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ABSTRACT

Nowadays a very large quantity of data is flowing around our digital society. There is a growing

interest in converting this large amount of data into valuable and useful information. Machine

learning plays an essential role in the transformation of data into knowledge. However, the

probability of outliers inside the data is too high to marginalize the importance of robust

algorithms. To understand that, various models of outliers are studied.

In this work, several robust estimators within the generalized linear model for regression frame-

work are discussed and analyzed: namely, the M-Estimator, the S-Estimator, the MM-Estimator,

the RANSAC and the Theil-Sen estimator. This choice is motivated by the necessity of exam-

ining algorithms with different working principles. In particular, the M-, S-, MM-Estimator

are based on a modification of the least squares criterion, whereas the RANSAC is based on

finding the smallest subset of points that guarantees a predefined model accuracy. The Theil Sen,

on the other hand, uses the median of least square models to estimate. The performance of the

estimators under a wide range of experimental conditions is compared and analyzed.

In addition to the linear regression problem, the dimensionality reduction problem is considered.

More specifically, the locally linear embedding, the principal component analysis and some robust

approaches of them are treated. Motivated by giving some robustness to the LLE algorithm,

the RALLE algorithm is proposed. Its main idea is to use different sizes of neighborhoods

to construct the weights of the points; to achieve this, the RAPCA is executed in each set

of neighbors and the risky points are discarded from the corresponding neighborhood. The

performance of the LLE, the RLLE and the RALLE over some datasets is evaluated.

Keywords: Outliers. Robustness. Linear Regression. Dimensionality Reduction. Locally Linear

Embedding.



RESUMO

Na atualidade um grande volume de dados é produzido na nossa sociedade digital. Existe um

crescente interesse em converter esses dados em informação útil e o aprendizado de máquinas tem

um papel central nessa transformação de dados em conhecimento. Por outro lado, a probabilidade

dos dados conterem outliers é muito alta para ignorar a importância dos algoritmos robustos.

Para se familiarizar com isso, são estudados vários modelos de outliers.

Neste trabalho, discutimos e analisamos vários estimadores robustos dentro do contexto dos

modelos de regressão linear generalizados: são eles o M-Estimator, o S-Estimator, o MM-

Estimator, o RANSAC e o Theil-Senestimator. A escolha dos estimadores é motivada pelo

principio de explorar algoritmos com distintos conceitos de funcionamento. Em particular os

estimadores M, S e MM são baseados na modificação do critério de minimização dos mínimos

quadrados, enquanto que o RANSAC se fundamenta em achar o menor subconjunto que permita

garantir uma acurácia predefinida ao modelo. Por outro lado o Theil-Sen usa a mediana de

modelos obtidos usando mínimos quadradosno processo de estimação. O desempenho dos

estimadores em uma ampla gama de condições experimentais é comparado e analisado.

Além do problema de regressão linear, considera-se o problema de redução da dimensionalidade.

Especificamente, são tratados o Locally Linear Embedding, o Principal ComponentAnalysis e

outras abordagens robustas destes. É proposto um método denominado RALLE com a motivação

de prover de robustez ao algoritmo de LLE. A ideia principal é usar vizinhanças de tamanhos

variáveis para construir os pesos dos pontos; para fazer isto possível, o RAPCA é executado em

cada grupo de vizinhos e os pontos sob risco são descartados da vizinhança correspondente. É

feita uma avaliação do desempenho do LLE, do RLLE e do RALLE sobre algumas bases de

dados.

Palavras-chave: Outliers. Estatística Robusta. Regressão Linear. Redução de Dimensionalidade.

Locally Linear Embedding.
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1 INTRODUCTION

1.1 Machine Learning

The main purpose of the Machine Learning (ML) is the implementation of algorithms

capable of learning from data. For Murphy (2012, p. 1) the concept of ML is related with a

constant effort to make automated methods for analyzing data. There is no doubt about the

interdisciplinarity of the machine learning field, including probability and statistics, information

theory, artificial intelligence and others (MITCHELL, 1997, 2).

In the machine learning universe, the word train is highly related with the word learn.

According to Bishop (2006, p. 2), if someone uses a process that takes a data set and train to get

the parameters of an adaptive model β, then the person is using the machine learning approach.

In the training phase the algorithm is learning from the data. The next phases will depend on

the kind of the problem; one part of the problems that we treat in this work involve, in the last

phase, the prediction of outcomes for new unknown data (see Chapter 2). Then generalization is

our aim, and it happens when an ML algorithm is capable to recognize or categorize a new data

which was not part of the data set used in the training phase (BISHOP, 2006, p. 2).

Preprocessing, such as dimensionality reduction, is a common technique executed in

the data before any type of training; it will depend however on the nature of the problem, but

more importantly, on the nature of the ML implementation algorithm (BISHOP, 2006, p. 2).

Another relevant process is the design, which implies the completion of four steps (MITCHELL,

1997, p. 13): The first step is to determine the type of training experience (from whom or where

will the algorithm learn?). The second step is to determine the objective function (What do you

want to minimize?). The third step is to determine the representation of the model structure (i.e

Linear, Polynomial, Neural Network). The last step is to determine the learning algorithm (How

to minimize the objective function?).

There are parametric and non parametric processes in machine learning. The use of

parameters makes the dependency on the data distribution assumptions stronger; Nevertheless,

the computation of the model becomes faster. On the other hand, the non-parametric models are

more flexible but computationally heavier (MURPHY, 2012, p. 16).

Probability theory has a really important role in machine learning. One of the most

influential theorems in ML is the Bayes theorem (BISHOP, 2006, p. 15). Frequently in the

probabilist machine learning, the maximum likelihood estimator that maximizes the function
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p(D|β̃) is used, in which the model β̃ is chosen in regard to maximize the probability of the

data D. Using the maximum likelihood approach, it is not reasonable to merely focus on the

performance of the model over the training set, because overfitting (failure to generalize) is a

frequent problem. To select the model that generalizes better, the data can be partitioned in

two parts and using the biggest part to train and the other part, called the test set, to evaluate

the performance of the model. Another option is to use cross-validation, the technique which

splits the data into n folds, and then iterates using Si as test set and D ) Si ∀i as the training set

(BISHOP, 2006, p. 32-33).

Basically, learning paradigms can be divided into two principal types: the unsu-

pervised learning or descriptive learning and the supervised learning or predictive learning

(MURPHY, 2012, p. 2). We are talking about them in the Sections 1.1.1 and 1.1.2. The range of

problems that can be treated with an unsupervised learning algorithm is wider than the range

of problems which the supervised ML is capable to solve (MURPHY, 2012). The latter can be

explained because of the inherent requirement of the supervised ML to train with labeled data.

Some authors believe in the capacity to extract information coming out from the pure data itself,

and also hold that the unsupervised ML is more related with the learning capacity of the animals

(including the human species) than the supervised ML (MURPHY, 2012, p. 9-10). In contrast to

this, the most widely used type is the supervised ML (MURPHY, 2012, 3).

There is a third type of machine learning called reinforcement learning that is related

to learning based on the reward/punishment obtained for executing actions (MURPHY, 2012, 2).

Therefore the objective of reinforcement learning is to learn which choices would maximize the

absolute reward; its learning process typically uses a kind of trial/error technique (BISHOP, 2006,

3). Examples of problems using the reinforcement learning type are puzzle games, manufacturing

problems and scheduling problems (MITCHELL, 1997, p. 367-368). The detailed treatment of

reinforcement leaning lies beyond the scope of this work.

1.1.1 Unsupervised Learning

‘No outcome measure’ can be a representative phrase to describe unsupervised

learning. In this type of machine learning the main goal is to discover patterns, associations

or structures inside the data. In an unsupervised machine learning problem, we have a set of

observations X = {x1, ...,xn}, and a density estimator can be used to accomplish the calculation

of the model (FRIEDMAN et al., 2001, p. 486).
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The model β of parameters is made in the form of p(xi|β). The intention is to

infer the properties from the model β without having the right properties to correct the training

process (FRIEDMAN et al., 2001, p. 486). Examples of this type of learning are clustering and

dimensionality reduction.

1.1.1.1 Cluster Analysis

The cluster analysis technique, also known as data segmentation, is one of the most

popular unsupervised learning procedures. As its name suggest, it is related to finding, inside

of the dataset, subgroups or segments called subsets or clusters (FRIEDMAN et al., 2001, p.

501). In this technique, the elements of the dataset are identified by a set of properties and it is

expected to obtain clusters, where all the elements inside each cluster have similar properties

(FRIEDMAN et al., 2001, 502).

1.1.1.2 Dimensionality Reduction

Dimensionality reduction can be useful in some contexts as a data pre-processing

stage, still in other cases as a necessary procedure. Dimensionality reduction is a technique

concerned with the transformation of the dimensionality of the data. As its name suggests this

transformation is made to obtain a new meaningful dataset with less dimensionality than the

original set (MAATEN et al., 2009, p. 1).Some examples of real world datasets that commonly

need a reduction of their dimensionality to be processed are digital photographies, speech signals

and fMRI scans (MAATEN et al., 2009, p. 1). The reduction of the dimensionality of data can

also be helpful to achieve lossy data compression, data visualization and exploratory analysis

(BISHOP, 2006, p. 561)(ROWEIS; SAUL, 2000, p. 1).

The processes of dimensionality reduction used in this context are the ones in which

the dimension of the data is reduced (Feature Extraction) but not the number of observations.

In this work, two methods of dimensionality reduction are explained: the Principal Component

Analisys (PCA) and Local Linear Embedding (LLE), and some robust approaches of them, too.

The theory about the algorithms is presented in detail in Chapter 3.
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1.1.2 Supervised Learning

In supervised learning the objective is to learn from labeled data. This means that if

we have n observations in the dataset, each element xi has another element or label ti. In other

words, the data consist of a set of input vectors xi along with their corresponding output vector

ti ∀i (BISHOP, 2006, p. 3).

The input vector xi can represent almost anything, from simple integers to phrases or

audios. In the same way, the output can express a wide range of information, but it has to be

represented into a categorical (qualitative, discrete) variable or nominal (quantitative, continue)

variable. These conditions in the specification of the output lead to the categorization of the

problem in two types: a classification problem when the output is categorical and a regression

problem when the output is nominal. Besides classification and regression a special type of

problem remains, it happens when the output presents qualitative and quantitative values. Then

you can use a combination of methods used in the two first types if it is possible. (FRIEDMAN

et al., 2001, p. 10).

There exists a third type of supervised learning problem. It occurs when the output

is an ordered variable (such as cold, warm, hot), but it is not in the scope of this work to explain

the details of this problem (For details of this type see Friedman et al. (2001, p. 10)).

1.1.2.1 Classification

Classification supervised problem arises when the output is represented using quali-

tative variables. The most common and practical option is to encode all the possible outputs or

categories using a numeric form. If there are only two categories (called binary classification),

the simplest way is to encode using ‘1’ to represent one category and ‘0’ to represent the other

category. On the other hand if there are k > 2 categories (called multiclass classification) a K

binary variable scheme is normally used. In this scheme each output variable is represented in a

vector t ∈ Rk, and all the values inside the vector are zero except the ith position that represents

the number of the category, then ti = 1 and t j = 0 ∀ j 6= i (FRIEDMAN et al., 2001, 10).

Using the probabilistic approach, if Ck represents the class specified in the output t

and D the dataset, the conditional probability function p(Ck|xi,D) denotes the probability of Ck
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over the input x (BISHOP, 2006, p. 180). Applying the Bayes theorem,

p(Ck|xi,D) =
p(xi,D|Ck)p(Ck)

p(xi,D)
(1.1)

and using the maximum posterior to solve the classification problem, we say that the model

represents the values yi, such

yi = max
k

p(Ck|xi,D) ∀i. (1.2)

1.1.2.2 Regression

Regression is a type of supervised learning problem where the output variables are

continuous. The inputs are also called explanatory variables and the outputs are the response

variables. Using the probabilistic approach, regression is very similar to classification, since the

main idea is to find the model in which

yi = max p(yi|xi,D) ∀i. (1.3)

In this work the models are represented by linear functions. The use of linear functions for

regression is one of the most representative approaches and carries advantages for studying

purposes (BISHOP, 2006, 137).

1.2 Outliers

The definitions of Outlier found in the literature are usually different from each other

and there is no consensus about which of them is the most accurate. The word outlier literally

means something that stands outside of somewhere. It is important to understand that the context

of the problem that you are trying to solve makes one definition of outlier fit better than another.

Using a viewpoint more focused on the linear regression problems, Rousseeuw e

Leroy (1987, p. 7) define Outlier as a point i where “(xi, ti) deviates from the linear relation

followed by the majority of the data, taking into account both the explanatory variables and

the response variable simultaneously”. A broader definition can be found where Susanti et al.

(2014, p. 1) used the word outlier like a synonym of extreme observation. Another explanation is

provided in the work of Andersen (2008, p. 31), who says than an outlier is “a datum which sits

away from the rest of the distribution for a particular variable, either response or explanatory”.

Analogous to Andersen, Freire e Barreto (2014, p. 1) treat outliers as inconsistent data points

with the remainder points within the data set.
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Anscombe (1960) mentioned the three main causes of variability in the data, that

can arise in the occurrence of outliers. The first one is the measurement errors and are mostly

related to instrument errors or the misuse of them. The second cause is the execution faults (e.g.

changes in the system, mis-selection of some samples, design errors). Finally the third one is the

intrinsic variability of the data. Generally, it is not an easy task to identify which of the last three

causes is the origin of an outlier (BARNETT, 1978), and to then apply some method to deal with

the spurious data.

One technique that can come to mind is to simply erase or remove the data which

show similar patterns with some definition of outlier, but we cannot simply remove the data

points from the dataset (HUBER; RONCHETTI, 2009, p. 4). The main reasons are:

1. It is not trivial to recognize the outliers (even more in multidimensional problems) in one

step and then make the regression.

2. Even executing a process to clean the dataset of outliers, is common to make false rejections

and false retentions. The resulting data set still cannot have normal distribution, and this

can culminate in a more difficult problem. It is better to use robust methods than two-step

(reject-regress) approaches.

3. In Hampbel experiments, the performance achieved by the best robust procedures looks to

be higher than the best rejection procedures. In addition to that, the traditional rejection

methods seem to suffer ‘masking’ when multiple outliers affect the data. (Studies made by

Hampbel 1974,1985)

Some people may ask why they have to take care of the outliers, probably thinking

that their dataset only has clear or right values. The occurrence of data with peculiarities or

attributes far away from the bulk of data is almost present in each data set in the real world.

Hampel (1973) joined the conclusions in a wide range of scientific works, and he stained that

between “5-10% wrong values in a data set seem to be the rule rather than the exception”.

In the Chapters 2 and 3, some algorithms designed to overcome the problem of

outliers without (detecting and) deleting them from the dataset are described.

1.2.1 Models of Outliers

It is already known that usually the real world datasets contain outliers; on the other

hand, if we are going to make artificial datasets with the goal of testing/comparing algorithms, it

is probably a good decision to include a percentage of outliers, in the same way that a normal
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dataset would have so included. In this section are showed some models that describe the

presence of outliers in one dataset; some are general models that can be used in almost any

problem and others are more specific for linear regression problems.

