
UNIVERSIDADE FEDERAL DO CEARÁ
CENTRO DE CIÊNCIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

IGO RAMALHO BRILHANTE

RECOMMENDING PLACES BASED ON THE WISDOM-OF-THE-CROWD

FORTALEZA
2016

IGO RAMALHO BRILHANTE

RECOMMENDING PLACES BASED ON THE WISDOM-OF-THE-CROWD

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação do
Centro de Ciência da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de doutor em Ciência da Computação.
Área de Concentração: Ciência da Computação

Orientador: Prof. Dr. Jose Antonio Fer-
nandes de Macedo

Co-Orientador: Prof. Dr. Dino Pedres-
chi

Co-Orientadora: Dr.a Chiara Renso

FORTALEZA

2016

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

B866r Brilhante, Igo Ramalho.
 Recommending places based on the wisdom-of-the-crowd / Igo Ramalho Brilhante. – 2016.
 168 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2016.
 Orientação: Prof. Dr. Jose Antonio Fernandes de Macedo.
 Coorientação: Prof. Dr. Dino Pedreschi.

 1. Recommender System. 2. Trajectory Mining. 3. Sightseeing Tours. I. Título.
 CDD 005

IGO RAMALHO BRILHANTE

RECOMMENDING PLACES BASED ON THE WISDOM-OF-THE-CROWD

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação
do Centro de Ciência da Universidade
Federal do Ceará, como requisito parcial à
obtenção do título de doutor em Ciência da
Computação. Área de Concentração: Ciência
da Computação

Aprovada em: 10 de Junho de 2016

BANCA EXAMINADORA

Prof. Dr. Jose Antonio Fernandes de
Macedo (Orientador)

Universidade Federal do Ceará - UFC

Dr.a Chiara Renso (Co-Orientadora)
Consiglio Nazionale delle Ricerche - CNR/Pisa

Prof. Dr. Marco Antônio Casanova
Pontifícia Universidade Católica do Rio de

Janeiro - PUC/RIO

Prof.a Dr.a Vania Bogorny
Universidade Federal de Santa Catarina - UFSC

Prof. Dr. João Paulo Pordeus Gomes
Universidade Federal do Ceará - UFC

Prof.a Dr.a Rossana Maria de Castro Andrade
Universidade Federal do Ceará - UFC

Aos Meus Pais.

AGRADECIMENTOS

First of all, I thank God for this achievement. Thanks to my girlfriend, Clara Rebou-

ças, for sharing the hard times, lovely and unforgettable moments, and for always motivating me

to improve and to take a step forward.

I thank my family: my father, Newton, who always guided me with wisdom, showing

me the ways of life; my mother, Ana Paula, for the immeasurable affection; my brother, Hugo,

and sister, Izabelle. I thank my grandmothers, my aunts and uncles, godmother and godfather,

and cousins for all the words of encouragement.

I thank my friends and university colleagues, Regis Pires, Samara Martins, Ivanildo

Barbosa, Ticiane Linhares, Livia Almada, Paulo Rego, Alex, Samara, Josue, Pedro, Romulo,

Rodrigo and Janaina. Thanks to friends, colleagues and teachers of CNR: from KDDLab

Roberto Trasarti, Salvatore Rinzivillo, Paolo Cintia, Lorenzo Gabrielli, Riccardo Guidotti, Giulio

Rossetti, Letizia Milli, Francesca Pratesi, Vittorio Romano, Chiara Falchi, Brunella Falchi, Mirco

Nanni, Anna Monreale, Barbara Furletti, Caterina D’Angelo, prof. Dino Pedreschi and Fosca

Giannotti; and from HPC Lab, Massimo Coppola, Patrizio Dazzi, Claudio Lucchese, Salvatore

Orlando, Fabrizio Silvestri and Cristina Muntean. Thanks to my great friends David Araujo,

Luca Pappalardo, Vinicius Monteiro and Amilcar Soares Jr.

I thank the professors of the Federal University of Ceara for the teachings during

this long period at the University. Thanks to Prof. Pierpaolo Degano for all efforts to achieve the

collaboration between Federal University of Ceara and University of Pisa.

A very special thanks to my friend, partner and supervisor Prof. Jose Antonio F. de

Macedo for the numerous and valuable discussions, contributing to this work, as well as for

my professional growth. Thanks to my supervisor Chiara Renso who welcomed me during my

stay in Pisa, guiding and giving me all the necessary support not only for work, but also for

unforgettable moments. A very special thank to Raffaele Perego and Franco Maria Nardini, for

teaching me priceless lessons and for directly collaborating in the achievements of this thesis.

“If I have ever made any valuable discoveries, it

has been owing more to patient attention, than

to any other talent.”

(Isaac Newton)

RESUMO

A opinião coletiva de um grande número de usuários, popularmente conhecida como wisdom-

of-the-crowd, tem sido vista como uma poderosa ferramenta para resolver problemas. Como

sugerido por Surowiecki em seus livros, grandes grupos de pessoas são considerados mais

inteligentes do que uma elite de poucos, independentemente de quão brilhante na resolução de

problemas ou tomadas de decisões sábias esses são. Este fenômeno, juntamente com a disponibi-

lidade de uma enorme quantidade de dados na Web propiciou o desenvolvimento de soluções

que empregam a sabedoria da multidão para resolver uma variedade de problemas em diferentes

domínios, tais como sistemas de recomendação, redes sociais e problemas combinatoriais. Neste

sentido, esta tese tem o objetivo de aproveitar a sabedoria da multidão para entender melhor

o comportamento da mobilidade humana de modo a alcançar o propósito final de auxiliar os

usuários (por exemplo, pessoas), fornecendo recomendações inteligentes e eficazes. Alcançamos

esse objetivo seguindo três linhas principais de investigação, conforme discutido abaixo. Na

primeira linha de investigação, realizamos um estudo sobre a mobilidade humana usando a sabe-

doria da multidão, culminando no desenvolvimento de uma estrutura analítica que oferece uma

metodologia para entender como os pontos de interesse (PoIs) em uma cidade estão relacionados

com base no deslocamento de pessoas. A segunda linha de investigação explora a sabedoria

da multidão coletada através de conteúdo gerado por usuários para recomendar itinerários em

cidades turísticas. Para isso, propomos uma estrutura não supervisionada, chamada TripBuilder,

que alavanca grandes coleções de fotos do Flickr e pontos de interesse da Wikipedia, a fim de

auxiliar os turistas no planejamento de suas visitas às cidades. Na terceira linha de investigação,

exploramos a sabedoria da multidão para realizar recomendações de grupos de pessoas (por

exemplo, amigos) que pudessem desfrutar de um determinado item (por exemplo, restaurante)

em conjunto. Propomos GroupFinder para abordar o novo problema de formação de grupo

de usuário-item destinado a recomendar o melhor grupo de amigos para um determinado par

< usuario, item >.

Keywords: Sistemas de recomendação. Mineração de trajetórias. Roteiros.

ABSTRACT

The collective opinion of a great number of users, popularly known as wisdom of the crowd,

has been seen as powerful tool for solving problems. As suggested by Surowiecki in his books,

large groups of people are now considered smarter than an elite few, regardless of how brilliant

at solving problems or coming to wise decisions they are. This phenomenon together with the

availability of a huge amount of data on the Web has propitiated the development of solutions

which employ the wisdom-of-the-crowd to solve a variety of problems in different domains,

such as recommender systems, social networks and combinatorial problems. In this light, this

thesis has the objective of taking advantage of the wisdom of the crowd in order to better

understand human mobility behavior so as to achieve the final purpose of supporting users (e.g.

people) by providing intelligent and effective recommendations. We accomplish this objective

by following three main lines of investigation. In the first line of investigation we conduct a

study of human mobility using the wisdom-of-the-crowd, culminating in the development of an

analytical framework that offers a methodology to understand how the points of interest (PoIs)

in a city are related to each other on the basis of the displacement of people. The second line

of investigation exploits the wisdom-of-the-crowd collected through user-generated content to

recommend itineraries in tourist cities. To this end, we propose an unsupervised framework,

called TripBuilder, that leverages large collections of Flickr photos, as the wisdom-of-the-crowd,

and points of interest from Wikipedia in order to support tourists in planning their visits to

the cities. In the third line of investigation, we exploit the wisdom-of-the-crowd to leverage

recommendations of groups of people (e.g. friends) who can enjoy an item (e.g. restaurant)

together. We propose GroupFinder to address the novel user-item group formation problem

aimed at recommending the best group of friends for a < user, item > pair.

Keywords: Recommender system. Trajectory mining. Sightseeing tours.

LISTA DE ILUSTRAÇÕES

Figura 1 – Empirical analysis of a dataset of public available on Flickr. Figure from

(MICHEL, 2014). 24

Figura 2 – Representative photos found from 33,393,835 photos from 307,448 Flickr

users. Figure from (CRANDALL et al., 2009). 24

Figura 3 – Two multiplex/multidimensional networks illustations: (a) network of nine

nodes with two layers, the red (solid) and the blue (dashed) layer from (LEE

et al., 2015); (b) two social networks with different types of links between

the users from (BERLINGERIO et al., 2011b). 30

Figura 4 – Example of communities found in two networks: (a) three communities

found using modularity by Newman et al. (Figure from (NEWMAN, 2006));

(b) communities found using the link community algorithm by Ahn et al.

(Figure from (AHN et al., 2010)). 32

Figura 5 – Example of neighborhood-based collaborative filtering for each group of

users similar to the active user are identified to find out possible interesting

items as recommendation. 38

Figura 6 – Example of the three classes of location-based social networking: (a) shared

geo-tagged photos by users in Panoramio; (b) trajectory shared by a user on

Bikely; (c) venues sharing through users’ check-ins on Swarm. 43

Figura 7 – (a) Tree-based Hierchical Graph on the left, and the Tree-based Hierarchy on

the right; and (b) HITS-based inference model. Figures from (ZHENG et al.,

2009). 45

Figura 8 – Concepts and their relationships in the ontology by Huang et al. Figure from

(HUANG; BIAN, 2009). 50

Figura 9 – Classification of the recommendations to groups in Collaborative Filtering

RSs. The figure represents the four representative cases for approaching the

solution to group recommendations. Figure from (ORTEGA et al., 2013). . 54

Figura 10 – The dual-wing RBM proposed by (HU et al., 2014) placed on the top of

DBN, which jointly models the group choices and collective features to learn

the comprehensive features of group preference. 56

Figura 11 – Example of assigning the POI Leaning Tower (purple diamond) to two candi-

date stops, depicted with a blue and a red dots. 64

Figura 12 – The building process of POI network from one user history: From the user

history in (a), the candidates stops are computed in (b). The trips are found in

(c), where a move of duration of 8h30′ (thus exceeding a temporal threshold

of 4 hours) splits the user history into two trips. Finally, the PoIs network is

depicted in (d). 68

Figura 13 – Summarization of node classes based on users, stoptime and movement

attributes. 70

Figura 14 – Category distribution for each city: Pisa, Florence and Milan. Four cate-

gories are considered: Shop & Service, Food, Great Outdoors and Arts &

Entertainment. (a) absolute values and (b) for normalized values. 76

Figura 15 – Points of interest for each city: (a) Pisa, (b) Florence and (c) Milan. 76

Figura 16 – Degree distribution of the networks for weekdays (a) and weekends (b). . . 78

Figura 17 – POI Network of Pisa in weekdays(a) and weekends(b) 79

Figura 18 – Comparison between PoIs Network and randomly generated networks. . . . 80

Figura 19 – Node classes in the three networks for weekdays and weekends. Axis y

corresponds to the % of number of number of each class. 80

Figura 20 – Hot spot global (a) and local (b) nodes in Pisa on weekends. We can see more

global PoIs on the beaches and the concentration of local ones on the city

center. 81

Figura 21 – Popular global (a) and local (b) nodes in Florence on weekdays. 82

Figura 22 – Hot spot global (a) and local (b) nodes in Milan on weekends. 82

Figura 23 – Communities in the PoI networks of Pisa for weekdays (a) and weekends (b). 83

Figura 24 – Community size distribution for each city: (a) Pisa, (b) Florence, (c) Milan;

on log scale. 84

Figura 25 – Compactness for each city: (a) Pisa, (b) Florence, (c) Milan. 84

Figura 26 – The five largest communities in Pisa on weekdays (a) and weekends (b). . . 85

Figura 27 – The five largest communities in Florence on weekdays (a) and weekends (b). 85

Figura 28 – The five largest communities in Milan on weekdays (a) and weekends (b). . 86

Figura 29 – The least and most similar communities to the network in Pisa. 87

Figura 30 – The least and most similar communities to the network in Florence. 88

Figura 31 – The least and most similar communities to the network in Milan. 88

Figura 32 – Correlation between number of trips (trip count) and FeatureSim in Pisa. . . 90

Figura 33 – Examples of how op(i,k) modifies the tour according to l(i,k), i.e., the

minimum number of endPoIs connections between i and k. 99

Figura 34 – Overview of the unsupervised process used to build the TRIPBUILDER kno-

wledge base. 100

Figura 35 – Data processing of TRIPBUILDER: from Wikipedia PoIs and Flickr photos

towards a knowledge base of tourist trajectories. 101

Figura 36 – Plot shows the probability distribution of the inter-arrival time for pairs of

consecutive photos taken in Rome, Florence, and Pisa. The vertical lines

highlight the time thresholds corresponding to P(x≤ δ) = 0.9. 103

Figura 37 – Plots (a), (b), (c) show instead the distribution of trajectories length (as num-

ber of PoIs crossed), the popularity of PoIs and the popularity of categories

in the three datasets. 104

Figura 38 – Average path costs of the techniques employed to solve TRAJSP as a function

of the budget. 113

Figura 39 – Average total runtime as a function of the time budget for each city. Bottom

bars refer to the average TRIPCOVER runtime while upper bars refer to the

average TRAJSP runtime. 113

Figura 40 – Average runtime of Nearest Trajectory and Local Search by varying the time

budget. 114

Figura 41 – Architecture of TRIPBUILDER. We outline the four modules of the system,

i.e. Data Collection, Data Processing, Data Storage and TripBuilder Engine. 117

Figura 42 – A screen-shot of the Web interface that lets users interact with TRIPBUILDER

to select the targeted city in the system. This screen is the very first step on

the web application. 121

Figura 43 – Screen-shot illustrating the component for setting the preferences, number of

days of the tour, level of personalization and also the details of the created

sightseeing tours for each day. 122

Figura 44 – List of saved sightseeing tours saved by the user. She can then open and edit

any of those tours. 122

Figura 45 – Among the information about the points of interest such as time needed to

visit, the user is also able to find photos of the point of interest from Flickr

and Panoramio. We see in this example a photo of an important museum in

Amsterdam that is part of the generated tour. 123

Figura 46 – Popular places of the city are mined from the collected Flickr photos given

important insights for the tourists. 123

Figura 47 – Users can save and retrieve their created tours in order to share them with

other users (e.g. friends) that might take advantage of it to plan their visit in

the city. 124

Figura 48 – Layers of the distributed and scalable architecture of TRIPBUILDER for

collecting and processing data. 124

Figura 49 – TRIPBUILDER Storm topology. 125

Figura 50 – Toy instance of our group formation problem. Table (a) reports the relevance

scores of three items for seven users, while the graph in (b) shows the ego

network of user u0 having the same set of users. 129

Figura 51 – Application of the Aggregated Voting (a) and Least Misery (b) pairwise

user-item relevance functions w.r.t. item Florence in the previous example. . 131

Figura 52 – Running example of the GREEDY algorithm for the example in Figure 51a

using Aggregated Voting, the item Florence and k = 3. 134

Figura 53 – Running example of the k-NN algorithm for the example in Figure 51a using

Aggregated Voting, the item Florence and k = 3. 135

Figura 54 – The components of the GroupFinder framework: Recommender System,

Social Network Manager and Group Finder Engine. The input is the triple

< u, i,k > representing the user, the item and the size of the group and the

output is the recommended group Gu,i. 136

Figura 55 – Degree distribution of the social networks of the four datasets used in the

experiments: Foursquare, Foursquare (New York), Brightkite and Gowalla. . 138

Figura 56 – Weighted density of the groups computed with the various algorithms em-

ploying PAV and PLM on the four datasets: Foursquare, Foursquare (New

York), Brightkite and Gowalla. 143

Figura 57 – Precision computed on the basis of the groups suggested by the various

algorithms employing PAV and PLM w.r.t. the ground-truth groups for the

four datasets: Foursquare, Foursquare (New York), Brightkite and Gowalla. 144

Figura 58 – Recall computed on the basis of the groups suggested by the various algo-

rithms employing PAV and PLM w.r.t. the ground-truth groups for the four

datasets: Foursquare, Foursquare (New York), Brightkite and Gowalla. . . . 145

Figura 59 – Execution time for the GREEDY, k-NN, and DkSP algorithms as a function

of the size k of the groups (a), and of the size of the User-Item Ego Networks

for a fixed value of k (k = 100). For each tests the results plotted have been

averaged over 5 runs. 147

LISTA DE TABELAS

Tabela 1 – Overview of traditional aggregation strategies for group recommendation.

Table from (RICCI et al., 2011). 55

Tabela 2 – PoI Network properties for Pisa, Florence and Milan. Number of nodes,

number of edges, average clustering coefficient (Avg. CC), average degree of

the nodes (k), and average shortest path (l). 78

Tabela 3 – Number of communities found in Pisa, Florence and Milan on weekdays

(WD) and weekends (WE). 84

Tabela 4 – Pisa . 89

Tabela 5 – Florence . 89

Tabela 6 – Milan . 89

Tabela 7 – Statistics regarding the three cities in our dataset. 103

Tabela 8 – Top-3 most popular PoIs and Categories in Pisa, Florence, and Rome. We

also report three examples of trajectories per city extracted from the dataset. 105

Tabela 9 – Random Selection: average effectiveness of TRIPBUILDER and the baseli-

nes in Pisa. 108

Tabela 10 – Random Selection: average effectiveness of TRIPBUILDER and the baseli-

nes in Florence. 108

Tabela 11 – Random Selection: average effectiveness of TRIPBUILDER and the baseli-

nes in Rome. 109

Tabela 12 – Profile-based selection: average effectiveness of TRIPBUILDER and the

baselines in Pisa obtained by exploiting the profiles from Florence visits. . . 111

Tabela 13 – Profile-based selection: average effectiveness of TRIPBUILDER and the

baselines in Florence obtained by exploiting the profiles from Rome visits. . 111

Tabela 14 – Profile-based selection: average effectiveness of TRIPBUILDER and the

baselines in Rome obtained by exploiting the profiles from Florence visits. . 112

Tabela 15 – Example of the geo-tagged photos collected from Flickr. 118

Tabela 16 – Example of the points of interest collected from Wikipedia. 118

Tabela 17 – Statistics regarding the four datasets used in the experiments: Foursquare,

Foursquare (New York), Brightkite and Gowalla. 137

Tabela 18 – Improvements (%) of precision (p) and recall (r) by varying k for GREEDY

and k-NN when using PLM instead of PAV. 146

LISTA DE ALGORITMOS

Algoritmo 1 – PoI Network Builder . 69

Algoritmo 2 – GREEDY algorithm from (ASAHIRO et al., 2000) adapted to the UI-GF

problem. 132

Algoritmo 3 – Nearest Neighbor Dense k-Subgraph – k-NN 134

SUMÁRIO

1 INTRODUCTION . 21

1.1 Context and Challenges . 21

1.2 Hypotheses and Research Questions . 22

1.3 Thesis Contribution . 26

1.4 Thesis Organization . 27

2 RELATED WORKS . 28

2.1 Mobility Data Analysis, Mining and Networks 28

2.1.1 Trajectories . 28

2.1.2 Networks . 29

2.2 Recommender Systems . 31

2.2.1 Content-based Recommender Systems . 33

2.2.2 Collaborative Filtering Recommender Systems 36

2.2.2.1 Neighborhood-based Collaborative Filtering 36

2.2.2.2 Model-based Collaborative Filtering Recommender Systems 40

2.3 Recommender Systems for Location-based Services 41

2.3.1 Stand-alone location recommendation . 44

2.3.2 Sequential location recommendation . 48

2.4 Group Recommendation . 53

2.5 Group Formation Problem . 58

3 COMETOGETHER: FINDING AND CHARACTERIZING COMMU-
NITIES OF PLACES IN URBAN MOBILITY 61

3.1 Introduction . 61

3.2 Basic Concepts . 63

3.3 The COMETOGETHER Methodology . 66

3.3.1 Building the PoI network . 67

3.3.2 PoI Network Analysis . 68

3.3.2.1 From network connectivity to mobility-related measures 70

3.3.3 Communities of points of interests . 72

3.3.3.1 Compactness . 73

3.3.3.2 Feature Similarity . 73

3.4 Random Mobility Models . 74

3.5 Case Study on Different Cities . 74

3.5.1 Data and Tools . 75

3.5.2 Building the PoI network . 76

3.5.2.1 Aggregated PoIs . 76

3.5.2.2 Creating Trajectories and Trips . 77

3.5.3 PoI Network Analysis . 77

3.5.3.1 Confronting PoI Networks and Random Models 79

3.5.3.2 Node classes . 79

3.5.4 Community discovery in PoI networks . 82

3.5.5 Largest Communities . 84

3.5.6 Comparing Communities against the Network 86

3.6 Discussion . 90

4 PLANNING SIGHTSEEING TOURS BASED ON THE WISDOM-OF-
THE-CROWD . 92

4.1 Introduction . 92

4.2 The TripCover Problem . 94

4.3 The TrajSP Problem . 97

4.3.1 Trajectory Scheduling Problem . 97

4.3.1.1 Scheduling the tour on the user agenda . 99

4.4 Building the Knowledge Base . 100

4.4.1 Points of interest discovery . 100

4.4.2 Users and PoI histories . 101

4.4.3 Trajectories creation . 102

4.4.4 Traveling time estimation . 102

4.5 Datasets statistics . 103

4.6 Experiments . 105

4.6.1 Effectiveness – TRIPCOVER . 106

4.6.1.1 Random Selection . 107

4.6.1.2 Profile-based Selection . 110

4.6.2 Effectiveness – TRAJSP . 111

4.6.2.1 Efficiency . 112

4.7 Discussion . 114

5 TRIPBUILDER PLATFORM TO CREATE PERSONALIZED SIGHT-
SEEING TOURS . 116

5.1 Introduction . 116

5.2 TRIPBUILDER Platform . 117

5.2.1 Data Collection . 118

5.2.2 Data Processing . 118

5.2.3 Data Storage . 119

5.2.4 TripBuilder Engine . 119

5.3 The Web Application and Functionalities 120

5.4 Towards a distributed architecture . 121

5.4.1 Stream Layer with Apache Storm . 123

5.4.2 Batch Layer with Apache Spark . 125

5.4.3 Distributed Data Storage . 126

5.5 Discussion . 126

6 GROUPFINDER FRAMEWORK FOR GROUP FORMATION PRO-
BLEM . 127

6.1 Introduction . 127

6.2 The User-Item Group Formation problem 129

6.3 Addressing the UI-GF Problem . 131

6.3.1 GREEDY algorithm . 132

6.3.2 Nearest Neighbor Dense k-Subgraph (k-NN) 133

6.4 GROUPFINDER Framework . 134

6.4.0.1 Recommender System . 135

6.4.0.2 Social Network Manager . 135

6.4.0.3 Group Finder Engine . 136

6.5 Experimental Settings . 137

6.5.1 Datasets . 137

6.5.2 Computing the relevance scores . 138

6.5.3 Ground-truth groups . 139

6.5.4 Performance Metrics . 140

6.5.5 Baselines . 140

6.5.5.1 Densest k-Subgraph (DkSP) . 140

6.5.5.2 Top k-Nodes (k-Top) . 141

6.6 Experiments . 141

6.6.1 Effectiveness . 141

6.6.1.1 Weighted Pairwise Satisfaction Density . 141

6.6.1.2 Precision and Recall . 142

6.6.2 Efficiency . 146

6.7 Discussion . 147

7 CONCLUSIONS AND FUTURE WORKS 149

7.1 Conclusions . 149

7.2 Future Works . 150

7.2.0.1 Recommendation of personalized sightseeing tours 150

7.2.0.2 Advances in User-Item Group Formation 152

REFERÊNCIAS . 153

19

PUBLICATIONS AND AWARDS

Publications

Journals

1. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raffa-

ele Perego, Chiara Renso: On planning sightseeing tours with TripBuilder. Information

Processing & Management (IPM) 51(2): 1-15 (2015)

Conferences

1. Igo Ramalho Brilhante, Michele Berlingerio, Roberto Trasarti, Chiara Renso, José Antônio

Fernandes de Macêdo, Marco Antonio Casanova: ComeTogether: Discovering Communi-

ties of Places. Mobility Data Management (MDM) 2012: 268-273

2. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raf-

faele Perego, Chiara Renso: Where shall we go today?: planning touristic tours with

TripBuilder. Conference on Information and Knowledge Management (CIKM) 2013:

757-762

3. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raf-

faele Perego, Chiara Renso: TripBuilder: A Tool for Recommending Sightseeing Tours.

European Conference on Information Retrieval (ECIR) 2014: 771-774

4. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raffa-

ele Perego, Chiara Renso: Group Finder: an Item-driven Group Formation Framework.

Mobility Data Management (MDM) (2016)

Workshops

1. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raffa-

ele Perego, Chiara Renso: Scaling up the Mining of Semantically-enriched Trajectories:

TripBuilder at the World Level. Italian Information Retrieval Workshop (IIR) 2015

1. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raf-

faele Perego, Chiara Renso: User-Item Group Formation with GROUPFINDER. Italian

Information Retrieval Workshop (IIR) 2016

Special Tracks

1. Igo Ramalho Brilhante, José Antônio Fernandes de Macêdo, Franco Maria Nardini, Raf-

faele Perego, Chiara Renso: Planning sightseeing tours using crowdsensed trajectories.

20

SIGSPATIAL Special 7(1): 59-66 (2015)

Awards

Best demo award

1. TripBuilder: A Tool for Recommending Sightseeing Tours Igo Ramalho Brilhante, Jose

Antonio Macedo, Franco Maria Nardini, Raffaele Perego, Chiara Renso. European

Conference on Information Retrieval (ECIR) 2014 participants elected the winner of the

ECIR 2014 best demo award.

21

1 INTRODUCTION

1.1 Context and Challenges

The collective opinion of a great number of users, popularly known as wisdom of

the crowd, has been seen as powerful tool for solving problems. As suggested by Surowiecki

in his books (SUROWIECKI, 2004), large groups of people are now considered smarter than

an elite few, regardless of how brilliant at solving problems or coming to wise decisions they

are. This phenomenon together with the availability of a huge amount of data on the Web has

propitiated the development of solutions which employ the wisdom-of-the-crowd to solve a

variety of problems in different domains, such as recommender systems (SHANG et al., 2011),

social networks (LU et al., 2014) and combinatorial problems (YI et al., 2012; YI et al., 2010).

The vast majority of data on the Web has been generated in the last few years by

billions of users around the globe using their mobile devices and web applications, mainly on

social networks. This information carries striking details of daily activities ranging from urban

mobility and tourism behavior, to emotions and interests. The largest social network nowadays is

Facebook, which in December 2015 had incredible 1.31 billion mobile active users, 4.5 billion

“likes” generated daily. In addition, every 60 seconds 510 comments are posted, 293,000 statuses

are updated, and 136,000 photos are uploaded1. This flood of data has brought great opportunities

to discover individual and collective preferences, and use this information to offer services to

meet people’s needs, such as recommending relevant and interesting items (e.g. news, places,

movies). Furthermore, it is now possible to exploit the experiences of groups of people as a

collective behavior so as to augment the experience of other. This latter illustrates the important

scenario where the discovery of collective behavioral patterns, the wisdom-of-the-crowd, may

enrich the experience of individual users. We strongly believe that the collective opinion and

experience is better than individual ones: Vox populi, vox Deli.

These opportunities, therefore, bring several challenges on exploiting the wisdom-

of-the-crowd to augment and develop new services to support users. First of all, the collection

process and the mining of crucial information concerning the users’ behavior can be remarkably

noisy. Secondly, there is a need to develop methodologies able to encompass all the elements,

such as user preferences and interests, spatial-temporal data, points of interest features, and so

on.

Motivated by the challenges and the identified directions in the presented context,

this thesis focuses on the problem of recommending personalized sightseeing tours for tourists

that are visiting a new destination. This research topic has been receiving much attention in

the last few years due to the enormous potential in the tourism environment for both industrial
1 Source: <https://zephoria.com/top-15-valuable-facebook-statistics/>

https://zephoria.com/top-15-valuable-facebook-statistics/

22

and scientific communities. According to World Travel Tourism Council2, travel and tourism

generated two trillion dollars directly in the global GDP and by 2025, international tourist arrivals

are forecast to total 1,796,210,000, generating expenditure of USD2,140.1bn, an increase of

4.2% pa3. These statistics therefore highlight the potential of tourism and the need to provide

new solutions for the problems inherent in this area.

These facts combined with availability of a huge amount of data on the Web relating

to millions of users has inspired us to exploit the benefits and peculiarities of the phenomenon

of the wisdom-of-the-crowd in the context of studying previous tourist behavior in order to

provide recommendations for personalized sightseeing tours for future tourists. Several key

tasks are involved: (i) collecting data to represent the wisdom-of-the-crowd; (ii) integrating

the wisdom-of-the-crowd with data sources about tourism available on the Web, like points of

interest and their categories (e.g. museums, natural world); (iii) mining and discovery of essential

information about the points of interest and tourist behavior; (iv) considering the nature of the

tours, i.e. if they are based on individuals or groups of users; (v) dealing with spatio-temporal

data that can represent the displacement of tourists in the city.

In front of these tasks, the proposal of this thesis is to investigate how to exploit the

wisdom-of-the-crowd as the collective behavioral pattern to support individual users in “finding”

the most suitable sightseeing tour based on their needs and preferences. In the next section, we

describe the hypothesis and research questions investigated in this thesis.

1.2 Hypotheses and Research Questions

Complex challenges are posed when dealing with data about millions of people both

for industry (e.g. tourism and e-commerce) and for the scientific community. Understanding in

such a way as to identify implicit laws in order to build new business models or leverage existing

ones is certainly a big issue to deal with. A second issue is the mining and discovery of patterns

hidden in the data in order to explain some phenomena that govern our society. Several studies

have been conducted in order to create theoretical frameworks to explain some phenomena. We

can cite the paper by González et al. (GONZÁLEZ et al., 2008) reporting a study of 100,000

anonymized mobile phone users which revealed that human trajectories show a high degree of

temporal and spatial regularity and that individual travel patterns collapse into a single spatial

probability distribution. Interestingly, this indicates that, despite the diversity of their travel

history, humans follow simple reproducible patterns. These results show important considerations

regarding the impact on phenomena driven by human mobility, such as epidemic prevention,

emergency response and urban planning. It is also worthwhile citing the astonishing studies
2 <http://www.wttc.org/>
3 Source: <https://www.wttc.org/-/media/files/reports/economic%20impact%20research/regional%202015/

world2015.pdf>

http://www.wttc.org/
https://www.wttc.org/-/media/files/reports/economic%20impact%20research/regional%202015/world2015.pdf
https://www.wttc.org/-/media/files/reports/economic%20impact%20research/regional%202015/world2015.pdf

23

about the spread of epidemic diseases on complex systems organized as networks (NEWMAN,

2002; NEWMAN, 2003; PASTOR-SATORRAS et al., 2015; LEVENTHAL et al., 2015).

Considering these observations and the objective of this thesis, the main hypotheses

that guided our work are presented below:

1. The mobility of users (e.g. people) can characterize points of interest, thus the movement

of people between points of interest in their daily activities can lead to a different approach

to group them together, based on the movements;

2. The wisdom-of-the-crowd based on both location-based social networking services and

user-generated description of points of interest can leverage the development of a tourism

knowledge base to favor the creation of personalized sightseeing tours for tourists thinking

of visiting a new destination;

3. The wisdom-of-the-crowd produced from social network data combined with recommender

system frameworks can contribute to identify meaningful groups of users who can enjoy a

given item (e.g. city, music) together.

The first hypothesis motivated us to raise the following research question:

RQ1. Can we study urban mobility on a global scale from the perspective of places,

instead of users?

This question led us to conduct a study of human mobility using datasets collected

from enabled-GPS cars in three Italian cities. The resulting development of an analytical

framework offers a methodology to understand how the points of interest of a city are related to

each other from the displacement of people, on the basis of important and useful features of the

points of interest.

Our first results gave us some insights stating that discovered patterns of people

movement between points of interest in a city can contribute to generating new knowledge

useful in several applications. As we have seen earlier, users tend to share data about their

daily activities, and this happens especially when on holiday, or when visiting new places. The

latter is the reason behind the second hypothesis, which guided us to investigate the possibility

of exploiting geo-tagged photos from Flickr. This approach can leverage a knowledge based

construction to support the creation of personalized sightseeing tours. An empirical study,

illustrated in Figure 1 4, shows remarkable behavior by Flickr users when uploading photos. The

number of publicly uploaded photos is significant, since they represent users who share their

photos for access by other users. An interesting finding relates to the peaks of each year. It is

worthwhile noting that the peaks take place around the months of July and August, implying that

users tend to upload more photos during their vacations. These results indicate that the large

collection of Flickr photos could be useful to our task: taking advantage of the wisdom-of-the-

crowd as a knowledge base to support users (e.g. tourists) visiting a new place. However, we
4 Figure from <https://www.flickr.com/photos/franckmichel>

https://www.flickr.com/photos/franckmichel

24

Figura 1 – Empirical analysis of a dataset of public available on Flickr. Figure from (MICHEL,
2014).

Figura 2 – Representative photos found from 33,393,835 photos from 307,448 Flickr users.
Figure from (CRANDALL et al., 2009).

still need some insights that could demonstrate, even empirically, that the uploaded photos could

(in some way) represent interesting points of interest in the city, instead of just random objects

found by the users.

Crandall et al. in (CRANDALL et al., 2009) conducted a study of how to organize

25

a large collection of geo-tagged photos collected from Flickr. The interesting result is that

representative photos of the given area (e.g. clustering area) are usually related to the tourist

attractions as shown in Figure 2. These results highlight the powerful data available that can

represent the typical tourist behavior in the cities which could provide essential information for

new tourists. Inspired by these results, we raised the following research question:

RQ2. Can we take advantage of the data provided by millions of users, also called

wisdom-of-the-crowd, to support users (e.g. tourists) in planning their vacations to a new

destination?

As we have seen, the growth of available data about user activities may provide

uncountable outcomes once we know how to appropriately deal with and manage it. On this

basis, a second contribution we propose in this thesis is an unsupervised framework, called

TRIPBUILDER, which leverages large collections of Flickr photos and points of interest from

Wikipedia to support tourists in those cities. More specifically, our framework creates a tourist

knowledge base capturing the tourists’ movement behaviors from Flickr photos combined

with points of interest from Wikipedia to create personalized sightseeing tours in a given city

considering the time allowance of the user and preferences. Based on this theoretical framework,

we designed and developed a platform encompassing the main features required to create

personalized sightseeing tours. This platform has been crucial to understanding tourists’ needs

when they are planning a visit to a new city. The designed system has been mentioned in the

Brazilian news5 and Communications of the ACM6.

The third hypothesis motivated us to investigate how to exploit social ties between

users in order to form meaningful groups of users to enjoy a given item, like a city, restaurant,

etc.

It is worth noting that some application services may not be appropriate for individual

users. In some situations, recommendations to groups of users are more relevant than individual

ones. Consider for example, a day-trip, when people usually go with companions to share the

travel experience. Other examples may be going to restaurant with a group of friends, or watching

a certain film in the cinema. Social networks represent and highlight friendship networks and the

high level of interaction between groups of users who are friends. Then, some works have been

carried out in the literature to provide services for groups of users. In particular, the problem

of recommending items (e.g. movies, books, etc) to a group of users (JAMESON; SMYTH,

2007; RICCI et al., 2011; BOBADILLA et al., 2013) has been investigated. However, in some

situations the group is not known a priori, in which case the user could be recommended an

activity for a group of friends to enjoy (e.g. restaurant).
5 <http://goo.gl/Mmc09w>
6 <http://goo.gl/yegM1z>

http://goo.gl/Mmc09w
http://goo.gl/yegM1z

26

Considering the scenario of TRIPBUILDER, some people usually go on their va-

cations with friends who are also interested in the destination. Therefore, we investigate the

following research question:

RQ3. How can we find out the best groups of users (e.g. friends) who can enjoy a

given item together?

In this thesis we investigate this problem by exploiting social networks jointly with

recommender systems. In particular, we take advantage of the recommendations of items for

users and how friends are linked to each other in order to find out the “best” groups of friends to

enjoy a specific item. In this thesis, we present our framework GROUPFINDER that aims to deal

with this issue.

1.3 Thesis Contribution

The main contributions of this thesis are the following.

• We conducted a study on human mobility considering points of interest as the central

objective from the perspective of complex networks. We presented a framework that

encompasses useful features for points of interest that can be mined from GPS data. We ex-

perimented the methodology in three Italian cities highlighting the most important findings

and comparing the results for each city. The results were published in (BRILHANTE et

al., 2012).

• We proposed TRIPBUILDER, an unsupervised framework for planning personalized sight-

seeing tours in cities. To this purpose we use: i) Flickr, to gather public photos (and their

meta data), ii), Wikipedia to gather information regarding PoIs in the given city, iii) Google

maps to estimate the time needed to move from one PoI to the next one in the sightseeing

itinerary. The resulting knowledge base stores PoIs, their popularity, the time needed on

average to visit them, the categories for which each PoI is relevant, and the patterns of

movement of tourists that visited them in the past. In order to assess our system, we report

on the building of a knowledge base covering three Italian cities which are important

for tourism and guarantee variety and diversity in terms of size and the wealth of public

user-generated content available: Rome, Florence, and Pisa. The resulting knowledge base,

available for download to favor the reproducibility of results, is analyzed and its characte-

ristics are here discussed. Finally, we report on several new experiments to evaluate the

effectiveness and efficiency of all the components of our system and show that our solution

outperforms competitive baselines. In particular, we assess TRIPBUILDER’s performance

in providing budgeted sightseeing itineraries made up of actual PoI patterns tailored to

the specific preferences of the tourist. The results were published in (BRILHANTE et al.,

2013; BRILHANTE et al., 2015; BRILHANTE et al., 2015; BRILHANTE et al., 2015).

27

• We design and develop a platform built upon TRIPBUILDER to evaluate the proposed

algorithms and the methodology to create the tourism knowledge base. In this platform,

the user is able to create their personalized sightseeing tour considering the amount of time

available and their preferences. The user can also balance personalization and popularity to

modify the suggested tour. In addition, the platform has some social capabilities allowing

the users to share the tours in such a way that the new user can re-use them as they need.

The results of this chapter were published in (BRILHANTE et al., 2014).

• We formalize the user-item group formation problem aimed at recommending the best

group of friends for a < user, item > pair. We address this novel problem by combining

user-item relevance information with the user social network (ego network), trying to

balance the satisfaction of all the members of the group for the item with the intra-group

relationships. We propose two different solutions that are accommodated into a framework

called GroupFinder, which integrates the needed components and information sources. We

instantiate the problem in the location-based recommendation domain and we experiment

GroupFinder on four publicly available Location-Based Social Network (LBSN) datasets,

showing that our solution is effective and outperforms strong baselines. The results were

published in (BRILHANTE et al., 2016; BRILHANTE et al., 2016).

1.4 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we present the

state of the arts related to this thesis. In particular, we present works related to mobility data

analysis and complex networks. Then we go through recommender systems and location-based

recommender systems. Later, the works involving group recommendation are introduced. Finally,

we present a recent research regarding the group formation problem.

In Chapter 3 we present a study on mobility data from the perspective of places

instead of users. Here, we study how places are related to each other based on the movement of

people between the places. In Chapter 4 we present how to build a knowledge base for tourism

from Flickr photos and points of interest from Wikipedia to design an unsupervised framework

to create personalized sightseeing tours – TRIPBUILDER. Chapter 5 presents a user-friendly web

application built upon TRIPBUILDER allowing users to create their own personalized sightseeing

tours. In Chapter 6 we present a novel framework called GROUPFINDER that finds the best group

of friends of a given user and a suitable item on the basis of user’s preferences (recommendations)

and their social relationships. Finally, in Chapter 7 we draw the conclusions and describe future

works based on this thesis.

28

2 RELATED WORKS

This chapter presents the works related to this thesis. First, we present works concer-

ning analysis of mobility data in Section 2.1. Then, we give basic foundations in Recommender

Systems in Section 2.2 to support Section 2.3 which presents the important results in location-

based recommender system. Finally, the works in group recommendation research fields are

discussed in Section 2.4 and Section 2.5.

2.1 Mobility Data Analysis, Mining and Networks

2.1.1 Trajectories

Human mobility is a complex phenomena witnessed by a huge amount of interdisci-

plinary research in this topic, ranging from Physics to Sociology, Transportation Research and

Computer Science (GIANNOTTI; PEDRESCHI, 2008; GIANNOTTI et al., 2011; ZHENG et al.,

2010). In this sense, many efforts in the community have been done to develop new techniques

to support better understanding of human mobility. The main object considered in this study is

usually a trajectory of a moving object (e.g. person).

A trajectory is usually defined as the spatio-temporal evolution of a moving object

(e.g. person). This evolution is typically represented as a sequence of positional observations

represented by x and y coordinates of time-stamped sample points as collected by a tracking

device, such as GPS tools or WI-FI sensors. However, many applications require more than

coordinates, i.e., there is the need for semantic information inherent to the trajectories, which is

usually done by means of annotations. A trajectory that has been enhanced with annotations

is the definition of semantic trajectory as proposed by Parent et al. (PARENT et al., 2013).

These annotations include the common case of "stop and moves"where segments of a trajectory

representing the absence of movement are called "stops"while the parts representing the actual

movement are called "moves"(SPACCAPIETRA et al., 2008). Depending on the application,

stops and moves can be annotated in several ways, but it is common to associate stops to the

visited points of interest (RENSO STEFANO SPACCAPIETRA, 2013). In this thesis, we exploit

semantic trajectory as the basis of the presented approach where the trajectories are seen as

sequence of points of interest visited by the users.

Trajectories representing the movement evolution of individuals have witnessed an

increasing interest in the last decade, especially due to the increasing availability of personal

tracking device, ranging from GSM phone to the more sophisticated GPS-enables smart-phones,

and the popularization of location-based services (LBS). The potentialities offered to several

application domains by the analysis of huge amount of positioning data has opened new opportu-

nities for developing analytical methods of this new form of data. Mobility data analysis has

29

become a hot research topic since several methods on data mining and statistical techniques,

tailored to trajectory data, have been proposed in the literature, like (GIANNOTTI; PEDRESCHI,

2008; GIANNOTTI et al., 2011; ZHENG et al., 2010).

The task of analyzing large trajectory datasets can be carried out towards different

directions. Basic statistics may be applied to trajectory data mainly to discover the distributions

of people presence and origin-destination matrices (CALABRESE et al., 2010); other studies

focus on trajectory data mining aiming at finding correlations in large datasets of positioning

data (GIANNOTTI; PEDRESCHI, 2008). Techniques to extract movement patterns include:

(1) clustering discovery - finding groups of objects moving together – the authors in (NANNI;

PEDRESCHI, 2006) propose a time-focused clustering of trajectories based on OPTICS algo-

rithm (ANKERST et al., 1999); (2) sequential pattern discovery - finding the most frequent

sequences of places visited – the authors in (NANNI et al., 2007) propose an algorithm to

discovery T-Pattern from a trajectory dataset; (3) flock detection - extracting the convergence

of people moving together for a certain amount of time (DODGE et al., 2008; GIANNOTTI;

PEDRESCHI, 2008; WACHOWICZ et al., 2011). From the analytics frameworks and data

mining algorithms, software tools have been developed to encompass state-of-the-arts algorithms

to deal with mobility data and to develop new algorithms with a core framework for testing and

validating the results (TRASARTI et al., 2010). These previous techniques are mainly based on

the geometric properties of trajectories thus trying to extract similarities or common behavior

from the spatio-temporal dimension of the data. However, the semantic information is still

missing and it is an important feature to be considering in this scope. This is the reason why a

new research trend is growing to exploit these semantic rich information.

