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Junior

FORTALEZA

2017



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M485n Melo, Hygor Piaget Monteiro.
    Nonlinear scaling in social Physics / Hygor Piaget Monteiro Melo. – 2016.
    66 f. : il. color.

     Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Física , Fortaleza, 2016.
     Orientação: Prof. Dr. José Soares de Andrade Júnior.

    1. Sociofísica. 2. Leis de escala. 3. Eleições. 4. Alometria. I. Título.
                                                                                                                                                  CDD 530



HYGOR PIAGET MONTEIRO MELO

NONLINEAR SCALING IN SOCIAL
PHYSICS

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em F́ısica da Universidade
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RESUMO

As aplicações da mecânica estat́ıstica no estudo do comportamento humano coletivo não
são uma novidade. No entanto, nas últimas décadas vimos um aumento enorme do inter-
esse no estudo da sociedade usando a f́ısica. Nesta tese, utilizando técnicas da f́ısica, nós
estudamos leis de escala não-lineares em sistemas sociais. Na primeira parte da tese real-
izamos a análise de dados e modelagem de eleições públicas. Mostramos que o número de
votos de um candidato escala não-linearmente com o dinheiro gasto na campanha. Para
nossa surpresa, a correlação revelou uma relação de escala sublinear, o que significa que
o ”preço”médio de um voto cresce à medida que o número de votos aumenta. Usando
um modelo de campo médio descobrimos que a não-linearidade emerge da concorrência
e a distribuição de votos é causalmente determinada pela distribuição do dinheiro gasto
na campanha. Além disso, mostramos que o modelo é capaz de prever razoavelmente
o número final de votos válidos através de um argumento heuŕıstico simples. Por fim,
apresentamos o nosso trabalho sobre alometria de indicadores sociais. Nós mostramos
como homićıdios, mortes em acidentes de carro e suićıdios crescem com a população das
cidades brasileiras. Diferentemente de homićıdios (superlinear) e eventos fatais em aci-
dentes de carro (isométrico), encontramos um comportamento sublinear entre o número
de suićıdios e a população de cidades, o que revela uma posśıvel evidência de influência
social na ocorrência de suićıdios.

Palavras-chave: Sociof́ısica. Leis de escala. Eleições. Alometria.



ABSTRACT

The applications of statistical mechanics in the study of collective human behavior is not
a novelty. However, in the past few decades we shaw a huge spike of interest on the
study of society using physics. In this thesis we explore nonlinear scaling laws in social
systems using physical techniques. First we perform data analysis and modeling applied
to elections. We show that the number of votes of a candidate scales nonlinear with
the money spent at the campaign. To our surprise, the correlation revealed a sublinear
scaling, which means that the average “price” of one vote grows as you increase the
number of votes. Using a mean-field model we find that the sublinearity emerges from
the competition and the distribution of votes is causally determined by the distribution of
money campaign. Moreover, we show that the model is able to reasonably predict the final
number of valid votes through a simple heuristic argument. Lastly, we present our work
on allometric scaling of social indicators. We show how homicides, deaths in car crashes,
and suicides scales with the population of Brazilian cities. Differently from homicides
(superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior
between the number of suicides and city population, which reveal a possible evidence for
social influence on suicides occurrences.

Keywords: Social Physics. Scaling. Elections. Allometry. .
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erage total number of deaths and the city size (population). To reduce

the fluctuations we also performed a Nadaraya-Watson kernel regres-

sion [79, 80]. The dashed lines show the 95% confidence band for the
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of these events. (D) The solid lines show the Nadaraya-Watson kernel

regression rate of deaths (total number of deaths divided by the popula-

tion of a city) for each urban indicator, namely, homicides (red), traffic

accidents (blue), and suicides (green). The dashed lines represent the

95% confidence bands. While the rate of fatal traffic accidents remains

approximately invariant, the rate of homicides systematically increases,

and the rate of suicides decreases with population. . . . . . . . . . . . . p. 55

8 Temporal evolution of allometric exponent β for homicides (red

squares), deaths in traffic accidents (blue circles), and suicides

(green diamonds). Time evolution of the power-law exponent β for

each behavioral urban indicator in Brazil from 1992 to 2009. We can see

that the non-linear behavior for homicides and suicides are robust for

this 19 years period, and for the traffic accidents the exponent remain

close of 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 56



9 Scaling relationship between suicides and population for US

counties and MSAs. The small circles show the total number of sui-

cides over five years (2003 to 2007) vs the average population for counties

(A) and MSAs (B). The solid gray line indicate the best fit of a power

law, using OLS regression, between the average total number of suicides

and population. The dashed black lines delimit the 95% confidence band

given by the Nadaraya-Watson kernel regression (solid black line) [79, 80].

The allometric exponents are obtained through an ordinary least-squares

(OLS) fit [81] over the Nadaraya-Watson kernel regression applied to the

suicides data. We find β = 0.87± 0.01 for counties and β = 0.88± 0.01

for MSAs with a 95% confidence interval estimated by bootstrap. The

insets in each graph show the systematic decreases of suicide rates with

population in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . p. 57

10 Fatality per capita versus population for homicides, traffic acci-

dents, and suicides. The color map represents the conditional proba-

bility density obtained by kernel density estimation. The bottom and top

lines correspond to the 10% and 90% bounds of the distribution for each

population size, that is 80% of the sampled points are between these

lines. The middle line is the 50% level or ”median”expected for each

population size. The diagonal shape observed in the left side of density

maps are cases of low number of fatal events, one or two fatalities. After

this region we observe that the three level lines wiggle around an average

power-law behavior. In the case of homicides the three level lines indi-

cate an increase in the expected density of fatality with the population

size. Similarly, for traffic accidents the lines are close to horizontal, that

is, the probability distribution for the rate of fatality is near indepen-

dent of the population. For suicides, the median show a slight decrease

with population size, while the 90% level, that is associated with cases
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1 INTRODUCTION

Historically the origin of statistical mechanics is strongly connected with the study

of statistical patterns of collective human activities. Maxwell and Boltzmann, the fathers

of statistical mechanics, were greatly influenced by the emergence of new applications of

probability theory on social data [1, 2]. However, it was only in the past few decades that

the study of society using physics has been formalized and saw a huge spike of interest

thanks to the large number of new social data produced by the Internet.

In this thesis we explore social systems using techniques commonly used in the physical

sciences. The results is composed by two works [3] where we perform statistical data

analysis and also a physical modeling approach. The main objective is to characterize

and model the nonlinear scaling laws present at urban systems and elections.

This thesis is organized as follows: In Chapter 2, we present a short review on the

introductory concepts of statistical mechanics and on its entangled history with statistics

of social phenomena. As examples, we show how these concepts can be applied to two

important problems: Distribution of money on a closed economical system, and the recent

application of physics on the urbanization problem.

In Chapter 3, we study the scaling relation between the number of votes of a candidate

and the amount of money spent at Brazilian legislative elections. Surprisingly, we find

that the scaling is sublinear. This means that the price of a vote grows disproportionally

with the number of votes, in such way that the richest candidates, on average, spend

more for each vote than the less wealthy ones. To understand this observation we build

a mean-field model that fits the relation between number of votes and money spent and

allow us to explain this nonlinearity as a result of the competition among candidates.

In Chapter 4, we present our work on allometric scaling of social indicators. Allometry

is a nonextensive relation between a property and the system size, often considered to

follow a power-law. This nonlinear relation was first discussed by Galileo in his Dialogues

Concerning Two New Sciences. He noted that skeletons become much more robust and
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massive relative to the size of the body as the body size increases [4]. However, the most

prominent allometric relation was discovered by Max Kleiber in 1947 [5], between the

metabolic rate of animals and their corresponding masses. More recently those ideas were

extended to urban systems by Bettencourt et al. [6]. Here we show how homicides, deaths

in car crashes, and suicides scales with the population of Brazilian cities. Our findings

support the hypothesis that the number of suicides may be influenced by the non-trivial

social substrate of cities.

Finally, in Chapter 5, we present our conclusions and explore the perspectives for

future works.
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2 BASIC CONCEPTS OF
STATISTICAL MECHANICS

Dealing with uncertainty is an unavoidable consequence of human nature. This hap-

pens because science has the objective to explain, describe and predict natural phenomena

and this always occurs under the state of reasoning with conditions of incomplete infor-

mation. This lack of information happens in many levels and for many different reasons.

Even if you take a simple length measurement with a rule, we know that different results

will emerge in each try. This universal lack of information is represented in scientific theo-

ries by randomness, and this universal aspect of nature is what gives the actual importance

of statistics and probability theory.

Statistics originated in 17th century, motivated by the need to make sense of the

social numbers collected by the increasingly bureaucratic state machine, such as the rates

of death, birth, and marriage. The term statistics was introduced in the 18th century to

denote these studies dealing with civil “states” [1, 2].

Inspired by the great success of Newton’s mechanics and astronomy, some scientists

and philosophers start to seek immutable “natural” laws that governed human society.

The French astronomer Pierre-Simon Laplace showed that the variations in male and

female births and other social statistics could be described by a universal law, which we

know today as Gaussian or normal distribution. This law was first proposed to describe

the probabilities of coin tossing, which led Laplace to conclude that the birth of a male or

female is a result of a random process, not a God’s desire to provide spouses for all. The

success of Laplace’s studies on social data with the astounding ubiquity of the Gaussian

curve of errors led the astronomer Adolphe Quetelet to write that

“whatever concerns the human species, considered en masse, belongs to the

domain of physical facts; the greater the number of individuals, the more the

individual will is submerged beneath the series of general facts which depend

on the general causes according to which society exists and is conserved [7].”
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Statistical mechanics first appeared to deal with a specific type of uncertainty gen-

erated by insufficient computational power. Before the discovery of quantum mechanics,

physics was a deterministic science. However when you take a system with an enormous

number of elements, there is a fundamental impossibility to solve all equations of motion.