Barnett (1978, p. ag248) proposes a list of model alternatives. He defines H as the

hypothesis which claims that the data have an F distribution, so

H : x j ∈ F ∀ j.

One second hypothesis H̃ determine the real distribution of the data, and at the same time, it

is the explanation for the outliers present in the dataset. The following list explains the five

alternatives of how H̃ can be defined:

(B1) Deterministic Alternative

xi is already known as an outlier, so

H̃ : x j ∈ F ∀ ( j 6= i).

(B2) Inherent Alternative

Here we have another distribution for all the data

H̃ : x j ∈ G 6≡ F ∀ j.

(B3) Mixture Alternative

In this case we use λ , where 0 ≤ λ ≤ 1, to make a mix of the F distribution from the

original hypotesis H and another different distribution. Hence

H̃ : x j ∈ (1−λ )F+λG ∀ j.

(B4) Slippage Alternative

This alternative is the most used,

H̃ :

x j ∈ F ∀ ( j 6= i),

xi ∈ G.

Additionally to that, Barnett (1978) saids that frequently F ≡ G, but, if F ∼ (µ,σ2)⇒

G∼ (µ +a,σ2) or G∼ (µ,bσ2), where (a > 0) and (b > 1).

(B5) Exchangeable Alternative

This is an extension of the previous alternative, “assuming that the index i of the discordant
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value is equally likely to be (1,2, ...,n).”

H̃ :


x j ∈ F ∀ j

xi ∈ G,

p(i = j) = n−1 ∀ j.

The following model is given by Horata et al. (2013). Suppose that we are working

with simple linear regression, and therefore we have a target (output) vector t. For each element

of the t vector we have an associated element x in the inputs; then either t̃ is the target vector

contaminated with ’one-sided’ outliers or t̂ is the target vector contaminated with ’two-sided’

outliers and the o vector is generated using normal distribution. Then we can define:

t̃ j = t j + |o j|, ∀ j, (1.4)

t̂ j = t j +o j, ∀ j. (1.5)

The standard deviation σ of the o vector is an aspect not mentioned in the paper of Horata

et al. (2013). It is possible to apply this generation model to other kind of problems, simply

considering the contamination of other target vectors or variables. That is done in order to

generate outliers in any dimension of the data.

The last outlier model described in this work is proposed by Wang et al. (2010). The

explanation is made with the assumption of working with simple regression, but the same as in

the last model, it can be applied in any dimension of any problem. Then we have a target vector

t and the list of steps are:

1. Find out the maximum value max and the minimum value min of t, calculate it’s mean µ

and standard deviation σ too.

2. Calculate an upper Mupper margin and lower Mlower margin defined by

Mupper = ||max|−σ |, (1.6)

Mlower = ||min|−σ |. (1.7)

3. Generate k random values, where:

I ⊆ ([max,(max+Mupper)]∪ [(min−Mlower),min]) (1.8)

and |I|= k (1.9)

In addition to the given models, a combination of the information provided by the

context of the problem and statistics techniques can be found in literature. This is with the
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intention of providing an "adjusted to problem" model of outliers. For example, Ratcliff (1993,

p. 511) knows that the common distribution of the time data for some chemical reactions is the

ex-Gaussian with some specific parameters µ , σ and τ; then for the outliers he generates data

with different sets of values for the parameters µ , σ and τ .

1.2.2 Leverage Points

A simple definition of leverage point is given by Rousseeuw e Yohai (1984, p. 257);

they describe it as “an outlying in some xi, i ∈ (1, ...,n)”. The type of effect that can be made

by a leverage point differs from the effect produced by outliers in ti (ROUSSEEUW; LEROY,

1987, p. 7). Generally the occurrence of leverage points can be explained if the xi∃i are not

generated artificially; In other words, this happens mostly with data obtained from an observable

real problem (ROUSSEEUW; ZOMEREN, 1990, p. 634).

Xin e Xiaogang (2009, p. 137) affirm that the points lying far enough from the spatial

center of the other explanatory variables have leverage. This definition of leverage point does

not include any relation with the response variable but rather with the explanatory. However, the

relation between the two variables (xi, ti) is also important because that can define the type of

the leverage points.

There are two types of leverage points. If the outlying xi does not suggest a break in

linear regression pattern followed by the bulk of the data, then we can affirm that it is a good

leverage point; Otherwise it is a bad leverage point and represents a regression outlier (STUART,

2011, p. 6).

This work does not have as a goal to deal with leverage points, nor in analyzing the

effects of them in the experiments, as we see in the Chapter 4. All the regressors chosen, except

the ordinary least squares, protect in some degree from the outlying of the response variables.

1.3 Robustness

In this work the terms robust and resistant are treated as equivalents. Wrong mod-

eling assumptions about the distribution of the residuals can cause serious problems. In the

classical algorithms as least squares and principal component analysis (see Sections 2.1.2 and

3.2 respectively), the assumption is the normality of the residuals, and only one point “that does

not follow the assumption of normallity” is capable to break the resultant model (ROUSSEEUW;
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YOHAI, 1984, p. 256).

The notion of robustness in algorithms “signifies insensitivity to small deviations

from the assumptions” (HUBER; RONCHETTI, 2009, p. 2) but involves more important

concepts which persuades us not to trust totally in the assumptions made (STUART, 2011, p. 2).

Thus, the resistance cannot be achieved by merely ignoring the points detected as spurious, like

some people may think (ROUSSEEUW; LEROY, 1987, p. 8).

In the book Robust Statistics of Huber e Ronchetti (2009), the authors define a

list with 3 principal features (efficiency, stability and breakdown) that a good robust statistical

procedure should have. The first statement says that it must have a reasonably high efficiency,

almost optimal; the second one is related to the repercussion of small deviations from the

assumptions made, and stands to maintain low the asymptotic variance of the estimate; the last

one emphasizes that if some big deviations appear from the assumptions made, it will not result

in a catastrophe.

1.4 Motivation and Objectives

Many of the methods used in the classical statistic are known to be non robust. There

are classic algorithms that are highly affected by deviations on the assumptions made over

the structure of the data. Some of these methods are highly used until today for solving their

related problems; they are also combined with other methods and that makes their scope larger.

Nowadays, it is common to deal with big high-dimensional datasets; and it makes complicated to

understand the underlying structure of the data and then make the correct assumptions to create

the models.

There is a motivation to comprehend how the robust statistics works. The linear

models, as Bishop says, have “nice analytical properties and are probably the best way to start if

you want to understand more sophistical models” (BISHOP, 2006, 137). Hence, in this thesis,

the linear regression experiments are designed to understand how some both classic and robust

algorithms perform under wrong data modeling assumptions. To achieve that, some outlier

generation methods and some robustness features in liner regression have to be explained. The

objective is to analyze the performance of the ordinary least squares, the M-Estimator, the

S-Estimator, the MM-Estimator, the RANSAC and the Theil-Sen Estimator under a wide range

of experimental conditions.

Some of the data-driven lattice DR algorithms are simple techniques that finds
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solutions with global minimum. The locally linear embedding is one of them and its robust

approaches are just a few. This leads to propose a new robust approach for the locally linear

embedding method. To do that, a formal description of the Locally Linear Embedding (LLE),

the RLLE, the RALLE, the Principal Component Analysis (PCA), the weighted PCA and the

RAPCA is developed. The objective is to analyze the performance of the LLE, RLLE and

RALLE under some experimental datasets.

The performance of the linear regressors is measured with the mean squared error.

Meanwhile, the performance of the dimensionality reduction techniques is evaluated with the

trustworthiness and continuity.

1.5 Overview and Organization of the Thesis

In the numerical datasets, the rows represent instances or elements and the columns

are the attributes or variables. Spurious elements can be found in almost any dataset of the

real word. The main algorithms proposed to deal with the linear regression problems and

the dimensionality reduction problems are not developed to cope with these type of instances.

Therefore, anyone can suggest the use of some process to analyze and find the anomalous

elements inside the data; then erase these points from the dataset and continue with the typical

procedure. This approach is sometimes employed, but as it was explained above, it can caries

some additional problems and it can be also an inviable procedure to apply. It can be hard

to perceive some underlying features within the data, but is even harder to understand them

completely.

The robust statistics area has been developed since the middle of the last century

(Tukey (1960)) and until today (DIAKONIKOLAS et al., 2016) it is still developing techniques

to cope with deviations from the assumptions made. In the scope of the thesis, the robust

algorithms are designed to achieve the already mentioned problems without the application

of some pre-processing phase. The treatment that the robust algorithms do to the data differs

between each of them; and the performance also varies depending on the conditions that the

spurious elements are disposed into the dataset.

This thesis is mainly organized into three parts; the first part involves the theory of

the generalized linear regression models and some robust approaches of them; the second part

of the work is related with the locally linear embedding and some methods to provide it with

robustness; lastly, the third part describes the experiments made with synthetic and real-world
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data and also it is developed an analysis and a comparative of the performances of the algorithms.

The Chapter 2 begins with the definition of the generalized linear models and the

use of basis functions. A set of robust features in linear regression used to analyze the estimators

are explained. Besides that, the robust linear regression algorithms are detailed. These are the

M-Estimator, the S-Estimator, the MM-Estimator, the RANSAC and the Theil Sen.

Chapter 3 treats dimensionality reduction topics. The locally linear embedding, the

principal component analysis, the weighted principal component analysis, the RAPCA and the

RLLE are explained. Additionally, a new robust approach for the locally linear embedding is

formally presented; its name is RALLE.

Inside the Chapter 4, the entire experimentation process of the linear regression is

described. The generation of the synthetic datasets and the description of the real-world data are

detailed. The results of the experiments are analyzed and used to compare the algorithms. The

Chapter 5 is similar to the previous one, except, that it is related to the locally linear embedding

algorithms.

Finally, in Chapter 6, the obtained results are summarized and the thesis is con-

cluded.



Part I

Robust Generalized Linear Regression
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2 ROBUST GENERALIZED LINEAR REGRESSION

Knowing that every dataset commonly includes some percentage of outliers, the im-

plementation of robust regression algorithms to make the models is probably the most reasonable

decision. At the same time, this choice may be required if is known that the residuals are not

normally distributed or have an unknown distribution (SUSANTI et al., 2014, p. 351).

The main goal of regression is to predict continuous target y from an input vector x,

in that case we call it simple regression. If the prediction regards a target vector y the problem is

called multivariate regression. In this work, we are concerned with simple linear regression.

Robust estimators of regression are the ones not highly affected by the outliers in

the dataset (ROUSSEEUW; LEROY, 1987, p. 8). Huber e Ronchetti (2009, p. 8) mention that

one goal of using robust methods “is to safeguard against deviations from the assumptions, in

particular against those that are near or below the limits of detectability”.

2.1 Generalized Linear Models

We have a set of n observations X = {x1, ...,xn}, where each observation xi ∈ RD

is associated with a target value ti ∈ R. The D dimensional vectors xi are called as input or

explanatory variables because they are used to explain output or response variable t = y(x,β)+ε ,

in which ε is the zero mean Gaussian noise and β is the m dimensional vectors of parameters

(XIN; XIAOGANG, 2009, p. 9).

The generalized linear regression model y(x,β) is given by

y(x,β) = β0 +
m−1

∑
j=1

β jφ j(x), (2.1)

where φ j(x) are known as basis functions and represent some transformation of the input x; the

m−1 value define the quantity of basis functions used in the problem (BISHOP, 2006). Classic

linear regression is a particular case of this general model in which φ(x) = x. Whatever the

choice of the basis functions, the generalized regression model is linear in the parameters β. The

parameter β0, also known as the bias parameter, corresponds to the output when all the inputs

are 0. If we add to the basis functions the φ0(x) = 1 term, then we can write the Equation 2.1 as

follows

y(x,β) =
m−1

∑
j=0

β jφ j(x) = βTφ(x). (2.2)
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2.1.1 Basis Functions

The basis functions φ j(x) can be non-linear, thus allowing y(x,β) to be nonlinear

in the inputs, but maintaining the linearity in the transformed inputs and in the parameters

β. Examples of basis functions are polynomials, splines, radial basis functions, wavelets,

logarithmic transformations, and others (KOHN et al., 2001, p. 139) (BISHOP, 2006).In the

following we show some examples of basis functions.

The first example are Radial Basis Functions (RBF). Various types of RBFs are

popular in neural networks, and in general they are characterized by the calculation of distances

between the input vectors and some other point called center (FRIEDMAN et al., 2001, p. 36).

A commonly used type of RBF is the Gaussian Kernel

φ j(x) = exp

(
−
‖x−u j‖

2s2
j

)
, (2.3)

where the term u j from j = (1, ...,m) represents the centers and s j determines the scale of the

space (FRIEDMAN et al., 2001, p. 139) (BISHOP, 2006, p. 36). The norm of the 2 vectors can

represent the Euclidean distance or some other measure of spatial distance.

Another common example of basis function is the sigmoid. This basis function is

defined as

φ j(x) = σ

(
−
‖x−u j‖

s j

)
, (2.4)

where σ(a) represents the logistic sigmoid function σ(a) = 1/(1+ exp(−a)). Note that the

sigmoid uses the terms u j and s j in the same way as Gaussian Kernel does.

In the following, we assume that the set of observations X ∈Rn×m have been already

transformed by the φ j functions, ∀ j and with φ0 = 1.

2.1.2 Classic Least Squares

The Least Squares algorithm is the standard method for estimating, from data, the

parameters β in generalized linear regression. The most commonly used variant of this method

is called Ordinary Least Squares (OLS) (SUSANTI et al., 2014).

We define the input matrix as X ∈ Rn×m, X = [x1, ....,xn]
T; it represents all the

dataset coming from n points and m explanatory variables, and a target vector t, then OLS is the
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method which obtains the model β̃ that minimizes the sum of squared error E(β),

E(β) =
1

2

n

∑
i=1

(ti−βTxi)
2. (2.5)

To obtain the model β̃ which minimizes the sum of squares, we set the derivative

∇βE(β) =
n

∑
i=1

(ti−βTxi)xT
i (2.6)

to 0, obtaining that

0 =
n

∑
i=1

(tixT
i )− β̃T(

n

∑
i=1

(xixT
i ) (2.7)

If we solve the Equation 2.7 for β̃, then we have the normal equations for the least squares:

β̃ = (XTX)−1XTt (2.8)

We can use the X† Moore-Penrose pseudo-inverse of X, in the Equation (2.8) which is defined as

follows:

X† ≡ (XTX)−1XT (2.9)

Minimizing the sum of squares error is equivalent to the maximization of the likeli-

hood under the assumption of Gaussian noise distribution of r (BISHOP, 2006, p. 141).

The OLS, as a classical method, is one of the chosen regression algorithms in this

work being evaluated and compared in the experiments made.