2.1.2 Networks

Besides the methods previously presented, some interesting works have envisioned

how the objects interact with each other at a global scale. This perspective is usually associated

to the paradigm of complex networks. The study of networks, or Network Science, is broadly

interdisciplinary and important developments have occurred in many fields, including mathema-

tics, physics, computer and information sciences, biology, and the social sciences (NEWMAN,

2010) and have been receiving increasing attention by the scientific community, also due to the

availability of massive network data from diverse domains, and the outbreak of novel analytical

paradigms, which pose relations and links among entities, or people, at the center of investigation.

Networks are usually modeled as a graph G = (V,E), where the set of nodes V

represent the involved entities and the set of edges E stand for any relationship between the

entities. Depending on the domain and the objective, the graph may be undirected (social

networks), directed (WWW networks), weighted or unweighted. Recently a new class of

networks has been investigated to model many real-world complex systems where the same set

30

of notes are connected via more than one type of connection, such as living organisms, human

society and transportation system and critical infrastructure (BERLINGERIO et al., 2011b; LEE

et al., 2015) (see Figure 3).

(a) (b)
Figura 3 – Two multiplex/multidimensional networks illustations: (a) network of nine nodes with

two layers, the red (solid) and the blue (dashed) layer from (LEE et al., 2015); (b) two
social networks with different types of links between the users from (BERLINGERIO
et al., 2011b).

Inspired by real-world scenarios such as social networks (AIELLO et al., 2000;

CASTRO; GROSSMAN, 1999), technology networks (ADAMIC et al., 2001), the World Wide

Web (LESKOVEC et al., 2010; DONATO, 2010), biological networks (JEONG et al., 2001;

JEONG et al., 2000), and human movement (GONZÁLEZ et al., 2008),(WANG et al., 2009)

the last few years have seen a wide, multidisciplinary, and extensive research devoted to the

extraction of non-trivial knowledge from such networks. Predicting future links among the

actors of a network (NOWELL; KLEINBERG, 2003; BRINGMANN et al., 2010), detecting

and studying the diffusion of information among them (GOMEZ-RODRIGUEZ et al., 2010;

YANG; LESKOVEC, 2010), mining frequent patterns of users’ behaviors ((BENEVENUTO et

al., 2009; YAN; HAN, 2002; COOK et al., 2010)), are only a few examples of problems studied

in Complex Network Analysis. In this way, interesting researches are focused on the interplay

between complex network and mobility data. A typical example is the study of spreading of

cell phone viruses thru GSM phone calls (WANG et al., 2009; BARABÁSI; ALBERT, 1999).

Besides of statistical analytics of the network as a whole, how densely connected nodes form

groups is another important field in complex networks. These groups are called communities.

Community discovery in complex networks is a topic that is gaining more and more

interest in the literature (COSCIA et al., 2011; NARASIMHAMURTHY et al., 2010; SOUAM

et al., 2013; B. et al., 2010; LOE; JENSEN, 2015; Zhana Kuncheva; Giovanni Montana, 2015).

Several approaches has been proposed from divisive graph partition algorithms, to random

walk based approaches, from label propagation based methods, to clique percolation techniques.

However, the literature is still missing a unique definition of the concept of community, and

the diverse techniques lead all to different results, sometimes hard to compare to each other.

31

Although a few measures of the quality of the results have been proposed so far (among which,

the modularity), their definitions are still questionable (the modularity, for example, has a well

known problem of resolution, and approaches that try to maximize it tend to create very large

communities). A classification of community discovery methods is proposed in (COSCIA et al.,

2011). The authors classify the methods based on the different definitions of communities in the

literature. Communities may involve several features like overlapping, weighted and/or directed

links, and dynamics. Figure 6 illustrates two networks with the corresponding communities

found using different methods.

Consequently, some works have taken advantage of community discovery techniques

to understand mobility data. In (El Mahrsi; ROSSI, 2012), the authors propose a methodology to

cluster trajectories by building a network of trajectories, where the links represent the similarity

between two trajectories considering some constraints. Then, they apply a community algorithm

based on modularity optimization in order to discover groups of trajectories that behaved similarly

and that moved along the same portions of the road network.

The authors in (BROWN et al., 2012) propose an approach to extract place-focused

communities from social graphs by annotating the edges with check-in information from location-

based social network like Foursquare (thru users’ check-ins) to show the possibility to extract

groups of friends who meet face-to-face for benefiting on-line social services. The authors

propose a collection of co-location measures to evaluate the effectiveness of the approach.

The main results suggest that the approach can find place-focused groups where users are

often co-located. Yet, in (BROWN et al., 2013) an interesting study over social and place-

focused communities is presented. The authors investigate the evolution of tie structure within

communities, concluding that the time period over which location data are aggregated has a

substantial impact on stability of place-focused communities (communities of users that visit the

same places). In particular, the authors investigate communities found in co-located networks

of users that checked in at the same places and the on-line social network. In conclusion, local

communities may be more useful than social communities for providing friend or points of

interest recommendation when geographic information is considered.

2.2 Recommender Systems

The growth of the Internet brought a series of new applications with a rich gamma of

interactions mechanisms with these applications, which became the essential “windows” for the

users to look for targeted contents, items, objects of their interest. For instance, news websites

that provide many information about the society, sports, economics and so on; or e-commerces

that sell different products to a broad range of target users. However, the number of available

items in these systems has rapidly increased in such a way that users could not easily find what

32

(a) (b)
Figura 4 – Example of communities found in two networks: (a) three communities found using

modularity by Newman et al. (Figure from (NEWMAN, 2006)); (b) communities
found using the link community algorithm by Ahn et al. (Figure from (AHN et al.,
2010)).

they need, making them give up from the search and, in the case of e-commerce, give up of

the purchase. This problematic scenario leveraged the necessity for better strategies to help

the users in finding the most relevant items to them from a huge collection of available items.

This scenario led to the development of one of the most important topics in the last decade:

Recommender Systems (RS).

Recommender systems are tools to support individuals in finding items from a

large number of alternatives that a system, e.g e-commerce, may offer to them. The first

idea of recommendation is likely the suggestion of the most popular items for the users under

the assumption that most users are fine with the popular ones. As popular items were not

enough anymore, new and sophisticated recommender systems have been developed to generate

personalized and novel suggestions to the users, where these suggestions are highly relevant to

the user preferences. Therefore, representing the the typical behavior and preferences of the user

about the items in the systems became a key task to design effective recommender systems.

The common term to represent the entities in recommender systems is item. The

items are defined according to the domain of the recommender system, for instance books,

musics, movies, events, venues, foods and cities, to name a few. Indeed, recommender system

is a multidisciplinary topic that can be incorporate into different applications and problems.

Recommendation of movies (Netflix), music and artists (Spotify and LastFM), venues (Fours-

quare), news (Yahoo News) are examples of different applications and domains implementing

recommender systems as mechanism to help users in finding the most relevant items to them.

Formally, recommender system has basis in an utility function that evaluates the

importance or relevance of an item for a user. Let us denote I = {i1, . . . , im} the set of items,

and U = {u1, . . . ,un} the set of users, the utility function is usually represented by a function

R : U× I→ R.

The design of the recommender system determines the output of R(·, ·) which may also output

33

integer values (e.g. [1,5]), instead of real ones. This objective function is then used to evaluate

the items for each user in order to generate a subset or a sorted list of items to the user. In the

literature we find the recommendation problem treated as a prediction problem whose goal is to

predict a score of the item i for the user u.

A taxonomy of recommender systems is provided in (BURKE, 2007) that has become

a classical way of distinguishing between recommender systems (RICCI et al., 2011). This

taxonomy includes: Content-based where item content is used to match up against the user profile;

Collaborative Filtering where ratings patterns are discovered to generate recommendations;

Demographic whose recommendations are generated taking into consideration the demographic

profile of the user, such as age, language and country; Knowledge-based, where the goal is to

measure the utility of the recommendation for user by estimating how much the user needs match

the recommendations; Community-based which recommends items based on the preferences

of users friends; and Hybrid recommender systems that combine other RS techniques together

using the advantages of one to fix the limitation of the other one.

In this thesis we discuss two of those classes of recommender systems that are

most used: content-based recommender systems, where item content (e.g. movie year, actors)

is taken into consideration to represent the items and to create user profile that are matched

up against the item attributes in order to measure the relevance of the item for the user as a

result of the recommendation process; and collaborative filtering recommender systems, where

rating patterns based on the historical data of the users are analyzed over the items to generate

suggestions through similarities between users or items, or they are used to learn a predictive

model that is able to effectively predict or estimate the relevance of an item for the user.

2.2.1 Content-based Recommender Systems

A content-based recommender system (CBRS) has basis on the items’ content to

recommend similar items to those ones that the user has already liked before. The similarity of

items is calculated based on the features associated with the compared items. CBRS approaches

analyze the features of the items previously rated by a user to build a profile of user interests

based on the features of the items rated by that user. The recommendation processing, then,

consists in matching up the attributes of the user profile against the features of the item to be

recommended. The result is a relevance score/ judgment that represents the user’s level of interest

in that item. The more accurate the profile is, the more effective the recommendations will be.

Therefore, an important step in the content-based recommender systems is the technique used

for item representation.

The items are represented by a set of features, also called attributes or properties

(LOPS et al., 2011). In movie applications, for example, the year of the movie, actors, directors,

description can be used as features for the items. A simple way to represent the items is then to

34

use keywords-based profiles. This approach is especially suitable when each item is described by

the same set of attributes and the possible values for each feature is known. In the case of textual

description, keywords-based profiles are not effective as item representation, since simple string

matching operation can not deal with polysemy, the presence of multiple meanings for one word,

and synonymy, where multiples words have the same meaning (LOPS et al., 2011).

A simple and very used model for representing the items is the Vector Space Model

(VSM) broadly used in Information Retrieval (IR). In particular, VSM is used to spatially

represent text documents, where each document can be seen as a vector in a m-dimensional

space. Then, each dimension in the document vector corresponds to a term from the overall

vocabulary of the document collection, which is weighted to indicate the degree of relevance

between the document and the term. In content-based recommender system, this model can be

used in such a way the items and users correspond to the documents, while the items’ features

are the terms of the overall vocabulary.

Let T = {t1, . . . , tm} be the set of terms in our vocabulary and D = {d1, . . . ,dn} be

the set of documents. Therefore, each document di is represented by its m-dimensional vector

space ~di = {w1i, . . . ,wmi} such that wk j is the relevance of the tk for document d j.

To evaluate how relevant a term t is to a document k, wtk, we first need to point out

important observations that help us to design the adequate weight function. As discussed in

(LOPS et al., 2011; SALTON, 1989): (i) frequent terms are not necessary more relevant than

rare terms; single occurrences of a term in a document are not more important than multiple

occurrences; and documents with many terms are not more suitable than documents with less

terms. TF-IDF (Term Frequency-Inverse Document Frequency) was developed based on these

observations regarding text being the most commonly used term weighting framework. The

intuition behind TF-IDF is that terms that occur frequently in one document and are not frequently

found in many other documents are more likely to be relevant to the document, while frequent

items that occur in several documents are not representative for a specific document. To compute

TF-IDF, we need first to compute the term frequency of a term tk in a document di given by

TF(tk,di) =
fk,i

maxz fz,i
,

where fk,i is the number of occurrence of term tk in the document di, and maxz fz,i stands for the

maximum occurrence of any term z in any document i. With term frequency computed, we can

calculate TF-IDF as

wk,i = TF-IDF(tk,di) = TF(tk,di) · log
N
nk
,

where n is the number of documents in the collection and nk is the number of documents that

have the term tk. Analyzing the inverse term frequency component log
n
nk

we can see that the

35

final score for TF-IDF is higher when nk is lower, and lower for large nk. This means that the

term frequency of a term tk in the document di is penalized if tk occurs in many other documents.

Once we have computed the document vector ~di, we can rely on a similarity function

to find similar documents di with respect to a given vector (e.g. user profile vector) in the same

m-dimensional space. Cosine similarity is broadly used to compute the similarity between two

vector of an inner product space to measure the cosine of the angle between them given by:

cosine(~di, ~d j) =
~di · ~d j

||~di|| · ||~d j||
.

Therefore, for a user profile vector ~u in the same m-dimensional space, we can compute the

cosine similarity to find out documents that are relevant or similar to the user profile. The vector

space model jointly with a vector-based similarity function are simple and very efficient ways

for recommending items, mostly due to its simplicity and flexibility to be applied in different

domains, such as music, movies, books, venues, etc.

Lops et al. in (LOPS et al., 2011) highlight that keyword-based representations for

the items and user profiles can give accurate performance, when the sufficient number of evidence

of the user interests is available. However, this approach is not suitable for all applications. As

previously discussed, keyword-based methods have some problems regarding polysemy and

synonymy, what can lead to inaccurate results by the recommender system. To deal with this

problem, an ontology-based representation might be used to integrate the recommender system

with external knowledge bases to provide more semantic in the user profiles.

The Space Vector Model can then be used as a framework for the content-based

recommender system. In the case of CBRS, the documents are the items and users, while the

terms are the features associated with the items. In this way, we represent items and users as

feature vectors in such a way similar items to the user profile can be found as recommendations

to the user.

The content-based recommender systems have the advantage of: (i) User Indepen-

dence, since the RS exploits the ratings provided by the user to build her own profile, and it does

not need to compute the other users ratings as done in collaborative approaches; (ii) explaining

how the recommender system works can be provided by explicitly listing the item features that

caused the recommendation of that item - Transparency; (iii) overcoming the new item problem

(item not rated by any user), once the item features can be match up against the user profile even

when no user has rated that item.

The content-based recommender systems, on other hand, also have several draw-

backs: (i) Domain knowledge is often needed, what might be problematic if the content of items

(features) are not enough to discriminate items the user likes from items the user does not like.

Therefore, automatic discovery and manual assignment of features to items could not be sufficient

to define distinguishing aspects of items to capture and model the user interest; (ii) these RSs

36

have the drawback of over specialization, where only items similar to those items previously

rated by the user will be recommended, thus it does not favor for serendipity recommendations

(unexpected recommendations); (iii) new users do not have enough ratings or feedbacks to create

their profile, thus the system will not be able to provide reliable recommendations.

Not all of the item contents are available, which forces us to design different recom-

mendation techniques from the content-based ones. In particular, when the ratings of users are

present in the system, these can be used to discover patterns to support the recommendations of

the items. These patterns may indicate users having similar preferences or behaviors and thus

items of one could be used as a recommendation to the other; or they may be used to learn model

that are capable of assisting the recommendations. In the next section we discuss the recommen-

dation systems based collaborative filtering which uses the patterns on the recommendations of

the items.

2.2.2 Collaborative Filtering Recommender Systems

This class of recommender systems relies on past user behavior to analyze rela-

tionships between users according to their interests in the items to find out new user-item

associations corresponding to the recommendations to the users. The term collaborative filtering

was devised by the developers of Tapestry, the first collaborative filtering recommender system

(KOREN et al., 2009a). This approach is an alternative to content-based methods when item

contents are not available, and the user past behaviors (e.g. ratings, interactions with the system)

can be taken into account to generate the recommendations. User past behavior is can be seen as

feedbacks of the users that represent important information to boost the recommender systems:

explicit feedbacks are associated with the explicit interest of the user about certain items usually

given in the form of ratings (stars, like, dislike); and implicit feedbacks are indirect representation

of the interests of the user by observing past behaviors such as the interaction of the user with

the RS, browsing history and purchase, for instance.

The collaborative filtering recommender systems are mainly divided into two areas:

neighborhood-based and model-based collaborative filtering techniques. In the neighborhood-

based CF algorithms, similar users to the active user are identified to find out relevant items from

these similar users. In the model-based CF algorithms, on the other hand, the ratings are used to

learn a predictive model to produce recommendations for new items. In the following we discuss

with more details each of these approaches.

2.2.2.1 Neighborhood-based Collaborative Filtering

Neighborhood-based methods, known also as k nearest neighbors (kNN), are inspired

by the common principle of word-of-mouth (DESROSIERS; KARYPIS, 2011): “one relies on

37

the opinion of like-minded people or other trusted sources to evaluate the value of an item (movie,

book, articles, album, etc.) according to his own preferences”. Let us consider the example

illustrated in Figure 5. Adam has enjoyed three movies that were also enjoyed by other users.

These in turn experienced other films that might be interesting to Adam. Therefore, the system

might identify these users to somehow recommend the items.

Based on this observation, neighborhood-based techniques exploit the user-item

ratings stored in the system to device groups of users, called neighbors, for the active user that

have similar preferences in order to predict ratings for the new items. The neighborhood-based

methods are approached in two ways: user-based or item-based recommendations. In user-based

systems, the interest of a user u for a given item i is evaluated by the other users ratings for

this item, the neighbors, that have similar rating patterns (DESROSIERS; KARYPIS, 2011).

Item-based approaches (LEMIRE; MACLACHLAN, 2007), on the other hand, evaluate the

relevance of an item i to a user u based on the ratings of u for items similar to i. In this case, two

items are similar if users of the system tend to similarly rate them.

Let ru,i be the rating of user u for item i. The general framework for neighborhood-

based methods consists of finding similar users by accomplishing a similarity computation

between users (user-based) or items (item-based). The objective of this process is to find out

the neighbors of each user in order to recommend items from a group of users with similar

taste (user-based), and items that are similarly rated by the same set of users for a given item

(item-based). Then, the ratings of the group for the item are somehow aggregated as a prediction

score of the item. When the task is to generate a top-N recommendation, it is needed to select

the k most similar users or items based on the similarity computation, and then aggregate the

neighbors to get the top-N most relevant or scored items as the recommendation or prediction

computation (SU; KHOSHGOFTAAR, 2009). Each step is discussed as follows.

Similarity Computation. In the case of user-based, given two users u and v, we need to

compute the similarity between these two users according to their rating patterns. A common

way to accomplish it is to compute the Pearson correlation between the two users, but other

correlation-based similarities can also be used (e.g. Spearman rank correlation), as well as vector

cosine-based similarity.

Let Iu,v ⊆I is the item set summarizing the items that both the users u and v have

rated, and r̄u, r̄u are the average rating for the co-rated items in I of the user u and v, respectively.

Considering the Pearson correlation as our measure, the similarity between two users u and v is

given by

wu,v =
∑i∈Iu,v(ru,i− r̄u)(rv,i− r̄v)√

∑i∈Iu,v(ru,i− r̄u)2
√

∑i∈Iu,v(rv,i− r̄v)2
, (2.1)

For item-based, we need to compute the similarity between two items i and j that were rated

by the same users. Let Ui, j ⊂U be the set of users who rated both items i and j, r̄i and r̄ j the

38

Figura 5 – Example of neighborhood-based collaborative filtering for each group of users similar
to the active user are identified to find out possible interesting items as recommenda-
tion.

average rating of items i and j given by the users in Ui, j. The Pearson correlation is between the

items i and j is then computed by

wi, j =
∑u∈Ui, j(ru,i− r̄i)(ru, j− r̄ j)√

∑u∈Ui, j(ru,i− r̄i)2
√

∑u∈Ui, j(ru, j− r̄ j)2
, (2.2)

Prediction and Recommendation Computation. With the similarities between users or items

computed to find out the neighbors, an aggregation of their ratings is used to predict the

relevance of the items for the user. For the user-based methods, we can rely on the weighted

sum of the others’ ratings (SU; KHOSHGOFTAAR, 2009; RESNICK et al., 1994). Then, the

recommendation of item i to user u is given by

R(u, i) = r̄u +
∑v∈Ui, j(rv,i− r̄v) ·wu,v

∑v∈Ui, j |wu,v|
(2.3)

For item-based, we might use a simple weighted average

R(u, i) =
∑ j∈Iu ru, j ·wi, j

∑ j∈Iu |wi, j|
, (2.4)

where Iu is the set containing all items rated by u (SARWAR et al., 2001).

Top-N Recommendation. Once we are able to compute R(u, i) for a user u and item i, we can

devise a top-N recommendation which consists of recommending the N most relevant items to

the user, achieved by user-based or item-based algorithms. Regarding the user-based approach,

39

the first step is to find similar k users, the neighbors, to the active user using Pearson correlation or

any other similarity function. Then the relevance of the item i for the user u R(u, i) is calculated

for each item experienced by the neighbors. Finally, the top-N items not experienced by the user

are recommended. For item-based recommendation, The algorithm first computes the k most

similar items for each item according to a similarity function, for instance, equation 2.2. Then

the items not yet experienced by the user are retrieved and compared to what the user has rated

(seen) using for example the equation 2.4. In the end, the top-N items more relevant in terms of

R(u, i) are recommended to the user.

The choice between user and item-based algorithms is taken from five important

criteria that should be considered (DESROSIERS; KARYPIS, 2011): (i) accuracy; (ii) efficiency;

(iii) stability; (iv) justifiability; (v) and serendipity.

Regarding accuracy, it is important to understand the ratio between the number of

users and items in the system, where a low number of neighbors, but with high similarity, is

preferable to a large number of neighbors whose similarities are not trustworthy, leading to poor

quality recommendations. As discussed in (DESROSIERS; KARYPIS, 2011), item-based can

produce more accurate recommendations when the number of users is much greater than the

number of items; while user-based neighborhood methods are preferable in the cases the number

of items is larger than the number of users in the system.

As we have seen, neighborhood-based CF algorithms require a similarity compu-

tation over the users or items. Then, the efficiency of the methods also depends on the ratio

between users and items. In other words, when the system has more users than items, the item-

based algorithm is more efficient as less memory and computation are required for processing

similarities between the items.

This fact leads us to consider also the stability of the number of users and items in

system. Naturally, if new items are frequently added into the system, for instance, the similarity

computation between them will need to be frequently achieved, making the choice of a user-based

algorithm more preferable. When the list of available items is not frequently changed, however,

item-based algorithms might be more suitable.

Justifiability is an important characteristic for recommender systems when there

is requirement for the explanation of the recommendations to the users. This may contribute

to engage the user and enforce the confidence with the system. Item-based algorithms have

advantage of justifiability, that is, the recommendation of an item can be easily explained as

the neighbors of this item and the recommendation scores can be presented to the user as the

justification for that recommendation. In the case of user-based, the justifiability can be difficult

since the user may not know the neighbors, unless social networks are incorporated into the

method.

Another very important aspect to be considered is related to serendipitous or novelty

40

recommendations. Recommendations generated by item-based methods are highly related to

the items the user has rated. As a result, the RS will recommend very similar items to those the

user already rated, which does not favor for different items that might be relevant to the user –

serendipitous or novel recommendations. In user-based algorithms, on the other hand, the user

might be recommended by items provided by highly similar neighbors that might contribute to

recommend types of items (e.g. movie genre) not seen or expected by the user, but still being

relevant.

Neighborhood-based recommender systems are broadly used in different settings:

with social networks, a variety of domains, etc. Spite of presenting some limitation, such as the

cold start problem (SU; KHOSHGOFTAAR, 2009; SCHEIN et al., 2002; ADOMAVICIUS;

TUZHILIN, 2005; ZHOU et al., 2011), these approaches are still relevant and worthwhile due

their simplicity and effectiveness for some applications (GRCAR et al., 2005).

2.2.2.2 Model-based Collaborative Filtering Recommender Systems

On a different line, model-based collaborative filtering algorithms work out by

exploiting training data of ratings to learn a predictive model. Techniques from machine learning

and data mining, for instance, are applied to recognize complex patterns to produce effective

recommendations to the users. Among the techniques used in the model-based algorithms, we can

cite Bayesian Belief Net CF algorithms, Clustering, Regression-based, Support Vector Machines,

Latent Semantic Analysis and Latent Dirichlet Allocation (BREESE et al., 1998; HOFMANN,

2004; BLEI et al., 2003; GRCAR et al., 2005; HOFMANN, 2003; BELL et al., 2007; KOREN,

2008; KOREN et al., 2009a). Grcar et al. presents experimental results in (GRCAR et al.,

2005) of confronting the neighborhood-based algorithm (kNN) with Support Vector Machine

(SVM) in the collaborative filtering framework. Interesting results show us some conditions

where one collaborative filtering technique is more appropriate than the other. Regarding kNN

and SVM, the authors show that kNN has better performance in the recommendations when the

quality of data is higher. On the other hand, SVM is especially more adequate for sparse datasets.

These insights are extremely useful at the moment of designing and developing a recommender

system that is able to capture the users’ rating patterns and, consequently, to produce effective

recommendations.

Some of the most successful achievements of model-based systems are based on

matrix factorization (KOREN et al., 2009a), where, in its basic form, matrix factorization

characterizes both items and users by vectors of factors inferred from item rating patterns. The

flexibility of adding additional information for modeling real-life situations combined with

good scalability and recommendation (predictive) accuracy has popularized matrix factorization

methods. Some of the additional information include implicit and explicitly feedbacks, biases

of particular users and items, input sources about users and items (e.g. content), temporal

41

dynamics and confidence levels to distinguish observed ratings from different input source, e.g.

explicit feedbacks might be more relevant than implicit feedbacks. Koren et al., who took part

of the winner team of the Netflix Prize, present different modeling for matrix factorization by

aggregating those additional information (KOREN et al., 2009a). An interesting result is the

importance of temporal dynamics to achieve accurate recommendations as the users may change

their rating patterns over time. These results also motivated the development of other time-aware

recommender systems presented in (LATHIA et al., 2009a; LATHIA et al., 2009b; KOREN,

2010; GAO et al., 2013).

2.3 Recommender Systems for Location-based Services

Recommender systems are broadly present in several domains, like movies, music,

books and places. The diversity of domains requires the specialization of RSs to deal with specific

characteristics of the users and items for the target domain. Consequently, the recommendation

of locations (e.g. restaurants, museums) also needs deeper investigation to achieve high-quality

recommendations by understanding the users behavior when associated with locations or venues.

In this section, we discuss a comprehensive list of state-of-the-art for location-based recommender

systems.

The advances in location-acquisition technologies, smartphones devices and the Web

2.0 technologies have enabled the creation and popularization of location-based services (LBS),

such as the location-based social networking services (LBSNs) like Foursquare1, Twinkle and

Geolife (ZHENG et al., 2009; ZHENG et al., 2010). These services allow users to share their

locations and location-related-content with other users, such as geo-tagged photos in Flickr,

check-ins in Foursquare, etc. The location dimension links the gap between the physical world

and the digital on-line social networking services, bringing new opportunities and challenges in

traditional recommender systems. Among the opportunities and challenges Bao et al. highlight:

(i) the complex objects and relations represented by the location as the item in the RS, generating

new relations between users, between locations, and between users and locations. Consequently,

new recommendation scenarios (e.g. location and itinerary recommendations) require new

methodologies for generating high-quality recommendations; and (ii) the rich knowledge regar-

ding the location as one of the most important components to define the user’s context, where

location history can provide means of mining extensive knowledge about the user’s behavior and

preferences to be accurately assessed by recommender systems (BAO et al., 2012).

We have witnessed a variety of location-based social networking services with the

basis on location sharing, but with some particularities. For example, in Flickr users share their

photos that may be geo-tagged indicating locations where the user has been; the sharing of
1 <https://foursquare.com/>

https://foursquare.com/

42

check-ins in Foursquare where the user inform the venue she is at that moment; and the sharing

of GPS-based data where users do not only share a position, but a sequence of coordinates

representing their trajectories as presented in Section 2.1. In front of these heterogeneous

services, Bao et al. proposed an interesting classification of the location-based social networking

services:.

• Geo-tagged-media-based. It corresponds to those services in which users can add a

location label to media content, such as text, photos and videos generated in the physical

world by their devices. These tags are added to the content when it is created or added

explicitly by the user. Example of these location-based social networking services are

Flickr, Panoramio (Figure 6a), Twitter and Instagram.

• Point-location-based. Foursquare and Swarm (Figure 6c) are example of application

with this service. The service allows the users to share their current locations, such as

restaurants, museums or cities. With this kind of service, a venue (point of interest) is the

main element determining the connections betweens users, while user-generated content

such as comments (tips) and badges are associated with points of interest.

• Trajectory-based. In the trajectory-based social networking services like Bikely2 (Figure

6b) and Runkeeper3 users record both points of interest and routes connecting the points

of interest. Other users can reference these experience by browsing the trajectory on a

digital map or in the real world with a GPS-enable phone. The generated data are formed

by sequences of geo-points (latitude and longitude) that might be enriched with semantic

information, like points of interest and weather.

These classes show us how heterogeneous a recommender system might be designed

for a location-based social networking. In front of this, Bao et al. in (BAO et al., 2012) proposed

three taxonomies to categorize the recommender systems in LBSN according to: (i) the data

source used by the recommender system; (ii) the applied methodology for the recommendation;

and (iii) the objective of the recommendation, such as location, users, activities or social media.

The categorization of recommender system according to the data source used is

based on: the user profile, when data about the user (age, gender, preferences) are explicitly

specified; the user geo-located content such as location, check-ins and geo-tagged social media;

and the trajectories of the user representing her spatio-temporal evolution.

The authors also categorized the recommender system based on the methodology

applied. They identified the content-based and collaborative filtering approaches which have basis

on the traditional recommender system powered by the challenges of LBSN. In addition, the link

analysis-based is another methodology used in the recommender system, including techniques

like PageRank (PAGE et al., 1998) and HITS (hypertext induced topic search) (LANGVILLE et
2 <www.bikely.com/>
3 <https://runkeeper.com/>

www.bikely.com/
https://runkeeper.com/

43

(a) Geo-tagged-media-based LBSN on Panoramio (b) Trajectory-based LBSN on Bikely

(c) Point-location-based LBSN on Swarm
Figura 6 – Example of the three classes of location-based social networking: (a) shared geo-

tagged photos by users in Panoramio; (b) trajectory shared by a user on Bikely; (c)
venues sharing through users’ check-ins on Swarm.

al., 2008).

The last categorization is the recommendation objective. The recommender systems

are classified according to their objectives:

1. Location recommendation. This category corresponds to the recommender systems fo-

cusing on locations as the major objective. Therefore, the objective is the recommendation

of locations that can be twofolds: (i) stand-alone location recommendation, when users

are recommended with individual locations based on the user’s preference and possibly

her location history; (ii) sequential location recommendation which recommends sequence

of locations to be visited (e.g. tourist attractions) based on the user’s preferences and some

constraint inherent to the domain and application, such as time and cost. In this thesis we

focus on this category of location-based recommender systems;

2. User recommendation. In some LBSN the objective is the recommendation of users,

instead of locations. The recommender systems suggest friends based on user’s location

44

history, user with particular importance in the system such as local expertise and opinion

leadership, communities of users in which the user might join based on her interests and

activities.

3. Activity recommendation. As the name suggests, the recommendation objective is the

activities the user can achieve in the locations. Therefore, the users are suggested by

activities they may be interested at locations of their interest as well.

4. Social media recommendation. The objective is the recommendation of social media

content like photos videos taking to consideration the user’s location as well as the location

meta-data of the social media.

This thesis is mainly related to the location recommendation category. In particular,

we introduce in Chapter 4 and 5 the proposed framework and system, respectively, for planning

sightseeing tours in a city. Therefore, we present in the following sections some important

achievements on this line for both stand-alone and sequential recommendations.

2.3.1 Stand-alone location recommendation

The most traditional format of location recommendation is likely the stand-alone.

Here the recommendation outcome a list with the top N most relevant locations to the user

considering some constraints or not. User’s current location or past movements can be taken into

account to devise the recommendation list.

In (HOROZOV et al., 2006) the authors propose a system to make personalized

recommendations of restaurants in a city. Their approach enhances the collaborative filtering

solution by aggregating location information for generating recommendations.

A GPS-data-driven location-based social networking service is proposed in (ZHENG

et al., 2009) where people can share their life experiences and connect to each other in the

social network with their location histories. Then, in (ZHENG et al., 2009) the authors present a

tree-base hierarchical graph (TBHG) to model multiple individuals’ location histories jointly

with a HITS (Hypertext Induced Topic Search)-based inference model to infer the interest of a

location. The approach starts with GPS data of the users being mapped to sequences of stops,

called stay points, determining spatial areas in which the user spent a minimum amount of time

and within a maximum distance. To build the TBHG (Figure 7), it is needed to (i) cluster the

stay points using a hierarchical clustering algorithm to build a tree-based hierarchy; and (ii) and

build a graph at each level of the hierarchy connecting two consecutive clusters of the same level

with a directed link. The built TBHG is then used to create the HITS-based inference model

to estimate the users’ experiences and location interests in a given region. In this model, the

visit of a user to a cluster is represented as a directed link from the user to that cluster (Figure

7). A user is considered a hub if she has visited many clusters (locations), while a location is an

authority if it has been accessed by many users. The generated scores for each user and location

45

are used to find out the top-N locations in a given region. Note that the recommendation here is

not personalized, i.e., the users are recommended with the same locations for a given N.

(a) (b)
Figura 7 – (a) Tree-based Hierchical Graph on the left, and the Tree-based Hierarchy on the

right; and (b) HITS-based inference model. Figures from (ZHENG et al., 2009).

Considering neighborhood-based CF schema, Xiao et al. propose a user-based

similarity function considering the users’ location history in (XIAO et al., 2010). They propose

an algorithm called maximal travel match)(MTM), that considers semantic location history, i.e.,

like shopping malls, restaurant; mined from raw GPS data. Then, MTM algorithms evaluates the

similarity between two users, what can be incorporated into a user-based collaborative filtering

technique to make recommendations.

A step further location-based recommender system from GPS data is present in

(ZHENG et al., 2010; ZHENG et al., 2012). In (ZHENG et al., 2010) the authors firstly

model users’ location (cluster of points) and activities histories. Then, location features and

activity-activity correlations are mined from geographical databases and the Web, respectively,

to use these data as input for a collective matrix factorization method. The location features

are supported by a PoI database that gives the PoIs in an enclosing rectangle. Each location

i is associated with a l-dimensional vector ~qi = [qi1, . . . ,qil], for l different categories of PoIs,

and qi j the number of PoIs with the category j in the location i. Since some categories are

more popular (e.g. restaurant) than others (e.g. cinema), the author apply TF-IDF (Section

2.2.1) over the feature vector as a normalization strategy. The activity-activity correlation is

computed by query a search engine (e.g. Bing) given two activities, such as “Food and Drink”

and “Shopping”. The hit count returned by the search engine is then used as the correlation score.

Finally, non-personalized locations and activities recommendations are made to the users using

a matrix factorization algorithm (model-based collaborative filtering). This work is extended

in (ZHENG et al., 2012), where the authors propose two other algorithms to incorporate users’

features into the previous one: (i) a collective tensor and matrix factorization model is used; (ii) a

ranking-based collective tensor and matrix factorization model is proposed. In these extensions,

they proposed algorithms to make personalized recommendations, outperforming the previous

46

one.

Lucchese et al. take advantages from Flickr geo-tagged photos and Wikipedia PoIs

to recommend PoIs to tourist (LUCCHESE et al., 2012). Their approach consists of creating

an itinerary graph G = (V,E,w), for the set of PoIs V , the set of edges E such that e = (i, j)

means that photos i and j are in the same album of at least one Flickr user or they share at

least one Wikipedia category; and w(i, j) is the number of Flickr user or Wikipedia categories.

Later, an itinerary transition matrix is computed from G to estimate the conditional probability

P(j|i). Then, given a set U of PoIs representing already visited or interesting PoIs for a user,

the random walk with restart computes the steady-state probability from each PoI in U . The

results are aggregate using Hadamard product. They propose a random walk-based algorithm

to recommend tourist points of interest. The algorithm takes advantage of knowledge mined

from photo albums and Wikipedia to generate personalized recommendations of touristic points

of interest according to the places previously visited by the user. This approach can be used to

exploit a list of top-k points of interest, as well as when the user is currently visiting the city.

They compared the approach with competitor to empirically evaluate its efficiency. Finally, the

score for each item in V \U is found out to recommend the top-N most scored PoIs to the user.

A random walk-based approach for recommending venues from check-ins data is

also proposed in (NOULAS et al., 2012). In this work, the authors investigate issues related

to behavioral, social and spatial information available in social networks to better generate

recommendations. For this aim, they study the behavior of users in a large scale from two

location-based social networking services: Foursquare and Gowalla. The proposed model is

represented as a graph where the nodes are users and venues, where the steady-state probability

is computed for each user by the random walk with restart framework and the transition matrix,

considering the number of check-ins or not as weights for the edges in the graph. They compare

their approach against relevant baselines, including neighborhood and model-based collaborative

filtering algorithms, in 11 different cities. Another interesting results is that between 60% and

80% of users’ visits are in venues that were not visited in the previous 30 days.

An interesting collaborative filtering approach is present in (BAO et al., 2012). The

authors propose a location-based and preference-aware recommender systems by considering

user personal preferences and social opinions. The approach is divided into off-line and on-

line modeling. In the off-line part, the individuals’ personal preferences are modeled with a

weighted category hierarchy (WCH) using the number of check-ins of the user at the venue

normalized by the TF-IDF for each node in WCH; and the expertise of each user in a city with

respect to different category of locations is inferred by estimating the expertise of the users for

a given category using HITS computed over the relations between the users and the venues of

that category. In the on-line phase, in turn, local expert users are selected in a spatial range

that matches the user’s preferences using a preference-aware candidate selection algorithm. A

47

similarity function is proposed to compute the similarity between two users considering the

WCH and its levels, instead of cosine-based similarity. These functions are then used in the

user-based collaborative filtering schema. In the end, the top-N ranked locations are returned as

the recommendation for the user.

In some application, not only the location is important, but also events that might

take place somewhere. In front of this, Yin et al. (YIN et al., 2013; YIN et al., 2014) propose

a location-content-aware recommender system (LCARS) that recommends not only a set of

locations, but also a set of events, such as concerts and exhibitions, in location-based social

networking services. In this recommender systems, (spatial) items are locations or venues. Both

local preference of the locations and item content information (for venues and events) are consi-

dered important for modeling user preferences and handling the data sparsity problem. LCARS

is structured into two components: off-line modeling and on-line recommendation. The off-line

modeling part, called LCA-LDA, is a location-content-aware probabilistic generative model, thus

model-based collaborative filtering, that quantifies and incorporates both local preference and

item content information into the spatial item recommendation process. It is designed to learn

the interest of each individual user and the local preference of each individual city by capturing

item co-occurrence patterns and exploiting item contents. The on-line recommendation part

takes a querying user along with a querying city as input, and automatically combines the learned

interest of the querying user and the local preference of the querying city to produce the top-N

recommendations. The authors extend the Threshold-based Algorithm (TA) (FAGIN et al., 2003)

to compute the top-N recommendations based on K sorted lists of latent topics discovered in

LCA-LDA.

In (WANG et al., 2013), the authors propose a location-based recommender system

for LBSNs based on users visited places, the location of each venue (e.g. restaurant), the

social relationship among the users and the similarity between the users. The LBSN is seen

as a graph containing two types of nodes (users and locations) and two types of edges to

represent the friendship between users and the visits of users to the locations. They propose two

algorithms based on the personalized Page Rank (JEH; WIDOM, 2003) by using the bookmark-

coloring algorithm (BCA) (BERKHIN, 2006): Friendship-based Bookmark-coloring Algorithm,

which takes into account only the friendship edges; and Location-friendship Bookmark-coloring

Algorithm which reconciles social interaction and similarity in a common recommendation

algorithm. The results highlight the importance of friendship and locations to get highly qualified

recommendations.

Ye et al. also explore user preference, social influence and geographical influence for

location (points of interest - POI) recommendations (YE et al., 2011; YU; CHEN, 2015). They

emphasize geographical influence due to the spatial clustering phenomenon exhibited in user

check-in activities of LBSNs. The intuition is that users prefer to visit nearby locations rather

48

than distant ones, and users may be interested in locations surrounded a location that users prefer.

Therefore, they argue that the geographical influence among locations plays an important role in

user check-in behaviors. To this aim, they propose a unified PoI recommendation framework,

which fuses user preference to a POI with social influence and geographical influence. The

proposed framework combines the ranked list of three collaborative filtering algorithms using

a linear fusion framework. The CF approaches are: user-based CF using cosine similarity

between two users and the venues they checked in; friend-based CF, which consider the user’s

friends, instead of neighbors, and the directional social influence of one user to another; and (iii)

model-based CF using a naive Bayesian approach that accounts the probability of two checked

in PoIs by the user are within a given distance in order to estimate a score for a new venue based

on its distance to the user’s check-in venues.

In (YU; CHEN, 2015), a survey on location/PoI recommendation is presented where

the authors classify points of interest recommendation algorithms into four categories: pure

check-in data based POI recommendation approaches, geographical influence enhanced POI

recommendation approaches, social influence enhanced POI recommendation approaches and

temporal influence enhanced PoI recommendation approaches.

2.3.2 Sequential location recommendation

The presented works so far have been focusing on recommending a ranked list of

PoI/ places to the users. However, for the scenario where a user, e.g. tourist, would like to visit a

sequence of places instead of picking one from the list, new methodologies are needed. In fact,

many other works have been concentrated in this particular scenario that represents a variety of

important applications in the context of tourism and urban activities.

Trips, itineraries, travels, paths and sightseeing tours or simply tours are some of

those terms used to refer the sequence of places that is recommended to the users. In these works

the main goal is to create personalized or non-personalized trips according to a set of constraints

that are crucial in the problem definition. Due to the number and types of constraints, we can

found different problem definitions depending on the objective and context of the proposal

methodology. However, in general, the problem can be seen as a trip planning problem. In this

section, we present the most relevant works whose aim is the recommendation or generation of

itineraries for users.

Planning a travel itinerary or a trip is definitely a difficult and time-consuming task

for tourists approaching their destination for the first time. Different sources of information

such as travel guides, maps, on-line institutional sites and travel blogs are consulted in order to

devise the right blend of Points of Interest (PoIs) that, a) best covers the subjectively interesting

attractions, and, b) can be visited within the limited time planned for the travel. However, the

user still needs to guess how much time is needed to visit each single attraction, and to devise a

49

smart strategy to schedule them moving from one attraction to the next one. Furthermore, tourist

guides and even blogs, reflect the point of view of their authors, and they may result to be not

authoritative sources of information when the tourist preferences diverge from the most popular

flow.

An early work on this topic is (GODART, 1999). The authors use the Traveling

Salesman Problem (TSP) as a starting problem to plan trips. A TSP with Activities and Lodging

Selection (ALS) automatically selects PoIs and lodging. The Multiple Objective extension

(MOTSP-ALS) minimizes transport and accommodation costs at the same time. The final step,

i.e., Preference-based MOTSP-ALS, maximize the attractiveness of the lodging and the activities.

The proposed model is very complex, and turns out to be very difficult to use also for the large

amount of heterogeneous information required.

Yoon et al. propose a graph-based framework to recommend itineraries given a

start and end point and the travel duration (YOON et al., 2010; YOON et al., 2012). First

they generate a graph called Location− InterestGraph from users’ GPS trajectories by mining

geographical regions where a user stay over a time threshold called stay point. Second, they find

a list of feasible itineraries w.r.t to the given budget. Finally they sort the result by means of a

location-interest metric that takes into account: (i) elapsed time ration where itineraries that use

as much available time as possible are considered to be better; (ii) stay time ration to favor the

visiting time at the places instead of on the way traveling; (iii) interest density ration to highlight

as many interesting locations as possible, i.e., popular locations and locations with cultural

importance; (iv) and classical travel sequence ration where itineraries that revisit classical travel

sequences of previous users are considered to be better. They compare the approach against

baselines (Ranking-by-Time and Ranking-by-Interest) showing that the proposed approach can

recommend relevant itineraries fulfilling the users’ available travel time. They evaluate in terms

of elapsed time ratio, stay time ratio, interest density ration and classical travel sequence.

