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RESUMO

Na primeira parte desta tese tratamos dos sistemas 3D de Navier-Stokes e Boussinesq em um

cubo. Nós provamos alguns resultados sobre a controlabilidade aproximada global por meio de

controles de bordo que agem em uma parte da fronteira. Estes reultados são generalizações e

variações de alguns resultados anteriores de Guerrero, Imanuvilov e Puel. Ainda na primeira parte

da tese, nós provamos a controlabilidade nula local interna e de bordo de uma EDP parabólica

1D com difusão não linear. Aqui, as ferramentas principais são o teorema da função inversa de

Liusternik e desigualdades de Carleman adequadas.

Na segunda parte desta tese, consideramos Mm subvariedades mínimas propriamente imersas em

um espaço ambiente completo Nn adequadamente próximo a um espaço forma Nn
k de curvatura

−k ≤ 0. Estamos interessados na relação entre a função densidade Θ(r) de Mm e o espectro

do operador Laplace-Beltrami. Em particular, provamos que se Θ(r) temum crescimento

subexponencial (quando k < 0) ou bubpolinomial (k = 0) ao longo de uma sequência, então

o espectro de Mm é o mesmo do espaço forma Nm
k . Notavelmente, o resultado se aplica a

soluções Anderson (suaves) do problema de Plateau no infinito sobre o espaço hiperbólico Hn,

independentemente da regularidade dos seus bordos. Nós também fornecemos uma condição

simples sobre a segunda forma fundamental que garante que M tem densidade finita. Em

particular, mostramos que subvariedades mínimas de Hn com curvatura total finita te densidade

finita.

Palavras-chave: Controlabilidade nula. Controlabilidade aproximada. Sistema de Navier-

Stokes. Sistema de Boussinesq. EDPs parabólicas não lineares. Subvariedades mínimas.



ABSTRACT

In the first part of this thesis we deal with the 3D Navier-Stokes and Boussinesq systems in

a cube. We prove some results concerning the global approximate controllability by means

of boundary controls which act in some part of the boundary. They are generalizations and

variants of some previous results by Guerrero, Imanuvilov and Puel. Still in the first part of

this Thesis, we prove the internal and boundary local null controllability of a 1D parabolic PDE

with nonlinear diffusion. Here, the main tools are Liusternik’s inverse function Theorem and

appropriate Carleman estimates.

In the second part of this Thesis, we consider Mm minimal properly immersed submanifolds

in a complete ambient space Nn suitably close to a space form Nn
k of curvature −k ≤ 0. We

are interested in the relation between the density function Θ(r) of Mm and the spectrum of the

Laplace-Beltrami operator. In particular, we prove that if Θ(r) has subexponential growth (when

k < 0) or sub-polynomial growth (k = 0) along a sequence, then the spectrum of Mm is the

same as that of the space form Nm
k . Notably, the result applies to Anderson’s (smooth) solutions

of Plateau’s problem at infinity on the hyperbolic space Hn, independently of their boundary

regularity. We also give a simple condition on the second fundamental form that ensures M to

have finite density. In particular, we show that minimal submanifolds of Hn with finite total

curvature have finite density.

Keywords: Null controllability. Approximate controllability. Navier-Stokes system. Boussinesq

system. Parabolic nonlinear PDEs. Minimal submanifolds.
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1 INTRODUÇÃO

For a better understanding, this Thesis is divided in two parts. The first part is

devoted to the controllability of some initial-boundary value problems for PDEs. The second

part brings a study about the relation between the density function Θ(r) of a submanifold Mm,

which is a minimal properly immersed submanifold in a complete ambient space Nn, and the

spectrum of its Lapace-Beltrami operador.

About the first part, concerning control theory, we give now a very succinct, but

important, prelude.

Roughly speaking, the idea of controllability may be formulated as follows. For an

evolution system in a time interval [0,T ], the main concern is to act by means of a function v,

called the control, in order to drive the solution to a desired state at the final time T . In this

framework, we can deal with different notions of controllability, depending on the nature of the

problem.

• We say that the system has the property of approximate controllability if, starting from an

arbitrary initial state, the system solution can be driven arbitrarily close (with respect to a

particular norm) to any desired state.

• We say that the system has the property of exact controllability if, starting from an arbitrary

initial state, the system solution can be driven exactly to any desired state.

• We say that the system has the property of null controllability if, starting from an arbitrary

initial state, the system solution can always be driven exactly to zero.

• We will say that the system has the property of exact controllability to the trajectories if,

starting from an arbitrary initial state, the system solution can be driven exactly to any

solution.

The controllability theory for evolution PDEs began to be developed in the 1960′s.

The foundations of this theory were laid, among others, by Yegorov (1963), Russell (1973, 1987)

and Fattorini (1975). At the time, some well known and well used and improved techniques

were introduced. One of them was the moment method, which reduces the exact controllability

question to a problem in the theory of exponential series. Also, the duality principle, which

reduces the controllability problem to an observability problem concerning the adjoint equation,

was introduced. For a general review of the state of the theory up to 1978 we recommend the paper

(RUSSELL, 1987). Going on to the mid-1980′s and beyond, the interest in controllability theory

happen to increased substantially. At this time, J.-L. Lions introduced the Hilbert Uniqueness
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Method (HUM), which enables one to drive the solubility of the controllability problem for the

original equation from the uniqueness theorem for the adjoint equation, (see (LIONS, 1988b;

LIONS, 1988a)). Other important step in the development of controllability theory was made

by A. V. Fursikov and O. Yu. Imanuvilov (1996), who used Carleman estimates to manage null

controllability problems.

Concerning parabolic equations, we can mention the work of G. Lebeau and L.

Robbiano (1995), dedicated to the linear heat equation, which combined the method of Russell,

the properties of an integral transform and a Carleman estimate for elliptic equations to deduce

the null controllability of the heat equation. On the other hand, the approximate controllability

for semilinear heat PDEs was proved by C. Fabre, J.-P. Puel and E. Zuazua (1995).

In the context of the Navier-Stokes equations, Jacques-Louis Lions (1990), made

a conjecture on the global, boundary and internal approximate controllability. Since then, the

controllability of these equations and its variants has awaken the interest of many researchers,

but, until the present moment, only partial results are known. In (1999), Fursikov and Imanuvilov

proved a local result on the exact controllability to the C∞ trajectories of the Navier-Stokes

equations by means of a Carleman inequality and the inverse function theorem. Some years later,

E. Fernández-Cara, S. Guerrero, O. Yu Imanuvilov and J.-P. Puel (2004) improved this result, re-

laxing the regularity of the trajectories to L∞. Some time later, inspired by (FERNÁNDEZ-CARA

et al., 2004; FURSIKOV; IMANUVILOV, 1999), Guerrero (2006) proves a local exact control-

lability result for the Boussinesq system. Then, several authors proved local exact controllability

to the trajectories results for the N-dimensional Navier-Stokes and Boussinesq systems with a

reduced number of scalar controls under some geometric conditions (see (FERNÁNDEZ-CARA

et al., 2006; CORON; GUERRERO, 2009; CORON J.-M., 2014)).

In the second part of this Thesis we deal with another knowledge area: geometry.

Here we develop a study concerning a minimal properly immersed submanifold, denoted by Mm,

in a complete ambient space Nn suitably close to a space form Nn
k of curvature −k ≤ 0.

The Laplacian operator ∆ acting on C∞
0 (M) has a unique self-adjoint extension to an

unbounded operator acting on L2(M), also denoted by ∆. Since −∆ is positive and self-adjoint,

we have its spectrum σ(M) being the set of λ ≥ 0 such that the operator ∆+λ I does not have a

bounded inverse. In particular, Our focus is to study the spectrum σ(M) of the Laplace-Beltrami

operator −∆ on M (sometimes called spectrum of M) and its relationship with the density at
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infinity of M, that is, the limit as r→+∞ of the (monotone) quantity

Θ(r) .
=

vol(M∩Br)

Vk(r)
, (1.1)

where Br indicates a geodesic ball of radius r in Nn and Vk(r) is the volume of a geodesic ball of

radius r in Nm
k . Associated to Θ(r) we have the idea of finite density. We say that the submanifold

M has finite density if

Θ(+∞)
.
= lim

r→+∞
Θ(r)<+∞.

In the literature, characterizations of the whole σ(M) are known only in few special

cases. Among them, we have the spectrum of the Euclidean space Rm, and the hyperbolic space

Hm
k , for which, respectively, σ(Rm) = [0,∞) and

σ(Hm
k ) =

[
(m−1)2k

4
,+∞

)
, (1.2)

The well-known Weyl’s characterization for the case of the spectrum of a self-adjoint

operator in a Hilbert space implies the following:

Lemma 1.0.1 (DAVIES, 1995, Lemma 4.1.2) A number λ ∈ R lies in σ(M) if and only if there

exists a sequence of nonzero functions u j ∈ Dom(−∆) such that

‖∆u j +λu j‖2 = o
(
‖u j‖2

)
as j→+∞. (1.3)

The approach to guarantee that σ(M) = [c,+∞), for some c≥ 0, usually splits into two parts.

The first one is to show that infσ(M)≥ c via, for instance, the Laplacian comparison theorem,

and the second one is to produce a sequence like in lemma 1.0.1 for each λ > c. This step is

accomplished by considering radial functions of compact support, and, at least in the first results

on the topic like the one in (DONNELLY, 1981), uses the comparison theorems on both sides

for ∆ρ , ρ being the distance from a fixed origin o ∈M. Therefore, the method needs both a

pinching on the sectional curvature and the smoothness of ρ , that is, that o is a pole of M (see

(DONNELLY, 1981; ESCOBAR; FREIRE, 1992; LI, 1994) and Corollary 2.17 in (BIANCHINI

et al., 2013)), which is a severe topological restriction. Since then, various efforts were made to

weaken both the curvature and the topological assumptions. We briefly overview some of the

main achievements.

In (1997), Kumura observed that to perform the second step (and just for it) it

is enough that there exists a relatively compact, mean convex, smooth open set Ω with the
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property that the normal exponential map realizes a global diffeomorphism ∂Ω×R+
0 →M\Ω.

Conditions of this kind seem, however, unavoidable for his techniques to work. On the other

hand, in (KUMURA, 2005) the author drastically weakened the curvature requirements needed

to establish Step 2, by replacing the two-sided pinching on the sectional curvature with a

combination of a lower bound on a suitably weighted volume and an Lp-bound on the Ricci

curvature.

Regarding the need for a pole, major recent improvements have been made in a

series of papers ((STURM, 1993; WANG, 1997; LU; ZHOU, 2011; CHARALAMBOUS; LU,

2014)): their guiding idea was to replace the L2-norm in relation (1.3) with the L1-norm, which,

via a trick in (WANG, 1997; LU; ZHOU, 2011), enables to use smoothed distance functions to

construct sequences as in Lemma 1.0.1.

Building on deep function-theoretic results due to Sturm (1993) and Charalambous-

Lu (2014, in (WANG, 1997; LU; ZHOU, 2011) the authors proved that σ(M) = [0,∞) when

liminf
ρ(x)→+∞

Riccx = 0 (1.4)

in the sense of quadratic forms, without any topological assumption. This remarkable result im-

proves on (LI, 1994) and (ESCOBAR; FREIRE, 1992) (see also Corollary 2.17 in (BIANCHINI

et al., 2013)), where M was assumed to have a pole. Further refinements of (1.4) have been given

in (CHARALAMBOUS; LU, 2014). However, when (1.4) does not hold, the situation is more

delicate and is still the subject of an active area of research. In this respect, we also quote the

general function-theoretic criteria developed by H. Donnelly (1997), and Elworthy and Wang

(2004) to ensure that a half-line belongs to the spectrum of M.

1.1 Main results

This Thesis is divided in two parts. The first part is composed by Chapters 2 and 3,

which present the results of the controllability of some incompressible fluids models and the

null controllability of a quasi-linear parabolic equation in a bounded domain of with Dirichlet

boundary conditions. The second part is formed by Chapter 4, deals with the characterization of

the spectrum of the Laplace Beltrami operator −∆ on minimal submanifolds.

In the sequel, we will present the main results and ideas used in the proofs.
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1.1.1 Main results of Chapter 2

In the Chapter 2, we deal with some 3D systems of the Navier-Stokes kind in a cube

or a similar set. Let T > 0 and let Ω be the open set

Ω = {x ∈ R3 : xi ∈ (0,1), 1≤ i≤ 3},

whose boundary is denoted by ∂Ω. We will set Q := Ω× (0,T ) and Σ := ∂Ω× (0,T ).

Let us introduce the Hilbert spaces

H(Ω) := {w ∈ L2(Ω)×L2(Ω)×L2(Ω) : ∇ ·w = 0 in Ω, w ·n = 0 on ∂Ω}

(where n = n(x) is the outward unit normal vector at x ∈ ∂Ω) and

V0(Ω) := {w ∈ H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω) : ∇ ·w = 0 in Ω}.

Let f ∈ L2(Q)×L2(Q)×L2(Q) and u0 ∈H(Ω) be given and let us first consider the

3D Navier-Stokes system
ut−∆u+(u ·∇)u+∇p = f , ∇ ·u = 0 in Q

u(0,x2,x3, t) = 0, on (0,1)2× (0,T )

u(x,0) = u0(x) in Ω,

(1.5)

where u(x, t) = (u1(x, t),u2(x, t),u3(x, t)) is the velocity vector field of the fluid, ∇p is the

pressure gradient in the fluid, ∆ is the laplace operator,

(u ·∇)u =
3

∑
i=1

ui
∂iu
∂xi

, f (x, t) = ( f1(x, t), f2(x, t), f3(x, t))

is given density of external forces, u0 is given initial data. From now, in order to simplify

notations we will denote by L2(Ω)3 and H1(Ω)3 the vector spaces L2(Q)×L2(Q)×L2(Q) and

H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω), respectively.

Our first main results concern two generalizations of Theorem 1 in (GUERRERO

et al., 2012). In the first one, we prove that the partial approximate controllability can also

be obtained with controls acting only on three faces of the unit cube. In the second one, we

show that Ω can be a much more general set, namely a bounded domain of R3 whose boundary

contains a piece of a plane and is contained in one of the associated semispaces.

Theorem 1.1.1 Assume that u0 ∈H(Ω) and f ∈ L2(Q)3 are given. Then, there exists a sequence

{ fε} in L2(Q)3 such that

fε → f in Lr(0,T ;H−1(Ω)3)
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for all r ∈ (1,4/3) and there exist solutions (uε , pε) to the null controllability problems

uε,t−∆uε +(uε ·∇)uε +∇pε = fε in Q

∇ ·uε = 0 in Q

uε(0,x2,x3, t) = uε(1,x2,x3, t) = uε(x1,x2,0, t) = 0 on (0,1)2× (0,T )

uε(x,0) = u0(x), uε(x,T ) = 0 in Ω.

Now, let π be a plane in R3, let π+ be one of the semispaces determined by π and

let Ωπ ⊂ R3 be a bounded domain satisfying

Ωπ ⊂ π
+, ∂Ωπ ∩π is a non-empty open set.

Theorem 1.1.2 Assume that u0 ∈ H(Ωπ) and f ∈ L2(Ωπ × (0,T ))3. Then, there exists a se-

quence { fε}ε>0 in L2(Ωπ × (0,T ))3 such that

fε → f in Lr(0,T ;H−1(Ωπ)
3)

for all r ∈ (1,4/3) and there exist solutions (uε , pε) to the null controllability problems

uε,t−∆uε +(uε ·∇)uε +∇pε = fε in Ωπ × (0,T )

∇ ·uε = 0 in Ωπ × (0,T )

uε(x, t) = 0 on (∂Ωπ ∩π)× (0,T )

uε(x,0) = u0(x), uε(x,T ) = 0 in Ωπ .

We will also consider a system of the Boussinesq kind:

ut−∆u+(u ·∇)u+∇p = θeN + f , ∇ ·u = 0 in Q

θt−∆θ +u ·∇θ = g in Q

u(0,x2,x3, t) = 0, θ(0,x2,x3, t) = 0 on (0,1)2× (0,T )

(u(x,0),θ(x,0)) = (u0(x),θ0(x)) in Ω.

Here, f ∈ L2(0,T ;L2(Ω)3), g ∈ L2(0,T ;L2(Ω)) are given source terms, u0 ∈ H(Ω)

and θ0 ∈ L2(Ω).

Theorem 1.1.3 Assume that (u0,θ0) ∈ V0(Ω)×H1(Ω) and ( f ,g) ∈ L2(Q)3× L2(Q). Then,

there exists a sequence {( fε ,gε)}ε>0 in L2(Q)3×L2(Q) such that

( fε ,gε)→ ( f ,g) in Lr(0,T ;H−1(Ω)3)×Lr(0,T ;H−1(Ω))
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for all r ∈ (1,4/3) and there exist solutions (uε , pε ,θε) to the null controllability problems

uε,t−∆uε+(uε ·∇)uε+∇pε =θεeN+ fε , ∇ ·uε =0 in Q

θε,t−∆θε+uε ·∇θ =gε in Q

uε(0,x2,x3, t) = 0, θε(0,x2,x3, t) = 0 on (0,1)2×(0,T )

(uε(x,0),θε(x,0)) = (u0(x),θ0(x)) in Ω

(uε(x,T ),θε(x,T )) = (0,0) in Ω,

with

uε ∈ L2(0,T ;V (Ω))∩C0
w([0,T ];H(Ω))

and

θε ∈ L2(0,T ;H1
0 (Ω))∩C0

w([0,T ];L2(Ω)).

As in (GUERRERO et al., 2012), the proofs of the previous results consist of four

steps. Thus, we divide our time interval (0,T ) in four subintervals, where different strategies are

used. In fact, nothing is done in a first (large) subinterval; then, we pass from the first final state

to a regular, compactly supported, close field in a second step; then, we drive the solution to a

particular field that can be viewed as the solution to a simpler parabolic system; finally, in the

last step, we introduce controls that drive this parabolic system to zero.

The content of the chapter 2 was taken from the preprint (FERNÁNDEZ-CARA et

al., 2017).

1.1.2 Main results of Chapter 3

The third Chapter of this Thesis deals with the distributed and boundary null control-

lability of a 1D nonlinear parabolic system.

Let us consider an open bounded interval I ⊂ R and denote by Q the cylinder

Q := I× (0,T ) with lateral boundary Σ := ∂ I× (0,T ). Also, we consider a non-empty open set

of ω ⊂ I. As usual, 1ω denotes the characteristic function of ω .

We are interested in the null controllability of the nonlinear systems
yt− (a(y)yx)x = v11ω in Q

y(x, t) = 0 on Σ

y(x,0) = y0(x) in I

(1.6)
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and 
yt− (a(y)yx)x = 0 in (0,1)× (0,T )

y(0, t) = v2(t), y(1, t) = 0 on (0,T )

y(x,0) = y0(x) in (0,1),

(1.7)

where v1 and v2 are control functions and y is the associated state.

It will be assumed that the real function a = a(r) is of class C1, possesses bounded

derivatives and satisfies

0 < m≤ a(r)≤M, ∀r ∈ R.

Definition 1.1.1 It will be said that (1.6) (resp. (1.7)) is locally null-controllable at time T if

there exists ε > 0 such that, for any y0 ∈ H1
0 (I) with

‖y0‖H1
0
(I)≤ ε,

there exist controls v1 ∈ L2(ω× (0,T )) (resp. v2 ∈ L2(0,T )) such that the associated states y

satisfy

y(x,T ) = 0 in I.

The main result in the Chapter 3 is the following:

Theorem 1.1.4 Under the previous assumptions on a, the nonlinear system (1.6) is locally

null-controllable at any time T > 0.

A consequence of Theorem 1.1.4 is the local null controllability of (1.7). Thus, the

second result of Chapter 3 is:

Theorem 1.1.5 Under the previous assumptions on a, the nonlinear system (1.7) is locally

null-controllable at any time T > 0.

The proof of Theorem 1.1.4 relies on an application of Liusternik’s Inverse Function

Theorem in Banach spaces (see (ALEKSEEV et al., 1987)).

The content of the chapter 3 was taken from the preprint (FERNÁNDEZ-CARA; VIEIRA,

2017).
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1.1.3 Main results of Chapter 4

The present Chapter develops as follows. The first result of Chapter 4 characterize

σ(M) when the density of M grows subexponentially (respectively, sub-polynomially) along a

sequence. In our second result we give a sufficient condition in terms of the decay of the second

fundamental form in order to ensure that Θ(+∞)<+∞.

Before we deal with the main results, we set some definition.

Definition 1.1.2 Let Nn possess a pole ō and denote with ρ̄ the distance function from ō. Assume

that the radial sectional curvature K̄rad of N, i.e., the sectional curvature restricted to planes π

containing ∇̄ρ̄ , satisfies

−G
(
ρ̄(x)

)
≤ K̄rad(πx)≤−k ≤ 0 ∀x ∈ N\{ō}, (1.8)

for some G ∈C0(R+
0 ). We say that

(i) N has a pointwise (respectively, integral) pinching to Rn if k = 0 and

sG(s)→ 0 as s→+∞
(
respectively, sG(s) ∈ L1(+∞)

)
;

(ii) N has a pointwise (respectively, integral) pinching to Hn
k if k > 0 and

G(s)− k→ 0 as s→+∞
(
respectively, G(s)− k ∈ L1(+∞)

)
.