2.1.3 Mean Squared Error

The Mean Squared Error (MSE) of an estimator is a classic measure used to de-

termine the performance of an estimate (XIN; XIAOGANG, 2009, p. 238). It is defined as:

MSE(β̂) = E[(β− β̂)2] = Var(β̂)+(E[β̂]−β)2. (2.10)

This is known as the Bias-Variance trade off (MURPHY, 2012, p. 202). That is why even though

the least squares is the one that achieves the lowest variance (among all the unbiased estimators),

it will not necessarily reach the minimum MSE (FRIEDMAN et al., 2001, p. 52). The MSE can

be calculated for a test dataset as

MSE(β̂) =
1

n

n

∑
i=1

(ti− y(xi, β̂)
2. (2.11)
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2.1.4 Robustness Features in Linear Regression

There are many robust methods to choose, and it can be a difficult task to determine

which methods are better than others. Beyond the performance (in terms of error or outliers),

there are other global measures to compare the methods. Thus we discuss in more detail what is

Efficiency, Breakdown Point and Equivariance (STUART, 2011, p. 8).

2.1.4.1 Equivariance

Given an estimator S with S(X, t) = β, we can say that S is equivariant if it is

possible to define linear transformations over some of the problem data and the model preserve

consistency (ROUSSEEUW; LEROY, 1987, p. 116) (KOENKER; JR, 1978, p. 39). In other

words an estimator can be considered equivariant if it can treat a problem as invariant under

certain linear transformations (DAVIES et al., 1993, p. 1861). The three types of equivariance

and their linear transformations are (STUART, 2011, p. 9):

• The estimator is regression (shift) equivariant if an “additional linear dependence t→

t+Xa” can be reflected in β→ β+a:

T ({(xi, ti +xiv)}) = T ({(xi, ti)})+v, ∀i. (2.12)

• The estimator is scale equivariant if it guarantees independence over the scale of the

response variable t, so any transformation t→ at is reflected in β→ aβ:

T ({(xi,cti)}) = cT ({(xi, ti)}), ∀i. (2.13)

• The estimator is affine equivariant if guarantee independence over the transformations of

the explanatory variables X or reparametrization of design, when X→ AX is reflected in

β→ A−1β:

T ({(XTA, t)}) = A−1T ({(XT, t)}). (2.14)

2.1.4.2 Breakdown Point of an estimator

Breakdown Point (BDP) is defined by the “smallest fraction of contamination that

can cause the estimate to break down and no longer represent the trend in the bulk of the data”

(STUART, 2011, p. 8). The first mathematical asymptotic definition was formulated by Hampbel
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(1971), but it fell into disuse because Dohono and Huber (1983) introduced the finite-sample

version.

In the least squares, only one point(outlier) can totally spoil the obtained model.

However, this is not the case with others regressors that can handle a considerable portion of

outliers in the data (ROUSSEEUW; LEROY, 1987, p. 9).

Rousseeuw e Leroy (1987, p. 10) describes the BDP as follows: If you have a dataset

(X, t) ∈ Rnxm and take a sample Z where Z = {(xi, ti)}p≤n
i=1 , and the estimator S that produces

the vector of parameters β, where S(Z ) = β. Then if you corrupt a quantity of points j ≤ p of

Z with arbitrary values, to obtain a new sample Z ′. Thus, the maximum effect E caused in the

resultant model by the corruption of Z is

E( j,S,Z ) = sup ||S(Z )−S(Z ′)|| (2.15)

So we define the breakdown point of T as

BDP(S,Z ) = min(
n

j
: E( j,S,Z ) = ∞) (2.16)

BDP is a simple but helpful measure to evaluate the resistance of an estimator.

The best proportion (or resistance) that can be achieved is 1/2 (HAMPEL, 1973, p. 97). The

explanation for that maximum BDP can be done if you imagine the case when your data presents

50% of outliers; in that situation the regressor cannot be able to distinguish which part of your

set is the right and which is the wrong (STUART, 2011, p. 9). Another relevant point to remark

is that BDP is not the unique measure to evaluate robustness; as BDP, efficiency, equivariance

and others as well are important to have a complete view of the resistance of the estimator.

2.1.4.3 Asymptotic Efficiency

Given an estimator S where S(X, t) = β, the efficiency e(S) is a ratio calculated

by the minimum possible variance divided by the actual variance of S. It is clear that the best

possible ratio is when the two variances in the division are the same (ratio equal to 1). In our

context (regression), when the assumption of Gaussian distribution of the residual r is satisfied,

the minimum possible variance is achieved by the least squares estimator LS with T (X, t) = β̃,

then the efficiency of a generalized linear regression estimator S is (ANDERSEN, 2008, p. 9-10)

e(S) =
E
[
(ti− β̃Txi)

2]
E [(ti−βTxi)2]

. (2.17)
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To close the definition, the phrase asymptotic efficiency is used because the calcula-

tion of the efficiency is made over a sample with infinite size (STUART, 2011, p. 9).

2.2 M Estimator

Maximum Likelihood type estimators of M-Estimators was proposed by Huber(1973)

with the intention of moderating the effect produced by the minimization of the squared error.

The goal is to maintain the high efficiency of the OLS in the presence of normal error distribution

and replace the objective function of the sum of squared residuals by some other robust function

(ROUSSEEUW; LEROY, 1987, p. 148).

Using this type of estimators is possible to constrain the influence of values located

‘far away’ from the regression line (there the presence of real outliers is probably higher). The

M-estimators employ some objective function that can decrease the influence in a smooth way,

compared with the tough influence made by the distinction between the ‘good’ and the ‘bad’

observations of the classic rejection. Beyond that, it works better in the situations when the

distribution is similar to normal but not normal (like a fatter distribution), because the rejection

options are almost non-viable (HAMPEL, 1973, p. 10).

The M-Estimator principle is to find the model β̃ which minimizes the E(β) function,

defined as

E(β) =
n

∑
i=1

ρ(ri). (2.18)

The residual ri = ti−βTxi, and the robust ρ function is recommended to be symmetric and with

a unique minimum at 0 (ROUSSEEUW; LEROY, 1987, p. 12). To choose the best ρ function

is a must to know the distribution of the errors, but that is commonly unknown. If ρ(ri) = r2
i

is used, the estimator is the same as OLS (STUART, 2011, p. 11-12). The original version of

this algorithm is not scale equivariant, unless one change in the calculation of the function ρ be

made (HUBER; RONCHETTI, 2009, p. 106). The Equation 2.18 has to be converted into

E(β) =
n

∑
i=1

ρ

ri

s

 , (2.19)

where s is calculated with an implementation of some scale estimator of the standard deviation

of the data (see Section 2.2.1 for more details).
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The M-Estimators have good flexibility properties because of the possibility to

choose the ρ function, plus they “generalize straightforwardly to multiparameter problems”

(HUBER; RONCHETTI, 2009, p. 45).

Now that the equivariant form of an M-Estimator was introduced, the process to

calculate the parameters can be developed (STUART, 2011, p. 15-16). The first step is to derivate

the β̃ with respect to the m parameters and set this derivate equal to 0; before we introduce the

‘score function’ ψ(u), which represents the first derivate of ∇uρ(u), then we get

∇β E(β̃) =
n

∑
i=1

xi jψ

ri

s

= 0 ∀ j. (2.20)

Then the second definition is introduced, called ‘weight function’, which is defined by

wi =

ψ

ri

s


ri

s

. (2.21)

Now if we made some substitutions in 2.20 we have:

n

∑
i=1

xi jψ

ri

s

=
n

∑
i=1

xi jψ

ri

s


ri

s


ri

s


= 0 ∀ j

n

∑
i=1

xi jwi

ri

s

=
n

∑
i=1

xi jwi(ti− β̃Txi)
1

s
= 0 ∀ j

n

∑
i=1

xi jwiβ̃
Txi =

n

∑
i=1

xi jwiyi ∀ j

(2.22)

then we can represent 2.22 in vectorial form:

XTWXβ̃ = XTWY

β̃ = (XTWX)−1XTWY.
(2.23)

Where W ∈ Rn×n as the diagonal matrix with the values of wi, or

W = diag(w) =


w1 ... 0

: . . . :

0 ... wn

 (2.24)
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This is not a closed form solution, because the value of the matrix W depends in

the value β̃ and vice versa. Then can be applied the IRLS (see Section 2.2.3) to find β̃. In the

first step, the β is commonly calculated with the OLS, and then an iterative process is used,

which is stopped after a q quantity of iterations or after achieving one tolerance value e, where e

represents the distance between the last two generated models.

The M-Estimators are better at generalizing if you compare with other robust esti-

mators, because it is possible to constraint and shape the impact of the errors with the weight

function (HUBER; RONCHETTI, 2009, p. 70). The implementation of redescending type of

M-Estimators is recommended as well (see Section 2.2.2 for details). Huber e Ronchetti (2009,

p. 70) are discordant. They belief that the use of redescending M-Estimators are overrated and

they have to be employed with some precautions because the re-descending type can increase

the minimax risk compensating no more than ‘a few percent of the asymptotic variance’ when

extreme outliers are present. Consequently they suggest rejecting the most improbable data.

(HUBER; RONCHETTI, 2009, p. 101).

2.2.1 Standard Deviation - Scale Estimate

In order to provide the model of the scale equivariance property, we have to im-

plement some robust estimator of a scale (standard error), and include the resultant standard

error s into the calculation of the objective function as we can see in the Equation 2.19. (HAM-

PEL, 1973). There are some types of Scale estimator, like pure scale, nuisance parameter and

Studentizing.

In relation to the standard deviation of the M-Estimators the re-scaled Median

Absolute Deviation (MAD) is one of the possible scale estimators to use.(HUBER; RONCHETTI,

2009, p. 106). The re-scaled MAD is

s = 1.4826 MAD, (2.25)

where

MAD = Med{ti−βTxi ∀i}= Med{ri ∀i} (2.26)

and Med {ua ∀a} is the median of the numbers in {ua : a ∈ A}.



37

2.2.2 Function ρ

In the case of the M-estimator (see Section 2.2), the S-Estimator (see Section 2.3)

and the Weighted Principal Component Analysis (see Section 3.2.2), it is needed to select a ρ

function that transforms the value of the residuals. There are some popular functions and, in this

work we selected the Least Squares, the Huber (original propose), the Hampel and the Tukey

bisquare (biweight) to compare their objective, score and weight functions, see table 2.

The redescending M-Estimators are one especial type of M-Estimators, because

using some of them, it can be achieved the highest possible breakdown point in the M-Estimators

(MÜLLER, 2004, p. 2). The redescending M-Estimators reduce the maximal asymptotic variance

and it is indicated to use when the distribution can be long-tail or have extreme outliers (HUBER;

RONCHETTI, 2009, p. 97).

One estimator is redescending if the score function or first derivative ψ of the

objective function ρ satisfies lima→±∞ ψ(u) = 0. Specifically you can write it in the following

way:

ψ(u) = 0 for |u| ≥ c, (2.27)

with any c > 0.

2.2.3 Iterative Reweighted Least Squares

The Iteratively Reweighted Least Squares (IRLS) uses the Newton-Raphson routine

(FRIEDMAN et al., 2001, p. 299). It is commonly employed if the applied basis functions have

any hidden parameter, or more generally, if is not possible to obtain a closed form from the

derivative of the objective function ρ .

If σ is any function, for the OLS it is the squared residual σ(ri) = r2
i , and ri =

ti−β
Txi where β ∈ Rm. Then we want to minimize the function

E(β̃) =
n

∑
i=1

σ(ri). (2.28)

So the Newton-Rapshon takes the form:

β
(c) = β

(c−1)−H−1
∇E(β ), (2.29)

∇E(β ) =
n

∑
i=1

ψ(ri)xT
i j ∀ j = (1, ...,m), where, ψ(ri) = ∇σ(ri) (2.30)
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and

H = ∇∇E(β ), (2.31)

where c represents the number of the actual iteration. The process is stopped when c is equal to

a q quantity of iterations or after the distance between the last two generated models β
(c) and

β
(c−1) achieve one tolerance value e. For the M-Estimators, fortunately the Equation 2.23 is

already in the format of a weighted least squares, then the calculation of

β(c) = (XTW(c−1)X)−1XTW(c−1)Y, (2.32)

where W (c−1) is determined applying the Equations 2.21 and 2.24 and using the vector of

parameters β(c−1). It is important to mention that the first iteration (when c = 1), β(c=1) is

calculated with the OLS or that which is the same using W(c−1=0) = I.
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2.3 S Estimator

The Robust Regression by means of S-Estimator is a linear regression algorithm

proposed by Rousseeuw and Yohai (1984) with the main objective to minimize the residual scale

(standard error) of the M-estimators (SUSANTI et al., 2014, p. 354). Its name comes from the

Scale-Estimator (ROUSSEEUW; YOHAI, 1984, p. 260). In order to introduce the S-estimator

the estimator of scale s(r1, ...,rn) is presented, defined by the solution of

1

n

n

∑
i=1

ρ

ri

s

= K, (2.33)

where ri = ti−βTxi, ri ∈ R ∀ i, K is expected to be EΦ[ρ], Φ the standard normal and n the

number of elements of the dataset (ROUSSEEUW; YOHAI, 1984, p. 260). If there are multiple

solutions to Equation 2.33, then choose sups; if there are no solution then s = 0.

The chosen function ρ has to satisfy the following three conditions (STUART, 2011,

p. 24)(the first two are mandatory and the third one is to reach the 50% of BDP):

1. The function ρ is symmetric, continuously differentiable and ρ(0) = 0.

2. The function ρ is redescending, particularly exist some a > 0 where ρ(a) is strictly

increasing in the interval [o,a), and constant on the [a,∞).

3.
EΦ[ρ]

ρ(a)
=

K

ρ(a)
=

1

2
.

Then the S-estimator is used to obtain the model parameters β̃, that minimize the

scale s, defined in the Equation 2.33, and is expressed by

β̃ = min
β

s(r1(β), ...,rn(β)), (2.34)

and the scale estimator is

σ̃ = s(r1(β̃), ...,rn(β̃). (2.35)

“It would be wrong to say that S-estimators are M-estimators, because their com-

putation and breakdown point are completely different, but they do satisfy similar first-order

necessary conditions”(ROUSSEEUW; LEROY, 1987, p. 141). The S-Estimators construct the

model by a different approach than the M-estimator. S-Estimators search for the minimum scale

of the residuals, and share with the M-Estimators the function that constrains the impact of the

gross errors or the wrong assumptions. The main goal of Rousseeuw e Yohai (1984, p. 259) was
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to propose one estimator with a higher breakdown point than the M-Estimators, but at the same

time share with them the “flexibility and nice asymptotic properties”.

If the selections of the function ρ , the constant K and the parameter a are made

properly, the 50% of BDP can be obtained, as demonstrated in the original proposal, when

the authors (ROUSSEEUW; YOHAI, 1984, p. 261) use the Tukey Biweight (Bisquare) taking

a = 1.547. Moreover in the same work, Rousseeuw e Yohai (1984, p. 262) generalize the

calculation of the BPD for another combination of constant K and parameter a (and keeping

tukey bisquare as the ρ function), and then defining 0≤ λ ≤
1

2
, they stand:

EΦ[ρ]

ρ(a)
=

K

ρ(a)
= λ =⇒ lim

n→∞
BDP = λ . (2.36)

They also explain that if the value of a is increased it will yield to an estimator with better

asymptotic efficiency at Guassian Model, but as a consequence, the BDP will decrease.

