
UNIVERSIDADE FEDERAL DO CEARÁ 

FACULDADE DE ECONOMIA,ADMINISTRAÇÃO, ATUÁRIA E 

CONTABILIDADE 

CURSO DE PÓS-GRADUAÇÃO EM ECONOMIA – CAEN 

 

 

 

 

 

 

 

RODRIGO DE OLIVEIRA MAYORGA 

 

 

 

 

 

 

 

 

AN APPLICATION OF VALUE AT RISK AND EXPECTED SHORTFALL 

 

 

 

 

 

 

 

 

 

 

FORTALEZA 

2016 

 



	 2 

RODRIGO DE OLIVEIRA MAYORGA 

 

 

AN APPLICATION OF VALUE AT RISK AND EXPECTED SHORTFALL 

 

 

 

 

 

Tese apresentada ao Curso de Doutorado 
em Economia do Departamento de Pós-
Graduação em Economia - CAEN da 
Universidade Federal do Ceará, como 
parte dos requisitos para obtenção  do 
título de Doutor em Economia. Área de 
concentração: Econometria Aplicada. 
 
Orientador: Prof. Dr. Andrei Gomes 
Simonassi. 
Coorientador: Rafael Bráz Azevedo 
Farias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FORTALEZA 

2016 



	 3 

 

 

 

 
 

 

Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M42a Mayorga, Rodrigo de Oliveira.
    An Application of Value at Risk and Expected Shortfall / Rodrigo de Oliveira Mayorga. – 2016.
    60 f. 

     Tese (doutorado) – Universidade Federal do Ceará, Faculdade de Economia, Administração, Atuária e
Contabilidade, Programa de Pós-Graduação em Economia, Fortaleza, 2016.
     Orientação: Prof. Dr. Andrei Gomes Simonassi.
     Coorientação: Prof. Dr. Rafael Bráz Azevedo Farias.

    1. Extreme Value Theory. 2. Value at Risk. 3. Expected Shortfall. I. Título.
                                                                                                                                                  CDD 330



	 4 

RODRIGO DE OLIVEIRA MAYORGA 

 

 

AN APPLICATION OF VALUE AT RISK AND EXPECTED SHORTFALL 

 

 

Tese apresentada ao Curso de Doutorado 
em Economia do Departamento de Pós-
Graduação em Economia - CAEN da 
Universidade Federal do Ceará, como 
parte dos requissitos para obtenção  do 
título de Doutor em Economia. Área de 
concentração: Econometria Aplicada. 

 

 

Aprovada em: 29/08/2016. 

 

BANCA EXAMINADORA 
 
 

______________________________________________ 
Prof. Dr. Andrei Gomess Simonassi (Orientador) 

Universaidade Federal do Ceará - CAEN 
 

 
______________________________________________ 

Prof. Dr. Rafael Bráz Azevedo Farias (Coorientador) 
Universaidade Federal do Ceará - DEMA 

 
 

______________________________________________ 
Prof. Dr. Paulo Rogério Faustino Matos  
Universaidade Federal do Ceará - CAEN 

 
 

_____________________________________________ 
Prof. Dr. Luiz Ivan de Melo Castelar  

Universaidade Federal do Ceará - CAEN 
 
 

______________________________________________ 
Prof. Dr. Roberto Tatiwa Ferreira 

Universaidade Federal do Ceará - CAEN 
 



	 5 

DEDICO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

À Deus. 

Aos meus pais, Dario e Irles, à minha filha 

Sarah, ao meu irmão Fernando, à minha 

cunhada Diana, aos meus sobrinhos Isabela e 

Daniel, e à toda a minha família Oliveira e 

família Mayorga. Tudo que consegui foi 

graças ao amor, apoio, dedicação e 

confiança depositada em mim. 

 

 



	 6 

AGRADECIMENTOS 

 

À Deus por sempre iluminar meu caminho e me dar forças para superar as 

dificuldades. 

À FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico 

Tecnológico), pelo apoio financeiro, fato este que muito contribuiu para a viabilização 

desta tese.  

À CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), pelo 

apoio financeiro com a manutenção da bolsa do Programa do Doutorado-sanduíche no 

Exterior (PDSE).  

Ao Curso de Pós-Graduação em Economia - CAEN da Universidade Federal do 

Ceará, que proporcionou meu aprendizado. 

À Universidade de California, Berkeley, por viabilizar efetivamente minha solicitação 

como aluno visitante, visando aprimorar os meus estudos.  

Ao Professor Dr. Andrei Gomes Simonassi, pela competência, confiança, motivação, 

e paciência. Sua orientação foi muito além do aspecto acadêmico, oferecendo apoio 

não somente na realização do trabalho, assim como no aperfeiçoamento integral do 

aluno.  

Ao Professor Dr. Rafael Bráz Azevedo Farias, pela competência, disponibilidade e 

ensinamentos. Seu conhecimento em estatística e programação avançada, foram 

fundamentais para o bom termino deste trabalho.  

Ao Professor Ph.D. Frederico Finan, por ter concretizado o apoio necessário para a 

realização do Doutorado Sanduíche na Universidade da Califórnia, Berkeley. 

Aos Professores da Banca examinadora. Professor Dr. Paulo Rogério Faustino Matos, 

ao Professor Ph.D. Luiz Ivan de Melo Castelar e ao Professor Dr. Roberto Tatiwa 

Ferreira, pela competência e conhecimento demostrada nas correções do presente 

trabalho. 

A todos os professores do Departamento de Pós-Graduação em Economia - CAEN, 

pelos ensinamentos transmitidos e pela contribuição no meu processo de aprendizado. 

Às secretárias, bibliotecárias e funcionários do CAEN, pelo apoio acadêmico e pela 

convivência gratificante durante todo esse percurso. Em especial à Carmen Rodrigues 

e à Márcia Russo (UFC-CAEN), à Camille Fernandez (da Universidade da California, 

Berkeley) e ao Narcélio Marques (Pró-Reitoria de Pesquisa e Pós-Graduação - UFC), 

pela  apoio recebido, pela atenção e pela eficiência com que sempre me atenderam. 



	 7 

Aos amigos da BFA (Bussines & Finance Advisor), Célio Fernando, Francisco 

Assunção, Raimundo Porto, Mary Amaral, Juliana Rabelo, Renata Coláo, Izabel 

Magalhães, Yuri Vidal, Filipe Rabelo e Raimundo Nonato, pelo aprendizado, 

incentivo e confiança.  

À todos os colegas e amigos do CAEN, pela convivência no transcurso desta árdua 

mas positiva jornada. 

Aos meus familiares (tios, tias, primos e primas), pelo amor, pela amizade, pelos 

momentos de alegria e descontração, pela motivação e incentivo. 

E finalmente, a todas as pessoas que contribuíram direta ou indiretamente na 

elaboração deste trabalho.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 “Stay Hungry, Stay Foolish” 

Steve Jobs 

 

 

 



	 9 

ABSTRACT 

 

The last two decades have been characterized by significant volatilities in 

financial world marked by few major crises, market crashes and bankruptcies of large 

corporations and liquidations of major financial institutions. In this context, this study 

considers the Extreme Value Theory (EVT), which provides well established 

statistical models for the computation of extreme risk measures like the Value at Risk 

(VaR) and Expected Shortfall (ES) and examines how EVT can be used to model tail 

risk measures and related confidence interval, applying it to daily log-returns on four 

market indices. These market indices represent the countries with greater commercial 

trade with Brazil for last decade (China, U.S. and Argentina). We calculate the daily 

VaR and ES for the returns of IBOV, SPX, SHCOMP and MERVAL stock markets 

from January 2nd 2004 to September 8th 2014, combining the EVT with GARCH 

models. Results show that EVT can be useful for assessing the size of extreme events 

and that it can be applied to financial market return series. We also verified that 

MERVAL is the stock market that is most exposed to extreme losses, followed by the 

IBOV. The least exposed to daily extreme variations are SPX and SHCOMP.  

 

Keywords:  Extreme Value Theory; Value at Risk; Expected Shortfall. 
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RESUMO 

 

As duas últimas décadas têm sido caracterizadas por volatilidades 

significativas no mundo financeiro em grandes crises, quebras de mercado e falências 

de grandes corporações e liquidações de grandes instituições financeiras. Neste 

contexto, este estudo considera a evolução da Teoria do Valor Extremo (EVT), que 

proporciona modelos estatísticos bem estabelecidos para o cálculo de medidas de 

risco extremos, como o Value at Risk (VaR) e Espected Shortfall (ES) e examina 

como a EVT pode ser usada para modelar medidas de risco raros, estabelecendo 

intervalos de confiança, aplicando-a aos log-retornos diários a quatro índices de 

mercado. Estes mercados representam os países com maior intercâmbio comercial 

com o Brasil (China, U.S. e Argentina). Calculamos o VaR e ES diários dos índices 

IBOV, SPX, SHCOMP e MERVAL, com dados diários entre  de 02 de janeiro de 

2004 e 08 de setembro de 2014, combinando a EVT com modelos GARCH. Os 

resultados mostram que EVT pode ser útil para avaliar o tamanho de eventos 

extremos e que ele pode ser aplicado a séries de retorno do mercado financeiro. 

Verifica-se ainda que MERVAL é o mercado de ações que está mais exposta a perdas 

extremas, seguido do IBOV. Os menos expostos a variações extremas diárias são SPX 

e SHCOMP. 

 

Palavras Chave: Teoria dos Valor Extremos; Valor em Risco; Expected Shortfall. 
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1. Introduction 

After a series of economic collapse in the past three decades including Black 

Monday in 1987, Asian market crisis in 1997, Subprime crisis in 2008 and the most 

recent China Aviation Oil Singapore (CAO) incident, financial markets analysts 

started to investigate the impacts of these breakdowns on financial markets and how it 

affects the economy as a whole. The financial crisis of 2008 caused a worldwide 

economic collapse that is considered the most severe since the 1930s. It was triggered 

by bad investment decisions by major banks in the U.S. on potentially unplayable 

mortgages.  

Globally the major impact was felt in Britain, European Union, Russia, Japan, 

the oil countries of the Middle East, and the Third World. The crisis affected almost 

every sector of the economy, including housing, construction, office buildings, 

automobiles, retail sales, and government (Recession of 2008). According to the 

International Monetary Fund (IMF), the global financial crisis gave impact on $3.4 

trillion losses from financial institutions around the world between 2007 and 2010 

(Dattels and Kodres, 2009). 

The risk manager must be aware of the possibility of occurrence of extremes 

events in other markets, and the magnitude of changes in the markets in which it 

operates, reducing unexpected sever losses. Empirical work using Extreme Value 

Theory (EVT) approach to model spillovers in financial markets has grown in recent 

years. 

In the EVT approach, financial crises are viewed as rare, i.e., extreme events 

whose occurrence is governed by different laws than those governing the entire 

domain of asset return distributions studied. The focus is on the tails of the 

distributions. This allows the avoidance of some typical misassumptions, of which the 

most commonly made are that the analyzed empirical distributions follow normal 

distributions.  

Value at Risk (VaR) was introduced by JP Morgan in the mid 1990s who 

introduced the RiskMetrics methodology. In 1999, Artzner et al., underlines about 

VaR being used as a risk measure, since it is not necessarily sub-additive (it’s not 

coherent) which means there is no guarantee that merger of two portfolios do not 

create extra risk. In fact, diversification of portfolio, containing more than one asset, 

can reduce risk. Artzner et al. (1999) also argues that, VaR measures only percentiles 

of profit-loss distributions, disregarding any loss beyond the VaR level (“tail risk” 
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problem). In their study, they proposed the Expected Shortfall (ES) as coherent 

measure. 

China, U.S. and Argentina have been the three countries with greater 

commercial trade with Brazil for last decade. The fact that these economies are strong 

economic partners, with several agreements, maintaining strong commodity 

exchanges relations, turn out to be extremely possible that economic crisis in one of 

these countries could be an indicator that the other may be the next to go into crisis. 

This paper deals with the behavior of the tails of financial series of these four 

countries, focusing on the use of extreme value theory to compute tail risk measures 

and the related confidence intervals. We model and estimate the dynamic next day 

VaR and ES for the Brazilian stock index (IBOV Index), the American S&P 500 

index (SPX Index), the Chinese stock index (SHCOMP Index) and the Argentina 

stock index (MERVAL Index) series of daily log-return data using EVT.  

This paper is organized as follows. Market evaluation of the countries studied 

is outlined in Section 3. Section 4 describes the literature review of GARCH and 

EVT. In section 5, we present an overview of the theoretical framework of EVT, 

describe the measures of extremes risks  (VaR and ES), present the GARCH models 

and explain how conditional EVT is applied on VaR and ES. In Section 6 we explain 

the methodology for the dynamic approach and measure of accuracy by backtesting 

models. We discuss in Section 7 the tail modeling of the Brazilian, American, 

Chinese and Argentinian return series, assess the outcomes and provide the estimates 

of the risk measures. Finally, we conclude the study in section 8. 