Even if it was possible, the amount of data generated would be intractable. Remarkably,

this lack of information can be used as an advantage, the application of statistics on physi-

cal system with huge number of elements shows that we can ignore most of the microscopic

rules of interaction and, from an apparent microscopic randomness, emerges a homoge-

neous system governed by simple mathematical laws. This new physical methodology is

explained by James Clerk Maxwell when he came to study the problem of gases:

“...the smallest portion of matter which we can subject to experiment consists

of millions of molecules, not one of which ever becomes individually sensible

to us. We cannot, therefore, ascertain the actual motions of any one of these

molecules; so that we are obliged to abandon the strict historical method, and

to adopt the statistical method of dealing with large groups of molecules... In

studying the relations between quantities of this kind, we meet with a new

kind of regularity, the regularity of averages, which we can depend upon quite

sufficiently for all practical purposes [8].”

The first contributions on the formal development of statistical mechanics were made

by Daniel Bernoulli, James Clerk Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs

in the second half of the nineteenth century. They were faced with the problem of explain-

ing the empirical laws of thermodynamics by using the principles of Newtonian physics.

To do so, they had to assume the existence of atoms and make extensive use of probability

theory, a mathematical branch that can be traced back to mathematicians interested in

maximizing their profit in games of change. These two ingredients produced a deep impact

in science, initially with the creation of statistical physics and later with the application

of this conceptual framework to interdisciplinary fields like biology, sociology, economy,

etc [9, 10, 11, 12].

Even though one might think that Social Physics is a new endeavor, the two areas

have intermingled and influenced each other since the times of Maxwell, as put by the

science journalist Philip Ball [1]:

“Contemporary efforts to apply the concepts and methods of statistical physics

to social phenomena ranging from economics to traffic flow, pedestrian mo-
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tion, decision making, voting and contact networks are therefore essentially

completing a circle whose trajectory commenced centuries previously. Work

on social statistics in the 19th century had a direct influence on the founders

of statistical physics, who found within it the confidence to abandon a strict

Newtonian determinism and instead to trust to a ’law of large numbers’ in

dealing with innumerable particles whose individual behaviors were wholly

inscrutable.”

2.1 Statistical Physics

We mentioned that the creation of Statistical Mechanics was an effort to explain

from first principles the origin of the experimental results of the Thermodynamics. This

achievement came through by using two ingredients: the atomic hypotheses and the use of

probability theory. Indeed, theses two ideas are close connected, because the macroscopic

properties of the system can be computed by assigning a probability for each of the

possible states accessible to the very large number of particles that compose it, without

the need to solve their equations of motion.

A typical thermodynamical system is a gas. For instance, one liter of oxygen at

standard temperature and pressure (T = 273, 15K and p = 1.0Atm) consists of about

3× 1022 oxygen molecules, all interacting with each other and colliding with the walls of

the recipient [13, 14]. Although the exact state of each atom is chaotic and unpredictable,

the thermodynamic quantities, like volume or pressure, follow simple relations like Boyle’s

law:

PV = constant. (2.1)

This simplification happens because quantities are actually averages of microscopic

states, where fluctuations tend to cancel out each other. Statistical Mechanics identify this

average nature of the macroscopic world without trying to solve exactly the equations of

motion. Instead, it proposes a method to determine the probabilities of finding the system

in each microscopic state and, by evaluating the moments of this probability distribution,

we can find the thermodynamic macroscopic variables. As an example, the Temperature

is proportional to the first moment (average) of kinetic energy distribution. Therefore,

Statistical Mechanics change the problem from solving many equations of motion to the

problem of finding a suitable distribution of probability over possible states. There are
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some strategies to determine such distributions over states, as we are going to describe

next.

2.1.1 Master Equation

Suppose that we have a set of different systems, each one of many different random

states. If we observe how they jump from one state to another, after some time we may

see that the majority of systems would have converged to the same, most likely, state.

This description is formalized by the method of solving a master equation.

Assume that our system is in a state i. The probability to find our system in a state

j after a time interval of dt is defined as Rijdt, where Rij is know as the transition rate

from i to j. Since we are interested in calculating which state is more likely, we have to

define the probability of finding the system at state i at time t as pi(t). Therefore, we

can use the transition rates to write down a master equation for the temporal evolution

of pi(t):

dpi
dt

=
∑
j

[pj(t)Rji − pi(t)Rij]. (2.2)

The positive term represents the influx, the rate at which the systems are reaching state i

from every other state j, and the negative term is the outflux, the rate that the dynamics

remove systems from state i. The set of probabilities also have to obey a normalization

condition:

∑
i

pi(t) = 1. (2.3)

The solution of Equation 2.2 with the normalization constraint gives us a method to

find the distribution pi over time. The connection with the macroscopic reality is done by

taking averages with pi. Suppose that you are interested in a macroscopic property M , if

this property for each state i assumes the value of Mi, then the expected value of M at

time t is

〈M〉 =
∑
i

Mipi(t). (2.4)
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2.1.2 Equilibium

We can now ask ourselves what happens to the system when we wait enough time. If

we look Equation 2.2 we can see that, if for every j the two terms on the right-hand side

cancel one another, the probability distribution pi stops to evolve (dpi/dt = 0) and the

system reaches a state called equilibrium state. Since equilibrium statistical mechanics is

concerned only with the equilibrium state of systems, from now on we will write pi as a

shorthand for limt→∞ pi(t).

For a system in thermal equilibrium with a reservoir at temperature T , Gibbs showed

that the equilibrium distribution probability is

pi =
e−εi/kT

Z
=

e−βεi

Z
. (2.5)

This is know as the Boltzmann-Gibbs distribution [14], where εi is the energy of state i

and k = 1.38 × 10−23J/K is the Boltzmann’s constant. Using the convention β = 1/kT

we can write the normalization factor Z as

Z =
∑
i

e−βεi . (2.6)

The normalization factor Z is know as the partition function, and it has great signifi-

cance on the mathematical treatment of statistical mechanics. The study of the variation

of Z with parameters of the system, like temperature, gives us informations about the

macroscopic properties.

From the Boltzmann-Gibbs distribution, Equation 2.5 together with Equation 2.4, we

can calculate any macroscopic variable, for example, the expectation value of the energy

〈E〉, which in thermodynamics is defined as the internal energy U

U = 〈E〉 = 1

Z

∑
i

εie
−βεi , (2.7)

and can also be expressed in function of the derivative of partition function with respect

of β

U = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (2.8)

From thermodynamics we know that the specific heat is given by the derivative of the
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internal energy, so we have

C =
∂U

∂T
= −kβ2∂U

∂β
= kβ2∂

2 lnZ

∂β2
. (2.9)

Basically the same procedure can be done to find any other thermodynamic parameter

as a function of Z.

As we mentioned before, there are multiplies ways to derive the Boltzmann-Gibbs

distribution. One of the most simple demonstrations is by dividing a system into two

parts. Since the energy is additive, the total energy is the sum of the parts: ε = ε1 + ε2,

whereas the probability is given by the product rule: p(ε) = p(ε1)p(ε2). The solution for

these equations is an exponential distribution, like in Equation 2.5.

Another derivation, proposed by Boltzmann, is a bit more complicated, but intro-

duces new ideas that have a profound importance on the derivation of others equilibrium

distributions. Take a system composed of N particles, where each particle has an energy

εi. We call ni the number of particles in a single state εi, such that N =
∑

i ni and the

total energy E =
∑

i niεi. Consider that the system has a finite number of energy states

with i ∈ [0,m]. The number of possible configurations Ω available for a fixed E that

follows these two constraints is given by the combinatorial formula

Ω(E) =
N !

n1!n2!n3!...nm!
. (2.10)

Assuming that every configuration {ni} has the same probability, to find the equilib-

rium configuration we just need to find which E maximizes Ω, which should be the most

likely state. Boltzmann noted that instead of maximizing Ω, it would be much easier to

maximize ln(Ω), because in the limit of large N we can use the Stirling approximation,

ni! ≈ e−ninni
i , so

lnΩ

N
= −

∑
i

ni

N
ln
(ni

N

)
. (2.11)

The problem of maximization with constraints can be easily solved by using the

method of Lagrange multipliers [14]. Looking at Equation 2.11 Boltzmann noted that

ln(Ω) have an important role on statistical mechanics, in fact he defined S = k ln(Ω) as

the microscopic interpretation of Clausius’ entropy [14]. Therefore, to find the equilibrium

distribution, we have to maximize the Entropy, S = k ln(Ω). This result elegantly connects
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statistical physics and the second law of thermodynamics.

Equation 2.11 also give us another definition for Entropy, that was first discov-

ered by Shannon when working with information theory [15]. Since the probability is

defined as pi = ni/N , we see that another equivalent definition for Entropy is S =

−
∑

i pi log(pi). The Shannon information entropy connected the information theory with

statistical physics. This remarkable theory was responsible for the creation of a number

of new interdisciplinary applications for statistical physics [10, 11, 16].

2.2 Social physics

The French political philosopher Auguste Comte in the 19th century first coined the

term Social Physics [17, 1]. He believe that this new discipline should be the natural

evolution in a search for a complete description of the world,

“Now that the human mind has grasped celestial and terrestrial physics, me-

chanical and chemical, organic physics, both vegetable and animal, there re-

mains one science, to fill up the series of sciences of observation – social physics.

This is what men have now most need of; and this is the principal aim of the

present work establish.”

As we mentioned before, the emergence of a Social Physics was a natural consequence

of the creation of Statistical Physics. Unfortunately, this historical connection was lost

for the most part of the 20th century. However, in the 90s, as the Statistical Physics

was already well tested and matured, there was finally a movement towards applying its

concepts to sociology and economy, mostly driven by the rapid evolution of computers

and the huge amount of new social data available.

Applying statistical physics to model social dynamics involves two challenges. The

first is finding a simple yet comprehensive microscopic model, and the second is finding

how to extract the macroscopic behavior out of it. Solving the second problem is where

lies the essence of what statistical physics has to offer to social science. A common

mistake is to assume that the macroscopic behavior is a straightforward extrapolation of

the individuals. The political scientist Michael Lind explains this problem [18]

“A friend of mine who raises dogs tells me that you cannot understand them

unless you have half a dozen or more. The behavior of dogs, when assembled
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in sufficient numbers, undergoes an astonishing change. They instinctively

form a disciplined pack. Traditional political philosophers have been in the

position of students of canine behavior who have observed only individual pet

dogs.”

Despite of all complexity of the human interactions, the large-scale behavior seems to

be independent of individual social characteristics, allowing us to use the same techniques

to study of systems composed by a huge number of atoms or molecules [10]. In the

following sections, we shall explore some examples of social phenomena that have been

studied using the techniques of Statistical Physics.