Now we present the results.

Theorem 1.1.6 Let ϕ : Mm→ Nn be a minimal properly immersed submanifold and suppose

that N has a pointwise or an integral pinching to a space form. If either

N is pinched to Hn
k , and liminf

s→+∞

logΘ(s)
s

= 0, or

N is pinched to Rn, and liminf
s→+∞

logΘ(s)
logs

= 0,

then

σ(M) =

[
(m−1)2k

4
,+∞

)
. (1.9)

The proof of of 1.1.6 follow an approach inspired by a general result due to Elworthy

and Wang (2004). Because of the upper bound in (1.8), by (CHEUNG; LEUNG, 2001) and

(BESSA; MONTENEGRO, 2007) the bottom of σ(M) satisfies

infσ(M)≥ (m−1)2k
4

.
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To complete the proof of the 1.1.6, since σ(M) is closed, it is sufficient to show that each

λ > (m−1)2k/4 lies in σ(M). To this end, we build a sequence as in Lemma 1.0.1.

Corollary 1.1.1 Let Σ⊂ ∂∞Hn
k be a closed, integral (m−1) current in the boundary at infinity

of Hn
k such that, for some neighborhood U of supp(Σ), Σ does not bound in U, and let Mm ↪→Hn

k

be the solution of Plateau’s problem at infinity constructed in (ANDERSON, 1982) for Σ. If M is

smooth, then (1.9) holds.

Another result is.

Theorem 1.1.7 Let ϕ : Mm→ Nn be a minimal immersion and suppose that N has an integral

pinching to Rn or to Hn
k . Let us denote ρ(x) the intrinsic distance from some reference origin

o ∈M. Assume that there exist c > 0 and α > 1 such that the second fundamental form satisfies,

for ρ(x)>> 1,

|II(x)|2 ≤ c
ρ(x) logα

ρ(x)
, if N is pinched to Hn

k;

|II(x)|2 ≤ c
ρ(x)2 logα

ρ(x)
, if N is pinched to Rn.

Then, ϕ is proper, M is diffeomorphic to the interior of a compact manifold with boundary and

Θ(+∞)<+∞.

We say that M has finite total curvature when the second fundamental form II satisfies

∫
M
|II|m <+∞. (1.10)

The relation between (1.10) and the finiteness of Θ(+∞) has been investigated in depth for

minimal submanifolds of Rn, but the case of Hn
k seems to be partly unexplored. About this, we

have as consequence of Theorem 1.1.7 the following corollary

Corollary 1.1.2 Let Mm be a minimal properly immersed submanifold in Hn
k . If M has finite

total curvature, then Θ(+∞)<+∞.

The content of the chapter 4 was taken from the recent work (LIMA et al., 2016).
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2 REMARKS CONCERNING THE APPROXIMATE CONTROLLABILITY OF

SYSTEMS OF THE NAVIER-STOKES KIND

2.1 Introduction

Let T > 0 and let Ω be the open set

Ω = {x ∈ R3 : xi ∈ (0,1), 1≤ i≤ 3},

whose boundary is denoted by ∂Ω. We will set Q := Ω× (0,T ) and Σ := ∂Ω× (0,T ).

Let us introduce the Hilbert spaces

H(Ω) := {w ∈ L2(Ω)3 : ∇ ·w = 0 in Ω, w ·n = 0 on ∂Ω}

(where n = n(x) is the outward unit normal vector at x ∈ ∂Ω) and

V0(Ω) := {w ∈ H1
0 (Ω)3 : ∇ ·w = 0 in Ω}.

Let f ∈ L2(Q)3 and u0 ∈H(Ω) be given and let us first consider the three-dimensional

Navier-Stokes system
ut−∆u+(u ·∇)u+∇p = f , ∇ ·u = 0 in Q

u(0,x2,x3, t) = 0, on (0,1)2× (0,T )

u(x,0) = u0(x) in Ω.

(2.1)

In a recent work, Guerrero, Imanuvilov and Puel (GUERRERO et al., 2012) have

established some results concerning a “partial” approximate controllability property of (2.1). Spe-

cifically, they have proved that, for any u0 and f , there exists a sequence { fn} in L2(0,T ;L2(Ω)3)

such that fn → f in an appropriate sense and, for each n, the corresponding system (2.1) is

null-controllable, with controls supported by the faces on the boundary where x1 6= 0. Note that,

in view of the time irreversibility of (2.1), we cannot expect the exact controllability to hold to

an arbitrary target function. On the other hand, recall that the global approximate controllability

is an open question for this system, due to the presence of a Dirichlet condition at x1 = 0.

This paper is devoted to present some extensions and variants of the results in (GUER-

RERO et al., 2012) that include in particular

• A result concerning boundary controls with support in smaller sets,

• Similar results in more general domains and

• A control result for a Boussinesq system.
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Let us recall some (partial) results concerning the controllability of (2.1). Global

controllability results can be proved using the arguments in (FURSIKOV; IMANUVILOV, 1999)

if the control is exerted on the whole boundary. On the other hand, the local exact controllability

to bounded trajectories with distributed controls was established in (FERNÁNDEZ-CARA

et al., 2004) and (GUERRERO, 2006), respectively for the Navier-Stokes and Boussinesq

systems. This has been revisited and improved in a set of papers, where it was shown that

N−1 or even less scalar controls suffice; see (FERNÁNDEZ-CARA et al., 2006; NO, 2012;

CORON; GUERRERO, 2009; CORON J.-M., 2014). In (CORON, 1996), the global approximate

controllability of the 2D Navier-Stokes equations completed with Navier slip boundary conditions

was proved. Then, in (CORON; FURSIKOV, 1996), a global exact controllability result was

established for the same system in a 2D manifold without boundary.

Our first main results concern two generalizations of Theorem 1 in (GUERRERO

et al., 2012). In the first one, we prove that the partial approximate controllability can also

be obtained with controls acting only on three faces of the unit cube. In the second one, we

show that Ω can be a much more general set, namely a bounded domain of R3 whose boundary

contains a piece of a plane and is contained in one of the associated semispaces, see figure below.

Figura 1 – The situation in Theorem 2.1.2.

Theorem 2.1.1 Assume that u0 ∈H(Ω) and f ∈ L2(Q)3 are given. Then, there exists a sequence

{ fε} in L2(Q)3 such that

fε → f in Lr(0,T ;H−1(Ω)3)
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for all r ∈ (1,4/3) and there exist solutions (uε , pε) to the null controllability problems

uε,t−∆uε +(uε ·∇)uε +∇pε = fε in Q

∇ ·uε = 0 in Q

uε(0,x2,x3, t) = uε(1,x2,x3, t) = uε(x1,x2,0, t) = 0 on (0,1)2× (0,T )

uε(x,0) = u0(x), uε(x,T ) = 0 in Ω.

Now, let π be a plane in R3, let π+ be one of the semispaces determined by π and

let Ωπ ⊂ R3 be a bounded domain satisfying

Ωπ ⊂ π
+, ∂Ωπ ∩π is a non-empty open set.

Theorem 2.1.2 Assume that u0 ∈ H(Ωπ) and f ∈ L2(Ωπ × (0,T ))3. Then, there exists a se-

quence { fε}ε>0 in L2(Ωπ × (0,T ))3 such that

fε → f in Lr(0,T ;H−1(Ωπ)
3)

for all r ∈ (1,4/3) and there exist solutions (uε , pε) to the null controllability problems

uε,t−∆uε +(uε ·∇)uε +∇pε = fε in Ωπ × (0,T )

∇ ·uε = 0 in Ωπ × (0,T )

uε(x, t) = 0 on (∂Ωπ ∩π)× (0,T )

uε(x,0) = u0(x), uε(x,T ) = 0 in Ωπ .

We will also consider a system of the Boussinesq kind:

ut−∆u+(u ·∇)u+∇p = θeN + f , ∇ ·u = 0 in Q

θt−∆θ +u ·∇θ = g in Q

u(0,x2,x3, t) = 0, θ(0,x2,x3, t) = 0 on (0,1)2× (0,T )

(u(x,0),θ(x,0)) = (u0(x),θ0(x)) in Ω.

(2.2)

Here, f ∈ L2(0,T ;L2(Ω)3), g ∈ L2(0,T ;L2(Ω)) are given source terms, u0 ∈ H(Ω)

and θ0 ∈ L2(Ω).

Theorem 2.1.3 Assume that (u0,θ0) ∈ V0(Ω)×H1(Ω) and ( f ,g) ∈ L2(Q)3× L2(Q). Then,

there exists a sequence {( fε ,gε)}ε>0 in L2(Q)3×L2(Q) such that

( fε ,gε)→ ( f ,g) in Lr(0,T ;H−1(Ω)3)×Lr(0,T ;H−1(Ω))
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for all r ∈ (1,4/3) and there exist solutions (uε , pε ,θε) to the null controllability problems

uε,t−∆uε+(uε ·∇)uε+∇pε =θεeN+ fε , ∇ ·uε =0 in Q

θε,t−∆θε+uε ·∇θ =gε in Q

uε(0,x2,x3, t) = 0, θε(0,x2,x3, t) = 0 on (0,1)2×(0,T )

(uε(x,0),θε(x,0)) = (u0(x),θ0(x)) in Ω

(uε(x,T ),θε(x,T )) = (0,0) in Ω,

with

uε ∈ L2(0,T ;V (Ω))∩C0
w([0,T ];H(Ω))

and

θε ∈ L2(0,T ;H1
0 (Ω))∩C0

w([0,T ];L2(Ω)).

As in (GUERRERO et al., 2012), the proofs of the previous results consist of four

steps. For instance, in the case of Theorem 2.1.3, we divide the time interval (0,T ) in four

subintervals, where different strategies are used:

• In the first interval (0,T1) no control is needed, so we let the system evolve from the initial

condition at t = 0 to some non-zero state with zero Dirichlet boundary conditions.

• In the second time interval, we give explicitly give our solution. This way, we drive the

system to a compactly supported and regular state at a time T2.

• In the third time interval, we construct our solution in a much more intrinsic way. Indeed,

it is split as the sum of three functions: a very particular and simple solution multiplied by

a large parameter plus a solution to a transport equation plus a solution to a Stokes system.

This allows to drive the system to a solution to a more simple problem.

• In the last time interval, we reduce the question to a standard null controllability problem

for a system composed of two coupled 1D parabolic equations. In view of some recent

results from (FERNÁNDEZ-CARA et al., 2010), this is easy to achieve and allows to

conclude.

This paper is organized as follows. In the next section, we construct some intermedi-

ate functions and we prove some crucial estimates. In Section 2.3, the proof of Theorem 2.1.3 is

given, following the ideas in (GUERRERO et al., 2012). Section 2.4 deals with the proofs of
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Theorems 2.1.1 and 2.1.2. Finally, in Section 2.5, we present some additional comments and

questions.

2.2 Some auxiliary problems and estimates

In this section, we will construct a specific solution (U,q,Θ) to the Boussinesq

system with boundary conditions, with (U ·∇)U ≡ 0.

2.2.1 The Navier-Stokes system with a boundary control acting on three faces

Let z = z(x1,x3, t) be solution to the following system for the 2D heat PDE:

zt− (∂ 2
x1x1

z+∂ 2
x3x3

z) = c(t), (x1,x3, t) ∈ (0,1)2× (0,T )

z(0,x3, t) = z(1,x3, t) = z(x1,0, t) = 0, x1,x3 ∈ (0,1), t ∈ (0,T )

z(x1,1, t) = w(t), (x1, t) ∈ (0,1)× (0,T )

z(x1,x3,0) = 0, (x1,x3) ∈ (0,1)2.

Here, c ∈C2([0,T ]) is a positive function (c(0) is as large as needed) and w is a nonnegative

function satisfying

w ∈C∞([0,T ]), w(0) = 0, w′(0) = c(0), w′′(0) = c′(0). (2.3)

Figura 2 – The situation in Theorem 2.1.1

Thanks to the compatibility condition (2.3), we can argue as in (GUERRERO et al.,

2012) and check that

z ∈C2([δ ,1−δ ]× [δ ,1]× [0,T ]) ∀δ > 0.

On the other hand, thanks to Taylor’s formula, we can obtain functions βδ , γ i
δ
, λδ and µ

i j
δ
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in C0([δ ,1−δ ]× [δ ,1]× [0,T ]) such that

z(x1,x3, t) = c(0)t +βδ (x1,x3, t)t2

∂xiz(x1,x3, t) = γ i
δ
(x1,x3, t)t2, i ∈ {1,3}

∂tz(x1,x3, t) = c(0)+λδ (x1,x3, t)t

∂ 2
xi,x j

z(x1,x3, t) = µ
i j
δ
(x1,x3, t)t, i, j ∈ {1,3}.

(2.4)

Let G and I be given by

G = {(x1,x2,x3) : x2 ∈ R, (x1,x3) ∈ (0,1)2 },

I = ({0,1}×R× (0,1))∪ ((0,1)×R×{0}).

Now, we introduce the functions U and q, with U(x, t) := (0,z(x1,x3, t),0) and q :=

−c(t)x2. Note that the couple (U,q) satisfies

Ut−∆U +∇q = 0 in G × (0,T )

∇ ·U = 0 in G × (0,T )

U(x, t) = 0 on I × (0,T )

U(x,0) = 0 in G .

Later, we will look for a solution to the Navier-Stokes system of the form

u = N2U + y+ξ (t)W,

where N is a large constant, y is the solution to a transport equation, W solves a Stokes system

and ξ ∈C2[0,2/N] is a cut-off function.

2.2.1.1 Transport equation

For an arbitrary initial condition y0 ∈ V0(Ω)∩C1
0(Ω) extended by zero on G we

consider the system 
yt +N2(U ·∇)y+N2(y ·∇)U = 0 in Q2/N

y(x, t) = 0 on Σ2/N

y(x,0) = y0(x) in Ω.

(2.5)

Here, we have used the notation

Q2/N = G × (0,2/N), Σ2/N = I × (0,2/N).
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Let us denote by Cδ the maximum of the norms of the functions βδ , γ i
δ

, λδ and µ
i j
δ

in C0([δ ,1−δ ]× [δ ,1]× [0,T ]). We will look for a particular estimate for y, with an explicit

dependence on N that is satisfied when N is large enough. This is given in the following lemma:

Lemma 2.2.1 Let y0 ∈C1
0(Ω)∩V0(Ω). For each small δ > 0, there exists Nδ = N(δ ) such that,

for any N ≥ Nδ , there exist a solution y to (2.5) and a positive constant Kδ (independent of N),

with the following properties:

‖y‖C1(Q2/N)
≤ Kδ‖y0‖C1(Ω) (2.6)

and

y(x, t) = 0 ∀(x, t) ∈Ω× (1/N,2/N). (2.7)

Proof: Let us consider the Banach space

Y = {y ∈C1(Q2/N) : y(x,0) = y0(x)}.

and the mapping Λ : Y 7→ Y , given by

Λ(y)(x, t) := y0(x−N2Z(x, t))−N2
∫ t

0
(y ·∇)U(x−N2Z(x,s),s)ds,

Z(x, t) :=
(

0,
∫ t

0
z(x1,x3,s)ds,0

)
.

Let us assume that suppy0 ⊂ (δ ,1−δ )3. It is easy to see that here exists Nδ such

that, for any N ≥ Nδ , we can appl Banach’s Fixed-Point Theorem to Λ and deduce the existence

and uniqueness of a solution to (2.5).

Let us put y0 = (y0,1,y0,2,y0,3) and U = (U1,U2,U3). Then, we have

y1(x, t) = y0,1(x−N2Z(x, t)),

y2(x, t) = y0,2(x−N2Z(x, t))−N2
∫ t

0
y ·∇U2(x−N2Z(s,x),s)ds,

y3(x, t) = y0,3(x−N2Z(x, t)).

From these identities, it is easy to check that, for N large enough, one has:

‖y‖C0(Q2/N)
≤C‖y0‖C0(Ω)

‖∇y1‖C0(Q2/N)
≤C‖∇y0,1‖C0(Ω)

‖∇y3‖C0(Q2/N)
≤C‖∇y0,3‖C0(Ω).

(2.8)
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On the other hand, we also have

‖∇y2‖C0(Q2/N)
≤ 7‖∇y0,2‖C0(Ω)+Cδ‖y0‖C0(Ω)

+ 3
Cδ

N
‖∇y‖C0(Q2/N)

+15
C2

δ

N2‖∇y‖C0(Q2/N)
.

(2.9)

From (2.8) and (2.9), the inequality (2.6) holds (for N large enough). On the other

hand, arguing as in the proof of Lemma 3 of (GUERRERO et al., 2012) (see p. 693–695), we

deduce (2.7).

This ends the proof.

2.2.1.2 The solution to a Stokes system with ∇ ·W =−∇ · y

Consider the following Stokes problem:

Wt−∆W +∇r = 0, in Q2/N

∇ ·W =−∇ · y, in Q2/N

W (x, t) = 0, on Σ2/N

W (x,0) = 0, in Ω

W (x, t)→ 0 as |x2| →+∞.

(2.10)

The following result holds:

Proposition 2.2.1 Let W be the solution to (2.10). Then, for any p ∈ (1,+∞), there exists C

(independent of N) such that

‖W‖Lp(Q2/N)
≤C(p)N−1/p‖y0‖C3(Ω). (2.11)

Furthermore, there exists a positive constant C > 0 (again independent of N) such that ‖W‖C0([0,2/N];L2(G ))+‖∂x2W‖C0([0,2/N];L2(G ))

+‖∂x3W‖C0([0,2/N];L2(G )) ≤CN−1/4.
(2.12)

The proof is given in (GUERRERO et al., 2012) (see Proposition 1, p. 696).

2.2.2 Boussinesq system

We will construct a specific solution (U,Θ) to the Boussinesq system.
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Let us first introduce the functions z2 = z2(x1, t), z3 = z3(x1, t) and Θ = Θ(x1, t) as

follows. First, z2 is the solution to the system
∂tz2−∂ 2

x1x1
z2 = c(t) in (0,1)× (0,T )

z2(0, t) = 0, z2(1, t) = w2(t) on (0,T )

z2(x1,0) = 0 in (0,1),

(2.13)

where c ∈C2([0,T ]) is a positive function and w2 is a nonnegative function satisfying

w2(t) ∈C∞[0,T ], w2(0) = 0, w′2(0) = c(0), w′′2(0) = c′(0).

Then, (z3,Θ) solves

∂tz3−∂ 2
x1x1

z3 = c(t)+Θ(x1, t) in (0,1)× (0,T )

∂tΘ−∂ 2
x1x1

Θ = 0 in (0,1)× (0,T )

z3(0, t) = 0, z3(1, t) = w3(t) on (0,T )

Θ(0, t) = 0, Θ(1, t) = m(t) on (0,T )

z3(x1,0) = 0, Θ(x1,0) = 0 in (0,1).

(2.14)

with
w3 ∈C∞[0,T ], w3(0) = 0, w′3(0) = c(0), w′′3(0) = c′(0),

m ∈C∞[0,T ], m(0) = m′(0) = m′′(0) = 0.

Proposition 2.2.2 Under the above assumptions on w2 and c, there exist a unique solution to

(2.13) with

z2 ∈ L2(0,T ;H1(0,1))∩L∞((0,1)× (0,T )), ∂tz2 ∈ L2(0,T ;H−1(0,1)).

Furthermore, for all small δ > 0, we have z2 ∈C2([δ ,1]× [0,T ]) and there exist functions β2,δ ,

γ2,δ , µ2,δ and λ2,δ such that

(i) z2(x1, t) = c(0)t +β2,δ (x1, t)t2, |β2,δ | ≤Cδ ,

(ii) ∂x1z2(x1, t) = γ2,δ (x1, t)t2, |γ2,δ | ≤Cδ ,

(iii) ∂tz2(x1, t) = c(0)+µ2,δ (x1, t)t, |µ2,δ | ≤Cδ ,

(iv) ∂ 2
x1x1

z2(x1, t) = λ2,δ (x1, t)t, |λ2,δ | ≤Cδ .

The proof is not difficult. For instance, let us see how (i) can be proved.

We simply write that

z2(x, t) = z2(x1,0)+
∫ t

0
∂tz2(x1,s)ds

= ∂tz2(x,0)t +
(∫ t

0
∂tz2(x1,s)ds−∂tz2(x1,0) t

)
= c(0)t +β2,δ (x1, t)t2
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where we have used the notation

β2,δ (x1, t) :=
1
t2

∫ t

0
∂tz2(x1,s)ds− 1

t
∂tz2(x1,0)

= (∂tz2(x, t̃)−∂tz2(x1,0)) t−1

for some 0 < t̃ < t.