The advantage of using the S-Estimator to estimate the model β̃ over other estimators

is the capacity to achieve the best BDP; also Least Mean Squares (LMS) and Least Trimmed

Squares (LTS) can reach the 50% of BDP (ROUSSEEUW; LEROY, 1987, p. 144-145).

2.3.1 Efficiency

Asymptotic Efficiency (AE). “There is a trade-off between robustness and efficiency

for M and S-scale estimators” (AELST et al., 2013, p. 280). In the next table we show how the

S-estimators cannot estimate with a high BDP and at the same time with a high efficiency (under

the error normal distribution assumption) (ROUSSEEUW; LEROY, 1987, p. 142).

Table 3 – (ROUSSEEUW; YOHAI, 1984, p. 268) BDP and AE of an S-Estimator

BDP AE a K
50% 28.7% 1.547 0.1995
45% 37.0% 1.756 0.2312
40% 46.2% 1.988 0.2634
35% 56.0% 2.251 0.2957
30% 66.1% 2.560 0.3278
25% 75.9% 2.937 0.3593
20% 84.7% 3.420 0.3899
15% 91.7% 4.096 0.4194
10% 96.6% 5.182 0.4475

Some authors criticize the low efficiency, the instability, and the tradeoff BDP/effi-
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ciency, reaching the point of saying that the algorithm does not deserve to be called as “Robust”

and it would be more appropriate to call it as just high BDP estimator (HUBER; RONCHETTI,

2009, p. 197). They also remark that the instability of the high breakdown point estimators is a

known problem.

2.4 MM Estimator

This estimator was proposed by Yohai (1987) with the main intention of providing

an estimator with 50% of BDP and at the same time with high asymptotic efficiency, under the

assumption of normal distribution of the residuals. It is the first robust estimator proposed to

have both high AS and BDP (STUART, 2011). The MM-estimator is a combination of one

estimator with a high BDP (desirable 50%), an M-scale of the residuals and a computation of an

M-Estimator.

The algorithm is defined in three steps:

1. Estimate the parameters β̂ using a high BDP estimator, a 50% of breakdown point is

recommended. Examples of 50% BDP estimators are S-Estimator, the Least Trimmed

Squares and the Least Median Squares (see Rousseeuw e Leroy (1987) for details).

2. Use an S-Estimator with the parameters β̂, to calculate the scale sr (see Equation 2.35) of

the residuals. The objective function used in this step is called ρ0. The S-Estimator has to

be tuned (objective function ρ0 and its parameters) to produce an estimate with 50% BDP.

3. This stage uses the M-estimator described in the Section 2.2 with small modifications. As

equal to M-estimator a function ρ has to be chosen. This ρ function has to be redescending

(see Section 2.2.2) and satisfy that ρ(u) ≤ ρ0(u) ∀ u ∈ R. Then the goal of the MM-

estimator is to find the parameters β̃ which minimizes the E(β)function, defined as

E(β) =
n

∑
i=1

ρ

ti−βTxi

sr

 . (2.37)

It is opportune to note that in this stage the value of the scale sr will continues unchanged

until the end of the algorithm. The score function ψ(u) represents ∇uρ(u). Then to find

the β̃ we set ∇β E(β̃) = 0 which is

n

∑
i=1

xi jψ

 ri

sr

= 0 ∀ j, (2.38)
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and must satisfy E(β̃)≤E(β̂). From here the process is the same as that in the M-estimator

algorithm, defining the same weight function (Equation 2.21).

Note that the first and the second stage can be joined as one stage if you implement

an S-Estimator (tuned to be 50% BDP) to get the parameters β̂ and utilize the scale obtained in

that process. In the S-Estimator stage ρ0 can be the Tukey Biweight function with a = 1.547 to

provide to the S-estimator resistance to almost 50% of outliers (50% BDP). In the third stage,

the ρ of the M-Estimator can be again the Tukey Bisquare. The parameter a = 4.685 guarantees

a 95% of asymptotic efficiency in the final estimator for the Tukey bisquare or the chosen of

a = 2.697 guarantees a 70% of asymptotic efficiency (VERARDI; CROUX, 2009, p. 5).

2.5 RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler e

Bolles (1981) is an estimator developed by the computer vision community. In their work, they

stand that the smooth treatment made in the M, SS, MM and other robust estimator by the ρ

function is not always the best approach to deal with outliers (FISCHLER; BOLLES, 1981, p.

1).

If the dataset contains the input variables X = [x1, ...,xn]
T and the output variables

t ∈ Rn, RANSAC is an iterative parametric algorithm, also non-deterministic, that uses the

minimal quantity of points needed to make the m parameters of the model β. This quantity is

called the Minimal Sample Set (MSS). If the vector of the parameters β ∈ Rm, then the MSS

has to be equal to m. The threshold δ is a parameter value of the algorithm and is required to

calculate the consensus set(CS) S where

S = cs(β) = {xi : ||ti−βTxi|| ≤ δ , ∀i}. (2.39)

The |S | represents the number of inliers and is a measure of how many points lie on the line

described by β with a δ threshold. The distance between the line and a point is normally

calculated with the Euclidean Norm. If a point xi ⊂ S then it is said that xi is an inlier of the

vector of parameters β.

The RANSAC algorithm can be summarized in the following list of steps (HART-

LEY; ZISSERMAN, 2004, p. 118):

1. Select a sample R of points stochastically from the dataset, with |R| ≥MSS.
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2. Make the vector of parameters β using some estimator and the sample R, commonly the

ordinary least squares is used.

3. Using the Equation 2.39, calculate the consensus set S and determine its number of

inliners.

4. If the percentage of number of inliners
|S |

n
≥ τ reestimate the parameters of the model

but now using the sample S to obtain the final vector of parameters β̃ and terminate. τ is

a parameter of the algorithm, thus the value has to be previously defined.

5. If the percentage of number of inliners
|S |

n
< τ and the iterations made of this steps

are more than N, select the consensus set obtained with the greatest quantity of inliners.

Otherwise, make another iteration starting from the step 1.

2.5.1 Parameters

To use the RANSAC algorithm, it has to be defined some parameters. This Section

is about how to calculate the values of these parameters. The first approach described is given by

the original paper by Fischler e Bolles (1981) and the parameters are δ , τ and N.

δ is a threshold which represents the tolerance of the residuals. The points that have

a distance closer than δ from the model are called inliners. To obtain this threshold it is required

to calculate the standard error σs between the model β and the entire dataset. Then the original

paper proposed to set σs ≤ δ ≤ 2σs (FISCHLER; BOLLES, 1981, p. 383).

τ is a percentage representing how many inliers you want to have in your consensus

set, and then to terminate the execution of the algorithm. A high value of τ can be a good choice,

to assure that the model β represents the bulk of the data and the points inside the consensus help

to build a good β̃ as well. It is assumed that the probability of one point being in the consensus

set of any wrong model is y. We expect than no more than half of the data to be outliers, so we

assume that y < 0.5. Then we have to make the yτn−MSS very low.

N represents the maximum number of iterations. p is commonly chosen to be 0.99

and represents the probability of taking a series of minimum sample sets M and that at least one

of the sample sets be clean of outliers. Supposing that u is the probability to choose an inlier

from the dataset, thus (1−u) is the probability to choose an outlier. Then are required at least N
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selections to achieve (1−u|M |)N = 1− p, doing manipulations

N =
log(1− p)

log(1−u|M |)
(2.40)

The second approach is more probabilistic (HARTLEY; ZISSERMAN, 2004, p.

118). The parameters are calculated, but it is needed two probabilities; the p has the same

interpretation made in the first approach. For δp, let

δ = p(ti−βTxi ≤ δ )

= p

 r2
i

σ2
s
≤

δ 2

σ2
s

∀i, (2.41)

and since
ri

σs
is normal distributed, then

δ 2

σ2
s

has chi-square distribution. Then

δ = σs

√
χ2

k,δp
, (2.42)

where k are the degrees of freedom (dimensionality of the data) and δ p is a probability to get just

inliers inside the threshold δ . To calculate the quantity of iterations described in the Equation

2.40, the denominator of the fraction is recalculated, then

u|M | =
m

∏
i=1

ñ

n
≈

 ñ

n

m

, (2.43)

where ñ is the largest number of inliers found until that iteration.

2.6 Theil-Sen

Theil-Sen estimadors, was proposed by Theil (1950) and Sen (1968) and was origi-

nally a simple linear regression estimator. The original Theil-Sen is as an estimator of slope, and

it has a BDP of 29,3% and high asymptotic efficiency (ROUSSEEUW; LEROY, 1987, p. 67).

We define the input vector x = [x1, ....,xn]
T ∈ Rn; it represents some dataset coming

from n points, and a target vector t ∈ Rn. The original Theil-Sen defines the slope as

β1 = Med

bi, j =
ti− t j

xi− x j
: xi 6= x j,1≤ i≤ j ≤ n

 , (2.44)

where Med {ua : a ∈ A} is the median of the numbers in {ua : a ∈ A}. Then bias parameter is

calculated as

β0 = Med{ti−β1xi : 1≤ i≤ n} , (2.45)
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For the multivariate linear regression estimator, the input defined as a matrix X =

[x1, ....,xn]
T ∈ Rn×m represents some dataset coming from n points and m explanatory variables,

and the output stays as a vector t ∈ Rn. In the multivariate linear regression, the solution for

a model with m parameters needs at least m points or equations. Then there has to be defined

a set K where K ⊂ {1, ...,n} and |K | = m. Therefore we can determine the parameters of

the vector βk as the resultant model of executing the least squares method with input matrix

Xk = {xi : ∀i ∈K } and output vector tk = {ti : ∀i ∈K }. Then the Theil-Sen estimator for

multiple linear regression is defined as

β̃ = Mmed{βk : ∀k ∈ A} , (2.46)

where the set A = {K : det(Xk) 6= 0}. The function det(A) is the determinant of the matrix A

and the Mmed {βa : a ∈U} is the multivariate median of the vectors {βa : a ∈U}.

Another extension to the Theil-sen estimator for multiple linear regression is the

algorithm developed by Zhou e Serfling (2008). It uses the generalizations made in the algorithm

that describes the parameters vector in the Equation 2.46 combined with a theory of spatial

U-quantiles. We define N as all the combinations of pairwise differences of points in the data set,

where the N pairwise differences redefine the regression model as

ti− t j = y(xi− x j,β), ∀ 1≤ i < j ≤ n. (2.47)

Then we can define a generic pair (i, j) set P ∈ (R,R)m, where P ⊂ {(i, j)1, ...,(i, j)N}.

Therefore we can define the parameters of the vector βP as the OLS for which the input matrix

is XP = {(xi−x j) : ∀(i, j) ∈P} and the output vector is tP = {ti− t j : ∀(i, j) ∈P}. Then the

vector of parameters of the Theil-Sen estimator for multiple linear regression is

β̂ = Smed{βP : ∀P ∈ A} , (2.48)

where the set A = {P : det(XP) 6= 0} and Smed {βa : a ∈U} is the spatial median of the vectors

{βa : a ∈U} (ZHOU; SERFLING, 2008, p. 7-8).



Part II

Robust Locally Linear Embedding
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3 ROBUST LOCALLY LINEAR EMBEDDING

As well as the linear regression problem and knowing the issue that can represent

the presence of outliers in our databases, the implementation of robust dimensionality reduction

algorithms can improve the results (CHANG; YEUNG, 2006, p. 1). In this Chapter, two main

dimensionality reduction methods are described; these are the locally linear embedding and

principal component analysis. Additionally to that, some robust modifications of them are also

explained and a new modification is proposed.

The type of reduction considered in this work is the feature extraction kind, in which

the quantity of variables is maintained (MAATEN et al., 2009, p. 1). Formally, if there is a

set of n observations X = {x1, ...,xn}, where each observation xi ∈ RD, then a dimensionality

reduction process can be represented by a function ρ , in which the new low-dimensional set is

stored in some matrix Y = [ρ(x1), ...,ρ(xn)]
T. Each observation ρ(xi) ∈ RK , where K� D. It

is desirable that the value of K correspond with the intrinsic dimensionality of the data. This

means the minimum dimension in which the properties of the data are maintained (MAATEN et

al., 2009, p. 1).

3.1 Locally Linear Embedding

Locally linear embedding (LLE) uses the neighborhood of each point as a linear

combination to reconstruct (represent) the point in its original high-dimensional space. As the

principal component analysis method, LLE uses simple linear algebraic techniques and also

it does not involve local minima (SAUL; ROWEIS, 2000, p. 2). Even though PCA is one of

the most used techniques for dimensionality reduction, its accuracy in some transformation

of non-linear data presents some issues. For that reason, other algorithms as locally linear

embedding were proposed (MAATEN et al., 2009, p. 1).

Considering the set X = {x1, ...,xn}, where the data is sampled for some underlying

manifold and each observation xi ∈ RD. The classic locally linear embedding aims to use the

local geometry properties between each point and its neighbors, for projecting the data in some

K dimensional space. In LLE it is expected that the local geometry properties will be preserved

in the less dimensional space as well. It uses the assumption that each point and its neighbors

lies “on or close to a locally linear patch of the manifold” (ROWEIS; SAUL, 2000, p. 2323).
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3.1.1 Formulation of the LLE

The main idea is to obtain i sets of linear coefficients that can reconstruct every

point xi. That local geometry is obtained using a group of k neighbors. The selection of the

neighborhoods is commonly achieved by choosing the k nearest neighbors of each point (using

the Euclidean distance). However the selection of the neighbors can be made using another

procedure or set of rules (SAUL; ROWEIS, 2000, p. 3). The reconstruction errors is the cost

function defined by

ε =
n

∑
i=1
||xi− x̃i||2, (3.1)

where x̃i is the reconstruction made by the set i of linear coefficients and the neighbors of the

point xi.

The vector ni j contains the value of the jth neighbor of the point i. Additionally

the W matrix contains the linear coefficients (each row represents one point and each column

represents the neighbor). Considering that the errors can be minimized independently, then we

can rewrite the Equation 3.1 using the error for just one point of the dataset as

εi(Wi) = ||xi−
k

∑
j=1

Wi jni j||2 = ||
k

∑
j=1

Wi j(xi−ni j)||2

=
k

∑
j=1

k

∑
m=1

Wi jWim(xi−ni j)(xi−nim)

=
k

∑
j=1

k

∑
m=1

Wi jWimS jm = WT
i SWi,

(3.2)

where the local covariance matrix S jm = (xi−ni j)(xi−nim).

One important detail in this algorithm is the introduction of the constraint for the W

coefficients or weights, where

k

∑
j=1

Wi j = 1 ∀i. (3.3)

This constraint has the objective of giving the property of regression (shift) equivariance or,

what is the same, invariance to translations. More properties are implicit in the formulation

of the cost function; these are the invariance to rescaling and the invariance to translations,

equivalently called scale equivariance and affine equivariance respectively (see Section 2.1.4.1

for details). The symmetry in the weights, as a result of these three invariances, helps to maintain
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the geometric properties within the data in the new projected space (ROWEIS; SAUL, 2000, p.

