(q)) =−k2, h(q, inj(q))≥ (n−1)k, and

r < min

inj(q),
coth−1

(
h(q,inj(q))
(n−1)k

)
k

 ,

then

λ
∗
p(Ω)≥ [(n−1)k coth(kr)−h(q,r)]p

pp .

Proof: Let Ω be a connected component of ϕ−1(BN(q, inj(q))) and in this component let

Xi = ∇ fi, where ρ(x) = distN(q,x) is the distance function on N and fi = ρ i ◦ ϕ : M → R,

i = 1,2. Note that fi is smooth on ϕ−1(BN(q, inj(q))). By (5.3.3) we have

divXi(x) =
n

∑
j=1

∇
2
ρ

i(ϕ(x))(e j,e j)+ 〈∇ρ
i,H〉(ϕ(x)),

where {e1, . . . ,en} is an orthonormal basis of TxM. Rewriting the orthonormal basis {e1, . . . ,en}

in terms of an orthonormal basis {E1, . . . ,Em} of Tϕ(x)N such that E1 = ∇ρ , we get

e j =
m

∑
i=1

a j
kEk, j = 1, . . . ,n.



56

Since |∇ρ|2 = 1 we have ∇
2
ρ(ϕ(x))(E1,X) = 0 for every X ∈ Tϕ(x)N. Thereby, we obtain

divX1(x) =
n

∑
j=1

∇
2
ρ(ϕ(x))(e j,e j)+ 〈∇ρ,H〉(ϕ(x))

=
n

∑
j=1

∇
2
ρ(ϕ(x))

(
m

∑
i=1

a j
kEk,

m

∑
i=1

a j
kEk

)
+ 〈∇ρ,H〉(ϕ(x))

=
n

∑
j=1

∇
2
ρ(ϕ(x))

(
m

∑
i=2

a j
kEk,

m

∑
i=2

a j
kEk

)
+ 〈∇ρ,H〉(ϕ(x)).

Now we are on the hypothesis of Theorem 5.2.1, hence

divX1(x) ≥
n

∑
j=1

µ(ρ(x))

∣∣∣∣∣ m

∑
i=2

a j
kEk

∣∣∣∣∣
2

+ 〈∇ρ,H〉(ϕ(x))

= µ(ρ(x))
n

∑
j=1

m

∑
i=2

(a j
k)

2 + 〈∇ρ,H〉(ϕ(x))

≥ µ(ρ(x))
n

∑
j=1

m

∑
i=2

(a j
k)

2−h(q,r).

Since {ek}n
k=1 is an orthonormal basis, we have

n =
n

∑
j=1
|e j|2 =

n

∑
j=1
|

m

∑
k=1

a j
kEk|2 =

n

∑
j=1

m

∑
k=1

(a j
k)

2,

i.e,
n

∑
j=1

m

∑
k=2

(a j
k)

2 = n−
n

∑
j=1

(a j
1)

2.

On the other hand, since ∇ρ = E1 using (5.3.1) we deduce
n

∑
j=1

(a j
1)

2 =
n

∑
j=1
〈E1,e j〉2 =

n

∑
j=1
〈∇ f ,e j〉2 = |∇ f |2,

again by (5.3.1) we have 1 = |∇ρ|2 = |∇ f |2 + |∇ρ⊥|2, which implies that |∇ f |2 ≤ 1. Whence
n

∑
j=1

m

∑
k=2

(a j
k)

2 ≥ n−1.

Therefore,

divX1(x)≥ µ(ρ(x))(n−1)−h(q,r).

On the other hand, if i = 2 we have ∇
2
ρ(ϕ(x))2(E1,X) = 0 for every X ∈ Tϕ(x)N such that

X ⊥ E1, and ∇
2
ρ(ϕ(x))2(E1,E1) = 2. Proceeding analogously to the previous case we get

divX2(x)≥ 2ρ(x)µ(ρ(x))(n−1)+2−h(q,r).

Then, we obtain
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(1) If κ(q,r) = k2 and r < min

{
inj(q), π

2k ,
cot−1

(
h(q,inj(q))
(n−1)k

)
k

}
= min

{
inj(q),

cot−1
(

h(q,inj(q))
(n−1)k

)
k

}
,

since h(q,inj(q))
(n−1)k ≥ 0 and the cotangent function is decreasing. Then,

divX1(x)≥ (n−1)k cot(kr)−h(q,r)> 0.

(2) The proof of Item (2) is analogous to that of Item (1).

(3) If κ(q,r) = 0 and r < min{inj(q), n
h(q,inj(q))}, then

divX2(x)≥ 2n−2rh(q,r)> 0.

(4) If κ(q,r) =−k2 and h(q, inj(q))< (n−1)k, then

divX1(x)≥ (n−1)k coth(kr)−h(q,r)> 0.

(5) If κ(q,r) =−k2, h(q, inj(q))≥ (n−1)k and r < min

{
inj(q),

coth−1
(

h(q,inj(q))
(n−1)k

)
k

}
, then

divX1(x)≥ (n−1)k coth(kr)−h(q,r)> 0.