	
2. Market Evaluation 

Between 2004 and 2015 the Brazilian import market grew about 172%, but 

during this period it had two major drops when compared with the year before. One 

was in 2009 with 26% (decrease) and the other was in 2015 with 25%. The three main 

countries that Brazil imports goods since 2004 are respectively (in 2015), China 

(18%), U.S. (15%) and Argentina (6%), representing approximately 39% of Brazilian 

total imports. The goods that are most imported are, petroleum oils, petroleum gases, 

crude oil from petroleum, motorcars and other motor vehicles for passengers and 

electrical apparatus. During the same period (2004-2015), the Brazilian export market 

grew nearly 98%. In 2009 there was a major fall of 22% when compared to 2008, and 

since 2012 the exports have been decreasing. In 2012 the drop was of approximately 
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5% (when compared to 2011), and continued decreasing, 22% in 2013, 7% in 2014 

and 15% in 2015. The major goods that Brazil exports are soyabeans, iron ore and its 

concentrates, crude oil from petroleum, crude sugar cane and raw coffee beans 

(MDIC, 2016). 

For the last 15 years, Argentina has been through economic issues. In 

December 2001 and July 2014 it defaulted on its debt, and until April 2015 its leaders 

have refused to pay its creditors, including some U.S. hedge funds. The nonpayment 

has meant the country can't borrow money from foreign governments, so it's 

essentially had to self-fund its own operations. Any gains could quickly vanish the 

country's stock market is smaller than others in the region, so shares could tumble if 

even a small amount of money leaves the market. 

The Sao Paulo Stock Exchange (Bovespa) was founded in 1890, and was 

initially linked to the government, especially to the financial departments of state 

governments. At that time, stockbrokers were nominated by the government. With the 

reform of the financial system in the 1960s, the Bovespa ended up becoming a self-

regulatory organization, and operates only with the supervision of the Securities and 

Exchange Commission – CVM (Comissão de Valores Mobiliários). In 2008 the 

merger of the Brazilian Mercantile & Futures Exchange (BM&F) and the Sao Paulo 

Stock Exchange (Bovespa) was created. The integrated BM&F Bovespa offers a host 

of products for trading such as stocks, ETFs, futures, commodities, forwards, options, 

corporate and government bonds, etc. It also provides indices based on market 

capitalization, liquidity, industry, corporate governance and sustainability. 

Chinese stock markets are fundamentally different than Western markets. 

They don’t send the same signals and don’t have the same effects when they rise and 

crash. Unlike every other major stock market in the world, China’s markets are almost 

completely closed to foreign investors. There’s heavy involvement from the 

government in the market, state-owned companies dominate China’s Shanghai 

Composite (the top ten valued companies are all state-owned). The Communist Party 

floats only a small percentage of a company’s balance sheet on the stock exchange 

while keeping control of the rest. But slowly, China has been liberalizing its capital 

markets to foreign investor, given access to it’s stock market. In November 17, 2014 

global investors were able to purchase shares of companies listed on the Shanghai 

Stock Exchange. Previously, only a select group of institutional investors that met 

certain qualifications had access to Shanghai's $2 trillion market. 
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The S&P 500 is one the most commonly used benchmarks for the overall U.S. 

stock market, and the most important index to investors. The index includes 500 of 

the largest (not necessarily 500 largest) companies whose stocks trade on either the 

NYSE (New York Stock Exchange) or NASDAQ (National Association of Securities 

Dealers Automated Quotations). These 500 stocks are chosen by market size, liquidity 

and industry grouping, among other factors. The index is not only used to track the 

performance of the broad market, it also informs on which hundreds of billions of 

investors’ money is invested in through mutual funds and exchange-traded funds. 

3. Literature Review: GARCH – EVT 
Since risk measurement methodologies used to estimate the VaR of financial 

assets assuming that the market behavior was stable, extreme market events required a 

special approach from risk managers. Among the first researchers who introduced 

EVT models to estimate extreme risks were Danielsson and De Vries (1997), McNeil 

(1998) and Longin (2000, 2001). In there research, the authors focused on estimating 

unconditional (stationary) asset returns. McNeil (1998) and Longin (2000) used EVT 

estimation models based on limit theorems for block maxima, whereas Danielsson 

and de Vries (1997) used semi-parametric approach based on Hill-estimator. Since 

these authors, several researchers have tested real market data. These studies concern 

several financial assets (stocks, bonds, hedge funds, commodities, among others), 

different returns distributions (normal, t-student’s, distributions from EVT, such as 

Fréchet, Weibull, Gumbel or Generalized Pareto Distributions - GPD) and also 

estimate both VaR and ES. 

Neftci (2000) used the maximum likelihood approach to fit the Generalized 

Pareto Distribution (GPD) to extreme changes for a number of foreign exchange rates 

and U.S. dollar interest rates and uses the resulting estimates to compute the 1% tail 

probability for distributions. Both the in-sample data and out-of-sample data show 

that tails estimated with extreme distribution theory perform surprisingly well in 

capturing the rate of occurrence and the (average) extent of extreme events. These 

results are encouraging, in that they indicate that the GPD accurate 99% confidence 

VaR forecast for a portfolio with a (single) linear exposure to any of the exchange or 

interest rates studied. 

The method developed by McNeil and Frey (2000) involved an approach that 

combined the volatility adjustment by a Generalized Autoregressive Conditional 
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Heteroskedasticity (GARCH) process and elements of the EVT of five time series of 

log returns, the S&P 500 index (USA), the DAX index (Germany), the shares of 

BMW, and the U.S. dollar British pound exchange rate. The conditional GPD based 

VaR estimates perform well at all quantiles, and significantly better than other 

approaches to which they compare it at 99 and 99,5% quantiles. They also showed 

that the GPD of EVT better estimates for Expected Shortfall than the Gaussian model 

Silva and Mendes (2003) used the EVT to analyze ten Asian stock indices 

(such as of China, India, Japan, Indonesia, Korea, Malaysia, Singapore, Philippines, 

Taiwan and Thailand during the period of 1990 to 1999), testing which type of 

extreme value and asymptotic distribution best fits into extreme historical market 

events in Asia. The results showed show the accuracy of EVT of estimating VaR is a 

more conservative approach to determining capital requirements than 

traditional/historical methods.  

To better understand the financial system of Chile, Fernandez (2003), 

estimates the Chilean and U.S. stocks returns series with GARCH-type models and 

compute tails distributions of GARCH innovations by EVT, allowing to analyze 

conditional quantiles (VaR) comparing it to other alternatives, such as conditional 

normal, conditional t, and nonparametric quantiles. The result is that the conditional-

EVT approach is the best to compute VaR 

Gençay et al. (2003) compared the performance of EVT in VaR calculation to 

other modeling techniques, such as GARCH, variance-covariance and the historical 

simulation method applied to the Istanbul Stock Exchange Index (ISE-100) 1987 to 

2001. The models were classified into two groups. The first group consisted of 

GARCH (1,1) normally distributed and with student’s t-distribution. The second 

group comprised historical simulation, the Var-Cov approach, adaptable to the GPD 

and non-adaptive GPD models. The quantile forecasts of GARCH (1,1) proved to be 

excessively volatile relative to the GPD quantile forecasts. That made the GPD model 

to be a more robust quantile forecasting tool, being more practical for implementation 

and presenting a more regular performance for VaR measurements. 

Brooks et al. (2005) compared different models based on EVT to determine 

VaR of three LIFFE (London Financial Futures Exchange’s) futures contracts 

referring to the period from 1991 to 1997. A semi-nonparametric approach was also 

proposed, where the tail events were modeled using the GPD, and normal market 
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conditions were captured by the empirical distribution function. The VaR estimates 

from this approach are compared with those of standard nonparametric extreme value 

tail estimation approaches, with a small sample bias-corrected extreme value 

approach, and with those calculated from bootstrapping the unconditional density and 

bootstrapping from a GARCH(1,1) model. The results suggest that, for a holdout 

sample, the proposed semi-nonparametric extreme value approach produced better 

results to other methods analyzed, and they also verified consistent results for small 

sample tail index technique.  

Assaf (2009) analyzed four emerging financial markets belonging to the 

Middle East and North African (MENA) region (Egypt, Jordan, Morocco, and 

Turkey).  These markets presented fatter tails than the normal distribution and 

therefore introduce the EVT to evaluate daily loss by computing VaR in each market 

and explore the implications for portfolio diversification and risk management. He 

found that, in general the VaR estimates based on the tail-index are higher than those 

based on a normal distribution for all markets. They state that a proper risk 

assessment should not neglect the tail behavior in these markets, since that may lead 

to an improper evaluation of market risk. 

Singh et al. (2011) apply dynamic EVT (focusing on Peaks Over Threshold - 

POT method) approach to the to Australian stock market return series for predicting 

next day VaR. They model VaR in a dynamic two-stage extreme value process with a 

GARCH (1,1) to forecast one day ahead 1% and 5% VaR estimates. With historical 

data in a moving window of the last 1000 days log returns for ASX-All ordinaries and 

S&P-500 indices. They verified that the dynamic-EVT performs better than the other 

widely used methods of normal GARCH(1,1) and RiskMetric, and has the advantage 

of reacting to extreme market conditions (such as the Global Financial Crises of 

2008), therefore getting better VaR forecasts.  

Brooks and Persand (2003) state that there is consensus in the relevant 

literature that equity return volatility raises more following negative than positive 

shocks. Pagan and Schwert (1990), Nelson (1991), Campbell and Hentschel (1992), 

Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993), Henry (1998) and 

Engle and Lee (1999) are some of the researches that demonstrate the existence of 

asymmetric effects in stock index returns. Recent studies have been developed using 

asymmetric GARCH models to evaluate extreme risk: 
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Alberg et al. (2008) uses various GARCH models to analyze the mean return 

and conditional variance of Tel Aviv Stock Exchange (TASE) indices. The authors 

investigate the forecasting performance of GARCH, Exponential GARCH 

(EGARCH), (Glosten, Jagannathan and Runkle) GARCH (the GJR-GARCH) and 

Asymmetric Power ARCH (APARCH) models together with the different density 

functions: normal distribution, student’s t-distribution and asymmetric student’s t-

distribution, and also compare between symmetric and asymmetric distributions using 

these three different density functions. The results showed that asymmetric GARCH 

models improve the forecasting performance 

Mokni et al. (2009) used the GARCH family models such as, GARCH, 

Integrated GARCH (IGARCH), and GJR-GARCH (each of which were adjusted 

based on three residuals distributions: normal, student’s-t and skewed student’s-t) 

models to investigate the effects of subprime crisis on the VaR estimation. They 

separated their sample into two periods: the first covers the stability period (calm 

period) from 1st of January 2003 to 16th of July 2007 and the second period covers the 

crisis period (turbulent period) from 17th of July 2007 to 10th of July 2008. They 

verified that the amount of VaR is different during these two time periods. And they 

state that, this finding could be explained by the volatility clustering effect. There 

empirical results showed also that GJR-GARCH model performs better in both sub-

sample periods, in comparison with GARCH and IGARCH models. And they finish 

concluding that student’s-t and skewed student’s t-distributions are preferred in the 

stable period while the normal distribution is recommended during the turbulent 

period. 

Bucevska (2013) used the daily returns of the Macedonian Stock Exchange 

Index (MBI 10), to test the performance of the symmetric GARCH (1,1) and the 

GARCH-in-mean (GARCH-M) model as well as of the asymmetric EGARCH (1,1) 

model, the GJR-GARCH model and the APARCH (1,1) model with different residual 

distributions form 2005 to 2011. The results indicated that the most adequate GARCH 

family models for estimating and forecasting volatility in the Macedonian stock 

market are the asymmetric EGARCH model with student’s t-distribution, the 

EGARCH model with normal distribution and the GJR- GARCH model, which are 

robust with regard to the estimation.  

The majority of these studies, using GARCH models to estimate the current 

volatility of the log returns series, showed the empirical superiority of EVT for VaR 
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and ES estimation. Moreover, recent studies indicate that the use of asymmetric 

GARCH models improve results in estimating extreme risks. 

4. Theoretical Framework 

One of the most important tasks of financial institutions is evaluation of 

exposure to market risks, which arises from variations in prices of equities, 

commodities, exchange rates and interest rates. The dependence on market risks can 

be measured by changes in the portfolio value or profits and losses. Regulators and 

the financial industry advisory committees recommend VaR as a way of risk 

measuring, which is also recommended in the Basel II accord1. Therefore, VaR is 

used to ensure that the financial institutions can still be in business after a catastrophic 

event. 

According to Jorion (2007), VaR summarizes the worst loss over a target 

horizon that will not be exceeded with a given level of confidence. While VaR can be 

used by any entity to measure its risk exposure, it is used most often by commercial 

and investment banks to capture the maximal loss of a financial position from adverse 

market movements over a specified period. This can then be compared to their 

available capital and cash reserves to ensure that the losses can be covered without 

putting the firms at risk. 

VaR measurement is widely applied to estimate exposure to market risks. 