2.2.1 Statistical Mechanics of Money Distribution

We saw that the fundamental law of equilibrium statistical mechanics is the Boltzmann-

Gibbs law for the probability distribution of energy ε

P (ε) =
e−ε/kT

Z
. (2.12)

The analytical derivation of an equilibrium distribution needs the imposition of con-

straints, which usually is a conserved physical quantity, for instance, for the case of a

Boltzmann-Gibbs distribution, we have to impose energy conservation.

Dragulescu and Yakovenko [19] took this classical mechanical assumption and applied

it for a system of many economical agents that interact dynamically exchanging money,

but the total amount of money is conserved. For simplicity, they assumed a closed system

where the total amount of money is conserved, therefore, the equilibrium probability

distribution of money P (m) is a Boltzmann-Gibbs distribution.

Let us suppose that we have a system with a constant number of agents and each

agent i has some money mi from which a fraction can be exchange with other agents.

First assume the simple case for the interaction of i with j, where the first pays an amount

of money ∆m for some goods or services from j. The money balance should be written

as

mi → m′
i = mi −∆m,

mj → m′
j = mj +∆m.

(2.13)
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Naturally, this interaction rule conserves the total amount of money

mi +mj = m′
i +m′

j. (2.14)

This local conservation is analogous to the transfer of energy from one molecule to another

in molecular collisions of a gas.

Assuming money conservation and following the Boltzmann formalism, the distribu-

tion of money m is given by the exponential [19]

P (m) =
e−m/T

Z
, (2.15)

where the partition function Z =
∫∞
0

e−m/Tdm = T , and T is an effective temperature,

or money temperature, equal to the average amount of money per economic agent,

T = 〈m〉 = M/N. (2.16)

Here, M is the total money, and N is the number of agents.

It is possible to perform a simulation in order to verify if Equation 2.15 holds. If

you give an initial amount of $1000 for all agents and at each time step you choose

randomly two agents to perform an exchange of money ∆m, as shown in Equation 2.13,

after a transient period, the money distribution should converge to the Boltzmann-Gibbs

distribution. The simulated money distribution and theoretical curve are plotted in Figure

1. There is experimental evidence that the wealth and income distribution for the majority

of the population indeed show this exponential distribution but followed by a power-law

decay [11].

This simple example shows how to apply the concepts of statistical physics for a

social system where the agents are exchanging not energy, but money. The application

of physical concepts and techniques to Economics represents a vast and promising field,

ranging from studying correlations in stock market series [20, 21], wealth distribution [22,

11], to the analysis of income distribution and inequality [23].

2.2.2 Nonlinear Scaling

By now, we should have made clear that statistical mechanics has the objective to

infer the macroscopic properties of a system from its microscopic dynamical rules. An

important property to note is that, when looking at a finite system, we automatically

associate to it a system size. The size may refer to the volume of the system V , or the
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Figura 1: Histogram of money distribution. The blue line and points shows that
the Boltzmann-Gibbs distribution emerges from a simulation of a economic model with
money conservation. The vertical line shows the initial delta distribution of money. We
see in the solid red line that an exponential function exp(−m/T ) fits the data, where the
money “temperature” is T = M/N , with the total money M = 5 . 105 and the number
of agents N = 500. This figure was taken from Ref. [19].

number of agents N , usually persons for the case of social physics applications. Correctly

assigning a size for a system is essential because comparing macroscopic variables of

systems with different sizes can gives us important informations about how the agents

interact.

In statistical physics we see that some measurable properties typically scale in propor-

tion to the system size. An example is the energy, if we double the number of particles,

the energy doubles as well. We call such physical properties as extensive. This means

that if we have two systems A and B, when we compose those two systems any extensive

property should mathematically behave as f(A+B) = f(A)+ f(B). Therefore, for those

physical properties the whole is the sum of the parts.

Interestingly, proportional scaling is not the only way that a variable can scale with

the system size. Indeed, it is not uncommon in nature to observe properties that present

non-trivial forms of scale dependence. In statistical physics, for instance, when a system
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is close to a phase transition, properties below the critical point are extensive, scale

nonlinearly with the system size, more precisely following a power law. An example is

the scaling between

c ∝ Lβ, (2.17)

where c is the specific heat, L is the system size, and β is called a critical exponent.

In biology, the nonlinear scaling is called allometry. Allometry often implies the use

of power-laws to describe the dependence of a wide range of anatomical, physiological

and behavioral properties. Precisely, if we denoted Y a biological property and M the

body mass of different animal species, one may find a relation in the form of Y ∝ Mβ.

One of the most prominent allometric relations found in natural sciences is the so-called

“three-quarters law” or Kleiber’s law [5], where the metabolic rate of animals should scale

with exponent β = 3/4 of their masses.

Inspired by biological laws, a group of physicists [6] showed that the cities belonging to

the same urban system exhibit nonextensive rates of innovation, wealth creation, patterns

of consumption, human social behavior, and several other properties related to the urban

infrastructure. However, unlike in biology, they found that the scaling can be superlinear

(β > 1), linear (β = 1), and sublinear (β < 1). Bettencourt and collaborators proposed a

classification for the social variable in terms of the exponent [6, 24, 25]:

1. (β < 1) Sublinear scaling implies an economy of scale, because its per capita

measurement decreases with population size. In the case of cities, for example, we see

this type of scaling in the number of gasoline stations, the total length of electrical cables,

and the road surface (material and infrastructure).

2. (β = 1) The linear (isometric) case typically reflects the scaling of individual

human needs, like the number of jobs, houses, and water consumption.

3. (β > 1) Superlinear scaling in urban indicators emerges whenever the complex

patterns of social activity have significant influence. Wages, income, disease, growth

domestic product, bank deposits, as well as rates of invention, measured by new patents.

An explanation for the presence of allometry has been the source of long discus-

sion [24]. The most accepted theory proposes that the 3/4 exponent in the metabolic

scaling of animals comes from a transport theory applied in a fractal geometry in order to

simulate the circulatory systems of animals. In the context of social physics, equivalent

theories have been proposed to explain the allometric scaling in cities. Bettencourt has

proposed a mean field model that uses the fractal nature of cities [25]. However, there is
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still no consensus on the origin of nonlinear scaling in biology and sociology [26, 27].
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3 THE ECONOMY OF
ELECTIONS

3.1 Introduction

Free and fair elections play a central role in democracy [28], exhibiting a complex

process of negotiations between politicians and voters, with the past decades bearing

witness to a steep increase in the expenditure of political campaigns. Take the example of

the presidential elections in the US. The 1996 campaigns cost contestants approximately

$123 million (corrected for inflation) all together, an amount that escalated to nearly $2

billion in 2012 [29]. Although campaign investments have grown, the impact of money

into the electoral outcome remains not fully understood [30], and conclusions about the

theme are quite contradictory. Some studies argue that incumbent spending is ineffective,

and the challenger spending, on the other hand, produces large gains [31]. Others claim

that neither incumbent nor challenger spending makes any appreciable difference [32], a

theory that dates back to the 1940’s [33]. Yet another group argues that both challenger

and incumbent spending are effective [34].

Despite the questioning about the effectiveness of political campaigns as a whole,

the election campaign of President Barack Obama in 2012 spent more than 65% of its

money on media, including TV and radio air time, digital and printing advertising, and

others [35]. Therefore, the direct contact with voters not only figures as a major factor

in campaign planning, but it is clearly believed to have relevant impact in succeeding to

persuade undecided voters [36].

We try to address the problem of how campaign expenditure influences election out-

come by developing a mean field model for the negotiations between candidates and voters.

This model has two simple ingredients: the number of votes candidate i receives is limited

by his/her money mi, and candidates can openly compete for voters. By taking into ac-

count the competition between candidates when convincing undecided voters, the theory
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accurately reproduces the vote distribution P (v) when provided their money campaign

distribution P (m). The model shows that the top vote-receivers are those who spend

more in political campaign, but with a highly counterintuitive result: the more candidate

spends, higher the price of a vote.

In Economics, a similar effect in which larger companies tend to produce goods at

increased per-unit costs is known as diseconomy of scale, and it may have diverse causes

like communication costs [37], and the Ringelmann effect, the psychological effect when

individuals get less efficient when working in larger groups [38].

This diseconomy of scale is present on real data acquired from recent proportional

elections in Brazil, openly available in [39]. As far as we know, this is the first work to

report such phenomena in elections. The data is related to the elections for the national

lower house and state congress in 2014. Brazilian representative elections are an excellent

experiment due to a number of special factors. First, Brazil is a large country, both

in population and land area. It has the fifth population of the world spread across

roughly 8.5 million km2 (over 3 million mi2). Second, in contrast with executive elections,

representative elections in Brazil have a large number of candidates. Additionally, it is

compulsory to vote in Brazil. Altogether, these factors leads to a huge data set from a

quite diverse electorate.

We argue that competition between candidates is the root cause of this verified disec-

onomy of scale in Brazilian elections, showing that a scenario without competition always

overestimate the number of votes of top campaign spenders. Moreover, we show that

the correct estimation of the approach with competition is able to reasonably predict the

turnout rate of elections through a simple heuristic argument. Finally, we test our theory

by using the principle of maximum entropy to show that the statistical dispersion of the

model agrees with the one found in our data set.

3.2 Materials and Methods

Here, we are able to investigate the effect of the investment of candidates on campaign

thanks to the recent publication of data containing the total donations and expenses

for each candidate. We analyze Brazilian elections for two different kinds legislators,

federal and state deputies. The data are available at the website of the Brazilian Federal

Electoral Court [39]. By force of law each candidate must provide a detailed description of

each personal spending, with many specific informations like the value, date and type of
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expense. All these informations can be accessed by the public, however in order to know

the total cost of the campaign and the number of votes of each candidate is necessary to

process the database computationally.

State deputies are local representatives elected for a term of four years by a propor-

tional system. His function is to legislate in the unicameral system of each state. The

federal deputies are representatives in the chamber of deputies of the national Congress,

one of the two houses of the legislative power. The number of elected federal deputies is

proportional to the population of the state, from a total of 26 states and a federal district.