Since ‖X1‖ ≤ 1 and ‖X2‖ ≤ 2r, the conclusion follows from Theorem 5.1.1. �

We remark that the dimension of the ambient space N does not appear in the lower

bound of the p-fundamental tone in Theorem 5.3.1. Furthermore, we obtain the following

straightforward consequence.

Corollary 5.3.1 Let ϕ : Mn→Rm be an isometric minimal immersion of a complete submanifold.

Suppose that ϕ(M)⊂ BRn(0,r), then λ ∗p(M)≥ np

2p pprp . In particular, if M is a complete minimal

surface in R3 such that ϕ(M)⊂ BR3(0,r), then λ ∗p(M)≥ 1
pprp .

Proof: Let q ∈ BRn(0,r) \ ϕ(M). Taking the smallest ball BRn(q,2r) such that ϕ(M) ⊂

BRn(q,2r) and applying Item (3) of Theorem 5.3.1, we get the conclusion. �

As an interesting consequence of Theorem 5.3.1, one can obtain a lower bound

of a complete noncompact submanifold with bounded mean curvature in a Cartan-Hadamard

manifold.

Corollary 5.3.2 (DUNG; SEO, 2016) Let ϕ : M ↪→ N be an isometric immersion, where M

is an n-dimensional complete noncompact Riemannian manifold and N is a complete simply

connected Riemannian manifold sectional curvature KN satisfying KN ≤ κ < 0 for some negative

constant κ . If ‖H‖ ≤ β < (n−1)
√
−κ , then

λ
∗
p(M)≥ ((n−1)

√
−κ−β )p

pp . (5.3.4)
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Proof: Let q be an arbitrary point of N such that q ∈ N \ϕ(M). Since N is simply connected

and negatively curved, we see that inj(q) = ∞. That is, q is a pole of N. Consider ρ = distN(q, ·)

and X = ∇(ρ ◦ϕ). By Item (4) of Theorem 5.3.1, we have that λ ∗p(Ω)≥ ((n−1)
√
−κ−β )p

pp for any

connected component of ϕ−1(BN(q,r)). Thus

lim
i→∞

λ
∗
p(Ωi)≥

((n−1)
√
−κ−β )p

pp

for any exhaustion {Ωi} of M. The conclusion follows from (2.6.2). �

Remark 5.3.1 In particular, if p = 2 and N is a hyperbolic space, Corollary 5.3.2 was originally

obtained by Cheung and Leung (CHEUNG; LEUNG, 2001). Moreover, if p = 2 and N is a

Cartan-Hadamard manifold, Bessa and Montenegro (BESSA; MONTENEGRO, 2003) obtained

the same lower bound for the fundamental tone (see also (SEO, 2012)). Very recently, Dung and

the second author obtained Corollary 5.3.2 in (DUNG; SEO, 2016).

5.4 The p-fundamental tone of minimal submanifolds with controlled extrinsic curva-

ture

As mentioned in the introduction, adapting Gimeno’s idea (GIMENO, 2014), we

give an upper bound for the p-fundamental tone of minimal submanifolds of a Cartan-Hadamard

manifold with controlled extrinsic curvature in this section. Combining this upper bound with

Theorem 5.3.1, we obtain the p-fundamental tone of such minimal submanifolds. Moreover, we

provide an intrinsic result from which the fundamental tone of a Cartan-Hadamard manifold

with finite volume growth is determined.

The following technical lemma will give us an appropriate interval to construct a

suitable test function to get an upper bound for the p-fundamental tone.

Lemma 5.4.1 Given n∈N, p∈ (1,∞), and κ ≤ 0, there exists an interval [aR,bR]⊂ [R
2 ,R] such

that for all t ∈ [aR,bR]

(n−1)
p

Hκ(t)sin

(
2π(t− R

2 )

R

)
>

2π

R

∣∣∣∣∣cos

(
2π(t− R

2 )

R

)∣∣∣∣∣ , (5.4.1)

where R > 0 and Hκ(t) is defined as in (2.7.4).
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Proof: Suppose that κ < 0. Since sin
(

2π(t−R
2 )

R

)
≥
∣∣∣cos

(
2π(t−R

2 )
R

)∣∣∣ for t ∈ [5R
8 , 7R

8 ] and
(n−1)

p Hκ(t)≥ (n−1)
√
−κ

p > 2π

R , we have

(n−1)
p

Hκ(t)sin

(
2π(t− R

2 )

R

)
>

2π

R

∣∣∣∣∣cos

(
2π(t− R

2 )

R

)∣∣∣∣∣
for any t ∈ [5R

8 , 7R
8 ]. This proves the case κ < 0.