Huang et al. propose an intelligent system to provide personalized recommendations

of tourist attractions in an unfamiliar city by exploiting a tourism ontology (HUANG; BIAN,

2009). The ontology, Figure 8, allows the integration of heterogeneous on-line travel information

including attractions, open time, location, activity and admission fees. Based on a Bayesian

network technique and the analytic hierarchy process (AHP) method, the system recommends

tourist attractions to a user by taking into account the travel behavior both of the user and

of other users. Spatial web services technology is embedded in the system to provide GIS

functions. In addition, the system provides an interactive geographic interface for displaying the

recommendation results as well as obtaining users’ feedback. The experiments show that the

system can provide personalized recommendations on tourist attractions that satisfy the user.

Shang et al. propose and investigate a problem called User Oriented Trajectory

Search (UOTS) for trip recommendation (SHANG et al., 2012). In contrast to conventional

50

Figura 8 – Concepts and their relationships in the ontology by Huang et al. Figure from (HU-
ANG; BIAN, 2009).

trajectory search by locations (where only the spatial domain is exploited), authors consider both

spatial and textual domains in the new UOTS query. Given a trajectory data set, the query input

contains a set of intended places given by the tourist and a set of textual attributes describing the

tourist preference. If a trajectory is connecting/ close to the specified query locations, and the

textual attributes of the trajectory are similar to the tourist preference, it will be recommended to

the tourist for reference. The spatial distance is measured by the shortest path length between

a given point and the closest point of the given trajectory normalized by a Sigmoid function.

The textual distance, in turn, by means of Jaccard distance. The two distance functions are then

linearly combined as the final result. This type of queries can bring benefits to tourists in many

popular applications such as trip planning and recommendation. However, this approach does not

take into account the user’s time budget in order to optimize her trip. In fact, this approach can

be used to retrieve a subset of trajectories from a very large set of trajectories to prune irrelevant

trajectories w.r.t the user’s interest.

An interesting approach to the trip recommendation problem is the one proposed

by Vansteenwegen et al., where authors define the Tourist Trip Design Problems (TTDP)

(SOUFFRIAU et al., 2008; VANSTEENWEGEN; OUDHEUSDEN, 2007). The orienteering

problem, which originates in the operational research literature, is used as a starting point for

modeling the TTDP. The problem involves a set of possible locations having a score and the

objective is to maximize the total score of the visited locations, while keeping the total time

(or distance) below the available time budget. The score of a location represents the interest

of a tourist in that location. Scores are calculated using the vector space model and the TTDP

is solved using a guided local search meta-heuristic. Authors compare their technique versus

51

a competitor. Both algorithms are applied to a real data set from the city of Ghent. Results

show that the approach turns out to be faster and produces solutions of better quality. Towards

the generation of multiple tours, one for each day for instance, Vansteenwegen et al. presented

the team orienteering problem (TOP) in (VANSTEENWEGEN et al., 2009) jointly with the

Guided Local Search (GLS) algorithm combined with different local search heuristics to solve

the TOP. Lately, they propose (VANSTEENWEGEN et al., 2011) a tourist expert system, called

the “City Trip Planner”4. It is implemented as a web application that takes into account the

interests and trip constraints of the user and matches these to a database of locations in order to

predict personal interests.

An interesting variation of TOP is the team orienteering problem with time windows

(TOPTW) (VANSTEENWEGEN et al., 2009; LIN; YU, 2012). In this problem, the points of

interest also hold a time window to represent their availability. In (VANSTEENWEGEN et al.,

2009) an iterated local search (ILS) heuristic is proposed, while Lin et al. propose a simulated

annealing heuristic, showing computational results competitive with other solution approaches

(including ILS). A step further TOPTW is the Time Dependent Team Orienteering with Time

Windows (TDTOPTW) formulation (VANSTEENWEGEN et al., 2011; GAVALAS et al., 2015),

which is particularly suitable for using public transportation in planning the sightseeing tour.

A survey is presented in (VANSTEENWEGEN; SOUFFRIAU, 2010) for designing

trips for a tourist approaching a new city based on existing models from the field of Operations

Research. Using the Orienteering Problem and its extensions to model the tourist trip planning

problem, the authors present different features and functionalities to deal with a number of

practical tour planning problems. In addition, they also propose a set of interesting directions for

this research area.

The orienteering problem is also employed in (CHOUDHURY et al., 2010). Here,

De Choudhury et al. construct intra-city travel itineraries automatically by tapping a latent source

reflecting geo-temporal traces left by millions of tourists. To do so, they firstly extract photo

streams of individual users from Flickr. In the second step, they aggregate all user photo streams

into a PoI graph. Itineraries are then automatically constructed from the graph based on the

popularity of the PoIs and subject to the user’s time and destination constraints. The problem is

modeled as an orienteering problem and they propose a variation of a recursive greedy algorithm

to solve it. Their proposal explicitly needs a start location, an end location, the total number of

locations to be visited in the trip and a set of locations to not be visited.

More recently, Gavalas et al. propose eCOMPASS system5 , web and mobile

application, to create multi-modal personalized sightseeing tours. The basis of the system is the

Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW). The system is
4 <http://www.citytripplanner.com/en/home>
5 <http://ecompass.aegean.gr/>

http://www.citytripplanner.com/en/home
http://ecompass.aegean.gr/

52

organized into off-line and on-line phase, In the off-line or preprocessing phase, the set of points

of interest are clustered based on the geographical criteria, using the global k-means algorithm by

Likas et al. in (LIKAS et al., 2003). The clustering process contributes to group close PoIs to be

successively visited in the on-line phase, indicating that they can be visited by walking since PoIs

in the same clusters are likely to be within a walking distance. In this phase it is also computed

pairwise full (24h range) multi-modal time-dependent travel time profiles among all locations

stored using the method in (DIBBELT et al., 2012). In the on-line phase, the user queries with

preferences are used to create the tours. The algorithm, denoted by SlackRoutes, uses an iterated

local search procedure inserting PoIs along the initial routes until no more insertion is feasible

and then, new solutions are derived by perturbing the current solution. They also present a

strategy to encompass lunch breaks in the tours.

Lu et al. (LU et al., 2011), propose a novel data mining-based approach, namely

Trip-Mine, to efficiently find the optimal trip which satisfies the user’s travel time constraint

based on the user’s location. Authors also propose three optimization mechanisms based on

Trip-Mine to further enhance the mining efficiency and memory storage requirement for optimal

trip finding. They compare Trip-Mine with a BruteForce approach and a dynamic programming

algorithm.

In (GIONIS et al., 2014), Gionis et al. propose efficient algorithmic solutions for

recommending customized tours in urban settings, which considers (i) the different types of

points of interest (categories), as well as the order in which the user wants to visit them, (ii)

time budget or distance to be covered, (iii) the multiplicity bounds to allow users to specify

the number of venues of a particular type that they want to visit, and (iv) the merit of visiting

the included points of interest. These four constraints are considered to define the TOURREC

problem. They propose two alternative instantiations to solve the referred TOURREC problem

w.r.t a generic satisfaction function that measures the expected satisfaction of the user with

respect to a candidate tour (sequence of points of interest): additive satisfaction function which

accounts for satisfaction of each point of interest in the tour; and coverage satisfaction function

when each points of interest is (spatially) associated with a set of attraction or activities that

might be relevant to the user. The authors propose algorithms for each satisfaction function

and evaluate them by using real datasets of check-ins from Foursquare and comparing against a

greedy approach to show that their proposal can find better solutions.

As we can note up to here is that much of the efforts are concentrated in the develop-

ment of algorithmic solutions to deal with the trip planning problem that has been seen NP hard

in its different facades. Yahi et al., however, propose a hybrid tour planning system, denoted by

Aurigo, that combines a recommendation algorithm with interactive visualization techniques to

create personalized itineraries. In this system, the user is assisted to create her personalized trip

by interacting with the system, given an origin and a destination, and the user’s preferences. The

53

user may decide to add or remove points of interest that are on the way between her origin and

destination. The authors conducted a user case study with 10 participants to assess the benefits

of Aurigo.

2.4 Group Recommendation

As we have seen, recommender systems have traditionally recommended a variety

of items to be enjoyed by individual users: watching a movie on Netflix, listening to a song on

Spotify, having a dinner in an Italian restaurant, and among many other examples. However, some

types of items are better enjoyed with companions due to their natural collective characteristic.

For instance, recommending a movie in the cinema for a single user is still relevant, but people

usually go to the cinema in company of their friends, for instance, which indicates that the

recommendation of a movie to be watched in the cinema could be driven to a groups of users

instead. This new perspective has motivated a proliferation of new recommender systems to

support recommendations to groups of users (JAMESON; SMYTH, 2007). In this section we

report the group-oriented recommender systems and main results found in the literature.

Recommendation for single users is not an easy task and it requires much efforts by

the scientific and industrial community to find good solutions. Recommending to groups is even

more complicated than recommending to individuals (RICCI et al., 2011). Here, the problem

can be seen how to combine the individual user preferences to represent the preference of the

whole group in such a way that each group member is not degenerated.

A classification of the recommendation to groups in collaborative recommender

systems is presented in (ORTEGA et al., 2013; BOBADILLA et al., 2013) as illustrated in

Figure 9. In this figure, the individual members of a group are represented on the left, in gray;

each graticule represents the matrix of ratings by the users (horizontal) on the items (vertical).

The graph shows the four representative cases of tackling the solution to recommendation by

groups (one case for each matrix on the left of the figure). The circles show key information:

they indicate the CF process phase where the unification is performed: “n users → group”.

They present four stages on which we can act in order to unify the group’s users’ data with the

objective of obtaining the data of the group of users: similarity metric, neighborhoods, prediction

and the recommendations stage.

In the similarity metric stage, the neighborhood of the group is found by using a

similarity function able to calculate the similarity between a user and a group. This approach

acts directly on the set of ratings of the groups of users to provide a set of neighbors for the

group of users as presented in (ORTEGA et al., 2013; BOBADILLA et al., 2013). The proposed

similarity metric evaluate the number of cases in which user u’s ratings intersects that of any of

the members of the group. The intuition is that users having high intersection with the group

54

Figura 9 – Classification of the recommendations to groups in Collaborative Filtering RSs. The
figure represents the four representative cases for approaching the solution to group
recommendations. Figure from (ORTEGA et al., 2013).

members will be capable of proposing new items that the majority of the users in the group will

enjoy (ORTEGA et al., 2013).

Regarding the neighborhood stage, the neighbors of the group’s users are unified in

one neighborhood for the whole group. This approach has been studied by Bobadilla et al. in

(BOBADILLA et al., 2012), proposing the intersection of a large number (k) of neighbors of

each user of the group.

In the prediction stage, the data unification is performed in CF process by aggregating

the n individual predictions of n group members in one prediction of the whole group. We can

highlight the works done by Berkovsky and Freyne (BERKOVSKY; FREYNE, 2010), García et

al. (GARCIA et al., 2011) and Christensen and Schiaffino (CHRISTENSEN; SCHIAFFINO,

2011).

In the last stage, the recommendations obtained for each individual user of the group

are aggregated into one recommendation of the whole group. A rank aggregation approach on

the individual lists of recommendations is presented by Baltrunas et al. (BALTRUNAS; RICCI,

2010).

This classification depicts the main problem of group recommendation which is to

solve how to adapt to the group as a whole based on information about individual users’ likes

and dislikes (RICCI et al., 2011). The problem is solved by applying an aggregation strategy that

combines individual ratings into a group rating. Aggregation strategy for group recommendation

is also referred to as group recommendation semantics (AMER-YAHIA et al., 2015). Many

strategies exist to approach the problem in different ways. In (RICCI et al., 2011) a list of eleven

aggregation strategies inspired by Social Choice Theory is present and illustrated in Table 1. Two

popular approach commonly used are Least Misery and Average (HU et al., 2014; O’CONNOR

et al., 2001; YU et al., 2006; ROY et al., 2015).

55

Strategy How it works Example

Plurality Voting Uses ‘first past the post’: repetiti-
vely, the item with the most votes
is chosen.

A is chosen first, as it has the
highest rating for the majority of
the group, followed by E (which
has the highest rating for the ma-
jority when excluding A).

Average Averages individual ratings. B’s group rating is 6, namely (4+
9+5)/3.

Multiplicative Multiplies individual ratings. B’s group rating is 180, namely
4∗9∗5.

Borda Count Counts points from items’ ran-
kings in the individuals’ prefe-
rence lists, with bottom item get-
ting 0 points, next one up getting
one point, etc.

A’s group rating is 17, namely 0
(last for Jane) + 9 (first for Mary)
+ 8 (shared top 3 for Peter).

Copeland Rule Counts how often an item beats
other items (using majority vote)
minus how often it looses.

F’s group rating is 5, as F beats 7
items (B,C,D,G,H,I,J) and looses
from 2 (A,E).

Approval Voting Counts the individuals with ra-
tings for the item above an appro-
val threshold (e.g. 6).

B’s group rating is 1 and F’s is 3.

Least Misery Takes the minimum of individual
ratings.

B’s group rating is 4, namely the
smallest of 4,9,5.

Most Pleasure Takes the maximum of individual
ratings.

B’s group rating is 9, namely the
largest of 4,9,5.

Average without Misery Averages individual ratings, after
excluding items with individual
ratings below a certain threshold
(say 4).

J’s group rating is 7.3 (the ave-
rage of 8,8,6), while A is exclu-
ded because Jane hates it.

Fairness Items are ranked as if individuals
are choosing them in turn.

Item E may be chosen first
(highest for Peter), followed by F
(highest for Jane) and A (highest
for Mary).

Most respected person Uses the rating of the most res-
pected individual.

If Jane is the most respected per-
son, then A’s group rating is 1. If
Mary is most respected, then it is
10.

Tabela 1 – Overview of traditional aggregation strategies for group recommendation. Table from
(RICCI et al., 2011).

Hu et al. propose a novel group recommender system approach which accommo-

dates both individual choices and group decisions in a joint model through a deep-architecture

model built with collective deep belief networks (DBN) and dual-wing restricted Boltzmann

machines (HU et al., 2014). Authors claimed that traditional methods that aggregate either

uses’ preferences or users’ predictions are heavily sensitive to data and, consequently, they fail

to learn group preferences when the data are slightly inconsistent with predefined aggregation

assumptions. In particular, they propose a multi-layer model based on deep belief networks

56

and Restricted Boltzmann Machines (RBM) to learn high-level features: collective features

representing preferences of a group; individual features for individual-specific preferences; and

member features to model the individual preference of a user when she makes choices as a group

member. They design a dual-wing RBM (DW-RBM) on the top of the model (Figure 10), where

one wing of the DW-RBM is connected to the group profile, and the other wing is connected to

the collective features layer of the collective DBN. Their approach demonstrates to have good

performance when compared with state-of-the-art models.

Figura 10 – The dual-wing RBM proposed by (HU et al., 2014) placed on the top of DBN, which
jointly models the group choices and collective features to learn the comprehensive
features of group preference.

Bobadilla et al. present a collaborative filtering approach extended to groups of users

and restricted groups of items that enables joint recommendations to groups of users and enables

the recommendations to be restricted to items similar to a set of reference items (BOBADILLA

et al., 2012). For instance, a groups of four friends could request joint recommendations of films

similar to “Avatar” or “Titanic”, which is motivated by the fact that users want recommendations

of different types of items at different moments in their lives. They propose a collaborative

filtering approach that considers user-user and item-item similarities, so that the k most similar

users for each group member is used to compute the group neighbors from the intersection of its

member neighbors. In addition, the s most similar items to the given restricted set of items are

considered. They show that the traditional collaborative filtering approach does not resolve the

investigated problem, while their proposal overcome the traditional CF in terms of number of

recommendations, quality of the prediction and quality of recommendations.

Amer-Yahia et al. introduce the notion of consensus function, consisting of two com-

ponents, relevance and disagreement, as a new aggregation strategy for group recommendation

(AMER-YAHIA et al., 2009). The group relevance is computed by means of Average and Least

Misery, while group disagreement is calculated by two methods: Average Pair-wise Disagre-

ements and Disagreement Variance. Then, these two methods are linearly combined to form

the consensus function. Results conducted on Amazon Mechanical Turk with a comprehensive

user study demonstrate that incorporating disagreements is critical to the effectiveness of group

recommendation.

57

Later, Amer-Yahia et al. propose a new group recommendation model that takes

into consideration the affinity between group members and how the affinity evolves over time –

denoted GRECA (AMER-YAHIA et al., 2015). They extend existing group recommendation

semantics to include temporal affinity in recommendations and design an algorithm that produces

temporal affinity-aware recommendations for ad-hoc groups. They propose two dynamic models

to capture temporal affinities: a discrete model when time is discretized over a set of time

periods; and a continuous model when time is represented as an exponential function that

positively or negatively affects affinity over time. The user-item preference is computed taking

into account the temporal affinity, absolute preferences (e.g. a predicted score by a RS), and

relative preferences related to how close members of the user in the group like or dislike the item.

Then, A time-aware group consensus (aggregation function) that combines group preferences

(Average and Least Misery) with a group disagreement function as the group aggregation strategy.

The results show substantial improvements in group recommendation quality when accounting

for temporal affinities, improving the user satisfaction. In addition, the amount of satisfaction is

variable and is dependent on the characteristics of the groups, like group size, group cohesiveness

and affinity strength.

Apart from the aggregation strategies in Table 1, some works have applied rank

aggregation methods for group recommendation (DWORK et al., 2001; BALTRUNAS; RICCI,

2010). Dwork et al. developed a set of techniques for the rank aggregation problem (DWORK et

al., 2001). Baltrunas and Ricci propose a method based on the ordinal ranking of items, where the

result of a group recommendation process is an ordered list of items. They experimented different

rank aggregation methods to evaluate the effectiveness of group recommendation. They claim

that the aggregation method itself has not a big influence on the quality of the recommendation

and that the performance depends on the group size and inner group similarity. Moreover, the

quality of the recommendation can be increased, when the individual recommendations are not

good, by aggregating the ranked list recommendations built for a group of users, which the target

user belongs to.

These works have in common the goal of recommending items for a group of users

considering some aspects inherent to the problem, such as the relevance of the item for the group

members. In the next section, however, we report a new perspective in group recommendation

defined as group formation problem, where the recommendations are taking into account to

find out relevant groups of users. One of the contributions of this thesis shown in Chapter 6 is

concerning the group formation problem.

58

2.5 Group Formation Problem

The group recommendation research track aims at recommending items, top-k item

lists for instance, to a group of users in such a way the satisfaction of group members is maximized

according to a group satisfaction function. A complementary work to group recommendation

has been investigated by Basu Roi et al. in (ROY et al., 2015), where they consider the group

formation problem in the context of recommender system, in other words, how to form groups

such that the users in the formed groups are most satisfied with the suggested top-k items. In this

section we present this work, (ROY et al., 2015), by detailing the investigated problem and the

proposed algorithms. The results of this thesis in the field of group formation in the context of

recommender system are introduced in Chapter 6.

Let us denote I = {i1, i2, . . . , im} as a set of items containing m items and U =

{u1,u2, . . . ,un} as a set of users with n users. Then, a group g represents a subset of users g⊆U .

As presented in Section 2.2, recommender systems aim at evaluating or predicting a score or

relevance for a user u to an item i, where this score is usually denoted by R(u, i). Thus, R(·, ·)
expresses the possible satisfaction of u w.r.t the item i. In addition, let Rg(g, i) be the function

that measure the relevance of item i for the group g by using any group semantics (e.g. Least

Misery).

Yet, let I k
g be the recommended top-k item list for a group g, such that I k

g ⊆I and

|I k
g |= k. With those definitions in hands, we can rely on the group semantics methods presented

in Section 2.4. Then, Basu Roi et al. consider in their work Least Misery and Aggregated Voting

group semantics, which are very popular methods, to evaluate the relevance of an item i to a

group of users g. Once the group satisfaction score of an item is computed, it is needed to

compute the group satisfaction of the recommended item list I k
g denoted by Rs

g(I
k

g). Three

aggregation methods are proposed in (ROY et al., 2015):

• Max-aggregation: Satisfaction of the group is calculated as the score Rg(·, ·) of the very

top item in the list. Let i1 be the item with the highest score in I k
g , then the group

satisfaction:

Rs
g(I

k
g) = Rg(g, i1)

• Min-aggregation: Similar to Max-aggregation, this is measured as the score of the bottom

item in I k
g , denoted by the item ik, for the group. It is given by

Rs
g(I

k
g) = Rg(g, i1)

• Sum-aggregation: Satisfaction of the group for Sum-aggregation is measured as the sum

os scores of all items in the recommended list of items I k
g , which is given by:

Rs
g(I

k
g) = ∑

i∈I k
g

Rg(g, i)

59

Based on these definition, Basu Roi et al. define in (ROY et al., 2015) the Recom-
mendation Aware Group Formation (GF) problem as:

Recommendation Aware Group Formation Problem

Given items i1, i2, . . . , im and users u1,u2, . . . ,un, a group recommendation semantics Least

Misery (LM) or Aggregate Voting (AV), two integer k and l, create a set of at most l

non-overlapping groups, where each group g is associated with a top-k item set I k
g in

accordance with semantics LM or AV such that the aggregated group satisfaction of the

created groups is maximized: ∑
l
j=1 Rs

j(I
k
j).

The authors show that the problem is NP-hard by reducing from Exact Cover by

3-Sets (X3C), which is known to be NP-hard. They propose algorithmic solution to deal

with the problem for both Least Misery (LM) and Aggregated Voting (AV) techniques. The

approximation algorithms are designed according to the group semantics used (LM or AV) and

the group satisfaction aggregation (MIN, MAX, SUM). We discuss these algorithms as follows.

The proposed algorithms follow a core framework that is composed by three basic

steps: (i) the formation of a set of intermediate groups; (ii) the greedy selection of l−1 groups;

and (iii) the formation of the l-th group. Each step is achieved according to the group semantics

(LM and AV) and the group satisfaction aggregation function used (MIN, MAX, SUM) as

described below.

Let us start from the algorithm GRD-LM-MIN that deals with the LM and Min-

aggregation. At the step (i), each user has her top-k item sequence sorted by the preference

score of the items in non-increasing order. Then, a set of intermediate groups g is created, where

the groups are formed by a set of users who have the same top-k item sequence and the same

preference score for the bottom item ik in the sequence across all the users in g. The formation

of the intermediate groups is achieved by using a hash map to hash each user u using her top-k

item sequence and the preference score of the bottom item ik. For instance, let 〈iu1, . . . , iuk〉 be the

top-k item sequence of u and R(u, ik) the preference score of the bottom item ik. So, the pair

(〈iu1, . . . , iuk〉,R(u, i
k)) is used as key and u as the value to hash each user. A heap is created from

the hash map such that the set of users having the highest R(u, ik) can be efficiently retrieved. At

the step (ii), l−1 groups are greedily formed by getting the l−1 intermediate groups. At each

interaction, the highest LM score is retrieved from the heap and it used to find the corresponding

group of users. In the end of this step, l−1 groups are obtained. Finally, at (iii), the l-th group is

formed by all the remaining users from the hash map and the top-k LM score is assigned to this

group. The objective function is then computed by the sum of the groups’ satisfaction w.r.t their

top-k item set ∑
l
j=1 Rs

l (I
k
j). As discussed in (ROY et al., 2015), GRD-LM-MAX algorithm is

similar to GRD-LM-MIN, but it hashes the user by the top item i1 instead of the bottom one ik.

60

For the algorithm GRD-LM-SUM, a similar framework is exploited, but here the

step (i) is slightly modified. In GRD-LM-SUM, the intermediate groups are formed by hashing

the users who have the same top-k item sequence and the same preference score for each item in

the sequence. Then, in steps (ii) and (iii), the group satisfaction aggregation if computed over all

k items, instead of the bottom item ik.

What regards the Aggregated Voting group semantics, two other algorithms are

proposed: GRD-AV-MIN and GRD-AV-SUM. Recall that in this case, the satisfaction score of a

group is defined as the sum of the preferences scores of the individuals users in the group for the

top-k item sequence. The algorithms are similar to those for Least Misery with some peculiarities

present next. In GRD-LM-MIN, the top-k item sequence and the score of the bottom item

are used to hash the users in the hash map and to create the heap. For GRD-AV-MIN and

GRD-AV-SUM, the intermediate groups g are formed by hashing the users with only their

top-k item sequence disregarding the preferences scores for the each item. Then, the group

satisfaction score is aggregated according to the method: either the score of the bottom item ik

for GRD-AV-MIN; or the sum of scores for all items in the top-k item sequence in the case of

GRD-AV-SUM.

The experiments were conducted on two very known datasets: Yahoo! Music and

Movie Lens. Comparisons were done against different competitors. The results highlight the

proposed algorithms and it emphasize the interestingness of group formation problem in the

context of recommender system. Indeed, group formation in the perspective of RS may to

complement the recommender systems as we present in Chapter 6 showing the obtained results

from this thesis.

61

3 COMETOGETHER: FINDING AND CHARACTERIZING COMMUNITIES OF
PLACES IN URBAN MOBILITY

Much efforts have been done to model the mobility behavior of people powered

by the popularization of devices equipped with positioning sensors, like GPS and GSM. The

majority of the analysis works has been focusing on moving objects (e.g. people) to discovery

patterns and knowledge that may explain the phenomena inherent to the mobility of people.

In this chapter, however, we present a different analysis perspective from the points

of interesting by investigating research question RQ1: Can we study urban mobility at the

global scale from the perspective of places, instead of users? To answer this question we

need to combine urban places, like points of interest (PoI), with mobility information like

trajectories of individuals moving within a city. In this chapter, we present a methodology based

on complex network analysis encompassing the following steps: (i) we build a network of points

of interests by connecting places using the individual trajectories passing through them; (ii)

we then characterize the POIs based on the network features, finding different categories of

places characterized by their position in the network; (iii) and finally we perform community

detection, finding places grouped by dense patterns of mobility among them. A case study

is presented on real trajectory datasets in the cities of Milan, Florence and Pisa, showing a

view of the urban mobility which is complementary compared to the classical mobility mining.

The experimental results show different mobility behaviors when comparing different cities,

weekdays with weekends, or urban centers with external areas. We believe that these results

interestingly add more insights on urban mobility and the kind of patterns that can be extracted

by other available methodologies. This chapter is based on the published work (BRILHANTE et

al., 2012).

3.1 Introduction

Human mobility is a complex phenomenon witnessed by a huge amount of interdis-

ciplinary research in this topic, ranging from Physics to Sociology, Transportation Research and

Computer Science (GIANNOTTI; PEDRESCHI, 2008; GIANNOTTI et al., 2011; ZHENG et al.,

2010; BERLINGERIO et al., 2013). Despite the wide spectrum of research papers and results so

far, many aspects and relationships of mobility data with the environment where movements take

place are still to be fully understood. In this chapter we want to offer a new perspective where we

look at the mobility data analysis focusing on a specific aspect: how can we characterize urban

places (intended as Points of Interest) by the mobility of people visiting them? In turn, this gives

a feedback on how the mobility is affected by the location or the existence of given places. In

fact, there is a two-way relationship between how human mobility is affected by the location of

places of interest (e.g.: people move to a newly opened bar), and how the places themselves are

62

characterized and connected by the mobility of people (e.g.: bars frequently visited together).

With this in mind, Points of Interest can be characterized based on how people

globally access them. However, we believe that a simple count of the number of visits of a given

place, although certainly giving a measure of the attractiveness of that place, is not enough. It is

in fact difficult to get a deep understanding on how that particular place is “lived by” people and

how it “relates”, from the point of view of mobility, to other places. We want then to enrich the

available tools of analysis, by providing a framework that aims at characterizing urban places

based on how people reach them and how people move among them. For example, are people

crossing the whole city to reach them (as it usually happens for airports), or do they tend to come

from nearby places (like a minor neighborhood store)?

We observe that, although mobility analysis has recently become a hot research topic

in Computer Science and Transportation Research, the available approaches, to the best of our

knowledge, fail to characterize, at global scale, the relationships among POIs based on how

people access them. The specific aspect of understanding how objects interact at a global scale is

usually associated to Complex Network Analysis. With this perspective in mind, the research

questions we want to address in this chapter, based on the RQ1 (Chapter 1), are the followings.

Question 1: Can we study urban mobility at a global scale from the perspective of places,

instead of users?

Question 2: Are there any patterns of such mobility w.r.t places that we can detect?

Question 3: Can we characterize such patterns and find regularities or anomalies?

This chapter, that extends our previous work in (BRILHANTE et al., 2011) and

(BRILHANTE et al., 2012), presents COMETOGETHER, a framework aimed at answering these

questions by building and analyzing a complex network combining Points of Interests and traces

of people movements. COMETOGETHER offers new analysis measures and techniques for

classifying the POIs, that complement the available set of tools proposed by previous approaches.

We experimented our methodology in a real case study where GPS trajectories are collected

from private cars traveling in three Italian cities featured by complementary aspects, while the

Points of Interest are downloaded from the Web. We discover different categories/ classes of

POIs and we propose a method to group them in uniform classes that can be interpreted and

understood. Then, after building a network of POIs by linking them using shared trips, we extract

communities of POIs and introduce some measures, like the compactness, to compare them and

give them an interpretation.

With respect to our previous work (BRILHANTE et al., 2012), the additional

contribution presented in this chapter resides in i) a broader empirical evaluation, where we

63

compare the methodology on three different cities and ii) a new evaluation strategy to extract

meaningful local patterns that summarize the global urban mobility.

This remaining of this chapter is organized as follows: Section 3.2 poses the basic

terminology and definitions for a proper understanding of the framework. Section 3.3 presents

the methodology used in this chapter. Section 3.5 reports on the experimental results using three

real GPS datasets. Section 3.6 contains a final discussion about the methodology and results.

3.2 Basic Concepts

Our approach is based on the study of a network of Points of Interest based on the

trajectories of people visiting them. POIs represent locations in the city where a person may

perform some activity. Usually we call POIs the places that are of interest for some specific

application, like GPS navigators, Social Networks (e.g. FourSquare, Facebook, etc), maps (like

OpenStreetMap), or others.

Formally, to the purpose of our work, a Point of Interest can be defined as follows.

Definition 1 (Point Of Interest) A Point of Interest (POI) is a geographical object that is in-

teresting for a specific application, usually associated to a human activity. A POI is a tuple

POI = (s,r, l,c) where s is the representative spatial point, r is the spatial area representing the

extent of the object, l is the label of the POI, and c = {c1, . . . ,c j} is a set of categories assigned

to the POI from a category set C : ∀1≤ i≤ j, ci ∈C.

An example of POI is the Eiffel Tower: the representative spatial point s is the center

of the tower while the region r is the spatial extend of the base of the tower, the set c of categories

may include, for example, “tourist attraction” or “monument” or “tower”, depending on the

application, and the label represent the name “Eiffel Tower”.

The second main component of our network is the set of user movements. A

movement of a person can be represented as a set of user position observations collected from a

tracking device and creating the mobility history of an individual, defined as follows.

Definition 2 (User Mobility History) Given a set of user’s observations Ou, the user’s history

is defined as an ordered sequence of spatio-temporal points Hu = 〈o1 . . .on〉 where oi ∈ Ou,

oi = (xi,yi, ti), with xi,yi spatial coordinates, ti is an absolute timestamp and ∀(i, j) i≤ j⇒ ti≤ t j.

Since the user history represents the whole user movements, we need to distinguish

the single trajectory as the part of the user history representing the a specific activity, such

as going to work, shopping etc. To distinguish between the different trajectories in a user’s

history, we need to detect when a user stops for a time long enough to consider this stop as

performing an activity in a PoI and thus the end of that particular trip and the beginning of the

next one. In the literature there are several approaches for stop detection - and therefore trajectory

64

Figura 11 – Example of assigning the POI Leaning Tower (purple diamond) to two candidate
stops, depicted with a blue and a red dots.

splitting - mainly following two main lines: clustering-based (BOGORNY et al., 2007) and

heuristic-based (XIAO, 2005). However, for computational efficiency reasons and for the sake of

simplicity, here we take a different method as a trade-off between precision and efficiency. We

search the points that change only in time. i.e. points that stay in the same spatial position for a

certain amount of time quantified by the temporal threshold MinStopTime. Specularly, a spatial

threshold MaxStopArea is used to remove both the noise introduced by the imprecision of the

device and the small movements that are of no interest for a particular analysis. These thresholds

are used for detecting the candidate stops as defined below. The function area() computes the

size of the minimal convex region including a set of points and � is the operator of sequential

inclusion without gaps.

Definition 3 (User’s candidate stops) We define the candidate stops Su of user u as a se-

quence of tuples (a, ts,d), where a is the sequence of spatio-temporal observations 〈oi, . . . ,o j〉,
area(a)≤MaxStopArea with stop time starting at ts = oi.t and time duration d = o j.t−oi.t ≥
MinStopTime.

For simplicity, we hereinafter indicate the start time of the k-th candidate stop of

user u as su
k .start and the end as su

k .end.

Associating the user stops to visited POIs is not trivial. In fact, depending on the

tracking device, some parts of the track may be missing or inaccurate. Several techniques have

been proposed in the literature for associating a POI to a stop in a GPS track, for example

(ROCHA et al., 2010; FURLETTI et al., 2013).

In our approach, we associate a stop to a POI by fixing a spatial buffer around the

candidate stop-start point and assigning the POIs within this spatial buffer to the stop. For

instance, in Figure 11, we associated the PoI “Leaning Tower” to two different stops, by setting

a spatial buffer of 50 meters.

However, several PoIs may be present in the same buffer area in very dense regions,

so making not obvious the choice of the visited PoI (ROCHA et al., 2010; FURLETTI et al.,

65

2013). For this reason, we propose the new notion of Aggregated PoI as an aggregation of PoIs

densely found in the same area. The idea is to associate a Aggregated PoI to a candidate stop

when more than one PoI is present in the buffer area. Since the task of finding the best PoI

to associate to a stop is outside the scope of this work, we choose here the simple solution of

keeping all the possible visited PoIs, leaving for future investigation the integration into the

methodology of a more sophisticated technique for stop-to-PoI association (FURLETTI et al.,

2013). Formal definition of Aggregated PoI follows:

Definition 4 (Aggregated PoI) An aggregated PoI, GPoI, is a set of PoIs {POI1, . . .

,POIn} aggregated by spatial neighborhood. The category set of a GPoI is the set of all the

categories of the POIi, i = 1, . . .n.

The intuition behind the aggregated PoI is to group the spatially close PoIs into one

single object as a node for the network. Each GPoI thus, in our definition, contains one or more

PoIs. A spatially isolated PoI will be a GPoI with only one element. How to detect these PoIs

aggregations? This depends on the specific application and the chosen implementation. A simple

solution is to choose a radius threshold from the user history candidate stop and to collect all

the POIs inside this radius. Another solution is to use a spatial clustering algorithm to discover

the groups of POIs spatially close. As we see in Section 3.5, we choose the latter option in our

implementation. However, the methodology is general and can be adapted to other aggregation

methods. From now on, for the sake of readability, we still refer to PoI to indicate GPoI.

Given V the set of Aggregated PoIs, let f : S →V be an assignment function from

users’ candidate stops to PoIs. Thus the function f applied to a candidate stop s returns the GPoI

associated to it. Furthermore, let ∆m be a threshold of maximum moving time between two any

GPoIs. We next define the trajectory and the trip concepts as sequences of PoIs visited by the

tracked user.

Definition 5 (Trajectory) A trajectory tu of a user u is represented as a sequence of POIs

〈(f (su
1),s1.start,s1.end), . . .(f (su

m),sm.start,sm.end))〉.

Definition 6 (Trip) We define a trip of user u as a sub-sequence of the trajectory

tu, tripu = 〈(f (su
j),s j.start,s j.end), . . . ,(f (su

k),sk.start,sk.end)〉 where j < k and

such that si.start− si−1.start ≤ ∆m, for each i = j+1, . . . ,k.

In short, a trajectory t of a user u is the sequence of PoIs associated to the user’s

candidate stops in all the user history, while the user’s trip is the sequence of POIs where the

movement between two consecutive PoIs is no longer than the temporal threshold ∆m. Trips

represent the continuity of movement, cut by a given threshold ∆m. This definition is mainly

rooted on two observations:

66

• long stops at a frequently visited place suggest this place could be home or work and not at

an activity performed in a PoI. Since we are interested in the activities related to the urban

landmarks, we discard home and work locations cutting the trajectories during these stops.

• long moves between places terminate a trip. A long move usually hide a missing stop,

therefore when a move becomes too long to be considered as a unique trip the trajectory is

split.

We denote, therefore, with Tripu all the trips of user u. Points of Interest and trips

are combined creating the POI network in Section 3.3. We refer to the following definition of

network:

Definition 7 (Network) A network is represented as a graph G = (V,E,W) in which entities

(the nodes in V) are linked by ties (the edges in E), representing any sort of connection, similarity

or interaction. The strength of these connections are represented in W.

Network analytics has been focusing on the characterization and measurement of

local and global properties such as diameter, degree distribution, centrality, connectedness - up

to more sophisticated discoveries based on graph mining, aimed at finding frequent subgraph

patterns and analyzing the temporal evolution of a network. A branch of Complex Network

Analysis has been focusing on the discovery of structures called communities.

Definition 8 (Community) Communities are groups of nodes highly interactive, densely con-

nected, or, more in general, highly similar, for a given definition of similarity between any two

individuals.

Some of the existing approaches for community detection focus on finding groups of

nodes, while others put the links among entities at the center of the investigation (see Section

2.1). Since we are interested in analyzing movements between places visited by users and in

grouping places according to their visits at the places by trips, we consider the edges as the

main entities to be grouped. In addition, we also want to consider the possible overlap between

different communities. Different places can, in fact, take part into more than one community,

due to their role of spatial “bridges” between them.

Now we are able to introduce the COMETOGETHER methodology in the next section,

which presents the main steps involved in the framework to accomplish the understanding urban

mobility under the perspective of PoIs and, consequently, to answer the investigated research

questions presented in Section 3.1.

3.3 The COMETOGETHER Methodology

Our proposed solution to the research questions illustrated in the introduction is

a methodology called COMETOGETHER, combining different aspects of mobility and graph

67

analysis. COMETOGETHER is composed of three main steps:

1. Building the PoI network. This first step builds a mobility network where each node

is a PoI and each link represents the relations between two PoIs in terms of users’ trips

(definition 6);

2. Points of interest network analysis. At this step, we analyze the generated PoI network

to characterize the PoIs based on the properties of the mobility graph stressing how users

access the points of interest associated in the network. For example: are the PoIs visited by

many users or few users? Do people tend to spend a long time or only short visits? Is there

a trend to visit a given place from far places (thus producing more traffic) or are people

coming from the neighborhood (thus a POI having a local coverage)? These features,

possibly combined, help in giving a characterization of POIs based on the mobility graph.

3. Communities in points of interest networks. This third step aims at providing means

of analyzing groups of points of interest (communities) that are highly related to each

other based on the discovered links in the points of interest network. The communities

framework comes then to characterize the POIs globally as a group of places visited

together by users: (i) How can we analyze these communities to better understand the

mobility? (ii) What information is this analysis providing?

In the next sections we go through each step of the COMETOGETHER framework in more details.

3.3.1 Building the PoI network

The network we propose is composed of a set of nodes corresponding to the POIs

where the moving users stopped to perform some activity. Having all the trips of all the m users

denoted by Trip =
⋃u

1...m Tripu, we compute the PoIs network as:

Definition 9 (PoI network) Given a set of GPoIs V and a set of users’ trips Trip, we build the

point of interest network N = (V,E,W) where

E = {ei, j : ∃t ∈ Trip,
〈
vi,v j

〉
� t ∨

〈
v j,vi

〉
� t} and

W = {wi, j : wi, j = |{t1, . . . , tm}|,
〈
vi,v j

〉
� t ∨

〈
v j,vi

〉
� t}.

In other words, the PoI network is an undirected weighted graph which summarizes all the trips

of the users and each edge is weighted by the number of trips which share the movement between

the same pair of PoIs.

Figure 12 illustrate the data transformation flow from the raw user history to the built

PoI network modeling the user mobility behavior between points of interest. More in details, the

process starts building the user history as a continuous sequence of points of interest sorted by

time as shown in Figure 12(a). In Figure 12(b) the stops are identified considering MaxStopArea

= 50m2 and MinStopTime = 30 minutes. Then the stops are spatially intersected with the set

68

Figura 12 – The building process of POI network from one user history: From the user history
in (a), the candidates stops are computed in (b). The trips are found in (c), where a
move of duration of 8h30′ (thus exceeding a temporal threshold of 4 hours) splits
the user history into two trips. Finally, the PoIs network is depicted in (d).

of PoIs V as shown in Figure 12(c): the red edge between the two stops has a duration which

is greater than the MaxMoveTime (e.g. 4 hours) therefore it is removed partitioning the user

history into two trips. Finally, the two trips will contribute to the edges shown in Figure 12(d)

where w and w′ are the number of trips which share the same path respectively POI1→ POI2

and POI3→ POI4.

The network building process is summarized by the pseudo-code of Algorithm 1.

Each user’s observation is evaluated in the loop 4− 17. User’s history is created on line 5,

candidate stops are detected on line 6, while user’s trajectory is constructed on line 7. Then,

the procedure createUserTrip is called on line 8 to create trips for the user according to the

trajectories previously created and the given moving threshold ∆m. Once the trips of a user are

created, the loop of lines 9−16 looks at each trip and find pairs 〈vi,v j〉 on lines 10−15 in order

to create new nodes (line 11) and edges (line 13) on the network. The edge weight is updated

on line 14. Finally, the algorithm returns the PoI network N = (V,E,W), where V is the set of

GPoIs, E is the set of edges and W is the set of weights of each edge in E.

3.3.2 PoI Network Analysis

Within the large set of available measures to quantify different phenomena in

networks (NEWMAN, 2003), we consider the clustering coefficient and the average shortest

path length, as they are a good means for distinguishing real networks from random ones.

The number of triangles, representing the transitivity among three nodes in a network,

is measured by the clustering coefficient of the nodes. This measure is used to investigate how

clustered is the network, i.e., which is the probability of having an edge between two nodes A

and C if there are the links A and B, and B and C. This property is usually evaluated in networks

69

Algoritmo 1: PoI Network Builder
Input: A set of positional observations O ,
a set of GPOIs V ,
an assigning function f from candidate stops to GPOIs,
a temporal threshold (minimum stop time) as ∆t,
spatial threshold (maximum stop area) as ∆s for stop detection and
a temporal threshold (maximum moving time) as ∆m for creating users’ trips
Output: POI network N = (V,E,W)
N.V ← /0
N.E← /0
N.W ← /0
for each Ou ∈ O do

// create users’ history
Hu← userHistory(Ou)
// identify candidate stops, def. 3
Su← candidateStop(Hu,∆t,∆s)
// create user’s trajectories based on def. 5
Tu← createUserTrajectory(f ,Su,V)
// create user’s trips based on def. 6
Tripu← createUserTrip(Tu,∆m)
for each t ∈ Tripu do

for each
〈
vi,v j

〉
� t do

// create nodes vi and v j

N.V ←V ∪{vi,v j}
// create edge ei j

ei j←
〈
vi,v j

〉
N.E← N.E ∪ ei j

// update the weight wi j of the edge ei j

update wi j in N.W
end

end
end
return N

to identify some fundamental characteristics, where real networks, like biological and social

networks, usually have larger cluster coefficient w.r.t to graphs randomly generated with the size

number of nodes.

The distance between any two nodes in the network is also important for a first

understanding of the structure. This is usually computed by the average shortest path between

any two nodes in the network, contributing to understand if one node could be reached from

another one in a few links on average. For this evaluation, low values are usually found in real

networks.

We next present a characterization framework for the nodes in our networks, which

is used in Section 3.5, together with the above measures, to study the basic properties of the PoI

networks that we have built.

70

3.3.2.1 From network connectivity to mobility-related measures

Our aim here is to give a meaning of the nodes based on some properties representing

their usage from the mobile users. Let us denote A a set of attributes assign to each node in the

network. We define it as

A = {Ausers,Astoptime,Amovement}

Each attribute in A has a specific contribution to capture some relevant information about the

nodes in the networks. They described below.