3.3 Empirical findings.

We start our analysis by assembling the data sets on the entire electoral outcome and

campaign expenditure of candidates from all 26 Brazilian states. Figure 2 displays the

number of votes v versus the declared campaign expenditurem of each candidate in the top

5 Brazilian states by population: São Paulo (Figs. 2A and 2B), Rio de Janeiro (Figs. 2C

and 2D), Minas Gerais (Figs. 2E and 2F), Bahia (Figs. 2G and 2H), and Rio Grande do

Sul (Figs. 2I and 2J). Although spread, the clouds of points are neatly correlated and

follow a clear trend. Remarkably, this trend is observed in all representative elections for

all Brazilian states.

To extract the main relationship between v and m, we average the number of votes

in log-spaced bins along m, which provides an estimation for the empirical relation of v

as a function of m. In order to plot in the same figure these results for different states,

we perform a scale transformation on v by supposing simple linear relation v = c × m,

where c is a characteristic constant of a given election. If we define the average price of a

vote as ∆m =
∑

imi/
∑

i vi and suppose that it is roughly uniform across candidates, it

is easy to see that c = 1/∆m. If the relation between votes and money is linear then the

plot of v × (∆m/m) should be a constant function of m with value close to 1.0.

In Figure 2, we plot v∆m/m as a function of m for the (K) state legislative assembly

and (L) federal congress elections in the year of 2014 for the eight most populated states in

Brazil. The result shows a consistent nontrivial dependence of votes on money. For small

values of m we see a rapidly decreasing of v∆m/m. When we look at this region in Fig. 2

we see no clear correlation between v and m, meaning that the money is so little that

the votes are nearly random. Looking at the region above ten thousand Brazilian reais

(R$10,000.00), we see a region with an apparent linear dependence of v with respect of
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m. However, when as m increases, a noticeable departure from linearity is observed. The

wealthier candidates display a lower fraction of votes per money. This sublinear scaling

means economically that the candidates with more votes spend more money per vote if

compared with less successful candidates and is our first main result.
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Figura 2: Scaling Relation between number of votes and money spent. The
red circles shows the relation between the number of votes and the declared campaign
expenditure of each candidate in the state and federal deputies elections in 2014 for
the five largest states in Brazil: São Paulo (A,B), Rio de Janeiro (C,D), Minas Gerais
(E,F), Bahia (G,H), and Rio Grande do Sul (I,J). Despite the large fluctuations, there
is an unambiguous correlation between votes and money. In order to see the nuances
of the correlation we plotted in (K) and (L) a normalized relation for state and federal
deputies for the eight largest states in Brazil. The symbols represents the normalized
ratio 〈v〉∆m/m where we first calculate the average number of votes in log-spaced bins
along m. If we assume a linear correlation, the multiplicative constant is ∆m = M/n.
The normalization provides us a direct observation of the nonlinearity in the dependence
of votes on money. We see a global sublinear behavior, where the wealthier candidates
display a lower fraction of votes per money.
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Figura 3: Modeling the nonlinear scaling. In order to verify if our model correctly
fits the data, we show in (A) and (B) the São Paulo election for state and federal deputies
in 2014, respectively. Each small circle is one candidate and the red squares are the
average number of votes in log-spaced bins along m. We see that our model shows a good
agreement with the average behavior for all the money spectrum. In (C) and (D) we
perform the same normalization process as in Fig.1, but now with ∆m estimated using
Eq. 3.3. Each solid line shows the solution of our model, and the color indicates the state.
Despite its simplicity, our model features all nonlinear regimes seen in the data, which
corroborates our theory that the inefficiency of wealthier candidates are due mainly to
competition.

3.4 A mean field approach for the price of a vote

We consider an electoral process composed of two separate groups of individuals,

candidates and voters. All s candidates can compete for the vote of all n voters, and each

candidate i has a limited money mi to spend on their campaign. Thus, if at a given time

mi becomes null, the candidate will not be able to compete for voters anymore, so their

number of votes vi stops varying.

Limiting the candidates to conquer a single vote at a time and assuming that voters
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already convinced cannot change their minds, we can write the time evolution of the

number of votes of a given candidate i as

dvi
dt

=

(
1− S(t)

n

)
[mi(t) > 0]. (3.1)

Where S(t) =
∑s

i=0 vi is the total number of decided voters at time t, and [mi(t) > 0]

is the Iverson bracket, which is 1 if the condition inside the brackets is satisfied, and 0

otherwise. The right-hand side of the Eq. 3.1 is the probability of candidate i to choose

an undecided voter at time t. Eq. 3.1 explicitly requires a definition for the rate of

money expenditure dmi/dt, in order to determine the end of the monetary resources of a

candidate. Due to the nature of the problem, it is natural to expect that dmi/dt < 0. We

choose the simplest case where the money decreases linearly at a constant ratio, in other

words dmi/dt = −∆m. Additionally, we consider this ratio as uniform for all candidates.

The probabilistic feature of Eq. 3.1 is central to confirm our hypothesis that electoral

outcome is an output of campaign expenditure due to a competition process. To show

that, we first consider the case without competition, where s � n. Also, we assume here

that n∆m � mi for all i, so that the candidate with the largest money do not have

enough money to reach out the whole network. By doing so, it is unlikely to a candidate

to waste their campaign money on voter who’s already decided. Thus, the decided voters

of other candidates do not affect the probability of candidate i to conquer an undecided

voter, so vi replaces S(t) in Eq. 3.1, and the system of differential equations become

uncoupled. Under this scenario, these equations are easily integrated, and the number

of votes becomes vi = n − (n − v0,i)e
−mi/n∆m. Here, v0,i is the initial number of votes

of candidate i. Since n∆m � mi, and assuming (n − v0,i) ≈ n, we find the linear form

of vi ≈ v0,i + mi/∆m by expanding the exponential function and taking its first order

approximation. As we will discuss next, this simple model do not suffice to explain the

whole complexity of the relation between v and m.

The first two regimes presented in Fig. 2 are understood by the analytical approach

form above. For the regime of low m, where the experimental data do not exhibit a clear

correlation, the candidates start the race with v0,i votes. Since they cannot afford a long

run and/or a large expenditure, their final performance fluctuates around the initial value

v0,i, which depends on different factors, such as free volunteer engagement. As campaign

money increases, the linear part overcomes the initial v0,i, and a linear regime emerges.

However, the scenario without competition the linear behavior remains at large m. We

shall consider the competition between candidates as a possible cause for the transition
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from the linear to the sublinear regime. This is done by solving Eq. 3.1 in its entirety. By

integrating Eq. 3.1, we find

vi = v0,i +
mi

∆m
− 1

n∆m

∫ mi

0

S(m′)dm′, (3.2)

where we identify that integrating the Iverson bracket over time we get the time length

candidate i has to campaign, which is given by mi/∆m. Additionally, we changed the

variable of integration on the last term by remembering that dm′/dt′ = −∆m.

It is possible to find a differential equation for S(m′) by taking Eq. 3.1 and summing

over i. After solving it for S(m′) and integrating the last term of Eqs. 3.2 (detailed

solution can be seen at section 3.7), we find a set of nonlinear coupled equations that

must be solved in a specific order, candidate by candidate, following an increasing order

of mi. As a consequence, the number of votes of candidate i depends neither solely on

mi nor on t, but on the whole distribution P (m) through the integral at the right-hand

of Eqs. 3.2.

Equation 3.2 has a simple interpretation. As in the scenario without competition

all candidates begin their run with an initial number of votes, and those with sufficient

money to keep running enter in a linear regime controlled by the second term of Eqs 3.2.

Nonetheless, as we will see next, candidates with large enough money may start to waste

their money on decided voters, fact expressed by the presence of S(m′) on the last term

of Eqs. 3.2, which encloses the competition dynamics. This collective influence of the

campaign money from all candidates, Eqs. 3.2, is our second and most important result.

It provides a bridge between campaign expenditure and electoral outcome and is the basis

of the remaining results that follows.

In order to solve the model we have to use as inputs the money m of each candidate,

an initial number of votes v0, the total number of voters n and ∆m. To define v0 we use

the average of votes for candidates with less then R$1, 000. For our model ∆m behaves as

a free parameter that can be calculated in function of the turnout rate T = Sf/n, or final

fraction of votes. This is possible because the total number of votes S(t) have a simple

solution (see section 3.7) for the limit t → ∞, and we can write the final fraction of votes

as

T = 1− e−M/(n∆m). (3.3)

Where M =
∑

i mi is the total money. Therefore, we estimated ∆m using Eq. 3.3 such

that the total number of votes fits the turnout election data.
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The São Paulo election for state and federal deputies in 2014 are shown in Figure 3(A)

and (B), respectively. Each small circle represents one candidate and the red squares are

the average of votes in log-spaced bins along m. We see that our model, the black line,

reveals a good agreement with the average of votes. For the region of small money we see

that our model, like the data, predicts a constant behavior, v ≈ v0. After this region we

have an evident correlation between votes and money. In order to better see the nuances

of the correlated region we plotted in Figure 3(C) and (D) the normalized ratio 〈v〉∆m/m

for the eight largest Brazilian states. The symbols represents the data average and the

lines show our model solution for each state identify by the color. For small and large

values of m, we clearly see that our model correctly predicts the deviation from the linear

behavior, 〈v〉∆m/m ≈ 1.0.

3.5 Frequency distribution of votes

One of the first empirical investigations carried out by physicists concerning Brazilian

elections was focused on the distribution p(v) of the number of candidates receiving v

votes. Since then, several other works have shown how the distribution changes for other

countries [52, 59], and also proposed models to explain p(v) [45, 40]. For our model the

distribution of votes is an outcome of the distribution p(m) of the number of candidates

spending m. In Figure 4(A), (B) and (C) we show the distribution p(m) for state deputies

of São Paulo, Rio de Janeiro, and Minas Gerais, respectively. We see an apparent power

law decay that expands over close of four orders of magnitudes. Using those distributions

as input for our model we determine p(v) for each one of those elections. In Figure 4(E),

(F) and (G) we compare the empirical votes distribution for each state with the one

obtained by our model. We see how our model reproduces correctly the empirical distri-

bution for over two orders of magnitude. But even more, the correct prediction of p(v)

shows that the long tail, emblematic of p(v), is not a consequence of networks or dynamic

properties but mostly it comes from the money distribution.