Suppose that κ = 0. In this case, (5.4.1) is equivalent to the inequality

(n−1)
p

1
s

sin
(

2π(s− 1
2
)

)
> 2π

∣∣∣∣cos
(

2π(s− 1
2
)

)∣∣∣∣ , (5.4.2)

where s ∈ [1
2 ,1]. Thus it suffices to find an inteveral [ā, b̄] ⊂ [1

2 ,1] such that (5.4.2) holds for

every s ∈ [ā, b̄]. Note that (5.4.2) is obviously satisfied for s = 3
4 . Then, by continuity, there exist

constants ā, b̄ ∈ (1
2 ,1) depending only on p and n satisfying the desired conditions.

We remark that, in both cases above where κ = 0 and κ < 0, we obtain an interval

which contians the same point 3R
4 . This fact allows us to choose an interval [aR,bR] which is a

subset of both and contains 3R
4 . The behavior of the cosine function allows a suitable choice of

aR and bR in a such way that

max
[aR,bR]

{∣∣∣∣∣cos

(
2π(t− R

2 )

R

)∣∣∣∣∣
}

= |cos(2π(b−1/2))|= |cos(2π(a−1/2))|.

�

Remark 5.4.1 Define
(

p
j

)
:=

p(p−1) . . .(p− j+1)
j!

, where p is a real number and j is a

nonnegative integer. Then

(x+ y)p = xp +
∞

∑
j=1

(
p
j

)
xp− jy j,

where the above power series converges absolutely provided |x|> |y|. The proof of this fact is a

straightforward application of the ratio test for convergence of power series. Furthermore, if

Ω̄⊂R2 is a compact set such that |x|> |y| for all, (x,y)∈ Ω̄, then the series converges absolutely

and uniformly on Ω̄.

We construct a suitable test function as follows. Consider the interval [aR,bR]

obtained in Lemma 5.4.1. Define

φ(t) =

 f (t) if t ∈ [aR,bR],

0 otherwise,
(5.4.3)
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where f : R→ R is defined as

f (t) =
sin
(

2π(t−R
2 )

R

)
Vol(Sk

t )
1
p

.

We now consider a function Φ : M→ R defined by

Φ(x) = φ(rq(x)). (5.4.4)

Then we have the following technical lemma, which will be used to obtain an upper bound for

the p-fundamental tone of minimal submanifolds in a Cartan-Hadamard manifold.

Lemma 5.4.2 Let φ defined as in (5.4.3) for κ ≤ 0. Then there exists an upper bound function

θκ : R+→ R+ such that ∫ R
0 |φ ′(t)|pVol(Sκ

t )dt∫ R
0 |φ(t)|pVol(Sκ

t )dt
≤ θκ(R) (5.4.5)

and

lim
R→∞

θκ(R) =
(n−1)p√−κ

p

pp . (5.4.6)

Proof: First suppose that κ < 0. Then∫ R
0 |φ ′(t)|pVol(Sκ

t )dt∫ R
0 |φ(t)|pVol(Sκ

t )dt
=

∫ bR
aR | f ′(t)|pVol(Sκ

t )dt∫ bR
aR | f (t)|pVol(Sκ

t )dt
.

Moreover

| f ′(t)|p =

∣∣∣− (n−1)
p Hκ(t)sin

(
2π(t−R

2 )
R

)
+ 2π

R cos
(

2π(t−R
2 )

R

)∣∣∣p
Vol(Sκ

t )

≤

(
(n−1)

p Hκ(t)sin
(

2π(t−R
2 )

R

)
+ 2π

R

∣∣∣cos
(

2π(t−R
2 )

R

)∣∣∣)p

Vol(Sκ
t )

.

Using Remark 5.4.1 and our choice of the interval [aR,bR] in Lemma 5.4.1 we deduce

| f ′(t)|p ≤

(n−1)p

pp Hκ(t)p sinp
(

2π(t−R
2 )

R

)
+

∞

∑
j=1

(
p
j

)
(n−1)p− jHκ(t)p− j

pp− j
2 jπ j

R j

Vol(Sκ
t )

.

The power series on the right hand side of the above inequality is convergent, since Hκ(k) is

bounded on [aR,bR], Hκ(t)≥
√
−κ and R was chosen in Lemma 5.4.1 such that R > 2pπ

(n−1)
√
−κ

.
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Using that Hκ(t) is a non-increasing function and
∫ bR

aR sinp
(

2π(t−R
2 )

R

)
dt = Rλ (p)

2π
, where λ (p) =∫ 2π(a− 1

2 )

2π(b− 1
2 )

sinp(y)dy, we obtain

∫ bR
aR | f ′(t)|pVol(Sκ

t )dt∫ bR
aR | f (t)|pVol(Sκ

t )dt
≤ (n−1)p

pp Hκ(aR)p +
2π(b−a)

λ (p) ∑
j≤p

(
p
j

)
(n−1)p− jHκ(aR)p− j

pp− j
2 jπ j

R j

+
2π(b−a)

λ (p) ∑
j∈N1

(
p
j

)
(n−1)p− jHκ(aR)p− j

pp− j
2 jπ j

R j

+
2π(b−a)

