

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

MACIA CLEANE SOARES DE ALMEIDA

CONTRIBUIÇÃO AO CONHECIMENTO QUÍMICO DE PLANTAS MEDICINAIS DO NORDESTE: Bauhinia pentandra (BONG.) D.DIETR. E Bauhinia monandra KURZ

> FORTALEZA 2015

MACIA CLEANE SOARES DE ALMEIDA

CONTRIBUIÇÃO AO CONHECIMENTO QUÍMICO DE PLANTAS MEDICINAIS DO NORDESTE: Bauhinia pentandra (BONG.) D.DIETR. E Bauhinia monandra KURZ

Tese submetida à Coordenação do Programa de Pós-Graduação em Química, da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Doutor em Química. Área de concentração: Química Orgânica

Orientadora: Profa. Dra. Telma Leda Gomes de Lemos

Co-orientador: Prof. Dr. Raimundo Braz-Filho

FORTALEZA 2015

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A449c Almeida, Macia Cleane Soares de.

Contribuição ao conhecimento químico de plantas medicinais do Nordeste: Bauhinia pentandra (Bong.) D.Dietr. e Bauhinia monandra Kurz / Macia Cleane Soares de Almeida. – 2015.

258 f. : il. color.

Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Química, Fortaleza, 2015. Orientação: Profa. Dra. Telma Leda Gomes de Lemos.

Coorientação: Prof. Dr. Raimundo Braz-Filho.

1. Bauhinia pentandra. 2. Bauhinia monandra. 3. Cianoglicosídeos. I. Título.

CDD 540

Esta Tese foi apresentada como parte dos requisitos necessários à obtenção do Grau de Doutor em Química, área de concentração Química Orgânica, outorgado pela Universidade Federal do Ceará, e em cuja Biblioteca Central encontra-se à disposição dos interessados.

Macia Cleane Scares de Almeida Macia Cleane Soares de Almeida

Tese aprovada em: 29/10/2015.

m

Dr. Francisco José Queiroz Monte (Presidindo-UFC)

Dra. Ângela Martha Campos Arriaga (UFC)

Gilvendete plaria Pinhein Finhiago Dra. Gilvandete Maria Pinheiro Santiago (UFC)

<u>Joan lings du leef Amunci</u> Dr. João Carlos da Costa Assunção (TFGE) Sciesa He ison Maria les

Dra. Maria Teresa Salles Trevisan (UFC)

A Deus. Aos meus pais. A minha filha. Ao meu esposo.

AGRADECIMENTOS

Primeiramente, agradeço a Deus pela vida e por todas as bençãos recebidas.

Aos meus pais, Francisco e Penha que, com muito carinho e apoio, não mediram esforços para que eu chegasse até esta etapa de minha vida. Ao meu esposo Márcio Henrique, pelo amor e companheirismo, e a minha filha Júlia, meu bem mais precioso. Aos meus irmãos, Márcio e Flávio, e a toda minha família.

À Profa. Telma Leda Gomes de Lemos, pela orientação, dedicação e paciência que tornaram possível a conclusão deste trabalho.

Ao Prof. Raimundo Braz-Filho pela co-orientação e valiosa contribuição na elucidação das estruturas.

Ao Prof. Francisco José Queiroz Monte pelos ensinamentos e, principalmente, por ter aceitado ser presidente da banca, substituindo a Profa. Telma que não estará presente.

Aos membros da banca examinadora, pelo aceite e indispensável contribuição a este trabalho.

Aos Professores do Curso de Pós-Graduação em Química que contribuíram para a minha formação profissional.

Aos Professores Geraldo e Teresa, e as suas alunas, Roberta e Irvila, pela realização dos testes biológicos.

Aos colegas da turma de Doutorado pela amizade e horas dedicadas aos estudos.

Aos amigos do laboratório: Daniele, Luciana, Patrícia, Juliana, Felipe, André, Gisele, Romézio, Iolanda, Rafaela, Bruna, Emerson, pelo apoio, amizade, momentos de descontração e, principalmente, pela ajuda indispensável todos os momentos que precisei. Aos que já concluíram o curso, mas que também contribuíram para o meu aprendizado, e não poderia deixar de esquecer, Leo, Bertini, Ayla e Anderson.

À CAPES e ao CNPq pela bolsa concedida.

À CAPES, CNPq, FUNCAP e PRONEX pelo apoio financeiro.

Aos funcionários e a todos que, de alguma forma, contribuíram para a conclusão deste trabalho.

RESUMO

Este trabalho descreve a investigação fitoquímica das espécies Bauhinia pentandra (Bong.) D.Dietr. e Bauhinia monandra Kurz, pertencentes à família Fabaceae. A composição química do óleo essencial das folhas secas e frescas de B. pentandra, obtidos por hidrodestilação e microextração em fase sólida (MEFS), foi determinada por Cromatografia Gasosa acoplada a Espectrometria de Massas (CG-EM). O constituinte majoritário do óleo obtido pela técnica de hidrodestilação foi o β-cariofileno nas folhas secas, e o fitol nas frescas, enquanto que o composto majoritário do óleo obtido pela técnica MEFS foi o βcariofileno nas folhas secas, e os salicilatos de 2-etilhexila e de homomentila nas frescas. Os ácidos graxos presentes nos extratos hexânicos foram identificados por CG-EM, apresentando como componentes majoritários os ácidos palmítico, linolênico e esteárico em B. pentandra e os ácidos linolênico e linoléico em B. monandra. O estudo químico do extrato etanólico das folhas de B. pentandra possibilitou o isolamento e a caracterização de misturas de ácidos graxos (palmítico e esteárico), esteroides (sitosterol e estigmasterol), derivados do ácido fenilacético (ácido 2,4-diidroxifenilacético, 2,4-diidroxifenilacetato de etila e 2,4-diidroxifenilacetato de metila), além de uma mistura de 6hidroxibenzofuran-2(3H)-ona e 1-(3',4'-dimetoxifenil)-2-propanol, e uma mistura de um cianoglicosídeo (dasicarponina) e um glicopiranosídeo de etila. Foi isolado e caracterizado, também, um derivado metilado do inositol ((+)-3-Ometil-D-*quiro*-inositol) duas lactonas, е 7-epi-grifonilida (inédita) е dasicarponilida. Do extrato etanólico das folhas de B. monandra foram isolados e identificados o palmitato de etila e estearato de etila em mistura, o α -tocoferol (vitamina-E), o diterpeno fitol e dois cianoglicosídeos, (2R,3S,4R,5R,6S)-(Z)-6- $(\beta$ -D-glicopiranosiloxi)-2,3,4,5-tetraidroxiciclohexilideno- $\Delta^{1,\alpha}$ -acetonitrila (inédito) e didemetilsimmondsina. Os compostos foram isolados por técnicas cromatográficas clássicas e CLAE, e suas estruturas foram determinadas através de análise espectroscópica (RMN ¹H, RMN ¹³C, IV e EM), além de comparação com dados da literatura. Os extratos foram avaliados guanto ao teor de fenóis totais, atividade antioxidante, nematicida e anticolinesterásica.

Palavras-chave: Bauhinia pentandra. Bauhinia monandra. Cianoglicosídeos.

ABSTRACT

This work describes the phytochemical investigation of the species Bauhinia pentandra (Bong.) D.Dietr. and Bauhinia monandra Kurz, belonging to the Fabaceae family. The chemical composition of the essential oil from the leaves dried and fresh *B. pentandra*, obtained by hydrodistillation and solid phase microextraction (SPME), was determined by GC/MS. The major constituent of the oil obtained from the hydrodistillation technique was β -caryophyllene in the dried leaves, and phytol in the fresh ones, whereas the major compound of the oil obtained by SPME technique was β -caryophyllene in the dried leaves, and 2ethylhexyl and homomenthyl salicylates in the fresh ones. The fatty acids present in the hexanic extracts were identified by GC/MS, presenting as major components palmitic, linolenic and stearic acids in *B. pentandra* and linolenic and linoleic acids in *B. monandra*. The chemical study of the ethanol extract of leaves of *B. pentandra* allowed the isolation and characterization of mixtures of fatty acids (palmitic and stearic), steroids (sitosterol and stigmasterol), (2,4-dihydroxyphenylacetic phenylacetic acid derivatives acid. 2.4dihydroxyphenylacetic acid ethyl ester and 2,4-dihydroxyphenylacetic acid methyl ester), plus a mix of 6-hydroxybenzofuran-2(3H)-one and 1-(3',4'dimethoxyphenyl)-2-propanol, and а mixture of cyanoglucoside а (dasycarponin) and ethyl glucopyranoside. It was isolated and characterized also a methyl inositol derivative ((+)-3-O-methyl-D-chiro-inositol) and two lactones, 7-epi-griffonilide (not described) and dasycarponilide. In ethanolic extract of leaves of *B. monandra* were isolated and identified the ethyl palmitate and ethyl stearate in mixture, the α -tocopherol (vitamin E), the diterpene cyanoglucosides, (2R,3S,4R,5R,6S)-(Z)-6-(β-D-(phytol) and two glucopyranosiloxy)-2,3,4,5-tetrahydroxycyclohexylidene- $\Delta^{1,\alpha}$ acetonitrile (unpublished) and didemethylsimmondsin. The compounds were isolated by classic chromatographic techniques and HPLC, and their structures were determined by spectroscopic analysis (¹H NMR, ¹³C NMR, FT-IR and MS), as well as compared with data from the literature. The extracts were evaluated as total phenols content, antioxidant activity, nematicide and anticholinerterase.

Keywords: Bauhinia pentandra. Bauhinia monandra. Cyanoglucosides.

LISTA DE FIGURAS

Figura 1 Características morfológicas do gênero Bauhinia	26
Figura 2 Fotografia da espécie Bauhinia pentandra (Bong.) D.Dietr	27
Figura 3 Fotografia da espécie Bauhinia monandra Kurz.	27
Figura 4 Cromatograma do óleo essencial das folhas secas de <i>B. pentandra</i>	
obtido por hidrodestilação	70
Figura 5 Cromatograma do óleo essencial das folhas frescas de B. pentandra	ł
obtido por hidrodestilação	71
Figura 6 Espectro de massas do timol	71
Figura 7 Espectro de massas da (E)- β -damascenona	71
Figura 8 Espectro de massas do β -elemeno	72
Figura 9 Espectro de massas do β -cariofileno	72
Figura 10 Espectro de massas do α -humuleno	72
Figura 11 Espectro de massas do germacreno D	72
Figura 12 Espectro de massas do elixeno	73
Figura 13 Espectro de massas do cupareno	73
Figura 14 Espectro de massas do espatulenol	73
Figura 15 Espectro de massas do óxido de cariofileno	73
Figura 16 Espectro de massas do fitol	74
Figura 17 Cromatograma do óleo essencial das folhas secas de B. pentandra	1
obtido por MEFS	77
Figura 18 Cromatograma do óleo essencial das folhas frescas de <i>B. pentandi</i>	ra
obtido por MEFS	78
Figura 19 Espectro de massas do (<i>E</i>)-2-hexenal	78
Figura 20 Espectro de massas do (<i>E</i>)-3-hexenol	78
Figura 21 Espectro de massas do D-limoneno	79
Figura 22 Espectro de massas do (\angle)- β -ocimeno	79
Figura 23 Espectro de massas do nonanal	79
Figura 24 Espectro de massas do decanal	79
Figura 25 Espectro de massas do β -cariofileno	80
Figura 26 Espectro de massas do α -humuleno	80
Figura 27 Espectro de massas do germacreno D	80
Figura 28 Espectro de massas do elixeno	80
Figura 29 Espectro de massas do salicilato de 2-etilhexila	81
Figura 30 Espectro de massas do salicilato de homomentila	81
Figura 31 Cromatograma do oleo fixo das folhas de <i>B. pentandra</i>	84
Figura 32 Cromatograma do oleo fixo das folhas de <i>B. monandra</i>	85
Figura 33 Espectro de massas do dodecanoato de metila	85
Figura 34 Espectro de massas do tetradecanoato de metila	85
Figura 35 Espectro de massas do $9(Z)$ -nexadecenoato de metila	86
Figura 36 Espectro de massas do nexadecanoato de metila	86
Figura 37 Espectro de massas do neptadecanoato de metila	80
Figura 38 Espectro de massas do 9,12(Z , Z)-octadecadienoato de metila	00
Figure 40 Expectio de massas do 9,12,15(\angle , \angle , \angle)-octadecatrienoato de metila	07
Figura 40 Espectro de massas do octadecanoato de metila	ŏ/
Figura 41 Espectro de massas do 18-metilinonadecanoato de metila	ŏ/
Figura 42 Espectro de massas do docosanoato de metila	ŏ/
Figura 43 Espectro de massas do tetracosanoato de metila	88