3.6 Model validation

In order to test if our model really describe the data, we perform a series of com-

parisons using data from the 2014 state and federal deputy elections in the 26 states in

Brazil. In Figure 5(A) each point is an election, and we show that our model calculates

the turnout rate T in agreement with the data. This result was to be expected, since we
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Figura 4: Frequency distribution of money and number of votes. In order to
derive the distribution of votes our model takes as input the distribution of money. We
see that the frequency distribution of money for the state deputies in São Paulo (A), Rio
de Janeiro (B) and Minas Gerais (C) reveals a long tail characteristic that our model uses
as an underlying cause for the observed vote distribution. We can now compare the actual
distribution (black circles) of votes, P (v), with the obtained by our model (red diamonds)
for the election of state representatives in São Paulo (D), Rio de Janeiro (E), and Minas
Gerais (F). We can see that our model have a good agreement with the data showing that
the universal long tail characteristic of p(v) is a direct consequence of money distribution
and a competitive dynamic.

used Equation 3.3 to estimate ∆m. We also compared how good our model estimates the

candidate with the highest vote, vmax. Figure 5(B) shows the calculated vmax against the

votes of the most voted candidate, where each black circles is an election. The red circles

shows a linear approximation (vi ≈ mi/∆m). We see that points of the mean-field model

gather around the identity line showing a good agreement, demonstrating that our model

is better than the linear model, which overestimate the votes (see section 3.8 for a statical

comparison).

The Equation 3.3 shows that if we estimate ∆m before the election, we can forecast

the turnout ratio T . Fortunately, we can build some simple economical assumptions that

presents a good agreement with the data. If we imagine that the candidates know the

total money, M , and the size of the electorate, n, we can assume that the most simple and

equitable division of votes will occur if ∆m = M/n, in fact this is the first point where

T = 100%, which corresponds to the case without competition (more detail in section

3.7). Therefore we are assuming that the candidates adapt their strategy to have the

maximum number of votes without have to compete and by consequence without have
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to lose money. This heuristic gives us a value of valid votes of T = 1 − e−1 ≈ 63%. We

show in Figure 5(C) the histogram of the number of total valid votes for the Congress

elections in the years 2006, 2010 and 2014. The simple relation for T gives an impressive

agreement with the average turnout, which we find experimentally to be ≈ 67%.

3.7 Study of the dispersion

. Our model allow us to calculate the mean or expected value of the number of votes.

However, to fully describe the election we have also to study the statistical dispersion,

which is given by the conditional probability distribution p(v|m). We can use the concept

of maximum entropy probability distribution (MaxEnt) in information theory to guess

which is the p(v|m) that maximize the Shannon’s Entropy [16]. Imposing only a constraint

for the mean 〈v〉 the maximum entropy continuous distribution is exponential,

p(v|m) =
1

〈v〉
e−

v
〈v〉 . (3.4)

The exponential distribution probability have the property that the mean and stan-

dard deviation are the same. We see in Figure 5(D) that our data show a tight relationship

with approximately unit slope σ ≈ 〈v〉, which strongly indicates that the Eq. 3.4 accounts

for all the random variation on v(m) with the expected value calculated by our model.

In the inset of Figure 5(D), we show these two elements in a simulation for a election of

state deputy for São Paulo’s State. We can see that when we add the random dispersion

our model have a remarkable resemblance with the data.
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Figura 5: Analytical results of the model. By solving our model expressed in Eq.
1, we calculate the expected number of votes of each candidate. The total number of
votes divided by the number of voters n is defined as the turnout ratio T . For all 56
parliamentary elections in 2014, we compared our model estimation of the turnout ratio,
Tmodel, and the data ratio Tdata, as we see in (A). The dashed line represents what would
be the perfect agreement (Tdata = Tmodel) and we see that the simulations (black circles)
exhibit a good agreement. We can also select the candidate with the largest number of
votes vmax and see how our model estimate this value. In (B) we see that our model
(black circles) better estimates vmax than the linear (red squares), which most of the time
overestimates it. We show in (C) a histogram of T for the election of 2006, 2010, and
2014. We find an average turnout value of ≈ 67%, which is consistent with our heuristic
estimation of T = 1 − e−1 ≈ 63%. We know that the exponential distribution have the
property that the mean and standard deviation are equal, this property can be used in
order to test if the dispersion along the mean follows an exponential distribution. In (D)
we see that for state deputies of the eight largest states in 2014 election the data is in
close agreement with the hypotheses of σ = 〈v〉. We use the exponential distribution
and the expected number of votes calculate by our model to generate a random election.
We show in inset, for São Paulo, that when we add the random noise to our model (red
triangle) we obtain a cloud that closely resembles the actual data (black circles).
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3.8 Analytical Solution

Before solve the Equations 3.1 we can solve a simpler case, where we ignore the

competition, analogous to an interaction in a physical system. If we suppose that the

number of candidates NC is much smaller than the number of voters n, we can neglect the

interaction between candidates and the system of differential equations became uncoupled:

dvi
dt

=
(n− vi(t))

n
[mi(t) > 0] (3.5)

These equations can be simply integrated, and the expectation for the number of

votes in function of money is

vi(mi) = n− (n− vi(0))e
−mi/(n∆m). (3.6)

We can assume that n∆m >> mi for any i, which means that the candidate with the

largest campaign finance will not have enough money to reach out the whole system.

Therefore, we can find a linear approximation for the dependence between votes and

money:

vi(mi) = n− (n− vi(0))

(
1− mi

n∆m
+

m2
i

2∆m2n2
− ...

)
, (3.7)

vi(mi) ≈ vi(0) + (n− vi(0))
mi

n∆m
. (3.8)

Assuming n− vi(0) ≈ n, we finally find the linear approximation

vi(mi) ≈ vi(0) +mi/∆m. (3.9)

Now we want to solve the competition equation system. Taking Equation 3.1 and

summing over i we can find a differential equation for S(t) that can be easily integrated:

Nc∑
i=0

dvi
dt

=
dS

dt
=

(n− S(t))

n

Nc∑
i=0

[mi(t) > 0] (3.10)

dS

dt
=

(n− S(t))

n
r(t) (3.11)
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S(t) = n− (n− S(0)) exp

(
− 1

n

∫ t

0

r(t′)dt′
)
. (3.12)

Where r(t) =
∑

i[mi(t) > 0] and can be interpreted as the number of candidates who

still have money at time t, which depends solely on the distribution of money.

The Equation 3.12 enables us to determine the turnout rate T of the election in

function of ∆m, the total money M =
∑

imi, and n. We just need to take the limit

t → ∞ and by doing that we determine the value where S saturates.

T =
S(t → ∞)

n
= 1− e−M/(n∗∆m). (3.13)

To find Equation 3.13 we used the fact that
∫∞
0

r(t′)dt′ = M/∆m and we use the

approximation n − S(0) ≈ n. In order to understand this integral we have to remember

the definition of r(t) and also the fact that dt = −dm/∆m. So the integral became

∫ ∞

0

r(t′)dt′ =

∫ ∞

0

Nc∑
i=0

[mi(m
′) > 0]dm′/∆m, (3.14)

∫ ∞

0

r(t′)dt′ =
Nc∑
i=0

mi/∆m = M/∆m. (3.15)

In Figure 6(A) we show the turnout rate T (Eq. 3.13) in function of ∆m, and com-

pare with the case without competition (Tlinear), which is obtained by simple summing

Equation 3.9 and taking S(0) ≈ 0. The amount of votes (or money) lost by competition

can be evaluated by looking at the subtraction of the two rates. We see that there is

a maximum loss when ∆m = M/n. As we can observe, ∆m can work physically as an

external field that will provide energy to the system in order to convince a fraction of the

voters, or also ∆m can be seen as a Temperature, wherein for small values the system

organize in a big cluster of convinced nodes and for large values of ∆m the system stay

in a “disorganized” state (T ≈ 0).

Now we can integrate our model in function of S(t) and calculate v,

vi = vi(0) +
mi

∆m
− 1

∆m

∫ mi

0

S(m′)

n
dm′, (3.16)
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Figura 6: Dependence with ∆m. The solution of the mean field model enables us
to calculate the turnout radio T in function of the adimensional n∆m/M parameter. In
(A) we compare turnout for the approximated case where we excluded the competition
between the candidates, Tgas, with the case with competition, T . The competition creates
an exponential saturation, which increases the loss of money when candidates seek new
voters. This inefficiency is maximum when n∆m/M = 1.0, we can see that by looking for
Tgas−T . We can also vary ∆m and see how the curve v(m) change. In (B) we show that
as we decrease ∆m the values of v(m) usually increases, as expected by the definition of
∆m, however there is a point that we have a saturation process as the total number of
votes starts to get close of the size of the system (T → 1.).

vi(mi) = vi(0) +
1

∆m

(
1− S(0)

n

)∫ mi

0

exp

[
− 1

n∆m

∫ m′

0

r(m′′)dm′′

]
dm′. (3.17)

To find an analytical expression for v we have to solve the integral
∫ m′

0
r(m′′)dm′′

inside the exponential. But first we can decompose the external integral as

vi = vi(0) +
1

∆m

(
1− S(0)

n

)∫ mi−1

0

exp

[
− 1

n∆m

∫ m′

0

r(m′′)dm′′

]
dm′

+
1

∆m

(
1− S(0)

n

)∫ mi

mi−1

exp

[
− 1

n∆m

∫ m′

0

r(m′′)dm′′

]
dm′,

(3.18)

vi = vi(0)− vi−1(0) + vi−1 +
1

∆m

(
1− S(0)

n

)∫ mi

mi−1

exp

[
− 1

n∆m

∫ m′

0

r(m′′)dm′′

]
dm′.

(3.19)

The result of this integral rely on the limits of the external integral. Using the
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definition of r(m) for the external interval m′ ∈ [mi−1,mi] we have that

∫ m′

0

r(m′′)dm′′ = m0 +m1 +m2 + ...+mi−1 + (Nc − i)m′. (3.20)

By solving the integrals we finally find that the number of votes vi is given by

vi = vi(0)− vi−1(0) + vi−1 −
n− S(0)

Nc − i
e−

∑i−1
j=0 mj/(n∆m)[e−

(Nc−i)mi
n∆m − e−

(Nc−i)mi−1
n∆m ]. (3.21)

We can see in Equation 3.21 that the number of votes of a candidate i is not only a

function of his budget mi but indeed it depends of the set {mi}. We show in Fig. 6(B)

how the curves v(m) changes in function of ∆m. As we decrease ∆m a large fraction of

the system gets occupied, T → 1.0, and v(m) shows a curvature for larges values of m

and start to saturate displaying a nonlinear growth.