The proof of (ii), (iii) and (iv) follows through analogous computations.

A similar result can be established for the solution (z3,Θ) to (2.14):

Proposition 2.2.3 Under the above assumptions on c, w2, w3 and m, there exists a unique

solution (z3,Θ) to (2.14) with

z3 ∈ L2(0,T ;H1(0,1))∩L∞((0,1)× (0,T )), z3,t ∈ L2(0,T ;H−1(0,1)),

Θ ∈ L2(0,T ;H1(0,1))∩L∞((0,1)× (0,T )), Θt ∈ L2(0,T ;H−1(0,1)).

Furthermore„ for all small δ > 0, we have that z3,Θ ∈ C2([δ ,1]× [0,T ])2 and there exist

functions β3,δ , γ3,δ , µ3,δ , λ3,δ , β , γ and µ such that

(i) z3(x1, t) = c(0)t +β3,δ (x1, t)t2 and Θ(x1, t) = β (x1, t)t2, with |β |, |β3,δ | ≤Cδ ,

(ii) ∂x1z2(x1, t) = γ3,δ (x1, t)t2 and ∂x1Θ(x1, t) = γ(x1, t)t2, with |γ|, |γ3,δ | ≤Cδ ,

(iii) ∂tz2(x1, t)= c(0)+µ3,δ (x1, t)t and ∂tΘ(x1, t)= ∂ 2
x1x1

Θ(x1, t)= µ(x1, t)t, with |µ|, |µ3,δ | ≤

Cδ ,

(iv) ∂ 2
x1x1

z2(x1, t) = λ3,δ (x1, t)t, with |λ3,δ | ≤Cδ .

Now, consider the functions U(x, t) = (0,z2(x1, t),z3(x1, t)), Θ = Θ(x1, t) as before

and q(x, t) =−(x2 + x3)c(t). Observe that (U,q,Θ) solves the following Boussinesq problem:

Ut−∆U +(u ·∇)U +∇q = Θe3, in G × (0,T )

∇ ·U = 0 in G × (0,T )

Θt−∆Θ+U ·∇Θ = 0 in G × (0,T )

U(0,x2,x3, t) = 0, Θ(0,x2,x3, t) = 0 on R2× (0,T )

U(x,0) = 0, Θ(x,0) = 0 in G .

(2.15)
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In the proof of Theorem 2.1.3, the construction of the solution to (2.2) is divided into

four steps. In one of them, (u,θ , p) is written in the form

u(x, t) = N2U(x, t)+ y(x, t)−ξ (t)W (x, t), (x, t) ∈Ω× (T1,T2)

θ(x, t) = N2Θ(x, t)+h(x, t), (x, t) ∈Ω× (T1,T2)

p(x, t) = N2q(x, t)+ξ (t)r(x, t), (x, t) ∈Ω× (T1,T2),

where (y,h) is the solution to a transport equation and W is the solution to a linear Stokes system.

In the next two paragraphs, we construct (y,h) and W and we prove some estimates.

For any δ > 0, we define

C0
δ
(G×[0,2/N])4 := {(y,h)∈C0(G×[0,2/N])4 : y=0, h=0 for x1∈ [0,δ ]}.

2.2.2.1 Another transport system

For an arbitrary initial condition extended by zero on G and for some N > 0 large

enough (to be defined precisely later), we solve the following null controllability problem for the

transport equation

yt +N2(U ·∇)y+N2(y ·∇)U = he3 in Q2/N

ht +N2U ·∇h+N2y ·∇Θ = 0 in Q2/N

y(0,x2,x3, t) = 0, h(0,x2,x3, t) = 0 on R2× (0,2/N)

y(x,0) = y0(x), h(x,0) = h0(x) in G ,

(2.16)

where Q2/N = G × (0,2/N).

Lemma 2.2.2 Let us assume that (y0,h0) ∈ (C1
0(Ω)∩V0(Ω))×C1

0(Ω). For each δ > 0, there

exists N0(δ ) such that, for any N ≥ N0(δ ), there exist a solution (y,h) to (2.16) and a positive

constant C(δ ) (independent of N) such that (y,h) ∈C0
δ
(G × [0,2/N]),

‖y‖C1
δ
(Q2/N)

+‖h‖C1
δ
(Q2/N)

≤C(δ )‖(y0,h0)‖C1(Ω), (2.17)

‖yt‖C1
δ
(Q2/N)

+‖ht‖C1
δ
(Q2/N)

≤C(δ )‖(y0,h0)‖C1(Ω) (2.18)

and

y(x, t) = 0, h(x, t) = 0 ∀(x, t) ∈Ω× (1/N,2/N).

The proof is very similar to the proof of Lemma 2.2.1. For brevity, it is left to the

reader.
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2.3 Proof of Theorem 2.1.3

Let us first prove the controllability result in Theorem 2.1.3.

As mentioned above, we will closely follow the arguments in the proof of Theorem 1

in (GUERRERO et al., 2012). As there, we consider several steps, each one related to a time

subinterval.

• FIRST STEP: We know that there exists at least one weak solution (u, p,θ) to the

problem 

ut−∆u+(u ·∇)u+∇p = θe3 + f , ∇ ·u = 0 in Q

θt−∆θ +u ·∇θ = g in Q

u = 0, θ = 0 on ∂Ω× (0,T )

(u(x,0),θ(x,0)) = (u0,θ0) in Ω,

with

u∈L2(0,T ;V0(Ω))∩L∞(0,T ;H(Ω)), θ ∈L2(0,T ;H1
0 (Ω))∩L∞(0,T ;L2(Ω)).

Let T̃1 ∈ (T − δ0,T ) be such that (ũ1, θ̃1) := (u(· , T̃1),θ(· , T̃1))∈V0(Ω)×H1
0 (Ω)

and

‖ f‖L2(T−δ ,T ;V ′0(Ω))+‖g‖L2(T−δ ,T ;H−1(Ω)) ≤
ε

5
.

For any small η > 0 with T̃1 +η < T , there exists a unique strong solution (u, p,θ) to the Bous-

sinesq problem in Ω× ((T̃1, T̃1+η), with (u(· , T̃1),θ(· , T̃1)) = (ũ1, θ̃1) (see for instance (CONS-

TANTIN; FOIAS, 1988)) and there exist many T1 ∈ (T̃1, T̃1 +η) with

(u(· ,T1),θ(· ,T1)) ∈ (H2(Ω)3∩V0(Ω))× (H2(Ω)∩H1
0 (Ω)).

On the interval (0,T1) we do not exert any control and we take

uε := u, pε := p, fε := f , θε := θ , gε := g.

• SECOND STEP: Let us write (u1,θ1) := (u(· ,T1),θ(· ,T1)) and let us take u1,α ∈

V0(Ω)∩C∞
0 (Ω)3 and θ1,α ∈C∞

0 (Ω) with

(u1,α ,θ1,α)→ (u1,θ1) in V0(Ω)×H1
0 (Ω) as α → 0+
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and

‖u1,α‖V0(Ω)+‖θ1,α‖H1
0 (Ω) ≤ 2(‖u1‖V0(Ω)+‖θ1‖H1

0 (Ω)).

Let T2 ∈ (T1,T ) be a time; its precise value will be given below. We introduce now

(uε , pε ,θε) in (T1,T2), with

uε =
t−T1

T2−T1
u1,α +

T2− t
T2−T1

u1, pε = 0, fε = L uε −θεe3,

θε =
t−T1

T2−T1
θ1,α +

T2− t
T2−T1

θ1, gε = Mεθε ,

where
L uε := ∂tuε −∆uε +(uε ·∇)uε

Mεθε := ∂tθε −∆θε +uε ·∇θε .

It is then clear that

(uε(· ,T1),θε(· ,T1))=(u1,θ1), (uε(· ,T2),θε(· ,T2))=(u1,α ,θ1,α), ∇ ·uε =0

and the couple ( fε ,gε) satisfies ( fε ,gε) ∈ L2(Q)3×L2(Q),

‖ fε‖L2(T1,T2;V ′0(Ω)) ≤
C√

T2−T1
‖u1,α −u1‖V0(Ω)

+C
√

T2−T1

(
‖u1‖H1

0 (Ω)3 +‖u1‖2
H1

0 (Ω)3 +‖θ1‖H1
0 (Ω)

)
and

‖gε‖L2(T1,T2;H−1(Ω)) ≤
C√

T2−T1
‖θ1,α −θ1‖H1

0 (Ω)

+C
√

T2−T1

(
‖θ1‖H1

0 (Ω)+‖θ1‖H1
0 (Ω)‖u1‖H1

0 (Ω)3

)
.

Accordingly, we can choose first T2 close enough of T1 and then α small enough to have

‖ fε‖L2(T1,T2;V ′0(Ω))+‖gε‖L2(T1,T2;H−1(Ω)) ≤
ε

5
.

• THIRD STEP: Let us set

u2 := uε(· ,T2) ∈V0(Ω)∩C∞
0 (Ω)3, θ2 := θε(· ,T2) ∈C∞

0 (Ω).

We will work in the interval (T2,T2+2/N), where N ≥ N(δ ), N(δ ) is furnished by Lemma 2.2.2

and δ is such that the supports of u2 and θ2 are contained in [δ ,1−δ ]3.
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In this step, we will take

uε(x, t) = N2Ũ(x, t)+ ỹ(x, t)−ξ (t−T2)W̃ (x, t),

pε(x, t) = −N2(x2 + x3)c(t−T2)+ r̃(x, t),

θε(x, t) = N2Θ̃(x, t)+ h̃(x, t)

and
fε = −∆ỹ+((ỹ−W̃ ) ·∇)(ỹ−W̃ )−N2(Ũ ·∇)W̃−N2(W̃ ·∇)Ũ−ξtW̃ ,

gε = −∆h̃+(ỹ−W̃ ) ·∇h̃−N2W̃ ·∇Θ̃.

Here, Ũ , Θ̃, etc. are respectively U , Θ, etc. written at time t − T2, (U,θ) is the

solution to (2.15), (y,h) is the solution to (2.16) with initial data (y0,h0) = (u2,θ2), (W,r) is the

solution to (2.10) and ξ ∈C2([0,2/N]) is a cut-off function satisfying

ξ (t) = 1 in (0,1/N) and ξ (t) = 0 in a neighborhood of 2/N.

From the properties of (y,h) deduced in Lemma 2.2.2 and the definitions of U and W ,

we have the following:

(uε ,θε)(x,T2 +2/N)≡ N2(U,Θ)(x1,2/N), ∇ ·uε ≡ 0

and

uε(0,x2,x3, t) = 0, θε(0,x2,x3, t) = 0 in (0,1)2× (T2,T2 +2/N).

Let us check that, for N large enough, we have

‖ fε‖L2(T2,T2+2/N;V ′0(Ω))+‖gε‖L2(T2,T2+2/N;H−1(Ω)) ≤
ε

5
.

First, note that Lemma 2.2.2 yields

‖∆ỹ‖L2(T2,T2+2/N;V ′0(Ω))+‖∆h̃‖L2(T2,T2+2/N;H−1(Ω)) ≤
C

N1/2 .

Let us decompose Ω in two sets

Ω1 := (0,δ/2)× (0,1)2 and Ω2 := (δ/2,1)× (0,1)2.
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Recall that ∇ · y = ∇ ·W in Q2/N and y = 0 in Ω1. Consequently,

‖N2(W̃ ·∇)Ũ‖V ′0(Ω) = sup
β∈V0(Ω),‖β‖V0(Ω)=1

∫
Ω1

N2(W̃ ·∇)Ũβ dx

+ sup
β∈V0(Ω),‖β‖V0(Ω)=1

∫
Ω2

N2(W̃ ·∇)Ũβ dx

=− sup
β∈V0(Ω),‖β‖V0(Ω)=1

∫
Ω1

N2W̃ ·∇β Ũ dx

+ sup
β∈V0(Ω),‖β‖V0(Ω)=1

∫
Ω2

N2(W̃ ·∇)Ũβ dx.

The first term is bounded by C‖NW̃‖L2(Ω)‖NŨ‖L∞(Ω). On the other hand,∫
Ω2

N2(W̃ ·∇)Ũβ dx≤ ‖N∇Ũ‖L∞((δ/2,1)×R2)‖NW̃‖L2(Ω).

Thanks to Propositions 2.2.2 and 2.2.3, there exists C(δ )> 0 such that

‖N∇Ũ‖L∞(T2,T2+2/N;L∞((δ/2,1)×R2) ≤C.

Therefore, we see from (2.12) that

‖N2(W̃ ·∇)Ũ‖Lr(T2,T2+2/N;V ′0(Ω)) ≤C
(∫ T2+2/N

T2

‖NW‖r
L2(Ω) dt

)1/r

≤CN3/4−1/r.

Similarly, the following estimate can be obtained:

‖N2W̃ ·∇Θ‖Lr(T2,T2+2/N;H−1(Ω))+‖N2(Ũ ·∇)W̃‖Lr(T2,T2+2/N;V ′0(Ω))

≤CN3/4−1/r.

Next, using (2.11), we deduce that

‖ξtW‖Lr(T2,T2+2/N;L2(Ω)3)≤‖W‖Lr(T2,T2+2/N;L2(Ω))≤C(r)N−1/r‖u2‖C1(Ω).

Also,

‖((ỹ−W̃ ) ·∇)(ỹ−W̃ )‖L2(T2,T2+2/N;V ′0)
≤C‖ỹ−W̃‖2

L4(T2,T2+2/N;L4(Ω)3)

and, from Lemmas 2.2.2 and (2.11), this quantity goes to zero as N→+∞. Similarly,

‖(ỹ−W̃ ) ·∇h‖L2(T2,T2+2/N;H−1)

≤C‖h̃‖L4(T2,T2+2/N;L∞(Ω))‖ỹ−W̃‖L4(T2,T2+2/N;L2(Ω)3)→ 0

as N→+∞. This concludes the step.
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• FOURTH STEP:

Finally, we set T3 := T2 + 2/N and we work in the interval (T3,T ). Note that

(uε , pε ,θε) arrives at t = T3 with the following structure:

uε(x,T3) =
(
0,N2z2(x1,2/N),N2z3(x1,2/N)

)
,

θε(x,T3) = N2(∂tz3 +∆z3)(x1,2/N).

The second component of uε can be driven to zero at time t = T by solving a standard

null controllability problem for a linear heat equation. On the other hand, the third component

of uεand θε can be driven to zero by solving a (less standard) null controllability problem for a

system of two coupled 1D parabolic PDEs.

Indeed, let us take fε = 0 and gε = 0 in (T3,T ). It is well-known that there exists

ρ ∈ L∞(0,T −T3) such that the solution to
∂tz−∂ 2

x1x1
z = 0, in (0,1)× (0,T −T3)

z(0, t) = 0, z(1, t) = ρ(t), on (0,T −T3)

z(x1,0) = N2z2(x1,2/N) in (0,1)

satisfies

z(x1,T −T3) = 0 in (0,1).

On the other hand, it is proved in (FERNÁNDEZ-CARA et al., 2010) that, if

A ∈L (R2) and B ∈ R2, µ1 and µ2 are the eigenvalues of A, rank[B|AB] = 2, (T/π)(µ1−µ2)

is not a integer of the form 4(m+1) or 2m+1 with m≥ 1 and y0 ∈ H−1(0,1)2, there exists a

control v ∈ L2(0,T −T3) such that the associated solution to the system
∂ty−∂ 2

x1x1
y = Ay, in (0,1)× (0,T −T3)

y(0, t) = 0, y(1, t) = Bv, on (0,T −T3)

y(x1,0) = y0(x1) in (0,1)

(2.19)

satisfies

y(x1,T −T3) = 0 in (0,1). (2.20)

Then, it suffices to define uε and θε in (T3,T ) as follows: uε(x, t) = (0,z(x1, t−T3),y1(x1, t−T3))

θε(x, t) = y2(x1, t−T3),
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where (y1,y2) is, together with some v, a solution to the problem (2.19)–(2.20) with

A =

0 1

0 0

 , B =

1

0

 and y0 = N2(z3,∂tz3 +∆z3)(x1,2/N).

Finally,

uε(·,T ) = 0, θε(·,T ) = 0

and we clearly have

‖ f − fε‖Lr(0,T ;V ′0(Ω))+‖g−gε‖Lr(0,T ;H−1(Ω)) ≤ ε.

2.4 Proofs of Theorems 2.1.1 and 2.1.2

The proof of Theorem 2.1.1 is similar (and, again, is inspired by the arguments

in (GUERRERO et al., 2012)).

For brevity, we will only give an idea of what is actually different from the proof of

Theorem 2.1.3.

The first and second steps are almost identical (of course, there is no θε now). In the

third step, we take again T3 = T2 +2/N and we introduce

uε(x, t) = N2U(x, t−T2)+ y(x, t−T2)+θ(t−T2)W (x, t−T2),

pε(x, t) = N2x2c(x, t−T2)− r(x, t−T2),

where the functions U , y, θ , W , r and c are, this time, as in Section 2.2.

It is easy to check that (uε , pε) solves

uε,t−∆uε +(uε ·∇)uε + pε = fε in Ω× (T2,T3)

∇ ·uε = 0 in Ω× (T2,T3)

uε(0,x2,x3, t) = uε(1,x2,x3, t) = uε(x1,x2,0, t) = 0 on (0,1)2× (T2,T3)

uε(x,0) = u0(T2) in Ω,

where we have set T3 = T2 +2/N and

fε(x, t) = (−∆y+N2(u ·∇)θW +N2(θW ·∇)U +θtW )(x, t−T2)

+((y+θW ) ·∇)(y+θW ))(x, t−T2).
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From (2.4), Lemma 2.2.1 and Proposition 2.2.1, it can be easily checked that, for N

large enough, one has

‖ fε‖L2(T2,T2+2/N;V ′(Ω)) ≤
ε

5

and

uε(x,T2 +2/N)≡ N2U(x1,x3,2/N).

In the fourth step, we take T3 := T2 +2/N and we note that uε possesses at time T3

the structure

uε(x,T2 +2/N) = (0,N2z(x1,x3,2/N),0).

The second coordinate of uε can be driven to zero at time t = T by solving a null controllability

problem for a linear 2D heat equation.

More precisely, let us take fε = 0 in (T3,T ). Then, there exist controls ρ = ρ(x1, t)

in L∞((0,1)× (0,T −T3)) such that the associated solution to

zt− (∂x1x1z+∂x3x3z) = c(t) in (0,1)2× (0,T −T3)

z(0,x3, t) = z(1,x3, t) = z(x1,0, t) = 0 on (0,1)× (0,T −T3)

z(x1,1, t) = ρ(x1, t) on (0,1)× (0,T −T3)

z(x1,x3,0) = N2z(x1,x3,2/N) in (0,1)2

satisfies

z(x1,T −T3) = 0 in (0,1)

Then, it is sufficient to take in (T3,T )

uε(x, t) = (0,z(x1,x3, t−T3),0).

This way, we get

uε(·,T ) = 0

and

‖ f − fε‖Lr(0,T ;V ′0(Ω)) ≤ ε.
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We now give the proof of Theorem 2.1.2.

In fact, Theorem 2.1.2 can be viewed as a corollary of Theorem 1 in (GUERRERO

et al., 2012). Indeed, let R ∈ R3 be a cube, with edges not necessarily parallel to the axes and let

us denote by Γ0 one of its faces. It is clear that, after appropriate rotation and translation, we can

construct right hand sides fε ∈ L2(R× (0,T )) satisfying

fε → f in Lr(0,T ;H−1(R)),

for all r ∈ (1,4/3) and solutions (vε , pε) to the corresponding Navier-Stokes systems

vε,t−∆vε +(vε ·∇)vε +∇pε = fε in R× (0,T )

∇ · vε = 0 in R× (0,T )

vε = 0 on Γ0× (0,T )

vε(x,0) = u0(x) in R

that satisfy

uε(x,T ) = 0 in R.

Now, let R be a cube with one face on π such that Ωπ ⊂ R. Then, we just take

uε := vε

∣∣
Ωπ×(0,T )

and we immediately conclude.

Remark 2.4.1 Let us set Γ1 = ∂Ω\({0}×(0,1)2) and let O be a neighborhood of Γ1 in Ω. It is

not difficult to obtain from Theorem 1 in (GUERRERO et al., 2012) a global partial approximate

controllability result of the same kind for the Navier-Stokes system with distributed controls,

supported by O×(0,T ). However, a similar result for the Boussinesq system is, to our knowledge,

unknown. �

2.5 Final comments and questions

Results similar to Theorems 2.1.1 and 2.1.2 can be deduced for the Boussinesq

system. We leave the details to the reader.

Actually, the previous results do not imply global approximate controllability, since

the right hand sides f and g have to be modified (the same can be said on the results in (GUER-

RERO et al., 2012)). What we would need is a uniform bound of the controls in some Banach

space B allowing to take limits as ε to 0. But, at present, this is missing.
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Thus, it would be interesting to be able to modify the constructions of uε and θε

paying special attention to the behavior of their traces.