• users quantifies the number of users associated to the node (PoI), that is, the number of

users that visited the PoI represented by that node. It gives some feedbacks regarding the

popularity in terms of visits that such PoI has;

• stoptime is a relevant measure to quantify the duration of the visit. This is computed by

the average stop time over all trips;

• movement represents the spatial dimension to capture how far are the node’s neighbors.

This attribute interestingly captures the notion of how far the users are willing to move to

reach another PoI in the city. We can see it as the spatial proximity between two node in

the network.

With these selection of attributes, we can intuitively introduce an interpretation for

the nodes depending on the different values of each attribute. We qualitatively categorize the

values of these attributes to low and high. Combining these values, we propose a set of classes

composed by Personal Spot, Popular Local, Popular Global, Hot Spot Local, Hot Spot Global

and Undefined. These classes are discussed below and they summarized in Figure 13.

Users

Stop Time

Stop Time

Movement

Movement

Popular
Local

Popular
Global

Hot Spot
Global

Hot Spot
LocalPersonal

Spot

Unclassified

High

Low

High

Low

Low

High

High

Low

High

Low

Figura 13 – Summarization of node classes based on users, stoptime and movement attributes.

71

Personal Spot. Nodes with low number of users, but high stop time. This class stands for PoIs

that a few users have visited, but they have spent long time. Therefore, they could be deemed

as personal spots that are visited by a few users, and for a long time and thus it is probably of

personal interest of the user. Examples of PoIs in this class are the gym or some clubs;

Popular Local. Nodes with high number of users and high stop duration, but low movement

value. This represents popular places since many users are visiting the place for a long time,

but in a local perspective, like places that are popular in their corresponding neighborhood. An

example for this class could be a popular supermarket that is mainly visited by people from the

neighborhood;

Popular Global. Nodes with high values of all the attributes. In essence, it corresponds to places

that are popular, people tend to spend long time and tend to displace from distance places. An

example could be an important Shopping Mall that attracts people from different parts of the

city, and where they spend long time;

Hot Spot Local. Nodes with high number users, low stop time, and low spatial values. This

class encompasses places where people move to spend short time moving for short distances.

Possible examples could be a pharmacy or a bar, where many people that live close stop for a

few minutes to buy some medicines or drinking a coffee. We could represent this class with

facility places;

Hot Spot Global. Nodes with high number of users, low stop time and high movement. This

class represents places that receive many people coming from many areas of the city to spend

short time. We could interpret the airport as a member of this class, where people go there to

bring or pick up friends or relatives and they tend to come from different parts of the city;

Undefined. All the other combinations are considered undefined, since they are not statistically

meaningful w.r.t the attributes in A.

We can easily notice that local and global properties are mainly related to the values

of the attribute movement, while hot spot and popular are related to the stop duration. This

classification provides some interesting meanings to the PoIs in the city in addition to their

standard categories. Indeed, while categories are static label assigned by some domain expert,

these labels are given by the networks, based on where the places are located in the graph.

These attributes can still be used by location-based services taking into account

the PoIs’ characteristics. For instance, urban agents might identify PoIs that tend to cause

traffic congestions (e.g. popular global PoIs) or PoIs for which people are willing to move

far distances (e.g. global PoIs) and related them to possible traffic problems. Even location-

based recommender systems could exploit the characteristics of the PoIs and users to produce

meaningful recommendations.

72

There may be several ways to define a good threshold for splitting the distribution of

the above attributes into low and high values. The details of the method chosen in this chapter

are presented in Section 3.5. In general, there are at least two possibilities: exploiting domain

knowledge from experts in a top-down fashion, or using a bottom-up approach where these

values are directly inferred from data. In our experiments, we chose the bottom-up approach.

However, our methodology is general and does not depend on the chosen strategy.

We can relate the above definitions to research Question 1, namely, can we study

urban mobility at a global scale from the perspective of PoIs instead of users? We believe that

the characterization of PoIs based on people’s mobility is a possible way to answer this question.

Once we have identified such characteristics of the PoIs, it is still important to

understand how they relate to each other at a global scale, i.e., how the movements among them

create structures of groups known as communities. This leads to the research Question 2, i.e.

are there any patterns of such behaviors? Finding communities is a way to find patterns in the

POI network, as presented hereafter.

3.3.3 Communities of points of interests

Having the PoIs network N, we can identify communities of PoIs that are grouped

based on the movements (trips) between them. This can be achieved, for example, by using the

state-of-the-art algorithm presented in (AHN et al., 2010) (see Section 2.1). We obtain a set of

communities C = {C1, . . . ,Cn} where each community is a subgraph of N, Ci = {(Vi,Ei) : Vi ⊆V

and Ei ⊆ E},∀1 ≤ i ≤ n. It is worth noticing that other choices of the community detection

algorithm are possible, and that the resulting communities may differ, capturing different aspects

of the connections among the nodes. However, our methodology does not depend on this choice,

and we refer to the literature of community discovery for other algorithms that can be used

based on the different kinds of connections to be extracted. In addition, the link community

algorithm proposed by Ahn et al. in (AHN et al., 2010), is directly related to the ComeTogether

framework, i.e., the framework exploits users’ trips (movements) in the links of the network

and link community uses as the central target the connections between the nodes, instead of the

nodes, to find out the communities.

To characterize the communities extracted from the PoI network, we define some

features inherent to the communities. We have considered two main scopes: structural and

mobility. In particular, Let Ci ∈C be a community, Ei the edges of community i and Vi the nodes,

we define the following features:

73

3.3.3.1 Compactness

It aims at measuring how trips tend to move inside the community. This function

presents the levels of “fidelity” of each trip w.r.t the communities. Intuitively, the aim is to

understand, from each community, if trips associated with its edges also move to edges belonging

to other communities, given the notion of modular movements. Let P(Trip) and P(E) be

power sets of Trip and E respectively. Yet, let τ : C→P(Trip) be the function that retrieves

a subset of trips that traversed a community Ci and σ : P(Trip)→P(E) is the function that

retrieves a subset of edges given a subset of trips (edges traversed by the trips). Therefore,

Compactness of community Ci can be measured as

Compactness(Ci) =
|Ei|

|σ(τ(Ci))|
, (3.1)

where |Ei| is the number of edges of community Ci. It is computed by dividing the number

of edges of the community by the number of distinct edges created by the community’s trips.

Values close to 1 means that the trips moved mainly over the edges of the community, while

values close to 0 means the trips crossed many other edges from other communities.

3.3.3.2 Feature Similarity

Given the community Ci, let ~Fi ∈ R5 be its feature vector, where each component

is the number of nodes belonging to each node class (Personal Spot, Popular Local, Popular

Global, Hot Spot Local and Hot Spot Global) normalized so that the sum is 1: ∑
5
j
~Fi j = 1.

Analogously, let us denote ~FN ∈ R5 the feature vector of the PoI network N. For instance,
~Fi(Popular Global) = 0.2 and ~FN(Popular Global) = 0.1 stand for the probability of getting the

node class Popular Global in the community Ci and in the whole PoI network N, respectively. In

order to identify the communities that are very similar or dissimilar by means of the classes, we

define the feature similarity FeatureSim(~FN ,~Fi) given by the cosine similarity between the the

community feature vector and the PoI network feature vector:

FeatureSim(~FN ,~Fi) =
~FN ·~Fi

||~FN ||||~Fi||
. (3.2)

Note that values close to 1 mean that the community is similar to the whole PoI network in terms

of node classes, while values close to 0 mean the community is dissimilar to the whole network,

but it may still carry some particular characteristics.

The compactness and the feature similarity are the methods chosen to answer the

research Question 3, namely can we characterize these patterns?. In section 3.5, we show

the how these measures are used to characterize the communities found in an experimental

evaluation conducted in three Italian cities.

74

3.4 Random Mobility Models

To evaluate the PoI networks built from the GPS data, we define four random models

with the goal of comparing the real networks generated from real GPS data with randomly

generated networks. This comparison aims at highlighting the similarities and particularities of

the PoI networks. The random models are present below.

Fully Random Trip Model (FRT). Given t the number of trips, this model generates t comple-

tely randomized trips. This represents a naive approach taking into consideration none statistics

from the real data.

Dist-based Random Trip Model (DRT). This model takes into account four features of a given

set of trips to generate a new set of trips: (i) the number of users; (ii) number of trips per user;

(iii) number of PoIs per trip; and (iv) the spatial extent of the trips. Although the trajectories are

“artificial”, the features of both generated and real datasets are comparable according to the used

features.

k-Random Trip Model (k-RT). This model takes into account a set of trip and randomizes the

last k% points of each trip by getting PoIs of the same categories of the original PoI.

Random Graph (RG). Here the very known Erdős-Rényi Random Graph model is used to

generate a random graph containing the same number of nodes and edges as the generated PoI

networks. We recall that no trajectory dataset is used, but only the number of nodes and edges

provided by the PoI networks.

3.5 Case Study on Different Cities

We experimented the COMETOGETHER methodology in a real case study involving

three different cities in Italy: Milan, Florence and Pisa. We collected GPS tracks of users

moving in these three cities, along with a number of PoIs downloaded from the web covering

the same cities. In the following we compare the results of the analysis in these three urban

areas, highlighting the main similarities and differences, giving possible explanations of the main

interesting findings.

We follow the flow presented in the previous section, presenting, after the data and

tools, the results of for each step composing the COMETOGETHER framework: building the PoI

networks for each city; (ii) PoI network analysis; and the community discovery process over the

built PoI networks.

75

3.5.1 Data and Tools

To build the PoI networks we essentially needed two datasets: a set of traces of users

moving in a given area and a set of PoIs located in the tracked area. We focused the analysis in

three well known cities in Italy - Milan, Florence and Pisa - characterized by some similarities

and differences: Pisa and Florence are historical cities and oriented to tourism, whereas Milan is

more business-oriented. In addition, Pisa is a small city, while Milan and Florence are larger

than Pisa; Milan is located in the north of Italy while Florence and Pisa are in the center. Finally,

Pisa is close to the sea while Florence and Milan are interior cities.

We downloaded the PoIs of these three cities from Foursquare1 resulting in 1,403

points of interest in Pisa, 4,074 in Florence and 13,948 for Milan. At the time of this writing,

Pisa counts over 88,000 inhabitants (around 200,000 with the metropolitan area); Florence is

the most populated city in Tuscany with approximately 370,000 inhabitants, expanding to over

1.5 million on the metropolitan area; Milan has a population of about 1.35 million and about

8 million on the metropolitan area. Figure 14 shows the category distribution of the points of

interest in the three focused cities: the four categories are Shop & Service, Food, Great Outdoors

and Arts & Entertainment. Figure 14(a) shows the absolute number of PoIs for each category,

while Figure 14(b) the values are normalized by the number of PoIs. As we can see, when

we normalize by number of PoIs, the categories appear to be represented in similar relative

percentages for the three cities. Moreover, we can see how the points of interest spread around

each city in Figure 15. Milan is clearly the biggest city and more oriented to business leading to

the highest number of PoIs.

Our analysis is focused on four PoIs categories, since we believe that these categories

cover the majority of the activities performed by people in an urban environment. We have

discarded categories related to residence and work places. This choice has been taken since

we would like to capture user movements in the city when related to the services that the city

provides. This thus excludes places related to home and work.

The user traces were collected by the Italian company Octotelematics2. This company

installs GPS devices on cars of citizens benefiting from an insurance discount. We have the

traces of 42,775 cars for a period of 5 weeks from May to June 2011 covering all the Tuscany

region (thus including Florence and Pisa). We also have an additional car GPS dataset of 17,087

users covering Milan for one week on April 2007.
1 <http://www.foursquare.com>
2 <http://www.octotelematics.it>

http://www.foursquare.com
http://www.octotelematics.it

76

(a) (b)
Figura 14 – Category distribution for each city: Pisa, Florence and Milan. Four categories are

considered: Shop & Service, Food, Great Outdoors and Arts & Entertainment. (a)
absolute values and (b) for normalized values.

(a) (b) (c)
Figura 15 – Points of interest for each city: (a) Pisa, (b) Florence and (c) Milan.

3.5.2 Building the PoI network

3.5.2.1 Aggregated PoIs

As presented in the Section 3.3, the first preprocessing step for the PoI dataset is

grouping together PoIs that are very close to each other, thus finding the Aggregated PoIs:

these will be represented by the nodes of the PoI network. We choose a clustering approach to

automatically find dense groups of PoIs. Alternative ways to build the Aggregated PoIs could be

to use a fixed radius or to fix a spatial grid and aggregate the PoIs belonging to the same cell.

Since the analyzed areas are characterized by very dense PoI regions alternated to more sparse

regions, we decided to apply the density based clustering approach to aggregate the POIs.

We have used DBScan (ESTER et al., 1996) as a density-based clustering algorithm.

We used 200 meters and 1 member as parameters for the distance and neighborhood values.

These values have been empirically selected running the algorithms with different parameters

and finding a trade off between having too many single-member GPoIs and too large ones. The

neighborhood parameter was set to one as we did not want to discard small clusters with only

77

one element when those are the only one in the area (sometimes a very important place is not

close to any other like an airport). The 200 meters value has been shown to be a good parameter

for distance in our scenario, since larger values create very large cluster encompassing almost all

the PoIs in the city.

3.5.2.2 Creating Trajectories and Trips

First of all, we computed the users’ candidate stops. We set up 150 meters for

MaxStopArea and 20 minutes for MinStopTime for the three cities. The assignment function

f associating a stop to a GPoI is defined to assign for each user’s candidate stop the closest

aggregated PoI within the spatial distance of 100 meters. After defining f , we computed the

trajectories - as time-stamped sequences of GPoIs- for the three cities.

The trajectories were also split into weekdays (WD) and weekends (WE). The

observation behind this is that the people behaviors in terms of mobility and activities during

the weekdays and weekend tend to significantly change. Thus, we want to capture the possible

differences in the mobility of users in these two periods. Furthermore, we split each trajectory

dataset into trips. We recall that the idea behind trips is to capture the continuous movement

of the users between PoIs thus discarding long stops. We set 5 hours for Pisa and 6 hours for

Florence and Milan as the threshold ∆m to split trajectories into trips.

These values were empirically evaluated from the data and represent the intuition that

a long stop (e.g. being at work or at home) cuts the continuity of movement between activities.

With the above settings, the largest connected components (LCC) of the resulting networks

contain at least 99% of the nodes.

3.5.3 PoI Network Analysis

We now present some basic analysis of the generated PoI networks for each city.

Table 2 summaries the generated PoIs networks for each city with its respective

number of nodes and edges. As we can observe, the number of nodes is different from the

number of PoIs since the nodes represent Aggregated PoIs. It is worth highlighting the difference

between Milan and Florence. Looking at Figure 14 we clearly note that there are much more

POIs in Milan than in Florence. However, Milan is spatially denser w.r.t PoIs (Figure 15), which

reflects the fact that the number of nodes in Milan is smaller than in Florence when the PoIs are

aggregated into aggregated PoIs. However, Florence is denser as network possibly due to the

time span available of 5 weeks for Florence.

Table 2 also shows the properties of the networks, which include: average clustering

coefficient (Avg. CC.), average degree of the nodes (k) and average shortest path length (l).

Comparing to other results in the literature (NEWMAN, 2003), we observe that the properties

78

Weekdays
Nodes Edges Avg. CC k l

Pisa 633 9310 0.2661 29.4154 2.4072
Florence 1837 65201 0.2316 70.9863 2.2566
Milan 1690 33876 0.2129 40.0899 2.4607

Weekends
Nodes Edges Avg. CC k l

Pisa 576 3555 0.1922 12.3437 2.8831
Florence 1734 21198 0.1735 24.4498 2.7672
Milan 1575 10291 0.2271 13.0679 3.2008

Tabela 2 – PoI Network properties for Pisa, Florence and Milan. Number of nodes, number of
edges, average clustering coefficient (Avg. CC), average degree of the nodes (k), and
average shortest path (l).

100 101 102 103

Degree

10-3

10-2

10-1

P
ro

b
a
b
ili

ty

Pisa

Florence

Milan

100 101 102

Degree

10-3

10-2

10-1

P
ro

b
a
b
ili

ty

Pisa

Florence

Milan

Figura 16 – Degree distribution of the networks for weekdays (a) and weekends (b).

are consistent to the properties in real networks, such as biological networks and social networks.

In particular, we see the popular small-world phenomenon in the PoI networks.

Pisa tends to concentrate the movements on weekdays mainly inside the city, while

people tend to move to the coast on weekends (we remind that the dataset considered covers a

summer period).

Looking at the clustering coefficient (Avg. CC) in Table 2, we report an interesting

result. While in weekdays the clustering coefficient seems to be negatively correlated with the

size of the cities, this correlation disappears in the weekends. This may suggest that, while

the cities are comparable in terms of services and locations related to business, they offer very

different attractions for the weekend, resulting in different patterns of mobility. We can also see

in Table 2 that the average shortest path length l is smaller in the weekdays networks, due to a

higher density of the networks.

Figure 16 shows the degree distribution of the networks. We observe that a few

nodes (PoIs) are highly connected, while many nodes are sparsely connected. There are a very

few places in the cities that link to many others such as very popular places like famous shopping

79

malls or business areas. Most places in the cities tend to connect to a few other places. In our

context, highly connected places are good candidates to attract movements and, consequently,

induce more traffic within the urban area. We also see from Figure 16 that the degree distribution

in our network does not depend on the size of the networks.

In Figure 17 we report the PoI network in Pisa, the smallest city considered. It

can be clearly seen that visual analytics may not be of much help in this case. The rest of the

methodology is intended to overcome this limitation.

3.5.3.1 Confronting PoI Networks and Random Models

Figure 18 shows the comparisons between the degree distribution of the randomly

generated networks and the PoI networks. We recall that 0%−RT corresponds to the original

PoI network. There is a clear distinction between FRT and RG to the other networks. Note that

in FRT and RG networks the node degrees tend to follow the average degree of the network.

3.5.3.2 Node classes

Here we address the research Question 1 presented in Section 3.1: Can we study

urban mobility at a global scale from the perspective of places, instead of users? As discussed

earlier, we use a bottom-up approach to derive the values for the classes directly from the data.

For this, we computed the median of each attribute (users,), and we classified as low those

values lower than or equal to the median, and high otherwise. While this approach is limiting

(only two classes, no usage of background information), it has the clear advantages of being

simple, and easily replicable from city to city, without loss of semantics.

Figure 19 summarizes the percentage of the population of each class for each network.

As we can see, about 70% of the nodes were classified into some class and only 30% were

unclassified (except for Florence on weekends). We note a relevant number of personal spots,

that reflect the fact that some PoIs are visited very often by a low number of people (like a gym

Figura 17 – POI Network of Pisa in weekdays(a) and weekends(b)

80

100 101 102 103

Degree

10-3

10-2

10-1
P
ro

b
a
b
ili

ty
0%-RT

25%-RT

50%-RT

75%-RT

100%-RT

FRT

DRT

RG

(a) Pisa in weekdays

100 101 102

Degree

10-3

10-2

10-1

P
ro

b
a
b
ili

ty

0%-RT

25%-RT

50%-RT

75%-RT

100%-RT

FRT

DRT

RG

(b) Pisa in weekends
Figura 18 – Comparison between PoIs Network and randomly generated networks.

Figura 19 – Node classes in the three networks for weekdays and weekends. Axis y corresponds
to the % of number of number of each class.

or a neighborhood shop). On the other hand, we see a few PoIs attracting many people, measured

by the percentage of hot spot and popular classes in the three cities.

Looking at the results for Pisa, we can see that there are more global classes (hot

spot and popular) on weekends than on weekdays. This reflects the possible behavior of coastal

cities, where people tend to go to the beaches on weekends. In the case of Pisa, people usually

move far distances to reach beach places represented by the global classes. Also, on the weekend

there is an increasing number of popular global nodes, which means that we could find more

places visited by many people, spending much time and moving longer distances to reach these

places. Again, this behavior is mainly due to the popularity of the beaches that are a slightly

more distant, around 10 kilometers and are mostly visited on weekends.

To get more insights, we looked at some PoIs with high number of users. We found,

for example, Centro Commerciale Carrefour, which is a supermarket where people stop to buy

groceries and home goods, as a hot spot local. People clearly move to this supermarket only for

81

(a) (b)
Figura 20 – Hot spot global (a) and local (b) nodes in Pisa on weekends. We can see more global

PoIs on the beaches and the concentration of local ones on the city center.

quick activities. A different case is a node including several points of interest like Osteria la

Griglia del maestro and Tirrenia Caffe Doc, i.e., a restaurant and a bar, which are classified as

hot spot global, since people tend to reach them from far places.

An additional step is to investigate where a specific node class is present in the city

as shown in Figure 20a and Figure 20b. Interestingly, we see more hot spot global PoIs in Pisa

than hot spot local PoIs- Figure 20a. However, hot spot local PoIs are mainly concentrated on

the city center during weekends as shown in Figure 20b.

Recalling Figure 19 for Florence, we see that the percentage of both global and local

hot spot are lower in weekends than in weekdays, while the percentage of personal spot increases.

This shows that very few PoIs were visited by a high number of users, while most of the PoIs

were visited by a low number of users, which contributes to the increase of personal spot as well

as unclassified nodes. In fact, on weekends, there is a high percentage of unclassified nodes

in Florence. Looking at Figure 21 we can see how the popular global (Figure 21a) and local

(Figure 21b), nodes are spread around the city on weekdays, for instance. The figure shows that

the popular global nodes tend to be more spread in the city, while the popular local nodes are

densely located in some specific areas of the city.

In Milan it is worth highlighting the growing percentage of hot spot global and

popular global nodes from weekdays to weekends. This is an interesting result: in Milan, people

tend to cover longer distances on weekends to arrive at more distant places than on weekdays no

matter how long they are going to be there. Consequently, there is a decrease in the percentage

of hot spot local and popular local nodes. Then, we observe that people tend to cover shorter

distances from place to place on weekdays, while they appear to cover longer distances on

weekends. In fact, in large urban areas, people move to close places mainly due to work daily

82

(a) (b)
Figura 21 – Popular global (a) and local (b) nodes in Florence on weekdays.

(a) (b)
Figura 22 – Hot spot global (a) and local (b) nodes in Milan on weekends.

routine and the long traffic lines in the streets. This is particularly different during weekends,

likely on regular weekends without any special event and season, when people tend to go out

less and, consequently, it is more likely to find shorter or none traffic lines. Figure 22 shows how

the hot spot global (22a) and local (22b) nodes are distributed in Milan on weekends. Note that

the airport gets clearly classified as hot spot global, as people cover longer distances to get there,

then move back after short time.

3.5.4 Community discovery in PoI networks

After a first analysis on the PoI networks looking at the location and the classification

of PoIs in the city, the second step is to look at the communities found in the network. This step

mainly addresses the research Question 2: are there any patterns in these mobility networks

that we can detect? The detection of the communities was performed by using the algorithm3

proposed in (AHN et al., 2010), since it focuses on link communities, which is a good way to

capture the mobility aspects of our networks, and also allows overlapping among communities.

In addition, the weights of the links (number of trips) are considered in the community discovery

process. Note that there are other interesting methods for discovering communities in networks,

such as (COSCIA et al., 2012; BERLINGERIO et al., 2011a; BERLINGERIO et al., 2013), and

we plan to experiment the methodology with different community detection algorithms in the

future, to better understand the mobility phenomena in our networks.
3 The authors provide their implementation at <http://barabasilab.neu.edu/projects/linkcommunities/>

http://barabasilab.neu.edu/projects/linkcommunities/

83

Figura 23 – Communities in the PoI networks of Pisa for weekdays (a) and weekends (b).

Figure 23 represents the same networks of previous Figure 17 with the difference

that here the edge colors are mapped to the specific communities they belong to. Again, we can

see that the visual approach is limited here and further analysis is needed.

Table 3 presents the number of communities found in each network. Figures 24 and

25 show the community size distribution and compactness cumulative distribution, respectively.

One result that we see is that the distribution of community size tends to follows a power law,

where a few communities have a great number of nodes, while many communities have a small

number of nodes.

We can observe in Figure 24 that the community size distributions are very similar

for all the networks. All of them present a skewed distribution, where a few communities contain

many nodes, while many communities are formed by a few nodes. This result shows that the

global mobility behavior tend to form only a few very connected groups (communities), while

most communities are represented by particular movements in the city. The slight difference

between networks on weekdays and weekends is due to the size of the networks in each period:

networks on weekdays are larger.

Regarding Figure 25, we analyze the cumulative distribution of compactness of

the communities. In Milan (25c) the communities present higher compactness compared to

communities in Pisa (25a) and Florence (25b). In addition, there is a little difference between

weekdays and weekends in Milan. Since Milan is much denser, people do not have to travel

around the city to find what they need and, besides, the movements tend to be longer than in Pisa

and Florence.

In contrast, Pisa presents the highest difference in compactness between weekdays

and weekends, which means that people tend to travel around the city to get some amusements.

Since Pisa is the smallest city, it is easier to reach any part of the city from any other and,

84

WD WE
Pisa 3197 1580
Florence 22834 9977
Milan 12313 4014

Tabela 3 – Number of communities found in Pisa, Florence and Milan on weekdays (WD) and
weekends (WE).

101 102

Number of nodes

100

101

102

103

N
u
m

b
e
r

o
f

co
m

m
u
n
it

ie
s WD

WE

101 102

Number of nodes

100

101

102

103

104

N
u
m

b
e
r

o
f

co
m

m
u
n
it

ie
s WD

WE

101 102

Number of nodes

100

101

102

103

104

N
u
m

b
e
r

o
f

co
m

m
u
n
it

ie
s WD

WE

(a) (b) (c)
Figura 24 – Community size distribution for each city: (a) Pisa, (b) Florence, (c) Milan; on log

scale.

0.0 0.2 0.4 0.6 0.8 1.0
Compactness

0.0

0.2

0.4

0.6

0.8

1.0

P
(k

 <
=

 x
)

WD

WE

0.0 0.2 0.4 0.6 0.8 1.0
Compactness

0.0

0.2

0.4

0.6

0.8

1.0

P
(k

 <
=

 x
)

WD

WE

0.0 0.2 0.4 0.6 0.8 1.0
Compactness

0.0

0.2

0.4

0.6

0.8

1.0

P
(k

 <
=

 x
)

WD

WE

(a) (b) (c)
Figura 25 – Compactness for each city: (a) Pisa, (b) Florence, (c) Milan.

consequently, this contributes for lower compactness.

3.5.5 Largest Communities

In front of the difficulty of analyzing such high number of communities, we present

here some analysis about the largest communities discovered in our framework. These communi-

ties are more representative in the sense that they encompass the majority of the movements in the

city and, therefore, they are useful to give a deeper understanding. The five largest communities

for each city on weekdays and weekends are presented in the following.

Figure 26 illustrates the selected largest communities in Pisa. On weekdays, Figure

26a, the movements are mainly between the center of Pisa and a nearby village. In addition, in

the center of Pisa, there are some communities that clearly overlap: they contain some common

POIs that are on their “borders”. On weekends (Figure 26b), on the other hand, one of the largest

communities comes out throughout the coast, featuring the typical mobility pattern in the area:

85

Sea

(a)

Sea

(b)
Figura 26 – The five largest communities in Pisa on weekdays (a) and weekends (b).

(a) (b)
Figura 27 – The five largest communities in Florence on weekdays (a) and weekends (b).

the citizens tend to spend weekends on the beaches. We see that the mobility in the center of

Pisa encompasses some of the largest communities and, consequently, significant concentration

of movements among PoIs.

The five largest communities found in Florence are presented in Figure 27. On

weekdays (Figure 27a) we can see an interesting splitting of the city. Interestingly, the com-

munities tend to divide the city based on the connectivity (movements) among the POIs with

overlapping among some communities. For instance, the community B (yellow) overlaps both

community A (orange), in the northwest part of the town, and community C (blue), in the city

center. Community B (yellow) highlights the interplay between two parts of Florence represented

by community A (orange) and C (blue). The communities on weekends are in Figure 27b. By

comparing communities on weekdays and weekends we can note the apparent presence of some

communities on both periods, as well as some particular communities inherent to each time

period. This observation raises the importance of developing techniques for dynamic community

discovery algorithms in order to understand the evolution of the communities. However, this

issue is out of the scope here, and we leave it for future work.

Figure 28 depicts the five largest communities in Milan on weekdays (Figure 28a)

and weekends (Figure 28b). On weekdays, the movements among POIs mainly take place in the

city center and on the north. The Linate airport (the one at the East part of the city highlighted in

Figure 28a) interestingly takes part of some the largest communities on weekdays. Community

86

Linate
airport

(a) (b)
Figura 28 – The five largest communities in Milan on weekdays (a) and weekends (b).

B depicted in orange color stresses the interplay between the city center and north of Milan,

represented by different communities.

On weekends (Figure 28b), in turn, we note the change from weekdays: the com-

munity on southeast comes out as one of the largest communities, gathering one of the major

concentrations of movements in the city. Here, the Linate airport is not part of any of the five

largest communities on the weekends, which tells us that on weekdays the airport plays an

important role in the largest communities, and therefore, in the areas of the communities for

which it takes part. This information is extremely useful for traffic agencies in order to capture

probable places that cause traffic (the airport is one of them indeed). The airport still takes part

of large communities on weekends (but not in the top 5).

The largest communities, therefore, encompass the global mobility behavior in the

cities. They also show how the city is broken into areas that are connected each other by

movements among POIs. This information is extremely useful for mobility manager because

they can understand how traffic is forming in different areas of the city, and how the movement

between different parts may contribute to produce traffic. For instance, large communities

themselves are likely to be more dense of traffic since they represent large communities of POIs

reached by people during the same trips. We can intuitively understand that this phenomenon

can be worsened when other large communities overlaps.

3.5.6 Comparing Communities against the Network

We address here the research Question 3 about finding regularities and anomalies

in the patterns found. In order to do this, we make use of the FeatureSim measure presented

in Section 3.3 in the following way: we consider the global, city-wide mobility, as a feature

vector filled with the percentages of POIs in each class (hot spot local, etc.). We then compute

the same vectors for each single community extracted, and we compute its FeatureSim with the

city-wide feature vector. Then, we analyze the most similar and most dissimilar 5 communities.

The intuition is that they should represent, respectively, patterns that globally reflect the mobility

87

(a) Weekdays the least (b) Weekdays the most similar

(c) Weekends the least similar (d) Weekends the most similar
Figura 29 – The least and most similar communities to the network in Pisa.

of the cities, and patterns that represent exceptions, or most typical characterization of the

non-average mobility in a city.

Tables 4, 5 and 6 present the least and the most similar communities to their respective

networks, while Figures 29 (Pisa), 30 (Florence) and 31 (Milan) illustrate the communities on

the map.

As previously discussed for Pisa, the common behavior on weekdays is mainly on

the city center, while the typical mobility on weekends tend to reach the beaches. Looking at

Figure 32, we confirm that the least similar communities are present on the beach (Figure 29a),

while the most similar communities are present in the city center (Figure 29b) on weekdays. In

contrast, the most similar communities on weekends are mainly located on the beach (Figure

29d). The reasoning is analogous for Florence and Milan in order to understand what seems to

be global and particular pattern in each city. Although we have given some interpretation, more

understanding would come with aid of urban agents of each city.

A further confirmation of the fact that the ComeTogether approach is providing a

new perspective in analyzing human mobility connected to the visited places is given by Figure

32. It shows that no approaches based on frequency (e.g. frequent pattern mining) may lead to

the same results as above, as there is no correlation between similarity and frequency (number of

user and number of trips), i.e. there might be important communities that would not be found by

looking at frequent patterns. The patterns may be used and interpreted by a mobility manager

with background knowledge for understanding as well as making decision over mobility aspects

in the city.

88

(a) Weekdaus the least similar (b) Weekdays the most similar

(c) Weekends the least similar (d) Weekends the most similar
Figura 30 – The least and most similar communities to the network in Florence.

(a) Weekdays the least similar (b) Weekdays the most similar

(c) Weekends the least similar (d) Weekends the most similar
Figura 31 – The least and most similar communities to the network in Milan.

89

Tabela 4 – Pisa

Least similar Most similar
Community #Nodes Similarity Community #Nodes Similarity

Weekdays

1918 5 0.3120 52 6 0.9491
129 5 0.2384 371 6 0.9491

1353 5 0.2384 2126 5 0.9231
2080 5 0.2384 1656 7 0.9197
2653 5 0.2384 336 14 0.9181

Weekends

1112 5 0.3799 820 12 0.9792
1228 5 0.3799 72 21 0.9617
1341 5 0.3799 1406 6 0.9566
267 5 0.2690 1256 7 0.9552
603 5 0.2690 180 12 0.9431

Tabela 5 – Florence

Least similar Most similar
Community #Nodes Similarity Community #Nodes Similarity

Weekdays

9424 5 0.2673 9117 140 0.9924
10690 5 0.2673 15029 5 0.9578
16168 5 0.2673 15466 5 0.9578
17644 6 0.2673 18386 13 0.9569
20545 5 0.2673 18437 8 0.9469

Weekends

2265 5 0.0260 2928 15 0.9993
3850 9 0.0260 9097 8 0.9984
5153 5 0.0241 1420 5 0.9952
7554 5 0.0241 1762 5 0.9952
4984 5 0.0146 2051 8 0.9952

Tabela 6 – Milan

Least similar Most similar
Community #Nodes Similarity Community #Nodes Similarity

Weekdays

2176 6 0.1117 9724 6 0.9907
3060 5 0.1117 6220 9 0.9877
5778 5 0.1117 262 15 0.9839
7965 6 0.1117 6115 17 0.9793
7971 5 0.1117 4443 13 0.9737

Weekends

4006 5 0.2826 700 15 0.9767
621 5 0.2820 1438 10 0.9745

1564 5 0.2200 649 5 0.9632
2681 7 0.2200 696 8 0.9632
2825 5 0.2200 1366 5 0.9632

90

0.4

0.6

0.8

0 500 1000 1500 2000 2500
Trip Count

S
im

ila
rit

y

<= 4
> 4

(a) Weekdays

0.25

0.50

0.75

1.00

0 50 100 150
Trip Count

S
im

ila
rit

y

<= 4
> 4

(b) Weekends

0.4

0.6

0.8

0 250 500 750
User Count

S
im

ila
rit

y

<= 4
> 4

(c) Weekdays

0.25

0.50

0.75

1.00

0 30 60 90
User Count

S
im

ila
rit

y

<= 4
> 4

(d) Weekends
Figura 32 – Correlation between number of trips (trip count) and FeatureSim in Pisa.

3.6 Discussion

In this chapter, we have seen an exploratory study on the relation between people

mobility and points of interest of an urban area at the global scale. We have based our work on

complex network analysis combining mobility of users into a graph structure called PoI network,

from which we have defined interesting features discussed throughout this chapter. The PoI

networks of three cities have been analyzed to address the three research questions presented

in Section 3.1. We have shown through our study how we may answer them: (1) Can we study

urban mobility at a global scale from the perspective of places, instead of users? Our answer

is positive, and we have defined different classes of places based on network properties to this

aim; (2) Are there any patterns of such mobility w.r.t places? We have shown how to extract

communities from the POI Network graph to find mobility patterns between the places; (3)

Can we characterize such patterns and find regularities or anomalies? We have defined two

measures, namely Compactness and the FeatureSim, and shown how to use them in order to

observe possible global and local patterns in each city. We have experimented our approach

using real GPS datasets collected in three Italian cities with distinct characteristics.

Although the proposed PoI network is represented by an undirected graph, our

methodology can be extended to directed PoI network when it is desired to capture the sequence

of the visited PoIs. Note that, it is important to consider a community discovery algorithm able

to work with directed edges in the network. The selected algorithm has been proposed by Ahn et

al. can be extended for directed networks as presented in (AHN et al., 2010).

91

The results presented in this chapter have been extremely important to envision the

investigation of two other problems presented in Chapters 4, 5 and 6, namely the sightseeing

tours recommendation, user friendly web application and the group formation problem, that are

addressed in this thesis with a number of contributions.

92

4 PLANNING SIGHTSEEING TOURS BASED ON THE WISDOM-OF-THE-
CROWD

Social networking services jointly with the advance of smart-phone devices have

been essential to the collecting of an unforeseen amount of data generated by millions of users

during their daily activities. The collective behavior found out in the data, known as wisdom-

of-the-crow, can be a striking and powerful mechanism to devise new opportunities. As such,

this chapter focuses on the research question RQ2: Can we take advantage of data provided by

the wisdom-of-the-crowd to support users (e.g. tourists) in planning their vacations to a new

destination?

This chapter presents TRIPBUILDER, an unsupervised framework for planning

personalized sightseeing tours in cities. To this aim, we exploit categorized Points of Interests

(PoIs) from Wikipedia and albums of geo-referenced photos from the photo sharing social

network of Flickr considered as traces revealing the behaviors of tourists during their sightseeing

tours. We extract from photo albums spatio-temporal information about the itineraries made

by tourists, and we match these itineraries to the Points of Interest (PoIs) of the city. The task

of recommending a personalized sightseeing tour is modeled as an instance of the Generalized

Maximum Coverage (GMC) problem, where a measure of personal interest for the user given

her preferences and visiting time-budget is maximized. The set of actual trajectories resulting

from the GMC solution is scheduled on the tourist’s agenda by exploiting a particular instance of

the Traveling Salesman Problem (TSP). Experimental results on three different cities show that

our approach is effective, efficient and outperforms competitive baselines. This chapter is based

on the published works (BRILHANTE et al., 2013; BRILHANTE et al., 2015; BRILHANTE et

al., 2015).

4.1 Introduction

Tourists approaching their destination for the first time have to deal with the problem

of planning a sightseeing itinerary that covers the most subjectively interesting attractions, and

fits the time available for their visit. Precious information can be nowadays gathered from

many digital sources, e.g., travel guides, maps, institutional sites, travel blogs. Nevertheless,

the users still need to choose the preferred PoIs, guess how much time is needed to visit them

and to move from one attraction to the next one. In this chapter we discuss TRIPBUILDER, an

unsupervised system helping tourists to build their own personalized sightseeing tour. Given the

target destination, the time available for the visit, and the user’s profile, our system recommends

a time-budgeted tour that maximizes user’s interests and takes into account both the time needed

to enjoy the attractions and to move from one PoI to the next one. Moreover, the knowledge

base feeding TRIPBUILDER recommendation model is entirely and automatically extracted from

93

publicly available Web services, namely, Wikipedia, Flickr and Google maps.

We observe that an increasing number of tourists share their travel photos on social

networks. Unofficial estimates state that Flickr, one of the most popular photo-sharing platforms,

collected about 518 million of public photos in 20121. Each photo comes with very useful

information such as: tags, comments and likes from Flickr social network, number of views,

information about the user, timestamp, GPS coordinates of the place where the photo was taken.

This allows us to roughly reconstruct the movements of users and their interests by analyzing the

time-ordered sequence of their photos. However, the process of recognizing relevant PoIs given

such set of photos is not trivial due to the noise present in the data. User tags are in many cases

missing, wrong, or irrelevant for our purposes (e.g., me and Ann, travel to Europe, Easter 2012).

Moreover, information available may be sparse and characterized by a skewed distribution.

Fortunately, in Wikipedia2, we can find that most entities of interest for tourism are

described in a dedicated page from which we can extract: the (multilingual) name of the PoI,

its precise geographic coordinates, the categories to which the PoI belongs according to a weak

but robust ontology (i.e., the PoI is a church, a square, a museum, a historical building, a bridge,

etc). By spatially joining and re-conciliating tourists’ photo albums and related information

from Flickr with relevant PoIs data extracted from Wikipedia pages, we can derive a knowledge

base that represents the behavior of people visiting a given city3. In this knowledge base the

popularity of a PoI is estimated from the number of visitors that shot photos there, while from

the timestamps of the first and last photos taken in a PoI we estimate the average time spent for

the visit. Finally, we exploit the Wikipedia categories of the PoIs visited by a given tourist to

build her user profile. For example, when a user takes many pictures of churches and museums,

we can infer a preference for cultural/historical attractions. Analogously, we can aggregate this

information at the level of itinerary to build a profile for each frequent visiting pattern.

We address the problem of planning the visit to the city as a two-step process. First,

given the profile of the user and the amount of time available for the visit, we formalize and

address the TRIPCOVER problem: choosing the set of itineraries across the PoIs that best fits

user interest and respects the given time constraint. Then, the selected itineraries are joined in

a sightseeing itinerary by means of a heuristic algorithm addressing the Trajectory Scheduling

Problem (TRAJSP), a particular instance of Traveling Salesman Problem (TSP).

The chapter is structured as follows: Section 4.2 introduces the TRIPCOVER problem

and the approximation algorithm used to solve it. Moreover, the TRAJSP problem is defined and

addressed in Section 4.3. Section 4.4 details the unsupervised method that builds the knowledge

base, while Section 4.6 presents the experiments we perform to assess the effectiveness and the
1 <http://www.flickr.com/photos/franckmichel/6855169886/>
2 <http://www.wikipedia.org>
3 Hereinafter, we will consider cities as the destination targets of our users, although our technique is general and

scale-independent.

http://www.flickr.com/photos/franckmichel/6855169886/
http://www.wikipedia.org

94

efficiency of our solution. Finally, Section 4.7 we conduct a final discussion of the chapter.

4.2 The TripCover Problem

Let P = {p1, . . . , pN} be the set of PoIs in our city. Each PoI p is univocally

identified by its geographic coordinates, a name, a radius specifying its spatial extent, and a

relevance vector, ~vp ∈ [0,1]|C|, measuring the normalized relevance of p w.r.t a set of categories

C.

Symmetrically, let u be a user from the set U , and ~vu ∈ [0,1]|C| the preference vector

stating the normalized interest of u for the categories in C. The preference vector can be explicitly

given by the user, or implicitly learned. Without loss of generality, we assume to know in advance

the categories C, the relevance vectors ~vp, and the preference vectors ~vu for all PoIs and users.

Definition 10 (User-PoI Interest) Given a PoI p, its relevance vector ~vp, a user u, and the

associated preference vector ~vu, we define the User-PoI Interest function Γ(p,u) : P×U → [0,1]

as:

Γ(p,u) = α · sim(~vp,~vu)+(1−α) · pop(p)

where sim(~vp,~vu) =
~vp·~vu

||~vp|| ||~vu|| is the cosine similarity between the user preference and the PoI

relevance vectors, pop(p) is a function, ranging from 0 to 1, measuring the popularity of p, and

α ∈ [0,1] is a parameter controlling how much user preference and popularity of PoIs have to

be taken into account.

Definition 11 (PoI History) Given a user u and the PoIs P , the PoI history Hu of u is the

temporally ordered sequence of m points of interest visited by u. Each PoI p of Hu is annotated

with the two timestamps indicating the start time and the end time of the visit:

Hu =< (p1, [t11, t21]), . . .(pm, [t1m, t2m])>

We can notice that having the start time and the end time we have an implicit

representation of the time the user u has spent for her visit of p.

Definition 12 (Trajectory) Given a PoI History Hu and a time threshold δ , we define a trajec-

tory Tu any subsequence of Hu

< (pk, [t1k, t2k]), . . . ,(pk+i, [t1(k+i), t2(k+i)])>

such that:
i≥ 1

t1k− t2(k−1) > δ , i f k > 1

t1(k+i+1)− t2(k+i) > δ , i f (k+ i)< m

t1(k+ j)− t2(k+ j−1) ≤ δ , ∀ j s.t. 1≥ j ≤ i.

95

The intuition is that trajectories are sequences of PoIs visited consecutively at the same “visit”.

They are obtained by cutting the user PoI history where the time interval between the visit to two

subsequent PoIs is greater than a given threshold δ .

Example 1 Let John Smith be a tourist who visited the city of Rome for two-days. John Smith’s

PoI history consists in the temporally ordered sequence of PoIs visited in the two days. As an

example:

HJohnSmith = <(Colusseum, Tue[09.00,10.30]), (Roman forum, Tue[11.00,12.00]), (Spagna

square, Tue[14.30,17.30], (St. Peter’s Church, Wed[10.00-11.00]), (Vatican Mu-

seum, Wed[11.10,15.00]), (Trevi Fountain, Wed[16.30,17.00]), (Navona Square,

Wed[17.20,18.00]), (Via Veneto, Wed[18.35,20.00])>.