3.9 Comparing models

In order to compare the model with the simple case without competition we used the

Akaike’s Information Criterion (AIC) [63]. AIC uses information theory to gives a relative

estimation of the information lost when a given model is used to represent the process

that generates the data. We used AIC to measure the relative quality of our model when

we compare with the linear non-competitive model.

Lets suppose that we have a model, with k parameters, that fits a data set with N

points. If S is the residual sums of squares then the AIC is defined by

AIC = N ln

(
S

N

)
+ 2(k + 1). (3.22)

Using the Equation 3.22 we can calculate the AIC for each model and the preferred

model is the one with the minimum AIC value. We define model A as the model without

competition and B the most complex model, where there is competition. The difference

in AIC is defined as ∆AIC = AICB − AICA. With this difference we can calculate the

probability that model B minimize the information loss:

PB =
e−0.5∆AIC

1− e−0.5∆AIC
. (3.23)
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As well as, the probability of model A, PA = 1− PB. We can also divide the probability

for model B by the probability for the model A to obtain the evidence radio, which means

how many times is B more likely to minimize the information loss.

We performed all these analysis for Federal and State deputies in 26 Brazilian states.

The data was compared with the model without any transformation and also after appli-

cation of logarithm. The results for the 2014 elections can be seen in Tables 1, 2, 3, and 4.

The AIC shows that the model with competition best explains the data when compared

to a linear model for all cases.
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Tabela 1: We used the Akaike’s information criterion (AIC) to compare the two models: A
(without competition) and B (with competition). The AIC lets us determine which model
is more likely to describe correctly the data and quantify by calculating the probabilities
and an evidence radio. The probability column shows the likelihood of each model to be
the most correctly. The evidence radio is the fraction of Probability B by Probability A,
which means how many times model B is likely to be correct than model A. The AIC was
applied in the log(data).

Federal Deputies
State ∆AIC Probability A Probability B Evidence radio
AC 6.1827384262 0.0434646736 0.9565353264 22.0071898888
AL 4.7608349884 0.0846782011 0.9153217989 10.8094147898
AM 2.6647303199 0.2087684091 0.7912315909 3.7899967439
AP 2.806065353 0.1973353125 0.8026646875 4.0675167435
CE 10.5123485714 0.0051881611 0.9948118389 191.7465189
ES 14.4468382526 0.0007287731 0.9992712269 1371.1692559
GO 7.4677125018 0.0233425922 0.9766574078 41.8401435584
MA 7.7592626578 0.0202403068 0.9797596932 48.4063657539
MS 10.1109475602 0.0063339711 0.9936660289 156.878838813
MT 3.9037010608 0.1243517168 0.8756482832 7.0417064229
PA 9.663695483 0.0079087312 0.9920912688 125.442532017
PB 4.6657768971 0.0884355349 0.9115644651 10.3076717549
PI 2.3415470513 0.2367151943 0.7632848057 3.2244858966
RN 5.1455026334 0.0709128217 0.9290871783 13.1018221599
RO 9.807097669 0.0073655493 0.9926344507 134.767198525
RR 1.8879845033 0.2800946322 0.7199053678 2.5702219362
SC 13.3469679287 0.0012623917 0.9987376083 791.147136976
SE 2.8635043257 0.1928258238 0.8071741762 4.1860273715
TO 5.8040508651 0.0520535295 0.9479464705 18.2109931789
BA 16.0404485774 0.0003286382 0.9996713618 3041.85951117
MG 32.2756994687 9.80439653939e-08 0.999999902 10199504.8644
SP 74.5043113536 6.63123395728e-17 1 1.50801495837e+16
RJ 42.5533963117 5.74972928891e-10 0.9999999994 1739212316.23
RS 18.8727293265 7.97635097082e-05 0.9999202365 12536.0611657
PE 7.192496085 0.026694303 0.973305697 36.4611767018
PR 15.899933541 0.0003525495 0.9996474505 2835.48072726
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Tabela 2: We used the Akaike’s information criterion (AIC) to compare the two models: A
(without competition) and B (with competition). The AIC lets us determine which model
is more likely to describe correctly the data and quantify by calculating the probabilities
and an evidence radio. The probability column shows the likelihood of each model to be
the most correctly. The evidence radio is the fraction of Probability B by Probability A,
which means how many times model B is likely to be correct than model A. The AIC was
applied in the log(data).

States Deputies
State ∆AIC Probability A Probability B Evidence radio
AC 40.1333350824 1.92822192099e-09 0.9999999981 518612503.667
AL 10.5644673228 0.005055382 0.994944618 196.808989398
AM 25.7812709128 2.52154694444e-06 0.9999974785 396580.948318
AP 13.4280658125 0.0012122878 0.9987877122 823.886605911
CE 24.7191563734 4.28846166679e-06 0.9999957115 233182.849525
ES 40.567665947 1.55182686878e-09 0.9999999984 644401781.26
GO 22.588786324 1.24423372754e-05 0.9999875577 80369.751722
MA 17.3075446836 0.000174437 0.999825563 5731.72803942
MS 29.9037339555 3.20986330536e-07 0.999999679 3115396.46359
MT 19.5744050013 5.61626470736e-05 0.9999438374 17804.4285563
PA 31.4296195953 1.49673445309e-07 0.9999998503 6681210.87384
PB 18.9409648861 7.7088261887e-05 0.9999229117 12971.1435601
PI 8.8288917589 0.0119565683 0.9880434317 82.6360378881
RN 8.8191591598 0.0120141936 0.9879858064 82.2348830361
RO 24.1600601847 5.67162001552e-06 0.9999943284 176315.466418
RR 20.058166039 4.4096633465e-05 0.9999559034 22676.468129
SC 30.7721830943 2.07924302228e-07 0.9999997921 4809441.61582
SE 8.7956277831 0.0121546554 0.9878453446 81.2730027198
TO 13.5362503146 0.0011485278 0.9988514722 869.679851625
BA 42.8429750252 4.97469178945e-10 0.9999999995 2010174784.34
MG 55.735515674 7.89199040127e-13 1 1.26710747119e+12
SP 168.97837878 2.0268017352e-37 1 4.93388170453e+36
RJ 82.3116713751 1.33735794708e-18 1 7.47742967531e+17
RS 52.8467317602 3.3456307332e-12 1 298897302106
PE 19.5248749346 5.75708013522e-05 0.9999424292 17368.9162859
PR 42.819329153 5.0338563126e-10 0.9999999995 1986548557.2



49

Tabela 3: We used the Akaike’s information criterion (AIC) to compare the two models: A
(without competition) and B (with competition). The AIC lets us determine which model
is more likely to describe correctly the data and quantify by calculating the probabilities
and an evidence radio. The probability column shows the likelihood of each model to be
the most correctly. The evidence radio is the fraction of Probability B by Probability A,
which means how many times model B is likely to be correct than model A.

Federal Deputies
State ∆AIC Probability A Probability B Evidence radio
AC 50.1494383861 1.28880680099e-11 1 77591148589.4
AL 101.196392792 1.0604312338e-22 1 9.43012585939e+21
AM 107.771152638 3.96087877268e-24 1 2.524692265e+23
AP 120.857209596 5.70414277247e-27 1 1.75311179942e+26
CE 184.905492905 7.05151410541e-41 1 1.41813514807e+40
ES 202.215834338 1.22854055302e-44 1 8.13973944563e+43
GO 79.8068548356 4.67909285203e-18 1 2.13716639448e+17
MA 224.617775801 1.67830046988e-49 1 5.95840862792e+48
MS 118.603128883 1.76058823276e-26 1 5.67991982108e+25
MT 120.825144982 5.79633035462e-27 1 1.72522947938e+26
PA 141.83521874 1.58808440446e-31 1 6.29689453025e+30
PB 125.232526939 6.39885542365e-28 1 1.56277948757e+27
PI 105.735798465 1.09588023355e-23 1 9.12508474362e+22
RN 103.807827371 2.87353636201e-23 1 3.48003252446e+22
RO 92.3868106145 8.6787858999e-21 1 1.1522348996e+20
RR 83.7990976172 6.35707240879e-19 1 1.57305114005e+18
SC 130.020826581 5.83896996879e-29 1 1.71263083274e+28
SE 72.7348067195 1.60633972519e-16 1 6.22533318649e+15
TO 55.1303103352 1.06808352921e-12 1 936256362587
BA 342.184328822 4.96154688314e-75 1 2.01550045491e+74
MG 777.261043094 1.65923917468e-169 1 6.02685866668e+168
SP 749.737824971 1.57217132373e-163 1 6.36062994474e+162
RJ 901.70236979 1.57695115134e-196 1 6.34135051776e+195
RS 451.109474546 1.10362679252e-98 1 9.06103409936e+97
PE 142.356671451 1.22360590247e-31 1 8.1725660033e+30
PR 334.950626527 1.84669679188e-73 1 5.41507411718e+72
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Tabela 4: We used the Akaike’s information criterion (AIC) to compare the two models: A
(without competition) and B (with competition). The AIC lets us determine which model
is more likely to describe correctly the data and quantify by calculating the probabilities
and an evidence radio. The probability column shows the likelihood of each model to be
the most correctly. The evidence radio is the fraction of Probability B by Probability A,
which means how many times model B is likely to be correct than model A.