2324).

It is desirable to calculate the weights or coefficients Wi that minimize the cost

function ε . Using Lagrange to enforce the constraint of the weights sum, the new function

ε̃i(Wi) = WT
i SWi−λ (1TWi−1), (3.4)

where 1 ∈ Rk is the vector of ones. Then

∇Wi ε̃ = 2SWi−λ1 = 0 =⇒ SWi =
λ

2
1, (3.5)

where λ/2 = 2/(1TS−1
i 1) to ensure that the sum of the coefficients inside Wi are equal to 1.

Instead of doing that, the system of equations SWi = 1 can be solved and then normalize the

vector Wi (CHANG; YEUNG, 2006, p. 3). If for some reason (for example when k > D) the

matrix of local covariance is singular or nearly singular, it can be solved by the addition of some

small multiple of the identity matrix; then

S = S+
α

k
I, (3.6)

where α is a kind of hidden parameter of the algorithm and it can be some small fraction of the

trace of the S matrix (SAUL; ROWEIS, 2000, p. 10). This penalizes “large weights that exploits

correlations beyond some level of precision in the data” (LEE; VERLEYSEN, 2007, p. 155).

The second part of the locally linear embedding algorithm is the reconstruction of

the points in the new less-dimensional space, using the coefficients inside the W matrix. To do

that, each point xi is now mapped into a new vector yi ∈ RK . The cost function for measuring

the error of the reconstruction is

φ(Y) =
n

∑
i=1
||yi−

k

∑
j=1

Wi jy j||2

=
n

∑
i=1

y2
i −yi

(
k

∑
j=1

Wi jy jy j

)
−

(
k

∑
j=1

Wi jy j

)
yi +

(
k

∑
j=1

Wi jy j

)2

= YTY−YT(WY)− (WY)TY+(WY)T(WY)

= ((I−W)Y)T((I−W)Y)

= YT(I−W)T(I−W)Y

= YTMY,

(3.7)
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where M = (I−W)T(I−W).

At this stage two constraints are introduced to the problem, both are related with the

future projections yi and their purpose is to make the problem well-posed (ROWEIS; SAUL,

2000, p. 2324). The first one stands for the mean of the data to be zero, then ∑
n
i=1 yi = 0. The

second constraint is that
1

n
(YYT) = I. The objective function is modified to include the two

constraints, using Lagrange multipliers

φ̃ = YTMY−λ(
1

n
YYT− I), (3.8)

and setting the derivative to zero,

∇Yφ̃ = 2MY−
2λ

n
Y = 0 =⇒ MY =

λ

n
Y. (3.9)

The resultant linear equations can be solved as an eigenvectors and eigenvalues

problem. The smallest eigenvalue is supposed to be zero, and the corresponding eigenvector is to

be a unit vector and is discarded to constraint the embedding with zero mean. Then the remaining

K eigenvalues are the ones that provide the values of the projected data (SAUL; ROWEIS, 2000,

p. 4). The proof of this statement will be developed in the maximum variance PCA formulation

(Section 3.2.1.1). Therefore it is necessary to left multiply Equation 3.9 by YT to obtain

YTMY =
λ

n
= φ(Y). (3.10)

3.2 Principal Component Analysis

Discovering the latent factors, also known as latent variables, is based on the main

idea of studying the variability among the variables in a dataset. This is with the intention

of transforming the data in some less dimensional new dataset that carries the fundamental

variability of the original data, called the latent factors (MURPHY, 2012, p. 11).

The Principal Component Analisys (PCA), also called Karhunen-Loève transform,

is a linear method very popular in dimensionality reduction. PCA finds a set of linear orthogonal

basis in which the variance in the data is maximized (MAATEN et al., 2009, p. 3). It uses linear

algebraic techniques that makes it simple to understand and implement, besides the absence of

local minima inside the optimization (CHANG; YEUNG, 2006, p. 2).
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3.2.1 Formulations

There are 2 approaches of how classic PCA can be defined. These approaches are

the Maximun variance formulation and the Minimum Error formulation; both formulations will

lead you to the same basic algorithm and they are covered in the following (BISHOP, 2006, p.

561). Besides the basic formulations, two versions of PCA designed to be outlier robust are

discussed in the Sections 3.2.2 and 3.2.3, known as Weighted PCA and RAPCA respectively.

3.2.1.1 Maximum Variance

In this definition of principal component analysis, the variance of the low-dimensional

projection is expected to be maximized. If it is considered a set of n observations X =

{x1, ...,xn} where each observation xi ∈ RD, then PCA is designed to reduce de dimensionality

of the data and project it into a new K dimensional space maximizing the variance of the projected

data and where K� D. To do that, it is build an orthonormal matrix M ∈RD×K , thus MTM = I.

The M matrix defines a series of K directions, that project every point xi in the less-dimensional

space, where MTxi is the value of the projected point (BISHOP, 2006, p. 561).

The first stage to obtain the matrix M is the calculation of the mean x of the original

data, given by

x =
1

n

n

∑
i=1

xi, (3.11)

consequently the covariance matrix S is calculated as

S =
1

n

n

∑
i=1

(xi−x)(xi−x)T, (3.12)

therefore the mean over the less-dimensional data can be calculated by MTxi and its covariance

is given by

1

n

n

∑
i=1

(MTxi−MTx)2 = MTSM. (3.13)

In the second stage, the variance maximization over the less-dimensional data is

executed. This can be achieved by the maximization of MTSM with respect to M, and as

MTM = I, then the maximization is a constrained optimization problem. The set of linear

equations that determines the maximization of the variances is given by

MTSM+λ(I−MTM) = 0 =⇒ SM = λIM. (3.14)
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The equations already include the Lagrange multiplier to ensure the constrain condition of the

orthonormality of M and it can be treated as an eigenvectors and eigenvalues problem. The

matrix λI is a diagonal matrix constructed from the corresponding eigenvalues of the problem.

Left-multiplying the Equation 3.14 by MT can be done to prove that the largest eigenvalues are

the ones that maximizes the variance of the projected data (Equation 3.13); then

MT
i SiMi = λi, (3.15)

where λi is the ith value inside the diagonal of λI . All the principal components are the Mi

eigenvectors, hence the first principal component is the one associated with the largest λi

eigenvalue. That order relation is also applied for the next principal components and their

respective eigenvalues. The eigenvector and eigenvalue decomposition can be made for any

value of K ≤ D (BISHOP, 2006, p. 562).

3.2.1.2 Minimum Error

The second alternative that defines principal component analysis aims to minimize

the error (distance) between the projection set and the original data set X = {x1, ...,xn}, where

each of its n observations xi ∈ RD. Likewise the maximum variance formulation, it is defined

the orthonormal matrix M ∈ RD×D, where M j represents a column of the matrix as well as a

basis orthonormal vector. To simplify the calculations and the notation, it is supposed that the

original data has zero-mean.

In order to obtain the rotations between the original coordinates system and the new

one, and using the properties of the matrix M, the inner product C ∈ Rn×D between the points in

the dataset and M is defined by

Ci j = xT
i M j ∀i ∀ j. (3.16)

Then to reconstruct the original dataset

xi =
D

∑
j=1

Ci jM j ∀i. (3.17)

This can be interpreted as a linear combination of the basis vector. Hence, using the Equation

3.16 to replace C in the Equation 3.17, it can be obtained that

xi =
D

∑
j=1

(xT
i M j)M j ∀i. (3.18)



54

It is important to note that the Equations 3.16, 3.17 and 3.18 are using some matrix

C ∈ Rn×D, but for the process of dimensionality reduction the quantity of rotations that can be

reconstructed have to be some K < D. Then a problem comes up, because the reconstruction of

xi takes only the first K rotations (vector) within the basis Matrix M (BISHOP, 2006, 563). For

the others dimensions the value b j is fixed. The x̃i approximation of xi is now defined by

x̃i =
K

∑
j=1

ai jM j +
D

∑
j=M+1

b jM j. (3.19)

The values of ai j and b j can be chosen to minimize the function

φ =
1

n

n

∑
i=1
||xi− x̃i||2. (3.20)

This φ is the objective function to minimize, because it represents the error (Euclidean distance)

between the projection and the original data. Thus the derivate of φ with respect to each ai j,

∇ai jφ =
2

n

n

∑
i=1

(xi−
K

∑
j=1

ai jM j +
D

∑
j=M+1

b jM j)
K

∑
j=1

M j = 0

ai j = xT
i M j ∀ j = (1, ...,K). (3.21)

Additionally, the derivate of φ with respect to each bi,

∇b jφ =
2

n

n

∑
i=1

(xi−
K

∑
j=1

ai jM j +
D

∑
j=M+1

b jM j)
D

∑
j=M+1

M j = 0

b j = xTM j ∀ j = (K +1, ...,D). (3.22)

Now using the values obtained for ai j, b j and the Equation 3.17 inside 3.20

φ =
1

n

n

∑
i=1

D

∑
j=K+1

(xT
i Mi−xMi)

2 =
D

∑
j=K+1

MT
j SM j. (3.23)

The next step is to calculate the minimization of the cost function φ . Considering

the orthonormality of all the basis vectors of the matrix M and using the Lagrange multiplier to

enforce the constraint of the MT
j M j = 1 condition, the new cost function

φ̃ = MTSM+λ(I−MTM). (3.24)
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Minimizing the φ̃ function with respect to each M j is equal to

∇M j φ̃ = SM j−λ jM j = 0 =⇒ SM j = λ jM j ∀ j. (3.25)

This can be solved as an eigenvector and eigenvalue problem, as well as the last formulation.

The cost function φ is

φ =
D

∑
j=K+1

MT
j λ jM j =

D

∑
j=K+1

λ j (3.26)

and finally it can be concluded that the best option to define the new subspace is choosing the

K eigenvectors M j that correspond with the largest K eigenvalues λi. This is as a result of the

selection of the D−K smallest eigenvalues that will minimize the function φ in the Equation

3.26 (from j = K +1 to D) (BISHOP, 2006, 565).

3.2.2 Weighted PCA

In this version, the first modification introduced is the absence of the assumption

that the data is centralized; in other words, it does not have zero mean considering that we want

to find some robust data mean. This modification is reflected in the original φ function by the

addition of the weighted mean vector uw. The second variation is the transformation of the

squared error (squared distance) between the original data and the projection to a robust function

ρ . The function

φw =
1

n

n

∑
i=1

ρ(||xi−uw− x̃i||) =
1

n

n

∑
i=1

ρ(||xi−uw−Mzi||) (3.27)

is the new objective function to minimize (CHANG; YEUNG, 2006, p. 8), where M is the matrix

containing all the eigenvectors and zi represents the projected data.

The ρ(e j) function is expected to be robust; it is also called objective function (see

Section 2.2.2 for details). The function is applied over the error (distance) e j, between the x j

point and its projection. The Score function ψ(e j) is ∇e jρ(e j) and the Weight function w(e j) is

equal to

a j = w(e j) =
ψ(e)

e
(3.28)

See Table 2 for details of the possible functions to choose. The recommendation by Chang e

Yeung (2006, p. 10) is to use the Huber function with

c =
1

2n

n

∑
j=1

e j.
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The calculations of the new weighted mean uw and the weighted covariance matrix

‘Sw are

uw =
∑

n
i=1 aixi

∑
n
i=1 ai

(3.29)

and

Sw =
1

n

n

∑
i=1

ai(xi−uw)(xi−uw)
T. (3.30)

The weighted PCA algorithm uses the iterative procedure called iterative reweighted

least squares (IRLS), detailed in the Section 2.2.3, because it is impossible to find a closed

solution considering the mutual dependency between the a j weights and the error ||xi−uw− x̃i||

(due to uw and Sw). The iterative algorithm can be summarized in the following list of steps

(CHANG; YEUNG, 2006, p. 9):

1. The standard PCA is executed to find the initial values of Mt=0 and ut=0
w . Set t = 1.

2. Using the Mt−1 and ut−1
w calculate of the error (distance) value e j = ||x j−uw− x̃ j|| ∀ j.

3. Calculate the weight value at
j = w(e j) ∀ j.

4. Using the set of weights at
j, execute an weighted PCA to obtain the news Mt and ut

w

values.

5. If ||Mt−1−Mt || > αM or ||ut
w− ut−1

w || > αw, set t = t + 1 and start again at Step 2.

Otherwise the algorithm ends.

3.2.3 RAPCA

The reflection-based algorithm for principal component analysis, also known as

RAPCA, was formally defined by Hubert et al. (2002). It adopts a robust approach to do the

dimensionality reduction of high-dimensional datasets. It is suggested to use RAPCA when the

dimension D of the data is higher than the quantity n of elements inside the dataset. The RAPCA

method was designed as a response to others robust PCA approaches (i.e. the Robust Covariance

PCA), in which n > D is needed. (HUBERT et al., 2002, p. 102).

This robust procedure can be divided into two stages and uses a combination of

three different methods to achieve its objective. One standard principal component analysis

is executed in the first stage, meanwhile in the second stage the Croux and Ruiz-Gazen (CR)

is implemented and improved with one algorithm called the R-Step (R of reflexion). The two

stages in the RAPCA algorithm are detailed as follows:
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1. In this first stage, a classical PCA is executed over the data. The reason for that execution,

is because the two algorithms of the next stage become computationally heavy as the

dimension of the data increases. Then it is important to obtain a secondary dataset with

the r-dimensional affine subspace spanned by the elements of the original dataset.

The new re-projected data (scores matrix) is denoted as Ẑ ∈ Rn×r and the resultant matrix

of eigenvectors as M̂ ∈ RD×r. Then, without loss of information

X−1ûT = ẐM̂, (3.31)

where 1 ∈ RD is the vector of ones, and û is the classical mean vector of the data. It is

relevant to note that the value of r≤ n−1 is the rank of the original centered data obtained

by X−1uT (HUBERT et al., 2002).

2. This second stage is the one that gives the robustness to the RAPCA algorithm. The main

idea is to use the CR method. It is necessary to first calculate a robust mean (spatial

median) u of Ẑ, then the new centered data

Z̃ = Ẑ−1uT. (3.32)

Likewise with the maximal variance formulation of the classical principal component

analysis, the objective is to find the k eigenvectors that maximizes the variance observed

in the data. However, in this case each eigenvector Ml is calculated using the next iterative

process (HUBERT et al., 2002, p. 110):

a) The variance of the data is calculated with a robust process called Qn estimator

where

Qn(z1, ...,zn) = 2.2219× cn×{||zi− z j|| ∀i < j}k, (3.33)

with k as the first quartile of the pairwise differences and cn as a constant. The data

Z̃
(l)

= [z1, ...,zn]
T and Z̃

(l)
i = zi

b) The data is transformed by means of reflection, U(l)(Ml) = (1,0, ...,0) ∈ RD−l+1,

then the data Ẑ
(l+1)
i = U(l)(Z̃

(l)
i )

c) The new data, transformed by the orthogonal complement of U(l)(Ml), is finally

converted, omitting the first dimension of Ẑ
(l+1)
i . Obtaining the data Z̃

(l+1)
i

To transform any eigenvector Ml into the RD−1+l dimensional space, simply use the

inverse of the reflection U(l−1). Lastly using the Equation 3.32

Z̃MT = Z, (3.34)
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where Z ∈ Rn×k is the final projected data, and k ≤ r is the desired final dimension.