By using a threshold of 5 hours as trajectory splitting criterium, from HJohnSmith we obtain the

following two trajectories:

T 1
JohnSmith = <(Colusseum,Tue[09.00,10.30]), (Roman forum, Tue[11.00,12.00]), (Spagna square,

Tue[14.30,17.30]>

T 2
JohnSmith = <(St. Peter’s Church, Wed[10.00-11.00]), (Vatican Museum, Wed[11.10,15.00]),

(Trevi Fountain, Wed[16.30,17.00]), (Navona Square, Wed[17.20,18.00]), (Via Veneto,

Wed[18.35,20.00]>

The time interval between the visits to Spagna square and St. Peters Church is in fact the only

interval larger than the given threshold. �

By applying the same temporal splitting criterium to all the PoI histories of users U we obtain

the set S = {S1, . . . ,SM} of relevant trajectories. Note that S results from a set-union operation

disregarding timestamps. Finally, let ρ(p) : P → R be an estimate of the time needed to visit

p, τ(pi, p j) : P ×P → R an estimate of the time a user needs to move from pi to p j, and

~z = (z1, . . . ,zM) be the total traveling time associated with each of the M trajectories in S ,

obtained by exploiting τ(·, ·). We are now ready to formulate the TRIPCOVER problem, i.e.,

the problem of generating an optimal personalized itinerary given tourist’s preferences and her

budget in term of available time to spend in the city.

96

TripCover Problem

TRIPCOVER(B): Given a tourist u, a set of PoIs P , a time budget B, a set of trajectories

S , an User-PoI Interest function Γ, a cost function ρ(p) and a vector~z. Find a subset of

trajectories S ∗ of S that

maximize
|S |

∑
i=1

|P|

∑
j=1

Γ(p j,u)yi j (4.1)

such that
|S |

∑
i=1

|P|

∑
j=1

ρ(p j)yi j +
|S |

∑
i=1

zi xi ≤ B (4.2)

|S |

∑
i=1

yi j ≤ 1, ∀ j ∈ {1, . . . , |P|} (4.3)

|S |

∑
i=1

xi ≥
|S |

∑
i=1

yi j, ∀ j ∈ {1, . . . , |P|} (4.4)

where

yi j =

{
1 if PoI j in trajectory i is selected;

0 otherwise.

xi =

{
1 if trajectory i is selected;

0 otherwise.

Without loss of generality, we assume ∀S′ ∈S , ∑p∈S′ Γ(p,u) > 0. In fact, if this

would not hold for a given user u and some trajectories, these trajectories could be filtered

out. The TRIPCOVER(B) problem as formulated in (4.1) is an instance of the Generalized

Maximum Coverage (GMC) problem that is proven to be NP-hard (COHEN; KATZIR, 2008).

The constraint (4.2) and (4.3) ensure the time budget is satisfied, and each selected PoI is

associated with only one trajectory, respectively. Moreover, (4.4) guarantees a selected trajectory

if a PoI is selected. In particular, given a tourist u, TRIPCOVER(B) can be captured by the GMC

formulation in the following way: i) the bins in GMC represent the collection S of trajectories;

ii) the profit function Γ(p,u) and the cost function ρ(p) are bins-independent. They only depend

on p and u. The TRIPCOVER(B) problem is thus NP-hard. An efficient greedy approximation

algorithm for solving the GMC problem that achieves an approximation ratio of e/(e−1)+ ε ,

∀ε > 0 is proposed in (COHEN; KATZIR, 2008). We thus adapted this algorithm, whose source

code has been kindly provided us by the authors, in order to take into account TRIPCOVER(B)

specific constraints.

97

4.3 The TrajSP Problem

Once the solution of a given TRIPCOVER instance is computed, the trajectories in

S ∗ need to be scheduled on the user agenda. To this purpose, we model trajectory scheduling

as a Traveling Salesman Problem (TSP) aimed at finding the shortest path crossing all these

trajectories. In the classic TSP, the goal is to find the shortest path connecting a given set

of geographical points. Here, the task is different as it is defined over a set S ∗ of disjoint

trajectories, i.e., trajectories not sharing any PoI. We consider these trajectories as bi-directional

paths representing tourists’ behaviors that must be preserved in the final solution. Therefore we

have to connect trajectories in a single sightseeing tour by only considering their terminal PoIs

(endPoIs) – the first and the last PoI of each trajectory.

In the following, we formally define our trajectory scheduling problem (TRAJSP),

we propose a local-search based algorithm to efficiently address it and, finally, we describe the

simple approach used to schedule the final sightseeing tour on the user agenda.

4.3.1 Trajectory Scheduling Problem

Let S ∗ ⊆S be a set of disjoint trajectories, P∗ the set of endPoIs, and E = (ei j)

the endPoIs matrix where ei j = 1 if i and j are endPoIs of the same trajectory of S ∗, 0 otherwise.

Moreover, let C be the symmetric cost matrix where ci j is the time needed to move from endPoI

i to endPoI j. TRAJSP is defined as follows:

Trajectory Scheduling Problem

TRAJSP: Given the set of endPoIs P∗, the endPoIs matrix E, and the cost matrix C, find

the tour P̂ that:

minimize
|P∗|

∑
i=1

|P∗|

∑
j=i+1

ci j ηi j (4.5)

such that
k−1

∑
i=1

ηik +
|P∗|

∑
j=k+1

ηk j = 1, ∀k ∈ {1, . . . , |P∗|} (4.6)

∑
i, j∈S

ηi j + ei j ≤ |S|−1, (S⊂ P∗, |S|> 2), i < j (4.7)

ηi j ≤ 1− ei j, ∀i, j i 6= j (4.8)

where

ηi j =

{
1 if endPoI i is connected to endPoI j,

0 otherwise.

In the above formulation, only the costs between different trajectories’ endPoIs have

98

to be considered for minimizing cost (4.5), while (4.6) and (4.7) impose constraints on the degree

(numeber of connections) of each endPoI and on sub-tour elimination, respectively (MATAI et

al., 2010). Note that the degree constraint in (4.6) is set to 1 since each endPoI already has one

fixed connection to the next PoI of the associated trajectory. The last constraint in (4.8) ensures

that two endPoIs of the same trajectory are never connected together in the solution.

Although the number of possible solutions for TRAJSP is lower than whose of the

corresponding TSP formulation4, finding the exact solution to TRAJSP is still infeasible even

for instances involving a small number of trajectories (we have about 82 billions of possible

solutions with only 12 trajectories). Hence, we address TRAJSP by proposing a Local Search

heuristics that starts from a (given or random) tour P̂ connecting all trajectories in S ∗, and then

applying local changes to P̂ by means of 2-OPT or 3-OPT strategies (MATAI et al., 2010).

We now introduce an interesting property of the TRAJSP problem that allows us to

formalize how 2-OPT or 3-OPT strategies have to be applied. Given endPoI i, let e(i) = j be

the other endPoI of the same trajectory. Obviously e(j) = i holds as well. Since we start from a

tour connecting all the trajectories, each endPoI i is connected to both e(i) and to an endPoI d

of another trajectory in S ∗. Let denote with n(i) the connected endPoI d. Note that only the

link between endPoIs i and n(i) can be modified, since the path between i and e(i) is fixed by

definition.

We now introduce a basic local-change operation op(i,k) over two endPoIs i,k, such

that k 6= e(i). The local-change operation works by adding link (i,k) and removing links (n(i), i)

and (n(k),k). It is clear that the application of op(·, ·) leads to a non-admissible solution for

TRAJSP, since we remove two links of the tour while we add only one. We thus need to perform

some additional changes to reconnect the two endPoIs that remain disconnected. The result

below formalizes how such changes aimed at restoring the feasibility of the current solution have

to be done. In particular, given two endPoIs i, k, it states that we can apply 2-OPT or 3-OPT

strategies chosen according to the value of l(i,k), a function returning the minimum number of

endPoIs connections between i and k.

Lemma 1 Given a tour P̂ and a local-change operation op(i,k) performed over two endPoIs

i,k such that l(i,k)> 1, if l(i,k) is even, then a 2-OPT strategy needs to be applied to produce a

feasible tour, a 3-OPT strategy otherwise.

Proof 1 Given two endPoIs i,k, l(i,k) can be either even or odd. First, suppose l(i,k) is even.

It means that the minimum number of connections between the endPoIs i and k is even. As a

consequence, starting from the link (n(i), i) (red dashed line) we arrive at (e(k),k) (black dashed

line), or from (i,e(i)) (black dashed line) we arrive at (k,n(k)) (red dashed line), as shown in

Figure 33 (a) below.
4 We have exactly (k− 1)! ∗ 2(k−1) solutions for k trajectories in the case of TRAJSP, and (2k− 1)!/2 for the

corresponding TSP formulation considering the two endPoIs of each trajectory.

99

i e(i)

ke(k)

n(i)

n(e(k))

n(e(i))

n(k)
(a)

i e(i)

ke(k)

n(i)

n(e(k))

n(e(i))

n(k)
(b)

i e(i)

e(k)k

n(i)

n(k)

n(e(i))

n(e(k))
(c)

i e(i)

e(k)k

n(i)

n(k)

n(e(i))

n(e(k))
(d)

Figura 33 – Examples of how op(i,k) modifies the tour according to l(i,k), i.e., the minimum
number of endPoIs connections between i and k.

Operation op(i,k) removes (n(i), i) and (n(k),k). Moreover, it adds (i,k) (see Figure

33 (b)). Note that, at this point the tour is disconnected. To have a feasible tour, we need to add

the new link (n(i),n(k)) that joins the two disconnected endPoIs. Because this process adds two

links (i,k),(n(i),n(k)) and removes two other links (n(i), i),(n(k),k), it corresponds to applying

a 2-OPT strategy.

We now study the case l(i,k) is odd. Starting from (i,n(i)), leads us to (k,n(k))

(red dashed lines). Moreover, from (i,e(i)) we arrive at (k,e(k)) (black dashed lines). This

configuration is shown in Figure 33 (c). Applying op(i,k) to this particular case generates a

different configuration (see Figure 33 (d)), i.e., one sub-tour (i.e., a closed path) from i to k, and

one path from n(i) and n(k). To merge the sub-tour and the path, we need to remove one link

from the sub-tour and connect it to the path, e.g., n(i) and n(k). So, we can remove (e(i),n(e(i)).

We then need to add (e(i),n(i)) and (n(e(i)),n(k)) to obtain a tour crossing all the endPoIs.

Because we add three new links and remove three other ones, we applied a 3-OPT strategy. �

Local search algorithm. From the above discussion, it is easy to devise a local search algorithm

that iteratively optimizes a given tour by applying 2-OPT or 3-OPT strategies and stops after a

fixed number of iterations or when it converges to a locally optimal solution.

4.3.1.1 Scheduling the tour on the user agenda

Given the sightseeing tour P̂ computed for a given user and a time budget by our

local search TRAJSP algorithm, we schedule it on the user agenda by splitting the tour into the

desired number m of slots (e.g., days). The solution involves identifying a starting endPoI in

the tour and assigning the successive PoIs in P̂ to the current slot until the slot is filled and the

next slot is considered. The choice of the starting endPoI can be done in two different ways:

either by removing the most “expensive” connection (e.g., in terms of traveling time) between

100

two endPoIs of the tour or by taking into account the closest endPoI to a given spatial position

(e.g. user’s hotel).

4.4 Building the Knowledge Base

Figure 34 depicts an overview of the TRIPBUILDER architecture. The component

related to Data Collection retrieves relevant data from Flickr, Wikipedia, and Google Maps.

The second component called Data Processing extracts the knowledge used to devise relevant

PoIs and model users’ visiting behaviors from data provided by the Data Collection component.

Given a budget B, the third component Covering deals with the exploitation of the models and

the knowledge base to compute the solution to the TRIPCOVER(B) problem. The result is a

set of trajectories in the chosen city on the basis of user interests and time budget (see Figure

35) that are finally scheduled on the user agenda by the fourth component Scheduling. Figure

35 illustrates an example showing geo-tagged photos matched with Wikipedia PoIs in order to

generate a set of trajectories representing the past visits of tourists.

Modeling Trajectory

TripCover

PoIs Users PoI
History

Trajectory
Set

Modeling Users PoI
History

Users
Photos

Mining Users PoI
Interest

Users PoI
Interest

Data Collection Data Processing

Traveling
Time TrajSP

Covering

Scheduling

Figura 34 – Overview of the unsupervised process used to build the TRIPBUILDER knowledge
base.

In order to assess TRIPBUILDER we generate - in a complete unsupervised process -

a knowledge base covering three Italian cities which are important from a sightseeing point of

view and guarantee variety and diversity in terms of size and richness of public user-generated

content available for download: Rome, Florence, and Pisa. The generation of the knowledge

base for each of the cities is a multi-steps process that we are going to detail in the following.

4.4.1 Points of interest discovery

The first step is to identify the set of PoIs in the target geographical region. Given

the bounding box BBcity containing the city of interest, we download all the geo-referenced

Wikipedia pages falling within this region. We assume each geo-referenced Wikipedia named

entity, whose geographical coordinates falls into BBcity, to be a fine-grained Point of Interest. For

each PoI, we retrieve its descriptive label, its geographic coordinates as reported in the Wikipedia

page, and the set of categories the PoI belongs to. Categories are reported at the bottom of the

101

...

Colosseum
3 photos

 01/07/2013 9:00 -12:00

Ruins
2 photos

01/07/2013 13:30 -15:00

Trevi Fountain
2 photos

01/07/2013 15:42 - 16:00

Figura 35 – Data processing of TRIPBUILDER: from Wikipedia PoIs and Flickr photos towards
a knowledge base of tourist trajectories.

Wikipedia page, and are used to link articles under a common topic. They form a hierarchy,

although sub-categories may be a member of more than one category. By considering the set C

of categories associated with all the PoIs, we generate the normalized relevance vector of each

PoI. We then perform a density-based clustering to group in a single PoI sightseeing entities

which are very close one to each other5. Clustering very close PoIs is important since a tourist in

a given place can enjoy all the attractions in the surroundings even if she does not take photos to

all of them. Moreover, it aims at reducing the sparsity that might affect trajectory data. To cluster

the PoIs we use DBScan (ESTER et al., 1996). To build our dataset, we set 1 as the minimum

number of points and 200 meters as ε . Finally, we obtain the relevance vector for the clustered

PoIs by considering the occurrences of each category in the members of the clusters and by

normalizing the resulting vector. At the end of this first step we have the set P = {p1, . . . , pN}
of PoIs and the relevance vector ~vp ∈ [0,1]|C| for each of these PoIs in a fully automatic way by

exploiting Wikipedia as an external source of knowledge.

4.4.2 Users and PoI histories

As second step we need a method for collecting users U and the long-term itineraries

crossing the discovered PoIs. We query Flickr to retrieve the metadata (user id, timestamp, tags,
5 Consider for example the beautiful marble statues in the Loggia dei Lanzi in Florence which are only a few

meters far one from each other but have a distinct dedicated page in Wikipedia.

102

geographic coordinates, etc.) of the photos taken in the given area BBcity. The assumption we

are making is that photo albums made by Flickr users implicitly represent sightseeing itineraries

within the city. To strengthen the accuracy of our method, we retrieve only the photos having

the highest geo-referenced accuracy given by Flickr6. This process thus collects a large set of

geo-tagged photo albums taken by different users within BBcity. We preliminary discard photo

albums containing only one photo. Then, we spatially match the remaining photos against the

set of PoIs previously collected. We associate a photo to a PoI when it has been taken within a

circular buffer of a given radius having the PoI as its center. To build our dataset, we empirically

set it to 100 meters radius. Note that in order to deal with clustered PoIs, we consider the distance

of the photo from all constituent members: in case the photo falls within the circular region of at

least one of the members, it is assigned to the clustered PoI. Moreover, since several photos by

the same user are usually taken close to the same PoI, we consider the timestamps associated

with the first and the last of these photos as the starting and ending time of the user visit to the

PoI. The PoI visiting time ρ(p) is then estimated by computing for each PoI the average of these

times. Moreover, the popularity of each PoI is computed as the number of distinct users that take

at least one photo in its circular region. The above process allows us to generate the set of users

U , their PoI history, and estimate for the popularity and visiting time of each PoI. Finally, the

preference vector for each user is built by summing up and normalizing the relevance vectors of

all the PoIs occurring in her PoI history.

4.4.3 Trajectories creation

In order to build the set S of trajectories we split users’ PoI histories as detailed in

Definition 11 (Poi History definition). To choose the splitting threshold δ , we derive the users’

wisdom-of-crowds behavior by analyzing the inter-arrival time of each pair of consecutive photos

taken in different PoIs. Therefore, for each city we compute the distribution of probability of the

inter-arrival time P(x≤ δ) of pairs of consecutive photos. Then, we devise the time threshold δ

such that P(x≤ δ) = 0.9. Figure 36 shows the distributions of probability of inter-arrival times,

i.e., P(x≤ δ), for all the pairs of consecutive photos in each dataset. Results show that while for

Rome and Florence the resulting δ is about 5 and 6 hours respectively, for the smallest city of

Pisa it decreases to about 3 hours.

4.4.4 Traveling time estimation

An important aspect of TRIPBUILDER is that we recommend sightseeing tours fitting

the available time budget and not just the set of PoIs to be visited. The sightseeing tour building

step should therefore consider not only the PoI visiting time ρ(p) but also the time τ(·, ·) needed
6 <http://www.flickr.com/services/api/flickr.photos.search.html>

http://www.flickr.com/services/api/flickr.photos.search.html

103

0 5 10 15 20 25
Hours

0.84

0.86

0.88

0.90

0.92

0.94

P
ro

b
a
b
ili

ty

Pisa

Florence

Rome

Figura 36 – Plot shows the probability distribution of the inter-arrival time for pairs of consecu-
tive photos taken in Rome, Florence, and Pisa. The vertical lines highlight the time
thresholds corresponding to P(x≤ δ) = 0.9.

to move between consecutive PoIs in the itinerary. Since measuring intra-PoI moving time from

the photo albums resulted to be inaccurate for not popular PoIs, we resort to an external service.

Given a pair (pi, p j) of PoIs in a trajectory, we estimate τ(pi, p j) by querying Google Maps for

the walking time between the PoIs. Naturally, this is an approximation since several variations

may happen: the user having a car, using public transportation, taking a taxi. However, our

method is parametric to these aspects, and the system can be easily adapted to consider the

different choices. Moreover, most PoIs in our sightseeing cities are actually at walking distances.

4.5 Datasets statistics

Table 7 shows the main characteristics of the three datasets. The second column

reports the number of PoIs for each of the three cities. Note that these numbers refer to the

result of the clustering phase, while the number of entities extracted from Wikipedia is 124,

1,022, and 671 for Pisa, Florence and Rome, respectively. Furthermore, columns “Users” and

“Photos” report the number of distinct users and photos retrieved from Flickr. Finally, column

“Trajectories” reports the number of trajectories crossing at least two PoIs, while column “Traj.

per PoI (avg.)” reports the average number of trajectories crossing each PoI.

City PoIs Users Photos Trajectories Traj. per PoI (avg.)

Pisa 112 1,825 18,170 3,430 7.20
Florence 891 7,049 102,888 16,522 5.39
Rome 490 13,772 234,616 35,522 20.51

Tabela 7 – Statistics regarding the three cities in our dataset.

Figures 37a and 37b, and 37c show three plots regarding the characteristics of

the three datasets that have been made available for download to favor the reproducibility of

104

100 101 102 103

Length of Trajectories

100

101

102

103

104

105

Fr
e
q
u
e
n
cy

Pisa

Florence

Rome

(a)

100 101 102 103

Poi

100

101

102

103

104

P
o
i
P
o
p
u
la

ri
ty

Pisa

Firenze

Rome

(b)

100 101 102 103

Category

100

101

102

103

C
a
te

g
o
ry

 P
o
p
u
la

ri
ty Pisa

Florence

Rome

(c)
Figura 37 – Plots (a), (b), (c) show instead the distribution of trajectories length (as number of

PoIs crossed), the popularity of PoIs and the popularity of categories in the three
datasets.

experiments7. A general consideration common to all the three figures regards the skewness of

the distributions that are plotted in log-log scale. In particular, Figure 37a reports the distribution

of trajectory length expressed in term of the number of crossed PoIs. We can see that the slope of

the three curves is very similar, only absolute values vary as expected. Note that the most frequent

trajectory length in the plot is just 1 (see Figure 37a). These are obviously noisy trajectories,

corresponding to the cases in which we can match only one single PoI to a photo album. These

spurious trajectories are maintained in the datasets only for their contribution to the measure of

PoI popularity, but do not belong to the set S of trajectories used by TRIPBUILDER.

Figure 37b shows the distribution of PoI popularity in the three cities involved. Even

in this case we can note strong similarities in the distributions, although the curves of Rome and

Florence cross in the tail. This happens for a peculiarity in these two datasets: while we have

more users and photos for Rome than for Florence, the opposite holds for the number of PoIs

reported in the X axis.

The last plot reported in Figure 37c shows the popularity of categories associated

with the PoIs. Even in this case we have a power-law distribution with a few very popular

categories and most categories associated with relatively few PoIs. Wikipedia categories form
7 Interested readers can download the datasets from the URL: <https://github.com/igobrilhante/TripBuilder>

https://github.com/igobrilhante/TripBuilder

105

in fact a (weak) hierarchy, and the most general topics are associated with many pages, while

sub-categories are relevant only for precisely identified subsets of homogeneous PoIs.

Finally, Table 8 reports the top-3 most popular PoIs and categories in Pisa, Florence

and Rome. We also report three examples per city of trajectories extracted from the dataset. Note

that a popular PoI in Florence and Pisa is the baptistery which is entitled, in both cities, to Saint

John the Baptist.

Pisa Florence Rome

PoIs
Leaning Tower Loggia dei Lanzi Colosseum
Miracoli Square Ponte vecchio Fontana di Trevi
Battistero di San Gio-
vanni

Battistero di San Gio-
vanni

Pantheon

Categories
Churches Palaces Churches
Palaces Churches Campitelli Quarter
Museums Architecture Titular Churches

Trajectories

Battistero di San Gio-
vanni, Miracoli Square,
Leaning Tower.

Battistero di San Gio-
vanni, Porta della Man-
dorla, Campanile di Gi-
otto.

Cappella Sistina, Basi-
lica di San Pietro in Vati-
cano, Obelisco Vaticano.

Miracoli Square, Museo
dell’Opera del Duomo,
Leaning Tower.

Palazzo Vecchio, Galle-
ria degli Uffizi, Piazza
della Signoria.

Colosseum, Arco di Cos-
tantino, Foro Romano.

Ebraic Cemetery, Battis-
tero di San Giovanni, Le-
aning Tower

Ponte Vecchio, Forte Bel-
vedere, Piazza della Sig-
noria.

Colosseum, Foro Ro-
mano, Pantheon.

Tabela 8 – Top-3 most popular PoIs and Categories in Pisa, Florence, and Rome. We also report
three examples of trajectories per city extracted from the dataset.

4.6 Experiments

We now assess the effectiveness of TRIPBUILDER in: i) selecting a set of trajectories

of interest for a given user (TRIPCOVER), and ii) scheduling that set on the user agenda (TRAJSP).

This is done by comparing its performance with those obtained by competitive baseline by means

of evaluation metrics that consider the actual behavior of test users as mined from Flickr.

Moreover, we present an evaluation of the efficiency of the TRIPBUILDER framework together

with a detailed evaluation of both TRIPCOVER and TRAJSP solutions8.

We conduct our experiments on the three datasets of Pisa, Florence, and Rome by

varying the time budget and the parameter α affecting the contribution of PoIs/user-similarity
8 All the experiments have been conducted on an Ubuntu Linux box with two Intelr Xeonr E5520 CPUs and

32 GB of RAM.

106

and PoI-popularity to user profit. Moreover, we perform two different set of experiments that

differ for the methodology used to choose the test users:

• Random selection. Here the set of users used to assess TRIPBUILDER performance is

randomly chosen. In particular, we consider for all the three cases a set of 100 test users

randomly selected among the visitors having a Poi history longer than 10, 15, and 20 PoIs

for Pisa, Florence and Rome, respectively. The threshold on the length of the PoI history

is set in order to be able to vary in a significant range the time budgets. This is because

it is not feasible to evaluate a personalized 4-days itinerary in Rome with test users that

actually visited only a few popular PoIs during a single day of visit. By using the above

cutoff values, the users among which the 100 test users were chosen are 153, 679, and 930

in Pisa, Florence, and Rome, respectively.

• Profile-based selection. Here we select the test users among users who actually visited at

least two of the three cities. In particular, given a user visiting two cities A and B, we used

the preference vector obtained from the PoIs visited in city A to generate the personalized

sightseeing tour in city B and vice-versa. In this way we avoid any possible bias to the

specific categories used in the Wikipedia pages of a given city.

4.6.1 Effectiveness – TRIPCOVER

We compare the effectiveness of TRIPBUILDER in selecting a budgeted set of

trajectories of interest for a given user against the following baselines:

• Trajectory Popularity (Tpop). This baseline builds the tour by taking into account the

normalized popularity of the trajectories in S computed as the sum of the popularity of

the constituent PoIs divided by the length of the trajectory. It greedily adds to the visiting

plan the most popular trajectories until the time budget is reached.

• Trajectory Personalized Profit (Tppro). Given the preference vector of a tourist, this

baseline sorts the trajectories in S by decreasing normalized user/PoI similarity. Such

trajectory score is computed as the sum of user/PoI similarities of all the PoIs in the

trajectory divided by the trajectory length. The baseline builds the personalized itinerary

by adding once at a time the trajectories having the highest profit for the specific tourist

until the total time budget is reached.

Experiments are conducted by providing to TRIPBUILDER and the baseline algo-

rithms the preference vector of each one of the test users in each city, along with a time budget

varying in the range 1, 2, and 4 days (1/2, 1 day in the case of the small city of Pisa)9. We

evaluate the performance of the three methods by means of the metrics defined below. Moreover,
9 We assume the normal daily activity of a tourist in a city to be of twelve hours. Our solution is, however,

completely agnostic w.r.t. the daily agenda and works with tourist-provided agenda defining different time slots
as well.

107

we also employ recall (BAEZA-YATES et al., 1999), a well-known IR metrics that in our settings

measure the ability of the methods to predict PoIs and categories that match actual PoI histories

of the users in the test set.

Personal Profit Score. Given a user u and a set of trajectories S ∗, Spro
u is computed as the sum

of the profits of the PoIs in S ∗ divided by the sum of the profits of all the PoIs. The user profit

for a PoI (i.e., sim(~vp,~vu)) is the cosine similarity between user preferences and PoI relevance

vectors (see Definition 10):

Spro
u (S ∗) =

∑
p∈S ∗

sim(~vp,~vu)

∑
p∈P

sim(~vp,~vu)
.

Visiting Time Score. Given a set of trajectories S ∗, this score is computed as the sum of

the visiting times for the PoIs in S ∗ normalized by the time budget B. Given a time budget,

it assumes that high scored tours result to be interesting since they favor the time to enjoy

attractions with respect to the intra-PoIs moving time:

Svt(S ∗) = ∑
p∈S ∗

ρ(p) / B.

Popularity Score. Given a set of trajectories S ∗, this score is computed by summing the

popularity of the PoIs in S ∗. Note that the popularity pop(p) of a given PoI p is normalized

over the sum of the popularity of all the PoIs. As a consequence, ∑
p∈P

pop(p) = 1:

Spop(S ∗) = ∑
p∈S ∗

pop(p).

4.6.1.1 Random Selection

Tables 9, 10, and 11 report the effectiveness measured for the recommended sightse-

eing tours on the basis of the metrics defined above in Pisa, Florence, and Rome, respectively.

In particular, each table details the average per-user performance and its standard deviation for

each previously-defined metrics, and highlights in bold fonts the best per-budget figures. The

first observation from the results is that, despite of their simplicity, both popularity (Tpop) and

profit-based (Tppro) greedy strategies perform well, thus forming competitive baselines. In terms

of Personal Profit Score (Spro
u), our solution improves the baselines up to 86% in Pisa with an

absolute improvement ∆Spro
u of 0.30 (Tpop vs. TRIPBUILDER, α = 0.75), 178% in Florence

with an improvement ∆Spro
u of 0.203 (Tpop vs. TRIPBUILDER, α = 1), and 213% in Rome

with an improvement ∆Spro
u of 0.382 (Tpop vs. TRIPBUILDER, α = 0.75). In terms of Spro

u ,

TripBuilder outperforms the baselines showing a behavior which is sensitive to the parameter α .

Results in Pisa (see Table 9) compared to Tppro demonstrate that our approach is

better for 1/2-day budget with 6% of improvement, while Tppro is better for 1-day budget, but it

108

improves only 1%. It is worth highlighting two situations: (1) when α = 0, TripBuilder works

by considering only the popularity (as Tpop) showing a performance in terms of Spro
u that is

similar to the Tpop baseline; (2) when α = 1, TripBuilder considers only users’ interest, and

its performance becomes comparable with Tppro. We conclude that α plays an important role

in TripBuilder to balance the contribution of users’ profit/interest and PoI’s popularity. For

instance, the highest Spro
u score in Pisa for the time budget of 1 day can be found when α = 0.75

(i.e., 0.79). Moreover, TripBuilder builds tours that increase the Visiting Time Score (Svt) up

to 36 minutes in Pisa (∆Svt = 0.05), about 279 minutes in Florence, and approximately 9.2

hours in Rome. Therefore, our algorithm is able to suggest itineraries that better match users’

preferences w.r.t the baselines. In addition, TripBuilder works by favoring higher visiting time

while contributing to lower intra-PoI movement time in its solutions.

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1/2 0.792 (±0.17) 0.951 (±0.08) 0.348 (±0.05) 0.639 (–) 0.832 (–)
1 0.894 (±0.10) 0.989 (±0.04) 0.655 (±0.06) 0.643 (–) 0.914 (–)

Tppro
1/2 0.697 (±0.19) 0.819 (±0.18) 0.609 (±0.11) 0.648 (±0.04) 0.468 (±0.14)
1 0.909 (±0.10) 0.966 (±0.07) 0.804 (±0.06) 0.643 (±0.02) 0.780 (±0.10)

TRIPBUILDER (α = 0.0)
1/2 0.796 (±0.16) 0.983 (±0.04) 0.400 (±0.05) 0.731 (–) 0.836 (–)
1 0.861 (±0.11) 0.989 (±0.04) 0.584 (±0.05) 0.640 (–) 0.887 (–)

TRIPBUILDER (α = 0.25)
1/2 0.824 (±0.14) 0.946 (±0.09) 0.619 (±0.08) 0.744 (±0.03) 0.717 (±0.09)
1 0.914 (±0.09) 0.990 (±0.03) 0.751 (±0.05) 0.692 (±0.02) 0.899 (±0.02)

TRIPBUILDER (α = 0.5)
1/2 0.795 (±0.16) 0.917 (±0.12) 0.641 (±0.09) 0.736 (±0.03) 0.636 (±0.12)
1 0.927 (±0.08) 0.993 (±0.02) 0.779 (±0.06) 0.692 (±0.02) 0.888 (±0.04)

TRIPBUILDER (α = 0.75)
1/2 0.772 (±0.15) 0.903 (±0.12) 0.646 (±0.09) 0.731 (±0.03) 0.598 (±0.14)
1 0.926 (±0.08) 0.991 (±0.03) 0.790 (±0.06) 0.689 (±0.02) 0.879 (±0.05)

TRIPBUILDER (α = 1.0)
1/2 0.769 (±0.16) 0.895 (±0.13) 0.644 (±0.09) 0.731 (±0.03) 0.579 (±0.14)
1 0.918 (±0.09) 0.991 (±0.03) 0.788 (±0.06) 0.693 (±0.02) 0.861 (±0.05)

Tabela 9 – Random Selection: average effectiveness of TRIPBUILDER and the baselines in
Pisa.

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1 0.565 (±0.17) 0.905 (±0.08) 0.114 (±0.04) 0.601 (–) 0.591 (–)
2 0.708 (±0.17) 0.952 (±0.06) 0.214 (±0.04) 0.607 (–) 0.732 (–)
4 0.822 (±0.13) 0.982 (±0.04) 0.359 (±0.04) 0.609 (–) 0.836 (–)

Tppro
1 0.359 (±0.15) 0.720 (±0.17) 0.203 (±0.06) 0.648 (±0.05) 0.249 (±0.07)
2 0.515 (±0.15) 0.864 (±0.10) 0.338 (±0.07) 0.637 (±0.04) 0.382 (±0.07)
4 0.719 (±0.13) 0.961 (±0.05) 0.529 (±0.06) 0.631 (±0.03) 0.602 (±0.05)

TRIPBUILDER (α = 0.0)
1 0.672 (±0.17) 0.957 (±0.06) 0.196 (±0.04) 0.792 (–) 0.689 (–)
2 0.785 (±0.16) 0.972 (±0.05) 0.325 (±0.04) 0.722 (–) 0.803 (–)
4 0.860 (±0.10) 0.986 (±0.03) 0.453 (±0.03) 0.706 (–) 0.869 (–)

TRIPBUILDER (α = 0.25)
1 0.572 (±0.15) 0.912 (±0.08) 0.316 (±0.05) 0.723 (±0.03) 0.457 (±0.06)
2 0.749 (±0.13) 0.964 (±0.05) 0.457 (±0.05) 0.691 (±0.02) 0.663 (±0.05)
4 0.874 (±0.09) 0.986 (±0.03) 0.594 (±0.04) 0.694 (±0.02) 0.826 (±0.02)

TRIPBUILDER (α = 0.5)
1 0.554 (±0.15) 0.903 (±0.09) 0.317 (±0.05) 0.719 (±0.03) 0.435 (±0.06)
2 0.742 (±0.13) 0.962 (±0.05) 0.458 (±0.05) 0.689 (±0.02) 0.646 (±0.05)
4 0.869 (±0.10) 0.986 (±0.03) 0.595 (±0.04) 0.692 (±0.02) 0.822 (±0.03)

TRIPBUILDER (α = 0.75)
1 0.548 (±0.15) 0.897 (±0.09) 0.317 (±0.05) 0.717 (±0.03) 0.427 (±0.06)
2 0.741 (±0.13) 0.961 (±0.05) 0.458 (±0.05) 0.688 (±0.02) 0.641 (±0.05)
4 0.868 (±0.10) 0.986 (±0.03) 0.596 (±0.04) 0.692 (±0.02) 0.820 (±0.03)

TRIPBUILDER (α = 1.0)
1 0.546 (±0.15) 0.897 (±0.09) 0.317 (±0.05) 0.716 (±0.03) 0.424 (±0.06)
2 0.736 (±0.13) 0.962 (±0.05) 0.458 (±0.05) 0.686 (±0.02) 0.638 (±0.05)
4 0.866 (±0.10) 0.986 (±0.03) 0.596 (±0.04) 0.689 (±0.02) 0.817 (±0.03)

Tabela 10 – Random Selection: average effectiveness of TRIPBUILDER and the baselines in
Florence.

109

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1 0.578 (±0.15) 0.881 (±0.07) 0.179 (±0.03) 0.471 (–) 0.642 (–)
2 0.795 (±0.13) 0.949 (±0.05) 0.403 (±0.03) 0.463 (–) 0.836 (–)
4 0.934 (±0.07) 0.991 (±0.02) 0.675 (±0.03) 0.485 (–) 0.953 (–)

Tppro
1 0.428 (±0.12) 0.708 (±0.14) 0.381 (±0.06) 0.456 (±0.04) 0.281 (±0.07)
2 0.642 (±0.13) 0.872 (±0.09) 0.596 (±0.06) 0.443 (±0.03) 0.505 (±0.08)
4 0.894 (±0.09) 0.979 (±0.03) 0.824 (±0.04) 0.447 (±0.02) 0.813 (±0.04)

TRIPBUILDER (α = 0.0)
1 0.749 (±0.13) 0.937 (±0.05) 0.369 (±0.03) 0.786 (–) 0.800 (–)
2 0.906 (±0.09) 0.980 (±0.03) 0.603 (±0.04) 0.754 (–) 0.927 (–)
4 0.950 (±0.05) 0.991 (±0.01) 0.742 (±0.03) 0.635 (–) 0.961 (–)

TRIPBUILDER (α = 0.25)
1 0.680 (±0.12) 0.878 (±0.07) 0.558 (±0.04) 0.735 (±0.02) 0.563 (±0.05)
2 0.889 (±0.08) 0.978 (±0.02) 0.757 (±0.04) 0.723 (±0.01) 0.837 (±0.03)
4 0.966 (±0.04) 0.995 (±0.01) 0.860 (±0.03) 0.640 (±0.02) 0.955 (±0.01)

TRIPBUILDER (α = 0.5)
1 0.663 (±0.13) 0.854 (±0.09) 0.561 (±0.04) 0.732 (±0.02) 0.528 (±0.06)
2 0.885 (±0.08) 0.974 (±0.03) 0.760 (±0.04) 0.720 (±0.01) 0.809 (±0.04)
4 0.968 (±0.04) 0.995 (±0.01) 0.865 (±0.03) 0.640 (±0.02) 0.954 (±0.01)

TRIPBUILDER (α = 0.75)
1 0.654 (±0.13) 0.841 (±0.09) 0.561 (±0.04) 0.731 (±0.02) 0.513 (±0.06)
2 0.880 (±0.08) 0.973 (±0.03) 0.761 (±0.04) 0.718 (±0.02) 0.798 (±0.05)
4 0.967 (±0.04) 0.995 (±0.01) 0.867 (±0.03) 0.639 (±0.02) 0.954 (±0.01)

TRIPBUILDER (α = 1.0)
1 0.651 (±0.13) 0.839 (±0.09) 0.561 (±0.04) 0.731 (±0.02) 0.505 (±0.06)
2 0.880 (±0.08) 0.970 (±0.03) 0.762 (±0.04) 0.718 (±0.02) 0.792 (±0.05)
4 0.967 (±0.04) 0.995 (±0.01) 0.867 (±0.03) 0.638 (±0.02) 0.953 (±0.01)

Tabela 11 – Random Selection: average effectiveness of TRIPBUILDER and the baselines in
Rome.

In terms of Visiting Time Score (Svt), the higher it is, the more relevant the itinerary

can be considered for the user, since it is likely that she prefer to spend time visiting the PoIs

than moving between them. As TRIPCOVER takes this factor into account (as a cost), it tends to

exploit trajectories containing PoIs closer to each other to maximize the user profit. Consequently,

we claim that TripBuilder is able to build tours that globally maximize Svt . We can see from the

results in the tables that TripBuilder uses more appropriately the time budget. The difference in

terms of Svt increases when larger budgets are considered. Moreover, this phenomenon is even

more highlighted when dealing with larger cities. Indeed, in the case of Pisa, the three algorithms

(i.e., Tpop, Tppro, TripBuilder) have quite similar Svt , with slight gains for TripBuilder (from 30

to 34 minutes, with α = 0.75). In the case of larger cities, i.e., Florence and Rome, TripBuilder

remarkably outperforms the baselines. The rationale behind this result can be that in larger cities

the intra-PoI traveling time tends to impact more the Svt metrics.

In terms of Popularity Score (Spop), results achieved with α = 0 confirm that TRIP-

BUILDER outperforms Tpop in the most cases. Moreover, the values of Spop for TRIPBUILDER

decrease when increasing values of α as expected.

In terms of PoIs and categories recall, all algorithms get at least 69% of the relevant

PoIs and 81% of the categories for Pisa. Regarding categories recall in Pisa (see Table 9),

TripBuilder and Tpop present similar results, while both of them outperform Tppro. Moreover,

looking at PoIs recall, TripBuilder gets better results than the baselines (with α = 0.5): 92.7%

compared with 89.4% of Tpop and 90.9% of Tppro for the 1-day time budget. Comparing the

results for Florence and Rome, we observe that TripBuilder outperforms in both recall figures the

baselines depending on α setting. Moreover, when larger budgets are employed (2 and 4-days

budget), it always outperforms the baselines independently from the value of α (see Table 10

110

and Table 11). This behavior is due to the capability of TripBuilder of building tours with a

higher Visiting Time Score within the time budgets. Consequently, more PoIs relevant for the

specific user are likely to be visited. Moreover, we can see that the α parameter allows to fit

the expectations of the user. For small values of α , results report higher recall values because

trajectories crossing popular PoIs are preferred. When α increases, recall decreases because

unexpected PoIs in the selected trajectories fitting the user interests are suggested. We believe

these trajectories may constitute a source of serendipitous recommendations. Finally, the low

standard deviations associated with the results in Tables 9, 10, and 11 prove that the performance

of the three techniques are stable w.r.t. different users’ profiles.

4.6.1.2 Profile-based Selection

In these experiments we select test users who visited two different cities A and B. We

employ their preferences in city A to build and evaluate tours in city B and vice-versa. Among the

2,224 users visiting both Florence and Rome and 814 visiting Pisa and Florence, we randomly

chose 100 users having PoI histories longer than the thresholds discussed above. It is worth

noting that for these experiments we need to “uniformize” the categories of the PoIs in the

three cities, since Wikipedia provides different categories for each city. Therefore, we exploit

the general categorization used within the TRIPBUILDER Web application available online10:

Architecture, Arts, Churches, Entertainment, Monuments, Museums, Nature & Landmarks.

The results of the experiments are reported in Tables 12, 13 and 14. As we can see,

the results confirm the trends reported for the previous experiments showing that TRIPBUILDER

remarkably outperforms the baselines. Experiments in Pisa, Table 12, Tpop shows better results

in terms of recall (Pois and categories), but TRIPBUILDER still achieves good scores for recall,

and it outperforms the baselines for Svt and Spro
u . Tables 13 and 14 show that TRIPBUILDER

outperforms the baselines in the most cases. Moreover, the similarity of these results with those

obtained in the tests using random selection confirm that the performance of TRIPBUILDER is

not affected by the “over-specific” categorization used in Wikipedia pages. Finally, it is worth

noting that the recall figures computed at the category level are remarkably higher that in the

previous experiments. This is motivated by the lower number of categories used to conduct the

experiments: covering the whole set of categories with a sightseeing itinerary is in this case

much simpler. It is also worth noting that we do not report results of TripBuilder with α = 0

here because we are conducting a profile-based experiment. TripBuilder with α = 0 does not

exploit personalization. For this reason, we do not consider it in this analysis.
10 <http://tripbuilder.isti.cnr.it/>

http://tripbuilder.isti.cnr.it/

111

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1/2 0.861 (±0.11) 0.997 (±0.02) 0.352 (±0.04) 0.639 (–) 0.832 (–)
1 0.915 (±0.08) 1.000 (–) 0.661 (±0.06) 0.643 (–) 0.914 (–)

Tppro
1/2 0.480 (±0.15) 0.781 (±0.18) 0.327 (±0.12) 0.608 (±0.03) 0.498 (±0.04)
1 0.745 (±0.14) 0.951 (±0.09) 0.608 (±0.10) 0.629 (±0.02) 0.766 (±0.03)

TRIPBUILDER (α = 0.25)
1/2 0.744 (±0.15) 0.971 (±0.07) 0.435 (±0.07) 0.757 (±0.02) 0.736 (±0.06)
1 0.863 (±0.10) 0.971 (±0.07) 0.653 (±0.05) 0.709 (±0.02) 0.871 (±0.02)

TRIPBUILDER (α = 0.5)
1/2 0.669 (±0.15) 0.928 (±0.11) 0.427 (±0.08) 0.752 (±0.03) 0.681 (±0.07)
1 0.871 (±0.11) 0.974 (±0.07) 0.661 (±0.04) 0.707 (±0.02) 0.875 (±0.02)

TRIPBUILDER (α = 0.75)
1/2 0.634 (±0.14) 0.917 (±0.11) 0.419 (±0.08) 0.749 (±0.03) 0.659 (±0.07)
1 0.871 (±0.11) 0.974 (±0.07) 0.662 (±0.04) 0.705 (±0.02) 0.873 (±0.02)

TRIPBUILDER (α = 1.0)
1/2 0.626 (±0.15) 0.924 (±0.11) 0.420 (±0.08) 0.750 (±0.03) 0.650 (±0.07)
1 0.869 (±0.11) 0.974 (±0.07) 0.664 (±0.04) 0.701 (±0.02) 0.868 (±0.03)

Tabela 12 – Profile-based selection: average effectiveness of TRIPBUILDER and the baselines
in Pisa obtained by exploiting the profiles from Florence visits.