States Deputies
State ∆AIC Probability A Probability B Evidence radio
AC 576.061906458 8.12356005108e-126 1 1.23098739187e+125
AL 238.628928458 1.52190160204e-52 1 6.57072703427e+51
AM 682.650418552 5.81226058412e-149 1 1.72050097467e+148
AP 358.738756255 1.26144655989e-78 1 7.92740677087e+77
CE 420.054263752 6.11470593755e-92 1 1.63540162064e+91
ES 480.640448515 4.26827816914e-105 1 2.34286510947e+104
GO 989.587809594 1.29938385781e-215 1 7.69595523285e+214
MA 519.730902297 1.38633608904e-113 1 7.21325808299e+112
MS 439.886900022 3.01837593293e-96 1 3.31303993347e+95
MT 310.209118004 4.35457632874e-68 1 2.29643465749e+67
PA 685.433108646 1.44574467234e-149 1 6.9168506662e+148
PB 400.461973128 1.09846804884e-87 1 9.10358750133e+86
PI 189.012621263 9.0454627114e-42 1 1.10552664016e+41
RN 249.978331952 5.2226980642e-55 1 1.91471915035e+54
RO 482.146906385 2.00969219136e-105 1 4.97588637852e+104
RR 370.038828903 4.4369982636e-81 1 2.25377595525e+80
SC 462.924309949 3.00098154818e-101 1 3.33224308096e+100
SE 139.093088068 6.2563306112e-31 1 1.59838100341e+30
TO 282.919902956 3.67048676832e-62 1 2.72443428656e+61
BA 642.920743716 2.46339667887e-140 1 4.0594355289e+139
MG 1450.44716375 1.09496501832e-315 1 inf
SP 2129.42600533 0 1 inf
RJ 1694.58149782 0 1 inf
RS 618.918508849 4.01377875167e-135 1 2.49141784306e+134
PE 369.31393498 6.37526107172e-81 1 1.56856321451e+80
PR 784.782590509 3.8603414867e-171 1 2.59044440354e+170
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3.10 Discussion

The nonlinear relation between v and m in real elections as a consequence of competi-

tion between candidates can complement other statistical analyses for political campaign

and electoral outcome [55, 54, 60]. These analyses detect a number of statistical patterns of

electoral processes, such as the relations between party size and temporal correlations [61],

the relations between the number of candidates and voters [58], and the distribution of

votes [44, 56, 40, 52, 59]. Our analysis goes beyond these approaches by providing possible

answers for a number of key issues: a simple equation that rationalize statistical evidence

about the effects of political campaign on electoral outcome, an estimation for the ex-

pected number of votes as a function of campaign money by accurately predicting the

vote distribution, and finally a simple heuristic that can estimate the electorate turnout

rate.

A close inspection of the campaign data reveals a ubiquitous nontrivial relation be-

tween v and m for all elections investigated. We showed that this relation is an unambigu-

ous sublinear correlation between the money spent by candidate and her/his number of

votes v, specially for the the top spender candidates, revealing that the electoral process

works in a diseconomy of scale state.

To explain the diseconomy of scale in the campaign economy, we proposed a mean field

model where candidates compete with each other and must spend their money in order to

get votes. Despite its simplicity, the model proved capable of reproducing the complexity

of the dependence of v with respect of m. This good agreement makes our model a

possible alternative to study other aspects of human collective behaviour involving, for

example, diffusion of innovation and decision-making, such as the competition in market

share where companies invest in advertising for products [62].
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4 STATISTICAL SIGNS OF
SOCIAL INFLUENCE ON
SUICIDES

4.1 Introduction

It is not uncommon in nature to observe properties that present non-trivial forms

of scale dependence. This is the case, for instance, of critical phenomena, where scaling

invariance, universal properties and renormalization concepts constitute the theoretical

framework of a well-established field in physics [69]. In biology, the so-called allometric

relations certainly represent outstanding examples of natural scaling laws. Precisely,

allometry implies the use of power-laws, Y ∝ Mβ, to describe the dependence of a wide

range of anatomical, physiological and behavioral properties, denoted here as Y , on the

size or the body mass of different animal species, M . If the scaling exponent is β = 1,

the variables Y and M are trivially proportional, and the relation between them is said

to be isometric, while β 6= 1 indicates an allometric type of relationship. The so-called

“three-quarters law” or Kleiber’s law, as originally proposed by the agricultural biologist

Max Kleiber in 1947 [5], is surely one of the most prominent allometric relations found

in natural sciences. Based on an extensive set of experimental data, this fundamental

law states that the metabolic rate of all animals should scale to the 3/4 power of their

corresponding masses [70, 4].

In analogy with biological scaling laws, Bettencourt et al. [6] showed that, regardless

the enormous complexity and diversity of human behavior and the extraordinary geo-

graphic variability of urban settlements, cities belonging to the same urban system obey

pervasive allometric relations with population size, therefore exhibiting nonextensive rates

of innovation, wealth creation, patterns of consumption, human social behavior, and sev-

eral other properties related to the urban infrastructure. The authors then conclude that

all data can be grouped into three categories, namely, material infrastructure, individ-
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ual human needs, and patterns of social activity. Despite the unambiguous presence of

power-laws, the urban indicators do not necessarily follow a universal behavior. Instead

the results can be divided in three different classes. The isometric (linear) case (β = 1)

typically reflects the scaling of individual human needs, like the number of jobs, houses,

and water consumption. As in biology, the allometric sublinear behavior (β < 1) implies

an economy of scale in the quantity of interest, because its per capita measurement de-

creases with population size. In the case of cities, this is materialized, for example, in

the number of gasoline stations, the total length of electrical cables, and the road surface

(material and infrastructure). The case of superlinear allometry (β > 1) in urban indica-

tors emerges whenever the complex patterns of social activity have significant influence.

Wages, income, growth domestic product, bank deposits, as well as rates of invention,

measured by new patents and employment in creative sectors, all display a superlinear

increase with population size [6]. While these results indicate that larger cities are as-

sociated with higher levels of human productivity and quality of life, superlinear scaling

can also characterize negative urban scenarios, such as the prospect of living costs, crime

rates, pollution and disease incidence [6, 71, 72, 68, 73].

4.2 Materials and Methods

Brazilian Data. We analyzed data available for all Brazilian cities from 1992 to 2009,

made freely available by the Brazil’s public healthcare system – DATASUS [74]. Here we

consider that cities are the smallest administrative units with local government. The data

consist of the number of homicides, suicides, and deaths in traffic accidents as well as the

population for each city.

US Data. We used data from the National Cancer Institute SEER, Surveillance Epi-

demiology and End Results downloaded from http://seer.cancer.gov/data/. The Institute

provides mortality data aggregated for three or five years. To compare with Brazil, we

use suicide mortality data for each American county and MSA (Metropolitan Statistical

Area) accumulated through the five years of 2003 to 2007. Since the population is almost

constant for a five years period, we adopted the average population as a measurement for

the population on the allometry relation.

Exponent Determination. In order to reduce fluctuations, we first apply a non-

parametric fitting method to the data, namely, the Nadaraya-Watson kernel regression

[79, 80]. We also compute the 95% (α = 0.05) confidence interval (CI) by the so-called
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α/2 quantile function over 300 random bootstrapping samples. The power-law exponent

is calculated by performing an ordinary least square (OLS) fitting [81] over the results of

the Nadaraya-Watson kernel regression in the population interval [104, 106] for Brazilian

cities, and [105, 107] for American MSAs.

4.3 Allometry in Urban Indicators

The main goal here is to investigate the scaling behavior with city population of three

urban indicators, namely the number of homicides, deaths in traffic accidents and suicides.

For this, we analyzed data available for all Brazilian cities and as well as suicide for US

counties and MSAs, as presented previously on Materials and Methods. For 2009 in Brazil,

as shown in Fig. 7, the increase in the number of casualties D with city population P

for the three death causes can be properly described in terms of power-laws, D = D0P
β,

whereD0 is a normalization constant, and the exponent β reflects a global property at play

across the urban system. Interestingly, while the number of deaths by traffic accidents

display isometric scaling, β ≈ 1, homicides and suicides are both allometric, but obeying

superlinear and sublinear scaling with population, respectively. These results suggest

that the decision to commit a crime or to suicide, instead of being purely a consequence

of individual choices, might have strong correlations with the underlying complex social

organization and interactions. This does not seem to be the case of traffic accidents,

since the strong evidence for isometric scaling, β = 0.99±0.02, indicates that such events

should result from random processes, i.e., no social relations need to be implied among

the involved people.

From the superlinear scaling exponent found for the number of homicides in Brazil at

the year 2009, β = 1.24 ± 0.01, one should expect that, by doubling the population of a

city, the number of homicides would grow approximately by a factor of 135% in average,

instead of just growing 100%, as if we had an isometric scaling. This super-linear behavior

is consistent with that found for serious crimes in USA [6]. The result obtained for suicide

scaling seems quite surprising. As depicted in Fig. 7C, the number of suicides scales with

the population size as a power law with exponent β = 0.84 ± 0.02, which implies an

“economy of scale” of 22% in comparison with isometric scaling, similar to Kleiber’s law

for metabolic rates and animal masses. This sublinear behaviour is reminiscent of the

seminal study by Émile Durheim [67], one of the fathers of modern sociology. In his book

Suicide, Durkheim explored the differences in average suicide rates among Protestants

and Catholics, arguing that stronger social control among Catholics leads to lower suicide
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Figura 7: Scaling relations for homicides, traffic accidents, and suicides for the
year of 2009 in Brazil. The small circles show the total number of deaths by (A)
homicides (red), (B) traffic accidents (blue), and (C) suicides (green) vs the population
of each city. Each graph represents only one urban indicator, and the solid gray line
indicate the best fit for a power-law relation, using OLS regression, between the average
total number of deaths and the city size (population). To reduce the fluctuations we also
performed a Nadaraya-Watson kernel regression [79, 80]. The dashed lines show the 95%
confidence band for the Nadaraya-Watson kernel regression. The ordinary least-squares
(OLS) [81] fit to the Nadaraya-Watson kernel regression applied to the data on homicides
in (A) reveals an allometric exponent β = 1.24 ± 0.01, with a 95% confidence interval
estimated by bootstrap. This is compatible with previous results obtained for U.S. [6] that
also indicate a super-linear scaling relation with population and an exponent β = 1.16.
Using the same procedure, we find β = 0.99±0.02 and 0.84±0.02 for the numbers of deaths
in traffic accidents (B) and suicides (C), respectively. This non-linear behavior observed
for homicides and suicides certainly reflects the complexity of human social relations and
strongly suggests that the the topology of the social network plays an important role on
the rate of these events. (D) The solid lines show the Nadaraya-Watson kernel regression
rate of deaths (total number of deaths divided by the population of a city) for each urban
indicator, namely, homicides (red), traffic accidents (blue), and suicides (green). The
dashed lines represent the 95% confidence bands. While the rate of fatal traffic accidents
remains approximately invariant, the rate of homicides systematically increases, and the
rate of suicides decreases with population.
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rates. The crucial contribution from Durkheim was certainly to treat the suicide as a

social fact, by explaining variations in its rate at a macro level as a direct consequence of

society-scale phenomena, such as lack of connections between people (group attachment)

and lack of regulations of behavior, rather than individuals’ feelings and motivations.