Figura 44 Espectro na região do infravermelho de BP-1......91 Figura 49 Espectro de massas do componente com TR 17,966 min: BP-1A Figura 50 Espectro de massas do componente com TR 19,113 min: BP-1B Figura 53 Expansão do espectro de RMN ¹H [300 MHz, CDCl₃] de BP-2...... 98 Figura 56 Correlações observadas no espectro de RMN 2D¹H, ¹H-COSY para Figura 57 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para Figura 59 Espectro de RMN ¹H [300 MHz, CDCl₃] de BP-3 105 Figura 60 Expansão do espectro de RMN¹H [300 MHz, CDCl₃] de BP-3..... 106 Figura 61 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BP-3...... 106 Figura 62 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BP-3...... 107 Figura 63 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CDCl₃] de BP-3 Figura 64 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CDCl₃] de BP-3 108 Figura 65 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CDCl₃] de BP-3 108 Figura 66 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, Figura 67 Espectro de massas de alta resolução (modo negativo) de BP-3A 109 Figura 68 Espectro de massas de alta resolução (modo negativo) de BP-3B 109 Figura 69 Espectro de massas de alta resolução (modo negativo) de BP-3C110 Figura 70 Proposta mecanística que justifica fragmentos registrados nos espectros de massas de alta resolução de BP-3A, BP-3B e BP-3C 110 Figura 71 CG-EM de BP-3 (Cromatograma, espectros de massas e propostas de fragmentação para os componentes BP-3A, BP-3B e BP-3C)...... 111 Figura 72 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 73 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-4 114 Figura 75 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-4 117 Figura 76 Expansão do espectro de RMN¹H [300 MHz, CD₃OD] de BP-4.... 118 Figura 77 Espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-4...... 118 Figura 78 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BP-4...... 119 Figura 79 Espectro de RMN 2D¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de BP-

Figura 80 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-4 Figura 81 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-4 Figura 82 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-5 Figura 83 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para Figura 84 Correlações observadas no espectro de RMN 2D¹H, ¹H-NOESY Figura 86 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-5 126 Figura 87 Espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-5 127 Figura 88 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BP-5...... 127 Figura 89 Espectro de RMN 2D¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de BP-Figura 90 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-5 Figura 91 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-5 129 Figura 92 Espectro de RMN 2D¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de Figura 93 Espectro de massas de alta resolução (modo positivo) de BP-5 ... 130 Figura 94 Proposta mecanística que justifica fragmentos registrados no espectro de massas de alta resolução de BP-5 130 Figura 95 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 96 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para Figura 97 Interação spin-spin pseudo axial-axial entre H-7 e H-8 de BP-6.... 134 Figura 98 Espectro na região do infravermelho de BP-6......136 Figura 99 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-6 136 Figura 100 Espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-6 137 Figura 101 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BP-6..... 137 Figura 102 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de Figura 103 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-Figura 105 Espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de Figura 106 Espectro de massas de alta resolução (modo positivo) de BP-6. 140 Figura 107 Proposta mecanística que justifica os principais fragmentos registrados no espectro de massas de alta resolução de BP-6......140 Figura 108 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 109 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-7B......143

Figura 110 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-7A......143 Figura 112 Espectro de RMN ¹H [500 MHz, CD₃OD] de BP-7 146 Figura 113 Expansão do espectro de RMN ¹H [500 MHz, CD₃OD] de BP-7.. 147 Figura 114 Expansão do espectro de RMN ¹H [500 MHz, CD₃OD] de BP-7.. 147 Figura 115 Espectro de RMN ¹³C-CPD [125 MHz, CD₃OD] de BP-7 148 Figura 116 Espectro de RMN ¹³C-DEPT 135° [125 MHz, CD₃OD] de BP-7... 148 Figura 117 Espectro de RMN 2D ¹H, ¹H-COSY [500 x 500 MHz, CD₃OD] de Figura 118 Expansão do espectro de RMN 2D ¹H, ¹H-COSY [500 x 500 MHz, Figura 119 Espectro de RMN 2D ¹H, ¹³C-HSQC [500 x 125 MHz, CD₃OD] de Figura 120 Expansão do espectro de RMN 2D ¹H, ¹³C-HSQC [500 x 125 MHz, Figura 123 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, Figura 124 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, Figura 125 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, Figura 126 Espectro de massas de alta resolução (modo positivo) de BP-7. 153 Figura 127 Proposta mecanística que justifica os principais fragmentos registrados no espectro de massas de alta resolução de BP-7A 154 Figura 128 Proposta mecanística que justifica os principais fragmentos registrados no espectro de massas de alta resolução de BP-7B 154 Figura 129 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 130 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC Figura 131 Correlações observadas no espectro de RMN 2D ¹H, ¹H-NOESY Figura 133 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-8 160 Figura 134 Expansão do espectro de RMN ¹H [300 MHz, CD₃OD] de BP-8.. 161 Figura 135 Expansão do espectro de RMN ¹H [300 MHz, CD₃OD] de BP-8.. 161 Figura 136 Espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-8 162 Figura 137 Expansão do espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-8 Figura 138 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BP-8..... 163 Figura 139 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de Figura 140 Expansão do espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz,

Figura 141 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-Figura 144 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, Figura 146 Espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de BP-8 Figura 147 Espectro de massas de alta resolução (modo positivo) de BP-8. 167 Figura 148 Espectro na região do infravermelho de BM-1 170 Figura 149 Espectro de RMN ¹H [300 MHz, CDCl₃] de BM-1 170 Figura 150 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-1 171 Figura 151 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BM-1 171 Figura 152 Expansão do espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de Figura 154 Espectro de massas do componente com TR 11,463 min: BM-1A Figura 155 Espectro de massas do componente com TR 12,364 min: BM-1B Figura 156 Espectro na região do infravermelho de BM-2..... 176 Figura 158 Expansão do espectro de RMN ¹H [300 MHz, CDCl₃] de BM-2... 177 Figura 159 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-2 177 Figura 160 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BM-2 178 Figura 161 Expansão do espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de Figura 162 Espectro de massas de BM-2 179 Figura 163 Proposta mecanística que justifica fragmentos registrados no espectro de massas de baixa resolução de BM-2..... 179 Figura 164 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 165 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC Figura 167 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-3 183 Figura 168 Expansão do espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-3 Figura 169 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BM-3 184 Figura 170 Espectro de RMN 2D¹H, ¹H-COSY [300 x 300 MHz, CDCl₃] de BM-Figura 171 Expansão do espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, Figura 172 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CDCl₃] de BM-

Figura 173 Expansão do espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, Figura 174 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CDCl₃] de BM-Figura 175 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, Figura 176 Espectro de massas de BM-3 188 Figura 177 Proposta mecanística que justifica fragmentos registrados no espectro de massas de baixa resolução de BM-3.....188 Figura 178 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 179 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC Figura 180 Correlações observadas no espectro de RMN 2D ¹H, ¹H-NOESY Figura 181 Principais acoplamentos dipolares detectados no experimento NOE Figura 182 Espectro na região do infravermelho de BM-4 195 Figura 183 Espectro de RMN ¹H [500 MHz, CD₃OD] de BM-4 195 Figura 184 Expansão do espectro de RMN ¹H [500 MHz, CD₃OD] de BM-4. 196 Figura 185 Espectro de RMN ¹³C-CPD [125 MHz, CD₃OD] de BM-4 196 Figura 186 Espectro de RMN ¹³C-DEPT 135° [125 MHz, CD₃OD] de BM-4.. 197 Figura 187 Espectro de RMN 2D ¹H, ¹H-COSY [500 x 500 MHz, CD₃OD] de Figura 188 Espectro de RMN 2D ¹H, ¹³C-HSQC [500 x 125 MHz, CD₃OD] de Figura 190 Espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, CD₃OD] de Figura 192 Espectro de RMN 2D¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de Figura 193 Expansão do espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, Figura 194 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_{H} Figura 195 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_{H} 4,08 (H-5) (CD₃OD, 300 MHz) de BM-4 201 Figura 196 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_{H} 4,72 (H-6) (CD₃OD, 300 MHz) de BM-4 202 Figura 197 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_{H} 5,75 (H-7) (CD₃OD, 300 MHz) de BM-4 202 Figura 198 Espectro de massas de alta resolução (modo positivo) de BM-4. 203 Figura 199 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para Figura 200 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC Figura 201 Estereoquímica relativa de BM-5 207

Figura 202 Espectro na região do infravermelho de BM-52	09
Figura 203 Espectro de RMN ¹ H [300 MHz, CD ₃ OD] de BM-5	09
Figura 204 Espectro de RMN ¹³ C-CPD [75 MHz, CD ₃ OD] de BM-5 2	10
Figura 205 Espectro de RMN ¹³ C-DEPT 135° [75 MHz, CD ₃ OD] de BM-5 2	10
Figura 206 Espectro de RMN 2D ¹ H, ¹ H-COSY [300 x 300 MHz, CD ₃ OD] de	
BM-5	11
Figura 207 Espectro de RMN 2D ¹ H, ¹³ C-HSQC [300 x 75 MHz, CD ₃ OD] de	
BM-52	11
Figura 208 Espectro de RMN 2D ¹ H, ¹³ C-HMBC [300 x 75 MHz, CD ₃ OD] de	
BM-52	12
Figura 209 Expansão do espectro de RMN 2D ¹ H, ¹³ C-HMBC [300 x 75 MHz,	
CD ₃ OD] de BM-52	12
Figura 210 Espectro de massas de alta resolução (modo positivo) de BM-5.2	13
Figura 211 Cromatograma da substância BP-42	31
Figura 212 Cromatograma das substâncias BP-5 e BP-62	32
Figura 213 Cromatograma das substâncias BP-7 e BP-82	34
Figura 214 Cromatograma das substâncias BM-1 e BM-22	40
Figura 215 Cromatograma das substâncias BM-4 e BM-52	42
Figura 216 Estruturas do DPPH, Trolox e Vitamina-C2	44

LISTA DE FLUXOGRAMAS

24
25
5
6
27
.3

LISTA DE QUADROS

Quadro 1 Estruturas das substâncias isoladas de espécies de Bauhinia	48
Quadro 2 Constituintes do óleo essencial das folhas secas e frescas de B.	
pentandra obtido por hidrodestilação	70
Quadro 3 Constituintes do óleo essencial das folhas secas e frescas de B.	
pentandra obtido por MEFS	77
Quadro 4 Constituintes do óleo fixo das folhas de B. pentandra e B. monandro	a
· · · · · · · · · · · · · · · · · · ·	84
	-