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1 0.583 (±0.15) 0.960 (±0.08) 0.120 (±0.03) 0.601 (–) 0.591 (–)
2 0.729 (±0.13) 0.993 (±0.05) 0.221 (±0.04) 0.607 (–) 0.732 (–)
4 0.835 (±0.09) 1.000 (–) 0.365 (±0.04) 0.609 (–) 0.836 (–)

Tppro
1 0.271 (±0.09) 0.778 (±0.12) 0.111 (±0.03) 0.588 (±0.05) 0.289 (±0.03)
2 0.411 (±0.10) 0.800 (±0.11) 0.190 (±0.04) 0.590 (±0.02) 0.442 (±0.03)
4 0.632 (±0.11) 0.844 (±0.10) 0.341 (±0.06) 0.586 (±0.02) 0.651 (±0.02)

TRIPBUILDER (α = 0.25)
1 0.519 (±0.11) 0.992 (±0.05) 0.248 (±0.03) 0.741 (±0.01) 0.523 (±0.02)
2 0.745 (±0.12) 0.993 (±0.05) 0.388 (±0.04) 0.721 (±0.01) 0.739 (±0.02)
4 0.849 (±0.09) 0.993 (±0.05) 0.524 (±0.04) 0.692 (±0.01) 0.844 (±0.01)

TRIPBUILDER (α = 0.5)
1 0.514 (±0.12) 0.992 (±0.05) 0.248 (±0.03) 0.740 (±0.01) 0.519 (±0.02)
2 0.739 (±0.12) 0.993 (±0.05) 0.388 (±0.04) 0.721 (±0.01) 0.735 (±0.02)
4 0.849 (±0.09) 0.993 (±0.05) 0.524 (±0.04) 0.692 (±0.01) 0.844 (±0.01)

TRIPBUILDER (α = 0.75)
1 0.512 (±0.11) 0.992 (±0.05) 0.248 (±0.03) 0.740 (±0.01) 0.517 (±0.02)
2 0.735 (±0.11) 0.993 (±0.05) 0.388 (±0.04) 0.721 (±0.01) 0.734 (±0.02)
4 0.849 (±0.09) 0.993 (±0.05) 0.524 (±0.04) 0.692 (±0.01) 0.844 (±0.01)

TRIPBUILDER (α = 1.0)
1 0.509 (±0.11) 0.992 (±0.05) 0.249 (±0.03) 0.743 (±0.01) 0.513 (±0.02)
2 0.740 (±0.11) 0.993 (±0.05) 0.389 (±0.04) 0.724 (±0.01) 0.739 (±0.02)
4 0.852 (±0.09) 0.993 (±0.05) 0.524 (±0.04) 0.692 (±0.01) 0.843 (±0.01)

Tabela 13 – Profile-based selection: average effectiveness of TRIPBUILDER and the baselines in
Florence obtained by exploiting the profiles from Rome visits.

4.6.2 Effectiveness – TRAJSP

We now evaluate the effectiveness of TRIPBUILDER in scheduling the candidate set

of trajectories on the user agenda. We evaluate effectiveness by considering the average path

cost, the ratio between the cost of the TRAJSP solution – i.e., the length of the connections

between trajectories endPoIs – over the total budget available (see Figure 38). The lower the

ratio is, the better TRIPBUILDER employs the time by minimizing the connections when solving

the TRAJSP instance. Our Local Search algorithm is compared with two baselines: i) Random,

which builds the sightseeing tours by randomly connecting the endPoIs of the trajectories; and ii)

Nearest Trajectory, which is an adaptation of the well-known “nearest neighbor” TSP greedy

heuristic (MATAI et al., 2010) that greedily constructs the solution by always selecting the

trajectory with the closest endPoI. The results reported are referred to the whole set of 100 users

in the test set. However, since we are evaluating heuristic approaches that might be very sensitive

to the starting conditions, we ran each experiment 5 times and averaged the results achieved.

The stop condition for our TRAJSP local search algorithm used in all tests is reaching 1,000

112

Days Recall (PoIs) Recall (Cat.) Spro
u Svt Spop

Tpop
1 0.650 (±0.14) 0.838 (±0.08) 0.187 (±0.02) 0.471 (–) 0.642 (–)
2 0.859 (±0.10) 0.975 (±0.06) 0.407 (±0.02) 0.463 (–) 0.836 (–)
4 0.955 (±0.06) 1.000 (–) 0.676 (±0.02) 0.485 (–) 0.953 (–)

Tppro
1 0.349 (±0.09) 0.767 (±0.12) 0.160 (±0.05) 0.416 (±0.03) 0.356 (±0.05)
2 0.526 (±0.11) 0.791 (±0.11) 0.286 (±0.08) 0.427 (±0.02) 0.531 (±0.06)
4 0.768 (±0.10) 0.853 (±0.09) 0.511 (±0.10) 0.414 (±0.02) 0.772 (±0.05)

TRIPBUILDER (α = 0.25)
1 0.627 (±0.09) 0.883 (±0.10) 0.389 (±0.05) 0.787 (±0.01) 0.624 (±0.03)
2 0.824 (±0.08) 1.000 (–) 0.630 (±0.04) 0.739 (±0.01) 0.842 (±0.02)
4 0.921 (±0.05) 1.000 (–) 0.790 (±0.03) 0.642 (±0.02) 0.937 (±0.01)

TRIPBUILDER (α = 0.5)
1 0.614 (±0.10) 0.878 (±0.10) 0.389 (±0.06) 0.785 (±0.01) 0.607 (±0.03)
2 0.822 (±0.08) 1.000 (–) 0.628 (±0.05) 0.737 (±0.01) 0.838 (±0.02)
4 0.918 (±0.05) 1.000 (–) 0.790 (±0.03) 0.641 (±0.01) 0.935 (±0.01)

TRIPBUILDER (α = 0.75)
1 0.612 (±0.10) 0.876 (±0.10) 0.388 (±0.06) 0.785 (±0.01) 0.604 (±0.03)
2 0.820 (±0.08) 1.000 (–) 0.628 (±0.05) 0.737 (±0.01) 0.837 (±0.02)
4 0.916 (±0.05) 1.000 (–) 0.789 (±0.03) 0.640 (±0.01) 0.935 (±0.01)

TRIPBUILDER (α = 1.0)
1 0.609 (±0.10) 0.872 (±0.10) 0.391 (±0.06) 0.785 (±0.01) 0.602 (±0.03)
2 0.817 (±0.08) 1.000 (–) 0.629 (±0.05) 0.737 (±0.01) 0.835 (±0.02)
4 0.917 (±0.05) 1.000 (–) 0.791 (±0.03) 0.641 (±0.02) 0.935 (±0.01)

Tabela 14 – Profile-based selection: average effectiveness of TRIPBUILDER and the baselines
in Rome obtained by exploiting the profiles from Florence visits.

iterations or 100 iterations without improvement in the solution cost.

Results show that the Random baseline immediately diverges from the other competi-

tors getting the worst paths. Nearest Trajectory performs better than Random and it is always able

to provide an average connection cost lower than 0.3. On the other hand, our Local Search algo-

rithm always outperforms both Random and Nearest Trajectories, with a notable improvement in

all the three cities considered. In particular, it provides solutions having an average connection

cost lower than 0.2. In other words, TRIPBUILDER is able to address TRAJSP even in big cities

like Rome by adding at most 20% of the total time budget for inter-trajectory connections.

4.6.2.1 Efficiency

We now report results of experiments conducted to evaluate the efficiency of TRIP-

BUILDER as a function of the time budget available for the three cities. In particular, we consider

time budgets of 1, 2, and 4 days (1/2, 1 days in the case of the small city of Pisa), and, for each

instance of the experiment (time budget, city), we run the algorithm for all the 100 distinct users

in the test set and all the values of α used in the experiments reported in Table 9, 10 and 11.

Figure 39 shows the average runtime of TRIPBUILDER along with standard deviation. Moreover,

the plot highlights the contributions of TRIPCOVER (bottom bars) and of our TRAJSP local

search algorithm (upper bars) to the overall runtime. It is worth noting that TRIPBUILDER

always completes the tour building process in a few seconds. Moreover, the lower the number of

trajectories in the dataset, the more similar the runtime is for all budgets. On the other hand, long

time budgets (e.g. 4 days) and large datasets impact the total runtime, as expected. Results also

reveals low standard deviation of the average runtime thus confirming that the whole process is

feasible for on-line applications.

Figure 40 details the average runtime of the techniques employed to solve TRAJSP.

113

1/2 1
Budget (days)

0.0

0.1

0.2

0.3

0.4

0.5

R
a
ti

o

Random

Nearest Trajectory

Local Search

(a) Pisa

1 2 4
Budget (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
a
ti

o

Random

Nearest Trajectory

Local Search

(b) Florence

1 2 4
Budget (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
a
ti

o
Random

Nearest Trajectory

Local Search

(c) Rome
Figura 38 – Average path costs of the techniques employed to solve TRAJSP as a function of the

budget.

1/2 1
Budget (days)

0

20

40

60

80

100

120

140

160

R
u
n
ti

m
e
 (

m
s)

TripCover

TrajSP

(a) Pisa

1 2 4
Budget (days)

0

500

1000

1500

2000

2500

3000

3500

R
u
n
ti

m
e
 (

m
s)

TripCover

TrajSP

(b) Florence

1 2 4
Budget (days)

0

500

1000

1500

2000

2500

3000

3500

R
u
n
ti

m
e
 (

m
s)

TripCover

TrajSP

(c) Rome
Figura 39 – Average total runtime as a function of the time budget for each city. Bottom bars

refer to the average TRIPCOVER runtime while upper bars refer to the average
TRAJSP runtime.

As before, we compute the efficiency by averaging the runtime obtained in 5 runs for each one of

the 100 users of the test set. The Random technique obviously has the best runtime performance

even if it is not effective in providing solutions as good as the other approaches do. For this

reason, we do not report its results in Figure 40. Results confirm that both the approaches for

114

TRAJSP can be exploited in practice. In general, Nearest Trajectory is always faster than Local

Search. However, since the execution times are in any case limited, and Local Search remarkably

outperforms Nearest Trajectory in effectiveness it has to be preferred.

1/2 1
Budget (days)

0

20

40

60

80

100

120
R

u
n
ti

m
e
 (

m
s)

Nearest Trajectory

Local Search

(a) Pisa

1 2 4
Budget (days)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

R
u
n
ti

m
e
 (

m
s)

Nearest Trajectory

Local Search

(b) Florence

1 2 4
Budget (days)

0

500

1000

1500

2000

2500

3000

3500

R
u
n
ti

m
e
 (

m
s)

Nearest Trajectory

Local Search

(c) Rome
Figura 40 – Average runtime of Nearest Trajectory and Local Search by varying the time budget.

4.7 Discussion

In this chapter, we comprehensively discussed TRIPBUILDER, our unsupervised

framework for recommending personalized sightseeing tours. TRIPBUILDER addresses the

problem of planning the visit to a city of touristic interest as a two-steps process. First, given the

profile of the user and the amount of time available for the visit, the set of itineraries across the

PoIs that best fits the user interests and respect the time constraint is chosen. This is done by

solving the TRIPCOVER problem by means of an approximation algorithm. Then, the selected

trajectories are joined in a sightseeing itinerary by means of a local search algorithm addressing

TRAJSP, a particular instance of the Traveling Salesman Problem. TRIPBUILDER generates

the budgeted sightseeing tours by composing popular trajectories performed by real tourists as

mined from Flickr Photo albums. Moreover, since both PoIs characteristics and user preferences

are mapped into the same categorization automatically extracted from Wikipedia, it is able

to personalize the recommended itinerary and even consider the popularity of each PoIs as

estimated from the number of photos available for it. Regarding the definition of the user-item

interest function, we proposed the use of a PoI popularity function, but this function can be

generalized to capture both popular and non-popular points of interest.

115

We experimented TRIPBUILDER with data collected for three cities different for their

size and the amount of user-generated content available for download. The process exploited

to mine such content from Flickr, Wikipedia and Google Maps and to build the TRIPBUILDER

knowledge base has been detailed, and an analysis of the data collected has been provided. We

evaluated our framework by considering the performance of the algorithms proposed to address

both the TRIPCOVER and the TRAJSP problems. The proposed solutions resulted to outperforms

the baselines in terms of all the metrics adopted for assessment. Our solution suggests itineraries

that better match user preferences. Moreover, such itineraries present higher visiting time and,

consequently, lower intra-PoI movement time than the baselines. Furthermore, we assessed the

performance of our TSP-based local search heuristic to schedule a set of trajectories into the user

agenda. Finally, the tests conducted to demonstrate the efficiency of TRIPBUILDER show that it

computes a four-day personalized sightseeing tours of Rome in about 3 seconds thus confirming

that our approach can be fruitfully deployed in on-line applications.

The design of TRIPBUILDER has allowed us to develop platform to encompass the

required features to create personalized sightseeing tours in the city. The next chapter presents

the platform and a web application by detailing its architecture and the main functionalities.

116

5 TRIPBUILDER PLATFORM TO CREATE PERSONALIZED SIGHTSEEING
TOURS

In the previous chapter we presented the TRIPBUILDER framework jointly with

algorithmic solutions to solve the corresponding problems. The results in the previous chapter

motivated us to design and develop platform to concretize all the theoretical and algorithmic

results.

This chapter, therefore, presents the TRIPBUILDER platform jointly with a user

friendly web application1 encompassing the required artifacts for planning personalized and

time-budgeted sightseeing tours in a given city. We present the proposed system by describing the

main components used to design an extensible and scalable architecture and the functionalities

provided by the interface. We also report the designed and implemented architecture using

open-sourced Big Data technologies to scale up the system in the worldwide level. This chapter

is a result of (BRILHANTE et al., 2014; BRILHANTE et al., 2015).

5.1 Introduction

As we have seen in the chapters 2 and 4, planning sightseeing tours is a difficult and

time-consuming task, not only for tourists approaching their destination for the first time, but

also for tourists who already visit the destination, as they are willing to explore it with a different

perspective. Many efforts have been done to develop methodologies and framework to support

tourists in achieving these tasks as reported in Chapter 2. TRIPBUILDER system is proposal in

this context, since we believe that the development of tools or applications comes to be essential

to concretize the theoretical and algorithmic results for planning sightseeing tours.

The system must allow the users (tourists) to create sightseeing tours with perso-

nalized points of interest based on the explicit preferences given by the user of the system. In

addition, it is also important to provide an user friendly interface that is not only easy to use,

but it is also able to provide the needed information about the generated tours, such as time of

tour, information about each point of interest, travel information between two consecutive points

of interest, etc. This chapter presents TRIPBUILDER tool as a web application (BRILHANTE

et al., 2014)2, a user friendly and interactive system for planning a time-budgeted sightseeing

tour of a city on the basis of the points of interest and the patterns of movements of tourists

mined from user-contributed data. The knowledge needed to build the recommendation model is

entirely extracted in an unsupervised way from two popular collaborative platforms: Wikipedia

and Flickr. TripBuilder interacts with the user by means of a friendly Web interface that allows

her to easily specify personal interests and time budget. The sightseeing tour proposed can be
1 TRIPBUILDER can be accessed in <http://tripbuilder.isti.cnr.it/>
2 This work was awarded on European Conference on Information Retrieval 2014 held in Amsterdam, Netherlands,

as the best demo paper elected by the attendees.

http://tripbuilder.isti.cnr.it/

117

then explored and modified.

This chapter is organized as follows. We first describe the platform and its main

components: data collection, data processing and the TRIPBUILDER engine; in Section 5.2.

Section 5.3 presents the user interface of the web application and the most important functio-

nalities of the system. Then, we discuss a scalable and distributed architecture to scale up the

mining of semantically-enriched trajectories for TRIPBUILDER at the world level. Finally, a

final discussion is presented in Section 5.5.

5.2 TRIPBUILDER Platform

Our designed platform is organized into four modules to generate time-budgeted

sightseeing tour (see Figure 41): i) Data Collection, ii) Data Processing, iii) Data Storage, and,

iv) TripBuilder Engine. In the followings we discuss each module with its responsibilities.

Modeling Trajectory

PoIs
Users PoI
History

Modeling Users PoI
History

Users
Photos

Data CollectionData Processing

Trajectory PoI

City
Budget

Categories
Personalization

Tour

Engine
TripBuilder Engine

Data Storage

Figura 41 – Architecture of TRIPBUILDER. We outline the four modules of the system, i.e. Data
Collection, Data Processing, Data Storage and TripBuilder Engine.

118

5.2.1 Data Collection

The collect of data is a crucial and key task to obtain the collective behavior repre-

sented by the wisdom-of-the-crowd for creating personalized and time-budgeted sightseeing

tours. This module then collects the required data to build the knowledge base representing the

behavior of tourists that have visited the city. In particular, it exploits geo-tagged Flickr photos

and Wikipedia points of interest.

It is composed by two different modules that retrieve the relevant information from

Flickr and Wikipedia. The first one queries Flickr to retrieve the meta-data (user id, time-stamp,

tags, geographic coordinates, etc.) of the sequences of photos taken in the given geographic

area, e.g. the city bounding box. An important assumption here is that photo albums implicitly

represent sightseeing itineraries within a city. To strengthen the accuracy of our method, this

module retrieves only the photos having the highest geo-referencing precision. This process thus

collects a large set of geo-tagged photo albums taken by different users in the given geographic

area. Table 15 illustrates a sample of geo-tagged collected photos.

The second module collects PoIs from Wikipedia. In particular, we assume each

geo-referenced Wikipedia named entity, whose geographical coordinates falls into a given area,

to be a fine-grained Point of Interest (see Table 16). For each PoI, we retrieve its descriptive

label, its geographic coordinates as reported in the Wikipedia page, and the set of categories

the PoI belongs to that are reported at the bottom of the Wikipedia page. Then, Flickr photos

and Wikipedia PoIs are matched by spatial proximity according to their coordinates. After that,

the matched PoIs and photos are used by the data processing module to generate trajectories

representing the visits of the tourists.

5.2.2 Data Processing

Once photos and points of interest are collected, it is necessary to perform data clean

and transformation. These are important tasks to automatically generate high-quality data to be

user id photo id date taken date upload latitude longitude
0 1 2009-07-25 05:26:32 1248534250 43.723335 10.394546
0 2 2009-07-25 05:31:51 1248534638 43.723335 10.394546

.
Tabela 15 – Example of the geo-tagged photos collected from Flickr.

PoI id name latitude longitude categories
0 Porta del Leone 43.72374167 10.397325 Porte di Pisa
1 Chiesa di San Michele degli Scalzi 43.70584167 10.41904167 Chiese di Pisa

.
Tabela 16 – Example of the points of interest collected from Wikipedia.

119

used by the system.

This module consists of different components each one manipulating part of the

data previously collected to devise personalized tours and clean data. In particular, the modules

here transform sequences of photos from Flickr into trajectories crossing Wikipedia PoIs to be

used in the TRIPBUILDER engine module. Moreover, popularity and characteristics of PoIs are

computed by considering the number of distinct photos taken, the date taken and date upload

of the photos, and the Wikipedia categories. The data obtained are then stored by means of the

“Data Storage” module by using a structured database schema. This is an important point in favor

of TRIPBUILDER flexibility: different sources of information for trajectories and PoIs can be

easily integrated into the system by changing/updating only the two lowest layers.

5.2.3 Data Storage

This component is responsible for storing, querying and indexing trajectory and PoI

data. It is composed by a database management system that efficiently provides information to

the “TripBuilder Engine” component. This component contains a well defined schema to enable

flexibility in integrating other data sources. Geo-spatial indexes are used for searching spatial

objects, such as PoIs and tourist traces, within a given region (e.g. polygon). The system also

takes advantage of indexes over PoI categories and tourist traces, both represented as arrays, to

efficiently retrieve relevant PoIs to the user preferences.

A MongoDB instance is used to store the processed data. We chose MongoDB3 due

to its flexibility to change the data schema, its efficient index implementation over arrays of

objects, geo-spatial indexing and its capability of returning streams of data as they are inserted

(Capped collections). In particular, our trajectories contain arrays of points of interest with their

data (e.g. categories, visiting time). Thus, MongoDB supports the indexing of the trajectories

by means of their arrays of points of interests which are queried using the categories present in

the given user preferences. In this sense, we do not need to retrieve all trajectories of the target

city, but only those trajectories that contain at least one point of interest that is related to the user

preference.

5.2.4 TripBuilder Engine

It is the core of the architecture. It receives a set of trajectories crossing a set of

PoIs, a time budget, user preferences and a factor used to tune the level of personalization as

input, and generates the personalized sightseeing tour. As presented in Chapter 4, the problem of

building the tour is modeled as an instance of the well-known Generalized Maximum Coverage

problem (COHEN; KATZIR, 2008) and TRAJSP as an instance of Travel Salesman problem
3 <https://www.mongodb.org/>

https://www.mongodb.org/

120

(BRILHANTE et al., 2015).

In details, the trajectories retrieved by the Data Storage module for the user are

matched up against the preferences of the user u to compute for each point of interest p,

contained in the trajectories, the user-item interest Γ(u, p) introduced in Chapter 4. The result

from this process jointly with the time budget, user preferences and the level of personalization

are then used by the TRIBUILDER engine to compute the personalized sightseeing tour for the

user u.

In conclusion, the systems presented in this section allows us to develop useful

application to support tourists to plan personalized sightseeing tours. The next section presents

the web application that consumes the services provided by the TRIPBUILDER platform through

a well-defined Restful API.

5.3 The Web Application and Functionalities

The web application built upon the TRIPBUILDER platform currently covers four

cities: Pisa, Florence, Rome and Amsterdam. The data of the three first cities are the same used

in Chapter 4 to experiment and evaluate TRIPBUILDER. The city of Amsterdam was added to

enrich the system and confirm the feasibility to add new cities using the proposed methodology in

this thesis. In this section we go through a list of screen-shots of the web application to highlight

the generated tours and the other functionalities of the web application.

The user initially need to select the desired city to create the tour. As we can see

in Figure 42 shows the very first web page with the four cities supported by the system. There

is also a component in the page that is integrated to Panoramio4. Spite of using only Flickr

as the main data source for collecting geo-tagged photos, Panoramio is also a very interesting

and rich data source with a huge number of photos uploaded by several users. Once the user

selects a city, for instance Amsterdam, she is moved to the next page where she can customize

the options to create the sightseeing tour (Figure 43). We can see in this figure a drop-down

menu named Preferences where the user can select the number of days of the tour and he can

customize her preferences regarding the categories covered in the system: Architecture, Arts,

Churches, Entertainment, Monuments, Museums and Nature & Landmarks. For each category,

the user can give a score ranging from 0 (low interest) to 5 (high interest) points. In addition, the

user is also able to configure the level of personalization and popularity of the generated tour

related to the user-item interest function defined in Chapter 4. With the settings done, the user

can create the tour by clicking on “Create Personalized Agenda” as shown in Figure 43 on right

side, e.g., two-days tour (agenda). Then, the user can explore each day and the points of interest

to be visited, the visiting duration, photos (Figure 45) and the distance to move from one to next
4 <http://www.panoramio.com/>

http://www.panoramio.com/

121

point of interest.

The generated tours can be easily saved into the user account (e.g. using Facebook)

to be retrieved later either to be modified or to be used during the visit as shown in Figure 44.

We recall that the philosophy or many motivation behind TRIPBUILDER is the exploitation

of historical data of past tourists in the city that can be used to create and enrich the tourism

knowledge base of the system to support new tourists to discovery relevant sightseeing tours in

their destinations. In front of this, the web application allows the user to share her create agenda

on Facebook (see Figure 47) in such a way her friends can take advantage of it when they are

visiting the same city.

Beyond the creating of sightseeing tours, the web application has also other useful

and interesting capabilities to support the exploration when visiting a city. In particular, the user

may wish to find out the most popular PoIs in the city as shown in Figure 46. In our empirical

observation, we noted that Flick photos indeed can represent the typical tourism behavior of the

cities, where the most popular places are usually represented by a great number of photos and

users.

Figura 42 – A screen-shot of the Web interface that lets users interact with TRIPBUILDER to
select the targeted city in the system. This screen is the very first step on the web
application.

5.4 Towards a distributed architecture

The growth of the number of cities covered by the system is imminent in order to have

tourist application in the worldwide scale. Thus, we need to design a scalable and distributed

architecture to collect and process geo-tagged photos, points of interest and trajectories to

generate a complete knowledge base representing the tourists’ behaviors in the cities. In the

122

Figura 43 – Screen-shot illustrating the component for setting the preferences, number of days
of the tour, level of personalization and also the details of the created sightseeing
tours for each day.

Figura 44 – List of saved sightseeing tours saved by the user. She can then open and edit any of
those tours.

architecture presented in Section 5.2 (Figure 41), there are two modules responsible for the

collection and processing tasks. These modules can therefore be improved to achieve higher

scalability and to cover cities around the globe.

Thus, we present in this section a distributed and scalable architecture for data

collection and processing (BRILHANTE et al., 2015). In particular, we rely on open-sourced

Big Data tools that allows us to perform streaming and batching processing in a cloud computing

environment with several computational nodes. Figure 48 shows our distributed architecture

divided into three layers: Stream Layer, Batch Layer and Distributed Storage Layer.

123

Figura 45 – Among the information about the points of interest such as time needed to visit, the
user is also able to find photos of the point of interest from Flickr and Panoramio.
We see in this example a photo of an important museum in Amsterdam that is part
of the generated tour.

Figura 46 – Popular places of the city are mined from the collected Flickr photos given important
insights for the tourists.

5.4.1 Stream Layer with Apache Storm

Similarly to the data collect in Figure 41, this layer is composed of two different

modules that retrieve the relevant information from Flickr and Wikipedia by receiving city

bounding boxes. However, here the city bounding box are treated as streams of data used to

discovery photos and points of interest in a distributed fashion. In particular, each item of the

stream is used by Wikipedia PoI Discovery to collect PoIs from Wikipedia, where, for each PoI,

124

Figura 47 – Users can save and retrieve their created tours in order to share them with other users
(e.g. friends) that might take advantage of it to plan their visit in the city.

Wikipedia PoI
Discovery

Photo
Discovery

Stream Layer

City

Streams

City

City
Users'
Photos

Poi Visiting
Time

Estimation

Trajectories
Creation

Batch Layer

Trajectory
Split

Estimation

Distributed Data Storage

HDFS HDFS HDFSHDFS

Figura 48 – Layers of the distributed and scalable architecture of TRIPBUILDER for collecting
and processing data.

we retrieve its descriptive label, its geographic coordinates as reported in the Wikipedia page, and

the set of categories the PoI belongs to, which are reported at the bottom of the Wikipedia page.

This step generates another streams of data containing the discovery points of interest. Then,

these new streams are used by Photo Discovery to query Flickr to retrieve the required meta-data

(user id, time-stamp, tags, geographic coordinates, etc.) of photo albums. Then, photos from

Flickr and PoIs from Wikipedia are matched by spatial proximity according to their coordinates.

Figure 48 highlights the components on the Stream layer.

The stream layer is built by means of Apache Storm5, a free and open source

distributed real-time computation system. Apache Storm allows to reliably process unbounded

streams of data. Storm organizes the computation in a graph, called topology, where data flows

through nodes, called bolts. Our stream layer is thus able to crawl Flickr and Wikipedia in a

real-time fashion by receiving from an input Kafka6 queue a given bounding box representing the

target geographic area. The results of the real-time computation are stored on a distributed data

storage such as HDFS or HBase. Figure 49 highlights the topology responsible for processing
5 <https://storm.apache.org>
6 <http://kafka.apache.org/>

https://storm.apache.org
http://kafka.apache.org/

125

streams on TRIPBUILDER, where spout nodes read data streams like city bounding boxes, PoIs,

passing them through bolt nodes (Wiki and Photo) to discovery PoIs and photos respectively,

which are stored by HDFS bolt nodes. Note that, this topology is highly scalable where spout

and bolt nodes can have as many instances as needed spread across several machines. In our first

experiments, we have obtained around 2,600 points of interest, 1,302,356 photos for 20 cities,

which gives us an average of 65,118 photos per city and 500 per point of interest. The collected

data are stored in the Distributed Storage Layer for future batch processing.

City Spout

Wiki Bolt

Wiki Bolt

Wiki Bolt

Wiki Bolt

HDFS Bolt

HDFS Bolt

BBox Spout

Photo Bolt

Photo Bolt

Photo Bolt

Photo Bolt

HDFS Bolt

HDFS Bolt

Wikipedia PoI Discovery Photo Discovery

Figura 49 – TRIPBUILDER Storm topology.

5.4.2 Batch Layer with Apache Spark

This layer is made up of different components each one manipulating the data

previously collected. It is in charge of cleaning and transforming the data by means of distributed

computing frameworks like Apache Hadoop7 and Spark8 to speed up the data processing step. In

particular, the modules here transform sequences of photos from Flickr to sequences of visited

Wikipedia PoIs, i.e., trajectories, to be used in the TRIPBUILDER module. Moreover, this step is

in charge of computing popularity and other important characteristics of PoIs by considering

meta-data and information extracted both from Flickr and Wikipedia. We take advantage of the

functional capabilities of Spark to distribute and parallelize the computation on our cloud cluster.

Spark has shown to be a great tool for large-scale data processing. The cleaned and transformed

data obtained are then stored on the “Distributed Data Storage” layer. This is an important

point in favor of enabling the flexibility of TRIPBUILDER: different sources of information for

trajectories and PoIs can be easily integrated into the system by modifying only the two lowest

layers. Moreover, the approach taken allows to scale to large geographic areas as the two layers

effectively exploits modern state-of-the-art technologies for distributed and parallel computation.
7 <http://hadoop.apache.org>
8 <http://spark.apache.org>

http://hadoop.apache.org
http://spark.apache.org

126

5.4.3 Distributed Data Storage

This component is responsible for storing, querying and indexing trajectory and

PoI data. It is composed by a database management system and a distributed file system that

efficiently provides information to the “TripBuilder Engine” component and a distributed data

storage to support Stream and Batch layers. The database component contains a well-defined

schema to enable flexibility in integrating other data sources. Geo-spatial indexes are used for

searching spatial objects, such as PoIs and tourist traces, within a given region (e.g. polygon). The

system also takes advantage of indexes over PoI categories and tourist traces, both represented as

arrays, to efficiently retrieve relevant PoIs to the user preferences. Moreover, the distributed file

system is built by using the Apache Hadoop Distributed Filesystem (HDFS) jointly with HBase

and MongoDB. We choose the HDFS technology as it is a mature solution for storing data in

distributed environments. As an example, it provides effective and efficient mechanisms to deal

with faults thus preventing us to avoid data loss in case of hardware problems.

5.5 Discussion

In this chapter we presented the TRIPBUILDER tool as a web application to create

personalized sightseeing tours. We detailed the main components of the systems which include

data collection, processing, storage and the tour creation engine. We presented the user friendly

interface of the web application and its main functionalities including the creation of the perso-

nalized sightseeing tours, and mechanisms to help the users in exploring the city and in sharing

the tours with friends from their social network.

We finally presented an augmented version of the TRIPBUILDER architecture, fo-

cusing on the modules responsible for collecting and processing data. We detailed how we

designed a distributed and scalable architecture by using open-sourced Big Data tools that allows

us to distribute streaming and batch computation across several computation nodes in a cloud

environment.

The results from Chapters 4 and 5 leverage the following thought: a person usually

visit a city in the companions of other ones, like friends, family, etc. This means that in some

applications, there is a highly collective appeal. Based on that, we present in the next chapter a

framework whose objective is to provide groups by observing the users’ preferences and they are

related to each other in the social network.

127

6 GROUPFINDER FRAMEWORK FOR GROUP FORMATION PROBLEM

The work carried out in the area of group recommendation has demonstrated the

importance of this problem in real applications due to the need to find relevant and significant

items for a group of users instead of individual ones as presented in Chapter 2. The advance of the

methodologies has conducted us to a complementary view for group recommendation problem

known as the group formation problem in the context of recommender systems presented

in Chapter 2. In the group formation problem, the goal is to find or form a group of users

considering the users’ recommendations generated by a recommendation system. In this chapter

we investigate the research question RQ3: How can we find out the best groups of users (e.g.

friends) who can together enjoy a given item?.

This chapter presents a novel framework called GroupFinder that encompasses algo-

rithmic solutions to address a novel group formation problem considering the recommendations

of users, as well as the users’ friendship represented by social networks. This chapter is based on

the published works (BRILHANTE et al., 2016; BRILHANTE et al., 2016).

6.1 Introduction

Nowadays, we are witnessing a pervasive use of recommendation systems to support

choices in our daily activities, from the most traditional recommendations on books and music,

like Amazon1 and Netflix2 discussed in Chapter 2, just to mention well-known examples, to the

mobile recommendations of attractions to visit and tour itineraries to follow, like TripAdvisor3,

Gogobot4 and TRIPBUILDER5 presented in Chapter 4 and 5. We observe that these last activities

are usually better enjoyed with travel companions, thus shifting the problem from recommen-

ding a single item to a single user (as typical in the traditional cases) to a new paradigm of

recommendation that takes into account a group of users. Traditional recommendation systems

primarily focus on identifying relevant items to single individuals using well-known techniques

like collaborative filtering (UNGAR; FOSTER, 1998; MCLAUGHLIN; HERLOCKER, 2004;

SARWAR et al., 2001), or matrix factorization (KOREN et al., 2009b). When the recommenda-

tion targets groups of users it is referred to as “group recommendation” and the main goal is to

identify items that may have a large consensus among a previously-known group of users (Basu

Roy et al., 2010). The group recommendation problem is typically hard to solve since a group

can be characterized by a diverse mixture of preferences, and finding a trade-off among these

preferences may bring to unsatisfactory recommendations for some of the users. In this work
1 <http://www.amazon.com>
2 <http://www.netflix.com>
3 <http://www.tripadvisor.com>
4 <http://www.gogobot.com>
5 <http://tripbuilder.isti.cnr.it>

http://www.amazon.com
http://www.netflix.com
http://www.tripadvisor.com
http://www.gogobot.com
http://tripbuilder.isti.cnr.it

128

we address a complementary perspective of the group recommendation problem. Given a user

and a recommended item, we want to suggest the “best” group of friends with whom to enjoy

the recommended item. In the TRIPBUILDER system, for example, we want to find a group of

friends for the given user with who to enjoy a recommended city, or even a generated sighseeing

tour in a city.

Basu Roi et al. has made a great contribution in (ROY et al., 2015) by investigating

the group formation problem from a group recommendation perspective. In spite of that, we

believe that an essential characteristic is missing for the group formation: the social networks.

In last decade we could see the popularization of social network-based applications and the

development of techniques to capture how users are related to each other through interactions

(e.g. comments, chat, likes, tags) between them. Therefore, we believe that the social aspect of

the users is an essential feature for group formation that may help to find out groups of users that

better fulfill the users’ expectations.

Consider for example a user who has been recommended to visit Paris: we want

to be able to suggest the travel companions who can join her in visiting Paris. Such group

should ideally have interest in visiting Paris and also be friend each other to facilitate the

staying together. Thus we need to balance the strength of the group internal friendship with

the group members interest in traveling to Paris. Considering this last scenario, we design a

recommendation technique suggesting the “best” group of k friends for a pair < user, item >

taking into account both the social relations and the preferences of the user and the group. Since

this approach focuses on the formation of the group based on an item and a user, we refer to it

as User-Item Group Formation problem. In the remaining of the chapter we often refer to it as

UI-GF or simply group formation for the sake of readability.

Let us consider the simple example with 7 users and 3 items depicted in Figure 50.

In this example the items represent destinations that are suggested by a recommender system for

tourism. We are interested in finding the best group of 3 users who can enjoy visiting Florence

together with user u0. Figure 50 (a) reports the relevance score s (ranging from 1 to 5, the higher

the value, greater the relevance) of the cities for each user, while Figure 50 (b) shows the social

network of user u0 (i.e. her ego network), where links represent friend relationships. A trivial

solution would be choosing the users with the highest relevance scores for Florence: users u3,

u4, and u2. However, when we look at social relationships the perspective changes: the network

in Figure 50b shows that u0’s friend u2 is not friend of u3 and u4. Indeed, a better group of

u0’s friends to enjoy item i2 should include u3,u4 and u5, since these three users are all friends

each other still having a good relevance score for Florence. This simple example illustrates the

advantage of considering either user-item relevance and the strength of interpersonal relations in

a solution addressing the group formation problem. To the best of our knowledge this work is

the first one that considers both social relations and user-item relevance in group formation.

129

s u0 u1 u2 u3 u4 u5 u6

Pisa 2 3 1 2 2 1 3
Florence 2 1 4 5 5 2 2

Rome 2 4 3 1 1 3 1

(a) (b)
Figura 50 – Toy instance of our group formation problem. Table (a) reports the relevance scores

of three items for seven users, while the graph in (b) shows the ego network of user
u0 having the same set of users.

The main topics covered by this chapter can be summarized as follows:

• we formalize the user-item group formation problem aimed at recommending the best

group of friends for a < user, item > pair. We address this novel problem by combi-

ning user-item relevance information with the user social network, trying to balance the

satisfaction of all the members of the group for the item with the intra-group relationships;

• we propose two different solutions that are accommodated into a framework called

GroupFinder integrating the needed components and information sources;

• we instantiate the problem in the location-based recommendation domain and we expe-

riment GroupFinder on four publicly available Location-Based Social Network (LBSN)

datasets, showing that our solution is effective and outperforms strong baselines.

The rest of the chapter is organized as follows. In Section 6.2 we present the

formation of the UI-GF problem. Section 6.3 discusses the algorithmic solutions and Section

6.4 describes the components of the GroupFinder framework. The results of the experiments

conducted to assess GroupFinder are reported in Section 6.6, whereas in section 6.7 we present a

discussion.

6.2 The User-Item Group Formation problem

Given a user u, her social network S and an item i suggested to u, UI-GF aims at

discovering the group of k friends of u that maximizes a measure modeling the “satisfaction” of

the group for the recommended item. Our measure of satisfaction considers both the interest in

the recommended item for every member of the group and the intra-group social relations.

We denote with SG = {U ,E} a social network where U is the set of users, and

E the set of undirected edges modeling the friendship relation between pairs of users in U .

Edges ei j ∈ E are associated with a normalized weight w(ui,u j) measuring the strength of the

friendship between ui and u j.

Let I be a set of items of interest for the users in U . Given a generic user u ∈U

and any of the items i ∈I we denote with R(u, i) the relevance for u of i. It is worth noticing

that our approach is totally independent from the technique used to generate recommendations of

130

items. Therefore, the relevance metric R can be instantiated with different measures depending on

the application and the recommender system, with the only requirement regarding the possibility

to compute R(u, i) for every user u ∈U and item i ∈I .

Since our approach is based on the combination of two orthogonal dimensions,

namely user-item relevance and friendship relations, we define a measure of relevance of an item

for pairs of friends. To this purpose, we adapt two well-known relevance aggregation methods

from the state of the art (see Chapter 2 for more aggregation methods) to the pairwise case.

Definition 13 (Pairwise User-Item Relevance) Given an item i ∈I and u,v ∈U , we define

RP(u,v, i) to be a generic function measuring the pairwise relevance of i for the two users u,v.

We can easily derive two different pairwise user-item relevance measures RP(·, ·, ·) from the

group-level counterparts, namely the Aggregated Voting (the sum of the recommendation score

of the item for each member) and the Least Misery (the minimum of the recommendation scores

of the item for each member):

• RPAV (u,v, i) = R(u, i)+R(v, i) (Pairwise Aggregated Voting measure);

• RPLM(u,v, i) = minz∈{u,v}R(z, i) (Pairwise Least Misery measure).

In our group formation approach we need to combine these two dimensions: fri-
endship and item relevance for the group.

• Friendship. The best group for enjoying an item should be preferably formed by people

that are all friends each other. Thus, the strength of the friendship relationship between all

the members of the proposed group must be taken into account.

• Item relevance for the group. The recommended item should be interesting for all the

members of the proposed group. The group relevance for a given item is easily captured

by the group-level relevance models like Aggregated Voting and Least Misery. However,

the pairwise versions of them allow us to weight differently the interest of a given item for

a pair of users on the basis of their friendship.

We consider both these two aspects in the definitions of the pairwise satisfaction

function measuring the “strength” of the relevance of a given item i for two users u and v, and of

the User-Item Ego Network where edges are weighted according to such pairwise satisfaction

and the normalized weight w(u,v) measuring the strength of the friendship between u and v.

Definition 14 (Pairwise Satisfaction) Given an item i ∈I and u,v ∈U , the pairwise satisfac-

tion of users u and v w.r.t. the item i is defined as PS(u,v, i) = w(u,v) ·RP(u,v, i).

Definition 15 (User-Item Ego Network) Given a user u, an item i, and an integer θ , the User-

Item Ego Network of u w.r.t i is defined as an undirected weighted graph Γθ
u,i = (F,E) where

F ⊆U is the set of friends of u at a distance lower than or equal to θ in the original graph SG,

and E is the set of edges weighted by the pairwise satisfaction PS(·, ·, i).

131

(a) (b)
Figura 51 – Application of the Aggregated Voting (a) and Least Misery (b) pairwise user-item

relevance functions w.r.t. item Florence in the previous example.

Considering again the example reported in Figure 50, Figures 51a and 51b show

the user-item ego networks obtained by weighting edges according to the Pairwise Aggregated

Voting and Pairwise Least Misery measures, respectively, for item Florence. The values on the

edges represent thus the pairwise satisfaction PS(·, ·, i2).
We model the UI-GF problem of finding the “best” group of k friends of user u for

item i as the problem of finding the densest k-subgraph over the user-item ego network. In this

formulation the densest k-subgraph problem has the objective of finding the subgraph of exactly

k users that maximizes the weighted pairwise satisfaction density. In this way, we select from F a

group of k users characterized by strong friendship relations and high interest w.r.t the proposed

item i:

User-Item Group Formation Problem

Given a user u, an item i, her user-item ego network Γθ
u,i, and an integer k, the User-Item

Group Formation problem asks to find the subgraph Gu,i = (Fu,Eu) of Γθ
u,i, |Fu|= k that

maximizes the weighted pairwise satisfaction density:

max
∀Gu,i⊆Γθ

u,i,|Fu|=k
ρ(Gu,i) =

2 ·∑∀t,v∈Fu PS(t,v, i)
k · (k−1)

(6.1)

Solving the user-item group formation problem thus requires to compute the densest

k-subgraph maximizing the pairwise satisfaction. The densest k-subgraph problem is NP-hard

since it generalizes the clique problem as presented in (ASAHIRO et al., 2000). In the following

section we thus propose an approximation algorithm and an heuristic to address the UI-GF

problem.

6.3 Addressing the UI-GF Problem

We address the formulation of the UI-GF problem given in Definition 6.1 by means

of the greedy approximation algorithm (GREEDY) proposed in (ASAHIRO et al., 2000), and a

k-Nearest-Neighbor heuristic (k−NN). Both algorithms exploit a measure of pairwise satisfaction

132

aggregated at the level of each user. Let v be a user in our User-Item Ego Network Γθ
u,i = (F,E).

The Aggregated User Satisfaction, φ(v, i), is defined as the sum of the pairwise satisfaction

computed over all its neighbors (e.g. friends), i.e.,

φ(v, i) = ∑
x∈F

PS(v,x, i)

6.3.1 GREEDY algorithm

The GREEDY algorithm is an approximation algorithm to solve the densest k-

subgraph problem that has been introduced in (ASAHIRO et al., 2000). The pseudo code

of the algorithm is shown in Algorithm 2. It works by repeatedly removing from the input

user-item ego network Γθ
u,i the node x with the minimum value of φ(x, i) (line 3), and by updating

the values φ(v, i) of its neighbor nodes v accordingly. This process is repeated until exactly k

nodes are left (condition on line 2).