Another possible approach relies on the following idea:

1. Solve the extremal problems  Minimize Jε(h) = ‖h‖B

Subject to h ∈B

where B is the family of boundary null controls for the Boussinesq system with f replaced

by fε that belong to a suitable Banach space B.

2. Then, prove that the solutions satisfy

‖h̃ε‖B ≤C.

Observe that, with a good choice of B, all these problems are solvable. Therefore,

one can probably use an optimality characterization to get some information. f
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3 LOCAL NULL CONTROLLABILITY OF A NONLINEAR PARABOLIC SYSTEM

IN DIMENSION 1

3.1 Introduction

Let I ⊂ R be an open bounded interval. Let us denote by Q the cylinder Q :=

I× (0,T ), with lateral boundary Σ := ∂ I× (0,T ). Also consider a non-empty open set of ω ⊂ I;

as usual, 1ω denotes the characteristic function of ω .

We will be concerned with the null controllability of the nonlinear systems
yt− (a(y)yx)x = v11ω in Q

y(x, t) = 0 on Σ

y(x,0) = y0(x) in I

(3.1)

and 
yt− (a(y)yx)x = 0 in (0,1)× (0,T )

y(0, t) = v2(t), y(1, t) = 0 on (0,T )

y(x,0) = y0(x) in (0,1),

(3.2)

where v1 and v2 are the controls and y is the associated state. It will be assumed that the real

function a = a(r) is of class C1, possesses bounded derivatives and satisfies

0 < m≤ a(r)≤M ∀r ∈ R.

Definition 3.1.1 It will be said that (3.1) (resp. (3.2)) is locally null-controllable at time T if

there exists ε > 0 such that, for any y0 ∈ H1
0 (I) with

‖y0‖H1
0
(I)≤ ε,

there exist controls v1 ∈ L2(ω× (0,T )) (resp., v2 ∈ L2(0,T )) such that the associated states y

satisfy

y(x,T ) = 0 in I. (3.3)

The controllability of linear and nonlinear parabolic PDEs and systems has been

the objective of a lot of work the last decades. Some relevant contributions on the subject are

(FABRE C.; ZUAZUA, 1995; FURSIKOV; IMANUVILOV, 1996; DOUBOVA et al., 2002;

FERNÁNDEZ-CARA; ZUAZUA, 2000). Our main result in this paper is the following:
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Theorem 3.1.1 Under the previous assumptions on a, the nonlinear system (3.1) is locally

null-controllable at any time T > 0.

A consequence of Theorem 3.1.1 is the local null controllability of (3.2). Thus, our

second result is the following:

Theorem 3.1.2 Under the previous assumptions on a, the nonlinear system (3.2) is locally

null-controllable at any time T > 0.

The proof of Theorem 3.1.1 relies on an application of Liusternik’s Inverse Function

Theorem in Banach spaces, see (ALEKSEEV et al., 1987). We will follow the ideas of (CLARK

et al., 2013); this paper is in turn inspired by the works of Fursikov and Imanuvilov (FURSIKOV;

IMANUVILOV, 1996) and Imanuvilov and Yamamoto (IMANUVILOV; YAMAMOTO, 2003).

Thus, in a first step, we consider the following linearized system at zero
yt−a(0)yxx = v11ω +h in Q

y(x, t) = 0 on Σ

y(x,0) = y0(x), in I.

(3.4)

The adjoint of (3.4) is given by
−ϕt−a(0)ϕxx = F in Q

ϕ = 0 on Σ

ϕ(x,T ) = ϕ0(x), in I.

(3.5)

The null controllability of (3.4) (for appropriate h) will be obtained as a consequence of a suitable

Carleman inequality for the solutions to (3.5).

In a second step, we rewrite the null controllability property of (3.1) as an equation

of the form

H(y,v) = (0,y0)

in a well chosen space Y of “admissible” state-controls, see the definitions of Y and H in Sec-

tion 3.

The paper is organized as follows. Section 2 is devoted to prove the null controllabi-

lity of linearized system (3.4). In Section 3, we will prove Theorem 3.1.1. Section 4 is devoted

to the proof of Theorem 3.1.2. Finally, in Section 5 we will present some additional comments

and questions.
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3.2 Carleman inequalities and the null controllability of (3.4)

We will now recall a Carleman inequality satisfied by the solutions to (3.5). It will

be convenient to introduce a new non-empty open set ω0, with ω0 b ω .

The following technical result is fundamental:

Lemma 3.2.1 There exists a function α0 ∈C2(I) satisfying
α0(x)> 0 ∀x ∈ I

α0 = 0 ∀x ∈ ∂ I

|α0,x(x)|> 0 ∀x ∈ I \ω0.

Let us introduce the functions

β (t) := t(T − t), φ(x, t) :=
eλα0(x)

β (t)
, α(x, t) :=

eRλ − eλα0(x)

β (t)
,

where R > ‖α0‖L∞ and λ > 0.

Then one has the following:

Proposition 3.2.1 There exist positive constants λ0,s0 and c0 such that, for any s ≥ s0 and

λ ≥ λ0, any F ∈ L2(Q) and any ϕ0 ∈ L2(I), the associated solution to (3.5) satisfies∫∫
Q

e−2sα [(sφ)−1(|ϕt |2 + |ϕxx|2)+λ
2(sφ)|ϕx|2 +λ

4(sφ)3|ϕ|2]dxdt

≤C0

(∫∫
Q

e−2sα |F |2 dxdt +
∫∫

ω0×(0,T )
e−2sα

λ
4(sφ)3|ϕ|2]dxdt

)
.

Furthermore, C0 and λ0 only depend on I and ω .

The next result contains a Carleman inequality for the solution to (3.5) with weights

not vanishing at zero. Let m be a function satisfying

m ∈C∞([0,T ]), m(t)≥ T 2

8
in [0,T/2], m(t) = t(T − t) in [T/2,T ],

let us set

ζ (x, t) :=
eλα0(x)

m(t)
, A(x, t) :=

eRλ − eλα0(x)

m(t)
with R > ‖α0‖L∞ , λ > 0

and let us introduce the notation

Γ(s,λ ,ϕ) :=
∫∫

Q
e−2sA[(sζ )−1(|ϕt |2+|ϕxx|2)+λ

2(sζ )|ϕx|2+λ
4(sζ )3|ϕ|2]dxdt.
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Proposition 3.2.2 There exist positive constants λ1,s1 and C1 such that, for any s ≥ s1 and

λ ≥ λ1, any F ∈ L2(Q) and any ϕT ∈ L2(I), the associated solution to (3.5) satisfies

Γ(s,λ ,ϕ)≤C1(s,λ )
(∫∫

Q
e−2sA

ζ
3|F |2 dxdt +

∫∫
ω×(0,T )

e−2sα
φ

7|ϕ|2 dxdt
)
.

Furthermore, λ1 and s1 only depend on I, ω , T and a(0).

See the detailed proof of Proposition 3.2.2 in (CLARK et al., 2013).

In order to simplify the notation, we fix λ = λ1 and s = s1 and we set

ρ := esA, ρ0 := ζ
−3/2esA, ρ̂ := ζ

−5/2esA, ρ∗ := ζ
−7/2esA.

With Proposition 3.2.2, we are able to show the null controllability of (3.4) for right

hand sides h that decay sufficiently fast to zero as t→ T . More precisely, one has:

Proposition 3.2.3 Assume that the function h satisfy∫∫
Q

ρ
2
ζ
−3|h|2 dxdt <+∞.

Then (3.4) is null controllable. More precisely, for any y0 ∈ L2(I), there exist controls v1 ∈

L2(ω× (0,T )) and associated states y satisfying∫∫
ω×(0,T )

ρ
2
∗ |v1|2 dxdt <+∞,

∫∫
Q

ρ
2
0 |y|2 dxdt <+∞, (3.6)

whence, in particular , y(x,T ) = 0.

The proof of this result is classical; see (FURSIKOV; IMANUVILOV, 1996).

The next results furnish additional properties of the state found in Proposition 3.2.3.

The will be needed in Section 3.

Proposition 3.2.4 Let the hypotheses in Proposition 3.2.3 be satisfied and let v1 and y satisfy

(3.4) and (3.6). Then
∫∫

Q
ρ̂

2|yx|2 dxdt ≤C
(∫∫

Q
ρ

2
0 |y|2 dxdt

+
∫∫

ω×(0,T )
ρ

2
∗ |v1|2 dxdt +

∫∫
Q

ρ
2
0 |h|2 dxdt

)
.

(3.7)

Proof: Multiplying (3.4) by ρ̂2y and integrating in I, we get:∫
I
ρ̂

2(yt−a(0)yxx)ydx =
∫

I
ρ̂

2(v11ω +h)ydx.

Notice that
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•
∫

I
ρ̂

2ytydx =
1
2

d
dt

(∫
I
ρ̂

2|y|2 dx
)
−
∫

I
ρ̂ ρ̂t |y|2 dx

• −
∫

I
ρ̂

2a(0)yxxydx =−
∫

I
a(0)(ρ̂2)xx|y|2 dx+

∫
I
ρ̂

2a(0)|yx|2 dx

•
∫

I
ρ̂

2v11ωydx≤ 1
2

∫
ω

ρ
2
0 |y|2 dx+

1
2

∫
ω

ρ
2
∗ |v1|2 dx

•
∫

I
ρ̂

2(hy)dx≤ 1
2

∫
I
ρ̂

4
ρ
−2
0 |y|

2 dx+
1
2

∫
I
ρ

2
0 |h|2 dx.

Therefore,

1
2

d
dt

(∫
ω

ρ̂
2|y|2 dx

)
+
∫

ω

ρ̂
2a(0)|yx|2

≤C
(∫

ω

(ρ̂2 + ρ̂|ρ̂t |+ |(ρ̂2)xx|+ ρ̂
4
ρ
−2
0 )|y|2 dx

+1
2

∫
ω

ρ
2
∗ |v1|2 dx+

1
2

∫
ω

ρ
2
0 |h|2 dx

)
,

whence
1
2

d
dt

(∫
ω

ρ̂
2|y|2 dx

)
+
∫

ω

ρ̂
2a(0)|yx|2

≤C
(∫

ω

ρ
2
0 ρ
−2
0 )|y|2 dx+

1
2

∫
ω

ρ
2
∗ |v|2 dx+

1
2

∫
ω

ρ
2
0 |h|2 dx

)
.

Now, integrating in time, we get the desired estimate.

Proposition 3.2.5 Let the hypotheses in Proposition 3.2.3 be satisfied, let v1 and y satisfy (3.4)

and (3.6) and let us assume that

y0 ∈ H1
0 (I). (3.8)

Then one has ∫∫
Q

ρ
2
∗ (|yt |2 + |yxx|2)dxdt ≤C

(∫∫
Q

ρ
2
0 |y|2 dxdt

+
∫∫

ω×(0,T )
ρ

2
∗ |v1|2 dxdt +‖y0‖2

H1
0 (I)

+
∫∫

Q
ρ

2
0 |h|2 dxdt

) (3.9)

Proof:

Multiplying (3.4) by ρ2
∗yt and integrating in I∫

I
ρ

2
∗ (yt−a(0)yxx)yt dx =

∫
I
ρ

2
∗ (v11ω +h)yt dx. (3.10)

Notice that

•
∫

I
ρ

2
∗v11ωyt dx≤ 1

8

∫
ω

ρ
2
∗ |yt |2 dx+2

∫
I
ρ

2
∗ |v1|2 dx

•
∫

I
ρ

2
∗hyt dx≤ 1

8

∫
I
ρ

2
∗ |yt |2 dx+2

∫
I
ρ

2
∗ |h|2 dx,



47

• Also,

−
∫

I
ρ

2
∗a(0)yxxyt dx =

1
2

d
dt

∫
I
ρ

2
∗a(0)|yx|2 dx

−1
2

∫
I
(ρ2
∗ )ta(0)|yx|2 dx+

∫
I
(ρ2
∗ )xa(0)yxyt dx.

Using the last equality in (3.10), we obtain that∫
I
ρ

2
∗ |yt |2 dx+

1
2

d
dt

∫
I
ρ

2
∗a(0)|yx|2 dx

=
1
2

∫
I
(ρ2
∗ )ta(0)|yx|2 dx−

∫
I
(ρ2
∗ )xa(0)yxyt dx

+
∫

I
ρ

2
∗v11ωyt dx+

∫
I
ρ

2
∗hyt dx.

We also have

1
2

∫
I
(ρ2
∗ )ta(0)|yx|2 dx−

∫
I
(ρ2
∗ )xa(0)yxyt dx

≤C
(∫

I
[(ρ2
∗ )t +(ρ2

∗ )xρ
−2
∗ ]|yx|2 dx+

1
8

∫
I
ρ

2
∗ |yt |2 dx

)
.

Therefore,

1
2

∫
I
ρ

2
∗ |yt |2 dx+

1
2

d
dt

∫
I
ρ

2
∗a(0)|yx|2 dx

≤C
(∫

I
[(ρ2
∗ )t +(ρ2

∗ )xρ
−2
∗ ]|yx|2 dx+

∫
ω

ρ
2
∗ |v1|2 dx+

∫
I
ρ

2
∗ |h|2 dx

)
.

From the definition of the weight ρ∗, we have

1
2

∫
I
ρ

2
∗ |yt |2 dx+

1
2

d
dt

∫
I
ρ

2
∗a(0)|yx|2 dx

≤C
(∫

I
ρ̂

2
∗ |yx|2 dx+

∫
ω

ρ
2
∗ |v1|dx+

∫
I
ρ

2
∗ |h|2 dx

)
.

Integrating in time and recalling (3.8) and (3.7), we obtain the following estimate∫∫
Q

ρ
2
∗ |yt |2 dxdt ≤C

(∫∫
Q

ρ
2
0 |y|2 dxdt +

∫∫
ω×(0,T )

ρ
2
∗ |v1|2 dxdt

+‖y0‖2
H1

0 (I)
+
∫∫

Q
ρ

2
0 |h|2 dxdt

)
.

(3.11)

Now, let us multiply (3.4) by −ρ2
∗yxx and let us integrate in I. We find that∫

I
ρ

2
∗ (yt−a(0)yxx)(−yxx)dx =

∫
I
ρ

2
∗ (v1ω +h)(−yxx)dx.

Note that

−
∫

I
ρ

2
∗yt(yxx)dx =

1
2

d
dt

∫
I
ρ

2
∗ |yx|2 dx− 1

2

∫
I
(ρ2
∗ )t |yx|2 dx+

∫
I
(ρ2
∗ )xyxyt dx.
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Then we have

1
2

d
dt

∫
I
ρ

2
∗ |yx|2 dx+

∫
I
ρ

2
∗a(0)|yxx|2 dx =

1
2

∫
I
(ρ2
∗ )t |yx|2 dx

−
∫

I
(ρ2
∗ )xytyx dx−

∫
I
ρ

2
∗v11ωyxx dx−

∫
I
ρ

2
∗hyxx dxdt

We also have

•
∫

I
(ρ2
∗ )xytyx dx≤C

(∫
I
[(ρ2
∗ )x]

2
ρ
−2
∗ |yx|2 dx+

∫
I
ρ

2
∗ |yt |2 dx

)
,

•
∫

ω

ρ
2
∗v1yxx dx≤ 2

a(0)

∫
ω

ρ
2
∗ |v1|2 dx+

a(0)
8

∫
ω

ρ
2
∗ |yxx|2 dx,

• −
∫

I
ρ

2
∗hyxx dx≤C

∫
I
ρ

2
∗ |h|2 dx+

a(0)
8

∫
I
ρ

2
∗ |v|2 dx.

Consequently,

1
2

d
dt

∫
I
ρ

2
∗ |yx|2 dx+

1
2

∫
I
ρ

2
∗a(0)|yxx|2 dx

≤C
(∫

I
[(ρ2
∗ )t +(ρ2

∗ )
2
xρ
−2
∗ ]|yx|2 dx+

∫
I
ρ

2
∗ |yt |2 dx

+
∫

ω

ρ
2
∗ |v1|2 dx+

∫
I
ρ

2
∗ |h|2 dx

)
.

From the definition of the weight ρ∗, we obtain:

1
2

∫
I
ρ

2
∗a(0)|yxx|2 ≤C

(∫
I
ρ̂

2|yx|2 dx+
∫

I
ρ

2
∗ |yt |2 dx

+
∫

I
ρ

2
∗ |v1|2 dx+

∫
I
ρ

2
0 |h|2 dx

)
and, integrating in time, the following is found:∫∫

Q
ρ

2
∗ |yxx|2 dxdt ≤C

(∫∫
Q

ρ̂
2|yx|2 dxdt +

∫∫
Q

ρ
2
∗ |yt |2 dxdt

+
∫∫

ω×(0,T )
ρ

2
∗ |v1|2 dxdt +

∫∫
Q

ρ
2
0 |h|2 dxdt

)
.

(3.12)

Combining (3.11) and (3.12) have the desired estimates for yt and yxx.

3.3 Proof of Theorem 3.1.1

This section is devoted to prove the local null controllability of (3.1).
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Let us set

Y := {(y,v) : y, yx, yt−a(0)yxx ∈ L2(Q), v ∈ L2(ω× (0,T )),∫∫
ω×(0,T )

ρ
2
∗ |v|2 dxdt <+∞,

∫∫
Q

ρ
2
0 |y|2 dxdt <+∞,∫∫

Q
ρ

2
0 |yt−a(0)yxx− v1ω |2 dxdt <+∞, sup

[0,T ]

∫
I
η

2|yx|2 dx <+∞,∫∫
Q

η
2|yxx|2 dxdt <+∞, y(· ,0) ∈ H1

0 (I)},

with η := m(t)3/4e2s eλR
4m(t) ,

F := {g ∈ L2(Q) :
∫∫

Q
ρ

2
0 |g|2 dxdt <+∞}

and

Z := F×H1
0 (I).

Note that the space Y is well defined, in view of Propositions 3.2.3 and 3.2.4.

We will use the following norms in Y , F and Z:

‖(y,v)‖2
Y :=

∫∫
Q

ρ
2
0 |y|2 dxdt +

∫∫
ω×(0,T )

ρ
2
∗ |v|2 dxdt

+
∫∫

Q
ρ

2
0 |yt−a(0)yxx− v1ω |2 dxdt

+ sup
[0,T ]

∫
I
η

2|yx|2 +
∫∫

Q
η

2|yxx|2 dxdt +‖y(·,0)‖2
H1

0
,

‖g‖2
F :=

∫∫
Q

ρ
2
0 |g|2 dxdt.

and

‖(g,z)‖2
Z := ‖g‖2

F +‖z‖2
H1

0
.

Let us consider the mapping H : Y 7→ Z, with

H(y,v) = (yt− (a(y)yx)x− v1ω ,y(·,0)). (3.13)

We will use Liusternik’s Theorem to prove that there exists ε > 0 such that, if (h,y0) ∈ Z and

‖(h,y0)‖Z ≤ ε , then the equation

H(y,v) = (h,y0), (y,v) ∈ Y,

possesses at least one solution. In particular, this will show that (3.1) is locally null-controllable,

with controls v and associated states y satisfying (y,v) ∈ Y .

The following result can be found for instance in (ALEKSEEV et al., 1987):
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Theorem 3.3.1 Let Y and Z be Banach spaces and let H : Br(0) ⊂ Y 7→ Z be a C1 mapping.

Let us assume that H ′(0) is onto and let us set ζ0 = H(0). Then, there exist ε > 0, a mapping

W : Bε(ζ0)⊂ Z 7→ Y and a constant K > 0 satisfying W (z) ∈ Br(0) and H(W (z)) = z ∀z ∈ Bε(ζ0),

‖W (z)‖Y ≤ K‖z−H(0)‖Z ∀z ∈ Bε(ζ0).

In particular, W is the inverse-to-the-right of H.

Now, our goal is to prove that we can apply this result to the mapping H in (3.13).

We will use following lemmas:

Lemma 3.3.1 For any (y,v) ∈ Y , one has yt ,yxx ∈ L2(Q). Furthermore, there exists C > 0 such

that ∫∫
Q

ρ
2
∗ (|yt |2 + |yxx|2)dxdt ≤C‖(y,v)‖2

Y

for all (y,v) ∈ Y .

Proof: This is an almost immediate consequence of Proposition 3.2.5. Indeed, from

(3.9) we get:∫∫
Q

ρ
2
∗ (|yt |2 + |yxx|2)dxdt ≤C

(∫∫
Q

ρ
2
0 |y|2 dxdt +

∫∫
ω×(0,T )

ρ
2
∗ |v|2 dxdt

+‖y0‖2
H1

0 (I)
+
∫∫

Q
ρ

2
0 |h|2 dxdt

)
≤C‖(y,v)‖2

Y .

Lemma 3.3.2 Let H : Y 7→ Z be the mapping defined by (3.13). Then H is well defined and

continuous.