Year

Homicides

Traffic accidents

Suicides

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

β

1995 2000 2005 2010

Figura 8: Temporal evolution of allometric exponent β for homicides (red
squares), deaths in traffic accidents (blue circles), and suicides (green dia-
monds). Time evolution of the power-law exponent β for each behavioral urban indica-
tor in Brazil from 1992 to 2009. We can see that the non-linear behavior for homicides
and suicides are robust for this 19 years period, and for the traffic accidents the exponent
remain close of 1.0.

The discrepancies observed in the scaling behaviors of homicides, deaths in traffic

accidents and suicides become even more evident if we plot the average number of deaths

per capita against city population, as shown in Fig. 7D. Under this framework, the sys-

tematic decrease in suicide rate with population indicates that a large supply of potential

social contacts and interactions might work as an “antidote” for this tragic event. This

result is consistent with the idea that human happiness is more a collective phenomenon

than a consequence of individual well-being conditions. In analogy with health, it is then

possible to consider a “happiness epidemy” spreading in a social network like showed pre-

viously in [75]. In Fig. 8 we show the dependence on time of the exponent β for a period

of 18 years, from 1992 to 2009. We see a robust behavior for β, in such a way that even

for different years we are still having β > 1.0 for homicides, β < 1.0 for suicides, and β

slightly above 1.0 for deaths by traffic accidents.
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Figura 9: Scaling relationship between suicides and population for US counties
and MSAs. The small circles show the total number of suicides over five years (2003
to 2007) vs the average population for counties (A) and MSAs (B). The solid gray line
indicate the best fit of a power law, using OLS regression, between the average total
number of suicides and population. The dashed black lines delimit the 95% confidence
band given by the Nadaraya-Watson kernel regression (solid black line) [79, 80]. The
allometric exponents are obtained through an ordinary least-squares (OLS) fit [81] over the
Nadaraya-Watson kernel regression applied to the suicides data. We find β = 0.87± 0.01
for counties and β = 0.88 ± 0.01 for MSAs with a 95% confidence interval estimated by
bootstrap. The insets in each graph show the systematic decreases of suicide rates with
population in both cases.

We also analyzed data available for suicides in all US counties and MSAs. The data

is an accumulation of the total number of suicides during a period of five years, from 2003

to 2007. In Figs. 9(A) and 9(B) we show the dependence of the total number of suicides

during these five years on the average population for each county and MSA, respectively.

As depicted, the number of suicides also scales with a sub-linear power law with exponent

β = 0.87± 0.01 for counties, and β = 0.88± 0.01 for MSAs, which are in agreement with

our previous results for Brazil.

In Fig. 10 we show the density map in the 2D plane, fatality per capita (deaths divided

by population) versus population size for Brazil in 2009. To obtain the approximate

density we perform kernel density estimation in the log-log space. We also include in the

figure lines indicating the 10%, 50%, and 90% levels for each population size. Besides

confirming the superlinear, linear, and sublinear behaviors, this results also show how

the probability distribution of rates of fatality vary with the population size. Also, the

10% and 90% lines are representative of expected extreme cases of low and high fatalities,

respectively.
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Figura 10: Fatality per capita versus population for homicides, traffic accidents,
and suicides. The color map represents the conditional probability density obtained by
kernel density estimation. The bottom and top lines correspond to the 10% and 90%
bounds of the distribution for each population size, that is 80% of the sampled points
are between these lines. The middle line is the 50% level or ”median”expected for each
population size. The diagonal shape observed in the left side of density maps are cases
of low number of fatal events, one or two fatalities. After this region we observe that the
three level lines wiggle around an average power-law behavior. In the case of homicides
the three level lines indicate an increase in the expected density of fatality with the
population size. Similarly, for traffic accidents the lines are close to horizontal, that is,
the probability distribution for the rate of fatality is near independent of the population.
For suicides, the median show a slight decrease with population size, while the 90% level,
that is associated with cases of extreme rates of suicide, show a pronounced decrease.
The sublinear growth observed for suicides, as depicted in Fig. 7C, is likely due to the
suppression of these extremely high rates in large urban areas.

4.4 Discussion

Allometric relations are ubiquitous in Nature, appearing in a wide variety of biological,

sociological, chemical and physical systems [76, 6, 69]. Even the arrangement of Lego

pieces has been recently reported to obey a sublinear scaling between the number of pieces

types vs. the total number of pieces for many Lego sets [77]. As originally proposed in

biology by Kleiber [5] and extended later by others [76], a single power law comprising 27

orders of magnitude can associate the metabolisms of a microscopical bacteria and a blue

whale, weighting a few picograms and more than 100 t, respectively. Unlike allometric

relations in Biology, few attempts have been made to explain the origin of universal scaling

laws describing urban indicators. In a recent study [25], a quantitative framework has

been developed to consider the interactions between people over a social network that is

capable to predict the allometric scaling for urban systems.

Here we studied the scaling relation with population of three behavioral urban indi-
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cators, namely, number of homicides, victims of vehicle crashes, and suicide events. We

show that, unlike the incidence of vehicle crashes with fatal victims, which exhibits iso-

metric (linear) scaling, homicides and suicides are characterized by allometric behaviors,

sublinear and superlinear, respectively.

Precisely, we found that the superlinear scaling relation for the number of homicides

has an allometric exponent that lies between 1.21 and 1.31 along the years, between 1992

and 2009. Despite all their positive attributes [71, 72] (e.g., higher incomes and levels of

creative activities), these results show that larger and urbanized cities also have a dark

side, namely, higher levels of violence. Interestingly, the effect is exactly the opposite in

the number of suicide events, which typically follow a sublinear scaling with population,

with an allometric exponent value that varies in the range between 0.78 and 0.95. Such

a result led us to the conclusion that a suicide event should not be taken as an isolated

individual decision. This is consistent with the conceptual framework put forward by

Durkheim [67], under which suicides need to be treated as social facts, actually affected

by complex human relations. The sublinear behavior found can be even considered as a

counter-intuitive result. The more common and straightforward view would be to asso-

ciate the suicide causes uniquely to a health condition of psychological or mental illness

that could nevertheless be strongly linked to external urban factors. For instance, traffic

jams, pollution, and stressful jobs all create a harmful environment for the population.

However, the fact that we found sublinearity, namely, that the number of suicides is

disproportionately small for larger cities, discloses an entirely different perspective. We

conjecture that this property can be intimately related with an “emotional epidemy” as

previously hypothesized in Ref. [75, 78]. This phenomenon can explain the systematic at-

tenuation through the social network of contagious emotions states of potentially suicidal

individuals.
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5 CONCLUSIONS

In this thesis, we apply a “physicist” approach to describe and model systems that are

traditionally studied by social sciences. We focus our work on a specific physical phenom-

ena: nonlinear scaling. Nonlinear scaling relations are ubiquitous in nature, appearing

in a wide variety of biological, sociological, chemical and physical systems [76, 6, 69].

The statistical nature of those systems makes statistical physics a perfect tool to identify,

characterize, and model them.

In the first part, we focused on the scaling relation between votes and money in a

political campaign. The political elections are an area of active study on statistical physics

as a model to study the collective behavior of large groups [10]. Probably the most studied

feature is the vote distribution [44, 45, 40, 52]. Here, we have shown that this distribution

is a direct consequence of the competitions among candidates and how much money each

one invested in their campaign.

We have also shown the effect of the invested money on the final number votes. Our

statistical investigation over a large number of elections shows an unambiguous correlation

between these two quantities. To our surprise, the correlation revealed a sublinear scaling,

which means that the average “price” of one vote grows as you increase the number of

votes. In Economics this phenomena is called diseconomy of scale.

In order to understand the nonlinear scaling between the number of votes and money,

we proposed a mean field model. The set of differential equations simulates a fully con-

nected network where at every time step each candidate spends a fixed amount of money

to try to convince a randomly selected voter to vote for him. We analytically solved

the equations and shown that despite the simplicity, the model proved to be capable of

reproducing the great complexity of the dataset. The model allowed us to fit the data

using only one parameter, ∆m, which is interpreted as the investment cost per vote.

The distribution of votes is well know for a large number of countries, but in this

thesis we only used the Brazilian data. In the future we aim to extensively validate
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our model using data from other countries. This validation process not only study the

distribution of votes but also the total number of valid votes. There is some previous

evidences that corroborate with our heuristic for ≈ %63 of turnout [57], but also other

values are found [60]. It is necessary to make a detailed research in order to understand

where the constant 1− e−1 will appear and how and why deviations are found.

In the second part of the thesis we addressed a specific type of scaling, called allometry.

The allometric scaling was originally proposed in biology by Kleiber [5] and extended later

by others [76], a single power law comprising 27 orders of magnitude can associate the

metabolisms of a microscopical bacteria and a blue whale, weighting a few picograms and

more than 100 tons, respectively. Latter the same idea was applied on urban systems,

but using the population of cities as analogous of mass in biology.

We studied how three behavioral urban indicators, namely the number of homicides,

victims of vehicle crashes, and number of suicide scale with the population of cities in

Brazil and the US. We found a superlinear scaling relation for the number of homicides

with an allometric exponent that lies between 1.21 and 1.31 for different years. For the

fatalities in traffic accidents we found an approximate isometric (linear) scaling. Perhaps,

the most striking result is the sublinear scaling behavior between the number of suicides

and city population, with allometric power-law exponents β = 0.836± 0.009 and 0.870±
0.002, for cities in Brazil and the US, respectively. The fact that the frequency of suicides

is disproportionately small for larger cities reveals a surprisingly beneficial aspect of living

and interacting in larger and more complex social networks.

A complete theory of urbanization that explain allometry stills an open question [24].

One of the main problems is the lack of a fundamental definition of cities, which can

sometimes lead to different exponents for different definitions [73, 27]. A complete model

needs to have an unambiguous definition of cities and correct predict the power law

exponent. As a perceptive we hope to adapt our election model in order to simulate the

linear and sublinear allometric scaling.
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