λ (p) ∑
j∈N2

(
p
j

)
(n−1)p− jHκ(bR)p− j

pp− j
2 jπ j

R j

≤ (n−1)p

pp Hκ(aR)p +
2π(b−a)

λ (p) ∑
j≤p

(
p
j

)
(n−1)p− jHκ(aR)p− j

pp− j
2 jπ j

R j

+
2π(b−a)

λ (p) ∑
j∈N2

(
p
j

)
(n−1)p− jHκ(bR)p− j

pp− j
2 jπ j

R j ,

where N1 = { j0 +2l +1 : l ∈ N}, N2 = { j0 +2l +2 : l ∈ N} and j0 = min{ j ∈ N : j > p}. In

the last inequality we used that
(p

j

)
≤ 0 for all j ∈ N1. Define

θκ(R) := (n−1)p

pp Hκ(aR)p + 2π(b−a)
λ (p) ∑

j≤p

(
p
j

)
(n−1)p− jHκ(aR)p− j

pp− j
2 jπ j

R j

+ 2π(b−a)
λ (p) ∑

j∈N2

(
p
j

)
(n−1)p− jHκ(bR)p− j

pp− j
2 jπ j

R j .

Note also that
lim

R→∞
Hκ(bR) = lim

R→∞
Hκ(aR) =

√
−κ,

lim
R→∞

∞

∑
j∈N2

(
p
j

)
(n−1)p− jHκ(bR)p− j

pp− j
2 jπ j

R j = 0,

where the last limit follows from the fact that the general term of the above power series converges

uniform to zero as R goes to infinity. Therefore we get the desired result for this case.

Suppose that κ = 0. Then we have

| f ′(t)|p ≤

(n−1)p

pp H0(t)p sinp
(

2π(t−R
2 )

R

)
+

∞

∑
j=1

(
p
j

)
(n−1)p− jH0(t)p− j

pp− j
2 jπ j

R j ν(t) j

Vol(S0
t )

,

where ν(t) =
∣∣∣cos

(
2π(t−R

2 )
R

)∣∣∣. Again we use Remark 5.4.1 and our choice of the interval [aR,bR]

to ensure that the power series on the right hand side of the above inequality converges absolutely
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and uniformly on [aR,bR], since H0(t)
(n−1)

p ≥ 2π

R

∣∣∣cos
(

2π(t−R
2 )

R

)∣∣∣. As before,

∫ bR
aR | f ′(t)|pVol(S0

t )dt∫ bR
aR | f (t)|pVol(S0

t )dt
≤ (n−1)p

pp H0(aR)p +
1

λ (p) ∑
j≤p

(
p
j

)
(n−1)p− jH0(aR)p− j

pp− j
2 jπ j

R j τ( j)

+
1

λ (p) ∑
j∈N1

(
p
j

)
(n−1)p− jH0(aR)p− j

pp− j
2 jπ j

R j τ( j)

+
1

λ (p) ∑
j∈N2

(
p
j

)
(n−1)p− jH0(bR)p− j

pp− j
2 jπ j

R j τ( j)

≤ (n−1)p

pp
1

apRp +
1

Rpλ (p) ∑
j≤p

(
p
j

)
(n−1)p− j

pp− j
2 jπ j

ap− j τ( j)

+
1

Rpλ (p) ∑
j∈N2

(
p
j

)
(n−1)p− j

pp− j
2 jπ j

bp− j τ( j),

where τ( j) =
∫ 2π(b− 1

2 )

2π(a− 1
2 )
|cos(y)| jdy. Define

θ0(R) := (n−1)p

pp
1

apRp +
1

Rpλ (p) ∑
j≤p

(
p
j

)
(n−1)p− j

pp− j
2 jπ j

ap− j τ( j)

+
1

Rpλ (p) ∑
j∈N2

(
p
j

)
(n−1)p− j

pp− j
2 jπ j

bp− j τ( j).

Since the above power series in θ0(R) is convergent, it is easy to see that lim
R→∞

θ0(R) = 0, which

completes the proof. �

Proceeding, we use the suitable test function constructed above and the previous

lemma to get an upper bound for the p-fundamental and using the lower bound on Corollary

5.3.2 we get the main result of this section.

Theorem 5.4.1 Let Mn be an n-dimensional complete properly immersed minimal submanifold

in a Cartan-Hadamard manifold N of sectional curvature KN bounded from above by KN ≤ κ ≤ 0.

Suppose that

lim
R→∞

Q(R)< ∞.

Then

λ
∗
p(M) =

(n−1)p√−κ
p

pp .