3.2.4 T2 and Q statistics for PCA

The T2 (score distance) and Q (orthogonal distance) statistic measures can be applied

to the model obtained in the execution of any PCA type into the new less-dimensional data

(HUBERT et al., 2005, p. 6). Using these measures to calculate some cut-off values with some

confidence parameter, it is possible to know how the model fits each point. In other words, taking

some fixed probability the limit value where the points turns into outliers can be know.

The scored distance of one point i is defined as

T 2i =

√√√√√ k

∑
j=1

Z2
i j

λk
, (3.35)

where Z ∈ Rn×k is the matrix within the projected data. It can be interpreted as the norm of the

projected point normalized by its eigenvalue. To calculate the T2 cut-off of some PCA model

using some probability ρ is

T 2c f =
√

χ2
k,ρ , (3.36)

considering the assumption that the scores or projections Z are normally distributed, its square is

Chi-Squared distributed (HUBERT et al., 2005, p. 6). Moreover, the orthogonal distance Qi, is

the reconstruction error for one point i, then

Qi = ||xi−uw− x̃i||. (3.37)

To estimate the Q cut-off of some classical PCA model using the probability parameter θ ,

and considering the assumption that squares of the cube roots of the orthogonal distances are

normally distributed. Then the Q cut-off is the normal inverse distribution and where the

mean µQ = 1/n∑(Qi)
2/3 and σQ =

√
1/n∑(xi−µQ)2 (HUBERT et al., 2005, p. 6). The

correspondent Q cut-off of the RAPCA models is estimated using some µ and σ obtained in the

execution of an univariate minimum covariance determinant (HUBERT; DEBRUYNE, 2010).
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3.3 Robust Locally Linear Embedding

3.3.1 RLLE

This version of robust locally linear embedding was developed by Chang e Yeung

(2006) in 2005 with the intention to reduce the influence of outliers into the LLE algorithm. The

approach used by the authors is to execute a weighted principal component analysis (see 3.2.2

for details) into every first group of neighbors of each point to make a score of the points. Then

that score is used to select another better group of new-neighbors for doing the construction of

the weights or coefficients. The score is also adopted to make a weighted reconstruction of the

data.

It is defined a set of n observations X = {x1, ...,xn}, where the data is sampled for

some underlying manifold and each observation xi ∈ RD. The stages of the robust locally linear

embedding and its details are described in the following:

1. As in the locally linear embedding, a set Ni of k neighbors is chosen for each point xi, the

vector ni j represent the j neighbor of the point i.

For each set of neighbors, a weighted principal component analysis is executed indepen-

dently. In other words, a weighted PCA is performed over each set Vi = ni1, ...,nik ∀i. The

resultant vectors of weights from each weighted PCA are stored in the matrix Ai j, where

the row i represent the set coming from the point xi and j column is the jth neighbor of the

point.

A normalization is executed in each row of A, computed as

A∗i =
Ai

∑ j∈Ni Ai j
. (3.38)

Lastly a reliability score s is calculated for every point, where sm is the sum of the weights

A∗i j obtained by a point m that is the j neighbor of any i point. (CHANG; YEUNG, 2006,

p. 10).

2. In the second stage, we have to ’separate’ the database into two subsets. A threshold ε

needs to be chosen and then the subset X I = {xi : si > ε}.

For the process of reconstruction, a small change is introduced on the classical LLE

algorithm. The k nearest neighbors of each point xi, have to be chosen exclusively from

the set X I . The construction of the weights is made minimizing the same cost function in

the Equation 3.1, but using the new neighborhood selection.
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To do the computation of the K-dimensional embedding for X, a new cost function is

introduced.

φ(Y ) =
n

∑
i=1

si||yi−
k

∑
j=1

Wi jy j||2

= S((I−W)Y)T((I−W)Y)

= YTS(I−W)T(I−W)Y

= YTSMY,

(3.39)

where S is the diagonal matrix build with the values of s, or Slm = smδlm.

This can be solved in the same way as the eigenvectors and eigenvalues problem from the

classic LLE, with the same constraint also. Thus the Equation 3.9 is transformed to

MY =
λ

n
S−1Y (3.40)

3.3.2 RALLE

Presented in this work as an alternative to provide with robustness to the locally

linear embedding. Using the main idea that is not necessary to use all the quantity of neighbors

indicated as a parameter, if the confidence of them to be outliers is high enough. As in the work

of Chang e Yeung (2006), the application of some algorithm to determine the probability of each

neighbor to be an outlier is needed. Besides that, a score value is assigned for each point and is

used to make a weighted projection.

A set of n observations X = {x1, ...,xn} is defined, where the data is sampled for

some underlying manifold and each observation xi ∈ RD. The stages of the robust locally linear

embedding and its details are described in the following:

1. As in the locally linear embedding, a set Ni of k neighbors is chosen for each point xi,

the vector ni j represents the j neighbor of the point i. For each set of neighbors, RAPCA

is executed. All the neighbors are measured with the T2 and Q methods, and also some

cut off values are calculated with the parameters α t and αq. If some neighbor j is not

inside the T2 and Q cut off values, it is discarded from that set of neighbors without being

replaced with another new point. Just in the case that the number of l of resultant neighbors

is lower than the value k, then the nearest k− l rejected neighbors are included to the set

Ni.
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The reconstruction is made with the resultant neighbors and minimizing the same cost

function expressed in the Equation 3.1. A vector of scores is also made, in which the value

si is equal to the quantity of times that the point i is used as a neighbor of the others n−1

points of the dataset.

2. For the computation of the K-dimensional embedding of X, the cost function defined in

the Equation 3.39 is maintained. The value S represents the diagonal matrix build with the

values of s, or equivalently Slm = smδlm (when sm = 0, then it is replaced with some small

value). Therefore the solution can be found using the same procedure as the RLLE; that is

solving the Equation

MY =
λ

n
S−1Y (3.41)

as an eigenvectors and eigenvalues problem.

3.4 Trustworthiness and Continuity Measures

The Trustworthiness and Continuity (TC) are two related quality measures, in which

the neighborhood of every point is analyzed, both in the original space and in the embedding

space. The neighborhoods of each point, inside the original and projected datasets, are build

choosing the k nearest elements (using some measure of distance). If the function

M = 1−
2

nk(2n−3k−1)

n

∑
i=1

∑
j∈Ni

(r(i, j)− k) (3.42)

is defined (VENNA; KASKI, 2005, p. 696), then in

• Trustworthiness: the set Ni represents the points that are in the neighborhood of some

point i in the embedding space but not in the neighborhood in the original space. The

r(i, j) is a rank function; then it gives the distance order (within the original space) from

the point i as origin and between some other point j taking into account all the other points

in the dataset.

• Continuity: the set Ni represents the points that are in the neighborhood of some point i

in the original space but not in the neighborhood in the embedding space. The r(i, j) is a

rank function; then it gives the distance order (within the embedding space) from the point

i as origin and between some other point j taking into account all the other points in the

dataset.



Part III

Experiments and Results
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4 EXPERIMENTS ROBUST LINEAR REGRESSION

The main goal in this Chapter is to analyze the performance of the Classic Least

Squares, the M-Estimator, the S-Estimator, the MM-estimator and the RANSAC Estimator when

fitting a generalized linear regression model to a list of datasets. In order to accomplish the main

goal, the theoretical information of the previous chapters is used in combination with the set

of experiments executed in a controlled environment (Synthetic Dataset) as well as with a real

problem dataset.

The Theil-Sen Estimator was excluded from the experiment because of its computa-

tional cost. The quantity of model estimations that are required is a dimensional-combination

of the number of elements inside the dataset. Additionally to that, the calculation of the spatial

median of all the parameters of the models is required. The Theil-Sen is non-viable over the

configurations of the datasets used in the experiments.

4.1 Methodology of the experiments

Each experiment consists in the estimation of the parameters of the model using a

training dataset. After the estimation, a test dataset is used to evaluate the grade of generalization

reached in the estimation (mean squared error). It is possible to identify three common stages

that are present in every single experiment made:

Dataset A

Separate A
into train and
test datasets

Dataset T̃ Dataset M̃

Estimate
the models

Models

Performance
measurement

Figure 1 – Process of a single linear regression experiment
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1. The main dataset is separated into two subsets. Let A be the original dataset, such T and

M are two subsets, where T ∪M = A and T ∩M =∅.

2. The estimators are executed to get the parameters of the models, using the new dataset T̃ .

3. The M̃ subset is used to assess the performance of the estimates obtained in the previous

step.

The configuration of the experiments varies between the synthetic data and the real

data. Knowing that it is possible to define some extra conditions over the synthetic datasets, their

methodology is going to be explained first.

4.1.1 Synthetic datasets

There are two types of datasets generated, the linear datasets are created using some

linear model and R5 is its dimensional space. The non-linear dataset is in R3; the explanatory

variables are randomly generated with uniform distribution and with ti = sin(2πxi1)sin(2πxi2).

The cardinality of the subset T̃ is equal to the 67% of the quantity of elements in

A . The remaining 33% is assigned for measuring the performance into the subset M̃ . The set

of outliers percentages P ={0%, 4%, 8%, 12%, 16%, 20%, 24%, 28%, 32%, 38%, 42%, 46%,

50%, 64%}. Each element in P represents the percentage of response variables in the dataset T

that are spoiled with outliers. The remaining data in T is contaminated with white noise. The

contamination vectors can be created with diverse values of standard deviation defined inside

some set S and described in the the Section 4.2.

Table 4 – Types of outliers: defines the percentage of outliers that was taken from the min and
max components

Type I Type II Type III Type IV Type V Type VI Type VII
min 0% 20% 40% 50% 60% 80% 100%
max 100% 80% 60% 50% 40% 20% 0%

The synthetic datasets contain three components of outliers (See Section 4.2 for de-

tails), the min outliers, the max outliers and the extreme outlier. The set of pairs O ={(0%,100%),

(20%,80%), (40%,60%), (50%,50%), (60%,40%), (80%,20%), (100%,0%)} define the type;

each element in O represents which percentages, from the 100% of the outliers, belongs to the

min group and which to the max group respectively. This also defines the nomenclature for the

type of outliers, the Table 4 explains which was the percentage taken from each component to

make the outliers. The third component just indicates the presence or absence of one extreme
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point in the first element of the response variable. Choosing one configuration can determine the

topology of the outliers.

Two more configurations are possible when Gaussian basis functions are used. These

are the quantity of centroids and its standard deviation. The centroids quantity of the synthetic

dataset is defined in the set C = {1,3,7,15,31}, and the elements inside the set D = {1,0.5,0.1}

define the standard deviations.

All the combinations between the elements in S , P , O and the presence or absence

of the extreme outlier determine all the experiments that can be executed over one single dataset

A . Additionally, the combinations of the elements in C and D can also be joined to the set

of feasible experiments when the datasets use Gaussian basis functions. Lastly, one single

configuration is executed 10 times using different stochastic sets of T̃ and M̃ .

4.1.2 Real dataset

The Real dataset presents a small quantity of combinations of possible configurations

if you compare with the synthetic data. For measuring the performance, the quantity of elements

in M̃ is 20% of the cardinality of the set A .

The real dataset uses the Gaussian basis function to transform its original data. Then

the centroids quantity are defined in the set C = {1,3,7,15} and the elements inside the set

D = {1,0.5,0.1,0.05,0.01} define the standard deviations.

All the combinations between C and D determine all the possible configurations in

this dataset. Each configuration is executed 10 times using different stochastic sets of T̃ and M̃ .

4.1.3 Configuration

Most of the estimators chosen in this work need to specify parameters to their

execution. Only the classic least squares is a non-parametric algorithm. This Section stands

for the specification of all the parameters used. However it is worth mentioning that all the

values chosen are the default values recommended in their common implementations (normally

to achieve some feature such as high BDP).
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Table 5 – Parameters used in the execution of the estimator

M Estimator S Estimator
ρ function = tukey bisquare.
a value = 4,685.

ρ function = tukey bisquare.
Breakdown point = 50%

MM Estimator RANSAC
50% BDP estimator: S Estimator
M Estimator:
ρ function = tukey bisquare.
Asymptotic efficiency = 95%.

Using 2nd approach of 2.5.1:
δp =0.99
1− p = 1e−3

4.2 Synthetic Datasets

The generation of artificial datasets gives the opportunity to specify the shape and

quantity of the outliers inside the dataset. The major advantage of the controlled environments is

the possibility to accurately compare the behavior of the estimators accordingly to the modifica-

tions on the shape or on the percentage of the outliers within the data. In this work, the presence

of outliers in the synthetic datasets is designed to be exclusively inside the response variables.

4.2.1 Generation

The quantity of points is defined to be 1500, in other words |A | = 1500. For the

linear regression problem where the basis function φ(x) = x, it is generated a dataset A = {X, t}

using some linear model β with 4 parameters and without noise. The matrix X = (x1, ...,x1500)
T,

and each observation xi ∈ R4 is associated with a target value ti = β
Txi ∈ R. If the datasets use

Gaussian basis function, then xi ∈ R2 is generated using the continuous uniform distribution

between 0 and 1 and ti = sin(2πxi1)sin(2πxi2).

The unidimensional data vector g ∈ Rn of Gaussian data (with µg = 0 and σg = S )

is created for generating the white noise. Additionally, two one-dimensional Gaussian data

vectors called omax ∈ Rn and omin ∈ Rn are built for generating the outliers. The two vectors are

created using different sets of µ and σ (i.e µmax and σmax for omax) and it will depend on the

features needed for the experiments (see Section 1.2.2 for details).

The error vector e is built with a stochastic combination of u values from the vector g

and v values from the vector o, where e ∈ Ru+v and u+ v = |T |. The subset T is modified with

the intention to contaminate it with outliers. These outliers will be placed in the output vector

and not as leverage points (see Section 1.2). Taking t̂ as the new output vector, the t̃ = t̂+ e and

the new subset T̃ = {X̂, t̃}.
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Table 6 – Parameters of the Noise/Outliers creation

Dataset σg σmin µmin σmax µmax Extreme Outlier
1

{1e-2,1e-1}
0.5σg

−15σg
0.5σg

15σg2 300σg
3

−4σg 4σg
4 300σg
5

0.4σg
6 300σg
7

Min(g)+σg Max(g)−σg

300σg
8
9

0.5σg
300σg

10
11

σg σg
300σg

12

The M subset is also modified, but in this case the Gaussian noise from the g vector

is only used. A stochastic subset of g with |M | size for contamination purposes was taken; the

subset is stored in the vector r ∈ R|M |. Then, if we define X̄ as the input matrix of M and the

output vector as ť, therefore t′ = ť+ r and the new subset M̃ = {X̄, t′}.

It is important to note that the cardinality of the subsets T and M and the u and v

values are chosen in each experiment. The set of experiments includes the generation of different

datasets using distinct models of outliers for the vector o (see Section 1.2.1).