LISTA DE TABELAS

Tabela 1 Substâncias isoladas de espécies do gênero Bauhinia
Tabela 2 Constituintes do óleo essencial de <i>B. pentandra</i> obtido por
hidrodestilação
Tabela 3 Constituintes do óleo essencial de <i>B. pentandra</i> obtido por MEFS 76
Tabela 4 Composição química do óleo fixo das folhas de <i>B. pentandra</i> e <i>B.</i>
monandra
Tabela 5 Deslocamentos químicos (δ) de RMN ¹³ C (CDCl ₃) de BP-1
Tabela 6 Deslocamentos químicos (δ) de RMN ¹³ C (CDCI ₂) de RP-2 96
Tabela 7 Dados de RMN ¹ H e ¹³ C de RP-3A BP-3B e BP-3C incluindo
correlação heteronuclear através de uma ligação (HSQC $\cdot {}^{1}J_{CH}$) e a longa
distância (HMBC: n l_{cu} n=2 e 3) em CDCl ₂ como solvente 104
Tabela 8 Padrão de hidrogenação determinado através da comparação dos
espectros de RMN ¹³ C-CPD e DEPT 135° de BP-4
Tabela 9 Dados de RMN ¹ H e ¹³ C de RP-4 incluindo correlação heteronuclear
através de uma ligação (HSOC: $\frac{1}{2}$ lou) e a longa distância (HMBC: $\frac{n}{2}$ lou n=2 e
3) em CD ₂ OD como solvente 116
Tabela 10 Padrão de hidrogenação determinado através da comparação dos
espectros de RMN ¹³ C-CPD e DEPT 135° de BP-5
Tabela 11 Dados de RMN ¹ H e ¹³ C de RP-5 incluindo correlação beteronuclear
através de uma ligação (HSOC: $\frac{1}{2}$ bu) e a longa distância (HMBC: $\frac{1}{2}$ bu, n-2 e
3) em CD_OD como solvente 125
Tabela 12 Padrão de hidrogenação determinado através da comparação dos
espectros de RMN ¹³ C-CPD e DEPT 135° de BP-6
Tabela 13 Dados de RMN ¹ H e ¹³ C de RP-6 incluindo correlação beteronuclear
através de uma ligação (HSOC: $\frac{1}{2}$ bu) e a longa distância (HMBC: $\frac{1}{2}$ bu, n-2 e
3) em CD_OD como solvente 135
Tabela 14 Dados de RMN 1 H e 13 C de RP-7A incluindo correlação
beteronuclear através de uma ligação (HSOC: ¹ / _{eu}) e a longa distância (HMBC:
n_{low} n=2 e 3) em CD ₂ OD como solvente 145.
Tabela 15 Dados de RMN ¹ H e ¹³ C de RP-7B incluindo correlação
beteronuclear através de uma ligação (HSOC: ¹ J _{ou}) e a longa distância (HMBC:
n low n=2 e 3) em CD ₂ OD como solvente 145
Tabela 16 Dados de RMN ¹ H e ¹³ C de BP-8A incluindo correlação
beteronuclear através de uma ligação (HSOC: ¹ J _{ou}) e a longa distância (HMBC:
$n l_{out}$ n=2 e 3) em CD ₂ OD como solvente
$_{0CH}$, $H=2$ e 3), em CD ₃ OD como solvente
hotoropueloar através do uma ligação (HSOC: ¹ J _a) o a longa distância (HMBC:
The conducted attraves de una ligação (15QC, σ_{CH}) e a longa distancia (110DC, n_{L} , $n=2, 0, 3$) om CD-OD como solvento (15QC, σ_{CH}) e a longa distancia (110DC, 15Q
J_{CH} , $H=2$ e J_{3} , efficience J_{3} observe the solution of the effective J_{3} of L_{3} of $L_$
Tabela 10 Desiocamentos químicos (0) de Rivin C (CDCI ₃) de Divi-1
Tabela 19 Desiocamentos químicos (6) de RMIN H e C (CDCI ₃) de BM-2. 175
Tabela 20 Padrao de hidrogenação determinado atraves da comparação dos
Tabala 24 Dadas de DMN ¹ L e ¹³ C de DM 2 incluinde correlação beterenveloor
Tabela Z I Dauos de Rivin Π e \Box de DIVI-3, incluindo correlação neteronuclear através de uma ligação (HSOC: ¹ / ₂) a e longe distância (HMDC: ¹ / ₂) a constante distância (HMD
anaves de unia ligação ($\square \bigcirc \bigcirc$. J_{CH}) e a longa distancia ($\square \lor \square \bigcirc$. J_{CH} , $\square = 2$ e
J), EIII ODOI3 COIIIO SOIVEIILE
rapeia 22 Faurao de hidrogenação determinado atraves da comparação dos
espectros de RIVIN - C-CPD e DEPT 135° de BIVI-4

Tabela 23 Acoplamentos dipolares observados no experimento NOE Seletivo através da irradiação dos hidrogênios H-4, H-5, H-6, e H-7, 193
Tabela 24 Dados de RMN 1 H e 13 C de BM-4, incluindo correlação heteronuclear
através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e
3), em CD ₃ OD como solvente
Tabela 25 Padrão de hidrogenação determinado através da comparação dos
espectros de RMN ¹³ C-CPD e DEPT 135° de BM-5 205
Tabela 26 Dados de RMN 'H e 'C de BM-5, incluindo correlação heteronuclear
atraves de uma ligação (HSQC: J_{CH}) e a longa distancia (HMBC: J_{CH} , n=2 e
3), em CD ₃ OD como solvente
Tabela 27 Resultado do leste de alividade anilioxidante
Tabela 29 Resultado do ensaio de inibição da enzima AChE 215
Tabela 30 Dados referentes aos extratos obtidos de <i>B. pentandra</i> e <i>B.</i>
monandra
Tabela 31 Dados referentes ao fracionamento cromatográfico gravitacional de
EEBP
Tabela 32 Dados referentes ao fracionamento cromatográfico a vácuo de EEBP
Tabela 33 Dados referentes a partição líquido-líquido de EEBP
Tabela 34 Dados referentes ao fracionamento cromatografico de EEBP-G(D)
Tabela 35 Dados referentes ao fracionamento cromatográfico de E 72-73 228
Tabela 36 Dados referentes ao fracionamento cromatográfico de F 25-34 228
Tabela 37 Dados referentes ao fracionamento cromatográfico de EEBP-G(M)
Tabela 38 Dados referentes ao fracionamento cromatográfico de EEBP-V(AE)
Tabela 39 Dados referentes ao fracionamento cromatográfico de EEBP-P(AE)
Tabela 40 Dados referentes ao fracionamento cromatografico de EEBM 238
Tabela 41 Dados references ao fracionamenio cromatogranco de EEDM(AE)
Tabela 42 Dados referentes ao fracionamento cromatográfico de F 62-70 239
Tabela 43 Dados referentes ao fracionamento cromatográfico de EEBM(M) 241

LISTA DE ABREVIATURAS E SIGLAS

AChE	Enzima Acetilcolinesterase		
1D e 2D	Unidimensional e Bidimensional		
CC	Cromatografia em Coluna		
CCD	Cromatografia em Camada Delgada		
CG-EM	Cromatografia Gasosa acoplada a Espectrometria de Massas		
CLAE	Cromatografia Líquida de Alta Eficiência		
COSY	Correlation Spectroscopy		
CPD	Composite Pulse Decoupling		
DEPT	Distortionless Enhancement by Polarization Transfer		
DPPH	1,1-Difenil-2-Picril-Hidrazila		
EEBM	Extrato Etanólico de Bauhinia monandra		
EEBP	Extrato Etanólico de Bauhinia pentandra		
EEBP-G(H)	Fração hexano da coluna gravitacional do extrato etanólico de		
	Bauhinia pentandra		
EEBP-G(D)	Fração diclorometano da coluna gravitacional do extrato		
	etanólico de Bauhinia pentandra		
EEBP-G(AE)	Fração acetato de etila da coluna gravitacional do extrato		
	etanólico de Bauhinia pentandra		
EEBP-G(M)	Fração metanol da coluna gravitacional do extrato etanólico de		
	Bauhinia pentandra		
EEBP-P(H)	Fração hexano da partição líquido-líquido do extrato etanólico		
	de Bauhinia pentandra		
EEBP-P(D)	Fração diclorometano da partição líquido-líquido do extrato		
	etanólico de Bauhinia pentandra		
EEBP-P(AE)	Fração acetato de etila da partição líquido-líquido do extrato		
	etanólico de Bauhinia pentandra		
EEBP-P(HA)	Fração hidroalcoólica da partição líquido-líquido do extrato		
	etanólico de <i>Bauhinia pentandra</i>		
EEBP-V(H)	Fração hexano da coluna a vácuo do extrato etanólico de		
	Bauhinia pentandra		
EEBP-V(D)	Fração diclorometano da coluna a vácuo do extrato etanólico		

de Bauhinia pentandra

EEBP-V(AE)	Fração acetato de etila da coluna a vácuo do extrato etanólico		
	de Bauhinia pentandra		
EEBP-V(M)	Fração metanol da coluna a vácuo do extrato etanólico de		
	Bauhinia pentandra		
EHBM	Extrato Hexânico de Bauhinia monandra		
EHBP	Extrato Hexânico de Bauhinia pentandra		
EM	Espectrometria de Massas		
HMBC	Heteronuclear Multiple Bond Correlation		
HSQC	Heteronuclear Single Quantum Correlation		
Hz	Hertz		
IDH	Índice de Deficiência de Hidrogênio		
IK	Índice de Kovats		
IV	Infravermelho		
MEFS	Microextração em Fase Sólida		
NOE	Nuclear Overhauser Effect (Efeito Overhauser Nuclear)		
NOESY	Nuclear Overhauser Enhancement Spectroscopy		
ppm	Partes por Milhão		
RMN ¹³ C	Ressonância Magnética Nuclear de Carbono-13		
RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio-1		
TR	Tempo de Retenção		

SUMÁRIO

1 INTRODUÇÃO	23		
2 CONSIDERAÇÕES BOTÂNICAS	25		
2.1 Considerações sobre a família Fabaceae	25		
2.2 Considerações sobre o gênero <i>Bauhinia</i>	25		
2.3 Considerações sobre a espécie <i>B. pentandra</i> (Bong.) D.Dietr	26		
2.4 Considerações sobre a espécie <i>B. monandra</i> Kurz			
3 LEVANTAMENTO BIBLIOGRÁFICO			
4 RESULTADOS E DISCUSSÃO	68		
4.1 Identificação dos constituintes dos óleos essenciais de <i>B. pentandra</i> obtidos por hidrodestilação	68		
4.2 Identificação dos constituintes dos óleos essenciais de <i>B. pentandra</i> obtidos por microextração em fase sólida (MEFS)	75		
4.3 Determinação da composição de ácidos graxos de <i>B. pentandra</i> e <i>B. monandra</i>	82		
4.4 Estudo dos constituintes fixos de <i>B. pentandra</i>	89		
4.4.1 Determinação estrutural de BP-1	89		
4.4.2 Determinação estrutural de BP-2	94		
4.4.3 Determinação estrutural de BP-3	.100		
4.4.4 Determinação estrutural de BP-4	.113		
4.4.5 Determinação estrutural de BP-5	.121		
4.4.6 Determinação estrutural de BP-6	.131		
4.4.7 Determinação estrutural de BP-7	.141		
4.4.8 Determinação estrutural de BP-8	.155		
4.5 Estudo dos constituintes fixos de <i>B. monandra</i>	.168		
4.5.1 Determinação estrutural de BM-1	.168		
4.5.2 Determinação estrutural de BM-2	.174		
4.5.3 Determinação estrutural de BM-3	.180		
4.5.4 Determinação estrutural de BM-4	.189		
4.5.5 Determinação estrutural de BM-5	.204		
4.6 Atividade antioxidante	.214		
4.7 Atividade nematicida	.214		
4.8 Atividade inibidora da enzima acetilcolinesterase (AChE)	.215		
4.9 Determinação de fenóis totais	.215		
5 PARTE EXPERIMENTAL	216		