Proof: The lower bound for the p-fundamental tone is given in Corollary 5.3.2. To get the

upper bound, we will make use of the definition (5.1.1) of the p-fundamental tone and a suitable
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test function defined as in (5.4.4). Then the coarea formula gives

λ
∗
p(M) ≤

∫
M |∇Φ|pdM∫
M |Φ|pdM

=

∫
M |φ ′|p|∇r|pdM∫

M |φ |pdM

≤
∫

M |φ ′|pdM∫
M |φ |pdM

=

∫ R
0

[∫
∂Mt

q

|φ ′|p
|∇r|

]
dt∫ R

0

[∫
∂Mt

q

|φ |p
|∇r|

]
dt

=

∫ R
0 |φ ′(t)|p

[∫
∂Mt

q
1
|∇r|

]
dt∫ R

0 |φ(t)|p
[∫

∂Mt
q

1
|∇r|

]
dt

=

∫ bR
aR |φ ′(t)|pVol(Mt

q)
′dt∫ bR

aR |φ(t)|pVol(Mt
q)
′dt

.

By Lemma 2.7.1 we have

λ
∗
p(M) ≤

∫ bR
aR |φ ′(t)|p(lnQ(t))′Vol(Bκ

t )Q(t)dt∫ bR
aR |φ(t)|pQ(t)Vol(Sκ

t )dt
+

∫ bR
aR |φ ′(t)|pQ(t)Vol(Sκ

t )dt∫ bR
aR |φ(t)|pQ(t)Vol(Sκ

t )dt
.

We define two functions gκ and h as follows:

For κ < 0,

gκ(R) := (n−1)p

pp Hκ(aR)p + ∑
j≤p

(
p
j

)
(n−1)p− jHκ(aR)p− j

pp− j
2 jπ j

R j

+ ∑
j∈N2

(
p
j

)
(n−1)p− jHκ(bR)p− j

pp− j
2 jπ j

R j .

For κ = 0,

g0(R) := (n−1)p

pp H0(aR)p + ∑
j≤p

(
p
j

)
(n−1)p− jH0(aR)p− j

pp− j
2 jπ j

R j |cos(2π(a−1/2))| j

+ ∑
j∈N2

(
p
j

)
(n−1)p− jH0(bR)p− j

pp− j
2 jπ j

R j |cos(2π(b−1/2))| j

and

h(R) :=
∫ bR

aR
(lnQ(t))′dt.

Applying Lemma 5.4.2 and using the fact that
Vol(Bκ

t )

Vol(Sκ
t )

is a non-decreasing function, we have

λ
∗
p(M) ≤ Q(bR)

Q(aR)

∫ bR
aR |φ ′(t)|p(lnQ(t))′Vol(Bκ

t )dt +
∫ bR

aR |φ ′(t)|pVol(Sκ
t )dt∫ bR

aR |φ(t)|pVol(Sκ
t )dt

≤ Q(bR)
Q(aR)

(
2π

λ (p)R

∫ bR

aR
|φ ′(t)|p

(
lnQ(t)

)′Vol(Bκ
t )dt +θκ(R)

)
≤ Q(bR)

Q(aR)

(
2π

λ (p)R
Vol
(
Bκ

bR

)
Vol
(
Sκ

bR

) gκ(R)h(R)+θκ(R)

)
. (5.4.7)
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Note that

lim
R→∞

Q(bR)
Q(aR)

= 1,

lim
R→∞

Vol
(
Bκ

bR

)
Vol
(
Sκ

bR

) 2π

λ (p)R
=

 0 if κ < 0,
2bπ

nλ (p) if κ = 0,

lim
R→∞

gκ(R) =
(n−1)p√−κ

p

pp ,

lim
R→∞

h(R) = 0,

lim
R→∞

θκ(R) =
(n−1)p√−κ

p

pp .

Passing to the limit as R→ ∞ in (5.4.7), we obtain the upper bound which gives the conclusion.

�

Since the function Q(t) is non-decreasing, we see that Q(bR)
Q(aR) ≤

Q(R)
Q(R

2 )
for [a,b] ⊂

[1/2,1]. If we replace the hypothesis on the volume growth in Theorem 5.4.1, we are able to get

a more general result as follows:

Theorem 5.4.2 Let Mn be an n-dimensional complete properly immersed minimal submanifold

in a Cartan-Hadamard manifold N of sectional curvature KN bounded from above by KN ≤ κ < 0.

Suppose that the immersion has an extrinsic doubling property, namely

Q(R)
Q(R

2 )
<C.

Then,
(n−1)p√−κ

p

pp ≤ λ
∗
p(M)≤ C(n−1)p√−κ

p

pp .

As a consequence of Theorem 5.4.1, we get the following interesting intrinsic result in the

direction of the generalized McKean’s theorem obtained by Lima, Montenegro and Santos in

(LIMA et al., 2010).

Theorem 5.4.3 Let Mn be a complete simply connected manifold with sectional curvature

bounded from above KM ≤ κ < 0. Furthermore, suppose that there exists a point q ∈M such

that

sup
R>0

Vol(Bq
R)

Vol(Bκ
R)

<+∞, (5.4.8)
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where Bq
R is the geodesic ball in M centered at q of radius R, and Bκ

R is the geodesic ball in

Hn(κ) of the same radius R. Then

λ
∗
p(M) =

(n−1)p√−κ
p

pp . (5.4.9)

In the following three theorems, the assumptions on the norm of the second fundamental form

guarantee that the minimal submanifold has finite volume growth, i.e., supR>0 Q(R) < +∞.