4.2.2 Results

Four synthetics were selected after the execution of the planned experiments. This is

because, taking into account the list of graphics and information generated and analyzed, four

datasets can represent the most important findings and results. The outliers scheme chosen are

the 2, 3 and 10 for the linear datasets and the 4 for the non-linear (it is called 4B); the election

was based on the differences obtained by variations on the parameters inside each generation.

The asymptotic efficiency-breakdown point trade-off is clear over all the experiments;

the RANSAC and LS algorithms have high asymptotic efficiency but low breakdown point; the

S-Estimator has the highest BDP but the lowest asymptotic efficiency; lastly, the MM-Estimator

stays between the S and the M-Estimator in most of the executions.
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4.2.2.1 Dataset 2

The dataset 2 contains the extreme outlier; it is one of the most important features in

this dataset. As shown in Figure 2 the 3, the mean squared error of the least squares algorithm

was higher, in the majority of the cases, than the other algorithms; from type I to type IV all the

estimators maintain a better performance than LS, at least until their breakdown point.

The extreme outlier has a considerable influence inside the LS estimator; for each

algorithm within the Figure 4, the symmetry (between types) of the MSE values is clear. There is

another symmetry in the Figure 5. This applies for all the algorithms except for the least squares;

it is easy to see how the values of the right side (from Type V to VII) of the LS graphics are

lower than the left side.

There is another curious influence of the extreme outlier. It was previously mentioned

that the extreme point is not a leverage point; then its repercussion can be exclusively observable

over the least squares. The 0% graph inside the Figure 5 shows that LS does not need a significant

number of outliers to break. However, the performance of the LS rose from the outlier type V

to the outlier type VII. The explanation of that is the ‘positive’ effect that the extreme outlier

can bring when located in the other side of the greater part of outliers. The percentages of min

outliers are higher than the percentages of the max outliers from the types V to the VII. Thus the

extreme outlier counteracts the influence over the error function that the min outliers have (only

for the OLS).

The RANSAC algorithm is tuned for being similar to the LS in therms of asymptotic

efficiency; but it can handle small quantities of outliers, even the extreme one. It is for that

reason that in the type V, VI and VII of outliers its MSE is slightly higher than LS when the

percentage of outliers are incremented. In other words, the capacity of the RANSAC to cope

with the extreme outlier also excludes the positive influence that the extreme outlier does to the

LS when the presence of min outliers is significant (higher percentages and types).

The S-Estimator seems to be the best algorithm when the percentage of outliers

grows (and until its BDP); on the other hand, the performance of the S-Estimator is poor when

the percentage of outliers is low or its distribution is similar to the Gaussian. This statement can

be easily understood analyzing the graphs with 0% and 4% of outliers in the Figure 5.

The µmin and µmax are 15 times the standard deviation used to generate the white

noise. When the proportion of min-max outliers is the same (type IV) and the outlier percentages

are lower than the BDP, the noise effect is the same as the Gaussian.
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Figure 2 – Performance of the algorithms by type of Outliers over Dataset 2; each graphic shows
the MSE in semilogarithmic scale (Normalized by the MSE of LS) of the estimations
when varying the percentage of outliers.
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Figure 3 – Performance of the algorithms by type of Outliers over Dataset 2; aach graphic
contains the MSE of the estimations by each percentage of outliers.



71

Least Squares

I II III IV V VI VII

Type of outlier

0
4
8

12
16
20
24
28
32
38
42
46
50
64

O
u
tl
ie

rs
p
er

ce
n
ta

ge
M-Estimator

I II III IV V VI VII

Type of outlier

0
4
8

12
16
20
24
28
32
38
42
46
50
64

O
u
tl
ie

rs
p
er

ce
n
ta

ge
MM-Estimator

I II III IV V VI VII

Type of outlier

0
4
8

12
16
20
24
28
32
38
42
46
50
64

O
u
tl
ie

rs
p
er

ce
n
ta

ge

RANSAC

I II III IV V VI VII

Type of outlier

0
4
8

12
16
20
24
28
32
38
42
46
50
64

O
u
tl
ie

rs
p
er

ce
n
ta

ge

S-Estimator

I II III IV V VI VII

Type of outlier

0
4
8

12
16
20
24
28
32
38
42
46
50
64

O
u
tl
ie

rs
p
er

ce
n
ta

ge

Min

Max

MSE

Figure 4 – Performance of each algorithm over Dataset 2; each graphic contains the MSE of one
algorithm when varying type and percentage of outliers.
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Figure 5 – Performance of the algorithms by percentage of Outliers over Dataset 2; each one of
them contains the MSE of the estimations made by all the algorithms over each type
of outliers.
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4.2.2.2 Dataset 3

The dataset 3 have two main features: The absence of the extreme outlier and that

the mean of the min and max outliers is nearer of the mean of the white noise than the Dataset 2

(Table 6 for details). Because of that and the standard deviation used in their generation, the tails

of their probability density density functions overlap.

The first impression obtained by observing all the graphics was the symmetry related

to the type of the outliers. The Type I corresponds with the Type VII; the Type II corresponds

with the Type VI; finally, the Type III corresponds with the Type V. This is a good criterion for

comparing the stability of the estimators. However, the S-Estimator demonstrates some short

breaks in this symmetry aspect. The Figure 9 shows how the S-estimator does not maintain the

symmetry in a good way; the same Figure also can be used to see other small asymmetries.

Inside the Figure 9, although the values are too close to each other in their scale, a

little dissociation of the MSE value between the Types of outliers from the 4% graph to the 16%

graph can be perceived. The explanation for that is found in the process of generation of outliers;

the mean of the min is −0.3998 and the mean of the max is 3987. That makes the identification

of the min outliers easier than the max outliers.

There is a particularity with the BDP of the S-Estimator. It looks like the S-Estimator

cannot achieve the same BDP achieved over the dataset 2. The cause of that is the effect that the

outliers and white noise overlapping can have and its general instability (with the possibility of

local minimums). Besides that, the S-Estimator MSE is at least 47,5% higher than any MSE

from the other algorithms when the percentage of outliers reaches 50% (47.5% is in type IV).

However, the S-Estimator looks like the best estimator for any type of outlier from 12% to 42%

of outliers (see Figure 7).

The Figure 7 shows that the behaviors of the RANSAC and the least squares are

almost the same in every context. Likewise, the M-Estimator and the MM-Estimator have very a

similar performance; they follow the same pattern but the performance of the MM-Estimator

remains between M-Estimator and S-Estimator performances.
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Figure 6 – Performance of the algorithms by type of Outliers over Dataset 3; each graphic shows
the MSE in semilogarithmic scale (Normalized by the MSE of LS) of the estimations
when varying the percentage of outliers.
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Figure 7 – Performance of the algorithms by type of Outliers over Dataset 3; each graphic
contains the MSE of the estimations by each percentage of outliers.
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Figure 8 – Performance of each algorithm over Dataset 3; each graphic contains the MSE of one
algorithm when varying type and percentage of outliers.



77

0% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m
4% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

8% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

12% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

16% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m
20% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

24% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

28% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

32% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

38% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

42% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

46% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

50% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

64% outliers

I II III IV V VIVII

LS

M

MM

R

S

A
lg

o
ri
th

m

Min

Max

MSE

Figure 9 – Performance of the algorithms by percentage of Outliers over Dataset 3; each one of
them contains the MSE of the estimations made by all the algorithms over each type
of outliers.
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4.2.2.3 Dataset 10

The dataset 10 differs from the previous two analyzed datasets because the means of

its max and min outliers data are distinct. The mean of the max is 0.2391 and the mean of the

min is -0.2853. Nevertheless, the standard deviation used for the generation process is the same

for the two components.

The parameters used for the generation of the dataset were in part chosen to evaluate

the influence that the deviations can made if they are placed in the same region as the normal

errors; the overlapping area between the probability density density functions of the white noise,

the min and the max outliers is greater than in the dataset 3. Because of the location where the

outliers are placed, it is harder to recognize when a point is spurious or not.

Inside the Figures 10, 11 and 13, similar patterns are found but not a symmetry.

Besides the least squares, it seems that the estimators detect more accurately the outliers when

they are coming from the max outliers contamination (Types V, VI and VII). This is due to the

mean difference between the min and the max.

The review of the S-Estimator performances in all the experiments of the dataset

10 leads to similar conclusions exposed from the other datasets. The S-Estimator demonstrate

problems with white noise data or similar. The S-Estimator has the worst performance with 0%

and 4% of outliers within the data. Besides that, when the percentage of outliers reaches 50%,

the MSE of the S-Estimator is at least 39.9% higher than any other MSE.

Two patterns that were present inside the experiments of the dataset 2 and 3 are

confirmed. The first pattern is that the least squares shows almost the same performance as the

RANSAC estimator; the main reason is the parameters selection for the RANSAC execution and

the method used to calculate the number of iterations (according to Tordoff e Murray (2005, p. 6),

it is considerably overoptimistic). The second pattern is that the performance of MM-Estimator

lies between the M-Estimator and S-Estimator; anyhow, this pattern is the expected behavior of

the estimator. The MM is always closer to the M-Estimator.
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Figure 10 – Performance of the algorithms by type of Outliers over Dataset 10; each graphic
shows the MSE in semilogarithmic scale (Normalized by the MSE of LS) of the
estimations when varying the percentage of outliers.
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Figure 11 – Performance of the algorithms by type of Outliers over Dataset 10; each graphic
contains the MSE of the estimations by each percentage of outliers.
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Figure 12 – Performance of each algorithm over Dataset 10; each graphic contains the MSE of
one algorithm when varying type and percentage of outliers.
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Figure 13 – Performance of the algorithms by percentage of Outliers over Dataset 10; each one
of them contains the MSE of the estimations made by all the algorithms over each
type of outliers.
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4.2.2.4 Dataset 4B

This dataset follows a non-linear pattern, that is why are used Gaussian Basic

Functions. The quantity of single experiments is high, as well as the number of graphics.

The presentation of the results of the experiments executed with 31 centroids and σ = 0.1

for the Gaussian BF is made in order to discuss part of the findings and also because it was

the configuration where the majority of the algorithms perform best. The Table 7 shows the

configuration and scores when each of the algorithms performs best.

The Figure 15 shows how the least squares and the RANSAC algorithms are unstable

under the set of conditions of outliers. As it was explained before, the RANSAC algorithm uses

an overoptimistic technique to calculate the number of iterations to stop; this combined with

the use of minimal sample sets makes the RANSAC unstable under this context of BF. The

RANSAC stills perform similar to the LS , indeed, the lower MSE is similar to the MSE obtained

by the LS; besides that the RANSAC seems to cope with the extreme outliers.

The behavior of the least squares, although unstable, shows some correspondence

with the features exhibited in the other synthetics datasets. The ‘positive’ effect of the extreme

outlier when the type of outliers is V, VI or VII is present.

The M-Estimator, MM-Estimator and the S-Estimators look to perform well. In

Figure 15 and Figure 16 these estimators show symmetry and their performance until the

breakdown point is better than LS and RANSAC; that means that the extreme outlier is well

treated.

The M-Estimator and MM-Estimator achieve the best performances (mostly the M),

even with high percentage of outliers and using the similar to Gaussian noise conditions (because

of the poor asymptotic efficiency of the S-Estimator). That can be perceived in Figure 16 and in

Figure 15 when the type is IV or the outliers percentage is 0.

Table 7 – Best MSE achieved by the algorithms in the 4B dataset. It contains the configuration
values in where the algorithms performs best.

Best MSE Centroids Number σ Gaussian BF Outliers % Outliers Type
Least Squares 0.0269

31

3 32 V
M-Estimator 0.0103

2
4 IV

MM-Estimator 0.0103
RANSAC 0.0225 0 II

S-Estimator 0.0109 28 II
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Figure 14 – Performance of the algorithms by σ of the GBF over the real dataset; each graphic
shows the MSE in semilogarithmic scale of the estimations when varying the number
of centroids.
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Figure 15 – Performance of the algorithms by number of centroids over the real dataset; each
graphic shows the MSE in semilogarithmic scale of the estimations when varying
standard deviation used on the GBF.
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Figure 16 – Performance of the algorithms by percentage of Outliers over Dataset 10; each one
of them contains the MSE of the estimations made by all the algorithms over each
type of outliers.
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4.3 Real Dataset

The real dataset used in the experiments of this work was the Yacht Hydrodynamics

Data Set. It collects some characteristics of sailing yachts at its initial design stage. The objective

is to predict the residuary resistance for “evaluating the performance of the ship and for estimating

the required propulsive power” Lopez (1981).

4.3.1 Description

The Yacht dataset is composed of 308 experiments which were performed at the Delft

Ship Hydromechanics Laboratory. The ships studied include 22 different hull forms. Variations

concern hull geometry coefficients and the Froude number. The explanatory variables xi ∈ R6

are

1. Longitudinal position of the center of buoyancy.

2. Prismatic coefficient.

3. Length-displacement ratio.

4. Beam-draught ratio.

5. Length-beam ratio.

6. Froude number.

The measured (response) variable for every ti is the residuary resistance per unit

weight of displacement (LOPEZ, 1981). Let A be the entire dataset, then T̃ = T and M̃ = M .

All the dataset is normalized to have mean 0 and standard deviation 1.

4.3.2 Results

The results of the real dataset offer a different perspective from the results showed in

the synthetic datasets experiments. The general performance of the algorithms is poor in all the

experiments made, even when the Gaussian BFs are used. The regressions made using Gaussian

basis functions are selected because the lowest MSE was reached using them. The best result

achieved is with the LS using 63 centroids and 1 standard deviation; the MSE value was 0.2408.

High values of MSE are obtained by the S-Estimator when the number of centroids

is increased. The underlying structure of the transformation made by the Gaussian basis function

looks to have bad influence in the performance of the algorithms; nevertheless the causes of that

influence is not in the scope of the work. The Figure 17 shows that the least squares and the
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M-Estimator are more stable than the other algorithms when varying the number of centroids

and the standard deviation.

The performance of the S-Estimator is the worst in the majority of the cases (see

Figure 18). As expected, the performance of the MM-Estimator is related with the M performance

and the S performance. The RANSAC algorithm has the second-best global performance (0.8125)

and its performance follows the least squares in the majority of the cases.
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Figure 17 – Performance of the algorithms by standard deviation of the GBF over the yatch
dataset; each graphic contains the MSE of the estimations when varying the number
of centroids.
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Figure 18 – Performance of the algorithms by number of centroids of the GBF over the yatch
dataset; each graphic contains the MSE of the estimations when varying the standard
deviation
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Figure 19 – Performance of each algorithm over the yatch dataset; each graphic contains the
MSE of one algorithm when varying the standard deviation and the quantity of
centroids used in the GBF.
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5 EXPERIMENTS ROBUST LOCALLY LINEAR EMBEDDING

In order to compare the performance of the RALLE algorithm proposed in the

Section 3.3.2, the realization of a set of experiments to reduce the dimensionality of some

datasets is made. To accomplish this, the classic LLE, the Robust LLE proposed by Chang e

Yeung (2006) and the RALLE are executed and their results evaluated. Three synthetic datasets

with outliers and one dataset with real data are used.