5.1 Material vegetal216
5.2 Métodos cromatográficos216
5.2.1 Cromatografia em coluna (CC)216
5.2.2 Cromatografia em coluna de fase reversa (C18)216
5.2.3 Cromatografia em camada delgada (CCD)
5.2.4 Cromatografia líquida de alta eficiência (CLAE)
5.3 Métodos espectroscópicos e espectrométricos
5.3.1 Espectroscopia na região do infravermelho (IV)217
5.3.2 Espectrometria de massas (EM)218
5.3.3 Espectroscopia de ressonância magnética nuclear de hidrogênio
(RMN ¹ H) e de carbono-13 (RMN ¹³ C)220
5.4 Métodos físicos
5.4.1 Rotação ótica221
5.5 Estudo dos constituintes voláteis de <i>B. pentandra</i>
5.5.1 Obtenção dos óleos essenciais de B. pentandra por
hidrodestilação 221
5.5.2 Obtenção dos óleos essenciais de B. pentandra por microextração
em fase sólida (MEFS)221
5.6 Estudo dos constituintes fixos de <i>B. pentandra</i> e <i>B. monandra</i> 222
5.6.1 Preparação dos extratos222
5.6.2 Perfil de ácidos graxos de B. pentandra e B. monandra223
5.6.2.1 Reação de saponificação e obtenção dos ácidos graxos
livres
5.6.2.2 Reação de metilação e obtenção dos ésteres metílicos224
5.6.3 Fracionamento cromatográfico do extrato EEBP225
5.6.3.1 Fracionamento cromatográfico da fração EEBP-G(D)226
5.6.3.2 Fracionamento cromatográfico da F 15-21 e isolamento de
BP-1
5.6.3.3 Fracionamento cromatográfico da F 72-73
5.6.3.4 Fracionamento cromatográfico da F 25-34
5.6.3.5 Fracionamento cromatográfico da F 16-25 e isolamento de
BP-2
5.6.3.6 Fracionamento cromatográfico da fração EEBP-G(AE) e
isolamento de BP-3229

5.6.3.7 Fracionamento cromatográfico da fração EEBP-G(M)229
5.6.3.8 Fracionamento cromatográfico da F 27-30 e isolamento de
BP-4
5.6.3.9 Fracionamento cromatográfico da fração EEBP-V(AE)231
5.6.3.10 Fracionamento cromatográfico da F 60-69 e isolamento
de BP-5 e BP-6232
5.6.3.11 Fracionamento cromatográfico da fração EEBP-P(AE).232
5.6.3.12 Fracionamento cromatográfico da F 80-92 e isolamento
de BP-7 e BP-8233
5.6.4 Fracionamento cromatográfico do extrato EEBM238
5.6.4.1 Fracionamento cromatográfico da fração EEBM(AE)238
5.6.4.2 Fracionamento cromatográfico da F 62-70239
5.6.4.3 Fracionamento cromatográfico da F 29-32 e isolamento de
BM-1 e BM-2239
5.6.4.4 Fracionamento cromatográfico da F 36-41 e isolamento de
BM-3240
5.6.4.5 Fracionamento cromatográfico da fração EEBM(M)240
5.6.4.6 Fracionamento cromatográfico da F 3-17 e isolamento de
BM-4 e BM-5241
5.7 Atividade antioxidante: método de seqüestro do radical DPPH244
5.8 Atividade nematicida in vitro
5.9 Ensaio para inibição da enzima acetilcolinesterase (AChE)245
5.10 Determinação de fenóis totais
6 CONSIDERAÇÕES FINAIS
REFERÊNCIAS

1 INTRODUÇÃO

O uso de plantas com fins terapêuticos é uma tradição milenar presente nas culturas de várias nações, constituindo, ainda hoje, um recurso alternativo de grande aceitação, não somente nos centros urbanos, mas sobretudo nas pequenas comunidades rurais. Este comportamento vem chamando a atenção da comunidade científica no sentido de comprovar a eficácia e promover o uso seguro desses recursos naturais (FENNELL *et al.*, 2004). Vale ressaltar que as plantas são fontes de uma infinidade de substâncias químicas que são biossintetizadas com várias finalidades, dentre elas, proteção contra predadores ou atração de polinizadores (STEPP, 2004).

Levando em consideração a biodiversidade vegetal que existe no planeta (cerca de 250.000 espécies) e que somente cerca de 5 a 15% foi investigada do ponto de vista fitoquímico e/ou farmacológico, as pesquisas com plantas superiores apresentam-se como uma fonte extremante promissora para a descoberta de novas substâncias que possam ser utilizados no tratamento de várias doenças (ROJAS *et al.*, 2003).

Entre as inúmeras espécies vegetais de interesse medicinal, encontramse as plantas do gênero *Bauhinia*, pertencentes à família Fabaceae (antiga família Leguminosae), as quais são encontradas principalmente nas áreas tropicais do planeta. Muitas destas plantas são usadas na medicina popular em várias regiões do mundo (SILVA; CECHINEL FILHO, 2002; KERNTOPF; NASCIMENTO; FONTELES, 2013).

Dentre as espécies de *Bauhinia*, as mais estudadas fitoquimicamente foram: *B. manca*, *B. candicans*, *B. uruguayensis*, *B. purpurea*, *B. forficata* e *B. splendens*. Os estudos fitoquímicos realizados com plantas deste gênero mostraram a presença principalmente de esteroides, terpenos e flavonoides (KERNTOPF; NASCIMENTO; FONTELES, 2013).

Diversas atividades são relatadas para as espécies de *Bauhinia*, tais como: hipoglicemiante, antimicrobiana, analgésica, antiinflamatória, antimalárica, antipirética, antitumoral, antiulcerogênica, antioxidante, larvicida, entre outras (MENEZES *et al.*, 2007; CECHINEL FILHO, 2009; ARGOLO *et al.*, 2004; GOIS, 2010).

As folhas, caules e raízes das espécies de *Bauhinia* são amplamente utilizadas no Brasil e em outros países em forma de chás e outras preparações fitoterápicas para o tratamento de várias enfermidades, principalmente infecções, processos dolorosos e diabetes (SILVA; CECHINEL FILHO, 2002). Além de antidiabéticas, as folhas são consideradas diuréticas e hipocolesteremiantes, sendo empregadas na medicina popular também contra cistites, parasitoses intestinais e elefantíase (NOGUEIRA; SABINO, 2012).

Bauhinia pentandra (Bong.) D.Dietr., também conhecida como mororóde-espinho (MATOS, 2002), trata-se de uma espécie que habita nos biomas caatinga e savana, sendo encontrada no Brasil nos Estados de Alagoas, Bahia, Ceará, Goiás, Minas Gerais, Mato Grosso, Mato Grosso do Sul, Paraíba, Pernambuco, Piauí, Rio de Janeiro, Rio Grande do Norte, São Paulo e Sergipe (VAZ; TOZZI, 2005). Na medicina popular é usada para tratamento de diabetes possivelmente por confundir com outra espécie (*B. forficata*) já validada pelo SUS, no entanto *B. pentandra* ainda não teve comprovada a sua propriedade hipoglicemiante (MATOS, 2002).

Bauhinia monandra Kurz. é uma planta nativa da Ásia, embora possa ser encontrada na Índia, Nigéria e outras regiões da África e América do Sul (HAVER, 2002). Conhecida como pata-de-vaca, *Bauhinia monandra*, possui grande valor econômico, e é utilizada com fins ornamentais, forrageiro e principalmente medicinal (ILKIU-BORGES; MENDONÇA, 2009) para o tratamento de diabetes e como diurético (ARGOLO *et al.*, 2004). Suas sementes servem como alimento, pois é fonte de vitamina A e como um possível agente controlador de praga (ILKIU-BORGES; MENDONÇA, 2009).

Na literatura há poucos relatos acerca da composição química de *B. pentandra* e *B. monandra*, portanto, o estudo fitoquímico e biológico destas espécies é de grande importância a fim de contribuir para conhecimento químico, taxonômico e farmacológico do gênero *Bauhinia*. O presente trabalho tem como objetivo a identificação dos constituintes químicos dos óleos essenciais e fixos das espécies, o isolamento e a identificação de metabólitos secundários, bem como a determinação de fenóis totais, a avalição da atividade antioxidante, da atividade nematicida e da inibição da enzima acetilcolinesterase.

2 CONSIDERAÇÕES BOTÂNICAS

2.1 Considerações sobre a família Fabaceae

A família Fabaceae (Leguminosae) possui distribuição cosmopolita, incluindo cerca de 650 gêneros e aproximadamente 19000 espécies, representando uma das maiores famílias de Angiospermas e também uma das principais do ponto de vista econômico. No Brasil ocorrem cerca de 200 gêneros e 2700 espécies, correspondendo a maior família em número de espécies no país (SOUZA; LORENZI, 2012).

Segundo Souza e Lorenzi (2012), a família Fabaceae é descrita como:

Ervas, arbustos, árvores ou lianas; folhas alternas, muito raramente opostas, geralmente compostas, com estípulas, às vezes transformadas espinhos, frequentemente em com nectários ocasionalmente pontuações extraflorais. com translúcidas. Inflorescência geralmente racemosa; flores vistosas ou não, geralmente bissexuadas. Fruto geralmente do tipo legume, mas também de outros tipos, incluindo drupa, sâmara, folículo, craspédio ou lomento (SOUZA; LORENZI, 2012).

Em geral, são reconhecidos três subgrupos dentro de Fabaceae: Caesalpinioideae, Faboideae e Mimosoideae. A subfamília Caesalpinioideae compreende 150 gêneros e 2700 espécies. Nesta subfamília podemos destacar os gêneros: *Bauhinia, Caesalpinia, Cassia, Chamaecrista, Cercis, Delonix, Gleditsia, Parkinsonia, Senna, Tamarindus* (JUDD *et al.*, 2009).

2.2 Considerações sobre o gênero Bauhinia

O gênero *Bauhinia* inclui aproximadamente 300 espécies, distribuídas na maioria dos países tropicais, incluindo a África, Ásia e América do Sul (CECHINEL FILHO, 2009). As espécies do gênero *Bauhinia* são conhecidas popularmente em todo Brasil como "pata-de vaca" e no Ceará como "mororó" [Do tupi miroi'ró.] S. m. Bras. [moró (nutrir, alimentar) + rô (produzir)], e são extensamente utilizadas na medicina popular brasileira por sua atividade antidiabética (KERNTOPF; NASCIMENTO; FONTELES, 2013).

As diversas espécies deste gênero apresentam-se como árvores, arbustos e cipós, com típicas folhas bigeminadas, paripeneadas, grandes, ramificadas, unijugadas, glabras, geminadas com os folíolos trinervados por vezes, estípulas estreitas e caducas. As flores são grandes, algumas semelhantes a uma orquídea; corola com cinco pétalas desiguais, androceu diplostêmone, às vezes com alguns estames reduzidos a estaminódios ou ausentes, gineceu com ovário unilocular com óvulos bisseriados, estiletes livres ou conscrescidos. Frutos do tipo vagem, chatos, escuros e compridos, indeiscentes ou deiscentes, bivalvares, oblongos, com sementes, também, achatadas (**Fig. 1**) (KERNTOPF; NASCIMENTO; FONTELES, 2013).

Figura 1 Características morfológicas do gênero Bauhinia

Fonte: KERNTOPF; NASCIMENTO; FONTELES, 2013.

2.3 Considerações sobre a espécie *B. pentandra* (Bong.) D.Dietr.

B. pentandra (Bong.) D.Dietr. (**Fig. 2, p. 27**) apresenta-se como uma árvore de pequeno porte (arvoreta) podendo atingir até 4 m de altura, escandente com ramos contendo acúleos rígidos em direção ao ápice, com folhas bifoliadas, e inflorescências parciais com pétalas lineares. Seu legume apresenta contorno estreitamente oblongo, sem divisões internas, portanto sem câmaras que alojam as sementes as quais não possuem apêndice unciforme encobrindo o hilo, e sem linhas em leque (CRISÓSTOMO, 2008).