Proof: Let us assume that (y,v) ∈ Y , let us set H(y,v) = (H1(y,v),H2(y,v)) and let

us see that H1(y,v) and H2(y,v) make sense and belong to F and H1
0 (I), respectively.

One has:∫∫
Q

ρ
2
0 |H1(y,v)|2 dxdt =

∫∫
Q

ρ
2
0 |yt− (a(y)yx)x− v1ω |2 dxdt

≤C
∫∫

Q
ρ

2
0 |yt−a(0)yxx− v1ω |2 dxdt

+C
∫∫

Q
ρ

2
0 |(a(y)yx)x−a(0)yxx|2 dxdt

= A1 +A2.
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From the definition of Y , we see that

A1 =C
∫∫

Q
ρ

2
0 |yt−a(0)yxx− v1ω |2 dxdt ≤C‖(y,v)‖2

Y .

On the other hand, since a ∈C1(R) and is (globally) Lipschitz-continuous, one also has:

A2 =C
∫∫

Q
ρ

2
0 |(a(y)yx)x−a(0)yxx|2 dxdt

≤C
∫∫

Q
ρ

2
0 |a(y)−a(0)|2|yxx|2 dxdt +C

∫∫
Q

ρ
2
0 |a′(y)|2|yx|2 dxdt

≤C
∫∫

Q
ρ

2
0 |y|2|yxx|2 dxdt +C

∫∫
Q

ρ
2
0 |yx|4 dxdt

≤C

(
sup

Q
ρ

2
0 η
−2|y|2

)∫∫
Q

η
2|yxx|2 dxdt +C

∫∫
Q

ρ
2
0 |yx|4 dxdt.

From the definitions of ρ0 and η , we have ρ2
0 η−2 ≤ η2 and, consequently,

sup
(0,T )

(
sup

I
ρ

2
0 η
−2|y|2

)
≤C sup

(0,T )

∫
I
η

2|yx|2dx≤C‖(y,v)‖2
Y . (3.14)

Moreover, ∫∫
Q

ρ
2
0 |yx|4 dxdt ≤C

∫ T

0

(∫
I
η

2|yx|2 dx
)(

sup
I

η
2|yx|2

)
dt

≤C
(∫ T

0
sup

I
η

2|yx|2 dt
)(

sup
(0,T )

∫
I
η

2|yx|2 dx

)

≤C
(∫∫

Q
η

2|yxx|2 dxdt
)(

sup
(0,T )

∫
I
η

2|yx|2 dx

)
≤C‖(y,v)‖4

Y .

(3.15)

Note that, in these inequalities, it is crucial that the spatial domain is one-dimensional.

Combining (3.14) and (3.15), the following is obtained:

A2 ≤C‖(y,v)‖2
Y

∫∫
Q

η
2|yxx|2 dxdt +C‖(y,v)‖4

Y

≤C‖(y,v)‖4
Y .

Therefore, H is well defined.

Furthermore, using similar argument is easy to check that H is continuous.

Lemma 3.3.3 The mapping H : Y 7→ Z is continuously differentiable.
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Proof: Let us fix (y,v) in Y and let us choose arbitrary (y′,v′) ∈ Y and σ > 0. We

have:

1
σ

[
H1((y,v)+σ(y′,v′))−H1(y,v)

]
= y′t−

1
σ

[
a′(y+σy′)((y+σy′)2

x− y2
x)
]

− 1
σ

[
a′(y+σ)−a′(y)

]
y2

x−a(y+σy′)y′xx

− 1
σ

[
a(y+σy′)−a(y)

]
yxx− v′1ω .

Let us consider the linear mapping DH : Y 7→ Z given by

DH = (DH1,DH2)

DH1(y′,v′) := y′t−2a′(y)yxy′x−a′′(y)y′y2
x

−a(y)y′xx−a′(y)y′yxx− v′1ω

DH2(y′,v′) := y′(·,0),

for all (y′,v′) ∈ Y . We claim that

1
σ
[H1((y,v)−σ(y′,v′))−H1(y,v)]→ DH1(y′,v′) strongly in F (3.16)

as σ → 0.

Indeed,

‖ 1
σ
[H1((y,v)+σ(y′,v′))−H1(y,v)]−DH1(y′,v′)‖F

≤ ‖2a′(y)yxy′x−
1
σ

[
a′(y+σy′)((y+σy′)2

x− y2
x)
]
‖F

+‖a′′(y)y′y2
x−

1
σ

[
a′(y+σ)−a′(y)

]
y2

x‖F

+‖a′(y)y′yxx−−
1
σ

[
a(y+σy′)−a(y)

]
yxx‖

+‖a(y)y′xx−a(y+σy′)y′xx‖F

= B1 +B2 +B3 +B4

Let us check that the Bi→ 0 as σ → 0. First, one has

B2
1 =

∫∫
Q

ρ
2
0 (2a′(y)yxy′x−a′(y+σy′)(2y′xyx−σy′x))

2 dxdt→ 0,

as a consequence of Lebesgue’s Theorem and the fact that a ∈C1(R).

Let us denote by a′∗ and a′∗∗ the derivatives of a at some intermediate points. Using

now that a ∈C2(R) and, again, Lebesgue’s Theorem, we have:

B2
2 =

∫∫
Q

ρ
2
0 (a
′′(y)yy2

x−
1
σ
[a′(y+σy′)−a′(y)]y2

x)
2 dxdt

=
∫∫

Q
ρ

2
0 (a
′′(y)−a′∗)

2(y′y2
x)

2 dxdt→ 0



53

and
B2

3 =
∫∫

Q
ρ

2
0 (a
′(y)y′yxx−

1
σ
[a(y+σy′)−a(y)]yxx)

2 dxdt

=
∫∫

Q
ρ

2
0 ((a

′(y)−a′∗∗)y
′yxx)dxdt→ 0

A similar argument shows that B2
4 also converges to zero as σ → 0. Thus, (3.16)

holds.

Let us denote by H ′(y,v) the linear mapping DH. It is clear that H ′(y,v) ∈L (Y ;Z).

Let us prove that (y,v) 7→ H ′(y,v) is a continuous mapping from Y into L (Y : Z). This will be

sufficient to achieve the proof.

Thus, let us assume that (yn,vn)→ (y,v) in Y and let us check that

‖(DH(yn,vn)−DH(y,v))(y′,v′)‖Z ≤ εn‖(y′,v′)‖Y for some εn→ 0. (3.17)

Observe that

‖(DH1(yn,vn)−DH1(y,v))(y′,v′)‖2
F

≤C
∫∫

Q
ρ

2
0 [a
′(yn)yn

xy′x−a′(y)yxy′x]
2 dxdt

+C
∫∫

Q
ρ

2
0 [a
′′(yn)y′(yn

x)
2−a′′(y)y′y2

x ]
2 dxdt

+C
∫∫

Q
ρ

2
0 [a(y

n)y′xx−a(y)y′xx]
2 dxdt

+C
∫∫

Q
ρ

2
0 [a
′(yn)y′yn

xx−a′(y)y′yxx]
2 dxdt

= D1 +D2 +D3 +D4.

Then, after some tedious but straightforward computations, we see that

D1 ≤C‖(yn,vn)− (y,v)‖2
Y (1+‖(y,v)‖2

Y )‖(y′,v′)‖2
Y ,

D2 ≤C‖(yn,vn)− (y,v)‖2
Y (1+‖(y,v)‖2

Y )‖(y,v)‖2
Y‖(y′,v′)‖2

Y

and similar estimates hold to D3 and D4.

Accordingly, (3.17) is satisfied and the proof is done.

Lemma 3.3.4 Let H be the mapping defined by (3.13). Then H ′(0,0) ∈L (Y ;Z) is onto.

Proof: Let us introduce the linear mapping H ′(0,0) = (K1,K2), where K1(y′,v′) = y′t−a(0)y′xx− v′1ω

K2(y′,v′) = y′(·,0)
(3.18)
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for all (y′,v′) ∈ Y . Observe that H ′(0,0) is onto if and only if for each (g,y0) ∈ Z there exist

(y,v) ∈ Y satisfying 
yt−a(0)yxx = v1ω +g in Q

y = 0 on Σ

y(x,0) = y0(x) in I.

From Proposition 3.2.3, there exists a couple (y,v) with the desired properties. Consequently,

the lemma holds.

From the previous lemmas, we see that, in the present context, all the assumptions

in Theorem 3.3.1 are satisfied. Thus, this result can be applied, (3.1) is locally null-controllable

and Theorem 3.1.1 holds.

3.4 Proof of Theorem 3.1.2

For example, let us assume that I = (0,1), let us set Iδ = (−δ ,1) with δ > 0 and let

ω̃ ⊂ Iδ be a non-empty open set.

let us consider the following auxiliar system:
ỹt− (a(ỹ)ỹx)x = ṽ1ω̃ in Iδ × (0,T )

ỹ(x, t) = 0 on ∂ Iδ × (0,T )

ỹ(x,0) = ỹ0(x) in Iδ ,

(3.19)

where ỹ0 ∈ H1
0 (Iδ ) is the extension-by-zero of y0 to Iδ .

From Theorem 3.1.1, we deduce the existence of a control ṽ ∈ L2(ω̃× (0,T )) and

an associated state ỹ solving (3.19) and satisfying

ỹ(x,T ) = 0 in Iδ .

Let v2 be the trace of ỹ on ∂ I× (0,T ). Then, the couple (y,v2), where y is the

restriction of ỹ to I× (0,T ), solves the corresponding system (3.2).

This proves Theorem 3.1.2.
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3.5 Some additional comments and questions

3.5.1 Other nonlinear control problems

The local null controllability of the system
yt− (a(yx)yx)x = v1ω , in Q

y(x, t) = 0 on Σ

y(x,0) = y0, in I

(3.20)

is an open question.

If we try to apply the same technique, the main difficulty is found in the proof that,

for any (y,v) ∈Y (defined in Section 3), H(y,v) = (yt− (a(yx)yx)x−v1ω ,y(· ,0)) is well defined.

On the other hand, as we have already mentioned, the proof of Lemma 3.3.2 uses in

a fundamental way that the problem is one-dimensional. Thus, it is not clear whether similar

arguments can be applied to problems of the kind (3.1) if the spatial dimension is ≥ 2.

A related (but different) situation is found in (CLARK et al., 2013), where the

diffusion coefficient depends on the state through quantities that are global in space.

3.5.2 Nonlinear parabolic systems with radial symmetry

Under radial symmetry, it is possible to find control results similar to Theorems 3.1.1

and 3.1.2. Let us indicate briefly the situation.

Let us assume that Ω= {x∈R2; |x|< R̃} and ω = {x∈R2; |x|<`}, with 0<`<R

and let us consider the nonlinear system
yt− (a(y)yx)x = v1ω , in Ω× (0,T )

y = 0 on ∂Ω× (0,T )

y(x,0) = y0, in I,

(3.21)

where y0 is a radial function in H1
0 (I). The following holds:

Theorem 3.5.1 Assume that a is as in Theorem 3.1.1. Then, (3.21) is locally radially null-

controllable at any time T > 0. In other words, there exists ε > 0 such that, if y0 is a rdial atet

satisfying y0 ∈ H1
0 (I) and

‖y0‖H1
0
≤ ε,
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there exist radial controls v ∈ L2(ω× (0,T )) and associated states y satisfying

y(x,T ) = 0 in Ω.

3.5.3 An iterative algorithm

Arguing as in (CLARK et al., 2013) and (FERNÁNDEZ-CARA et al., 2015), an

iterative algorithm of the quasi-Newton kind can be introduced for the computation of a solution

to the null control problem:

ALG 1:

1. Choose (y0,v0) ∈ Y .

2. Then, for given n≥ 0 and (yn,vn) ∈ Y , compute

(yn+1,vn+1) = (yn,vn)−H ′(0,0)−1(H(yn,vn)− (0,y0)).

Here H ′(0,0)−1 is an inverse to H ′(0,0) (as in (3.18)).

Notice that, for each n, the task reduces to the solution of a null controllability

problem for the linear problem
zn
t −a(0)zn

xx = wn1ω − (yn
t − (a(yn)yn

x)x− v1ω), in Q

zn(x, t) = 0 on Σ

zn(x,0) =−yn(x, t)+ y0(x) in I.

and then take (yn+1,vn+1) = (yn,vn)+(zn,wn).

The following result can be established:

Theorem 3.5.2 Let ε be given by Theorem 3.1.1. Assume that ‖y0‖H1
0 (I)
≤ ε , (y,v) satisfies (3.1)

and (3.3) and ‖(y,v)‖Y is sufficiently small. There exists κ ∈ (0,1) such that, if (y0,v0) ∈ Y and

‖(y0,v0)− (y,v)‖Y ≤ κ,

then the (yn,vn) converge to (y,v) and satisfy

‖(yn+1,vn+1)− (y,v)‖Y ≤ θ‖(yn,vn)− (y,z)‖Y

for some θ ∈ (0,1) for all n≥ 0.
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4 DENSITY AND SPECTRUM OF MINIMAL SUBMANIFOLDS IN SPACE FORMS

4.1 Introduction

The main concern in this paper is to achieve, in the above-mentioned setting of

minimal submanifolds ϕ : M→ N, a characterization of the whole σ(M) free from curvature or

topological conditions on M(in this respect, observe that the completeness of M follows from

that of N and the properness of ϕ). It is known by (CHEUNG; LEUNG, 2001) and (BESSA;

MONTENEGRO, 2007) that for a minimal immersion ϕ : Mm→ Nn
k the fundamental tone of M,

infσ(M), is at least that of Nm
k , i.e.,

infσ(M)≥ (m−1)2k
4

. (4.1)

Moreover, as a corollary of (KUMURA, 1997) and (BESSA et al., 2007; BESSA; COSTA,

2009), if the second fundamental form II satisfies the decay estimate

lim
ρ(x)→+∞

ρ(x)|II(x)|= 0 if k = 0

lim
ρ(x)→+∞

|II(x)|= 0 if k > 0
(4.2)

(ρ(x) being the intrinsic distance with respect to some fixed origin o ∈M), then M has the same

spectrum that a totally geodesic submanifold Nm
k ⊂ Nn

k , that is,

σ(M) =

[
(m−1)2k

4
,+∞

)
. (4.3)

According to (ANDERSON, 1984; FILHO, 1993), (4.2) is ensured when M has finite total

curvature, that is, when ∫
M
|II|m <+∞. (4.4)

Remark 4.1.1 A characterization of the essential spectrum, similar to (4.3), also holds for

submanifolds of the hyperbolic space Hn
k with constant (normalized) mean curvature H <

√
k.

There, condition (4.4) is replaced by the finiteness of the Lm-norm of the traceless second

fundamental form. For deepening, see (CASTILLON, 1999).

Inspecting the proofs of the above results it seemed to us that, for (4.3) to hold, condition (4.4)

and more generally (4.2) could be substantially weakened. Here, we identify a suitable growth



58

condition on the density function Θ(r) along a sequence as a natural candidate to replace them,

see (4.6). As a very special case, (4.3) holds when M has finite density. We feel quite surprising

that just a volume growth condition along a sequence could control the whole spectrum of M;

clearly, for this to happen, the minimality condition enters in a crucial way.

Regarding the relation between (4.4) and the finiteness of Θ(+∞), we remark that

their interplay has been investigated in depth for minimal submanifolds of Rn, but the case of Hn
k

seems to be partly unexplored. In the next section, we will briefly discuss the state of the art, to

the best of our knowledge. As a corollary of Theorem 4.1.2 below, we will show the following

Corollary 4.1.1 Let Mm be a minimal properly immersed submanifold in Hn
k . If M has finite

total curvature, then Θ(+∞)<+∞.

As far as we know, this result was previously known just in dimension m = 2 via a Chern-

Osserman type inequality, see the next section for further details.

We now come to our results, beginning with defining the ambient spaces which we are interested

in: these are manifolds with a pole, whose radial sectional curvature is suitably pinched to that

of the model Nn
k .

Definition 4.1.1 Let Nn possess a pole ō and denote with ρ̄ the distance function from ō. Assume

that the radial sectional curvature K̄rad of N, that is, the sectional curvature restricted to planes

π containing ∇̄ρ̄ , satisfies

−G
(
ρ̄(x)

)
≤ K̄rad(πx)≤−k ≤ 0 ∀x ∈ N\{ō}, (4.5)

for some G ∈C0(R+
0 ). We say that

(i) N has a pointwise (respectively, integral) pinching to Rn if k = 0 and

sG(s)→ 0 as s→+∞
(
respectively, sG(s) ∈ L1(+∞)

)
;

(ii) N has a pointwise (respectively, integral) pinching to Hn
k if k > 0 and

G(s)− k→ 0 as s→+∞
(
respectively, G(s)− k ∈ L1(+∞)

)
.

Hereafter, given an ambient manifold N with a pole ō, the density function Θ(r) will

always be computed by taking extrinsic balls centered at ō.

Our main achievements are the following two theorems. The first one characterizes

σ(M) when the density of M grows subexponentially (respectively, sub-polynomially) along
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a sequence. Condition (4.6) below is very much in the spirit of a classical volume growth

hypothesis due to R. Brooks (BROOKS, 1981) and Y. Higuchi (HIGUCHI, 2001) to bound from

above the infimum of the essential spectrum of −∆. However, we stress that Theorem 4.1.1

below seems to be the first result in the literature characterizing the whole spectrum of M under

just a mild volume growth assumption.

Theorem 4.1.1 Let ϕ : Mm→ Nn be a minimal properly immersed submanifold, and suppose

that N has a pointwise or an integral pinching to a space form. If either

N is pinched to Hn
k , and liminf

s→+∞

logΘ(s)
s

= 0, or

N is pinched to Rn, and liminf
s→+∞

logΘ(s)
logs

= 0.
(4.6)

then

σ(M) =

[
(m−1)2k

4
,+∞

)
. (4.7)

The above theorem is well suited for minimal submanifolds constructed via Geo-

metric Measure Theory since, typically, their existence is guaranteed by controlling the density

function Θ(r). As an important example, Theorem 4.1.1 applies to all solutions of Plateau’s

problem at infinity Mm→Hn
k constructed in (ANDERSON, 1982), provided that they are smooth.

Indeed, because of their construction, Θ(+∞)<+∞ (see (ANDERSON, 1982), part [A] at p.

485) and they are proper (it can also be deduced as a consequence of Θ(+∞)<+∞, see Remark

4.3.2). By standard regularity theory, smoothness of Mm is automatic if m≤ 6.

Corollary 4.1.2 Let Σ⊂ ∂∞Hn
k be a closed, integral (m−1) current in the boundary at infinity

of Hn
k such that, for some neighborhood U of supp(Σ), Σ does not bound in U, and let Mm ↪→Hn

k

be the solution of Plateau’s problem at infinity constructed in (ANDERSON, 1982) for Σ. If M is

smooth, then (4.7) holds.

An interesting fact of Corollary 4.1.2 is that M is not required to be regular up to

∂∞Hn
k , in particular it might have infinite total curvature. In this respect, we observe that if M

be C2 up to ∂∞Hn, then M would have finite total curvature (Lemma 4.6.1 in Appendix 1). By

deep regularity results, this is the case if, for instance, Mm→Hm+1 is a smooth hypersurface

that solves Plateau’s problem for Σ, and Σ is a C2,α (for α > 0), embedded compact submanifold

of ∂∞Hn. See Appendix 1 for details.
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The spectrum of solutions of Plateau’s problems has also been considered in (BESSA

et al., 2015) for minimal surfaces in R3. In this respect, it is interesting to compare Corollary

4.1.2 with (3) of Corollary 2.6 therein.

Remark 4.1.2 The solution M of Plateau’s problem in (ANDERSON, 1982) is constructed as

a weak limit of a sequence M j of minimizing currents for suitable boundaries Σ j converging

to Σ. and property Θ(+∞) < +∞ is a consequence of a uniform upper bound for the mass of

a sequence M j (part [A], p. 485 in (ANDERSON, 1982)). Such a bound is achieved because

of the way the boundaries Σ j are constructed, in particular, since they are all sections of the

same cone. One might wonder whether Θ(+∞)<+∞, or at least the subexponential growth in

(4.6), is satisfied by all solutions of Plateau’s problem. In this respect, we just make this simple

observation: in the hypersurface case n = m+1, if M∩Bm+1
r is volume-minimizing then clearly

Θ(r) =
vol(M∩Bm+1

r )

Vk(r)
≤

vol(∂Bm+1
r ⊂Hm+1

k )

Vk(r)
= ck

sinhm(
√

kr)
Vk(r)

,

but this last expression diverges exponentially fast as r→+∞ (differently from its Euclidean

analogous, which is finite). This might suggest that a general solution of Plateau’s problem does

not automatically satisfies Θ(+∞)<+∞, and maybe not even (4.6).

In our second result we focus on the particular case when Θ(+∞) < +∞, and we

give a sufficient condition for its validity in terms of the decay of the second fundamental form.

Towards this aim, we shall restrict to ambient spaces with an integral pinching.