However, many authors claim that VaR has several conceptual problems. Artzner et 

al. (1999) shows that VaR fails on coherency since it’s not sub-additive2. Another 

issue encountered on VaR measurements is that informs nothing about the extent of 

the losses that could be incurred in the event that the VaR is exceeded. A number of 

alternative risk measures have been proposed to overcome the problem of lack of sub-

additivity in the VaR and/or provide more information about the tail shape 

(Danielsson, 2011). One method of risk measure that overcomes these weaknesses is 

																																																								
1Since the global financial crisis (2008), trading books at a number of financial organizations around the world began to show 
significant losses. The magnitude of these losses prompted questions over whether financial institutions had been holding 
adequate capital reserves, as calculated using risk measures such as VaR. Since then, the Bank for International Settlements’ 
(BIS) Basel Committee has searched for ways to improve the capital positions of financial organizations by changing existing 
guidelines and requirements for risk measurement. In July 2009, the BIS issued its final copy of the “Revisions to the Basel II 
market risk framework”, which was the fist steps for the Basel III standards. These revisions were developed upon the BIS’s 
Basel II framework published in June of 2006. Hence, the purpose of Basel II was to create standards and regulations on how 
much capital reserve financial institution must have, to reduce the risks associated with its investing and lending practices. And 
Basel III seeks to improve the banking sector’s ability to deal with financial and economic stress, improve risk management and 
strengthen the banks’ transparency. The focus is to promote greater resilience at the individual bank level in order to reduce the 
risk of the system wide shocks (BIS, 2015).  
2Whereby the risk of a combined portfolio cannot be greater than the sum of the risks associated with any possible division of 
that portfolio. 
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called Expected Shortfall (ES). Artzner et al. (1999) demonstrate that ES is sub-

additive, and it’s defined as the average level of losses, given that the VaR is 

exceeded, from conditional VaR (Alexander, 2008). 

 

On the other hand, one of the most significant criticisms to VaR approach is 

the common assumption in quantitative financial risk modeling that assets return 

series present normal distribution, i.e., focus on the central observation or, in other 

words, on returns under normal conditions. This makes the evaluation inefficient if 

the data exhibit heavy tails (common in financial data), the risk of high quantiles are 

underestimated. Investors and risk managers have become more concerned with 

events occurring under extreme market conditions. To overcome this problem recent 

studies propose VaR based on the Extreme Value Theory (EVT), since it has the 

ability to accurately estimate probability and quantile at the extremes of the sample as 

well as outside it. EVT provides well-established statistical models for the 

computation of extreme risk measures like the Return Level, Value at Risk and 

Expected Shortfall. Originally, EVT concepts were applied mainly to the study of 

natural extreme and rare events, such as floods and earthquakes. However, EVT 

quickly became popular in the financial literature.  

Generally there are two main related ways of identifying extremes in real data. 

The most traditional models are Block Maxima models based on Generalized Extreme 

Value (GEV), and a more modern and powerful group of models for Threshold 

Exceedances, based on Generalized Pareto Distribution (GPD). The method of 

looking only at observations above a certain threshold and fitting a GPD to these 

exceedances is called the Peak Over Threshold (POT) method (McNeil, Frey and 

Embrechts, 2005). Although they are related, each of them treats extreme data in a 

different manner. 

Block Maxima Method (BM) focuses in the largest values (maxima) taken 

from samples of independent and identically distributed (iid) observations. The 

asymptotic distribution of a series is modeled and the distribution of the standardized 

maximum is shown to follow to extreme value distributions of Gumbel, Fréchet or 

Weibull distributions. The Generalized Extreme Value distribution (GEV) is a 

standard form of these three distributions, and hence the series is shown to converge 

to GEV. It has a major defect that it is very wasteful of data, because it only uses 

periodical maxima and, therefore, requires wide datasets.  
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The Generalized Pareto Distribution (GPD) gives a good model for the upper 

tail, providing reliable extrapolation for exceedances over a sufficiently high 

threshold. This method, which is defined on the excesses, is called Peaks Over 

Threshold (POT). The choice of threshold is crucial (involves balancing bias and 

variance), as it defines which part of the data can be considered as extreme, or more 

formally where the asymptotically justified extreme value models will provide a 

reliable approximation to the GPD. It is generally considered to be the most useful for 

practical applications, due to their more efficient use of the (often limited) data on 

extreme outcomes (McNeil, Frey and Embrechts, 2005).  

According to Bhattacharrya and Ritolia (2006), the Block Maxima modeling 

approach is extensively used in hydrology and other engineering applications, but it’s 

not practically suited for financial time series because of volatility clustering. Peaks 

Over Threshold utilizes data more efficiently and therefore has become the method of 

choice in financial applications. Fernandez (2003) states that an additional advantage 

of POT is that provides VaR and ES estimates that are easy to compute. We focus on 

the POT method to the losses on the Brazilian, American, Chinese and Argentinian 

stock indexes. 

It is important to mention that some EVT methods assume that the data to be 

studied are iid (independent and identically distributed), which is not always the case 

for most financial log returns series, since it presents certain characteristics, such as, 

changing volatility, clustering, asymmetry, leverage effect and long memory 

properties. These properties are usually approached by modeling the price process 

with Autoregressive Conditional Heteroskedastic (ARCH) - type model, originated by 

Engle (1982) and later extended by Bollerslev (1986) as Generalized Autoregressive 

Conditional Heteroskedastic (GARCH) - type model. McNeil and Frey (2000) 

proposed conditional EVT model to estimate the tails of Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) residuals, before estimating VaR. They 

found that this methodology gives better estimates, than methods that ignore the 

heavy tails of the innovations or the stochastic nature of the volatility.  

GARCH models capture volatility clustering and leptokurtosis, but as their 

distribution is symmetric, they fail to model the leverage effect3. It assumes that the 

positive or negative information have the same impact on the volatility, which show 

																																																								
3 Black (1976) pioneered the asymmetric volatility study and attributed it to firms’ leverage effect. 
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symmetric effect in the variance equation of the model. To address this problem, 

many extensions of GARCH have been proposed, such as the Exponential GARCH 

(E-GARCH) model by Nelson (1991), and the so-called GJR-GARCH model by 

Glosten, Jagannathan and Runkle (1993). Engle and Lee (1993) later claimed that the 

volatility could be decomposed into a transitory or short-run and a permanent or long 

run component, they applied the Component GARCH (C-GARCH) model.  

4.1. Asset Returns and Losses 

Let financial asset prices be denoted by 𝑃!, where 𝑡 ∈ ℤ, usually refers to a 

day, but can indicate any frequency (e.g., year, week, hour). The simple net return, is 

the price variation relation to the previous price: 

𝑅! =
𝑃! − 𝑃!!!
𝑃!!!

=
𝑃!
𝑃!!!

− 1 (4.1.1) 

The simple gross return is the ratio between current and previous price: 

log 1+ 𝑅! = log
𝑃!
𝑃!!!

 (4.1.2) 

An alternative return measure is continuously compounded return. The gross return 

can be approximated by the log returns, which is given by: 

𝑟! = log 𝑃! − log 𝑃!!!  (4.1.3) 

The loss is defined by 𝑋!  at day 𝑡 as the negative of the log return, i.e. 

𝑋! = −𝑟!. Negative (positive) log returns of financial asset prices are defined for the 

left tail of distribution, assuming traders at long position (short position) 4. And 

Positive (negative) log returns of financial asset prices are defined for the right tail of 

distribution considering trader at long position (short position). 

Let 𝑋! , 𝑡 𝜖 ℤ  be a strictly stationary time series representing losses on 

financial asset price. Dynamics of 𝑋 is given by: 

𝑋! = 𝜇! ++𝜀! (4.1.4) 

𝜀! = 𝜎!𝑍! (4.1.5) 

where 𝜇! = 𝜑! + 𝜑! 𝑋!!! , 𝜑! < 1, the innovations 𝑍! are iid continuous random 

variables with mean zero, unit variance, and comes from a location-scale family 

distribution, 𝐹! 𝑧 5, and where 𝜇! and 𝜎! are measurable with respect to the return 

																																																								
4 Long position is when the investor buys and holds a traded asset, in this case the risk comes from a drop in the price of the 
asset. And short position is when the investor borrows a traded asset, it’s not owned by seller, in this case the risk comes from a 
rise in price of the asset. 
5 As McNeil and Frey (2000), instead of assuming 𝐹! 𝑧  to be standard normal, we apply the POT estimation procedure to this 
distribution of residuals. 
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process up to time 𝑡 − 16. The concept of Efficient Market Hypothesis (EMH) by 

Fama (1964, 1970), proposes that stock returns themselves do not have predictive 

power for their future returns and suggests conditional mean dynamics become 

negligible. Consequently, the linear first order Autoregressive model (or AR(1)) is 

dropped, and is modified to be GARCH(m,s) since the higher order terms turn out to 

be necessary for correct specifications. 

4.2. Value at Risk (VaR) 

The VaR measures the potential loss in value of a risky asset or portfolio over 

a defined period for a given confidence level 𝑞 ∈  0,1  and time 𝑡. The VaR at the 

confidence level 𝑞 is given by the smallest number 𝑥! such that the probability that 

the loss 𝑋!!! at time 𝑡 will fall below 𝑥! (McNeil et al. 2005). Formally: 

𝑉𝑎𝑅!! = inf 𝑥!  𝜖 𝑅:𝑃 𝑋!!! ≤ 𝑥! ≥ 𝑞

= inf 𝑥!  𝜖 𝑅:𝑃 𝑋!!! > 𝑥! ≤ 1− 𝑞  
(4.2.1) 

In probabilistic terms, VaR is thus simply a quantile of the loss distribution. 

Typical values for 𝑞 are 𝑞 = 0.95 or 𝑞 = 0.99.  

VaR is a risk measure that ask the question “How bad can things get?”. 

However, it is often more of interest to know “If things do get bad, how bad can it 

get?” (Hull, 2012). Expected Shortfall answers this last question.   

4.3. Expected Shortfall (ES) 
ES is also known as expected tail loss or conditional VaR (CVaR), which is 

defined as the expected loss given that we have a loss larger than VaR. The ES at 

level 𝑞 ∈  0,1 , is the expected value at time 𝑡 of the loss in the next period 𝑋!!!, 

conditional on the loss exceeding 𝑉𝑎𝑅!! :  

𝐸𝑆!! = 𝐸! 𝑋!!!|𝑋!!! > 𝑉𝑎𝑅!!  (4.3.1) 

The two models considered (VaR and ES) assumes that the log returns are iid, 

the mean and variance are constants, which may not be realistic in practice, since they 

are time dependent. 

																																																								
6 It starts by estimating 𝜇! and 𝜎!, usually by means of quasi-maximum likelihood (QML), and applies the classical POT method 
to the residuals (Brodin and Klueppelberg, 2008).  
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4.4. Symmetric GARCH (m,s) model 

4.4.1 The Standard GARCH(m,s)  model 

The GARCH model, proposed by Bollerslev (1986) adds a sum of lagged 

conditional variances to the definition of the ARCH process. From losses on 

financial asset price, 𝑋!  (equation 4rício.1.4), let 𝜀! = 𝑋! − 𝜇!  be the 

innovation at time 𝑡. Then 𝜀! follows a GARCH(m,s) process if it satisfies the 

equations: 

𝜀! = 𝜎!𝑍! (4.4.1.1) 

𝜎!! = 𝜔 + 𝛼!𝜀!!!!
!

!!!

+ 𝛽!𝜎!!!!
!

!!!

 (4.4.1.2) 

where 𝜔 > 0  and 𝛼!  ≥ 0  for 𝑖 = 1,… ,𝑚,  and 𝛽! ≥ 0  for 𝑗 = 1,… , 𝑠.  If 

 !"# (!,!)
!!! 𝛼! + 𝛽! < 1, then the process 𝜀!  is covariance stationary. If 𝜀!!!  are 

large in magnitude, 𝜀! will likely be large in magnitude, which provides a reasonable 

explanation of volatility clusters.  

4.5. Asymmetric GARCH(m,s) models 

4.5.1 The GJR-GARCH(m,s)  model 

Glosten, Jaganathan and Runkle (1994) introduced an extension of the 

GARCH model by introducing an indicator variable in the sum of the ARCH-terms 

(shocks) 𝜀!!!. Its generalized version is given by: 

𝜀! = 𝜎!𝑍! (4.5.1.1) 

𝜎!! = 𝜔 + 𝛼! + 𝛾!𝐼!!! 𝜀!!!!
!

!!!

+ 𝛽!𝜎!!!!
!

!!!

 (4.5.1.2) 

where 𝜔,𝛼! ,𝛽! > 0  guarantees positivity,  𝛼!  !
!!! + 𝑐 𝛾! +!

!!! 𝛽! < 1!
!!!  is 

necessary for stationarity (where 𝑐 is the expected values of standardized residuals 𝑍! 

below zero7), and 𝐼!!! is an indicator variable such that: 

𝐼!!! =
1    if  𝜀!!! < 0
0    if  𝜀!!! ≥ 0 (4.5.1.4) 

If 𝜀!!! ≥ 0, 𝐼!!! = 0, the effect of a 𝜀!!!  shock on 𝜎!!  is 𝛼!𝜀!!!! . When 𝜀!!! < 0, 

𝐼!!! = 1, the effect on 𝜎!! is 𝛼! + 𝛾! 𝜀!!!! . The model uses zero as its threshold to 

																																																								
7 Effectively the probability of being below zero: 𝑐 = Ε 𝐼!!!𝑍!! = 𝑓 𝑍, 0,1,…!

!! 𝑑𝑍  where 𝑓 is the standardized conditional 
density with any additional skew and shape parameters. If the distribution is symmetric 𝑐 = 0.5 (Ghalanos, 2015). 
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separate the impacts of past shocks. The coefficient 𝛾!  dictates the correlation 

between volatility and returns, if it’s statistically different from zero, the data contain 

a threshold effect. Observe that if 𝛾 > 0, negative shocks will have larger effects on 

volatility than positive shocks. The opposite will happen if 𝛾 < 0 (provided that 

𝛼! + 𝛾! ≥ 0). 