Figura 2 Fotografia da espécie Bauhinia pentandra (Bong.) D.Dietr.

Fonte: Do autor

2.4 Considerações sobre a espécie *B. monandra* Kurz.

Bauhinia monandra Kurz. (Fig. 3) é uma árvore ou arbusto, de crescimento rápido, que normalmente atinge 3-15,2 m de altura e 0,5 m de diâmetro. As folhas são em forma de asas de borboleta, arredondadas, formando dois lóbulos iguais. Eles são dissecadas em 11 ou 13 veias principais. Os pecíolos se estendem para aristas curtas entre os lóbulos da folha. As flores alcançam 6,4-10,2 cm de diâmetro, têm apenas um estame fértil por flor e uma divisão de cálice de um lado. Os frutos são vagens deiscentes, escuros, com 2,5 cm de largura, 15,2-30,5 cm de comprimento e apontam para o ápice. As sementes pretas são elípticas, planas e medem 1 cm de comprimento (CONNOR, 2002).

Fonte: Do autor

3 LEVANTAMENTO BIBLIOGRÁFICO

Estudos fitoquímicos com várias espécies do gênero *Bauhinia* levaram ao isolamento e identificação de diferentes classes de metabólitos de interesse medicinal, incluindo terpenos, esteroides, alcaloides e especialmente flavonoides (CECHINEL FILHO, 2009). A principal atividade biológica relatada para as plantas do gênero *Bauhinia* é a hipoglicemiante, uma vez que na medicina popular estas plantas são usadas para o tratamento de diabetes (SILVA; CECHINEL FILHO, 2002). Outras atividades são: antimicrobiana, anti-inflamatória, analgésica e antioxidante. (CECHINEL FILHO, 2009; NOGUEIRA; SABINO, 2012).

Na revisão bibliográfica são apresentadas as substâncias isoladas de espécies do gênero *Bauhinia* nos últimos dez anos (2005-2015). A pesquisa foi realizada através de buscas em "sites" científicos, como *Scifinder, Science direct* e *Web of science*. Durante o período de dez anos, as espécies estudadas fitoquimicamente foram: *B. aculeata, B. acuruana, B. aurea, B. brachycarpa, B. championii, B. forficata, B. galpinii, B. glauca, B. kockiana, B. malabarica, B. megalandra, B. microstachya, B. monandra, B. muricata, B. pentandra, B. purpurea, B. racemosa, B. retusa, B. rufescens, B. scandens, B. sirindhorniae, B. strychnifolia, B. tomantosa, B. ungulata e B. variegata.*

Na **Tabela 1**, **p. 29** encontram-se os nomes das substâncias isoladas de espécies do gênero *Bauhinia*, e as suas respectivas estruturas químicas são mostradas no **Quadro 1**, **p. 48**. Apesar de muitos compostos do gênero serem conhecidos, são raros os estudos sobre a composição química de *B. pentandra* e *B. monandra*.

Espécie	Substância	Estrutura	Referência
B. aculeata	Bauhiniastatina 4	1	TANJUNG; SAPUTRI; TJAHJANDARIE,
	Pacharina	2	2014
B. acuruana	Pacharina	2	GÓIS <i>et al.</i> , 2013
P. auroa	6,6-bisastilbina	82	
	(<i>Z</i>)-5 α ,6 β -diidroxi-4 β -metoxi-2-cicloexeno- $\Delta^{1,\alpha}$ -	14	
	acetonitrila	14	SHANG et al. 2012
D. duica	Bauhinina	15	
	Bauhinilida	108	
	Dehidrodicatequina A	100	
B. aurea	Crisina	37	
	Luteolina	38	
	Apigenina	39	
	Quercetina-3-O-β-D-glicosídeo	19	SHANG at al 2000
	Quercitrina	23	STIANO <i>et al.</i> , 2003
	Eucrifina	18	
	Crisina-7-O-β-D-glicosídeo	28	
	Kampferitrina	30	

 Tabela 1
 Substâncias isoladas de espécies do gênero Bauhinia

B. aurea	Quercetina-3,7-O-diramnosídeo	31	
	Quercetina-3-O-(6"-galoil)-β-D-glicosídeo	32	SHANG et al., 2009
	Quercetina-3-O-(6"-galoil)-β-D-galactosídeo	33	
P. ouroo	Isoengeletina	80	
	Isoastilbina	81	
	Astilbina	83	
	Neoastilbina	84	SHANG <i>et al</i> ., 2007
D. aurea	Neoisoastilbina	85	
	(+)-catequina	101	
	(-)-epicatequina	102	
	(-)-epicatequina-3-O-galato	104	
	Ácido protocatecuico	112	
	Ácido 4-hidróxibenzóico	113	
B. aurea	Ácido 4-hidróxi-3-metóxibenzóico	114	
	Ácido 3-hidróxi-4-metóxibenzóico	115	
	Ácido gálico	116	SHANG et al., 2006
	Galato de metila	117	
	Galato de etila	118	
	β-sitosterol	121	
	Daucosterol	123	
		1	

B. aurea	Estigmast-4-en-3-ona	124	
	Lupeol	126	SHANG et al., 2006
	Lupenona	127	
	Lupeol	126	
	β-sitosterol	121	
	Daucosterol	123	
	(-)-epicatequina-3-O-galato	104	
P brochvoorpo	Ácido gálico	116	ZHANC at al. 2012
B. Diachycarpa	Galato de metila	117	ZHANG <i>et al.</i> , 2012
	5,7,3',4',5'-pentametoxiflavona	40	
	5,6,7,3',4',5'-hexametoxiflavona	41	
	5,6,7-trimetoxi-3',4'-metileno-dioxiflavona	76	
	5,6,7,5'-tetrametoxi-3',4'-metileno-dioxiflavona	77	
B. championii	β-sitosterol	121	
	Daucosterol	123	
	Triacontano	109	
	Hexacontano	110	XU et al., 2013
	Quercitina	42	
	Miricitrina	24	
	Oblongixantona	78	
	1	I	

B. championii B. forficata	β-sitosterol	121	BAI <i>et al.</i> , 2005
	Daucosterol	123	
	Ácido gálico	116	
	(±)-lioniresinol	135	
	2,4,6- trimetoxifenol-1-O-β-D-(6'-O-galoil)-	138	
	glicopiranosídeo		
	Quercetina-3,7-O-diramnosídeo	31	
	Kampferitrina	30	
	Hiperosídeo	34	
B. galpinii	Miricetina-3-O-galactopiranosídeo	35	ADEROGBA et al., 2007
	2"-O-ramnosilvitexina	79	
	Ácido gálico	116	
	Peperomina B	197	
B. glauca	Quercetina	42	
	Fisetina	48	XU <i>et al</i> ., 2015
	Luteolina	38	
	Farrerol	88	
	Garbanzol	95	
B. glauca	3,5,7,4'-tetraidroxi-3'-metoxiflavona	45	TANG <i>et al.</i> , 2014
	3-O-metilquercetina	47	

B. glauca	Quercetina	42	TANG <i>et al.</i> , 2014
	Luteolina	38	
	Kampferol	44	
	5,7,4'-triidroxi-3'-metoxiflavona	43	
	3,7,3'-triidroxi-4'-metoxiflavona	46	
	Miricitrina	24	
	Quercetina-3-O-α-L-arabinofuranosídeo	36	
	(+)-catequina	101	
B. glauca	(2',4'-diidroxi-4-metoxichalcona)-4'-β-D-glicosídeo	156	
	Bauhiniasina	161	
	Sulfuretina	137	BAIMING et al., 2012a
	Isoliquiritigenina	143	
	4'-metilglicoliquiritigenina	86	
B. glauca	3,5,7,3',5'-pentaidroxiflavanona	94	
	Eriodictiol	87	
	3-O-metilquercetina	47	BAIMING et al., 2012b
	Luteolina	38	
	Fisetina	48	
B. glauca	Isopropil-O-β-(6'-O-galoil)-glicopiranosídeo	140	7HAO of al. 2011
	Etil-O-β-(6'-O-galoil)-glicopiranosídeo	139	

B. glauca	3,4,5-trimetoxifenil-(6'-O-galoil)-O-β-D-	141	ZHAO <i>et al.</i> , 2011
	glicopiranosídeo		
	3,4,5-trimetoxifenil-β-D-glicopiranosídeo	94	
	Ácido gálico	116	
	Galato de metila	117	
	Galato de etila	118	
	Ácido protocatecuico	112	
	Ácido 3,5-dimetoxi-4-hidroxibenzóico	119	
	Erigeside C	142	
	Ácido glucosiringico	163	
	4-metóxi-buteína	148	WU <i>et al.</i> , 2009a
	Isoliquiritigenina	143	
B. glauca	Buteína	144	
	2'-metóxi-isoliquiritigenina	149	
	2',4'-diidroxichalcona	145	
	4-metoxi-isoliquiritigenina	146	
	4-hidroxi-2',4'-dimetoxichalcona	147	
B. glauca	6-metilhomoeriodictiol	96	WU <i>et al.</i> , 2009b
	Bauhiniasida A	159	
	Bauhiniasina	161	
		· · · · · · · · · · · · · · · · · · ·	

B. glauca	2',4'-diidroxi-4-metoxidiidrochalcona-4'- <i>O</i> -β-D- glicopiranosídeo	158	
	Farrerol	88	WU <i>et al.</i> , 2009
	Homoeriodictiol	89	
	2',4'-diidroxi-4-metoxidiidrochalcona	160	
R kockiana	Ácido gálico	116	
D. KUCKIAIIA	Galato de metila	117	GITE W & al., 2014
	β-sitosterol	121	
	Quercetina	42	
B. malabarica	6,8-C-dimetil-kampferol-3-O-ramnopiranosídeo	25	PARK <i>et al</i> ., 2014
	Éter-3-metil-6,8-C-dimetil-kampferol	49	
	Hiperosídeo	34	
	Éter-3-metil-6,8-C-dimetil-kampferol	49	
	Kampferol	44	
	Afzelina	26	
B. malabarica	Quercetina	42	KAEWAMATAWONG et al., 2008
	Quercetina-3-O-β-D-glicosídeo	19	
	Quercitrina	23	
	Hiperosídeo	34	

	Astilbina	83	
	Quercitrina	23	
	Afzelina	26	
P magalandra	Quercetina-3-O-α-arabinosídeo	55	
B. Meyalanula	Quercetina-3-O-α-(2"-galoil)ramnosídeo	57	ESTRADA el al., 2005
	Kampferol-3-O-α-(2"-galoil)ramnosídeo	56	
	Quercetina	42	
	Kampferol	44	
P. microstachya	Afzelina	26	MANSUR at al. 2012
B. MICIOSIACITYA	Astragalina-2",6"-O-digalato	58	
B. microstachya	Quercitrina	23	GADOTTI <i>et al.</i> , 2005
	Rutina	59	ADEROGRA at al. 2006
D. monanura	Quercetina	42	
B. pentandra	Riachina	16	SILVA et al., 2013
	Pacharina	2	
	Bauhiniastatina 1	9	
B. purpurea	Bauhiniastatina 2	3	PETTIT <i>et al.</i> , 2006
	Bauhiniastatina 3	4	
	Bauhiniastatina 4	1	
B. purpurea	Bauhinoxepina C	5	BOONPHONG et al., 2007
	1		