Theorem 4.1.2 Let ϕ : Mm→ Nn be a minimal immersion, and suppose that N has an integral

pinching to Rn or to Hn
k . Denote with ρ(x) the intrinsic distance from some reference origin

o ∈M. Assume that there exist c > 0 and α > 1 such that the second fundamental form satisfies,

for ρ(x)>> 1,

|II(x)|2 ≤ c
ρ(x) logα

ρ(x)
if N is pinched to Hn

k;

|II(x)|2 ≤ c
ρ(x)2 logα

ρ(x)
if N is pinched to Rn.

(4.8)

Then, ϕ is proper, M is diffeomorphic to the interior of a compact manifold with boundary, and

Θ(+∞)<+∞.
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Because of a result in (FILHO, 1993; PIGOLA; VERONELLI, 2011), if ϕ : M→Hn
k

has finite total curvature then |II(x)| = o(ρ(x)−1) as ρ(x)→ +∞. Hence, (4.8) is met and

Corollary 4.1.1 follows at once.

We briefly describe the strategy of the proof of Theorem 4.1.1. In view of (4.1), it is

enough to show that each λ > (m−1)2k/4 lies in σ(M). To this end, we follow an approach

inspired by a general result due to K.D. Elworthy and F-Y. Wang (ELWORTHY; WANG, 2004).

However, Elworthy-Wang’s theorem is not sufficient to conclude, and we need to considerably

refine the criterion in order to fit in the present setting. To construct the sequence as in Lemma

1.0.1, a key step is to couple the volume growth requirement (4.6) with a sharpened form of

the monotonicity formula for minimal submanifolds, which improves on the classical ones in

(SIMON, 1983; ANDERSON, 1982). Indeed, in Proposition 4.3.1 we describe three monotone

quantities other than Θ(s), and we expect these to be useful beyond the purpose of the present

paper. For example, in the very recent (GIMENO; MARKVOSEN, 2015) the authors discovered

and used some of the relations in Proposition 4.3.1 to show interesting comparison results for the

capacity and the first eigenvalue of minimal submanifolds.

4.1.1 Finite density and finite total curvature in Rn and Hn

The first attempt to extend the classical theory of finite total curvature surfaces in

Rn (see (OSSERMAN, 1986; JORGE; MEEKS, 1983; CHERN; OSSERMAN, 1967; CHERN;

OSSERMAN, 1984)) to the higher-dimensional case is due to Anderson. In (ANDERSON,

1984), the author drew from (4.4) a number of topological and geometric consequences, and here

we focus on those useful to highlight the relationship between total curvature and density. First,

he showed that (4.4) implies an uniform decay of the second fundamental form II to zero which

is faster that power ρ−1 in the intrinsic distance function ρ on M from an origin o ∈M:

|II(x)| ≤ η(ρ(x))
ρ(x)

with η(t)→ 0 as t→+∞, (4.9)

and as a consequence M is proper, the extrinsic distance function r has no critical points outside

some compact set and |∇r| → 1 as r diverges, so by Morse theory M is diffeomorphic to the

interior of a compact manifold with boundary. Moreover, he proved that M has finite density via

a higher-dimensional extension of the Chern-Osserman identity (CHERN; OSSERMAN, 1967;

CHERN; OSSERMAN, 1984), namely the following relation linking the Euler characteristic
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χ(M) and the Pfaffian form Ω ((ANDERSON, 1984), Theorem 4.1):

χ(M) =
∫

M
Ω+ lim

r→+∞

vol(M∩∂Br)

V ′0(r)
. (4.10)

Observe that, since |∇r| → 1, by coarea’s formula the limit in the right hand-side coincides

with Θ(+∞). We underline that property Θ(+∞)<+∞ plays a fundamental role to apply the

machinery of manifold convergence to get information on the limit structure of the ends of M

((ANDERSON, 1984; SHEN; ZHU, 1998; TYSK, 1989)). For instance, Θ(+∞) is related to the

number E (M) of ends of M: if we denote with V1, . . . ,VE (M) the (finitely many) ends of M, (4.4)

implies for m≥ 3 the identities

Θ(+∞) =
E (M)

∑
i=1

lim
r→+∞

vol(Vi∩∂Br)

V ′0(r)
≡ E (M), (4.11)

and thus M is totally geodesic provided that it has only one end and finite total curvature

((ANDERSON, 1984), Thm 5.1 and its proof). Further information on the mutual relationship

between the finiteness of the total curvature and Θ(+∞) < +∞ can be deduced under the

additional requirement that M is stable or it has finite stability index. For example, by work of J.

Tysk (TYSK, 1989), if Mm has finite index and m≤ 6, then

Θ(+∞)<+∞ if and only if
∫

M
|II|m <+∞. (4.12)

Remark 4.1.3 Indeed, the main result in (TYSK, 1989) states that, when Θ(+∞) < +∞ and

m ≤ 6, M has finite index if and only if it has finite total curvature. However, since the finite

total curvature condition alone implies both that M has finite index and Θ(+∞)<+∞ (in any

dimension), the characterization in (4.12) is equivalent to Tysk’s theorem. We underline that it is

still a deep open problem whether or not, for m≥ 3, stability or finite index alone implies the

finiteness of the density at infinity.

Since then, efforts were made to investigate analogous properties for minimal submanifolds of

finite total curvature immersed in Hn
k . There, some aspects show strong analogy with the Rn case,

while others are strikingly different. For instance, minimal immersions ϕ : Mm→Hn
k with finite

total curvature enjoy the same decay property (4.9) with respect to the intrinsic distance ρ(x)

((FILHO, 1993), see also (PIGOLA; VERONELLI, 2011)), which is enough to deduce that they

are properly immersed and diffeomorphic to the interior of a compact manifold with boundary.
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Moreover, as already noticed, Anderson (ANDERSON, 1982) proved the monotonicity of Θ(r)

in (1.1). In order to show (among other things) that complete, finite total curvature surfaces

M2 ↪→Hn have finite density, in (CHEN, 1999; CHEN; CHENG, 2000) the authors obtained the

following Chern-Osserman type (in)equality:

χ(M)≥− 1
4π

∫
M
|II|2 +Θ(+∞), (4.13)

see also (GIMENO; PALMER, 2013). However, in the higher dimensional case we found no

analogous of (4.10), (4.13) in the literature, and adapting the proof of (4.10) to the hyperbolic

ambient space seems to be subtler than what we expected. In fact, an equality like (4.10) is

not even possible to obtain, since there exist minimal submanifolds of Hn
k with finite density

but whose density at infinity depends on the chosen reference origin (Gimeno, V., Private

communication). We point out that, on the contrary, inequality (4.13) holds for each choice of

the reference origin in Hn. This motivated the different route that we follow to prove Theorem

4.1.2 and Corollary 4.1.1. Among the results in (ANDERSON, 1984) that could not admit a

corresponding one in Hn
k , in view of the solvability of Plateau’s problem at infinity on Hn

k we

stress that a relation like (4.11) cannot hold for each minimal submanifold of Hn
k with finite total

curvature. Indeed, there exist a wealth of properly immersed minimal submanifolds in Hn
k with

finite total curvature and one end, as the example in Appendix 1 shows. It shall be observed,

however, that when II decays sufficiently fast at infinity with respect to the extrinsic distance

function r(x):

|II(x)| ≤ η(r(x))

e2
√

kr(x)
with η(t)→ 0 as t→+∞, (4.14)

then the inequality Θ(+∞) ≤ E (M) still holds for minimal hypersurfaces in Hn
k as shown in

(GIMENO; PALMER, 2012), and in particular M is totally geodesic provided that it has only

one end, as first observed in (KASUE; SUGAHARA, 1987; KASUE; SUGAHARA, 1986).

We remark that there exists an infinite family of complete minimal cylinders ϕλ : S1×R→H3

whose second fundamental form IIλ decays exactly of order exp{−2r(x)}, see (MORI, 1981).

4.2 Preliminaries

Let ϕ : (Mm,〈 , 〉)→ (Nn,( , )) be an isometric immersion of a complete m-dimensional

Riemannian manifold M into an ambient manifold N of dimension n and possessing a pole ō.

We denote with ∇,Hess ,∆ the connection, the Riemannian Hessian and the Laplace-Beltrami
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operator on M, while quantities related to N will be marked with a bar. For instance, ∇̄,dist,Hess

will identify the connection, the distance function and the Hessian in N. Let ρ̄(x) = dist(x, ō) be

the distance function from ō. Geodesic balls in N of radius R and center y will be denoted with

BN
R (y). Moreover, set

r : M→ R, r(x) = ρ̄
(
ϕ(x)

)
, (4.15)

for the extrinsic distance from ō. We will indicate with Γs the extrinsic geodesic spheres restricted

to M: Γs
.
= {x ∈M; r(x) = s}. Fix a base point o ∈M. In what follows, we shall also consider

the intrinsic distance function ρ(x) = dist(x,o) from a reference origin o ∈M.

4.2.1 Target spaces

Hereafter, we consider an ambient space N possessing a pole ō and satisfying (4.5)

for some k ≥ 0 and some G ∈C0(R+
0 ). Let snk(t) be the solution of sn′′k − k snk = 0 on R+,

snk(0) = 0, sn′k(0) = 1,
(4.16)

that is

snk(t) =

 t if k = 0,

sinh(
√

kt)/
√

k if k > 0.
(4.17)

Observe that Rn and Hn
k can be written as the differentiable manifold Rn equipped with the

metric given, in polar geodesic coordinates (ρ,θ) ∈ R+×Sn−1 centered at some origin, by

ds2
k = dρ

2 + sn2
k(ρ)dθ

2,

dθ 2 being the metric on the unit sphere Sn−1.

We also consider the model Mn
g associated with the lower bound −G for K̄rad, that is, we let

g ∈C2(R+
0 ) be the solution of  g′′−Gg = 0 on R+,

g(0) = 0, g′(0) = 1,
(4.18)

and we define Mn
g as being (Rn,ds2

g) with the C2-metric ds2
g = dρ2 +g2(ρ)dθ 2 in polar coordi-

nates. Because of (4.5), by the Hessian comparison theorem (Theorem 2.3 in (PIGOLA et al.,

2008), or Theorem 1.15 in (BIANCHINI et al., 2013)) it holds

sn′k(ρ̄)
snk(ρ̄)

(
( , )−dρ̄⊗dρ̄

)
≤ Hess(ρ̄)≤ g′(ρ̄)

g(ρ̄)

(
( , )−dρ̄⊗dρ̄

)
. (4.19)
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The usefulness of our pinching conditions on N depends on the following

Proposition 4.2.1 Let N satisfy (4.5), and let snk,g be solutions of (4.17), (4.18). Define

ζ (s) .
=

g′(s)
g(s)

−
sn′k(s)
snk(s)

. (4.20)

Then, ζ (0+) = 0, ζ ≥ 0 on R+. Moreover,

(i) If N has a pointwise pinching to Hn
k or Rn, then ζ (s)→ 0 as s→+∞.

(ii) If N has an integral pinching to Hn
k or Rn, then g/snk→C as t→+∞ for some C ∈ R+,

and

ζ (s) ∈ L1(R+), ζ (s)
snk(s)
sn′k(s)

→ 0 as s→+∞. (4.21)

Proof: The non-negativity of ζ , which in particular implies that g/snk is non-

decreasing, follows from G≥ k via Sturm comparison, and ζ (0+) = 0 depends on the asymptotic

relations sn′k/snk = s−1 +o(1) and g′/g = s−1 +o(1) as s→ 0+, which directly follow from the

ODEs satisfied by snk and g. To show (i), differentiating ζ we get

ζ
′(s) = R(s)−ζ (s)B(s), (4.22)

where R(s) .
= G(s)− k and B(s) =

g′(s)
g(s)

+
sn′k(s)
snk(s)

. Thus, integrating on [1,s], we can rewrite ζ

as follows:

ζ (s) = ζ (1)e−
∫ s

1 B + e−
∫ s

1 B
∫ s

1
R(σ)e

∫
σ

1 Bdσ (4.23)

Using that B 6∈ L1([1,+∞)), and applying de l’Hopital’s theorem, we infer

lim
s→+∞

ζ (s) = lim
s→+∞

R(s)
B(s)

≤ lim
s→+∞

snk(s)[G(s)− k]
sn′k(s)

.

In our pointwise pinching assumptions on G(s), for both k = 0 and k > 0 the last limit is zero,

hence ζ (s)→ 0 as s diverges. To show (ii), suppose that N has an integral pinching to Hn
k

or to Rn. We first observe that the boundedness of g/snk on R+ equivalent to the property

ζ ∈ L1(+∞), as it follows from

log
g(s)

snk(s)
=
∫ s

0

d
dσ

log
(

g(σ)

snk(σ)

)
ds =

∫ s

0
ζ (4.24)

(we used that (g/snk)(0+) = 1). The boundedness of g/snk is the content of Corollary 4 and

Remark 16 in (BIANCHINI et al., 2015), but we prefer here to present a direct proof. Integrating
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(4.23) on [1,s] and using Fubini’s theorem, the monotonicity of g/snk and the expression of B

we obtain ∫ s

1
ζ = ζ (1)

∫ s

1

g(1)snk(1)
g(σ)snk(σ)

dσ +
∫ s

1
e−

∫
σ

1 B
∫

σ

1
R(τ)e

∫
τ

1 Bdτ dσ

≤ ζ (1)snk(1)2
∫ s

1

dσ

sn2
k(σ)

+
∫ s

1

[∫ s

τ

e−
∫

σ

1 BR(τ)e
∫

τ

1 Bdσ

]
dτ

≤ C+
∫ s

1
R(τ)g(τ)snk(τ)

[∫ s

τ

dσ

g(σ)snk(σ)

]
dτ

≤ C+
∫ s

1
R(τ)g(τ)snk(τ)

[∫ +∞

τ

dσ

g(σ)snk(σ)

]
dτ

(4.25)

for some C > 0, where we have used that sn−2
k ,g−1sn−1

k ∈ L1(+∞). Next, since gsnk/sn2
k is non-

decreasing, Proposition 3.12 in (BIANCHINI et al., 2013) ensures the validity of the following

inequality:

g(τ)snk(τ)

[∫ +∞

τ

dσ

g(σ)snk(σ)

]
≤ sn2

k(τ)

[∫ +∞

τ

dσ

sn2
k(σ)

]
.

It is easy to show that the last expression is bounded if k > 0, and diverges at the order of τ

if k = 0. In other words, it can be bounded by C1snk/sn′k on [1,+∞), for some large C1 > 0.

Therefore, by (4.25)∫ s

1
ζ ≤C+C1

∫ s

1
R(τ)

snk(τ)

sn′k(τ)
dτ =C+C1

∫ s

1

[
G(τ)− k

]snk(τ)

sn′k(τ)
dτ.

In our integral pinching assumptions, both for k = 0 and for k > 0 it holds (G− k)snk/sn′k ∈

L1(+∞), and thus ζ ∈ L1(+∞). Next, we use (4.22) and the non-negativity of ζ ,B to obtain(
ζ (s)snk(s)

sn′k(s)

)′
=

[
G(s)− k−ζ (s)B(s)

]snk(s)
sn′k(s)

+ζ (s)

[
1− k

(
snk(s)
sn′k(s)

)2
]

≤
[
G(s)− k

]
snk(s)

sn′k(s)
+ζ (s) ∈ L1(+∞),

hence ζ snk/sn′k ∈ L∞(R+). This implies that the function B in (4.22) satisfies B≤Csn′k/snk for

some constant C > 0. Therefore, from (4.22) we get ζ ′ ≥−ζ B≥−Cζ sn′k/snk. Integrating on

[t,s] and using the monotonicity of sn′k/snk we obtain

−C
sn′k(s)
snk(s)

∫ t

s
ζ ≤ ζ (t)−ζ (s).

Since ζ ∈ L1(R+), we can choose a divergent sequence {s j} such that ζ (s j)→ 0 as j→+∞.

Setting s = s j into the above inequality and taking limits we deduce

ζ (s)≤C
sn′k(s)
snk(s)

∫ +∞

s
ζ ,



67

thus letting s→+∞ we get the second relation in (4.21).

4.2.2 A transversality lemma

This subsection is devoted to an estimate of the measure of the critical set

St,s =
{

x ∈M : t ≤ r(x)≤ s, |∇r(x)|= 0
}
,

with the purpose of justifying some coarea’s formulas for integrals over extrinsic annuli. We

begin with the next

Lemma 4.2.1 Let ϕ : Mm→ Nn be an isometric immersion, and let r(x) = dist(ϕ(x), ō) be the

extrinsic distance function from ō ∈ N. Denote with Γσ

.
= {x ∈M; r(x) = σ}. Then, for each

f ∈ L1({t ≤ r ≤ s}), ∫
{t≤r≤s}

f dx =
∫

St,s

f dx+
∫ s

t

[∫
Γσ

f
|∇r|

]
dσ . (4.26)

In particular, if

vol(St,s) = 0, (4.27)

then ∫
{t≤r≤s}

f dx =
∫ s

t

[∫
Γσ

f
|∇r|

]
dσ . (4.28)

Proof: We prove (4.26) for f ≥ 0, and the general case follows by considering the

positive and negative part of f . By the coarea’s formula, we know that for each g ∈ L1({t ≤ r ≤

s}), ∫
{t≤r≤s}

g|∇r|dx =
∫ s

t

[∫
Γσ

g
]

dσ . (4.29)

Fix j and consider A j = {|∇r|> 1/ j} and the function

g = f 1A j/|∇r| ∈ L1({t ≤ r ≤ s}).

Applying (4.29), letting j→+∞ and using the monotone convergence theorem we deduce∫
{t≤r≤s}\St,s

f dx =
∫ s

t

[∫
Γσ\St,s

f
|∇r|

]
dσ =

∫ s

t

[∫
Γσ

f
|∇r|

]
dσ , (4.30)

where the last equality follows since Γσ ∩St,s = /0 for a.e. σ ∈ [t,s], in view of Sard’s theorem.

Formula (4.26) follows at once.
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Let now N possess a pole ō and satisfy (4.5), and consider a minimal immersion

ϕ : M→ N. Since, by the Hessian comparison theorem, geodesic spheres in N centered at ō are

positively curved, it is reasonable to expect that the “transversality"condition (4.27) holds. This

is the content of the next

Proposition 4.2.2 Let ϕ : Mm→ Nn be a minimal immersion, where N possesses a pole ō and

satisfies (4.5). Then,

vol(S0,+∞) = 0. (4.31)

Proof: Suppose by contradiction that vol(S0,+∞)> 0. By Stampacchia and Rade-

macher’s theorems,

∇|∇r|(x) = 0 for a.e. x ∈ S0,+∞. (4.32)

Pick one such x and a local Darboux frame {ei},{eα}, 1 ≤ i ≤ m, m+ 1 ≤ α ≤ n around x,

that is, {ei} is a local orthonormal frame for T M and {eα} is a local orthonormal frame for

the normal bundle T M⊥. Since ∇r(x) = 0, then ∇̄ρ̄(x) ∈ TxM⊥. Up to rotating {eα}, we can

suppose that ∇̄ρ̄(x) = en(x). Fix i and consider a unit speed geodesics γ : (−ε,ε)→M such that

γ(0) = x, γ̇(0) = ei. Identify γ with its image ϕ ◦ γ in N. By Taylor’s formula and (4.32),

|∇r|(γ(t)) = o(t) as t→ 0+.

Using that |∇r|=
√

1−∑α(∇̄ρ̄,eα)2, we deduce

1−∑
α

(∇̄ρ̄,eα)
2
γ(t) = o(t2). (4.33)

Since ∇̄ρ̄(x) = en(x), we deduce from (4.34) that also

u(t) .
= 1− (∇̄ρ̄,en)

2
γ(t) = o(t2), (4.34)

thus u̇(0) = ü(0) = 0. Computing,

u̇(t) = 2(∇̄ρ̄,en)
[
(∇̄γ̇∇̄ρ̄,en)+(∇̄ρ̄, ∇̄γ̇en)

]
ü(t) = 2

[
(∇̄γ̇∇̄ρ̄,en)+(∇̄ρ̄, ∇̄γ̇en)

]2
+2(∇̄ρ̄,en)

[
(∇̄γ̇∇̄γ̇∇̄ρ̄,en)+2(∇̄γ̇∇̄ρ̄, ∇̄γ̇en)+(∇̄ρ̄, ∇̄γ̇∇̄γ̇en)

]
.

Evaluating at t = 0 we deduce

0 = ü(0)/2 = (∇̄ei∇̄ei∇̄ρ̄, ∇̄ρ̄)+2(∇̄ei∇̄ρ̄, ∇̄eien)+(en, ∇̄ei∇̄eien).
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Differentiating twice 1 = |en|2 = |∇̄ρ̄|2 along ei we deduce the identities (en, ∇̄ei∇̄eien) =

−|∇̄eien|2 and (∇̄ei∇̄ei∇̄ρ̄, ∇̄ρ̄) =−|∇̄ei∇̄ρ̄|2, hence

0 = ü(0)/2 =−|∇̄ei∇̄ρ̄|2 +2(∇̄ei∇̄ρ̄, ∇̄eien)−|∇̄eien|2 =−
∣∣∇̄ei∇̄ρ̄− ∇̄eien

∣∣2,
which implies ∇̄ei∇̄ρ̄ = ∇̄eien. Therefore, at x,

(II(ei,ei),en) =−(∇̄eien,ei) =−(∇̄ei∇̄ρ̄,ei) = Hess(ρ̄)(ei,ei).