4.5.2 The Component GARCH(m,s) model 

In the Component GARCH model, the conditional variance is decomposed 

into two parts corresponding to transitory and permanent effects. Let 𝑞! represent the 

permanent (or trend) component in the conditional variance. The variance of this 

model is given by:  

𝜎!! = 𝑞! + 𝛼! 𝜀!!!! − 𝑞!!!

!

!!!

+ 𝛽! 𝜎!!!! − 𝑞!!!

!

!!!

 (4.5.2.1) 

𝑞! = 𝜔 + 𝜌𝑞!!! + 𝜙 𝜀!!!! − 𝜎!!!!  (4.5.2.2) 

where 0 < 𝛼 + 𝛽 < 𝜌 < 1 and 0 < 𝜙 < 𝛽, and 𝜌 is the speed of mean reversion. 

Typically 𝜌 is between 0.9 and 1, so the 𝑞! converges to 𝜔 very slowly. For 𝜌 = 1, 

the long-term volatility process is integrated. The forecasting error term 𝜀!!!! − 𝜎!!!!  

is the zero-mean and serial uncorrelated, which drives the evolution of the permanent 

component. The difference between 𝜎!!!!  and 𝑞!!! represents the transitory part of the 

conditional variance.  

4.6. The Extreme Value Theory 
The basic objective of any VaR approach is to provide an estimate of the 

largest expected loss in a given investment position for a given level of confidence 

and investment period. The focus of interest has been on the analysis of very rare (low 

probability) risk events, i.e., extreme risk returns, which causes high effects on the 

economy.  

The branch of mathematical statistics that emerged with the study of such 

problems is called Extreme Value Theory (EVT). In essence, EVT determines the 

nature of the tail of the distribution without having to make assumptions on the 

distribution from which the observations are obtained. In this sense, the EVT is 

instrumental basis for analysis of statistical properties of extreme returns. 
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As we reject normality for distribution of studied asset return, we need to 

adequately fit the tail of the return distributions to estimate its risk parameters with 

EVT. Modeling extremes can be done in two different ways. One way consists of 

dividing the observation period into non-overlapping periods of equal size and 

restricts attention to the maximum observation in each period. And the other way is 

by modeling the largest observations that exceed a certain high threshold, known as 

The Peak Over Threshold (POT). We use the latter as it uses data more efficiently.  

4.6.1 Generalized Extreme Value (GEV) Distribution 

Consider a iid sequence of random variables, 𝑍!,𝑍!,… ,𝑍! whose common 

cumulative distribution function is 𝐹, i.e. 

𝐹 𝑧 = 𝑃 𝑍! ≤ 𝑧  (4.6.1.1) 

Let 𝑀! = max 𝑍!,𝑍!,… ,𝑍!   denote the nth sample maximum of the process, then: 

𝑃 𝑀! ≤ 𝑧 = 𝐹 𝑧 ! (4.6.1.2) 

This result (4.6.1.2) is of no immediate interest, since the distribution function 𝐹 is 

unknown. The distribution of 𝑀! degenerates to a point mass for 𝑧 upper end-point 𝑧! 

𝑧 < 𝑧! 8 of 𝐹, as 𝑛 tends to infinity. This difficulty is avoided by allowing a linear 

renormalization of the variable 𝑀!. Fisher and Tippett (1928) 	 theorem (which result 

was latter derived rigorously by Gnedenko, 1943) states that if there exist constants 

𝑎! > 0 and 𝑏! 𝜖 ℝ, such that: 

𝑃 !!!!!
!!

≤ 𝑧 = 𝐹! 𝑎!𝑧 + 𝑏! → 𝐻 𝑧  as n → ∞ (4.6.1.3) 

for some non-degenerate distribution 𝐻9, then 𝐻 must belong to the type of one of the 

three so-called standard extreme value distributions: 

𝐻 𝑧 = exp −exp − !!!
!

,    −∞ < 𝑧 < ∞ (4.6.1.4) 

𝐻 𝑧 =
0,                                                    𝑧 ≤ 0

exp −
𝑧 − 𝑏
𝑎

!!

,                   𝑧 > 0  (4.6.1.5) 

𝐻 𝑧 = exp − −
𝑧 − 𝑏
𝑎

!

               𝑧 < 0

1,                                                      𝑧 ≥ 0 
 (4.6.1.6) 

																																																								
8The point 𝑧! = sup 𝑧 𝜖 ℝ: 𝐹 𝑧 = 1 ≤ ∞. 
9If (4.6.1.3) holds for some non-degenerate density function 𝐻 then 𝐹 is said to be in the maximum domain of attraction of 𝐻, 
written 𝐹 ∈ MDA(𝐻). 
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Equation (4.6.1.4) is called the Gumbel type, (4.6.1.5) the Fréchet type and 

(4.6.1.6) the Weibull type. In (4.6.1.5) and (4.6.1.6), α > 0.  

The Jenkinson-von Mises theory10 states that, by taking a reparametrization 

𝜉 = 𝛼!! one obtains a continuous, unified model, named the Generalized Extreme 

Value (GEV) distribution:  

𝐻 𝑧 =
exp − 1+ 𝜉

𝑧 − 𝜇
𝜎

!!!                      if  𝜉 ≠ 0

exp −exp −
𝑧 − 𝜇
𝜎

                            if  𝜉 = 0

  (4.6.1.7) 

defined on the set 𝑧 ∈ ℝ: 1+ 𝜉 𝑧 − 𝜇 𝜎 > 0  where 𝜇 𝜖 ℝ is a location parameter, 

𝜎 > 0   is a scale parameter and 𝜉 𝜖 ℝ is a shape parameter. The case 𝜉 = 0 is 

interpreted as the limit 𝜉 → 0 and corresponds to the Gumbel distribution, 𝜉 > 0 to 

the Fréchet distribution and 𝜉 < 0 to the Weibull distribution. 

4.6.2 Generalized Pareto Distribution (GPD) 

Consider a sequence of iid observations 𝑍!, ,… ,𝑍!  from an unknown 

distribution function 𝐹. The interest is in the excess losses over a high threshold 𝑢. 

Let 𝑧! be the upper end-point of a distribution 𝐹 𝑧! ≤ ∞ . Then the corresponding 

distribution function of the excesses over the threshold 𝑢 denoted as 𝑌!, ,… ,𝑌!!  , 

𝑁! = card= 𝑖 ∶ 𝑖 = 1,… ,𝑛,𝑍! > 𝑢  is given by: 

𝐹! 𝑦 = 𝑃 𝑌 = 𝑍 − 𝑢 ≤ 𝑦|𝑍 > 𝑢 , 0 ≤ 𝑦 ≤ 𝑧! − 𝑢 (4.6.2.1) 

Were 𝐹! can be written as:  

𝐹! 𝑦 =
𝐹 𝑢 + 𝑦 − 𝐹 𝑢

1− 𝐹 𝑢  (4.6.2.2) 

Balkema and de Haan (1974) and Pickands (1975) posed that for a large class 

of underlying distribution function 𝐹, the GDP is the limiting distribution for the 

conditional excess distribution function 𝐹! 𝑦 , as the threshold 𝑢 tends to the right 

end point, formally:  

lim  
!→!!   

sup
! ! ! ! !!!!

𝐹! 𝑦 − 𝐺 𝑦 = 0 (4.6.2.3) 

If and only if, 𝐹 is in the maximum domain of attraction of the Generalized Extreme 

Value distribution, 𝐻 𝑧 . The GPD is defined as: 

																																																								
10 Due to Von Mises (1936) and Jenkinson (1955). 
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𝐺 𝑦 =
1− 1+

𝜉𝑦
𝜎

!!!
          if 𝜉 ≠ 0

1− exp −
𝑦
𝜎

                if  𝜉 = 0
 (4.6.2.4) 

defined on 𝑦 ∈ ℝ:𝑦 > 0 and 1+ 𝜉 𝑦 𝜎 > 0 . The parameters 𝜇 , 𝜎  and 𝜉  are 

uniquely determined by those of the associated GEV. The duality between the GEV 

and the Generalized Pareto families means that the shape parameter 𝜉 is dominant in 

determining the qualitative behavior of the GPD, just as for the GEV distribution 

(Coles, 2001).  If 𝑍 is defined as 𝑍 = 𝑢 + 𝑦, the GPD can also be expressed as a 

function of 𝑍, i.e., 𝐺 𝑍 = 1− 1+ !
!
𝑍 − 𝑢

!!!
. 

If 𝜉 > 0 indicates a distribution with a thick tail (decrease polynomially), 

𝜉 = 0 a tail with medium thickness (decrease exponentially) and if 𝜉 < 0 tail with 

finite endpoint. The advantage of this model is the more efficient use of data and the 

disadvantage is how to choose threshold u is not so evident. The method analyzing 

observation above a determined threshold and fitting a GPD to this exceedance is 

called the Peak Over Threshold (POT) method. 

4.6.3 Extreme Value Approach to Value at Risk and Expected Shortfall 

Once the distribution of excesses over a threshold is estimated, an 

approximation of the unknown original distribution (log return loss distribution, that 

generates the extreme observations) and an estimation of the 𝑝-quantile from it can be 

used to estimate the extreme VaR and ES. Let 𝐹← denote the generalized inverse of 

distribution 𝐹: 

𝐹← 𝑞 = inf 𝑧 𝜖 ℝ:𝐹 𝑧 ≥ 𝑞 ,          0 < 𝑞 < 1 (4.6.3.1) 

which is called the quantile function of  𝐹.  The 𝑞-quantile of 𝐹 is 𝑧! = 𝐹← 𝑞 . Using 

the distribution of excesses beyond 𝑢 in equation (5.6.2.2): 

𝐹! 𝑦 =
𝐹 𝑢 + 𝑦 − 𝐹 𝑢

1− 𝐹 𝑢  (4.6.3.2) 

If 𝑛 is the total observations, 𝑁!  the number of observations above a threshold 

𝑢, 𝐹 𝑢  (proportion of samples below the threshold 𝑢) can be estimated from the 

empirical distribution of observations: 
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𝐹 𝑢 = 1−
1
𝑛 𝐼 !!!! = 1−

𝑁!
𝑛

!

!!!

 (4.6.3.4) 

and considering (4.6.2.3), 𝐹! 𝑦  can be replaced by the GPD, we get a estimator for 

tail probabilities11 (Smith, 1987): 

𝐹 𝑢 + 𝑦 = 1−
𝑁!
𝑛 1+

𝜉
𝜎 𝑧 − 𝑢

!!!

 (4.6.3.5) 

The POT estimator of 𝑧!  (the 𝑉𝑎𝑅! ) is obtained by inverting the tail 

distribution (quantile of the log return loss distribution) given in (4.6.3.5): 

𝑧! = 𝑉𝑎𝑅!! 𝑍 = 𝑢 +
𝜎
𝜉

𝑛
𝑁!

1− 𝑞
!!

− 1   (4.6.3.6) 

Similarly, 𝐸𝑆 can be estimated, provided that log returns have finite expectations, 

assuming that 𝜉 < 1, and we obtain: 

𝐸𝑆!! 𝑍 = 𝑞 +
𝜎 + 𝜉 𝑉𝑎𝑅!! 𝑍 − 𝑢

1− 𝜉
=
𝑉𝑎𝑅!! 𝑍
1− 𝜉

+
𝜎 + 𝜉𝑢
1− 𝜉

 (4.6.3.7) 

5. Methodology 
5.1. EVT, VaR and ES – A dynamic approach 

By use of GARCH models to forecast the estimates of conditional volatility, 

the model provides dynamic one-day ahead forecasts of VaR and ES for the financial 

time series. As in section 4.1, one can define a model for the losses 𝑋! as: 

𝑋! = 𝜇! + 𝜀! (5.1.4) 

𝜀! = 𝜎!𝑍! (5.1.5) 

with 𝜎! (volatility) given by the standard GARCH (4.4.1.2), GJR-GARGH (4.5.1.2), 

C-GARCH (4.5.2.1). Again, 𝜇! is the expected return on day 𝑡 and 𝑍! gives the noise 

distribution 𝐹 𝑧 , which we will assume either has a normal distribution, a student-t 

distribution, generalized error distribution or their respective skewed forms. 