Hence the following three theorems are immediate consequences of Theorem 5.4.1, (see also

Theorem 2.7.2, Theorem 2.7.3 and Theorem 2.7.4).

Theorem 5.4.4 Let M be an immersed minimal surface in the hyperbolic space Hm(κ) of

constant sectional curvature κ < 0. Suppose that M2 has finite total extrinsic curvature, i.e.,∫
M |α|2dM < ∞. Then the p-fundamental tone satisfies

λ
∗
p(M) =

√
−κ

p

pp .

Remark 5.4.2 We note tha the finite total scalar curvature condition implies that the immersion

is proper (Cf. (ANDERSON, 1984)).

Theorem 5.4.5 Let Mn be a properly immersed minimal submanifold in the hyperbolic space

Hm(κ) of constant sectional curvature κ with second fundamental form α . Suppose that n > 2

and the submanifold is of faster than exponential decay of its extrinsic curvature. Namely, there

exists a point q ∈M such that

|α|(x)≤
δ (rq(x))

e2
√
−κrq(x)

,

where δ (r) is a function such that δ (r)→ 0 when r→∞ and rq is the extrinsic distance function.

Then

λ
∗
p(M) =

(n−1)p√−κ
p

pp .

Theorem 5.4.6 Let Mn be a minimal submanifold immersed in Rm with finite total scalar

curvature, i.e.,
∫

M |α|ndM <+∞. Then

λ
∗
p(M) = 0.
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5.5 Bernstein-Heinz-Chern-Flanders type inequalities

In this section, we study transversely oriented codimension one C2-foliations of open

subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the

mean curvature of the leaves in terms of the p-fundamental λ ∗p(Ω) tone of Ω, which are called

Bernstein-Heinz-Chern-Flanders type inequalities. The motivation of this study is summarized

as follows. Let B = {(x,y) ∈R2 : x2+y2 < r} and z(x,y) be a C2 function defined on B . Denote

by H(x,y) and K(x,y) the mean and Gauss curvatures of the graph of z = z(x,y). In 1955 Heinz

proved that if |H| ≥ β > 0, then r ≤ 1
β

and if K ≥ β > 0, then r ≤ 1√
β

, which improves the

result of Bernstein and Efimov .

Later, Chern and Flanders obtained independently a natural generalization for graphs

of C2 functions z(x1, . . . ,xn) defined on a bounded domain Ω⊂ Rn with smooth boundary. In

fact they proved that if inf |H(x1,...,xn)| ≥ b > 0 then b ≤ Voln−1(∂Ω)/Voln(Ω), and and if the

scalar curvature R(x1, . . . ,xn)≥ b > 0 then
√

b≤Voln−1(∂Ω)/Voln(Ω) . These inequalities are

called Chern-Heinz inequalities for graphs.

In (SALAVESSA, 1989) Isabel Salavessa generalized the Chern–Heinz inequality

for graphs G( f ) of smooth function f : M → R for a Riemannian manifold, proving that

inf |HG( f )| ≤Voln−1(∂Ω)/Voln(Ω) for every oriented domain Ω⊂M, where HG( f ) is the mean

curvature of the graph of f .

Barbosa and others in (BARBOSA et al., 2008) realized that a graph of a function C2

function can be regarded as a leave of a transversaly oriented C2-foliaton of the product M×R

obtained by vertical translation of the graph. In this context, the Chern-Heinz inequality says that

the infimum of the mean curvatures of these leaves are bounded above by the Cheeger constant

h(M) = infΩVoln−1(∂Ω)/Voln(Ω), where the infimum is taken over all relatively compact

subsets Ω of M with smooth boundary. Hence, they were able to estimate the infimum of the

mean curvature HF of the leaves of a C2 foliation of an open set Ω of a Riemannian manifold M

in terms of the fundamental tone of the open set Ω. In this section we extend their results for the

p-fundamental tone, that is, we prove that the infimum of the mean curvatures of the leaves is

bounded above by the p-fundamental tone of M. Therefore, we have the following result.

Theorem 5.5.1 Let F be a transversely oriented codimension one C2-foliation of a connected

open set Ω of (n+1)-dimensional Riemannian manifold M. Then

p p
√

λ ∗p(Ω)≥ inf
F

inf
x∈F
|HF(x)|,
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where HF denotes the mean curvature function of the leaf F.

Proof: Since Ω admits a transversely oriented C2 foliation of codimension one, we can

choose a continuous unit vector field η on M that is normal to the leaves of F . Denote by

HF the value of the mean curvature of the leaf F at x computed with respect to η . Define

by b = infF infx∈F |HF(x)|. Since if b = 0 then it is trivial, we may assume that b > 0. This

assumption implies that HF does not change sign. Thus it is possible to choose the unite normal

vector field η such that HF(x) > 0 for every x ∈ Ω. Then, we have the well known relation

between the divergence of η and the mean curvature HF

div η = HF .