Tracing with respect to i, using that M is minimal and (4.19) we conclude that

0≥
sn′k(r(x))
snk(r(x))

(m−|∇r(x)|2) = m
sn′k(r(x))
snk(r(x))

> 0,

a contradiction.

4.3 Monotonicity formulae and conditions equivalent to Θ(+∞)<+∞

Our first step is to improve the classical monotonicity formula for Θ(r), that can be

found in (SIMON, 1983) (for N = Rm) and (ANDERSON, 1982) (for N =Hn
k). For k ≥ 0, let

vk,Vk denote the volume function, respectively, of geodesic spheres and balls in the space form

of sectional curvature −k, i.e.,

vk(s) = ωm−1snk(s)m−1, Vk(s) =
∫ s

0
vk(σ)dσ , (4.35)

where ωm−1 is the volume of the unit sphere Sm−1. Although we shall not use all the four

monotone quantities in (4.37) below, nevertheless they have independent interest, and for this

reason we state the result in its full strength. We define the flux J(s) of ∇r over the extrinsic

sphere Γs:

J(s) .
=

1
vk(s)

∫
Γs

|∇r|. (4.36)

Proposition 4.3.1 (The monotonicity formulae) Suppose that N has a pole ō and satisfies

(4.5), and let ϕ : Mm→ Nn be a proper minimal immersion. Then, the functions

Θ(s),
1

Vk(s)

∫
{0≤r≤s}

|∇r|2 (4.37)

are absolutely continuous and monotone non-decreasing. Moreover, J(s) coincides, on an open

set of full measure, with the absolutely continuous function

J̄(s) .
=

1
vk(s)

∫
{r≤s}

∆r

and J̄(s), Vk(s)
[
J̄(s)−Θ(s)

]
are non-decreasing. In particular, J(s)≥Θ(s) a.e. on R+.
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Remark 4.3.1 To the best of our knowledge, the monotonicity of J(s) (aside from its differen-

tiability properties) has first been shown, in the Euclidean setting, in a paper by V. Tkachev

(TKACHEV, 1989).

Proof: We first observe that, in view of Lemma 4.2.1 and Proposition 4.2.2 applied

with f = ∆r,

vk(s)J̄(s)
.
=
∫
{r≤s}

∆r ≡
∫ s

0

[∫
Γσ

∆r
|∇r|

]
dσ (4.38)

is absolutely continuous, and by the divergence theorem it coincides with vk(s)J(s) for regular

values of s. Consider

f (s) =
∫ s

0

Vk(σ)

vk(σ)
dσ =

∫ s

0

1
vk(σ)

[∫
σ

0
vk(τ)dτ

]
dσ (4.39)

which is a C2 solution of

f ′′+(m−1)
sn′k
snk

f ′ = 1 on R+, f (0) = 0, f ′(0) = 0,

and define ψ(x) = f (r(x)) ∈C2(M). Let {ei} be a local orthonormal frame on M. Since ϕ is

minimal, by the chain rule and the lower bound in the Hessian comparison theorem 4.19

∆r =
m

∑
j=1

Hess(ρ̄)
(
dϕ(e j),dϕ(e j)

)
≥

sn′k(r)
snk(r)

(
m−|∇r|2

)
. (4.40)

We then compute

∆ψ = f ′′|∇r|2 + f ′∆r ≥ f ′′|∇r|2 + f ′
sn′k
snk

(m−|∇r|2)

= 1+
(
1−|∇r|2

)(
f ′(r)

sn′k(r)
snk(r)

− f ′′(r)
)
.

(4.41)

It is not hard to show that the function

z(s) .
= f ′(s)

sn′k(s)
snk(s)

− f ′′(s) =
m

m−1
Vk(s)v′k(s)

v2
k(s)

−1.

is non-negative and non-decreasing on R+. Indeed, from

z(0) = 0, z′(s) =
m

vk(s)

[
kVk(s)−

1
m−1

v′k(s)z(s)
]

(4.42)

we deduce that z′ > 0 when z < 0, which proves that z≥ 0 on R+. Fix 0 < t < s regular values

for r. Integrating (4.41) on the smooth compact set {t ≤ r≤ s} and using the divergence theorem

we deduce
Vk(s)
vk(s)

∫
Γs

|∇r|− Vk(t)
vk(t)

∫
Γt

|∇r| ≥ vol
(
{t ≤ r ≤ s}

)
. (4.43)
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By the definition of J(s) and Θ(s), and since J(s)≡ J̄(s) for regular values, the above inequality

rewrites as follows:

Vk(s)J̄(s)−Vk(t)J̄(t)≥Vk(s)Θ(s)−Vk(t)Θ(t),

or in other words,

Vk(s)
[
J̄(s)−Θ(s)

]
≥Vk(t)

[
J̄(t)−Θ(t)

]
.

Since all the quantities involved are continuous, the above relation extends to all t,s ∈R+, which

proves the monotonicity of Vk[J̄−Θ]. Letting t → 0 we then deduce that J̄(s) ≥ Θ(s) on R+.

Next, by using f ≡ 1 and f ≡ |∇r|2 in Lemma 4.2.1 and exploiting again Proposition 4.2.2 we

get

vol
(
{t ≤ r ≤ s}

)
=
∫ s

t

[∫
Γσ

1
|∇r|

]
dσ ,

∫
{0≤r≤s}

|∇r|2 =
∫ s

0

[∫
Γσ

|∇r|
]

dσ , (4.44)

showing that the two quantities in (4.37) are absolutely continuous. Plugging into (4.43), letting

t→ 0 and using that z≥ 0 we deduce

Vk(s)
vk(s)

∫
Γs

|∇r| ≥
∫ s

0

[∫
Γσ

1
|∇r|

]
dσ , (4.45)

for regular s, which together with the trivial inequality |∇r|−1 ≥ |∇r| and with (4.44) gives

Vk(s)
∫

Γs

|∇r| ≥ vk(s)
∫ s

0

[∫
Γσ

|∇r|
]

dσ ,

Vk(s)
[

d
ds

vol
(
{r ≤ s}

)]
≥ vk(s)vol

(
{r ≤ s}

)
.

(4.46)

Integrating the second inequality we obtain the monotonicity of Θ(s), while integrating the first

one and using (4.44) we obtain the monotonicity of the second quantity in (4.37). To show the

monotonicity of J̄(s), by (4.40) and using the full information coming from (4.19) we obtain

sn′k(r)
snk(r)

(
m−|∇r|2

)
≤ ∆r ≤ g′(r)

g(r)

(
m−|∇r|2

)
. (4.47)

In view of the identity (4.38), we consider regular s > 0, we divide (4.47) by |∇r| and integrate

on Γs to get
sn′k(s)
snk(s)

∫
Γs

m−|∇r|2

|∇r|
≤
(
vk(s)J̄(s)

)′ ≤ g′(s)
g(s)

∫
Γs

m−|∇r|2

|∇r|
(4.48)

Writing m−|∇r|2 = m(1−|∇r|2)+(m−1)|∇r|2, setting for convenience

vg(s) = ωm−1g(s)m−1, T (s) .
=

∫
Γs
|∇r|−1∫

Γs
|∇r|

−1, (4.49)
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rearranging we deduce the two inequalities

(vk(s)J̄(s))′ ≥ v′k(s)J̄(s)+m
sn′k(s)
snk(s)

T (s)vk(s)J̄(s)

(vk(s)J̄(s))′ ≤
v′g(s)
vg(s)

vk(s)J̄(s)+m
g′(s)
g(s)

T (s)vk(s)J̄(s).

(4.50)

Expanding the derivate on the left-hand side, we deduce

J̄′(s) ≥ m
sn′k(s)
snk(s)

T (s)J̄(s),(
vk(s)
vg(s)

J̄(s)
)′
≤ m

g′(s)
g(s)

T (s)
(

vk(s)
vg(s)

J̄(s)
)
.

(4.51)

The first inequality together with the non-negativity of T implies the desired J̄′ ≥ 0, concluding

the proof. The second inequality in (4.51), on the other hand, will be useful in awhile.

Remark 4.3.2 The properness of ϕ is essential in the above proof to justify integrations by

parts. However, if ϕ is non-proper, at least when N is Cartan-Hadamard with sectional curvature

K̄ ≤−k the function Θ is still monotone in an extended sense. In fact, as it has been observed in

(TYSK, 1989) for N = Rm+1, Θ(s) = +∞ for each s such that {r < s} contains a limit point of

ϕ . Briefly, if x̄ ∈ N is a limit point with ρ̄(x̄)< s, choose ε > 0 such that 2ε < s− ρ̄(x̄), and a

diverging sequence {x j} ⊂M such that ϕ(x j)→ x̄. We can assume that the balls Bε(x j)⊂M

are pairwise disjoint. Since dist(ϕ(x),ϕ(x j))≤ dist(x,x j), we deduce that ϕ(Bε(x j))⊂ {r < s}

for j large enough, and thus

vol
(
{r ≤ s}

)
≥∑

j
vol(Bε(x j)).

However, using that K̄ ≤ −k and since N is Cartan-Hadamard, we can apply the intrinsic

monotonicity formula (see Proposition 4.7.2 in Appendix 2 below) with chosen origin ϕ(x j) to

deduce that vol(Bε(x j))≥Vk(ε) for each j, whence vol({r ≤ s}) = +∞.

We next investigate conditions equivalent to the finiteness of the density.

Proposition 4.3.2 Suppose that N has a pole and satisfies (4.5). Let ϕ : Mm→ Nn be a proper

minimal immersion. Then, the following properties are equivalent:

(1) Θ(+∞)<+∞;

(2) J̄(+∞)<+∞.
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Moreover, both (1) and (2) imply that

sn′k(s)
snk(s)

[∫
Γs
|∇r|−1∫

Γs
|∇r|

−1

]
∈ L1(R+). (3)

If further N has an integral pinching to Rn or Hn
k , then (1)⇔ (2)⇔ (3).

Proof: We refer to the proof of the previous proposition for notation and formulas.

(2)⇒ (1) is obvious since, by the previous proposition, J̄(s)≥Θ(s).

(1)⇒ (2). Note that the limit in (2) exists since J̄ is monotone. Suppose by contradiction that

J̄(+∞) = +∞, let c > 0 and fix sc large enough that J̄(s)≥ c for s≥ sc. From (4.44) and (4.36),

and since J̄ ≡ J a.e.,

Θ(s) =
1

Vk(s)

∫ s

0

[∫
Γσ

1
|∇r|

]
dσ ≥ 1

Vk(s)

∫ s

0
vk(σ)J(σ)dσ

≥ 1
Vk(s)

∫ s

sc

vk(σ)J(σ)dσ ≥ c
Vk(s)−Vk(sc)

Vk(s)
.

Letting s→+∞ we get Θ(+∞)≥ c, hence Θ(+∞) = +∞ by the arbitrariness of c, contradicting

(1).

(2)⇒ (3). Integrating (4.51) on [1,s] we obtain

c1 exp
{

m
∫ s

1

sn′k(σ)

snk(σ)
T (σ)dσ

}
≤ J̄(s)≤ c2

vg(s)
vk(s)

exp
{

m
∫ s

1

[
g′(σ)

g(σ)

]
T (σ)dσ

}
, (4.52)

for some constants c1,c2 > 0, where vg(s), T (s) is as in (4.49). The validity of (2) and the first

inequality show that sn′kT/snk ∈ L1(+∞), that is, (3) is satisfied.

(3)⇒ (2). In our pinching assumptions on N, (ii) in Proposition 4.2.1 gives

g′

g
=

sn′k
snk

+ζ , with ζ ≤C
sn′k
snk

on R+, and g≤Csnk on R+,

for some C > 0. Plugging in (4.52) and recalling the definition of vg we obtain

J̄(s)≤ c3 exp
{

c4

∫ s

1

sn′k(σ)

snk(σ)
T (σ)dσ

}
,

for some c3, c4, and (3)⇒ (2) follows by letting s→+∞.

Remark 4.3.3 It is worth to observe that a version of Propositions 4.3.1 and 4.3.2 that covers

most of the material presented above has also been independently proved in the very recent

(GIMENO; MARKVOSEN, 2015), see Theorems 2.1 and 6.1 therein. We mention that their

results are stated for more general ambient spaces subjected to specific function-theoretic
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requirements, and that, in Proposition 4.3.2, it holds in fact J̄(+∞)≡Θ(+∞). For an interesting

characterization, when N = Rn, of the limit J̄(+∞) in terms of an invariant called the projective

volume of M we refer to (TKACHEV, 1989).

4.4 Proof of Theorem 1

Let Mm be a minimal properly immersed submanifold in Nn, and suppose that N has

a pointwise or integral pinching towards a space form. Because of the upper bound in (4.5), by

(CHEUNG; LEUNG, 2001) and (BESSA; MONTENEGRO, 2007) the bottom of σ(M) satisfies

infσ(M)≥ (m−1)2k
4

. (4.53)

Briefly, the lower bound in (4.47) implies

∆r ≥ (m−1)
sn′k(r)
snk(r)

≥ (m−1)
√

k on M.

Integrating on a relatively compact, smooth open set Ω and using the divergence theorem and

|∇r| ≤ 1, we deduce H m−1(∂Ω) ≥ (m− 1)
√

kvol(Ω). The desired (4.53) then follows from

Cheeger’s inequality:

infσ(M)≥ 1
4

(
inf

ΩbM

H m−1(∂Ω)

vol(Ω)

)2

≥ (m−1)2k
4

.

To complete the proof of the theorem, since σ(M) is closed it is sufficient to show that each

λ > (m−1)2k/4 lies in σ(M).

Set for convenience β
.
=
√

λ − (m−1)2k/4 and, for 0 ≤ t < s, let At,s denote the

extrinsic annulus

At,s
.
=
{

x ∈M : r(x) ∈ [t,s]
}
.

Define the weighted measure dµk
.
= vk(r)−1dx on {r ≥ 1}. Hereafter, we will always restrict to

this set. Consider

ψ(s) .
=

eiβ s√
vk(s)

, which solves ψ
′′+ψ

′ v
′
k

vk
+λψ = a(s)ψ, (4.54)

where

a(s) .
=

(m−1)2k
4

+
1
4

(
v′k(s)
vk(s)

)2

− 1
2

v′′k (s)
vk(s)

→ 0 (4.55)

as s→+∞. For technical reasons, fix R > 1 large such that Θ(R)> 0. Fix t,s,S such that

R+1 < t < s < S−1,
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and let η ∈C∞
c (R) be a cut-off function satisfying

0≤ η ≤ 1, η ≡ 0 outside of (t−1,S), η ≡ 1 on (t,s),

|η ′|+ |η ′′| ≤C0 on [t−1,s], |η ′|+ |η ′′| ≤ C0
S−s on [s,S]

for some absolute constant C0 (the last relation is possible since S− s≥ 1). The value S will be

chosen later in dependence of s. Set ut,s
.
= η(r)ψ(r) ∈C∞

c (M). Then, by (4.54),

∆ut,s +λut,s = (η ′′ψ +2η
′
ψ
′+ηψ

′′)|∇r|2 +(η ′ψ +ηψ
′)∆r+ληψ

=

(
η
′′
ψ +2η

′
ψ
′−

v′k
vk

ηψ
′−ληψ +aηψ

)
(|∇r|2−1)+aηψ

+(η ′ψ +ηψ
′)

(
∆r−

v′k
vk

)
+

(
η
′′
ψ +2η

′
ψ
′+η

′
ψ

v′k
vk

)
.

Using that there exists an absolute constant c for which |ψ|+ |ψ ′| ≤ c/
√

vk, the following

inequality holds:

‖∆ut,s +λut,s‖2
2 ≤ C

(∫
At−1,S

[
(1−|∇r|2)2 +

(
∆r−

v′k
vk

)2

+a(r)2

]
dµk

+
µk(As,S)

(S− s)2 +µk(At−1,t)

)
,

for some suitable C depending on c,C0. Since ‖ut,s‖2
2 ≥ µk(At,s) and (1−|∇r|2)2 ≤ 1−|∇r|2,

we obtain

‖∆ut,s +λut,s‖2
2

‖ut,s‖2
2

≤ C

(
1

µk(At,s)

∫
At−1,S

[
1−|∇r|2 +

(
∆r−

v′k
vk

)2

+a(r)2

]
dµk

+
1

(S− s)2
µk(As,S)

µk(At,s)
+

µk(At−1,t)

µk(At,s)

) (4.56)

Next, using (4.19),

∆r =
m

∑
j=1

Hess(ρ̄)(ei,ei) =
sn′k(r)
snk(r)

(m−|∇r|2)+T (x) =
v′k(r)
vk(r)

+
sn′k(r)
snk(r)

(1−|∇r|2)+T (x),

where, by Proposition 4.2.1,

0≤ T (x) .
=

m

∑
j=1

Hess(ρ̄)(ei,ei)−
sn′k(r)
snk(r)

(m−|∇r|2)

≤
(

g′(r)
g(r)

−
sn′k(r)
snk(r)

)
(m−|∇r|2) = ζ (r)(m−|∇r|2)≤ mζ (r).

(4.57)

We thus obtain, on the set {r ≥ 1},(
∆r−

v′k
vk

)2

+1−|∇r|2 +a(r)2 ≤
[

sn′k(r)
snk(r)

(1−|∇r|2)+mζ (r)
]2

+1−|∇r|2 +a(r)2

≤ C
(

ζ (r)2 +1−|∇r|2 +a(r)2
) (4.58)
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for some absolute constant C. Note that, in both our pointwise or integral pinching assumptions

on N, by Proposition 4.2.1 it holds ζ (s)→ 0 as s→+∞. Set

F(t) .
= sup

σ∈[t−1,+∞)

[a(σ)2 +ζ (σ)2],

and note that F(t)→ 0 monotonically as t → +∞. Integrating (4.58) we get the existence of

C > 0 independent of s, t such that∫
At−1,S

[(
∆r−

v′k
vk

)2

+1−|∇r|2 +a(r)2

]
dµk

≤C
(

F(t)
∫

At−1,S

1
vk(r)

+
∫

At−1,S

1−|∇r|2

vk(r)

)
.

(4.59)

Using the coarea’s formula and the transversality lemma, for each 0≤ a < b

µk(Aa,b) =
∫

Aa,b

1
vk(r)

=
∫ b

a
J
[
1+T

]
,

∫
Aa,b

1−|∇r|2

vk(r)
=
∫ b

a
JT, (4.60)

where J and T are defined, respectively, in (4.36) and (4.49). Summarizing, in view of (4.59)

and (4.60) we deduce from (4.56) the following inequalities:

‖∆ut,s +λut,s‖2
2

‖ut,s‖2
2

≤ C

(
1∫ s

t J
[
1+T

] [F(t)
∫ S

t−1
J
[
1+T

]
+
∫ S

t−1
JT
]

+

∫ S
s J
[
1+T

]
(S− s)2

∫ s
t J
[
1+T

] + ∫ t
t−1 J

[
1+T

]∫ s
t J
[
1+T

] ) .
= Q(t,s).

(4.61)

If we can guarantee that

liminf
t→+∞

liminf
s→+∞

‖∆ut,s +λut,s‖2
2

‖ut,s‖2
2

= 0, (4.62)

then we are able to construct a sequence of approximating eigenfunctions for λ as follows: fix

ε > 0. By (4.62) there exists a divergent sequence {ti} such that, for i≥ iε ,

liminf
s→+∞

‖∆uti,s +λuti,s‖2
2

‖uti,s‖2
2

< ε/2.

For i = iε , pick then a sequence {s j} realizing the liminf. For j ≥ jε(iε ,ε)

‖∆uti,s j +λuti,s j‖
2
2 < ε‖uti,s j‖

2
2, (4.63)

Writing uε

.
= utiε ,s jε

, by (4.63) from the set {uε} we can extract a sequence of approximating

eigenfunctions for λ , concluding the proof that λ ∈ σ(M). To show (4.62), by (4.61) it is enough

to prove that

liminf
t→+∞

liminf
s→+∞

Q(t,s) = 0. (4.64)
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Suppose, by contradiction, that (4.64) were not true. Then, there exists a constant δ > 0 such

that, for each t ≥ tδ , liminfs→+∞ Q(t,s)≥ 2δ , and thus for t ≥ tδ and s≥ sδ (t)

F(t)
∫ S

t−1
J
[
1+T

]
+
∫ S

t−1
JT +

∫ S

s

J
[
1+T

]
(S− s)2 +

∫ t

t−1
J
[
1+T

]
≥ δ

∫ s

t
J
[
1+T

]
, (4.65)

and rearranging

(F(t)+1)
∫ S

t−1
J
[
1+T

]
−
∫ S

t−1
J+

∫ S

s

J
[
1+T

]
(S− s)2 +

∫ t

t−1
J
[
1+T

]
≥ δ

∫ s

t
J
[
1+T

]
. (4.66)

We rewrite the above integrals in order to make Θ(s) appear. Integrating by parts and using again

the coarea’s formula and the transversality lemma,∫ b

a
J
[
1+T

]
=

∫
Aa,b

1
vk(r)

=
∫ b

a

1
vk(σ)

[∫
Γσ

1
|∇r|

]
dσ =

∫ b

a

(
Vk(σ)Θ(σ)

)′
vk(σ)

dσ

=
Vk(b)
vk(b)

Θ(b)− Vk(a)
vk(a)

Θ(a)+
∫ b

a

Vkv′k
v2

k
Θ.