The dynamic risk modeling (using EVT), models the conditional return 

distribution (conditioned on the historical data) to forecast the loss over the next 𝑡 ≥ 1 

days. If we follow the GARCH models, the one-day forecast of VaR is calculated as: 

 

 

																																																								
11 If 𝑧 = 𝑢 + 𝑦, the GPD can also be expressed as a function of z, i.e., 𝐺 𝑧 = 1 − 𝜉 𝑧 − 𝑢 𝜎 !!!. 
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𝑉𝑎𝑅!! 𝑋!!! = 𝜇!!! + 𝜎!!!.𝑉𝑎𝑅!! 𝑍  (5.1.3) 

𝐸𝑆!! 𝑋!!! = 𝜇!!! + 𝜎!!!.𝐸𝑆!! 𝑍  (5.1.4) 

5.2. Exploratory Data Analysis  

The threshold in the POT models are generally set equal to the 𝑛 − 𝑘 th   

order statistic, i.e., set 𝑢 = 𝑍!!!,! . This allows consideration of exactly 𝑘 

exceedances. The problem, however, is the choice of 𝑘. A threshold needs to achieve 

balance between bias and variance. If a threshold is chosen very low (the larger the 

value of 𝑘) the more observations will be used to construct parameter and quantile 

estimates. The estimates will consequently have lower variance. However, the GPD 

may not be a good fit to the excesses over the threshold and consequently there will 

be a bias in the estimates. Conversely, If the threshold is chosen very high (smaller 

value of 𝑘), then there are not enough exceedances over the threshold to obtain good 

estimates of the extreme value parameters, and consequently, the variances of the 

estimators are high. 

5.2.1 Quantile-Quantile (QQ) Plots 

The QQ-plot is a graphical technique, which allows comparing the quantiles 

of the empirical distribution to those of a reference distribution. 

Let 𝑍!,… ,𝑍!  be an iid sequence of random variables from a common 

population with unknown distribution 𝐹, and define 𝐹 as its estimate. Let 𝑍!,! ≤ ⋯ ≤

 𝑍!,!  denote the ordered sample. For any one of the 𝑍!,! , exactly 𝑘  of the 𝑛 

observations have a value less than or equal to 𝑍!,!, so an empirical estimate of the 

probability of an observation being less than or equal to 𝑍!,!  is 

𝐹 𝑍!,! = 𝑛 − 𝑘 + 1 𝑛 + 1 . From a population with estimated distribution 

function 𝐹, the graph of quantiles (QQ – plots) is defined by the set of points (Coles, 

2001): 

𝐹!!
𝑛 − 𝑘 + 1
𝑛 + 1 ,𝑍!,! :    𝑘 = 1,… ,𝑛  (5.2.1.1) 

If 𝐹 is a reasonable estimate of 𝐹, the plot should be roughly a straight line of unit 

slope through the origin. 
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5.2.2 Mean Excess Function (MEF) 

The Mean excess function represents the conditional mean of the exceedance 

size over threshold (given that an exceedance occurred). The first approach for 

threshold selection utilizes the empirical mean excess function. It also checks if it’s 

reasonable to assume that the underlying distribution falls in the Fréchet domain.  

Based on linearity of the mean excess function 𝑒(𝑢), suppose 𝑍 has a GPD 

with parameters 𝜉 < 1 and 𝛽. Then for a given threshold 𝑢 < 𝑧!, MEF is defined as: 

𝑒(𝑢) =𝐸 𝑍 − 𝑢 | 𝑍 > 𝑢 =
𝜎 + 𝜉𝑢
1− 𝜉             𝜎 + 𝜉𝑢 > 0 (5.2.2.1) 

hence 𝑒(𝑢) is linear. A graphical test for tail behavior can be based on the empirical 

mean excess function of a given sample 𝑍!,… ,𝑍! given by (Embrechts et al, 1997): 

𝑒!(𝑢) =
𝑍! − 𝑢 𝐼!!!!

!
!!!

𝐼!!!!
!
!!!

            𝑢 > 0 (5.2.2.2) 

where 𝐼 is an indicator function. The set of points 𝑍! , 𝑒! 𝑍!  creates the Mean 

Excess plot. It is an estimate of the mean excess function that describes the expected 

overshoot of a threshold once an exceedance occurs. If the empirical MEF is a 

positively sloped plot, indicates that the data follows the GPD with a positive shape 

parameter 𝜉 (heavy tailed). On the other hand, exponentially distributed data would 

show a horizontal MEF (𝜉  is near zero) while short tailed data would have a 

negatively sloped line (𝜉 < 0).  

5.2.3 Hill Plots 

The Hill (1975) estimator is a classic tail index estimator for the Pareto type 

distribution 𝜉 > 0 . Define the ordered sample 𝑍!,! ≤ ⋯ ≤  𝑍!,!. Hill estimate is 

calculated as: 

𝜉 = 𝐻!,! =
1
𝑘 ln

𝑍!,!
𝑍!,!

!

!!!

 (5.2.3.1) 

where 𝑘 is the number of exceedence above the threshold.  

Hill plots, which is based on Hill Estimator, are another way to determine the 

threshold for GPDs. The Hill plot involves plotting the Hill estimators against 𝑘, i.e.,  

𝑘,𝐻!,! : 𝑘 = 2,… ,𝑛  (5.2.3.2) 

A suitable threshold may be chosen based on the criterion of stability of the 

estimated shape parameter 𝜉. Stability would imply a relatively flat part of the graph, 
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i.e., 𝑘 is chosen in a region where the plot seems constant. 

5.3. Backtesting Value at Risk 
The principal of backtesting is the comparison of actual trading results with 

model-generated risk measures. Backtesting is a formal statistical framework that 

consists of verifying if actual losses are in line with projected losses. This involves 

systematically comparing the history of VaR forecast with their associated portfolio 

returns (Jorion, 2007). According to Daníelson (2011), backtesting is a procedure that 

is used to compare the various risk models. It aims to take ex-ante VaR forecasts from 

a specific model and compare them with ex-post realized return (i.e., historical 

observations).  

We measure accuracy of our risk models using the Proportion of Failure test, 

the Kupiec (1995) test for unconditional coverage and Christoffersen (1998) test for 

conditional coverage and Bayes Information Criterion (BIC). The Kupiec (1995) 

unconditional coverage test, fails to detect violations of independence property of an 

accurate VaR measure. An accurate VaR model must exhibit both the unconditional 

coverage and independence property. Both properties are jointly tested based on 

Christoffersen’s (1998) conditional coverage test. 

The Proportion of Failures test verifies the proportion of times in which the 

estimated VaR is exceeded in certain sample. The main focus is on a particular 

transformation of the reported VaR and realized losses. Let 𝑁 = 𝐼!!!!
!!!  be the 

number days over a sample size 𝑇, in which the loss on a portfolio was higher than 

the respective VaR estimation. Denoting the losses on the portfolio over a fixed time 

interval, i.e. daily, as 𝑋!!! then define the “hit” functions as follows: 

𝐼!!! =
1    if  𝑋!!! < 𝑉𝑎𝑅!!!
0    if  𝑋!!! ≥ 𝑉𝑎𝑅!!!

 (5.3.1) 

so that the hit function sequence, accounts the history of whether or not a loss in 

excess of the reported VaR has been realized. 𝑁 is the number of observed exceptions 

and  𝑝 = 𝑁 𝑇 is the proportion of failures. The purpose of this test is to examine 

whether the failure rate 𝑝 is statistically equal to the expected one. 

5.3.1 Unconditional Coverage 

According to Kupiec (1995) the probability of observing 𝑁 violations over a 

sample size 𝑇 is modeled by a binomial distribution with a probability of occurrence 
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equaling 𝑝.  The null hypothesis is 𝐻! =
!
!
= 𝑝  and can be verified through a 

Likelihood Ratio 𝐿𝑅  test of the form: 

𝐿𝑅!" = 2𝑙𝑛
𝑁
𝑇

!
1− 𝑁𝑇

!!!

𝑝! 1− 𝑝 !!!  (5.3.1.1) 

and is asymptotically (under 𝐻!) distributed as a chi-squared with one degree of 

freedom, 𝜒!(1).  

5.3.2 Conditional Coverage 

The unconditional coverage test does not give any information about the 

temporal dependence of violations, and the Kupiec (1995) test ignores conditioning 

coverage, since violations could cluster over time, which should also invalidate a VaR 

model. Christoffersen (1998) points out that the problem of determining the accuracy 

of a VaR model can be reduced to the problem of determining whether the hit 

sequence 𝐼!!! , satisfies unconditional coverage and independence property. The 

previous 𝐿𝑅 test given by (5.3.1.1) to specify the hit sequence is extended by a test 

statistic to verify independence over time. 

The proposed test statistic is based on the mentioned hit sequence 𝐼!, and on 

𝑇!" that is defined as the number of days in which a state 𝑗 occurs, while state 𝑖 

occurred the previous day, with 𝑖, 𝑗 ∈  0,1 . It is also assumes that the hit sequence 

follows a discrete-time Markov chain with transition probability matrix:  

Π =
𝜋!! 𝜋!"
𝜋!" 𝜋!! = 1− 𝜋!" 𝜋!"

1− 𝜋!! 𝜋!!
 (5.3.2.1) 

where 𝜋!"   is the probability that 𝐼!!! = 𝑗  (observing a violation in one day) 

conditional on 𝐼! = 𝑖 the previous day. The null hypothesis that the hit sequence is 

independent is 𝜋!" =
!!"

!!!!!!!
= 𝜋!! =

!!!
!!!!!!!

= 𝜋 = !!"!!!
!

. With 𝑇 observations, the 

LR function of this process is given by: 

𝐿𝑅!"# = 2𝑙𝑛
1− 𝜋!! !!!𝜋!"!!" 1− 𝜋!! !!"𝜋!!

!!!

1− 𝜋 !!!!!!" 𝜋 !!"!!!!
 (5.3.2.2) 
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6. Results 
6.1. Data and Descriptive Statistics 

Table 1: List of data sets tested. 
Acronym Index Name Country Observations 𝒏 	

IBOV Ibovespa Brasil São Paulo Stock Exchange Index Brazil 2027	

SPX S&P 500 index USA 2108	

SHCOMP Shanghai Stock Exchange Composite Index China 2050	

MERVAL Buenos Aires Stock Exchange Merval Index Argentina 2040	

Source: Elaborated by authors. 

 
The data are daily closing prices of stock exchange indexes of four countries12, 

for a period of ten years (from January 2nd 2004 to September 8th 2014). All the prices 

are in USD. Table 2 presents market indicators for 2014. For market capitalization as 

indicator of market size, U.S. is by far the largest market. China is also large when 

compared to Brazil and Argentina. The number of listed companies provides 

information of the choice of firms available to an investor. In this sense, U.S. is the 

market with most listed companies (505). However, combining the value of market 

capitalization of each stock exchange with the number of listed companies will 

provide the average market value for listed companies. In that case, China has the 

highest average market value of listed companies, about 120.09 billion dollars, 

followed by U.S. with 46.19 billion, Brazil with 13.18 billion, and the lowest average 

market value is Argentina with 4.62 billion dollars.  The turnover ratio indicates the 

market liquidity, in which, China stands to be the more liquid and active market 

(199.15%), then comes U.S. (148.03%) and Brazil (76.33%), while Argentina showed 

a very low ratio (5.86%). But, the value of stocks traded in 2014 was more than three 

times higher in the U.S.’s financial market than China’s market. Argentina presented 

a very low market trade value, about 3.52 million dollars13.  

Table 2: Market Indicators, 2014. 

Stock Index Market Capitalization 
(Billions .$) 

No. of Listed 
Companies 

Average Market 
Value 

(Billions US$) 
Turnover Ratio Stock Traded 

(Millions US$) 

IBOV 843.89 64 13.18 76.33% 644.17 

SPX 23,330.60 505 46.19 148.03% 38,976.64 

SHCOMP 6,004.95 50 120.09 199.15% 11,959.33 

MERVAL 60.14 13 4.62 5.86% 3.52 
Source:	http://databank.worldbank.org. 

 

																																																								
12 Data were downloaded from https://economatica.com. For the development of analyses we used R statistical software. 
13 Argentina is considered a frontier market (or pre-emerging market), i.e., less advanced capital markets, with lower market 
capitalization and poor liquidity, than emerging markets.  
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Daily prices and respective return series for countries under focus are plotted 

in Figure 1. The Daily prices demonstrate that there is in upward trend form 2004 

until late 2007 in all markets. In late 2008 there is the subprime crisis. Among the 

indexes, IBOV was the one that presented strongest recovery right after breakdown, 

but since 2012 the Brazilian stock index is in decline. This full recovery was also 

presented in the GPD (7.5% growth), after the Brazilian government implemented the 

New Economic Matrix14. Since 2010 the Shanghai Stock Index is in slow rate decline. 

On the other hand, S&P 500 index shows slow, but constant recovery. The Argentine 

Index recovered well from the crisis until late 2011, and then suffered a depression 

until 2013, which since shows a trend of growth. This growth was due the investor’s 

consideration of potential change in presidential elections of October 2015, from 

which Cristina Kirchner is constitutionally barred. Contenders for her post have 

vowed to work toward exiting default and to adopt policies aimed at righting the 

economy.  

The returns series shows that the period of higher volatility for all four indexes 

was at the end 2008. And continued to be a problem until 2010. Argentina and Brazil 

have returns around (-0.15, 0.15) whereas for China and U.S. was over (-0.10, 0.10). 

The plot of the return series reveals the presence of volatility clusters, supporting the 

existence of heteroskedasticity.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

																																																								
14This policy was based on five pillars: expansionary fiscal policy, low interest rates, cheap credit provided by state banks, 
undervalued exchange rate and increase import tariffs to stimulate the domestic industry.  
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IBOV 

	

SPX 

	

SHCOMP 

	

MERVAL 
	

Figure 1: Daily prices and return series (data from January 2nd 2004 to September 8th 2014). 
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Analyzing Table 3, the Augmented Dickey-Fuller and Phillips-Perron unit test 

reject the null hypothesis of unit root in the series, moreover the KPPS test (trend and 

level) does not reject the null hypothesis for stationarity, indicating that the series can 

overall be assumed to be stationary. Although the series are stationary, they do not 

follow a normal distribution, as indicated by the large excess kurtosis and negative 

skewness, suggesting that the return distributions are leptokurtic relative to normal 

and are fat-tailed. This indicates that the distributions of these stock exchanges tend to 

contain extreme values. The Jarque-Bera test for normality was rejected for all series. 