	Bauhinoxepina D	6	
	Bauhinoxepina E	7	
	Bauhinoxepina F	8	
	Bauhinoxepina G	10	
	Bauhinoxepina H	11	
	Bauhinoxepina I	12	
	Bauhinoxepina J	13	
	Bauhibenzofurina A	168	
B. purpurea	Bauhispirorina A	107	BOONPHONG et al., 2007
	Estrobopinina	90	
	Demetoximateucinol	91	
	Bauhinol E	150	
	Batatasina IV	151	
	2-[2-(3,5-Dimetoxifenil)etil]fenol	152	
	2,2'-Diidroxi-3,5-dimetoxibibenzil	153	
	Diidropinosilvina	154	
	Diidropinosilvina metil éter	155	
B. purpurea	3,5,7-triidroxi-2-(3,4,5-triidroxifenil)-4H-1-benzopiran- 4-ona	60	PAHWA; MAZUMDER; BHATTACHARYA, 2015

	Ácido mirístico	173	
	Ácido octadecanóico	174	
	Ácido 9,12-octadecadienóico	178	
	24-metil-pentacosanoato de isopropila	180	
B. purpurea	Estigmasterol	125	JOSHI; DESAI; BHOBE, 2013
	β-amirina	128	
	β-Sitosterol	121	
	Lupeol	126	
	9,12-Hexadecadienoato de etila	179	
B purpurea	Caprilato de α-amirina	129	VERMA; CHANDRASHEKAR; JOSHI,
D. pulpulea		0	2009
	3,7-diidroxi-3'-metoxiflavona-3-O-α-L-		
	ramnopiranosil(1 \rightarrow 4)-O- α -L-arabinopiranosil(1 \rightarrow 3)-O-	73	
B. racemosa	β-D-galactopiranosídeo		YADAVA; CHAKRAVARTY, 2014
	Isovitexina	74	
	Isoorientina	75	
B. racemosa	Galato de metila	117	
	Acido galico	116	RASHED BUTNARIU 2014
	Kampferol	44	
	Quercetina	42	

Quercetina-3-0-α-ramnosídeo	23	
Kampferol-3-O-β-D-glicopiranosídeo	20	
Miricetina-3-O-β-glicosídeo	61	RASHED, BUTNARIO, 2014
Rutina	59	
Racemosolona	169	
Tetracosane	111	
Estereato de β -sitosterila	122	
Acido eicosanoico	175	
Estigmasterol	125	
β-sitosterol	121	
Racemosol	170	JAIN <i>et al.</i> , 2013
Ferulato de octacosila	165	
De-O-metilracemosol	171	
Lupeol	126	
1,7,8,12b-tetraidro-2,2,4-trimetil-2H-		
benzo[6,7]ciclohepta[1,2,3-de][1]benzopiran-5,10,11-	172	
triol		
$(2S)$ -1,2-di-O-linolenoil-3-O- α -galactopiranosil-(1/6)-	200	
O-β-galactopiranosil glicerol	200	SASHIDHARA ULAI. 2012
	Quercetina-3- O -α-ramnosídeoKampferol-3- O -β-D-glicopiranosídeoMiricetina-3- O -β-glicosídeoRutinaRacemosolonaTetracosaneEstereato de β-sitosterilaAcido eicosanoicoEstigmasterolβ-sitosterolRacemosolFerulato de octacosilaDe- O -metilracemosolLupeol1,7,8,12b-tetraidro-2,2,4-trimetil-2H- benzo[6,7]ciclohepta[1,2,3-de][1]benzopiran-5,10,11- triol(2S)-1,2-di- O -linolenoil-3- O -α-galactopiranosil-(1/6)- O -β-galactopiranosil glicerol	Quercetina-3- O -α-ramnosídeo23Kampferol-3- O -β-D-glicopiranosídeo20Miricetina-3- O -β-glicosídeo61Rutina59Racemosolona169Tetracosane111Estereato de β-sitosterila122Acido eicosanoico175Estigmasterol121Racemosol170Ferulato de octacosila165De- O -metilracemosol171Lupeol1261,7,8,12b-tetraidro-2,2,4-trimetil-2H- benzo[6,7]ciclohepta[1,2,3-de][1]benzopiran-5,10,11- triol172(2S)-1,2-di- O -linolenoil-3- O - α -galactopiranosil-(1/6)- O - β -galactopiranosil glicerol200

	$(2S)$ -1-O-linolenoil-2-O-palmitoil-3-O- α - galactopiranosil-(1/6)-O- β -galactopiranosil glicerol	199	
	$(2S)$ -1-O-oleoil-2-O-palmitoil-3-O- α -galactopiranosil- (1/6)-O- β -galactopiranosil glicerol	198	
B. racemosa	(-)-epiafzelequina	103	SASHIDHARA <i>et al</i> . 2012
	(-)-epicatequina	102	
	(-)-catequina	105	
	Acido protocatecuico	112	
	Octacosanol	185	
	Racemosol	170	JAIN <i>et al</i> . 2008
B racemosa	De-O-metilracemosol	171	
<i>D.</i> 1000/1000	1,7,8,12b-tetraidro-2,2,4-trimetil-2H- benzo[6,7]ciclohepta[1,2,3-de][1]benzopiran-5,10,11- triol	172	
	Kampferol	44	
B. retusa	Ramnetin-3-O-α-L-ramnopiranosil-3'-O-(prop-1-enil)	72	
	Isoramnetin-3-α-ramnosídeo	27	EL SAVED: HASSAN' ATEVA 2015
	Quercitrina	23	LE SATED, HASSAN, ATETA, 2013
	Quercetina 3- <i>O</i> -β-D-glucopiranosil-β-D- glicopiranosídeo	63	

B. retusa	Quercetina-3,7-di-O-β-D-glicosídeo	62	EL SAYED; HASSAN; ATEYA, 2015
	1-O-β-D-glucopiranosil-9β,15-diidroxi-5 α ,6βH- eudesma-3-ene-6 α ,12-olide	189	
B. retusa	4'-hidroxi-7-metoxiflavana	106	SEMWAL; SHARMA, 2011a
	β-sitosterol	121	
	Estigmasterol	125	
B. retusa	2,6-di(4',5'-diidroxifenil)-3,7-dioxabiciclo[3.3.0]octano- 1-hidroxi-5- <i>O</i> -ramnopiranosídeo	190	SEMWAL; SHARMA, 2011b
	Kampferitrina	30	
	Quercetina-3,7-O-diramnosídeo	31	
B. retusa	Kampferol-3-O- α -L-ramnosil-(1 \rightarrow 2)- β -D-glicosídeo	66	
	Quercetina-3-O- β -D-glucosil-(1 \rightarrow 2)- β -D- galactosídeo-7-O- β -D-glicosídeo	67	
	Kampferol-3- O - α -L-ramnosídeo-(1 \rightarrow 6)- β -D-glicopiranosídeo-7- O - β -D-glicosídeo	65	YADAV; VERMA, 2010
	Quercetina-3- O - α -L-ramnosil- $(1 \rightarrow 6)$ - β -D- glicopiranosídeo-7- O - β -D-glicosídeo	64	
	Isoramnetina-3-O- α -L-ramnopiranosil-(1 \rightarrow 2)- β -D- galactopiranosídeo-7-O- β -D-glicopiranosídeo	69	

B. retusa	Kampferol-3- O - β -D-glucosil- $(1\rightarrow 2)$ - α -ramnosil- $(1\rightarrow 6)$ -	68	YADAV; VERMA, 2010
	β-D-glicopiranosídeo-7-0-α-L-ramnosídeo		
B. rufescens	Menisdaurina	17	USMAN <i>et al.</i> , 2013
B. scandens	1-O-alquil-glicerol	181	HAZRA; CHATTERJEE, 2008
	Eriodictiol	87	
	Naringenina	92	
B. sirindhorniae	Isoliquiritigenina	143	RUANGRUNGSI 2005
	4-metoxi-isoliquiritigenina	146	
	Luteolina	38	
	Quercetina	42	VUENVONGSAWAD of 2/ 2013
	3,5,7,3',5'-Pentaidroxi-flavanonol-3-O-α-L-	97	
B strychnifolia	ramnopiranosídeo		
D. Suyeriniona	Eucrifina	18	
	β-sitosterol	121	
	Estigmasterol	125	
	Apigenina	39	
B tomantosa	Quercetina	42	
D. IOMANIOSA	Rutina	59	
	4'-metoxikampferol	50	
B. ungulata	Quercetina	42	MAIA NETO <i>et al.</i> , 2008

	Quercetina-3-0-a-L-arabinofuranosídeo	36	
	Quercitrina	23	
B. ungulata	3-O-metil-D-pinitol	193	MAIA NETO <i>et al.</i> , 2008
	Harmana	191	
	Eleagnina	192	
	Lupeol	126	
R variagata	β-sitosterol	121	
B. Vaneyala	Kampferol	44	JASH, KOT, GORAI, 2014
	Quercetina	42	
	Caprilato de α-amirina	129	
R variagata	Lupeol	126	SAHA et al. 2011
D. Vanegala	nor-α-amirina	131	
	Palmitato de 3β,28-diidroxi-olean-12-enila	130	
	Kampferol	44	
B. variegata	Ombuina	51	
	Kampferol-7,4'-dimetil eter 3-O-β-D-glicopiranosídeo	22	RAO' FANG' TZENG 2008
	Kampferol 3-O-β-D-glicopiranosídeo	20	
	Isoramnetina-3-0-β-D-glicopiranosídeo	21	
	Hesperidina	99	

B. variegata	Ácido 3β- <i>trans</i> -(3,4-diidroxicinamoiloxi)olean-12-en-	400	
	28-oico	132	RAU; FANG; TZENG, 2008
B. variegata	Bauhiniona	194	ZHAO <i>et al</i> ., 2005a
	Quercetina	42	
	3,3'-dimetoxi-quercetina	52	
	3,3',6-trimetoxi-quercetina	53	
	Ácido cafeico	166	
	Ácido ferulico	167	
	Quercetina-3-O-β-D-glicosídeo	19	MOHAMED; MAMMOUD; HAYEN, 2009
R variagata	Hiperosídeo	34	
D. Vancgala	Quercetina-3- O - α -L- ¹ C ₄ -ramnopiranosil-(1") \rightarrow 2")- O - β -	70	
	D- ⁴ C ₁ -glicopiranosídeo		
	Ácido 23-hidroxi-3 α -[O- α -L- ¹ C ₄ -ramnopiranosil-		
	$(1^{"}\rightarrow 4^{'})$ - O - α -L- $^{4}C_{1}$ -arabinopiranosil-oxi]olean-12-en-		
	28-oico- O - α -L- ¹ C ₄ -ramnopiranosil-(1'''')- O - β -D-	133	
	${}^{4}C_{1}$ -glicopiranosil-(1'''' $\rightarrow 6''')$ - O - β -D- ${}^{4}C_{1}$ -glicopiranosil		
	ester		
R variegata	5 7 4'-trimetoxi-flavanona	98	RAJKAPOOR; MURUGESH; KRISHNA,
D. Vanogala		50	2009
B. variegata	12,13-heptatriacontanodiol	182	KUMAR <i>et al.</i> , 2014

	Friedelina	134	
	Ácido docosanoico	176	
	Estigmasterol	125	
P. voriogoto	β-sitosterol	121	KUMAR <i>et al.</i> , 2014
D. Vaneyala	Ácido hexadecanoico	177	
	Lupeol	126	
	Eriodictiol	87	
	Quercetina	42	
	Isoliquiritigenina	143	
	Naringenina	92	LIAO; LI, 2013
	Kampferol	44	
P. variagata	Kampferol-7-O-β-D-glicopiranosídeo	29	
D. Vaneyala	Kampferol-3-O-β-D-glicopiranosídeo	20	
	Ácido cafeico	166	
	(-)-catequina	105	
	Afzelina	26	
B. variegata	16-metil-tetratriacontanoato de metila	183	
	7-hidroxinonadecan-9-ona	186	SINGH <i>et al.</i> , 2011
	10-acetoxidotriacontano	184	
	9-hidroxipentatriacontan-7-ona	187	