Since div η = HF ≥ b and ‖η‖= 1, we may apply (5.2.4) to get

p p
√

λ ∗p ≥ c(Ω)≥ inf
Ω

div η

‖η‖
≥ b,

which gives the desired result. �

In particular, if p = 2, then Theorem 5.5.1 is exactly the same as the result obtained

by Barbosa, Bessa, and Montenegro (BARBOSA et al., 2008). Moreover, Theorem 5.5.1 gives

the following interesting consequences for a Riemannian manifold M satisfying λ ∗p(M) = 0.

Corollary 5.5.1 Let F be a transversely oriented codimension one C2-foliation of a Riemannian

manifold M for which λ ∗p(M) = 0 for some p ∈ (1,∞). If the leaves of F have the same constant

mean curvature, then they are minimal submanifolds of M.

Corollary 5.5.2 Let F be a transversely oriented codimension one C2-foliation of a Riemannian

manifold M with the Ricci curvature RicM ≥ (n−1)κ . Then,

1. p p
√

λ ∗p(Mn(κ))≥ infF infx∈F |HF(x)|, where Mn(κ) is the simply connected space form

of constant sectional curvature κ and dimension n.

2. If κ ≤ 0 and HF ≥ b > 0, then κ =−a2 for some constant a > 0 satisfying (n−1)a≥ b.

Proof: Takeuchi (TAKEUCHI, 1998) proved that if RicM ≥ κ(n−1), then

λ
∗
p(BM(r))≤ λ

∗
p(BMn(κ)(r)),

where BMn(κ)(r) is a geodesic ball of radius r in the simply connected n-dimensional space form

Mn(κ) and BM(r) is a geodesic ball of radius r in M. Noting that the p-fundamental tone can be

also given by λ ∗p(M) = lim
r→∞

λ
∗
p(BM(r)), we obtain

λ
∗
p(M)≤ λ

∗
p(Mn(κ)). (5.5.1)
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Then, by (5.5.1) and Theorem 5.5.1 we have

inf
F

inf
x∈F
|HF(x)| ≤ p p

√
λ ∗p(M)≤ p p

√
λ ∗p(Mn(κ)),

which proves 1.

On the other hand, we note that if HF ≥ b > 0, we can use (1) to get p
√

λ ∗p(Mn(κ))≥
b
p . Since, κ ≤ 0 we have λ ∗p(Mn(κ)) 6= 0 if and only if κ =−a2 where a is a positive number,

in this case it follows that λ ∗p(Mn(κ))) = (n−1)pap

pp . Then, the inequality p
√

λ ∗p(Mn(κ))≥ b
p is

possible if and only if κ =−a2 and (n−1)a≥ b, which proves 2. �

Now we give a version of Theorem 5.5.1 for the scalar curvature when the ambient

manifold has nonpositive sectional curvature.

Theorem 5.5.2 Let M be a (n+1)-dimensional Riemannian manifold with nonpositive sectional

curvature and let F be a transversely oriented codimension one C2 foliation of a connected

open set Ω⊂M. Suppose that the scalar curvature R of each leaf is nonnegative. Then

√
infR≤ p p

√
λ ∗p(Ω).

In particular, if λ ∗p(M) = 0, Ω = M and all the leaves have the same constant nonnegative scalar

curvature R≥ 0, then R = 0.

Proof: We may assume that infR = c > 0. Let q ∈ F be a point of the leave F ∈F and

{e1, . . . ,en} be an orthonormal basis for the tangent space TqF . By Gauss equation (2.7.1) we

have

K̃(ei,e j) = K(ei,e j)+ 〈α(ei,ei),α(e j,e j)〉− |α(ei,e j)|2, (5.5.2)

where K denotes the sectional curvature of the space Ω×R and K̃ denotes the Gaussian curvature

of F . Taking summation over i, j in (5.5.2) we get

R(q) = ∑
i, j

K(ei,e j)+H2−‖α‖2.

Note that K ≤ 0, since the sectional curvatures K of M are nonpositive. This implies

R(q)≤ H2.

Since R≥ c > 0, we have H ≥
√

c > 0. Applying Theorem 5.5.1, we get

p p
√

λ ∗p(Ω)≥ inf
F

inf
x∈F
|HF(x)| ≥

√
c =
√

infR.
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�

The r-th order mean curvature Hr of an n-dimensional oriented hypersurface M ⊂ N

is defined by the elementary symmetric polynomial of degree r in the principal curvatures

λ1,λ2, · · · ,λn on M as follows: (
n
r

)
Hr = ∑

1≤i1<...<ir≤n
λi1 . . .λir .