The Ljung-Box statistics indicate presence of serial correlation, and hence are not iid. 

Additionally, the Engle‘s ARCH-test confirms the presence of ARCH effects. 

 

Skewness statistics shows the lack of symmetry in the distributions of 

especially Argentina and Brazil. The negative skewness is to be expected for an index 

of share prices, since extreme negative returns are more likely than extreme positive 

returns. According to mean realized returns, Brazil and Argentina yield significantly 

Table 3: Descriptive Statistics of the returns. 
Statistics IBOV SPX SHCOMP MERVAL 

Mean 0.0008361 0.0003725 0.0001146       0.0007544             

Standard Deviation 0.02316 0.01212 0.01577 0.01892   

Minimum -0.1526 -0.0903 -0.0867 -0.1426 

Maximum 0.1573 0.1079 0.0940 0.1056 

Skewness -0.2297 -0.1449 -0.0223 -0.5671 

Ex. Kurtosis 4.925 9.200 3.766 5.201 

Aug. Dickey-Fuller  -12.765 lag = 12 

(< 0.01) 

-14.323 lag = 12 

(< 0.01) 

-13.325 lag = 12 

(< 0.01) 

-14.322 lag = 12 

(< 0.01) 

Phillips-Perron  -45.792 lag = 8 

(0.01) 

-50.613 lag = 8 

(0.01) 

-49.732 lag = 8 

(0.01) 

-43.069 lag = 8 

(0.01) 

KPSS (trend) 0.036 lag = 10 

(>0.1) 

0.024 lag = 10 

(>0.1) 

0.080 lag = 10 

(>0.1) 

0.054 lag = 10 

(>0.1) 

KPSS (level) 0.252 lag = 10 

(>0.1) 

0.119lag = 10 

(>0.1) 

0.133 lag = 10 

(>0.1) 

0.073 lag = 10 

(>0.1) 

Jarque Bera test 2073.3 (< 2.2x10-16) 7461.2 (< 2.2x10-16) 1215.8 (< 2.2x10-16) 2415.7 (< 2.2x10-16) 

Ljung-Box 140.1 (< 2x10-16) 131 (< 2x10-16) 58.45 (9.36 x 10-10) 69.81 (5.36x10-12) 

ARCH-LM test 715.7 (< 2x10-16) 675.5 (< 2x10-16) 138.8 (< 2x10-16) 205.6 (< 2x10-16) 

Analysis of Squared Returns 

Ljung-Box 2008 (< 2x10-16) 1451 (< 2x10-16) 210.3 (< 2x10-16) 465.2 (< 2x10-16) 

ARCH-LM test 722.3 (< 2x10-16) 444.4 (< 2x10-16) 138.83 (0.503) 68.49 (6.14 -10) 

Source: Elaborated by authores. 
p-value are in parentheses; 
Augmented Dickey-Fuller null hypothesis: has unit root; 
Phillipe-Perron null hypothesis: has unit root; 
KPSS null hypothesis: is stationary; 
Jarque Bera null hypothesis: normality; 
Ljung-Box null hypothesis: no serial correlation; 
ARCH-LM null hypothesis: serially independent.  
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Figure 2: Autocorrelation and Partial Autocorrelation of returns of IBOV index. 

Figure 3: Autocorrelation and Partial Autocorrelation of squared returns of IBOV index. 
 

greater returns than China and U.S. Brazil and Argentina exhibits the largest standard 

deviation (0.02316) and (0.01892) respectively, followed by China (0.01577) and 

U.S. (0.01212). This shows that Brazil and Argentina stock markets undergoes higher 

fluctuations from the mean return, corroborated by the difference between the 

maximum and the minimum returns, which are respectively (0.31) and (0.25). 

The plot (Figure 2) of the ACF indicates a nonexistent MA (moving Average) 

order for the returns of IBOV index, while the plot of the PACF indicates a low AR 

(Autoregressive) order. However, in Figure 3, the ACF and the PACF of the squared 

returns are highly significant for all lags and decay slowly, which signals persistence 

in variance. Similar results are confirmed for the other markets as seen in Appendix 

A. This test confirms that there is autocorrelation in the second moment. We filter the 

returns series using the GARCH models to remove the autocorrelation and to capture 

the conditional heteroskedasticity.  

In summary, the log returns series demonstrates the defining characteristics of 

the financial series, such as volatility clustering effect, heavy tailed and exhibiting 

excess kurtosis distributions. These findings support the need for GARCH model to 

filter the data series and then to apply the EVT.  
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6.2. GARCH models 

In order to compare the adjustment of AR(1)-GARCH 𝑚, 𝑠  specifications, 

we assumed 𝑚 and 𝑠 = 1, 2, and used for estimation the Normal Distribution (norm), 

Student Distribution (std) and the Generalized Error Distribution (ged). We also used 

the Skewed Normal (snorm), Skewed Student (sstd) and the Skewed Generalized 

Error Distribution (sged). The Generalized Error and Student distributions and their 

skewed versions have additional shape parameters, which are changed in the 

estimation. First we report the ranking of these models based on Bayesian Information 

Criteria (BIC), this method penalizes models with more parameters, and therefore the 

models will be more parsimonious. After having previously selected the top GARCH 

models (GARCH, GJR-GARCH C-GARCH with respective distribution), we verified 

the parameters that are not significant and re-estimated the model without those 

parameters. Then, the models where adjusted considering the Bayes Information 

Criteria (once again), the proportion of failures and the unconditional and a 

conditional test of coverage developed by Kupiec and Christoffersen. 

The tests confirms that estimation of AR(1) for mean equation does not 

enhance accuracy  for VaR results, therefore we present the 12 best adjusted models 

in Table 4 and 5 at 95% confidence level 𝛼 = 5% . The skewed distribution version, 

which admits asymmetric effects (occurrence of extreme movements), improves all 3 

GARCH models for all indexes. For Brazil and U.S. the best results were the GJR-

GARCH(1,1) model with Skewed Generalized Error Distribution (sged). The 

Brazilian market presented proportion of failures of 4.49% with significant p-values 

for Kupiec and Christoffersen tests respectively 33.4% and 19.6%. For the American 

index the proportion of failures nearest to 𝛼 , is 5.91% while the Kupiec and 

Christoffersen tests are statistically significant for 𝛼 at 5% presenting p-value of 9.2% 

and 8.9% respectively. The Chines stock market presented the Standard GARCH(1,1) 

with Skewed Generalized Error Distribution (sged), with p-value of 46.8% for Kupiec 

test and 6.9% for Christoffersen test and proportion of failures of 4.97%. This result 

for Chinas’ stock market must be because it suffers low impact from external 

conditions since it’s slowly opening for foreign investors and most of the market is 

state-owned. The best adjusted model for the index of Argentina is the GJR-

GARCH(1,1) with the Skewed Normal Distribution (snorm). The proportion of 

failures is 5.67% while the p-value for Kupiec (22.2%) and Christoffersen (45%) are 

significant at 95% confidence level.  
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Table 4: Fit diagnostic of the GARCH models for the IBOV, SPX stock markets at 5% significance level.  
IBOV 

GARCH Models BIC Parameters 
equal to Zero 

BIC after 
adjustment 

Proportion 
of failures Kupiec Christoffersen 

Standard GARCH       
GARCH(1,1) norm -4.9196 None  0.0553 0.937 (0.333) 1.952 (0.377) 
GARCH(1,1) std -4.9251 None  0.0541 0.558 (0.455) 0.701 (0.704) 
GARCH(1,1) ged -4.9251 None  0.0541 0.558 (0.455) 1.386 (0.5) 
GARCH(1,1) snorm -4.9185 None  0.0535 0.404 (0.525) 1.146 (0.564) 
GARCH(1,1) sstd -4.9235 None  0.0541 0.558 (0.455) 1.386 (0.5) 
GARCH(1,1) sged -4.9238 None  0.0510 0.035 (0.852) 0.477 (0.788) 

GJR-GARCH       
GJR-GARCH(1,1) norm -4.9306 𝜇 = 0 -4.9337 0.0473 0.249 (0.618) 3.148 (0.207) 
GJR-GARCH(1,1) std -4.9344 𝜇 = 0 -4.9369 0.0467 0.378 (0.539) 3.13 (0.209) 
GJR-GARCH(1,1) ged -4.9341 𝜇 = 0 -4.9367 0.0461 0.535 (0.464) 3.143 (0.208) 
GJR-GARCH(1,1) snorm -4.9300 𝜇 = 0 -4.9332 0.0455 0.72 (0.396) 3.188 (0.203) 
GJR-GARCH(1,1) sstd -4.9333 𝜇 = 0 -4.9364 0.0455 0.72 (0.396) 3.188 (0.203) 
GJR-GARCH(1,1) sged -4.9334 𝝁 = 𝟎 -4.9365 0.0449 0.933 (0.334) 3.264 (0.196) 

C-GARCH       
C-GARCH(1,1) norm -4.9131 𝜇 = 0 -4.9139 0.0504 0.005 (0.941) 0.01 (0.995) 
C-GARCH(1,1) std -4.9182 None  0.0608 3.781 (0.052) 3.781 (0.151) 
C-GARCH(1,1) ged -4.9184 None  0.0596 2.993 (0.084) 3.119 (0.21) 
C-GARCH(1,1) snorm -4.9122 None  0.0596 2.993 (0.084) 3.119 (0.21) 
C-GARCH(1,1) sstd -4.9167 None  0.0590 2.632 (0.105) 2.724 (0.256) 
C-GARCH(1,1) sged -4.9171 None  0.0559 1.162 (0.281) 1.164 (0.559) 

SPX 

GARCH Models BIC Parameters 
equal to Zero 

BIC after 
adjustment 

Proportion 
of failures Kupiec Christoffersen 

Standard GARCH       
GARCH(2,1) norm -6.4895 𝜶𝟏 = 𝟎 -6.4928 0.0644 6.864 (0.009) 7.413 (0.025) 
GARCH(2,1) std -6.5201 𝜔 = 0;  𝛼! = 0 -6.5070 0.0796 26.959 (0) 27.972 (0) 
GARCH(2,1) ged -6.5280 𝜔 = 0;  𝛼! = 0 -6.5144 0.0779 24.049 (0) 26.24 (0) 
GARCH(2,1) snorm -6.5022 𝜔 = 0;  𝛼! = 0 -6.482 0.0697 12.464 (0) 15.155 (0.001) 
GARCH(2,1) sstd -6.5269 𝜔 = 0;  𝛼! = 0 -6.5154 0.0720 15.428 (0) 15.592 (0) 
GARCH(2,1) sged -6.5373 𝜔 = 0;  𝛼! = 0 -6.526 0.0673 9.788 (0.002) 10.011 (0.007) 

GJR_GARCH       
GJR-GARCH(1,1) norm -6.5059 𝜇 = 0;  𝜔 = 0 -6.4738 0.0738 17.836 (0) 17.896 (0) 
GJR-GARCH(1,1) std -6.5321 𝜇 = 0;  𝜔 = 0 -6.5107 0.0714 14.661 (0) 14.671 (0.001) 
GJR-GARCH(1,1) ged -6.5384 𝜇 = 0;  𝜔 = 0 -6.5135 0.0708 13.91 (0) 13.956 (0.001) 
GJR-GARCH(1,1) snorm -6.5212 𝜇 = 0;  𝜔 = 0 -6.4959 0.0644 6.864 (0.009) 7.065 (0.029) 
GJR-GARCH(1,1) sstd -6.5432 𝜇 = 0;  𝜔 = 0 -6.5271 0.0644 6.864 (0.009) 8.654 (0.013) 
GJR-GARCH(1,1) sged -6.5525 𝝁 = 𝟎;  𝝎 = 𝟎 -6.5370 0.0591 2.841 (0.092) 4.848 (0.089) 

C-GARCH       
C-GARCH(2,1) norm -6.4849 𝜔 = 0;  𝛼! = 0 -6.4572 0.0685 11.089 (0.001) 5.991 (0.002) 
C-GARCH(2,1) std -6.5140 𝜔 = 0;  𝛼! = 0 -6.5063 0.0732 17.016 (0) 17.428 (0) 
C-GARCH(2,1) ged -6.5222 𝜔 = 0;  𝛼! = 0 -6.514 0.0738 17.836 (0) 20.288 (0) 
C-GARCH(2,1) snorm -6.4974 𝜔 = 0;  𝛼! = 0 -6.4841 0.0644 6.864 (0.009) 6.994 (0.03) 
C-GARCH(2,1) sstd -6.5206 𝜶𝟏 = 𝟎 -6.5243 0.0644 6.864 (0.009) 6.866 (0.032) 
C-GARCH(2,1) sged -6.5312 𝛼! = 0 -6.5349 0.0632 5.83 (0.016) 5.95 (0.051) 
Source: Elaborated by authors. 
p-value are in parentheses; 
Kupiec null hypotheses: no serial correlation; 
Christoffersen null hypotheses: serially independent. 
 