Algoritmo 2: GREEDY algorithm from (ASAHIRO et al., 2000) adapted to the UI-GF problem.

Input: User u, item i, Γθ
u,i, integer k

Output: Gu,i = (Fu,Eu), |Fu|= k
Gu,i← Γθ

u,i

while |Fu|> k do
// use a Fibonacci heap to find the node x
x← node with minimum φ(x, i) in Gu,i

update φ(v, i) of every neighbor v of x
remove x from Gu,i

end
return Gu,i

Complexity Analysis. The complexity of the algorithm depends on the values of φ() that

weights the relations on the graph. As claimed in (SOZIO; GIONIS, 2010; CHARIKAR, 2000),

GREEDY can be implemented in linear time O(n+m), for m edges and n nodes, when the image

of the function φ() is a subset of N0. In many real applications, however, φ() is not an integer

value. In this work for example, φ() ∈ R as our pairwise satisfaction is the product between

a normalized weight and a pairwise user-item relevance. The algorithm in this case needs to

use a different strategy to efficiently find the node with minimum φ() and update the φ() of its

neighbors. Charikar et al. suggest the use of a Fibonacci heap to hold the nodes indexed by

their φ() values to obtain a final complexity of O(m+n logn) (CHARIKAR, 2000). Using a

Fibonacci heap, we are able to extract the node with minimum φ() with complexity O(logn),

and update φ() of a given node in Θ(1) (CORMEN et al., 2001, Chapter 19). As the algorithm

removes at most n nodes, and updates at most m neighbors (edges), GREEDY with Fibonacci

heap has a complexity of O(m+n logn), for m edges and n nodes in the User-Item Ego Network.

133

Approximation Analysis. Asahiro et al. studied the GREEDY algorithm and proposed tight

bounds on the worst case approximation ratio R, which is related to the value of k (ASAHIRO et

al., 2000). Two cases are studied by the authors and they are presented as follows.

1. The approximation ratio R of GREEDY when n/3≤ k≤ n is given by

(1/2+n/2k)2−O(n−1/3)≤ R≤ (1/2+n/2k)2−O(1/n).

This result demonstrates, for example, that for k = n/2, the bounds are 9/4±O(1/n),

which improves on naive lower and upper bounds of 2 and 4, respectively (ASAHIRO et

al., 2000).

2. The approximation ratio R of GREEDY when k < n/3 is given by

2(n/k−1)−O(1/k)≤ R≤ 2(n/k−1)+O(n/k2).

The choice of k is therefore application-dependent, which is determinant to establish the corres-

ponding approximation ratio. In the context of this thesis whose goal is to find the “best” groups

of friends with who to enjoy a particular item, the number of members k in the group will be in

general less than n/3, where n is likely to be more than 100 and less than 1000 as we will see

later in Figure 55. Thus, this observation conducted us the second case, when k < n/3.

Running Example. Figure 52 illustrates the execution of GREEDY for the example in Figure

51a using Aggregated Voting as the pairwise user-item relevance function and k = 3. At the first

iteration, the user u1 has the minimum φ(), i.e., φ(u1,Florence) = 11 (Figure 52a). User u1 is

removed and its neighbors are updated in Figure 52b. The next user to be removed is u6, where

φ(u6,Florence) = 10 in the current graph shown in Figure 52b and 52c. The iterations ends up

when we find k = 3 friends of u0, in this example, u3, u4 and u5 (Figure 52d).

6.3.2 Nearest Neighbor Dense k-Subgraph (k-NN)

The k nearest neighbor is a well-known non-parametric technique successfully

employed in several domains ranging from recommender systems to clustering. Here, we employ

k-NN on the user-item ego network (Algorithm 3) to retrieve the k neighbors of u having the

highest values of φ(). First, the nodes v ∈ F are sorted by φ() in the descending order (line 1) to

create the list L. Then, the first k nodes having the highest values of φ() are selected to create the

set U of nodes (line 2). Finally, the algorithm creates the subgraph of Γθ
u,i induced by U as the

result.

Complexity Analysis. The algorithm sorts all the nodes in Γθ
u,i in O(n logn). At most n nodes

are selected to create the set U in O(n). Finally, the subgraph induced by U is created in O(m).

Therefore, the final complexity of k-NN is bounded by O(m+n logn).

Approximation Analysis. For this algorithm, we do not provide any bounds for the approxima-

tion ratio. However, we empirically study its solutions by confronting them against solutions

134

(a) (b)

(c) (d)
Figura 52 – Running example of the GREEDY algorithm for the example in Figure 51a using

Aggregated Voting, the item Florence and k = 3.

Algoritmo 3: Nearest Neighbor Dense k-Subgraph – k-NN

Input: User u, item i, Γθ
u,i = (F,E), integer k

Output: Gu,i = (Fu,Eu), |Fu|= k
// create a list of nodes ordered by φ()

L← sort v ∈ F in descending order of φ(v, i)
U ← first k nodes of L
Gu,i← subgraph of Γθ

u,i induced by U
return Gu,i

from other methods (including GREEDY) in Section 6.6. In summary, k-NN has not achieved

denser subgraphs than GREEDY, but it has obtained better results in other important evaluation

metrics, such as precision and recall as discussed later in Sections 6.5 and 6.6.

Running Example. Figure 53 illustrates the execution of k-NN for the example in Figure 51a

using Aggregated Voting as the pairwise user-item relevance function and k = 3. The nodes

v ∈ F are sorted by φ(v, i) as shown in Figure 53b. The first k nodes are selected as the set U .

Finally, the subgraph induced by U is created (Figure 53c).

6.4 GROUPFINDER Framework

The algorithms detailed in the previous Section are integrated in the GroupFinder

framework that includes three different components (see Figure 54): Recommender System,

Social Network Manager and Group Finder Engine.

135

(a) (b)

(c)
Figura 53 – Running example of the k-NN algorithm for the example in Figure 51a using

Aggregated Voting, the item Florence and k = 3.

6.4.0.1 Recommender System

This component is in charge of providing the relevance R(u, i) of the item i for user

u. It is a functional component exposing an interface for receiving pairs (u, i) and replying back

the associated relevance score R(u, i). It is worth recalling that our solution is independent from

the recommendation strategy. Hence, the component may implement a specific recommender

technique based on the target application domain, or acting as an intermediate towards an

external service. The flexibility of this component may contribute to incorporate GROUPFINDER

in environments with an existing recommender system to leverage new services in the line of

user-item group formation.

6.4.0.2 Social Network Manager

This component manages the information about the social network connecting the

users. In particular, given a user u and an integer θ , it retrieves the ego network of focal node u.

The ego network consists of node u and its neighborhood composed by all nodes of the social

network to whom u has a connection at some path length lower or equal to θ . For example for

θ = 1, the ego network of u is formed by u and all the nodes to whom u is directly connected to

(the direct friends) plus the ties, if any, among the friends. Besides computing the ego network,

the component also evaluates the normalized weight w(ui,u j) measuring the strength of the

friendship between any pair of users in the ego network. Our UI-GF solution is independent

from the method used to compute such friendship strength.

136

Ego Network

Create User-Item Ego Network

R(u,i)

k Dense Subgraph

group

< u, ✓ >

Gu,i< u, i, k >

< u, i >

Figura 54 – The components of the GroupFinder framework: Recommender System, Social
Network Manager and Group Finder Engine. The input is the triple < u, i,k >
representing the user, the item and the size of the group and the output is the
recommended group Gu,i.

6.4.0.3 Group Finder Engine

This component implements the algorithmic solutions for approaching the UI-GF

problem. Given a request composed by a triple (u, i,k), it coordinates the interaction with the

other two components aimed at obtaining the user ego network and the relevance scores of

item i for all the members of u ego network. Then, it builds the user-item ego network Γθ
u,i

by exploiting the pairwise satisfaction function computed for each pairs of users. Finally, the

densest k-subgraph is computed by means of the algorithms detailed in Section 6.3 and returned

as result of the UI-GF instance.

It is worth noticing that the proposed modular design allows GroupFinder to be very

flexible since it permits to easily encompass different (external) recommender systems, social

networks and friendship metrics.

137

6.5 Experimental Settings

We propose a comprehensive assessment of GroupFinder against state-of-the-art

baselines by employing four public LBSN datasets. We first introduce the datasets then we detail

the baseline algorithms and the metrics used for evaluation. Finally, we discuss the results of the

experiments conducted in Section 6.6.

6.5.1 Datasets

We employ four publicly available datasets collected from three popular LBSN

services: Foursquare, Brightkite, and Gowalla. These datasets provide the users registered to

the social networks and the venues where the users checked-in, typically entertainments like

restaurants and cinemas or tourist attractions like museums and monuments.

Foursquare6 is a popular LBSN where users check in at places to inform friends on

where they are. Thanks to the authors of (LEVANDOSKI et al., 2012; SARWAT et al., 2014),

we downloaded a dataset containing users check-ins, places, users ratings of the places, and the

social graph connecting users7. Starting from this dataset, which is called hereinafter Foursquare,

we built a second dataset by selecting only the check-ins falling in the bounding box of New York

city8. This second dataset is called in the following Foursquare (New York). We also used two

other LBSN datasets collected from Brightkite and Gowalla9 made available from the authors of

(CHO et al.,). These datasets, as the previous one, record user check-ins and the social network

connecting users. However, they do not report the users’ ratings as shown in Table 17.

Dataset Users Items Links Ratings Check-ins

Foursquare 485,381 1,143,089 13,549,236 2,809,580 1,021,965
Foursquare (NY) 55,252 74,149 945,422 623,437 157,064
Brightkite 58,228 772,966 214,078 – 4,491,143
Gowalla 196,591 1,280,969 950,327 – 6,442,890

Tabela 17 – Statistics regarding the four datasets used in the experiments: Foursquare, Foursquare
(New York), Brightkite and Gowalla.

Table 17 shows some statistics about the datasets. Foursquare is the largest one in

terms of number of users, with a very large social network made up of about thirteen millions

edges. Gowalla has the largest number of check-ins. The degree distributions of the users in

the social networks are shown in Figure 55. As expected, all the datasets present a power-law

distribution in the node degrees: the majority of the users have a limited number of friends, while
6 <https://foursquare.com/>
7 Available at <https://archive.org/details/201309_foursquare_dataset_umn>
8 <https://www.flickr.com/places/info/2459115>
9 Available at <https://snap.stanford.edu/data/>

https://foursquare.com/
https://archive.org/details/201309_foursquare_dataset_umn
https://www.flickr.com/places/info/2459115
https://snap.stanford.edu/data/

138

101 102 103 104

Degree

100

101

102

103

104

105

106

Fr
e
q
u
e
n
cy

Foursquare

Foursquare (New York)

Brightkite

Gowalla

Figura 55 – Degree distribution of the social networks of the four datasets used in the experi-
ments: Foursquare, Foursquare (New York), Brightkite and Gowalla.

only a few users have thousands or more friends. This is an important consideration as the degree

distribution affects the size of the user-item ego network Γθ
u,i. In the following experiments, we

set θ = 1 to consider only “direct” friends of the user in her user-item ego network.

6.5.2 Computing the relevance scores

GroupFinder relies on a given recommendation technique to produce the relevance

scores of items for users. For the experiments we use a content-based recommender system

that exploit the meta-data associated with venues to measure user-item relevance scores. To

this purpose, we downloaded the categories of venues using the Foursquare API10 for all the

datasets. Let us denote the set of categories as C. This allows us to compute for each venue

i ∈I its relevance vector~vi ∈ [0,1]|C| measuring the normalized relevance of i w.r.t the set of

categories C. Moreover, we computed for each user u ∈U her preference vector~vu ∈ [0,1]|C|

stating the normalized interest of u for the same set of categories C. As in (LOPS et al., 2011;

BRILHANTE et al., 2015; BRILHANTE et al., 2013), the preference vector of each user is

obtained from the data. To this end we exploited either the normalized ratings of the category (if

available), or the normalized number of check-ins in venues belonging to each category.

The relevance score R(u, i) of an item i for a user u is computed as the cosine

similarity between the user’s preference vector~vu and item’s relevance vector~vi (LOPS et al.,

2011; BRILHANTE et al., 2015; BRILHANTE et al., 2013):

R(u, i) =
~vu ·~vi

||~vu||× ||~vi||

This process allows us to compute the relevance R(u, i) of a given item i for every

user u. These relevance values are in fact needed to build the user-item ego network Γθ
u,i by

means of our pairwise satisfaction function using either Aggregated Voting (PAV) or Least
10 <https://developer.foursquare.com/>

https://developer.foursquare.com/

139

Misery (PLM) measures (see Definition 13). For the experiments we adopt a binary function

w(u,v) to model the relationships between pairs of users (w(u,v) = 1 i f f u and v are friends,

w(u,v) = 0 elsewhere). It is worth noticing that our formalization allows any strength function

to be used. When available, the information about the interactions between pairs of users in the

social network (e.g., the number of messages exchanged, the number of likes or comments, the

number of common friends, etc) could be fruitfully used to model more accurately the strength

of the relationship.

6.5.3 Ground-truth groups

To evaluate the quality of the groups proposed by GroupFinder we compare them

against ground-truth groups, i.e., groups of friends that actually enjoyed a specific venue. We

extracted these ground-truth groups from the four datasets. In particular, we looked in the

datasets for sets of users who checked in at the same place within a fixed temporal window. In

addition, we considered a user to be member of a group only if she is friend of at least one of

other group members. In this way we obtained groups of users who enjoyed the place where

they checked in, together with their friends.

As an example let us consider 6 users friends with each other who checked in at

places i1 and i2 in two different days:

(u0, i1,2015/10/09 13 : 30),(u1, i1,2015/10/09 13 : 50)

(u2, i1,2015/10/09 14 : 10),(u3, i2,2015/11/02 08 : 23)

(u4, i2,2015/11/02 09 : 01),(u5, i2,2015/11/02 08 : 50)

By considering a temporal window of 1 hour, users u0,u1,u2 form a ground-truth group since

they checked in at place i1 within the same temporal window. In the same way, users u3,u4,u5

form another ground-truth group for item i2.

In our experiments, we set a temporal window of 4 hours and consider only groups

with at least 4 members. This led us to devise 1,495 for Foursquare, 258 ground-truth groups

for Foursquare (New York), 24,996 for Brightkite and 27,997 for Gowalla. Gowalla has the

largest number of ground-truth groups since it also has the largest number of check-ins (see the

check-ins column in Table 17).

Experiments are conducted for each ground-truth group, by arbitrarily selecting one

of the users as the focal node. We then ask GroupFinder to suggest a group of friends for this

specific user and venue. The remaining users of the ground-truth group are of course those we

would like to find in the group suggested by GroupFinder.

140

6.5.4 Performance Metrics

We assess the quality of the group recommended by GroupFinder and the baselines

solutions on the basis of different metrics. The first metric is exactly the weighted pairwise
satisfaction density used in Definition 6.1. This metric is exactly the one that our algorithms

(and the baselines) try to maximize. It thus allows to assess the effectiveness of the various

algorithms in approximating the densest k-subgraph of the user-item ego network. The other

performance metrics exploit instead the ground-truth groups above discussed.

Let F̂u,i be a ground-truth group for user u and venue i extracted as previously

discussed from a LBSN dataset. Moreover, let Fu,i be the group generated by GroupFinder or the

baselines solutions for the same user u and venue i. To evaluate the effectiveness of the various

algorithms in suggesting groups possibly similar to the ones mined from actual data, we used two

well-known information retrieval metrics: precision and recall (BAEZA-YATES et al., 1999).

Precision. This metric computes the fraction of members in Fu,i that also appear in the ground-

truth group F̂u,i:

precision(Fu,i) =
|F̂u,i∩Fu, i|
|Fu,i|

Recall. This metric computes the fraction of actual group members in F̂u,i that are present in the

suggested group Fu,i:

recall(Fu,i) =
|F̂u,i∩Fu,i|
|F̂u,i|

The rationale behind using these two metrics is that the higher the precision and

recall are, the more similar to the actual choices of real LBSN users the suggested groups. In

the experimental evaluation reported below, the figures of precision and recall reported are the

average ones computed over all the ground-truth groups in the specific dataset.

6.5.5 Baselines

We compare the performance of GroupFinder with two baselines: i) Densest k-

Subgraph and ii) Top k-Nodes.

6.5.5.1 Densest k-Subgraph (DkSP)

This baseline is a known algorithm from (FEIGE et al., 1999) that aims at selecting

the densest k-subgraph from a graph G. It works by first identifying three candidate k subgraphs

by applying the following three procedures:

141

Procedure 1. Select k/2 arbitrary edges from the graph, then return the set of nodes incident

with these edges, adding arbitrary nodes to this set if its size is lower than k.

Procedure 2. Create two disjoint sets H and C. The set H includes the k/2 nodes with highest

φ() in the input graph G. The set C is created by selecting k/2 nodes from G\H with the highest

φ() w.r.t. the nodes in H. Return the subgraph induced by the set H ∪C.

Procedure 3. Let W2(u,v) be the function that returns the number of paths of length 2 between

two nodes u and v. Let H be the set with k/2 nodes with the highest φ() in the input graph G.

For every node v in H compute W2(v,w) for all w ∈ G, and create a set Hv with k/2 nodes with

the highest W2(v,w). Then, create the set Bv with the k/2 neighbors x of v with the highest φ()

w.r.t. the set Hv. Finally, return the subgraph G′v induced by the set Hv∪Bv, adding arbitrary

nodes to this set if its size is smaller than k.

Each one of the previous procedures generates a candidate k subgraph. The DkSP algorithm

returns the densest k-subgraph among these three candidates.

6.5.5.2 Top k-Nodes (k-Top)

Top k-Nodes is a trivial heuristic to compute the densest k-subgraph without conside-

ring the edges. It forms the group by retrieving the k nodes of the user-item ego network with

the highest value of R(·, i). Note that in this approach the relationships among the users are not

considered. Consequently, it does not use the pairwise satisfaction function.

6.6 Experiments

6.6.1 Effectiveness

We now evaluate the proposed algorithms by using the performance metrics defined

above to demonstrate the effectiveness of our proposals.

6.6.1.1 Weighted Pairwise Satisfaction Density

This metric highlights the friendship level of the group jointly with the interestingness

of its members for the item i, i.e., the group satisfaction. Good solutions tend to have more

connections within the group while keeping an high score of the venue for the involved users.

The results reported in Figure 56 show the weighted density of the subgraphs found by varying

the size k of the group. Here, densest k-subgraph-based approaches tend to overcome k-Top.

k-Top considers only the user interest measured by R(·, ·), thus it may generate groups in which

the members are not actually friends in the social network. This explains the lower weighted

density obtained with k-Top. Interestingly, DkSP performs remarkably better with PAV than with

142

PLM pairwise user-item relevance.

GREEDY and k-NN algorithms outperform DkSP and k-Top in terms of weighted

density with both PAV and PLM pairwise user-item relevance. GREEDY performs better than

k-NN thus highlighting that its greedy strategy results to be more effective in finding dense

subgraphs. GREEDY outperforms DkSP from 6% to 17% for PAV, and from 26% to 46% for

PLM. This means that it suggests groups characterized by a good balance between friendship

and users’ relevance, avoiding to include users who are not interested in the item or users that

are not well-connected with the rest of the group members.

The above results highlight the effectiveness of our solutions to approximate the

densest k-subgraphs and the importance of considering the relationships and the relevance of the

item for the users. However, we have still to assess how meaningful the suggested groups are for

the targeted users. To this end we now analyze the effectiveness of the proposed algorithms by

considering precision and recall figures that allow us to understand if the groups proposed by

GroupFinder are really relevant w.r.t. the ground-truth groups mined from the data.

6.6.1.2 Precision and Recall

Although k-NN does not produce solutions as good as GREEDY in terms of approxi-

mating the densest k-subgraph, it has obtained important scores in terms of precision and recall.

Figure 57 depicts the results for precision. As we can see, both GREEDY and k-NN outperform

k-Top and DkSP in terms of precision with both PAV and PLM metrics. We can observe that

on average GREEDY achieves better results on Foursquare datasets, while k-NN demonstrates

a better performance on the Brightkite and Gowalla datasets. It is worth highlighting that the

improvement is higher for smaller values of k, while for larger groups the difference decreases.

Moreover, GREEDY and k-NN are able to suggest more precise groups when using the PLM

user-item relevance. As shown in Table 18, the precision measured for k-NN using PLM results

to be up to 14%, 3%, 5%, 6% higher than the one with PAV for Foursquare, Foursquare (New

York), Brighkite and Gowalla datasets, respectively. This results highlight an interesting user

behavior: real users tend to invite at a venue the friends that are expected to like it, while they

rarely invite a friend to enjoy a certain venue if they know she does not like it. This behavior is

better captured by the pairwise least misery relevance that considers the minimum among the

user-item relevance scores for forming the group.

143

(a) Foursquare PAV (b) Foursquare PLM (c) Foursquare (New York) PAV (d) Foursquare (New York) PLM

(e) Brightkite PAV (f) Brightkite PLM (g) Gowalla PAV (h) Gowalla PLM
Figura 56 – Weighted density of the groups computed with the various algorithms employing PAV and PLM on the four datasets: Foursquare,

Foursquare (New York), Brightkite and Gowalla.

144

(a) Foursquare PAV (b) Foursquare PLM (c) Foursquare (New York) PAV (d) Foursquare (New York) PLM

(e) Brightkite PAV (f) Brightkite PLM (g) Gowalla PAV (h) Gowalla PLM
Figura 57 – Precision computed on the basis of the groups suggested by the various algorithms employing PAV and PLM w.r.t. the ground-truth

groups for the four datasets: Foursquare, Foursquare (New York), Brightkite and Gowalla.

145

(a) Foursquare PAV (b) Foursquare PLM (c) Foursquare (New York) PAV (d) Foursquare (New York) PLM

(e) Brightkite PAV (f) Brightkite PLM (g) Gowalla PAV (h) Gowalla PLM
Figura 58 – Recall computed on the basis of the groups suggested by the various algorithms employing PAV and PLM w.r.t. the ground-truth groups

for the four datasets: Foursquare, Foursquare (New York), Brightkite and Gowalla.

146

Foursquare Foursquare (NY) Brighkite Gowalla
k p r p r p r p r

GREEDY

4 6.2 6.6 7.2 7.1 0.9 2.0 5.3 4.8
6 7.6 7.5 3.9 5.6 −1.0 0.4 5.6 4.8
8 7.9 7.8 4.3 6.7 −1.7 −0.1 6.5 5.5
10 7.5 7.3 3.7 5.4 −1.5 −0.2 5.9 4.4
12 6.8 6.6 5.9 5.7 −1.8 −0.3 6.3 5.1
24 4.9 5.1 5.1 5.6 −3.0 −1.6 6.0 4.6

k-NN

4 5.2 5.5 2.7 2.6 14.6 11.0 6.2 6.5
6 4.9 4.9 2.0 3.8 7.5 6.4 5.6 4.9
8 5.4 5.3 2.1 4.2 4.1 3.7 4.6 4.0
10 5.0 4.9 3.0 2.8 4.4 3.7 4.3 3.8
12 4.4 4.4 3.5 2.9 2.8 2.6 4.3 3.8
24 2.6 2.7 3.5 4.5 0.2 0.6 3.6 2.9

Tabela 18 – Improvements (%) of precision (p) and recall (r) by varying k for GREEDY and
k-NN when using PLM instead of PAV.

A similar behavior is confirmed when evaluating the performance of the algorithms

by using the recall metric (Figure 58). The plots in the figure shows that GREEDY and k-

NN achieve higher recall when PLM is used. Interestingly, Figures 58 (a) and (b) shows that

when PAV is used the k-Top baseline exhibits better recall than GREEDY and k-NN on the

Foursquare datasets. This does not hold for the tests using PLM where GREEDY and k-NN

algorithms outperforms k-Top (and DkSP) in all the tests conducted. The advantage of GREEDY

using PLM instead of PAV is up to 7% in the two Foursquare datasets. Moreover, it is up to

5% and 4% for k-NN in Foursquare and Foursquare (New York), respectively (see Table 18).

These results thus confirm the previous findings from the analysis employing the precision

metric. For the Brightkite and Gowalla datasets, GREEDY and k-NN are always the best group

formation approaches regardless the pairwise user-item relevance function used. It is however

worth reminding that the best results are obtained when PLM instead of PAV is used, with

improvements in recall for the k-NN method of up to 11% for the Brightkite dataset, and of up

to 6% for the Gowalla one (Table 18). The relatively high values of precision and recall achieved

by our solutions demonstrate that they are indeed able to suggest meaningful and relevant groups

of friends with whom to enjoy a given venue.

6.6.2 Efficiency

In this section we report the results of an experimental evaluation of the computati-

onal efficiency of the GREEDY, k-NN, and DkSP algorithms. This evaluation has the purpose

of showing their applicability to real-world applications. The analysis does not consider k-Top

because this baseline does not exploit the user-item ego network to form groups.

147

We analyze the efficiency of the approaches by means of two different sets of

experiments: (i) by varying the size k of the groups; (ii) by varying the number of nodes in the

user-item ego network for a fixed value of k (k = 100). Figure 59a reports the results of the

first analysis. The Figure plots the average time needed by the three algorithms to compute

a solution as a function of the value of k. DkSP exhibits acceptable execution times with an

average runtime lower than 5 seconds for values of k up to 200. DkSP uses three procedures

to compute its solution and this process affects its efficiency. On the other hand, GREEDY and

k-NN shows very good executions times as they need less than one second to compute their

solution with k = 300.

In the second analysis, we investigate how the size of the user-item ego network

affects the average runtime of the algorithms. Intuitively, the larger the network is, more nodes

and edges have to be explored by the algorithms when computing the solution. For conducting

these tests we set k = 100 and we vary the number of nodes composing the user-item ego

network. Results in terms of average runtime are reported in Figure 59b. When the ego network

is composed of 1,000 nodes, all algorithms shows an average runtime lower than 1 second.

Moreover, when the focal users have a larger number of friends, GREEDY and k-NN result still

very efficient in computing the groups. Their average runtime is in fact below 1 second when

dealing with ego networks of up to 2,500 nodes. This is not true for DkSP. Its performance get

worse mostly due to the time needed to compute three procedures over the same user-item ego

network.

(a) (b)
Figura 59 – Execution time for the GREEDY, k-NN, and DkSP algorithms as a function of the

size k of the groups (a), and of the size of the User-Item Ego Networks for a fixed
value of k (k = 100). For each tests the results plotted have been averaged over 5
runs.

6.7 Discussion

Finding the best group of companions with whom to visit an attraction or travel to a

tourist destination is the motivation that inspired our work in proposing a novel recommendation

148

task suggesting the best group of friends with whom to enjoy a specific item. In this chapter we

introduced a formalization of our user-item group formation problem modeled as an instance of

the k-densest subgraph problem over the user-item ego network. We presented two solutions

embedded into GROUPFINDER, a modular framework proposed as a general solution to easily

provide user-item group recommendations in different domains. Evaluations of our proposals

were conducted in the mobile recommendations domain by using four different publicly available

location-based social networking datasets. The results of extensive experiments showed that the

proposed solutions outperform the baselines in effectively finding groups of friends who can

jointly appreciate a suggested venue (e.g. restaurant, cinema, etc).

149

7 CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

The popularization of social networking services and the advance of smartphones, in

particular GPS-enabled devices, have favored the capture of a huge amount of data generated by

millions of users during their daily activities. Access to this information on the Web is extremely

important to find out collective patterns of the user behaviors and opinion in an implicit or

explicitly way, characterizing the wisdom-of-the-crowd. Accordingly, many opportunities can

occur to take advantage of the wisdom-of-the-crowd as a crucial dimension to better understand

users’ behavior, in particular from mobility data, in order to favor the creation of new services

and application to enrich the society as a whole.

In this thesis, we presented noteworthy proposals; to study mobility data from the

perspective of points of interest; to take the wisdom-of-the-crowd as a next level to support users

(e.g. tourists) visiting a new city; to recommend groups of users according to their friendship

relationships and their preferences towards a set of items from an item-driven framework in the

context of recommender systems.

First, we presented a study about mobility data collected, from GPS-enabled vehicles,

from the perspective of points of interest (PoI), in contrast to the works where the focus is on

the users, in order to answer the research question RQ1 described in Chapter 1: Can we study

urban mobility on a global scale from the perspective of places, instead of users? We applied

techniques from complex network fields to identify relationships between PoIs based on the

displacement of the users summarized in the PoI networks. We proposed a classification for

PoIs to identify important features regarding the popularity of the PoI, the amount of time the

users spend at the PoI, and the distance traveled by the users from one PoI to another. Later, we

applied a community discovery algorithm to the PoI networks in order to mine groups of PoIs

that are closed related to each other. Instead of spatial proximity, user movements were observed.

This study was conducted in three GPS datasets from three Italian cities demonstrating the utility

of the proposal and the interesting findings from the data.

Based on the wisdom-of-the-crowd, we presented TRIPBUILDER, an unsupervised

framework that combines information from the social networking service Flickr and Wikipedia

PoIs with aim of generating a rich knowledge base encompassing tourists’ behaviors during their

visits to a given city. This work relates to the research question RQ2: Can we take advantage

of the data provided by millions of users, also called wisdom-of-the-crowd, to support users

(e.g. tourists) in planning their vacations to a new destination? In particular, our framework

exploits Flickr photos and Wikipedia PoIs to reconstruct the tourists’ trajectories in the city in

order to benefit other tourists visiting the same city based on the individual user’s preferences in

terms of PoI categories and time budget. Some properties of the PoIs and trajectories are mined

150

from the data, the wisdom-of-the-crowd, such as the categories and the estimated time needed to

visit each point of interest. The problems TRIPCOVER and TRAJSP were formulated as a basis

for creating sightseeing tours, where solutions to approach the problems have been introduced.

We experimented our framework with datasets of three tourist Italian cities by conducting an

extensive experimental evaluation to demonstrate the effective and efficiency of our proposal.

Later, we described the TRIPBUILDER platform that encompasses the required

capabilities to create personalized sightseeing tours in a city. We gave details of the system

and its main components as well as the major functionalities regarding the tour creation, tour

exploration (e.g. time to visit each PoI, photos), and the possibility to share the created tours

using social networking services. In addition, we presented our architecture designed to scale up

TRIPBUILDER to a worldwide level by exploiting open-sourced Big Data tools for distributed

storage, batch processing and stream processing of Flickr photos, Wikipedia PoIs and trajectories.

Lastly, we presented a complementary view for group recommendation research

through an item-driven group formation approach considering the recommendations of items for

the users and social networks according to the basis for the friendship between the users. This

work answers the research question RQ3: How can we find out the best groups of users (e.g.

friends) who can enjoy a given item together? We presented our framework GROUPFINDER

which encompasses solutions to approach the User-Item Group Formation (UIGF) problem. The

problem is formalized as the k most dense subgraph problem, which allows us to model both

user interest in a given item and the social relationship between them in order to identify the best

group of users to enjoy a given item. We experimented the proposal by exploiting datasets of

check-ins from three location-based social networking services. The results show the relevance

of the problem to boost recommender system with UIGF and the effectiveness and efficiency of

the proposal solutions compared to strong baselines.

7.2 Future Works

We envision several important future works to support our results and contribute for

novelties in the research tracks.

7.2.0.1 Recommendation of personalized sightseeing tours

In this thesis we discussed how semantically enriched trajectories derived from

user-generated content from web services like Flickr and Wikipedia offer a solid background

for planning personalized sightseeing tours. Therefore, we envision several important advances

towards a complete framework that considers wisdom-of-the-crowd to fulfill the tourists’ needs

in planning their visits to a new city.

Linked data. The increasing availability of Linked Open Data (LOD) sources has brought

151

new opportunities to integrate different data sources so as to semantically enrich trajectories

and points of interests. LOD may fulfill the lack of information we typically experience mana-

ging trajectories from user-generated data and this additional information will bring to better

recommendations combined with the capability of explaining the recommendation itself.

Smart Cities. Nowadays, we see the opportunity of integrating crowd-generated trajectories with

smart cities environments, such as the physical sensors used for collecting data for several aspects

of a city (pollution, traffic, etc). Similar to the LOD case, here we will have the opportunity to

create a huge new potential resource to enrich recommendations to the tourism industry.

Real-time Services. It is crucial to keep the tours up-to-date with the most recent events in the

city, like special discounts for museums, restaurants, events, etc. How to deal with it and how

to collect this amount of user data to provide real-time support to tourists will be a significant

challenge.

Group Recommendation. The fact that people usually do not travel alone highlights the

importance of recommending tours for groups of people instead of individuals. The task here is

to balance the recommendation to satisfy the distinct preferences inherent to each user in the

group. This may be a hard task since other issues may come up: the ability to influence people,

the distinct roles of members of the group such as the leader, etc.

Hierarchical Sightseeing Tours. So far we have considered the recommendation of sightseeing

tours for a single city. If the tourist is willing to travel around different cities, they would need

to use the system to generate the tour for each city separately. To overcome this limitation, the

design of a hierarchical approach would bring several benefits to help users to travel around

many cities.

Time-aware PoIs and Trajectories. Another important challenge is related to the temporal

dimension of PoIs and trajectories. Some PoIs and trajectories might be influenced by the time

of day: most people visit beaches during the day, in addition some sights (e.g. the Colosseum,

the Eiffel tower) could appear different in sunlight as compared during the night. Consequently,

better personalized tours for the users may be suggested when the temporal importance and

relevance of the PoIs and trajectories are taken in consideration.

Tour-based Hotel Selection. During the scheduling of a trip, tourists choose the city, select a

hotel and note down the PoIs to visit. Although the POI tour can be generated by TRIPBUILDER,

it still lacks the ability to help choose a hotel. The choice of hotel is usually influenced by

traditional constraints like price, ratings, etc. However, knowing the location of the sights on the

tour will make it easier to identify a hotel in a strategic position.

Personalized Visiting Time. TRIPBUILDER uses the crowd-generated content to infer an

approximate visiting time for each PoI and this information can be used by all tourists. However,

people usually have preferences and the tourists might wish to spend more time at some preferred

152

places compared to other less interesting attractions. A personalization of visiting time could

be very appropriate for tourists who can adapt their tours by splitting their time allowance for

specific attractions according to their preferences.

Novelty and Serendipitous Recommendations. The definition of the user-item interest, Γ(·, ·),
relies on the relevance of the item for the user and also on the popularity of the PoI (Definition

10 Chapter 4). We believe that it is important to define a generic function to model the user-item

interest in such a way that different functions might be used to capture different perspective. In

the current formulation, the popularity of the PoI is considered, but we believe that considering

the PoIs in the long-tail of the popularity distribution may bring enormous benefit for the users

when using real applications (e.g. Web and mobile) in order to favor novelty and serendipitous

recommendations. A possible solution could be to generalize the popularity function pop(·) in

such a way as to be able to account for popularity and non-popularity PoIs.

7.2.0.2 Advances in User-Item Group Formation

Based on the results of GROUPFINDER and the user-item group formation problem,

we can highlight some future works that will encourage group formation in the recommender

system as an indispensable feature for recommender systems of items that can be enjoyed in

group. The objective would be to engage users by offering not only item recommendations, but

also group recommendations. We therefore intend to study different formulations of the UI-GF

problem by modeling it as a densest “at most” k-subgraph problem. This is clearly a more

complex formulation that also needs more experiments in real world applications. Other research

directions we envisage include extending to lists of recommendations and the applicability to

other domains.

153

REFERÊNCIAS

ADAMIC, L.; LUKOSE, R.; PUNIYANI, A.; HUBERMAN, B. Search in power-law networks.
Physical Review E, v. 64, n. 46135, 2001.

ADOMAVICIUS, G.; TUZHILIN, a. Toward the Next Generation of Recommender Systems: a
Survey of the State of the Art and Possible Extensions. IEEE Transactions on Knowledge
and Data Engineering, v. 17, n. 6, p. 734–749, 2005. ISSN 10414347. Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975>.

AHN, Y.-Y.; BAGROW, J. P.; LEHMANN, S. Link communities reveal multiscale complexity in
networks. Nature, v. 466, n. 7307, p. 761–764, 2010. ISSN 0028-0836.

AIELLO, W.; CHUNG, F.; LU, L. A random graph model for massive graphs. In: STOC. [S.l.]:
ACM, 2000. p. 171–180.

AMER-YAHIA, S.; OMIDVAR-TEHRANI, B.; ROY, S. B.; SHABIB, N. Group
Recommendation with Temporal Affinities. In: EDBT 2015: Proceedings of the 18th
International Conference on Extending Database Technology. [S.l.: s.n.], 2015. p. 421–432.
ISBN 9783893180677.

AMER-YAHIA, S.; ROY, S. B.; CHAWLA, A.; DAS, G.; YU, C. Group Recommendation
: Semantics and Efficiency. Proceedings of the VLDB Endowment, v. 2, n. 1, p. 754–765,
2009. ISSN 21508097. Disponível em: <http://dl.acm.org/citation.cfm?id=1687713http:
//portal.acm.org/citation.cfm?id=1687627.1687713>.

ANKERST, M.; BREUNIG, M.; KRIEGEL, H. OPTICS: ordering points to identify
the clustering structure. ACM SIGMOD Record, 1999. Disponível em: <http:
//dl.acm.org/citation.cfm?id=304187>.

ASAHIRO, Y.; IWAMA, K.; TAMAKI, H.; TOKUYAMA, T. Greedily Finding a Dense
Subgraph. Journal of Algorithms, v. 34, n. 2, p. 203–221, 2000. ISSN 01966774. Disponível
em: <http://www.sciencedirect.com/science/article/pii/S0196677499910623>.

B., L.; Z., Z.; P., Y. A general framework for relation graph clustering. Knowledge and
Information Systems, v. 24, p. 393–413, 2010.

BAEZA-YATES, R.; RIBEIRO-NETO, B. et al. Modern information retrieval. [S.l.]: ACM
press New York, 1999. v. 463.

BALTRUNAS, L.; RICCI, F. Group Recommendations with Rank Aggregation and. In:
Proceedings of the fourth ACM conference on Recommender systems. ACM. [s.n.], 2010.
p. 119–126. ISBN 9781605589060. ISSN 1605589063. Disponível em: <http://dl.acm.org/
citation.cfm?id=1864733http://portal.acm.org/citation.cfm?id=1864708.1864733>.

BAO, J.; ZHENG, Y.; MOKBEL, M. F. Location-based and preference-aware recommendation
using sparse geo-social networking data. Proceedings of the 20th International Conference
on Advances in Geographic Information Systems - SIGSPATIAL ’12, p. 199, 2012.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2424321.2424348>.

BARABÁSI, A.-L.; ALBERT, R. Emergence of scaling in random networks. Science, v. 286,
1999.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1423975
http://dl.acm.org/citation.cfm?id=1687713 http://portal.acm.org/citation.cfm?id=1687627.1687713
http://dl.acm.org/citation.cfm?id=1687713 http://portal.acm.org/citation.cfm?id=1687627.1687713
http://dl.acm.org/citation.cfm?id=304187
http://dl.acm.org/citation.cfm?id=304187
http://www.sciencedirect.com/science/article/pii/S0196677499910623
http://dl.acm.org/citation.cfm?id=1864733 http://portal.acm.org/citation.cfm?id=1864708.1864733
http://dl.acm.org/citation.cfm?id=1864733 http://portal.acm.org/citation.cfm?id=1864708.1864733
http://dl.acm.org/citation.cfm?doid=2424321.2424348

154

Basu Roy, S.; AMER-YAHIA, S.; CHAWLA, A.; DAS, G.; YU, C. Space efficiency in
group recommendation. The VLDB Journal, v. 19, n. 6, p. 877–900, 2010. ISSN 1066-8888.
Disponível em: <http://link.springer.com/10.1007/s00778-010-0209-3>.

BELL, R.; KOREN, Y.; VOLINSKY, C. Modeling relationships at multiple scales
to improve accuracy of large recommender systems. Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
KDD’07, v. 5, n. 1, p. 95–104, 2007. ISSN 1567133X. Disponível em: <http:
//portal.acm.org/citation.cfm?doid=1281192.1281206>.

BENEVENUTO, F.; RODRIGUES, T.; CHA, M.; ALMEIDA, V. Characterizing user behavior
in online social networks. In: Internet Measurement Conference. [S.l.: s.n.], 2009. p. 49–62.

BERKHIN, P. Bookmark-Coloring Algorithm for Personalized PageRank Computing. Internet
Mathematics, v. 3, n. 1, p. 41–62, 2006. ISSN 1542-7951.

BERKOVSKY, S.; FREYNE, J. Group-based recipe recommendations: analysis of data
aggregation strategies. Proceedings of the fourth ACM conference on . . . , p. 111–118, 2010.
Disponível em: <http://dl.acm.org/citation.cfm?id=1864732http://portal.acm.org/citation.cfm?
id=1864708.1864732$\delimiter"026E30F$nhttp://dl.acm.org/citation.cfm?id=1864732>.

BERLINGERIO, M.; CALABRESE, F.; LORENZO, G. D.; NAIR, R.; PINELLI, F.; SBODIO,
M. L. Allaboard: A system for exploring urban mobility and optimizing public transport using
cellphone data. In: BLOCKEEL, H.; KERSTING, K.; NIJSSEN, S.; ZELEZNÝ, F. (Ed.).
ECML/PKDD (3). [S.l.]: Springer, 2013. (Lecture Notes in Computer Science, v. 8190), p.
663–666. ISBN 978-3-642-40993-6.

BERLINGERIO, M.; COSCIA, M.; GIANNOTTI, F. Finding and characterizing communities in
multidimensional networks. In: ASONAM. [S.l.]: IEEE Computer Society, 2011. p. 490–494.

BERLINGERIO, M.; COSCIA, M.; GIANNOTTI, F.; MONREALE, A.; PEDRESCHI, D.
Foundations of Multidimensional Network Analysis. 2011 International Conference on
Advances in Social Networks Analysis and Mining, Ieee, p. 485–489, jul 2011. Disponível
em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5992618>.

BLEI, D. M.; NG, A. Y.; JORDAN, M. I. Latent Dirichlet Allocation. Journal of Machine
Learning Research, v. 3, p. 993–1022, 2003. ISSN 15324435.

BOBADILLA, J.; ORTEGA, F.; HERNANDO, A.; BERNAL, J. Generalization of recommender
systems: Collaborative filtering extended to groups of users and restricted to groups of items.
Expert Systems with Applications, v. 39, n. 1, p. 172–186, 2012. ISSN 09574174.

BOBADILLA, J.; ORTEGA, F.; HERNANDO, a.; GUTIéRREZ, a. Recommender systems
survey. Knowledge-Based Systems, Elsevier B.V., v. 46, p. 109–132, jul. 2013. ISSN 09507051.
Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S0950705113001044>.

BOGORNY, V.; KUIJPERS, B.; MACÊDO, J. A. F. de; MOELANS, B.; VAISMAN, A. A. A
model for enriching trajectories with semantic geographical information. In: ACM-GIS. [S.l.:
s.n.], 2007.

BREESE, J. S.; HECKERMAN, D.; KADIE, C. Empirical analysis of predictive algorithms
for collaborative filtering. Proceedings of the 14th conference on Uncertainty in Artificial
Intelligence, v. 461, n. 8, p. 43–52, 1998. ISSN 15532712.

http://link.springer.com/10.1007/s00778-010-0209-3
http://portal.acm.org/citation.cfm?doid=1281192.1281206
http://portal.acm.org/citation.cfm?doid=1281192.1281206
http://dl.acm.org/citation.cfm?id=1864732 http://portal.acm.org/citation.cfm?id=1864708.1864732$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?id=1864732
http://dl.acm.org/citation.cfm?id=1864732 http://portal.acm.org/citation.cfm?id=1864708.1864732$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?id=1864732
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5992618
http://linkinghub.elsevier.com/retrieve/pii/S0950705113001044

155

BRILHANTE, I.; MACEDO, J.; NARDINI, F.; PEREGO, R.; RENSO, C. Tripbuilder:
A tool for recommending sightseeing tours. In: RIJKE, M. de; KENTER, T.; VRIES,
A. de; ZHAI, C.; JONG, F. de; RADINSKY, K.; HOFMANN, K. (Ed.). Advances
in Information Retrieval. Springer International Publishing, 2014, (Lecture Notes in
Computer Science, v. 8416). p. 771–774. ISBN 978-3-319-06027-9. Disponível em:
<http://dx.doi.org/10.1007/978-3-319-06028-6_93>.