Note that our mean curvature H satisfies H = nH1. Since H2
1 ≥ H2, we immediately get a

consequence of Theorem 5.5.1 for the second order mean curvature H2 as follows:

Corollary 5.5.3 Let F be a transversely oriented codimension one C2-foliation of a connected

open set Ω of (n+1)-dimensional Riemannian manifold M. Suppose that the leaves have the

second order mean curvature H2 ≥ 0. Then,

p p
√

λ ∗p(Ω)≥ n inf
F

inf
x∈F

(HF
2 )

1
2 ,

where HF
2 stands for the second order mean curvature function of the leaf F. In particular, if

λ ∗p(M), Ω = M and all the leaves have the same constant second order mean curvature H2 ≥ 0,

then H2 = 0.

For higher-order mean curvature Hr, we have the following result.

Corollary 5.5.4 Let F be a transversely oriented codimension one C2-foliation of a connected

open set Ω of (n+1)-dimensional Riemannian manifold M. Suppose that λ ∗p(M) = 0, and all the

leaves have the same constant r-th order mean curvature Hr ≥ 0. If r ≥ 3 suppose additionally

that there is a point q ∈ F for some leave F ∈F such that all principal curvatures ki(q)≥ 0.

Then, Hr = 0.

Proof: If Hr = 0 there is nothing to prove. Now let us prove that Hr can not be strictly

positive. In fact, suppose by contradiction that Hr > 0. Since ki(q)≥ 0, we have that the Gårding

inequalities hold (for details about the validity of Gårding inequalities under the hypothesis

Hr > 0 and ki(q)≥ 0 we recommend (FONTENELE; SILVA, 2005) proof of Theorem 1.3), it

means that H1 ≥ H
1
r

r > 0. Using that λ ∗p(M) = 0 and applying Theorem 5.5.1 we get

0 =
p
n

p
√

λ ∗p(M)≥ inf
M

H1 = inf
M
(nH1)≥ nH

1
r

r > 0,

which is a contradiction. �
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5.6 Haymann-Makai-Osserman type inequality

Let Ω be a connected open set of M , we define the inradius ρ(Ω) of Ω by ρ(Ω) =

sup{r > 0 : BM(r) ⊂ Ω}, where BM(r) is the geodesic ball of radius r of M. Let Ω ⊂ R2 be

a connected open set, Makai in (MAKAI, 1965) proved that the fundamental tone λ ∗(Ω) is

bounded from above by 1
4ρ2 , where ρ is the inradius of Ω. Makai’s estimate for the fundamental

tone was improved latter by Haymann (HAYMAN, 1978) and Osserman (OSSERMAN, 1977). In

(BARBOSA et al., 2008) Barbosa, Bessa, and Montenegro extended Haymann-Makai-Osserman

inequality for embedded tubular neighbourhoods of simple smooth curves in Rn. In this section,

we prove a Haymann-Makai-Osserman type inequality for the p-fundamenal tone.

Theorem 5.6.1 Let γ : (α,β )→ Rn be a simple smooth curve and Tγ(ρ(t)) be an embedded

tubular neighborhood of γ with variable radius ρ(t) and a smooth boundary ∂Tγ(ρ(t)). Let

ρ0 = supt ρ(t)> 0 be its inradius. Then

λ
∗
p(Tγ(ρ(t)))≥

(n−1)p

ppρ
p
0

. (5.6.1)

Proof: Barbosa, Bessa, and Montenegro in (BARBOSA et al., 2008) showed that Tγ(ρ(t))

admits a smooth codimension one transversally oriented foliation such that the mean curvature

of the leaves is constant n−1
ρ0

(for details about this foliation see (BARBOSA et al., 2008) proof

of Theorem 4.1). Hence, by Theorem 5.5.1 we have

λ
∗
p(Tγ(ρ(t)))≥

(n−1)p

ppρ
p
0

,

which gives the desired result. �
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6 CONCLUSION

In this work we studied compact almost Ricci soliton with null Cotton tensor and

proved that under some conditions on the symmetric functions associated to the Schouten tensor

the almost Ricci soliton is isometric to a standard sphere. Furthermore, it would be interesting

to remove the hypothesis on the symmetric functions of the Schouten tensor and prove that an

almost Ricci soliton with null cotton tensor is isometric to a sphere. This is a interesting subject

for future studies. We highlight that the same problem for locally conformally flat compact

almost Ricci soliton is still open. Then, the weak condition on the cotton tensor considered in

this work is an interesting result.

On the other hand we provided a partial solutition for the CPE conjecture which

improve, some known results on this subjet. However, the conjecture is still an open problem

and an interesting subject to future studies.

Finally on the last part we obtained some lower bounds for the p-fundametal tone

of geodesic ball with bounded sectional curvature and of submanifolds with bounded mean

curvature. Moreover, we provided upper bounds for the p -fundamental tone of minimal

submanifolds of a Hadamard-Cartan manifold. Finally, we study transversely oriented co-

dimension one C2-foliations of open subsets of Riemannian manifolds M and obtain lower bounds

estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone

of . As an application we get a Haymann-Makai-Osserman inequality for embedded tubular

neighbourhoods of simple smooth curves in Rn.

The present thesis is divided in three parts because each part is a paper. We studied

three different subject which give us three different papers. The three papers present on this

thesis are already accepted to publish in international journals.
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