 
 
 
 



	 43 

Table 5: Fit diagnostic of the GARCH models for the SHCOMP, MERVAL stock markets at 5% significance level. 
SHCOMP 

GARCH Models BIC Parameters equal to 
Zero 

BIC after 
adjustment 

Proportion 
of failures Kupiec Christoffersen 

Standard GARCH       
GARCH(1,1) norm -5.6768 𝜇 = 0;  𝜔 = 0 -5.6777 0.0582 2.214 (0.137) 5.571 (0.062) 
GARCH(1,1) std -5.7366 𝜇 = 0;  𝜔 = 0 -5.7391 0.0618 4.527 (0.033) 8.945 (0.011) 
GARCH(1,1) ged -5.7392 µ = 0;  ω = 0 -5.7420 0.0552 0.893 (0.345) 3.471 (0.176) 
GARCH(1,1) snorm -5.6732 𝜇 = 0;  𝜔 = 0 -5.6740 0.0539 0.526 (0.468) 5.343 (0.069) 
GARCH(1,1) sstd -5.7339 𝜇 = 0;  𝜔 = 0 -5.7365 0.0600 3.274 (0.07) 7.145 (0.028) 
GARCH(1,1) sged -5.7363 𝝁 = 𝟎;  𝝎 = 𝟎 -5.7396 0.0497 0.526 (0.468) 5.343 (0.069) 

GJR_GARCH       
GJR-GARCH(1,1) norm -5.2406 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 
GJR-GARCH(1,1) std -5.3099 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 
GJR-GARCH(1,1) ged -5.3055 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 
GJR-GARCH(1,1) snorm -5.2467 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 
GJR-GARCH(1,1) sstd -5.3101 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 
GJR-GARCH(1,1) sged -5.3059 𝜇 = 0;  𝜔 = 0;  𝛾 = 0. The model reduces to Standard GARCH (1,1). 

C-GARCH       
C-GARCH(1,1) norm -5.6716 𝜇 = 0;  𝜔 = 0 -5.6688 0.0533 0.378 (0.539) 2.534 (0.282) 
C-GARCH(1,1) std -5.7313 𝜇 = 0;  𝜔 = 0 -5.7326 0.0588 2.546 (0.111) 6.07 (0.048) 
C-GARCH(1,1) ged -5.7338 𝜇 = 0;  𝜔 = 0 -5.7355 0.0545 0.698 (0.403) 3.131 (0.209) 
C-GARCH(1,1) snorm -5.6680 𝝁 = 𝟎;  𝝎 = 𝟎 -5.6651 0.0539 0.003 (0.955) 3.594 (0.166) 
C-GARCH(1,1) sstd -5.7286 𝜇 = 0;  𝜔 = 0 -5.7301 0.0570 1.617 (0.203) 7.412 (0.024) 
C-GARCH(1,1) sged -5.7311 𝜇 = 0;  𝜔 = 0 -5.7317 0.0533 0.378 (0.539) 5.009 (0.082) 

MERVAL 

GARCH Models BIC Parameters equal to 
Zero 

BIC after 
adjustment 

Proportion 
of failures Kupiec Christoffersen 

Standard GARCH       
GARCH(1,1) norm -5.2370 None  0.0497 4.33 (0.037) 6.576 (0.037) 
GARCH(1,1) std -5.3109 𝜔 = 0 -5.2923 0.0707 13.221 (0) 21.918 (0) 
GARCH(1,1) ged -5.3059 None  0.0604 3.489 (0.062) 6.097 (0.047) 
GARCH(1,1) snorm -5.2427 None  0.0564 1.492 (0.222) 2.879 (0.237) 
GARCH(1,1) sstd -5.3108 None  0.0579 2.069 (0.15) 5.488 (0.064) 
GARCH(1,1) sged -5.3058 None  0.0564 1.006 (0.316) 2.674 (0.263) 

GJR_GARCH       
GJR-GARCH(1,1) norm -5.2406 None  0.0618 4.782 (0.029) 4.856 (0.088) 
GJR-GARCH(1,1) std -5.3099 None  0.0671 9.134 (0.003) 9.518 (0.009) 
GJR-GARCH(1,1) ged -5.3055 None  0.0640 6.262 (0.012) 6.523 (0.038) 
GJR-GARCH(1,1) snorm -5.2467 𝝁 = 𝟎  -5.2492 0.0567 1.492 (0.222) 1.599 (0.45) 
GJR-GARCH(1,1) sstd -5.3101 None  0.0604 3.489 (0.062) 3.49 (0.175) 
GJR-GARCH(1,1) sged -5.3012 None  0.0576 2.069 (0.15) 2.117 (0.347) 

C-GARCH       
C-GARCH(1,1) norm -5.2335 None  0.0594 3.102 (0.078) 3.906 (0.142) 
C-GARCH(1,1) std -5.3065 None  0.0677 9.767 (0.002) 10.634 (0.005) 
C-GARCH(1,1) ged -5.3007 None  0.0612 4.33 (0.037) 5.586 (0.061) 
C-GARCH(1,1) snorm -5.2468 None  0.0594 3.102 (0.078) 3.906 (0.142) 
C-GARCH(1,1) sstd -5.3070 None  0.0585 2.391 (0.122) 3.408 (0.182) 
C-GARCH(1,1) sged -5.2982 𝜔 = 0 -5.2959 0.0594 3.102 (0.078) 4.769 (0.092) 
Source: Elaborated by authors. 
p-value are in parentheses; 
Kupiec null hypotheses: no serial correlation; 
Christoffersen null hypotheses: serially independent. 
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The parameters results for each time series are summarized in Table 6. In the 

cases of the GJR-GARCH models (Brazil, U.S. and Argentina), the volatility 

persistence 𝛼! + 𝛽! + 𝑐𝛾  rate are estimated to be less than one, which supports the 

argument of stationary variance. This instability measure varies between 0.97 in for 

the Argentina index to 0.99 for the American market. This means that, transitory 

volatility resulting from shock movements is larger in the SPX financial market. The 

leverage effect  𝛾  presented to be positive for the three stock indexes, implicating 

that negative shocks tend to influence future volatility more than positive shocks. 

China’s stock index presented symmetric GARCH model in which 𝛼! + 𝛽! < 1. And 

𝛼! < 𝛽! showing that volatility appears to be persistent, remaining around the same 

level for longer. 

 
Table 6: Summary Statistics of the log returns. 

Parameter IBOV SPX SHCOMP MERVAL 

𝝁 - - - - 
𝝎 0.000012 (0.0000) - - 0.000024 (0.0008) 
𝜶𝟏 0.023130 (0.0010) 0.019014 (0.02344) 0.028443 (0.0000) 0.055233 (0.0006) 
𝜷𝟏 0.902299 (0.0000) 0.935839 (0.0000) 0.970557 (0.0000) 0.829095 (0.0000) 
𝜸 0.103715 (0.0000) 0.096379 (0.0000) - 0.096558 (0.0000) 
Skew	 0.921138 (0.0000) 0.840652 (0.0000) 0.962917 (0.0000) 0.887834 (0.0000) 
Shape	 1.678159 (0.0000) 1.340145 (0.0000) 1.250673 (0.0000) - 
	 𝛼! + 𝛽! + 0.47𝛾 =  0.97 𝛼! + 𝛽! + 0.44𝛾 = 0. 99 𝛼! + 𝛽! = 0.99 𝛼! + 𝛽! + 0.49𝛾 =  92 
Analysis of Squared Standardized  Residuals 
Ljung-Box	 19.077 (0.0145) 10.102 (0.258) 2.89 (0.941) 5.55 (0.698) 
ARCH-LM test	 6.5395 (0.8865) 0.1063 (1.00) 0.514 (1.00) 0.064 (1.00) 
Source: Elaborated by author. 
p-value are in parentheses; 
Ljung-Box null hypotheses: no serial correlation; 
ARCH-LM null hypotheses: serially independent. 

	
Analyzing the standardized squared residuals in Table 6, only for IBOV the 

Ljung-Box test presented to not reject the presence of serial correlation, on the other 

hand the ARCH-LM test confirms no ARCH effects for all indexes. And by 

comparing Figure 3 with 4 we see that all the autocorrelation in squared residuals is 

smaller than squared returns, verifying that data are approximately iid. Similar results 

for SPX, SHCOMP and MERVAL are respectively presented in Appendix A, Figures 

3.A, 6.A and 9.A. Now we have the data in the required form for applying the 

Extreme Value Theory to estimate VaR and ES and apply the Granger causality in 

risk between markets. 
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6.3. Determination of Threshold  

 Figure 5 plots the Mean Excess Function (MEF) of the Brazilian stock index 

of both negative and positive returns are estimated to choose thresholds, jointly with 

Table 7 that shows the tradeoff between standard error of the parameters (shape and 

scale) and Bayes Information Criterion (BIC) with respective percentile. Thus, by 

Figure 5 and Table 7, the chosen thresholds are 𝑢	=	1.6135 for negative returns and 𝑢 

= 1.6096 positive returns. Under these thresholds, the VaR and ES quantiles (at 5% 

and 1%) obtained from e equations (4.6.3.6) and (4.6.3.7) are reported in Table 8. 

Similar observations are made for the SPX, SHCOMP and MERVAL stock markets 

presented in Appendix B and C.  
 

 

	

 
 

	

Table 7:  Shape and Scale estimates for GJR-GARCH(1,1) model under different thresholds and percentiles. IBOV 
log returns.   

Percentile −𝒖 𝝃 𝝈 BIC 𝒖 𝝃 𝝈 BIC 

99 2.4809 -0.06526 (0.1761) 0.4112 (0.1504) 25.1573 2.2931 -1.008 (0.0000) 1.175 (0.0000) 19.3005 

98 2.3819 -0.008907 (0.1465) 0.470528 (0.1014) 32.2026 2.0472 -0.01866 (0.2181) 0.42032 (0.1132) 22.3961 

97 1.9285 0.06556 (0.1079) 0.55025 (0.0924) 53.6748 1.8665 -0.04267 (0.1525) 0.44245 (0.0883) 30.2543 

96 1.7285 0.1001 (0.0851) 0.6117 (0.0853) 79.3955 1.7286 -0.05606 (0.1213) 0.45871 (0.0754) 39.8954 

95 1.6135 0.08223 (0.0825) 0.59651 (0.0769) 94.2507 1.6096 -0.09144 (0.1006) 0.49746 (0.07025) 55.7136 

Source: Elaborated by author. 
Numbers in parentheses are the Standard Errors. 

Figure 4: Autocorrelation and Partial Autocorrelation of squared residuals of IBOV index. 
 



	 46 

	

	

	
	
	
	
	
	
	
	
	
	
	

6.4. Risk Measure Estimation  
Table 9 shows the conditional VaR and ES for a one-day horizon (equations 

5.1.3 and 5.1.4) for all four indexes at 5 and 1 percentile for the left (long position) 

and right tail (short position). An interesting observation is that, for any given 

threshold and quantile level, the corresponding VaR and ES estimate in the left tail 

are larger than that in the right tail, i.e., left tail is heavier than the right for all indices. 

For the IBOV index, the conditional VaR is estimated as -2.62% at 5th 

percentile for the left tail (long position). This denotes that, for the lower 5% negative 

daily returns, the worst daily loss in the Brazilian Market value may exceed -2.62% in 

expectation, i.e., if we invest in market portfolio, we are 95% confident that our daily 

loss at worst will not exceed -2.62% during one trading day. Assuming that the loss is 

Table 8: Parameter estimates for GARCH model, IBOV log returns. 
 Negative returns Positive Returns 
 u = 1.6135  u = 	1.6096 

Total in sample observation n 2027 2027 
Number of exceedance N! 101 101 
% of exceedance in sample N! n 4.9 4.9 
GPD shape parameter ξ 0.08223 (0.0825) -0.09144 (0.1006) 
GPD scale parameter σ 0.5965 (0.0769) 0.49746 (0.07025 
VaR quantile:   

VaR!.!"! Z  / VaR!.!"! Z  -1.6113 1.6078 
VaR!.!"! Z  / VaR!.!!! Z  -2.5108 2.3526 

ES quantile:   
ES!.!"! Z  / ES!.!"! Z  -2.1627 2.0638 
ES!.!"! Z  / ES!.!!! Z  -2.9938 2.7461 

Source: Elaborated by author. 
Numbers in parentheses are the Standard Errors. 

Figure 5: Mean Excess Function of IBOV index. 
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greater than expected (5th percentile), the average amount that is lost over a one-day 

period is -3.51%. On the other hand, VaR is estimated as 2.61% at the 95th percentile 

for the right tail. We expect that a daily change in the market portfolio would not 

increase by more than 2.61%. Put differently, we are 95% confident that our daily loss 

will not exceed 2.61% if we take short position of market portfolio. But if this value is 

exceeded, the average loss is -3.35%. At 1% for long position the value of conditional 

VaR is around 4%, implying that for the lower 1% negative the IBOV daily returns 

may exceed 4%, in other words we are 99% confident that loss of this daily trading 

asset at worst will not exceed -3.35% for the next day. However, in case of the loss is 

greater than expected (1 %), the average amount that is lost over a one-day period is -

4.86%. Now considering the right tail (short position) at 99%, the value of the 

conditional VaR is 3.82%, which means that at probability of 99%, tomorrow’s loss is 

expected to be lower than 3.82%, and the corresponding expected shortfall is 4.46%.  