BRILHANTE, I.; MACEDO, J. A.; NARDINI, F. M.; PEREGO, R.; RENSO, C.
Planning sightseeing tours using crowdsensed trajectories. SIGSPATIAL Special, ACM,
New York, NY, USA, v. 7, n. 1, p. 59–66, 2015. ISSN 1946-7729. Disponível em:
<http://doi.acm.org/10.1145/2782759.2782769>.

BRILHANTE, I. R.; BERLINGERIO, M.; TRASARTI, R.; RENSO, C.; MACEDO,
J. A. F. d.; CASANOVA, M. A. ComeTogether: Discovering Communities of Places
in Mobility Data. In: Proceedings of the 2012 IEEE 13th International Conference
on Mobile Data Management (mdm 2012). Washington, DC, USA: IEEE Computer
Society, 2012. (MDM ’12), p. 268–273. ISBN 978-0-7695-4713-8. Disponível em:
<http://dx.doi.org/10.1109/MDM.2012.17>.

BRILHANTE, I. R.; MACEDO, J. A.; NARDINI, F. M.; PEREGO, R.; RENSO, C. Where shall
we go today? planning touristic tours with tripbuilder. In: 22nd International Conference on
Information and Knowledge Management (CIKM). [S.l.: s.n.], 2013.

BRILHANTE, I. R.; MACEDO, J. A.; NARDINI, F. M.; PEREGO, R.; RENSO,
C. On planning sightseeing tours with TripBuilder. Information Processing &
Management, v. 51, n. 2, p. 1–15, 2015. ISSN 03064573. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0306457314000922>.

BRILHANTE, I. R.; MACEDO, J. A.; NARDINI, F. M.; PEREGO, R.; RENSO, C.
GroupFinder: an item-driven group formation framework. In: Proceedings of the 2016 IEEE
17th International Conference on Mobile Data Management (MDM 2016). Washington,
DC, USA: IEEE Computer Society, 2016. (MDM ’16).

BRILHANTE, I. R.; MACêDO, J. A. F. de; NARDINI, F. M.; PEREGO, R.; RENSO, C. Scaling
up the mining of semantically-enriched trajectories: Tripbuilder at the world level. In: IIR. [S.l.:
s.n.], 2015.

BRILHANTE, I. R.; MACêDO, J. A. F. de; NARDINI, F. M.; PEREGO, R.; RENSO, C.
User-item group formation with groupfinder. In: IIR. [S.l.: s.n.], 2016.

BRILHANTE, I. R.; MACEDO, J. A. F. de; RENSO, C.; CASANOVA, M. A. Trajectory
data analysis using complex networks. In: Proceedings of the 15th Symposium on
International Database Engineering & Applications. New York, NY, USA:
ACM, 2011. (IDEAS ’11), p. 17–25. ISBN 978-1-4503-0627-0. Disponível em:
<http://doi.acm.org/10.1145/2076623.2076627>.

BRINGMANN, B.; BERLINGERIO, M.; BONCHI, F.; GIONIS, A. Learning and Predicting
the Evolution of Social Networks. In: IEEE Intelligent Systems. [S.l.: s.n.], 2010. v. 25, n. 4, p.
26–35.

BROWN, C.; NICOSIA, V.; SCELLATO, S.; NOULAS, A.; MASCOLO, C. The importance
of being placefriends: discovering location-focused online communities. In: Proceedings

http://dx.doi.org/10.1007/978-3-319-06028-6_93
http://doi.acm.org/10.1145/2782759.2782769
http://dx.doi.org/10.1109/MDM.2012.17
http://www.sciencedirect.com/science/article/pii/S0306457314000922
http://www.sciencedirect.com/science/article/pii/S0306457314000922
http://doi.acm.org/10.1145/2076623.2076627

156

of the 2012 ACM workshop on Workshop on online social networks. New York, NY,
USA: ACM, 2012. (WOSN ’12), p. 31–36. ISBN 978-1-4503-1480-0. Disponível em:
<http://doi.acm.org/10.1145/2342549.2342557>.

BROWN, C.; NICOSIA, V.; SCELLATO, S.; NOULAS, A.; MASCOLO, C. Social and place-
focused communities in location-based online social networks. European Physical Journal B,
v. 86, n. 6, p. 1–11, 2013. ISSN 14346036. Disponível em: <http://arxiv.org/abs/1303.6460>.

BURKE, R. Hybrid web recommender systems. The adaptive web, p. 377–408, 2007. ISSN
03029743.

CALABRESE, F.; COLONNA, M.; LOVISOLO, P.; PARATA, D.; RATTI, C. Real-time urban
monitoring using cellular phones: a case-study in rome. IEEE Transactions on Intelligent
Transportation Systems, 2010.

CASTRO, R. D.; GROSSMAN, J. Famous trails to paul erdös. Mathematical Intelligencer,
v. 21, p. 51–63, 1999.

CHARIKAR, M. Greedy approximation algorithms for finding dense components in a graph.
In: Proceedings of the Third International Workshop on Approximation Algorithms for
Combinatorial Optimization. London, UK, UK: Springer-Verlag, 2000. (APPROX ’00), p. 84–
95. ISBN 3-540-67996-0. Disponível em: <http://dl.acm.org/citation.cfm?id=646688.702972>.

CHO, E.; MYERS, S. A.; LESKOVEC, J. Friendship and mobility: User movement in
location-based social networks. In: Proc. SIGKDD’11. [S.l.]: ACM. p. 1082–1090.

CHOUDHURY, M. D.; FELDMAN, M.; AMER-YAHIA, S.; GOLBANDI, N.; LEMPEL, R.;
YU, C. Automatic construction of travel itineraries using social breadcrumbs. In: ACM. Proc.
HT. [S.l.], 2010. p. 35–44.

CHRISTENSEN, I. a.; SCHIAFFINO, S. Entertainment recommender systems for group of users.
Expert Systems with Applications, Elsevier Ltd, v. 38, n. 11, p. 14127–14135, may 2011. ISSN
09574174. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S0957417411007482>.

COHEN, R.; KATZIR, L. The generalized maximum coverage problem. Information
Processing Letters, Elsevier, v. 108, n. 1, p. 15–22, 2008.

COOK, D.; CRANDALL, A.; SINGLA, G.; THOMAS, B. Detection of social interaction in
smart spaces. Cybernetics and Systems, v. 41, n. 2, p. 90–104, 2010.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. Introduction to Algorithms , Second
Edition. [S.l.: s.n.], 2001. v. 7. 1184 p. ISSN 01605682. ISBN 0262032937.

COSCIA, M.; GIANNOTTI, F.; PEDRESCHI, D. A classification for community discovery
methods in complex networks. 2011. 512–546 p.

COSCIA, M.; ROSSETTI, G.; GIANNOTTI, F.; PEDRESCHI, D. Demon: a local-first
discovery method for overlapping communities. In: Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. New York, NY,
USA: ACM, 2012. (KDD ’12), p. 615–623. ISBN 978-1-4503-1462-6. Disponível em:
<http://doi.acm.org/10.1145/2339530.2339630>.

http://doi.acm.org/10.1145/2342549.2342557
http://arxiv.org/abs/1303.6460
http://dl.acm.org/citation.cfm?id=646688.702972
http://linkinghub.elsevier.com/retrieve/pii/S0957417411007482
http://doi.acm.org/10.1145/2339530.2339630

157

CRANDALL, D. J.; BACKSTROM, L.; HUTTENLOCHER, D.; KLEINBERG, J. Mapping
the world’s photos. In: Proceedings of the 18th International Conference on World Wide
Web. New York, NY, USA: ACM, 2009. (WWW ’09), p. 761–770. ISBN 978-1-60558-487-4.
Disponível em: <http://doi.acm.org/10.1145/1526709.1526812>.

DESROSIERS, C.; KARYPIS, G. Recommender systems handbook. In: . Boston,
MA: Springer US, 2011. cap. A Comprehensive Survey of Neighborhood-based
Recommendation Methods, p. 107–144. ISBN 978-0-387-85820-3. Disponível em:
<http://dx.doi.org/10.1007/978-0-387-85820-3_4>.

DIBBELT, J.; PAJOR, T.; WAGNER, D. User-Constrained Multi-Modal Route Planning.
Networks, v. 6, n. 3, p. 10, 2012. ISSN 21640300.

DODGE, S.; WEIBEL, R.; LAUTENSCHüTZ, A.-K. Towards a taxonomy of movement
patterns. Information Visualization, Palgrave Macmillan, v. 7, p. 240–252, June 2008. ISSN
1473-8716. Disponível em: <http://portal.acm.org/citation.cfm?id=1594710.1594716>.

DONATO, D. Graph structures and algorithms for query-log analysis. In: CiE. [S.l.: s.n.], 2010.
p. 126–131.

DWORK, C.; KUMAR, R.; NAOR, M.; SIVAKUMAR, D. Rank aggregation methods
for the Web. Proceedings of the 10th international conference on World Wide Web,
p. 613–622, 2001. Disponível em: <http://dl.acm.org/citation.cfm?id=372165http:
//doi.acm.org/10.1145/371920.372165>.

El Mahrsi, M. K.; ROSSI, F. Clustering par optimisation de la modularité pour trajectoires
d’objets mobiles. In: Actes des 8èmes journées francophones Mobilité et Ubiquit. [S.l.: s.n.],
2012. p. 12–22.

ESTER, M.; KRIEGEL, H. peter; S, J.; XU, X. A density-based algorithm for discovering
clusters in large spatial databases with noise. In: . [S.l.]: AAAI Press, 1996. p. 226–231.

FAGIN, R.; LOTEM, A.; NAOR, M. Optimal aggregation algorithms for middleware. Journal
of Computer and System Sciences, v. 66, n. 4, p. 614–656, 2003. ISSN 00220000.

FEIGE, U.; KORTSARZ, G.; PELEG, D. The dense k-subgraph problem. Algorithmica, v. 29,
p. 2001, 1999.

FURLETTI, B.; CNR, K. I.; CINTIA, P.; CNR, K.-I.; SPINSANTI, L. Inferring human
activities from GPS tracks. Proceedings of the 2nd ACM SIGKDD International Workshop
on Urban Computing, n. August 2015, p. 5, 2013.

GAO, H.; TANG, J.; HU, X.; LIU, H. Exploring temporal effects for location recommendation on
location-based social networks. Proceedings of the 7th ACM conference on Recommender
systems - RecSys ’13, ACM Press, New York, New York, USA, p. 93–100, 2013.

GARCIA, I.; SEBASTIA, L.; ONAINDIA, E. On the design of individual and group
recommender systems for tourism. Expert Systems with Applications, Elsevier
Ltd, v. 38, n. 6, p. 7683–7692, jun 2011. ISSN 09574174. Disponível em: <http:
//linkinghub.elsevier.com/retrieve/pii/S095741741001506X>.

http://doi.acm.org/10.1145/1526709.1526812
http://dx.doi.org/10.1007/978-0-387-85820-3_4
http://portal.acm.org/citation.cfm?id=1594710.1594716
http://dl.acm.org/citation.cfm?id=372165 http://doi.acm.org/10.1145/371920.372165
http://dl.acm.org/citation.cfm?id=372165 http://doi.acm.org/10.1145/371920.372165
http://linkinghub.elsevier.com/retrieve/pii/S095741741001506X
http://linkinghub.elsevier.com/retrieve/pii/S095741741001506X

158

GAVALAS, D.; KONSTANTOPOULOS, C.; MASTAKAS, K.; PANTZIOU, G.; VATHIS,
N. Heuristics for the time dependent team orienteering problem: Application to tourist route
planning. Computers and Operations Research, Elsevier, v. 62, p. 36–50, 2015. ISSN
03050548. Disponível em: <http://dx.doi.org/10.1016/j.cor.2015.03.016>.

GIANNOTTI, F.; NANNI, M.; PEDRESCHI, D.; PINELLI, F.; RENSO, C.; RINZIVILLO, S.;
TRASARTI, R. Unveiling the complexity of human mobility by querying and mining massive
trajectory data. Very Large Database, v. 20, n. 5, 2011.

GIANNOTTI, F.; PEDRESCHI, D. (Ed.). Mobility, Data Mining and Privacy - Geographic
Knowledge Discovery. [S.l.]: Springer, 2008. ISBN 978-3-540-75176-2.

GIONIS, A.; LAPPAS, T.; PELECHRINIS, K.; TERZI, E. Customized tour recommendations
in urban areas. In: Proceedings of the 7th ACM International Conference on Web Search
and Data Mining. New York, NY, USA: ACM, 2014. (WSDM ’14), p. 313–322. ISBN
978-1-4503-2351-2. Disponível em: <http://doi.acm.org/10.1145/2556195.2559893>.

GODART, J.-M. Combinatorial optimisation based decision support system for trip planning. In:
Information and Communication Technologies in Tourism 1999. [S.l.]: Springer, 1999. p.
318–327.

GOMEZ-RODRIGUEZ, M.; LESKOVEC, J.; KRAUSE, A. Inferring networks of diffusion and
influence. In: KDD. [S.l.: s.n.], 2010. p. 1019–1028.

GONZÁLEZ, M.; HIDALGO, C.; BARABÁSI, A.-L. Understanding individual human mobility
patterns. Nature, n. 453, p. 479–482, 2008.

GRCAR, M.; FORTUNA, B.; MLADENIć, D. kNN Versus SVM in the Collaborative Filtering
Framework. Learning, p. 5–9, 2005. Disponível em: <http://eprints.pascal-network.org/archive/
00001938/>.

HOFMANN, T. Collaborative filtering via gaussian probabilistic latent semantic analysis.
Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval - SIGIR ’03, n. v, p. 259, 2003. Disponível em:
<http://portal.acm.org/citation.cfm?doid=860435.860483>.

HOFMANN, T. Latent semantic models for collaborative filtering. ACM Transactions on
Information Systems, v. 22, n. 1, p. 89–115, 2004. ISSN 10468188.

HOROZOV, T.; NARASIMHAN, N.; VASUDEVAN, V. Using location for personalized
POI recommendations in mobile environments. International Symposium on Applications
and the Internet (SAINT’06), Ieee, p. 6 pp.–129, 2006. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1581323>.

HU, L.; CAO, J.; XU, G.; CAO, L.; GU, Z.; CAO, W. Deep Modeling of Group Preferences for
Group-Based Recommendation. AAAI Conference on Artificial Intelligence (AAAI 2014), p.
1861–1867, 2014.

HUANG, Y.; BIAN, L. A bayesian network and analytic hierarchy process based personalized
recommendations for tourist attractions over the internet. Expert Systems with Applications,
Elsevier, v. 36, n. 1, p. 933–943, 2009.

http://dx.doi.org/10.1016/j.cor.2015.03.016
http://doi.acm.org/10.1145/2556195.2559893
http://eprints.pascal-network.org/archive/00001938/
http://eprints.pascal-network.org/archive/00001938/
http://portal.acm.org/citation.cfm?doid=860435.860483
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1581323
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1581323

159

JAMESON, A.; SMYTH, B. Recommendation to groups. The Adaptive Web, p. 596–627, 2007.
ISSN 03029743. Disponível em: <http://link.springer.com/chapter/10.1007/978-3-540-72079-9\
_20>.

JEH, G.; WIDOM, J. Scaling personalized web search. Proceedings of the twelfth
international conference on World Wide Web WWW 03, ofthe12th, n. [19], p. 271, 2003.
Disponível em: <http://portal.acm.org/citation.cfm?doid=775152.775191>.

JEONG, H.; MASON, S. P.; BARABASI, A. L.; OLTVAI, Z. N. Lethality and centrality in
protein networks. Nature, v. 411, n. 6833, p. 41–42, May 2001.

JEONG, H.; TOMBOR, B.; ALBERT, R.; OLTVAI, Z. N.; BARABáSI, A. L. The large-scale
organization of metabolic networks. Nature, Department of Physics, University of Notre Dame,
Indiana 46556, USA., v. 407, n. 6804, p. 651–654, October 2000. ISSN 0028-0836.

KOREN, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. [s.n.], 2008. p. 426–434. ISBN 9781605581934. ISSN 1605581933.
Disponível em: <http://dl.acm.org/citation.cfm?id=1401944$\delimiter"026E30F$npapers2:
//publication/uuid/3026BB6D-8924-44C9-8462-9254D04233A2>.

KOREN, Y. Collaborative filtering with temporal dynamics. Communications of
the ACM, v. 53, n. 4, p. 89, abr. 2010. ISSN 00010782. Disponível em: <http:
//portal.acm.org/citation.cfm?doid=1721654.1721677>.

KOREN, Y.; BELL, R.; VOLINSKY, C. Matrix Factorization Techniques for Recommender
Systems. Computer, v. 42, n. 8, p. 42–49, 2009. ISSN 0018-9162.

KOREN, Y.; BELL, R.; VOLINSKY, C. Matrix factorization techniques for recommender
systems. Computer, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 42, n. 8, p.
30–37, 2009. ISSN 0018-9162. Disponível em: <http://dx.doi.org/10.1109/MC.2009.263>.

LANGVILLE, A. N.; MEYER, C. D.; FERNÁNDEZ, P. Google’s pagerank and beyond: The
science of search engine rankings. The Mathematical Intelligencer, v. 30, n. 1, p. 68–69, 2008.
ISSN 0343-6993.

LATHIA, N.; HAILES, S.; CAPRA, L. Temporal Collaborative Filtering With Adaptive
Neighbourhoods. In: Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. [S.l.: s.n.], 2009. p. 796–797. ISBN
9781605584836.

LATHIA, N.; HAILES, S.; CAPRA, L.; AMATRIAIN, X. Temporal Diversity in Recommender
Systems. In: Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. [S.l.: s.n.], 2009. p. 210–217. ISBN
9781605588964.

LEE, K. M.; MIN, B.; GOH, K. I. Towards real-world complexity: an introduction to multiplex
networks. European Physical Journal B, v. 88, n. 2, 2015. ISSN 14346036.

LEMIRE, D.; MACLACHLAN, A. Slope one predictors for online rating-based collaborative
filtering. CoRR, abs/cs/0702144, 2007. Disponível em: <http://arxiv.org/abs/cs/0702144>.

http://link.springer.com/chapter/10.1007/978-3-540-72079-9_20
http://link.springer.com/chapter/10.1007/978-3-540-72079-9_20
http://portal.acm.org/citation.cfm?doid=775152.775191
http://dl.acm.org/citation.cfm?id=1401944$\delimiter "026E30F $npapers2://publication/uuid/3026BB6D-8924-44C9-8462-9254D04233A2
http://dl.acm.org/citation.cfm?id=1401944$\delimiter "026E30F $npapers2://publication/uuid/3026BB6D-8924-44C9-8462-9254D04233A2
http://portal.acm.org/citation.cfm?doid=1721654.1721677
http://portal.acm.org/citation.cfm?doid=1721654.1721677
http://dx.doi.org/10.1109/MC.2009.263
http://arxiv.org/abs/cs/0702144

160

LESKOVEC, J.; HUTTENLOCHER, D.; KLEINBERG, J. Predicting positive and negative
links in online social networks. In: WWW. [S.l.]: ACM, 2010. p. 641–650.

LEVANDOSKI, J. J.; SARWAT, M.; ELDAWY, A.; MOKBEL, M. F. LARS: A location-aware
recommender system. In: Proceedings - International Conference on Data Engineering.
[S.l.: s.n.], 2012. p. 450–461. ISBN 978-0-7695-4747-3. ISSN 10844627.

LEVENTHAL, G. E.; HILL, A. L.; NOWAK, M. A.; BONHOEFFER, S. Evolution
and emergence of infectious diseases in theoretical and real-world networks. Nature
communications, v. 6, p. 6101, 2015. ISSN 2041-1723.

LIKAS, A.; VLASSIS, N.; J. Verbeek, J. The global k-means clustering algorithm. Pattern
Recognition, v. 36, n. 2, p. 451–461, 2003. ISSN 00313203.

LIN, S.-W.; YU, V. F. A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, Elsevier
B.V., v. 217, n. 1, p. 94–107, fev. 2012. ISSN 03772217. Disponível em: <http:
//linkinghub.elsevier.com/retrieve/pii/S037722171100765X>.

LOE, C. W.; JENSEN, H. J. Comparison of communities detection algorithms for multiplex.
Physica A: Statistical Mechanics and its Applications, v. 431, p. 29–45, 2015. ISSN
03784371.

LOPS, P.; GEMMIS, M. de; SEMERARO, G. Content-based recommender systems:
State of the art and trends. In: RICCI, F.; ROKACH, L.; SHAPIRA, B.; KANTOR, P. B.
(Ed.). Recommender Systems Handbook. [S.l.]: Springer US, 2011. p. 73–105. ISBN
978-0-387-85819-7.

LU, E.; LIN, C.; TSENG, V. Trip-mine: An efficient trip planning approach with travel time
constraints. In: IEEE. Mobile Data Management (MDM), 2011 12th IEEE International
Conference on. [S.l.], 2011. v. 1, p. 152–161.

LU, K.; ZHOU, W.; WANG, X. Social network of the competing crowd. In: Behavior,
Economic and Social Computing (BESC), 2014 International Conference on. [S.l.: s.n.],
2014. p. 1–7.

LUCCHESE, C.; PEREGO, R.; SILVESTRI, F.; VAHABI, H.; VENTURINI, R. How random
walks can help tourism. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [S.l.: s.n.],
2012. v. 7224 LNCS, p. 195–206. ISBN 9783642289965. ISSN 03029743.

MATAI, R.; MITTAL, M. L.; SINGH, S. Traveling salesman problem: An overview of
applications, formulations, and solution approaches. [S.l.]: Prof. Donald Davendra(Ed.),
InTech, 2010. ISBN 978-953-307-426-9.

MCLAUGHLIN, M. R.; HERLOCKER, J. L. A collaborative filtering algorithm and evaluation
metric that accurately model the user experience. In: Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. New York, NY, USA: ACM, 2004. (SIGIR ’04), p. 329–336. ISBN 1-58113-881-4.
Disponível em: <http://doi.acm.org/10.1145/1008992.1009050>.

http://linkinghub.elsevier.com/retrieve/pii/S037722171100765X
http://linkinghub.elsevier.com/retrieve/pii/S037722171100765X
http://doi.acm.org/10.1145/1008992.1009050

161

MICHEL, F. How many public photos are uploaded to Flickr every day, month, year?
2014. <https://www.flickr.com/photos/franckmichel/6855169886/in/dateposted/>. Last access in
2016-03-01. Disponível em: <https://www.flickr.com/photos/franckmichel/6855169886/in/
dateposted/>.

NANNI, M.; PEDRESCHI, D. Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems, v. 27, n. 3, p. 267–289, nov. 2006. ISSN
0925-9902. Disponível em: <http://www.springerlink.com/index/10.1007/s10844-006-9953-7>.

NANNI, M.; PEDRESCHI, D.; PINELLI, F.; CNR, I.; MORUZZI, V. G.; GIANNOTTI, F.;
NANNI, M.; PINELLI, F.; PEDRESCHI, D.; PINELLI, F.; CNR, I.; MORUZZI, V. G. Trajectory
pattern mining. Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’07, ACM Press, New York, New York, USA, p.
330–339, 2007. Disponível em: <http://portal.acm.org/citation.cfm?doid=1281192.1281230http:
//dl.acm.org/citation.cfm?id=1281230>.

NARASIMHAMURTHY, A.; GREENE, D.; HURLEY, N.; CUNNINGHAM, P. Partitioning
large networks without breaking communities. Knowl Inf Syst, v. 25, p. 345–369, 2010.

NEWMAN, M. E. J. Spread of epidemic disease on networks. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, v. 66, n. 1, 2002. ISSN 15393755.

NEWMAN, M. E. J. The Structure and Function of Complex Networks. SIAM Review, v. 45,
n. 2, p. 167, 2003. ISSN 00361445. Disponível em: <http://link.aip.org/link/SIREAD/v45/i2/
p167/s1&Agg=doi>.

NEWMAN, M. E. J. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences of the United States of America, v. 103, n. 23, p. 8577–82,
jun 2006. ISSN 0027-8424. Disponível em: <http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=1482622{&}tool=pmcentrez{&}rendertype=ab>.

NEWMAN, M. E. J. (Ed.). Networks: An Introduction. [S.l.]: Oxford University Press, 2010.
ISBN 978-0199206650.

NOULAS, A.; SCELLATO, S.; LATHIA, N.; MASCOLO, C. A random walk around the
city: New venue recommendation in location-based social networks. In: Proceedings - 2012
ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012
ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012.
[S.l.: s.n.], 2012. p. 144–153. ISBN 9780769548487.

NOWELL, D.; KLEINBERG, J. The link prediction problem for social networks. In: CIKM
’03. ACM, 2003. p. 556–559. Disponível em: <http://dx.doi.org/10.1145/956863.956972>.

O’CONNOR, M.; COSLEY, D.; KONSTAN, J.; RIEDL, J. PolyLens: a recommender system
for groups of users. ECSCW 2001, 2001.

ORTEGA, F.; BOBADILLA, J.; HERNANDO, A.; GUTIéRREZ, A. Incorporating group
recommendations to recommender systems: Alternatives and performance. Information
Processing and Management, v. 49, p. 895–901, 2013. ISSN 03064573.

PAGE, L.; BRIN, S.; MOTWANI, R.; WINOGRAD, T. The PageRank Citation Ranking. World
Wide Web Internet And Web Information Systems, v. 54, n. 1999-66, p. 1–17, 1998. ISSN
03064573. Disponível em: <http://ilpubs.stanford.edu:8090/422>.

https://www.flickr.com/photos/franckmichel/6855169886/in/dateposted/
https://www.flickr.com/photos/franckmichel/6855169886/in/dateposted/
https://www.flickr.com/photos/franckmichel/6855169886/in/dateposted/
http://www.springerlink.com/index/10.1007/s10844-006-9953-7
http://portal.acm.org/citation.cfm?doid=1281192.1281230 http://dl.acm.org/citation.cfm?id=1281230
http://portal.acm.org/citation.cfm?doid=1281192.1281230 http://dl.acm.org/citation.cfm?id=1281230
http://link.aip.org/link/SIREAD/v45/i2/p167/s1&Agg=doi
http://link.aip.org/link/SIREAD/v45/i2/p167/s1&Agg=doi
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1482622{&}tool=pmcentrez{&}rendertype=ab
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1482622{&}tool=pmcentrez{&}rendertype=ab
http://dx.doi.org/10.1145/956863.956972
http://ilpubs.stanford.edu:8090/422

162

PARENT, C.; SPACCAPIETRA, S.; RENSO, C.; ANDRIENKO, G.; ANDRIENKO, N.;
BOGORNY, V.; DAMIANI, M. L.; GKOULALAS-DIVANIS, A.; MACEDO, J.; PELEKIS,
N.; THEODORIDIS, Y.; YAN, Z. Semantic trajectories modeling and analysis. ACM
Computing Surveys, v. 45, n. 4, p. 42:1–42:32, 2013. ISSN 03600300. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2501654.2501656>.

PASTOR-SATORRAS, R.; CASTELLANO, C.; MIEGHEM, P. V.; VESPIGNANI, A. Epidemic
processes in complex networks. Rev. Mod. Phys., American Physical Society, v. 87, p. 925–979,
Aug 2015. Disponível em: <http://link.aps.org/doi/10.1103/RevModPhys.87.925>.

RENSO STEFANO SPACCAPIETRA, E. Z. C. Mobility Data: Modeling, Management, and
Understanding. [S.l.]: Cambridge University Press, 2013.

RESNICK, P.; IACOVOU, N.; SUCHAK, M.; BERGSTROM, P.; RIEDL, J. Grouplens:
An open architecture for collaborative filtering of netnews. In: Proceedings of the
1994 ACM Conference on Computer Supported Cooperative Work. New York, NY,
USA: ACM, 1994. (CSCW ’94), p. 175–186. ISBN 0-89791-689-1. Disponível em:
<http://doi.acm.org/10.1145/192844.192905>.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Introduction to Recommender Systems Handbook. In:
Recommender Systems Handbook. [s.n.], 2011. p. 1–35. ISBN 9780387858203. Disponível
em: <http://dx.doi.org/10.1007/978-0-387-85820-3_1>.

ROCHA, J. A. M. R.; TIMES, V. C.; OLIVEIRA, G.; ALVARES, L. O.; BOGORNY, V.
Db-smot: A direction-based spatio-temporal clustering method. In: IEEE Conf. of Intelligent
Systems. [S.l.: s.n.], 2010.

ROY, S. B.; LAKSHMANAN, L. V.; LIU, R. From group recommendations to group
formation. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2015. (SIGMOD ’15), p. 1603–1616. ISBN
978-1-4503-2758-9. Disponível em: <http://doi.acm.org/10.1145/2723372.2749448>.

SALTON, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1989. ISBN 0-201-12227-8.

SARWAR, B.; KARYPIS, G.; KONSTAN, J.; RIEDL, J. Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference on World
Wide Web. New York, NY, USA: ACM, 2001. (WWW ’01), p. 285–295. ISBN 1-58113-348-0.
Disponível em: <http://doi.acm.org/10.1145/371920.372071>.

SARWAT, M.; LEVANDOSKI, J. J.; ELDAWY, A.; MOKBEL, M. F. LARS*: An efficient and
scalable location-aware recommender system. IEEE Transactions on Knowledge and Data
Engineering, v. 26, n. 6, p. 1384–1399, 2014. ISSN 10414347.

SCHEIN, A. I.; POPESCUL, A.; UNGAR, L. H.; PENNOCK, D. M. Methods and
metrics for cold-start recommendations. Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval
SIGIR 02, v. 46, n. Sigir, p. 253–260, 2002. ISSN 01635840. Disponível em:
<http://portal.acm.org/citation.cfm?doid=564376.564421>.

SHANG, S.; DING, R.; YUAN, B.; XIE, K.; ZHENG, K.; KALNIS, P. User oriented trajectory
search for trip recommendation. In: ACM. Proc. EDBT. [S.l.], 2012. p. 156–167.

http://dl.acm.org/citation.cfm?doid=2501654.2501656
http://link.aps.org/doi/10.1103/RevModPhys.87.925
http://doi.acm.org/10.1145/192844.192905
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://doi.acm.org/10.1145/2723372.2749448
http://doi.acm.org/10.1145/371920.372071
http://portal.acm.org/citation.cfm?doid=564376.564421

163

SHANG, S.; HUI, P.; KULKARNI, S. R.; CUFF, P. W. Wisdom of the crowd: Incorporating
social influence in recommendation models. In: Parallel and Distributed Systems (ICPADS),
2011 IEEE 17th International Conference on. [S.l.: s.n.], 2011. p. 835–840. ISSN 1521-9097.

SOUAM, F.; AïTELHADJ, A.; BABA-ALI, R. Dual modularity optimization for detecting
overlapping communities in bipartite networks. Knowledge and Information Systems, online
first, 2013.

SOUFFRIAU, W.; VANSTEENWEGEN, P.; VERTOMMEN, J.; BERGHE, G.;
OUDHEUSDEN, D. V. A personalized tourist trip design algorithm for mobile tourist guides.
Applied Artificial Intelligence, Taylor & Francis, v. 22, n. 10, p. 964–985, 2008.

SOZIO, M.; GIONIS, a. The Community-search Problem and How to Plan a Successful Cocktail
Party. Proc. SIGKDD, p. 939–948, 2010.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M. L.; MACÊDO, J. A. F. de; PORTO, F.;
VANGENOT, C. A conceptual view on trajectories. Data Knowl. Eng., v. 65, n. 1, p. 126–146,
2008.

SU, X.; KHOSHGOFTAAR, T. M. A Survey of Collaborative Filtering Techniques. Advances
in Artificial Intelligence, v. 2009, n. Section 3, p. 1–19, 2009. ISSN 1687-7470.

SUROWIECKI, J. The Wisdom of Crowds: Why the Many are Smarter Than
the Few and how Collective Wisdom Shapes Business, Economies, Societies,
and Nations. Doubleday, 2004. ISBN 9780385503860. Disponível em: <https:
//books.google.se/books?id=bA0c4aYTD6gC>.

TRASARTI, R.; RINZIVILLO, S.; PINELLI, F.; NANNI, M.; MONREALE, A.; RENSO, C.;
PEDRESCHI, D.; GIANNOTTI, F. Exploring Real Mobility Data with M-Atlas. Matrix, p.
624–627, 2010.

UNGAR, L. H.; FOSTER, D. P. Clustering methods for collaborative filtering. In: AAAI
workshop on recommendation systems. [S.l.: s.n.], 1998. v. 1, p. 114–129.

VANSTEENWEGEN, P.; OUDHEUSDEN, D. V. The mobile tourist guide: an or opportunity.
OR Insight, Nature Publishing Group, v. 20, n. 3, p. 21–27, 2007.

VANSTEENWEGEN, P.; SOUFFRIAU, W. Trip planning functionalities: state of the art and
future. Information Technology & Tourism, Cognizant Communication Corporation, v. 12,
n. 4, p. 305–315, 2010.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G.; OUDHEUSDEN, D. The city trip
planner: an expert system for tourists. Expert Systems with Applications, Elsevier, v. 38, n. 6,
p. 6540–6546, 2011.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; BERGHE, G. V.; OUDHEUSDEN, D. V. A
guided local search metaheuristic for the team orienteering problem. European Journal of
Operational Research, Elsevier B.V., v. 196, n. 1, p. 118–127, jul 2009. ISSN 03772217.
Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S0377221708002312>.

VANSTEENWEGEN, P.; SOUFFRIAU, W.; OUDHEUSDEN, D. V. The orienteering problem:
A survey. European Journal of Operational Research, v. 209, n. 1, p. 1–10, 2011. ISSN
03772217.

https://books.google.se/books?id=bA0c4aYTD6gC
https://books.google.se/books?id=bA0c4aYTD6gC
http://linkinghub.elsevier.com/retrieve/pii/S0377221708002312

164

VANSTEENWEGEN, P.; SOUFFRIAU, W.; Vanden Berghe, G.; Van Oudheusden, D.
Iterated local search for the team orienteering problem with time windows. Computers &
Operations Research, v. 36, n. 12, p. 3281–3290, dec 2009. ISSN 03050548. Disponível em:
<http://linkinghub.elsevier.com/retrieve/pii/S030505480900080X>.

WACHOWICZ, M.; ONG, R.; RENSO, C.; NANNI, M. Finding moving flock patterns among
pedestrians through collective coherence. IJGIS, v. 25, n. 11, 2011.

WANG, H.; TERROVITIS, M.; MAMOULIS, N. Location recommendation in location-based
social networks using user check-in data. Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, p. 374–383,
2013.

WANG, P.; GONZÁLEZ, M.; HIDALGO, C.; A.-L.BARABÁSI. Understanding the spreading
patterns of mobile phones viruses. Science, n. 324, p. 1071–1076, 2009.

XIAO, J. Clustering spatial data for join operations using match-based partition. In:
CIMCA/IAWTIC. [S.l.: s.n.], 2005.

XIAO, X.; ZHENG, Y.; LUO, Q.; XIE, X. Finding similar users using category-based location
history. Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems - GIS ’10, n. 49, p. 442, 2010. Disponível em: <http:
//dl.acm.org/citation.cfm?id=1869857http://dl.acm.org/citation.cfm?id=1869790.1869857>.

YAN, X.; HAN, J. gSpan: Graph-based substructure pattern mining. In: Data Mining, 2002.
ICDM 2002. Proceedings. 2002 IEEE International Conference on. [S.l.]: IEEE, 2002.
(ICDM ’02), p. 721–724.

YANG, J.; LESKOVEC, J. Modeling information diffusion in implicit networks. In: ICDM.
[S.l.: s.n.], 2010. p. 599–608.

YE, M.; YIN, P.; LEE, W.-C.; LEE, D.-L. Exploiting geographical influence for collaborative
point-of-interest recommendation. Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information, p. 325–334, 2011. Disponível em:
<http://doi.acm.org/10.1145/2009916.2009962>.

YI, S. K. M.; STEYVERS, M.; LEE, M. D.; DRY, M. Wisdom of Crowds in Minimum
Spanning Tree Problems. In: Proceedings of the 32nd Annual Conference of the Cognitive
Science Society. [s.n.], 2010. Disponível em: <http://psiexp.ss.uci.edu/research/papers/
cogscicon2010-WisdomOfCrowdsInMSTPs-YiSteyversLeeDry-Revised.pdf>.

YI, S. K. M.; STEYVERS, M.; LEE, M. D.; DRY, M. J. The wisdom of the crowd in
combinatorial problems. Cognitive Science, v. 36, n. 3, p. 452–470, 2012. Disponível em:
<http://dblp.uni-trier.de/db/journals/cogsci/cogsci36.html#YiSLD12>.

YIN, H.; CUI, B.; SUN, Y.; HU, Z.; CHEN, L. LCARS: A Spatial Item Recommender System.
ACM Trans. Inf. Syst., v. 32, n. 3, p. 11:1–11:37, 2014. ISSN 1046-8188.

YIN, H.; SUN, Y.; CUI, B.; CHEN, L. LCARS : A Location-Content-Aware Recommender
System. Lecture Notes in Computer Science, v. 3290, p. 492–508, 2013. ISSN 09574174.

YOON, H.; ZHENG, Y.; XIE, X.; WOO, W. Smart itinerary recommendation based on
user-generated gps trajectories. Ubiquitous Intelligence and Computing, Springer, p. 19–34,
2010.

http://linkinghub.elsevier.com/retrieve/pii/S030505480900080X
http://dl.acm.org/citation.cfm?id=1869857 http://dl.acm.org/citation.cfm?id=1869790.1869857
http://dl.acm.org/citation.cfm?id=1869857 http://dl.acm.org/citation.cfm?id=1869790.1869857
http://doi.acm.org/10.1145/2009916.2009962
http://psiexp.ss.uci.edu/research/papers/cogscicon2010-WisdomOfCrowdsInMSTPs-YiSteyversLeeDry-Revised.pdf
http://psiexp.ss.uci.edu/research/papers/cogscicon2010-WisdomOfCrowdsInMSTPs-YiSteyversLeeDry-Revised.pdf
http://dblp.uni-trier.de/db/journals/cogsci/cogsci36.html#YiSLD12

165

YOON, H.; ZHENG, Y.; XIE, X.; WOO, W. Social itinerary recommendation from
user-generated digital trails. Personal and Ubiquitous Computing, Springer, v. 16, n. 5, p.
469–484, 2012.

YU, Y.; CHEN, X. A Survey of Point-of-Interest Recommendation in Location-Based Social
Networks. AAAI Workshops - Trajectory-Based Behavior Analytics, p. 53–60, 2015.

YU, Z.; ZHOU, X.; HAO, Y.; GU, J. TV Program Recommendation for Multiple Viewers
Based on user Profile Merging. User Modeling and User-Adapted Interaction, v. 16, n. 1,
p. 63–82, jun. 2006. ISSN 0924-1868. Disponível em: <http://link.springer.com/10.1007/
s11257-006-9005-6>.

Zhana Kuncheva; Giovanni Montana. Community detection in multiplex networks using locally
adaptive random walks. ArXiv, 2015. Disponível em: <http://arxiv.org/abs/1507.01890v1>.

ZHENG, V. W.; ZHENG, Y.; XIE, X.; YANG, Q. Collaborative location and activity
recommendations with GPS history data. Proceedings of the 19th international conference
on World wide web - WWW ’10, ACM Press, New York, New York, USA, p. 1029, 2010.
Disponível em: <http://portal.acm.org/citation.cfm?doid=1772690.1772795>.

ZHENG, V. W.; ZHENG, Y.; XIE, X.; YANG, Q. Towards mobile intelligence: Learning from
GPS history data for collaborative recommendation. Artificial Intelligence, v. 184-185, p.
17–37, 2012. ISSN 00043702.

ZHENG, Y.; CHEN, Y.; XIE, X.; MA, W.-Y. GeoLife2.0: A Location-Based Social
Networking Service. 2009 Tenth International Conference on Mobile Data Management:
Systems, Services and Middleware, Ieee, n. 49, p. 357–358, 2009. Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5088957>.

ZHENG, Y.; XIE, X.; MA, W.-Y. GeoLife: A Collaborative Social Networking Service among
User, location and trajectory. IEEE bullettin, v. 33, n. 2, 2010.

ZHENG, Y.; ZHANG, L.; XIE, X.; MA, W.-Y. Mining interesting locations and travel
sequences from GPS trajectories. Proceedings of the 18th international conference on
World wide web - WWW ’09, n. 49, p. 791, 2009. ISSN 08963207. Disponível em:
<http://portal.acm.org/citation.cfm?doid=1526709.1526816>.

ZHOU, K.; YANG, S.-h.; ZHA, H. Functional Matrix Factorizations for Cold-Start
Recommendation. Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval, p. 315–324, 2011.

http://link.springer.com/10.1007/s11257-006-9005-6
http://link.springer.com/10.1007/s11257-006-9005-6
http://arxiv.org/abs/1507.01890v1
http://portal.acm.org/citation.cfm?doid=1772690.1772795
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5088957
http://portal.acm.org/citation.cfm?doid=1526709.1526816

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introduction
	Context and Challenges
	Hypotheses and Research Questions
	Thesis Contribution
	Thesis Organization

	Related Works
	Mobility Data Analysis, Mining and Networks
	Trajectories
	Networks

	Recommender Systems
	Content-based Recommender Systems
	Collaborative Filtering Recommender Systems
	Neighborhood-based Collaborative Filtering
	Model-based Collaborative Filtering Recommender Systems

	Recommender Systems for Location-based Services
	Stand-alone location recommendation
	Sequential location recommendation

	Group Recommendation
	Group Formation Problem

	ComeTogether: finding and characterizing communities of places in urban mobility
	Introduction
	Basic Concepts
	The ComeTogether Methodology
	Building the PoI network
	PoI Network Analysis
	From network connectivity to mobility-related measures

	Communities of points of interests
	Compactness
	Feature Similarity

	Random Mobility Models
	Case Study on Different Cities
	Data and Tools
	Building the PoI network
	Aggregated PoIs
	Creating Trajectories and Trips

	PoI Network Analysis
	Confronting PoI Networks and Random Models
	Node classes

	Community discovery in PoI networks
	Largest Communities
	Comparing Communities against the Network

	Discussion

	Planning sightseeing tours based on the wisdom-of-the-crowd
	Introduction
	The TripCover Problem
	The TrajSP Problem
	Trajectory Scheduling Problem
	Scheduling the tour on the user agenda

	Building the Knowledge Base
	Points of interest discovery
	Users and PoI histories
	Trajectories creation
	Traveling time estimation

	Datasets statistics
	Experiments
	Effectiveness – TripCover
	Random Selection
	Profile-based Selection

	Effectiveness – TrajSP
	Efficiency

	Discussion

	TripBuilder platform to create personalized sightseeing tours
	Introduction
	TripBuilder Platform
	Data Collection
	Data Processing
	Data Storage
	TripBuilder Engine

	The Web Application and Functionalities
	Towards a distributed architecture
	Stream Layer with Apache Storm
	Batch Layer with Apache Spark
	Distributed Data Storage

	Discussion

	GroupFinder framework for group formation problem
	Introduction
	The User-Item Group Formation problem
	Addressing the UI-GF Problem
	Greedy algorithm
	Nearest Neighbor Dense k-Subgraph (k-NN)

	GroupFinder Framework
	Recommender System
	Social Network Manager
	Group Finder Engine

	Experimental Settings
	Datasets
	Computing the relevance scores
	Ground-truth groups
	Performance Metrics
	Baselines
	Densest k-Subgraph (DkSP)
	Top k-Nodes (k-Top)

	Experiments
	Effectiveness
	Weighted Pairwise Satisfaction Density
	Precision and Recall

	Efficiency

	Discussion

	Conclusions and Future Works
	Conclusions
	Future Works
	Recommendation of personalized sightseeing tours
	Advances in User-Item Group Formation

	REFERÊNCIAS