5.1 Methodology of the experiments

Generation
or Selection
of the data

Dataset A

Dimensionality
Reduction Dataset ˆA

Perfomance
Measurement

Figure 20 – Process of a single experiment

Each single experiment consists in the dimensionality reduction of some dataset.

After the estimation, the resultant less-dimensional dataset is evaluated; the performances of the

algorithms were measured with the Trustworthiness and Continuity. The following list of steps

explains the experiment process:

1. A dataset is generated (synthetic dataset) or selected (real dataset); and a k-dimensional

space is defined, where k is lower than the dimensionality of the original dataset.

2. The dimensionality reduction is executed using the classic LLE, the RLLE and the RALLE.

The number of neighbors and the tolerance are the same for the three algorithms.

3. Performance measurement process is executed. The trustworthiness and continuity mea-

sures are used to evaluate the quality of the reduction. These are executed using all the

neighborhood sizes as the k parameter. The highest mean of the trustworthiness score and

continuity score is elected as the best result for that number of neighbors and tolerance.
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Table 8 – Methodology and parameters of the dimensionality reduction experiments

Dataset New k Neighbors Tolerances RLLE ε RALLE
Dimension Numbers α set Threshold T2 and Q

S-Curve 2 10,
11,...,
30

1e-1,
1e-2,...,
1e-7

0.5 90%, 95%, 99%
Helix 1
Swiss
Roll 2 0.75

90%, 91%, 91.5%
92.5%, 95%, 99%

Duck 2
4,5,

...,15 N/A
0.4, 0.5,
0.85, 1

85%, 90%,
95% 99%

4. Another set of parameters (neighbors-tolerance) is selected and the process starts again at

step 2. If the whole combination of parameters was already selected, the experiment stops

and the best result of all the executions is chosen.

The three algorithms used to reduce the dimension of the data require the definition

of some parameters. The Table 8 shows the entire configuration defined for the three methods in

each dataset.

5.2 Synthetic Datasets

With the main goal being to execute some tests and compare the algorithms, a

synthetic data is generated. To accomplish the experimentation process, the swiss-roll, the scurve

and the Helix figures with additional outliers are designed. The reason for choosing such datasets

was because they are classic figures used in the related literature, even in the original proposals

of the LLE and RLLE.

(a) Helix (b) S-Curve (c) Swiss Roll

Figure 21 – Figures of the generated datasets

The Table 9 indicates which are the settings used to generate the datasets. A clean

design is made from every figure, then every point is polluted with some white noise. The

white noise is Gaussian data with µ = 0 and some specific σ . Additionally, a set of outliers are
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included in the dataset. The Outliers are generated using the continuous uniform distribution

between (max+σ) and (min−σ), where max is the extreme positive of the data and min is the

extreme negative.

Table 9 – Parameters used to generate the synthetic datasets

Helix S-Curve Swiss Roll
Original Dimensionality 3 3 3

Quantity of points 497 1500 1500
σ of the white noise 0.05 0.01 0.01

Percentage of extra outliers 15% 10% 5%

5.2.1 Results

As it can be observed inside the Table 10, the Classic LLE did not achieve the highest

performance in any of the transformed figures. It looks like the RALLE and, to a lesser extent,

the RLLE algorithms obtain TC scores inside of a major range of values. That is commonly

associated with some parametric ML algorithms (it makes the dependency on the assumptions

stronger).

Generally the robust approaches of the LLE achieved better results than the classical

proposal. Nevertheless, only one figure (helix) was transformed reaching the best possible score.

The three methods perform worse in the Swiss Role figure than in any other figure, even though

it was the dataset that included the lowest percentage of outliers. The parameters used in each

algorithm that produce the embedding with the best scores are specified inside the Table 11.

Table 10 – It includes the best (max) TC score, the mean TC score and the lowest (min) TC score
obtained by the three algorithms over the three figures

Helix S-Curve Swiss Roll
max mean min max mean min max mean min

LLE ≈ 1 0.9863 0.8595 0.9971 0.9850 0.9172 0.9972 0.9279 0.8464
RALLE ≈ 1 0.9778 0.7444 0.9997 0.9781 0.8289 0.9967 0.9515 0.8041
RLLE ≈ 1 0.9852 0.8523 0.9997 0.9787 0.9074 0.9976 0.9469 0.7872
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Table 11 – It contains the values of the parameters that correspond with the best scores of each
algorithm over all the datasets. The RALLE algorithm offer the best result when
using a number greater or equal to the number of the other algorithms.

Tolerance Neighbors Number RLLE ε

Threshold
RALLE

T2 and QLLE RALLE RLLE LLE RALLE RLLE
Helix 0.01 18 23 16

0.5 90%
S-Curve 0.01 10 27 18

Swiss Roll 0.001 1e-4 0.001 15 20 20 0.75 91%

5.2.1.1 Helix

The unique figure with unidimensional embedding was also unique in that the

algorithms perform best there. The 3 representations within the Figure 23 look almost ideal.

RALLE obtains the widest range of TC scores. It can be noted analyzing the Figure 22 that the

tolerance values with the least unstable TC scores were the higher ones (from 0.001 to 0.1).
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Figure 22 – Representation of the trustworthiness and continuity scores of the Helix embeddings.
Each graphic contains the score values of one algorithm when varying the tolerance
and the number of neighbors.
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Score: 0.99998

(a) LLE

Score: 0.99998

(b) RALLE

Score: 0.99998

(c) RLLE

Figure 23 – Best 1-Dimensional embeddings of the algorithms. The x-dimension shows the
indexes of all the points and the y-dimension shows its embedding values. The ideal
embedding representation is the one in which the inliers form a straight diagonal
line.

Score: 0.99998

(a) LLE

Score: 0.99998

(b) RALLE

Score: 0.99998

(c) RLLE

Figure 24 – Best 1-Dimensional embeddings of the algorithms over the dataset without outliers.
The x-dimension shows the indexes of all the points and the y-dimension shows
its embedding values. The ideal embedding representation is the one in which the
inliers form a straight diagonal line.

5.2.1.2 S-Curve

Score: 0.99708

(a) LLE

Score: 0.99972

(b) RALLE

Score: 0.99969

(c) RLLE

Figure 25 – Best 2-Dimensional embeddings of the algorithms. The ideal embedding is a squared
figure with three color clusters.
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The best performance was obtained by the RALLE algorithm; it was closely followed

by the RLLE embedding with minor visual differences. The LLE complete the list with a distorted

figure (see 25 for details). Additionally, the Figure 27 shows that the higher values of tolerance

used (from 0.001 to 0.1) seem to be favorable for all the algorithms.

Score: 0.99992

(a) LLE

Score: 0.99993

(b) RALLE

Score: 0.9999

(c) RLLE

Figure 26 – Best 2-Dimensional embeddings of the algorithms over the dataset without outliers.
The ideal embedding is a squared figure with three color clusters.
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Figure 27 – Representation of the trustworthiness and continuity scores of the S-Curve embed-
dings. Each graphic contains the score values of one algorithm when varying the
tolerance and the number of neighbors.
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5.2.1.3 Swiss Roll

Score: 0.99721

(a) LLE

Score: 0.99667

(b) RALLE

Score: 0.99762

(c) RLLE

Figure 28 – Best 2-Dimensional embeddings of the algorithms. The ideal embedding is a
rectangular figure with well-defined color clusters.

The best TC score of the RALLE in the Swiss Roll embeddings was the lowest

best TC score obtained by the RALLE algorithm over all the synthetic datasets. An interesting

result from the LLE is taken; the influence of the outliers is clearly manifested inside Figure 28a.

The TC classify the LLE as second because it only took the inlier points to calculate the score.

To confirm this statement, the TC scores of the same figures were recalculated; the TC scores

obtained by the same best figures of the LLE, RALLE and RLLE but also using the outliers to

make the calculation were: 0.9883, 0.9959 and 0.9953 respectively.

Score: 0.99584

(a) LLE

Score: 0.99867

(b) RALLE

Score: 0.99602

(c) RLLE

Figure 29 – Best 2-Dimensional embeddings of the algorithms over the datasets without outliers.
The ideal embedding is a rectangular figure with well-defined color clusters.
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Figure 30 – Representation of the trustworthiness and continuity scores of the Swiss Roll em-
beddings. Each graphic contains the score values of one algorithm when varying the
tolerance and the number of neighbors.

5.3 Real Dataset

The Amsterdam Library of Object Images (ALOI) is a database that contains images

of 1000 distinct objects. Various imaging circumstances are captured for each element within

the Library, including variations in the illumination angle, illumination color and viewing angle

(GEUSEBROEK et al., 2005). The last one, is the variation that is chosen to be part of the

experiments. From all the objects that belong to the set, one was selected. It was the object

number 62, the plastic yellow duck.

5.3.1 Description

The dataset is composed by images with 72 different viewing angles, starting on

0◦ and finishing on 355◦. Every 5◦ a new picture was taken. Originally, the size of the images

was 192×144 pixels, but for reducing the computational complexity, it was firstly cropped to
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144×144 pixels and then rescaled to 64×64. Therefore, the dimensionality of the dataset is

4096.

(a) 90◦ Duck Image (b) 0◦ Duck Image (c) 270◦ Duck Image

Figure 31 – ALOI’s Duck Dataset

5.3.2 Results
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Figure 32 – Best Duck Embeddings of the algorithms.

The values of the parameters that correspond with the best scores of each algorithm

over the duck database are the following

• LLE: Number of neighbors is equal to 9

• RALLE: Number of neighbors is equal to 5. The T2 and Q cut-off confidence is 99%.

• RLLE: Number of neighbors is equal to 9. The value of the δ threshold is 0.5.

Increasing the value of the δ threshold did not improve the performance of the RLLE algorithm.

On the contrary, the resultant scores were lower than the classic LLE scores.

The dimensionality reduction of the Duck dataset was successfully achieved by the

three algorithms. The analysis made over the general results shows that the RLLE and the LLE

behavior is practically the same; the differences between all the images were imperceptive until

detailed revision. It can be also confirmed by the Figure 33.
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Figure 33 – Duck Trustworthyness and Continuity. It contains the maximum TC scores of the
embeddings when varying the quantity of neighbors and its mean TC scores as well.
All the scores are Normalized using the LLE mean TC score.

The LLE and the RLLE follow the same essential behavior patterns; the RALLE

achieve the higher general mean (0.9541), followed by RLLE (0.9487) and LLE (0.9485).

However the maximum scores behavior is similar among all the algorithms(see Figure 33);

the RALLE reached the best embedding, not only by its score but also because of its visual

presentation.
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6 CONCLUSIONS

6.1 Linear Regression Conclusions

Every day much bigger datasets have to be processed and analyzed with different

purposes but with some common issues. As it was explained in this thesis, the presence of

atypical values in our datasets is almost certainly. Motivated by this and by the study of the

robust statistics, the robust linear regression section was developed.

The main goal of that thesis section was study, analyze and test some robust algo-

rithms for the generalized linear regression. The elemental concepts of robustness and some

models of outliers were studied and discussed in the introduction sections. The adoption of linear

models for studying robustness was a good decision; the analysis of the experiments made over

the linear datasets were transparent.

Some important points to note are: the trade-off between the asymptotic efficiency

and the breakdown point is strong over all the algorithms, then is important to make conscious se-

lection of the algorithms knowing the weaknesses and strengths; the parameters of the algorithms

have to be carefully chosen, some of them are designed to tune some features of the trade-off.

In this thesis, the default sets of parameters for each algorithm is used, detailed, and

its effects in the resultant models are explained in the results and resumed here:

• The least squares perform best when the errors are truly with Gaussian distribution, but

one simply error can break the estimation. It can perform best over some dataset with

ambiguous linear relations or when the quantity of outliers is higher than the BDP of the

other robust estimators.

• The RANSAC algorithm can handle with some atypical values with almost the same

asymptotic efficiency of the LS. It has instability problems due to the use of minimal sets

and its (overoptimistic) iteration limit process.

• The M-Estimator has high asymptotic efficiency (arround 95%) and can cope with enough

percentage of outliers (28% at least) without break. Likewise the LS, it is stable. This

estimator seems perform well under the majority of the tested circumstances.

• The performance of the MM-Estimator generally lies between the M-Estimator perfor-

mance and the S-Estimator performance. It is asymptotic efficient and has high breakdown

point; but it inherits the problems of the two algorithms that compound it.

• The S-Estimator has the highest BDP. It performs better than the other algorithms when
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the percentage of outliers grows, but it performs worst in presence of Gaussian noise or

similar conditions.

The use of the robust algorithms in combination with the classic algorithms (com-

monly with high asymptotic) is suggested. It is recommended to learn the concepts of the

algorithms that can be employed over the specific problem and compare the results to note which

of them are generalizing better.

6.2 Locally Linear Embedding Conclusions

In this thesis work, the principles of the Locally Linear Embedding were analyzed.

Some robust approaches of it were also investigated, such as the RLLE. Besides the objective of

understand how the outliers may influence the result of one dimensionality reduction process,

the main goal of the dimensionality reduction research section was to propose a modification of

the LLE algorithm to provide it with some robustness to outliers; that is why the RALLE was

proposed.

The basic principle of the proposed algorithm was the notion of use different sizes

of neighborhoods in each calculation of the reconstruction weights. This idea was based on the

premise that is possible to have different sizes of the locally linear patches of the points and their

neighbors; additionally to that was taken the implicit idea that some reconstruction weights can

be zero or close to zero in the classic process used by the locally linear embedding. Thus, it

is implemented a similar method used by the robust locally linear embedding; a classification

of the neighbors of each point into inliers or outliers is made. The other algorithms use a fixed

quantity of neighbors for each embedding process, while the RALLE uses variable sizes of

neighborhoods between some minimum and some predefined parameter. In the embedding phase

of the algorithm, and since an eigenvalue and eigenvector decomposition has to be made, a

matrix of scores is used to do a weighted reduction.

The results obtained in the testing process revealed that the use of robust approaches

of the LLE can improve the results in the presence of outliers. The experimental phase demon-

strates the instability of the LLE and its variants; this means that one small change in the

parameters used (number of neighbors and tolerance) can drastically change the result. These

instability of the resultant embeddings is higher in the robust approaches. It can be explained by

the inclusion of extra parameters to the algorithm that made stronger the dependency over the

assumptions (locally linear patches).
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In some cases the trustworthiness and continuity do not score properly the best visual

representations; measuring embeddings without tacking into account the outliers can result in an

erratic representations with high score (best LLE embedding for the swiss roll). In the other hand,

the TC execution tacking into account the outliers can decrease the score of good embeddings in

which the outliers are placed inside the set of inliers.

The data inside the duck database is obtained in a very controlled environment;

this implicates that the duck dataset contains almost only inliers. The results can show how

the notion of neighborhoods of variable size can be an effective tool, and also that the RLLE

works identically to the LLE in the absence of outliers. For future develops of this idea, other

techniques can be developed to precisely calculate the true size of the locally linear patches of

the figures.
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