The American stock market reported the lowest values of VaR and ES, 

reveling to be the asset with lower rates of risk. With 5% confidence level we can 

predict tomorrow’s loss (left tail) to exceed -0.95% and that the corresponding 

expected loss, that is the average loss in situations where the losses exceed -0.95%, is 

-1.29%. Assuming short position, with 95% confidence level the expected loss is not 

to exceed 0.86 for the next trading day, and the expected average loss in case of 

exceedance, is around 1.09%. Corresponding results are verified at a lower quantile of 

1% (long position) and 99% level (short position), but in higher rates.  

Looking at the Chinese market, the results indicate that, with probability 0.05, 

the next day loss on long position will exceed the value -1.18 and the corresponding 

expected average loss is -1.64. At short position, with probability of 95%, tomorrow’s 

loss will not exceed the value of 1.14%, but if exceeded the corresponding expected 

average loss is 1.64%. The same inference can be drawn for 1% percentile. 

The index of Argentina reported the higher values of VaR and ES prediction 

for the next day, i.e., presenting to be the riskier asset among the four markets 

analyzed. The conditional VaR at 5th percentile, assuming long position is not to 

exceed -3.68% and the average loss in case of exceedance is -5%. Taking short 

position, at 95% confidence level, the daily loss will not exceed 3.49%, and the 

expected average loss is 4.73%. At probability of 1% for long position the next day 

loss will not exceed -5.65%, implying that for the lower 1% negative the MERVAL 

stock market may exceed -5.65%, in other words we are 99% confident that loss of 
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this daily trading asset at worst will not exceed 5-.65% for the next day. Conversely, 

in case of the loss is greater than expected (at 1 %), the average amount that is lost 

over a one-day period is -7.55%. Now considering the right tail (short position) at 

99%, the value of the conditional VaR is 5.54%, which means that at probability of 

99%, tomorrow’s loss is expected to be lower than 5.54%, and the corresponding 

expected average loss is 6.47%.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Conditional VaR and Conditional ES for IBOV, SPX, SHCOMP and 
MERVAL log returns at 5% percentile. 

IBOV Negative returns Positive Returns 
𝑢 = 	1.6135 𝑢 = 	1.6096 

Conditional VaR:   
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!"! 𝑋!!!  -0.0262 0.0261 
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!!! 𝑋!!! 	 -0.0408 0.0382 

Conditional ES:   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍  -0.0351 0.0335 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -0.0486 0.0446 

SPX	
Negative returns	 Positive Returns 
𝑢 = 1.8277 𝑢 = 1.6391 

Conditional VaR:	   
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!"! 𝑋!!! 	 -0.0095 0.0086 
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!!! 𝑋!!! 	 -0.0148 0.0125 

Conditional ES:	   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍 	 -0.0129 0.0109 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -0.0185 0.0139 

SHCOMP	
Negative returns Positive Returns 
𝑢 = 		1.6506 𝑢 = 		1.5920 

Conditional VaR:	   
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!"! 𝑋!!! 	 -0.0118 0.0114 
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!!! 𝑋!!! 	 -0.0194 0.0192 

Conditional ES:	   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍 	 -0.0164 0.0164 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -0.0234 0.0257 

MERVAL	
Negative returns Positive Returns 
𝑢 = 1.6782 𝑢 = 1.5882 

Conditional VaR:	   
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!"! 𝑋!!! 	 -0.0368 0.0349 
𝑉𝑎𝑅!.!"! 𝑋!!!  / 𝑉𝑎𝑅!.!!! 𝑋!!! 	 -0.0565 0.0554 

Conditional ES:	   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍 	 -0.0500 0.0473 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -0.0755 0.0647 

Source: Elaborated by author. 
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7. Conclusion 
We calculate the daily VaR for four market returns by combining the EVT 

with GARCH models. By this method we get standardized residuals that are close to 

iid so that EVT models can be applied. Applying conditional EVT, the POT method 

has its advantages in modelling the available data more efficiently than BMM as it 

uses excesses over a threshold and can be more effective if we have limited data sets. 

The estimates of conditional VaR and conditional ES computed under different high 

quantile levels exhibit stability through the selected thresholds, implying the accuracy 

and reliability of the estimated quantile-based risk measures. The VaR and ES 

measures based on conditional EVT model provide quantitative information for 

analyzing the extent of potential extreme risks in the market portfolio of IBOV, SPX, 

SHCOMP and MERVAL. These countries represent the ones with stronger economic 

relations with Brazil. Looking at estimated VaR and ES values, we observe that 

MERVAL is the stock market that is most exposed to extreme losses, followed by the 

IBOV. The least exposed to daily extreme variations are SPX and SHCOMP. Then 

we examined the extreme risk spillover effect in international financial markets 

during the recent global financial turmoil. We employ a statistical testing procedure 

for Granger causality test in risk to examine the joint dynamics of extreme values in 

the left and right tail of distribution. This test enables us to investigate how risk spills 

over between stock market and foreign exchange market in Brazil. The results of 

testing the Granger causality in risk show that non-expected but positive signals (short 

position) were weaker than the corresponding negative signals (long position) for all 

risk measures. Among the countries that were studied in this paper, the American 

stock market presented to be the one with stronger influence in case of crisis. 

Therefore, understanding its mechanism of transmission is of extreme importance for 

economic agents and policymakers to soften its impact.  Although China is the 

Brazilian latest spurt of growth driven by its appetite for the Brazilian commodities, 

we did not observe evidence of causality among these markets. The Brazilian market 

reported wide contagion effect to the regional market (Argentina), but no contagion 

effect to the global dominant market. Finally, the results show that the fact that China, 

US and Argentina are the strongest Brazilian trading partners for the past decade 

doesn’t necessarily reflect extreme spillover effects to the Brazilian stock market.  
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Appendix A 
 

 

Figure 1.A: Autocorrelation and Partial Autocorrelation of returns of SPX index. 

Figure 2.A: Autocorrelation and Partial Autocorrelation of squared returns of SPX index. 
 

Figure 3.A: Autocorrelation and Partial Autocorrelation of squared residuals of SPX index. 
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Figure 5.A: Autocorrelation and Partial Autocorrelation of squared returns of SHCOMP index. 
 

Figure 6.A: Autocorrelation and Partial Autocorrelation of squared residuals of SHCOMP index. 
 

Figure 4.A: Autocorrelation and Partial Autocorrelation of returns of SHCOMP index. 
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Figure 7.A: Autocorrelation and Partial Autocorrelation of returns of MERVAL index. 

Figure 8.A: Autocorrelation and Partial Autocorrelation of squared returns of MERVAL index. 
 

Figure 9.A: Autocorrelation and Partial Autocorrelation of squared residuals of MERVAL index. 
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Figure 1.B: Mean Excess Function of SPX index. 
 

Figure 2.B: Mean Excess Function of SHCOMP index. 
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Table 1.B:  Shape and Scale estimates for GJR-GARCH(1,1) model under different thresholds and percentiles. 
SPX log returns.   

Percentile −𝑢 𝜉 𝜎 BIC 𝑢 𝜉 𝜎 BIC 

99 2.7042 0.468 (0.3396) 0.4112 (0.1606) 37.6301 2.3429 -0.6013 (0.2639) 0.535 (0.1692) 3.7701 

98 2.3819 0.2431 (0.1598) 0.4614 (0.101) 52.7406 2.1142 -0.3054 (0.1004) 0.4394 (0.1749) 2.5562 

97 2.2033 0.4188 0.1402) 0.2423 (0.0779) 60.1640 1.9204 -0.2804 (0.1345) 0.4827 (0.0873) 12.1853 

96 1.9856 0.1232 (0.0948) 0.529 (0.0761) 95.0209 1.782 -0.2841 (0.1061) 0.5228 (0.0779) 24.5959 

95 1.8277 0.0761 (0.0757) 0.5828 (0.0718) 125.8849 1.6391 -0.316 (0.0873) 0.5955 (0.0758) 48.0703 

Numbers in parentheses are the Standard Erros. 

Table 2.B:  Shape and Scale estimates for Standard GARCH(1,1) model under different thresholds and percentiles. 
SHCOMP log returns.   

Percentile −𝑢 𝜉 𝜎 BIC 𝑢 𝜉 𝜎 BIC 

99 2.4809 -0.3853 (0.2645) 1.0541 (0.3536) 39.9424 2.7552 0.1212 (0.2885) 0.7565 (0.2754) 46.9335 

98 2.3004 0.2235 (0.2411) 0.4186 (0.1194) 42.1655 2.1856 0.1611 (0.2449) 0.6736 (0.1741) 76.0601 

97 2.0649 0.0432 (0.1445) 0.5309 (0.1025) 53.6944 1.9733 0.1802 (0.1525) 0.1189 (0.0883) 90.7342 

96 1.7959 0.0853 (0.1036) 0.6941 (0.1049) 103.3758 1.6969 0.09188 (0.1201) 0.69012 (0.1124) 131.4847 

95 1.6506 0.0812 (0.0926)) 0.6990 (0.0946) 127.6437 1.5517 0.1572 (0.1217) 0.5957 (0.09304) 143.6427 

Numbers in parentheses are the Standard Erros. 
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Table 3.B:  Shape and Scale estimates for GJR-GARCH(1,1) model under different thresholds and percentiles. 
MERVAL log returns.   

Percentile −𝑢 𝜉 𝜎 BIC 𝑢 𝜉 𝜎 BIC 

99 2.6057 0.6929 (0.3613) 0.3218 (0.1273) 35.6008 2.4688 -0.02558 (0.282) 0.44059 (0.1585) 19.4298 

98 2.1556 0.2963 (0.1734) 0.118 (0.1194) 63.6065 2.1574 -0.04058 (0.1695) 0.1067 (0.1741) 27.9364 

97 1.9389 0.2494 (0.1354) 0.4953 (0.0909) 79.9445 1.9718 -0.04583 (0.12829) 0.46741 (0.0846) 36.8602 

96 1.7933 0.2441 (0.1233) 0.4702 (0.0769) 92.5258 1.7347 -0.1883 (0.08223) 0.6523 (0.08912) 75.5072 

95 1.6782 0.2274 (0.10898) 0.4608 (0.0670) 105.5592 1.5882 -0.1815 (0.07533) 0.6698 (0.0824) 98.4507 

Numbers in parentheses are the Standard Errors. 

Figure 3.B: Mean Excess Function of MERVAL index. 
 



	 60 

Appendix C 
 

 
	 	
	

 

	

Table 1.C: Parameter estimates for GARCH model, SPX, SHCOMP and MERVAL log 
returns. 

SPX 
Negative returns Positive Returns 
𝑢 = 1.8277 𝑢 = 1.6391 

Total in Sample observation 𝑛 2108 2108 
Number of exceedance 𝑁! 105 105 
% of exceedance in sample 𝑁! 𝑛 4.98 4.98 
GPD shape parameter 𝜉 0.0761 (0.0757) -0.3160 (0.0873) 
GPD scale parameter 𝜎 0.5828 (0.0718) 0.5955 (0.0758) 
VaR quantile:   

𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!"! 𝑍  -1.8255 1.6368 
𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!!! 𝑍  -2.8230 2.3889 

ES quantile:   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍  -2.4561 2.0898 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍  -3.5357 2.6613 

SHCOMP	
Negative returns Positive Returns 
𝑢 = 		1.6506 𝑢 = 		1.5920 

Total in Sample observation 𝑛	 2050 2050 
Number of exceedance 𝑁!	 102 102 
% of exceedance in sample 𝑁! 𝑛	 4.98 4.98 
GPD shape parameter 𝜉	 0.0812 (0.0926) 0.1572 (0.1217) 
GPD scale parameter 𝜎	 0.6990 (0.0946) 0.5957 (0.09304) 
VaR quantile:	   

𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!"! 𝑍 	 -1.6471 1.5891 
𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!!! 𝑍 	 -2.7022 2.6792 

ES quantile:	   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍 	 -2.2939 2.2954 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -3.2697 3.5888 

MERVAL	
Negative returns Positive Returns 
𝑢 = 	1.6782 𝑢 = 	1.5882 

Total in Sample observation 𝑛	 2040 2040 
Number of exceedance 𝑁!	 102 102 
% of exceedance in sample 𝑁! 𝑛	 5.0 5.0 
GPD shape parameter 𝜉	 0.2274 (0.1089) -0.1815 (0.0753) 
GPD scale parameter 𝜎	 0.4608 (0.0670) 0.6698 (0.0824) 
VaR quantile:	   

𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!"! 𝑍 	 -1.6781 1.5882 
𝑉𝑎𝑅!.!"! 𝑍  / 𝑉𝑎𝑅!.!!! 𝑍 	 -2.5736 2.5230 

ES quantile:	   
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!"! 𝑍 	 -2.2745 2.1551 
𝐸𝑆!.!"! 𝑍  / 𝐸𝑆!.!!! 𝑍 	 -3.4335 2.9463 

Numbers in parentheses are the Standard Error. 