-			
B. variegata	Lupeol	126	SINGH et al. 2011
	β-sitosterol	121	
	2,4,8,9,10-pentaidroxi-3,7-dimetoxiantraceno-6-O-α-	105	
	L-ramnopiranosídeo	195	
R variagata	Kampferol-7-O-metil eter	54	
D. Valleyala	(2S)- 2,3-diidro-5-hidroxi-2-(3-hidroxi-4-metoxifenil)-6,	02	BODANIL et al., 2010
	7-dimetoxi-4H-1-benzopiran-4-ona	93	
	Ácido 4-(β-D-glicopiranosiloxi)benzoico	164	
	3-O-metilquercetina	47	EL-DONDAITY et al., 2005
	Luteolina	38	
	Rutina	59	
D. Valleyala	Narcissina	196	
	Quercetina-3-O-β-D-glicofuranosídeo	71	
	Daucosterol	123	
R variagata	12,13-heptatriacontanodiol	182	SINCH: PANDEY: GHANSHYAM 2006
D. Vanegala	15-dotetraconten-9-ol	188	
B. variegata	(-)-epicatequina	102	
	Ácido protocatecuico	112	7HAO at al. 2005b
	Protocatecuato de etila	120	
	Ácido 4-hidróxibenzóico	113	

B. variegata	Galato de metila	117			
	Galato de etila	118	ZHAO <i>et al</i> ., 2005b		
	Esquisandrisida	136			
B. variegata	2'-hidroxi-4',6'-dimetoxi-3,4-metileno-dioxichalcona	157			
	Kampferol-3-O-β-D-glicopiranosídeo	20	MAHESWARA et al., 2005		
	Afzelina	26			

59 Levantamento Bibliográfico

4 RESULTADOS E DISCUSSÃO

4.1 Identificação dos constituintes dos óleos essenciais de *B. pentandra* obtidos por hidrodestilação

Os constituintes do óleo essencial das folhas secas e das frescas de *B. pentandra*, obtido pelo processo de hidrodestilação, foram identificados pela técnica de CG-EM.

Do óleo essencial das folhas secas foram identificados onze constituintes, representando 92,28% da sua composição total, sendo sua maioria constituída por sesquiterpenos, com registro de apenas um monoterpeno, um diterpeno e uma cetona (**Tab. 2**, **p. 69**). O principal constituinte foi o sesquiterpeno β -cariofileno (30,65%).

No óleo essencial das folhas frescas seis constituintes foram identificados, representando 96,19% da sua composição total, sendo cinco sesquiterpenos e um diterpeno (**Tab. 2**, **p. 69**). O constituinte majoritário foi identificado como o diterpeno fitol (56,75%).

O fitol é um componente da molécula da clorofila, presente em folhas verdes de várias plantas medicinais, sendo a ela complexado por uma ligação do tipo éster em sua cadeia lateral e, portanto, está presente na natureza de forma abundante (COSTA *et al.*, 2012).

Os cromatogramas e os espectros de massas dos constituintes identificados encontram-se nas páginas 70-74, e as estruturas químicas respectivas são mostradas no **Quadro 2**, **p. 70**.

Constituintos	Folhas secas			Folhas frescas				
Constituintes	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%)	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%)
Timol	21,500	1303	1302	1,52	-	-	-	-
(<i>E</i>)−β-damascenona	24,715	1390	1390	1,39	-	-	-	-
β-elemeno	24,980	1397	1395	2,74	-	-	-	-
β-cariofileno	26,035	1431	1431	30,65	25,967	1429	1431	13,49
α -humuleno	27,090	1464	1462	5,33	27,070	1463	1462	3,04
Germacreno D	28,000	1493	1492	9,84	27,976	1492	1492	8,37
Elixeno	28,525	1509	1511	13,69	28,499	1509	1511	13,20
Cupareno	28,773	1517	1518	1,05	-	-	-	-
Espatulenol	31,060	1590	1591	3,72	-	-	-	-
Óxido de cariofileno	31,250	1596	1596	10,04	31,204	1594	1596	1,34
Fitol	39,805	2118	2119	12,31	39,835	2121	2119	56,75
Total				92,28				96,19

Tabela 2 Constituintes do óleo essencial de *B. pentandra* obtido por hidrodestilação

^a TR: tempo de retenção
^b Índice de Kovats experimental em coluna capilar RTX-5
^c Índice de Kovats da literatura (ADAMS, 2007; NIST)

Quadro 2 Constituintes do óleo essencial das folhas secas e frescas de *B. pentandra* obtido por hidrodestilação

Figura 4 Cromatograma do óleo essencial das folhas secas de *B. pentandra* obtido por hidrodestilação

Figura 5 Cromatograma do óleo essencial das folhas frescas de *B. pentandra* obtido por hidrodestilação

Figura 6 Espectro de massas do timol

Figura 7 Espectro de massas da (*E*)-β-damascenona

Figura 10 Espectro de massas do α-humuleno

4.2 Identificação dos constituintes dos óleos essenciais de *B. pentandra* obtidos por microextração em fase sólida (MEFS)

Os constituintes do óleo essencial das folhas secas e das frescas de *B. pentandra*, obtido pela técnica de microextração em fase sólida (MEFS), foram identificados pela técnica de CG-EM.

No óleo essencial das folhas secas foram identificados nove compostos, representando 96,69% da sua composição total. Destes, um monoterpeno, dois aldeídos, quatro sesquiterpenos e dois fenóis (**Tab. 3**, **p. 76**). O constituinte majoritário foi o sesquiterpeno β -cariofileno (24,82%).

No óleo essencial das folhas frescas nove compostos foram identificados, representando 93,34% da sua composição total, dentre os quais um aldeído, um álcool, um monoterpeno, quatro sesquiterpenos e dois fenóis (**Tab. 3**, **p. 76**). Os constituintes majoritários foram os fenóis salicilato de 2-etilhexila (27,32%) e salicilato de homomentila (25,42%), este também chamado de homosalato.

O homosalato é um protetor solar natural que pode proteger o DNA contra a radiação ultravioleta. Homosalato e salicilato de 2-etilhexila também foram detectados no óleo essencial de *Opuntia acanthocarpa* (WRIGHT; SETZER, 2013).

Os cromatogramas e os espectros de massas dos constituintes identificados encontram-se nas páginas 77-81, e as respectivas estruturas químicas são mostradas no **Quadro 3**, **p. 77**.

Dos constituintes identificados nos óleos essenciais das folhas secas e frescas obtidos por hidrodestilação e MEFS, quinze estão sendo registrados pela primeira vez na espécie. São eles: timol, β -damascenona, germacreno D, elixeno, cupareno, espatulenol, fitol, (*E*)-2-hexenal, (*E*)-3-hexenol, D-limoneno, (*Z*)- β -ocimeno, nonanal, decanal, salicilato de 2-etilhexila e salicilato de homomentila. Estudo anterior do óleo essencial das folhas de *B. pentandra* mostrou o β -cariofileno como constituinte majoritário (DUARTE-ALMEIDA; NEGRI; SALATINO, 2004), entretanto não foi relatada a presença álcool, cetona, diterpeno, monoterpenos, aldeídos e fenóis.

Constituintes		Folha	as secas		Folhas frescas				
Constituintes	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%) ^ª	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%) ^d	
(E)-2-hexenal	-	-	-	-	5,720	-	-	3,95 ± 0,13	
(<i>E</i>)-3-hexenol	-	-	-	-	5,823	-	-	$2,50 \pm 1,26$	
D-Limoneno	11,386	1018	1020	10,29 ± 2,32	-	-	-	-	
(Z)-β-ocimeno	-	-	-	-	12,127	1039	1040	2,98 ± 1,19	
Nonanal	14,196	1169	1142	2,55 ± 0,56	-	-	-	-	
Decanal	17,959	1203	1204	10,84 ± 2,68	-	-	-	-	
β-cariofileno	25,569	1416	1418	24,82 ± 1,11	25,579	1416	1418	$17,29 \pm 8,00$	
α-humuleno	26,698	1452	1454	3,10 ± 0,16	26,702	1452	1454	$2,40 \pm 0,62$	
Germacreno D	27,590	1480	1480	10,56 ± 0,04	27,600	1480	1480	$5,90 \pm 2,60$	
Elixeno	28,102	1496	1492	12,03 ± 0,89	28,110	1496	1492	$5,58 \pm 1,49$	
Salicilato de 2-etilhexila	36,576	1764	1805	11,20 ± 0,63	36,580	1764	1805	27,32 ± 6,59	
Salicilato de homomentila	37,714	1813	1903	11,30 ± 0,16	37,717	1814	1903	$25,42 \pm 4,94$	
Total				96,69 ± 0,20				93,34 ± 0,98	

Tabela 3 Constituintes do óleo essencial de B. pentandra obtido por MEFS

^a TR: tempo de retenção
^b Índice de Kovats experimental em coluna capilar RTX-5
^c Índice de Kovats da literatura (ADAMS, 2007; NIST)
^d Média de duas repetições com desvio padrão

Quadro 3 Constituintes do óleo essencial das folhas secas e frescas de *B. pentandra* obtido por MEFS

Figura 17 Cromatograma do óleo essencial das folhas secas de B. pentandra obtido por MEFS

Figura 18 Cromatograma do óleo essencial das folhas frescas de *B. pentandra* obtido por MEFS

Figura 19 Espectro de massas do (E)-2-hexenal

Figura 20 Espectro de massas do (E)-3-hexenol

4.3 Determinação da composição de ácidos graxos de *B. pentandra* e *B. monandra*

Os extratos hexânicos das folhas de *B. pentandra* e *B. monandra* foram submetidos ao processo de saponificação/metilação para obtenção dos ésteres metílicos dos seus ácidos graxos.

No óleo fixo de *B. pentandra* foram identificados dez constituintes, representando 84,62% da sua composição total. Os constituintes majoritários foram hexadecanoato de metila (29,03%), 9,12,15(*Z*,*Z*,*Z*)-octadecatrienoato de metila (28,93%) e octadecanoato de metila (10,58%) (**Tab. 4**, **p. 83**). Estes resultados indicam que os principais ácidos graxos presentes nas folhas de *B. pentandra* foram os ácidos palmítico, linolênico e esteárico.

No óleo fixo de *B. monandra* foram identificados quatro constituintes, representando 97,08% da sua composição total. Os principais constituintes foram 9,12,15(Z,Z,Z)-octadecatrienoato de metila (77,87%) e 9,12(Z,Z)-octadecadienoato de metila (11,91%) (**Tab. 4**, **p. 83**), o que indica que os principais ácidos graxos presentes nas folhas de *B. monandra* foram os ácidos linolênico e linoléico.

Os cromatogramas e os espectros de massas dos constituintes identificados encontram-se nas páginas 84-88, e as estruturas químicas são mostradas no **Quadro 4**, **p. 84**. Este representa o primeiro registro dos componentes do óleo fixo das espécies *B. pentandra* e *B. monandra*.