(4.67)

To deal with the term containing the integral of J alone in (4.66), we use the inequality J(s)≥Θ(s)

coming from the monotonicity formulae in Proposition 4.3.1. This passage is crucial for us to

conclude. Inserting (4.67) and J ≥Θ into (4.66) we get

(F(t)+1)
Vk(S)
vk(S)

Θ(S)− (F(t)+1)
Vk(t−1)
vk(t−1)

Θ(t−1)+(F(t)+1)
∫ S

t−1

Vkv′k
v2

k
Θ

−
∫ S

t−1
Θ+

1
(S− s)2

[
Vk(S)
vk(S)

Θ(S)− Vk(s)
vk(s)

Θ(s)+
∫ S

s

Vkv′k
v2

k
Θ

]
+

Vk(t)
vk(t)

Θ(t)

−Vk(t−1)
vk(t−1)

Θ(t−1)+
∫ t

t−1

Vkv′k
v2

k
Θ≥ δ

Vk(s)
vk(s)

Θ(s)−δ
Vk(t)
vk(t)

Θ(t)+δ

∫ s

t

Vkv′k
v2

k
Θ.

(4.68)

To reach the desired contradiction, the idea is to prove that (4.6) cannot hold by showing that∫ S

t−1
Θ (4.69)

must grow sufficiently fast as S→+∞. To do so, we need to simplify (4.68) in order to find a

suitable differential inequality for (4.69).

We first observe that, both for k > 0 and for k = 0, there exists an absolute constant ĉ such that

ĉ−1 ≤Vkv′k/v2
k ≤ ĉ on [1,+∞). Furthermore, by the monotonicity of Θ,∫ S

s

Vkv′k
v2

k
Θ≤ ĉ(S− s)Θ(S). (4.70)

Next, we deal with the two terms in the left-hand side of (4.68) that involve (4.69):

(F(t)+1)
∫ S

t−1

Vkv′k
v2

k
Θ−

∫ S

t−1
Θ = F(t)

∫ S

t−1

Vkv′k
v2

k
Θ+

∫ S

t−1

Vkv′k− v2
k

v2
k

Θ

≤ ĉF(t)
∫ S

t−1
Θ+

∫ S

t−1

Vkv′k− v2
k

v2
k

Θ.
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The key point is the following relation:

Vk(s)v′k(s)− vk(s)2

vk(s)2


=−1/m if k = 0;

→ 0 as s→+∞, if k > 0.
(4.71)

Define

ω(t) .
= sup

[t−1,+∞)

Vkv′k− v2
k

v2
k

, χ(t) .
= ĉF(t)+ω(t).

Again by the monotonicity of Θ,

(F(t)+1)
∫ S

t−1

Vkv′k
v2

k
Θ−

∫ S

t−1
Θ ≤

[
ĉF(t)+ω(t)

]∫ S

t−1
Θ = χ(t)

∫ S

t−1
Θ

≤ χ(t)Θ(t)+χ(t)
∫ S

t
Θ.

(4.72)

For simplicity, hereafter we collect all the terms independent of s in a function that we call h(t),

which may vary from line to line. Inserting (4.70) and (4.72) into (4.68) we infer[(
F(t)+1+

1
(S− s)2

)
Vk(S)
vk(S)

+
ĉ

S− s

]
Θ(S)+χ(t)

∫ S

t
Θ

≥ h(t)+
(

δ +
1

(S− s)2

)
Vk(s)
vk(s)

Θ(s)+δ ĉ−1
∫ s

t
Θ.

(4.73)

Summing δ ĉ−1(S− s)Θ(S) to the two sides of the above inequality, using the monotonicity of Θ

and getting rid of the term containing Θ(s) we obtain[(
F(t)+1+

1
(S− s)2

)
Vk(S)
vk(S)

+
ĉ

S− s
+δ ĉ−1(S− s)

]
Θ(S)+χ(t)

∫ S

t
Θ

≥ h(t)+δ ĉ−1
∫ S

t
Θ.

(4.74)

Using (4.71), the definition of χ(t) and the properties of ω(t),F(t), we can choose tδ sufficiently

large to guarantee that

δ ĉ−1−χ(t)≥ ck
.
=


1
m + δ ĉ−1

2 if k = 0,

δ ĉ−1

2 if k > 0,
(4.75)

hence[(
F(t)+1+

1
(S− s)2

)
Vk(S)
vk(S)

+
ĉ

S− s
+δ ĉ−1(S− s)

]
Θ(S)≥ h(t)+ ck

∫ S

t
Θ. (4.76)

We now specify S(s) depending on whether k > 0 or k = 0.
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The case k > 0.

We choose S .
= s+1. In view of the fact that Vk/vk is bounded above on R+, (4.76) becomes

c̄Θ(s+1)≥ h(t)+ ck

∫ s+1

t
Θ≥ ck

2

∫ s+1

t
Θ, (4.77)

for some c̄ independent of t,s. Note that the last inequality is satisfied provided s ≥ sδ (t) is

chosen to be sufficiently large, since the monotonicity of Θ implies that Θ 6∈ L1(R+). Integrating

and using again the monotonicity of Θ, we get

(s+1− t)Θ(s+1)≥
∫ s+1

t
Θ≥

[∫ s0+1

t
Θ

]
exp
{ ck

2c̄
(s− s0)

}
,

hence Θ(s) grows exponentially. Ultimately, this contradicts our assumption (4.6).

The case k = 0.

We choose S .
= s+

√
s. Since Vk(S)/vk(S) = S/m, from (4.76) we infer[(

F(t)+1+
1
s

)
S
m
+

ĉ√
s
+δ ĉ−1√s

]
Θ(S)≥ h(t)+ ck

∫ S

t
Θ. (4.78)

Using the expression of ck and the fact that F(t)→ 0, up to choosing tδ and then sδ (t) large

enough we can ensure the validity of the following inequality:[(
F(t)+1+

1
s

)
S
m
+

ĉ√
s
+δ ĉ−1√s

]
<

[
1
m
+

δ ĉ−1

4

]
S =

[
ck−

δ ĉ−1

4

]
S

for t ≥ tδ and s≥ sδ (t). Plugging into (4.76), and using that Θ 6∈ L1(R+),

SΘ(S)≥ h(t)+
ck

ck−δ ĉ−1/4

∫ S

t
Θ≥ (1+ ε)

∫ S

t
Θ,

for a suitable ε > 0 independent of t,S, and provided that S≥ sδ (t) is large enough. Integrating

and using again the monotonicity of Θ,

SΘ(S)≥ (S− t)Θ(S)≥
∫ S

t
Θ≥

[∫ S0

t
Θ

](
S
S0

)1+ε

,

hence Θ(S) grows polynomially at least with power ε , contradicting (4.6).

Concluding, both for k > 0 and for k = 0 assuming (4.65) leads to a contradiction with our

assumption (4.6), hence (4.62) holds, as required.

4.5 Proof of Theorem 2

We first show that ϕ is proper and that M is diffeomorphic to the interior of a compact

manifold with boundary. Both the properties are consequence of the following lemma due to

(BESSA; COSTA, 2009), which improves on (ANDERSON, 1984; CASTILLON, 1999).
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Lemma 4.5.1 Let ϕ : Mm→ Nn be an immersed submanifold into an ambient manifold N with

a pole and suppose that N satisfies (4.5) for some k ≥ 0. Denote by Bs = {x ∈M; ρ(x)≤ s} the

intrinsic ball on M. Assume that

(i) limsup
s→+∞

s‖II‖L∞(∂Bs) < 1 if k = 0 in (4.5), or

(ii) limsup
s→+∞

‖II‖L∞(∂Bs) <
√

k if k > 0 in (4.5).
(4.79)

Then, ϕ is proper and there exists R > 0 such that |∇r|> 0 on {r ≥ R}, where r is

the extrinsic distance function. Consequently, the flow

Φ : R+×{r = R}→ {r ≥ R}, d
ds

Φs(x) =
∇r
|∇r|2

(
Φs(x)

)
(4.80)

is well defined, and M is diffeomorphic to the interior of a compact manifold with boundary.

The properness of ϕ enables us to apply Proposition 4.3.2. Therefore, to show that

Θ(+∞)<+∞ it is enough to check that

sn′k(s)
snk(s)

∫
Γs

[
|∇r|−1−|∇r|

]∫
Γs
|∇r|

∈ L1(+∞). (4.81)

To achieve (4.81), we need to bound from above the rate of approaching of |∇r| to 1

along the flow Φ in Lemma 4.5.1. We begin with the following

Lemma 4.5.2 Suppose that N has a pole and radial sectional curvature satisfying (4.5), and

that ϕ : Mm→ Nn is a proper minimal immersion such that |∇r|> 0 outside of some compact

set {r ≤ R}. Let Φ denote the flow of ∇r/|∇r|2 as in (4.80) and let γ : [R,+∞)→M be a flow

line starting from some x0 ∈ {r = R}. Then, along γ ,

d
ds

(
snk(r)

√
1−|∇r|2

)
≤ snk(r)|II(γ(s))| (4.82)

Proof: Observe that r(γ(s)) = s−R. By the chain rule and the Hessian comparison

theorem 4.19,

d
ds
|∇r|2 = 2Hessr(∇r, γ̇) =

2
|∇r|2

Hessr(∇r,∇r)

=
2
|∇r|2

Hess(ρ̄)
(
dϕ(∇r),dϕ(∇r)

)
+

2
|∇r|2

(
∇̄ρ̄, II(∇r,∇r)

)
≥ 2

sn′k(r)
snk(r)

(1−|∇r|2)+2|∇̄⊥ρ̄||II|,
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where ∇̄⊥ρ̄ is the component of ρ̄ perpendicular to dϕ(T M) and |∇̄⊥ρ|=
√

1−|∇r|2. Then,

d
ds
|∇r|2 ≥ 2

sn′k(r)
snk(r)

(1−|∇r|2)+2|II|
√

1−|∇r|2.

Multiplying by sn2
k(r) gives

d
ds

(
sn2

k(r)(1−|∇r|2)
)
≤ 2sn2

k(r)|II|
√

1−|∇r|2,

which implies (4.82).

The above lemma relates the behavior of |∇r| to that of the second fundamental form.

The next result makes this relation explicit in the two cases considered in Theorem 4.1.2.

Proposition 4.5.1 In the assumptions of the above proposition, suppose further that either

(i) ‖II‖L∞(∂Bs) ≤
C

s logα/2 s
if k = 0 in (4.5), or

(ii) ‖II‖L∞(∂Bs) ≤
C

√
s logα/2 s

if k > 0 in (4.5).
(4.83)

for s≥ 1 and some constants C > 0 and α > 0. Here, ∂Bs is the boundary of the intrinsic ball

Bs(o). Then, |∇r|(γ(s))→ 1 as s diverges, and if s > 2R and R is sufficiently large,

in the case (i), 1−|∇r(γ(s))|2 ≤ Ĉ
logα s

in the case (ii), 1−|∇r(γ(s))|2 ≤ Ĉ
s logα s

(4.84)

for some constant Ĉ depending on C.

Proof: We begin by observing that, in (4.83), ∂Bs can be replaced by Γs. Indeed,

since r(x)≤ r(o)+ρ(x), we can choose R large enough depending on r(o),α in such a way that,

for instance in (i),

|II(x)| ≤ C

ρ(x) logα/2
ρ(x)

≤ C1

r(x) logα/2 r(x)

for some absolute C1 and for each r ≥ R. Thus, from (i) and (ii) we infer the bounds

‖II‖L∞(Γs) ≤
C1

s logα/2 s
for (i), ‖II‖L∞(Γs) ≤

C1√
s logα/2 s

for (ii). (4.85)

Because of (4.85), up to enlarging R further there exists a uniform constant C2 > 0 such that, on

[R,+∞),

snk(s)|II(γ(s))| ≤


C1

logα/2 s
≤C2

d
ds

(
s

logα/2 s

)
if k = 0;

C1snk(s)√
s logα/2 s

≤C2
d
ds

(
snk(s)√
s logα/2 s

)
if k > 0.

(4.86)
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Integrating on [R,s] and using (4.82) we get

√
1−|∇r(γ(s))|2 ≤


C3(R)

s
+

C4

logα/2 s
≤ C5

logα/2 s
if k = 0,

C3(R)
snk(s)

+
C4√

s logα/2 s
≤ C5√

s logα/2 s
if k > 0,

for some absolute constants C4,C5 > 0 and if s > 2R and R is large enough. The desired (4.84)

follows by taking squares.

We are now ready to conclude the proof of Theorem 4.1.2 by showing that M has

finite density or, equivalently, that (4.81) holds.

Let η(s) be either

C
logα s

when k = 0, or
C

s logα s
when k > 0, (4.87)

where α > 1 and C is a large constant. In our assumptions, we can apply Lemma 4.5.2 and

Proposition 4.5.1 to deduce, according to (4.84), that

1−|∇r(γ(s))|2 ≤ η(s) on (R,+∞),

where γ(s) is a flow curve of Φ in (4.80) and C in (4.87) is large enough. In particular,

|∇r(γ(s))| → 1 as s→+∞. We therefore deduce the existence of a constant c > 0 such that, if

s≥ R and R is large enough,

sn′k(s)
snk(s)

∫
Γs

[
|∇r|−1−|∇r|

]∫
Γs
|∇r|

≤
sn′k(s)
snk(s)

η(s)

∫
Γs
|∇r|−1∫

Γs
|∇r|

≤ c
sn′k(s)
snk(s)

η(s).

In both our cases k = 0 and k > 0, it is immediate to check that sn′kη/snk ∈ L1(+∞), proving

(4.81).

4.6 Appendix 1: finite total curvature solutions of Plateau’s problem

In this appendix, we show that (smooth) solutions of Plateau’s problem at infinity

Mm→ Hn have finite total curvature whenever M is a hypersurface and the boundary datum

Σ⊂ ∂∞Hn is sufficiently regular. Consider the Poincaré model of Hn, let ∂∞Hn be its sphere at

infinity, and let M→Hn be a proper minimal submanifold. We say that M is Ck,α up to ∂∞Hn if

its closure M in the topology of the closed unit ball Hn =Hn∪∂∞Hn is a Ck,α -manifold with

boundary. We begin with a lemma, whose proof have been suggested to the second author by L.

Mazet.
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Lemma 4.6.1 Let ϕ : Mm→ Hn be a proper minimal submanifold. If M is of class C2 up to

∂∞Hn, then M has finite total curvature.

Proof: Let (Dn,〈 , 〉) be the Poincaré model of Hn, and write the Euclidean metric

〈 , 〉 on Dn as

〈 , 〉= λ
2〈 , 〉, with λ =

1−|x|2

2
.

Given a proper, minimal submanifold ϕ : (Mm,g)→ (Dn,〈 , 〉), we associate the isometric

immersion ϕ̄ : (M,(λ 2 ◦ϕ)g)→ (Dn,〈 , 〉), ϕ̄(x) .
= ϕ(x). Fix a local Darboux frame {ei,eα}

on (M,g) for ϕ , with {ei} tangent to M and {eα} in the normal bundle, and let ēi = ei/λ ,

ēα = eα/λ be the corresponding Darboux frame on (M,λ 2g) for ϕ̄ . Let dV and dV̄ = λ mdV

be the volume forms of (M,g) and (M,λ 2g), and denote with hα
i j and h̄α

i j the coefficients of the

second fundamental forms of ϕ and ϕ̄ , respectively. A standard computation shows that

h̄α
i j =

1
λ

hα
i j−

λα

λ
δi j,

where λα = eα(λ ). Evaluating the norms of II and ĪI, since hα
i j is trace-free by minimality we

obtain

|ĪI|2 = λ
−2|II|2 +m|∇⊥ logλ |2 ≥ λ

−2|II|2,

and thus |ĪI|mdV̄ ≥ |II|mdV . Integrating on M it holds∫
M
|II|mdV ≤

∫
M
|ĪI|mdV̄ .

However, the last integral is finite since M is C2 up to ∂∞Hn, and thus ϕ has finite total curvature.

In view of Lemma 4.6.1, we briefly survey on some boundary regularity results for solutions of

Plateau’s problem. To the best of our knowledge, we just found regularity results for hypersurfa-

ces. Let Mm→ Hm+1 be a solution of Plateau’s problem for a compact, (m−1)-dimensional

submanifold Σm−1 ⊂ ∂∞Hm+1. Then, a classical result of Hardt and Lin (HARDT; LIN, 1987)

states that if Σm−1 ↪→ ∂∞Hn is properly embedded and C1,α , with 0≤ α ≤ 1, near Σ each solution

Mm→Hn of Plateau’s problem is a finite collection of C1,α -manifolds with boundary, which

are disjoint except at the boundary. Therefore, near Σ, M can locally be described as a graph,

and the higher regularity theory in (LIN, 1989; LIN, 2012; TONEGAWA, 1993; TONEGAWA,

1996), applies to give the following: if Σ is C j,α , then M is C j,α up to ∂∞Hn whenever

- 1≤ j ≤ m−1 and 0≤ α ≤ 1, or
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- j = m and 0 < α < 1, or

- j ≥ m+1 and 0 < α < 1, under a further condition on Σ if j is odd.

(see the statement and references in (LIN, 2012)). In particular, because of Lemma 4.6.1, if Σ is

C2,α for some 0 < α < 1 then M has finite total curvature (provided that it is smooth).

4.7 Appendix 2: the intrinsic monotonicity formula

We conclude by recalling an intrinsic version of the monotonicity formula. To state

it, we premit the following observation due to H. Donnelly and N. Garofalo, Proposition 3.6 in

(DONNELLY; GAROFALO, 1992).

Proposition 4.7.1 For k ≥ 0, the function

Vk(s)
vk(s)

is non-decreasing on R+. (4.88)

Proof: The ratio v′k/vk is monotone decreasing by the very definition of vk. Then, since v′k > 0,

the desired monotonicity follows from a lemma at p. 42 of (CHEEGER et al., 1982).

Proposition 4.7.2 (The intrinsic monotonicity formula) Suppose that N has a pole ō and sa-

tisfies (4.5), and let ϕ : Mm→ Nn be a complete, minimal immersion. Suppose that ō ∈ ϕ(M),

and choose o ∈M be such that ϕ(o) = ō. Then, denoting with ρ the intrinsic distance function

from o and with Bs = {ρ ≤ s},
vol(Bs)

Vk(s)
(4.89)

is monotone non-decreasing on R+.

Proof: We refer to Proposition 4.3.1 for definitions and computations. We know that the

function ψ = f ◦ r, with f as in (4.39), solves ∆ψ ≥ 1 on M. Integrating on Bs and using the

definition of ψ we obtain

vol(Bs)≤
∫

Bs

∆ψ =
∫

∂Bs

〈∇ψ,∇ρ〉 ≤
∫

∂Bs

Vk(r)
vk(r)

.

Next, since ō = ϕ(o), it holds r(x)≤ ρ(x) on M. Using then Proposition 4.7.1, we deduce

vol(Bs)≤
Vk(s)
vk(s)

vol(∂Bs).

Integrating we obtain the monotonicity of the desired (4.89).
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5 CONCLUSÃO

In the first part of this thesis we dealt with the 3D Navier-Stokes and Boussinesq

systems in a cube. We proved some results concerning the global approximate controllability by

means of boundary controls which act in some part of the boundary. Still we proved the internal

and boundary local null controllability of a 1D parabolic PDE with nonlinear diffusion. In the

second part of this Thesis, we considered Mm minimal properly immersed submanifolds in a

complete ambient space Nn suitably close to a space form Nn
k of curvature−k≤ 0 and we proved

that if the density function Θ(r) has subexponential growth (when k < 0) or sub-polynomial

growth (k = 0) along a sequence, then the spectrum of Mm is the same as that of the space form

Nm
k . Thus, we have that the applies to Anderson’s (smooth) solutions of Plateau’s problem at

infinity on the hyperbolic space Hn, independently of their boundary regularity. Finally, we also

give a simple condition on the second fundamental form that ensures M to have finite density. In

particular, we showed that minimal submanifolds of Hn with finite total curvature have finite

density.
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