Constituintos		B. penta	ndra	B. monandra				
Constituintes	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%)	TR (min) ^a	IK _{exp.} b	IK _{lit.} c	Área (%)
Dodecanoato de metila	15,118	1498	1521	4,13	-	-	-	-
Tetradecanoato de metila	19,797	1725	1726	5,72	-	-	-	-
9(Z)-hexadecenoato de metila	23,620	1904	1912	1,46	-	-	-	-
Hexadecanoato de metila	24,225	1931	1927	29,03	24,012	1922	1927	6,43
Heptadecanoato de metila	26,030	2023	2022	0,78	-	-	-	-
9,12(Z,Z)-octadecadienoato de metila	-	-	-	-	27,360	2096	2096	11,91
9,12,15(<i>Z</i> , <i>Z</i> , <i>Z</i>)-octadecatrienoato de	27,800	2117	2113	28,93	27,573	2106	2113	77,87
metila								
Octadecanoato de metila	28,089	2132	2128	10,58	27,916	2123	2128	0,87
Eicosonoato de metila	31,546	2327	2329	2,04	-	-	-	-
Docosanoato de metila	34,842	2529	2530	1,39	-	-	-	-
Tetracosanoato de metila	37,893	2730	2731	0,56	-	-	-	-
Total				84,62				97,08

Tabela 4 Composição química do óleo fixo das folhas de B. pentandra e B. monandra

^a TR: tempo de retenção ^b Índice de Kovats experimental em coluna capilar RTX-5 ^c Índice de Kovats da literatura (ADAMS, 2007; NIST)

Quadro 4 Constituintes do óleo fixo das folhas de B. pentandra e B. monandra

Figura 32 Cromatograma do óleo fixo das folhas de B. monandra

Figura 34 Espectro de massas do tetradecanoato de metila

4.4 Estudo dos constituintes fixos de B. pentandra

4.4.1 Determinação estrutural de BP-1

A fração EEBP(D) obtida do extrato EEBP após cromatografia em coluna forneceu 14 mg de um sólido amorfo branco, solúvel em clorofórmio, que foi denominado BP-1.

O espectro na região do infravermelho (**Fig. 44**, **p. 91**) apresentou bandas de absorção em: 1733 cm⁻¹ referente a deformação axial de carbonila; 2917 e 2849 cm⁻¹ de deformação axial de ligação C-H; 1463 e 1378 cm⁻¹ de deformação angular de grupos metileno e metila, respectivamente; e absorções em 1215 e 1174 cm⁻¹ de deformação axial de ligação C-O.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 45**, **p. 91**) mostrou vários sinais sobrepostos na região entre δ_H 0,90 e 1,70 ppm, com destaques para um sinal simples e intenso em δ_H 1,26 [(CH₂)n], além de um tripleto em δ_H 2,30, característico de grupo CH₂ alfa à carbonila, propondo que trata-se de uma substância alifática de cadeia longa, provavelmente, um ácido graxo .

A análise dos espectros de RMN ¹³C-CPD e DEPT 135° [75 MHz, CDCl₃] (**Fig. 46 e 47**, **p. 92**) evidenciou sinais de carbonos metilênicos em δ_c 22,9-35,1 ppm, de carbono metílico em δ_c 14,3 e de carbono carbonílico em δ_c 173,8 (**Tab. 5**, **p. 90**).

A análise por CG-EM revelou a presença de dois componentes principais através dos picos com tempos de retenção (TR) 17,966 e 19,113 min, como pode ser visto no cromatograma (**Fig. 48**, **p. 93**). Os espectros de massas (**Fig. 49 e 50**, **p. 93**) destes componentes exibiram íons moleculares em m/z 257 e 285 ([M + H]⁺) Daltons, e permitiram identificar os ácidos palmítico (1, 53,34%) e esteárico (2, 24,94%), com fórmulas moleculares C₁₆H₃₂O₂ e C₁₈H₃₆O₂, respectivamente, e IDH=1. Estes ácidos graxos estão sendo isolados e identificados pela primeira vez na espécie *B. pentandra*.

Tabela 5 Deslocamentos químicos (δ) de RMN ¹³ C (CDCl ₃) de BP-1								
	Palmítico	(53,34%)	Esteárico (24,94%)					
С	BP-1A	Lit.* (CDCI ₃)	BP-1B	Lit.* (CDCI ₃)				
	δς	δς	δς	δς				
1	173,8	180,2	173,8	180,2				
2	35,1	34,1	35,1	34,1				
3	25,4	24,7	25,4	24,7				
4-13	29,4 - 29,9	29,1 - 29,7	29,4 - 29,9	29,1 - 29,7				
14	32,1	31,9	29,4 - 29,9	29,1 - 29,7				
15	22,9	22,7	29,4 - 29,9	29,1 - 29,7				
16	14,3	14,1	32,1	31,9				
17	-	-	22,9	22,7				
18	-	-	14,3	14,1				

Deslocamentos químicos (δ_c) em ppm * (MONTRUCCHIO *et al.*, 2005)

Figura 45 Espectro de RMN ¹H [300 MHz, CDCI₃] de BP-1

Figura 47 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BP-1

Figura 48 Cromatograma obtido por CG-EM para BP-1

Figura 50 Espectro de massas do componente com TR 19,113 min: BP-1B (ácido esteárico)

4.4.2 Determinação estrutural de BP-2

A fração EEBP(D) proveniente do extrato EEBP, após ser submetida a coluna cromatográfica, forneceu 22,6 mg de um sólido cristalino branco, solúvel em clorofórmio, que foi denominado BP-2.

O espectro na região do infravermelho (**Fig. 51**, **p. 97**) apresentou bandas de absorção em: 3361 cm⁻¹ referente a deformação axial de ligação O– H; 2929 e 2867 cm⁻¹ de deformação axial de ligação C–H; 1463 e 1377 cm⁻¹ de deformação angular de grupos CH_2 e CH_3 , respectivamente; além de absorções em 1056 e 1022 cm⁻¹ de deformação axial de ligação C–O.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 52 e 53**, **p. 97 e 98**) revelou sinais de hidrogênio ligado a carbono olefínico em $\delta_{\rm H}$ 5,35 (m, H-6), de hidrogênio ligado a carbono carbinólico em $\delta_{\rm H}$ 3,55 (m, H-3), de hidrogênios metílicos, metilênicos e metínicos em $\delta_{\rm H}$ 0,66-2,30 ppm, além de sinais em $\delta_{\rm H}$ 5,16 (dd, *J*=8,4 e 15,2 Hz, H-22) e 5,02 (dd, *J*=8,4 e 15,2 Hz, H-23) de hidrogênios de carbonos olefínicos com estereoquímica *trans*.

O espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] (**Fig. 54**, **p. 98**) mostrou 36 linhas espectrais, onde foram observados sinais em δ_c 141,0 e 121,9, correspondentes aos carbonos da ligação dupla entre C-5 e C-6 dos esteroides sitosterol e estigmasterol. Ainda nessa região observou-se a presença de dois sinais de menor intensidade em δ_c 138,5 e 129,5, característicos da ligação dupla entre C-22 e C-23 do estigmasterol. O sinal observado em δ_c 72,0 foi atribuído ao carbono carbinólico C-3 de ambos os esteroides (**Tab. 6**, **p. 96**).

Com base nos dados obtidos e comparação com dados espectrais registrados na literatura (KOJIMA *et al.*, 1990, **Tab. 6**, **p. 96**), concluiu-se que a substância BP-2 trata-se da mistura dos esteroides sitosterol (**1**) e estigmasterol (**2**), nas proporções de 80% e 20%, respectivamente. As percentagens aproximadas dos dois componentes da mistura foram calculadas através das integrações dos sinais de hidrogênios H-6 (área: 1,00, sitosterol + estigmasterol) e H-22 (área: 0,20, estigmasterol). A mistura de esteroides já foi isolada anteriormente da espécie *B. pentandra* (LINS, 2008).

Tabela 6 Deslocamentos químicos (δ) de RMN ¹³ C (CDCl ₃) de BP-2									
	Sito	sterol (80%)	Estigmasterol (20%)						
С	BP-2A	Lit.* (CDCI ₃)	BP-2B	Lit.* (CDCI ₃)					
	δς	δς	δς	δς					
1	37,5	37,2	37,5	37,2					
2	31,9	31,6	31,9	31,6					
3	72,0	71,8	72,0	71,8					
4	42,5	42,3	42,5	42,3					
5	141,0	140,7	141,0	140,7					
6	121,9	121,7	121,9	121,7					
7	32,1	31,9	32,1	31,9					
8	32,1	31,9	32,1	31,9					
9	50,3	50,1	50,3	50,1					
10	36,7	36,5	36,7	36,5					
11	21,3	21,1	21,3	21,1					
12	40,0	39,8	40,0	39,7					
13	42,5	42,3	42,5	42,2					
14	57,0	56,8	57,0	56,8					
15	24,5	24,3	24,5	24,4					
16	28,4	28,2	29,1	28,9					
17	56,3	56,0	56,3	55,9					
18	12,0	11,9	12,0	12,0					
19	19,6	19,4	19,6	19,4					
20	36,3	36,1	40,6	40,5					
21	19,0	18,8	21,4	21,2					
22	34,2	33,9	138,5	138,3					
23	26,3	26,0	129,5	129,2					
24	46,1	45,8	51,4	51,2					
25	29,4	29,1	29,9	31,9					
26	20,0	19,8	20,0	21,1					
27	19,2	19,0	19,2	19,0					
28	23,3	23,0	25,6	25,4					
29	12,2	12,0	12,2	12,3					

Deslocamentos químicos (δ_c) em ppm * (KOJIMA *et al.*, 1990)

Figura 52 Espectro de RMN ¹H [300 MHz, CDCI₃] de BP-2

Figura 54 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BP-2

4.4.3 Determinação estrutural de BP-3

A fração EEBP(A) obtida do extrato EEBP após cromatografia em coluna forneceu 13,4 mg de um líquido viscoso de cor marrom, solúvel em CHCl₃, que foi denominado BP-3.

O espectro na região do infravermelho (**Fig. 58**, **p. 105**) revelou bandas de absorção em: 3343 cm⁻¹ característica de ligação O–H; 2983 cm⁻¹ relacionada à ligação C–H; 1705 cm⁻¹ de carbonila; 1608, 1522 e 1460 cm⁻¹ referentes à ligação C=C de anel aromático; e em 1162 e 1100 cm⁻¹ de ligação C–O.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 59 e 60**, **p. 105 e 106**) exibiu sinais em $\delta_{H} 6,33$ (dd, *J*=8,1 e 1,5 Hz, 1H), 6,38 (sl, 1H) e 6,91 (d, *J*=8,1 Hz, 1H) compatíveis com um sistema benzênico trissubstituído. O espectro apresentou ainda três simpletos em $\delta_{H} 3,58$ (2H), 3,59 (2H) e 3,73 (3H), atribuídos, respectivamente, a dois grupos metileno (CH₂) e a um grupo metoxila (CH₃O), além de um tripleto em $\delta_{H} 1,28$ (*J*=7,1 Hz, 3H) e um quarteto em $\delta_{H} 4,19$ (*J*=7,1 Hz, 2H), referentes a um grupo etoxila (CH₃CH₂O). O deslocamento químico do sinal em $\delta_{H} 4,19$ (q) dos hidrogênios metilênicos oxigenados indicou a proximidade com um grupo carbonila, permitindo expandir o segmento estrutural etoxila para carboetoxila (CH₃CH₂OC=O).

O espectro de RMN ¹³C CPD [75 MHz, CDCl₃] (**Fig. 61**, **p. 106**) revelou seis sinais de carbonos aromáticos, incluindo três quaternários, dos quais dois são oxigenados (δ_{C} 156,2 e 156,7), além de duas carbonilas (δ_{C} 175,1 e 174,8). Foram observados ainda cinco sinais na região de carbonos *sp*³, sendo dois oxigenados (δ_{C} 52,9 e 62,1). Análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 62**, **p. 107**), registrou a presença de quatro carbonos metínicos (CH), três carbonos metilênicos (CH₂), um carbono metílico (CH₃) e cinco carbonos não hidrogenados (C).

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 63**, **p. 107**) mostrou acoplamento *orto* entre os sinais de hidrogênios em $\delta_{\rm H}$ 6,91 (d, *J*=8,1 Hz, H-6) com $\delta_{\rm H}$ 6,33 (dd, *J*=8,1 e 1,5 Hz, H-5) (**Fragmento I**, **Fig. 56**, **p. 101**) e acoplamento vicinal entre os átomos de hidrogênios em $\delta_{\rm H}$ 4,19 (q, *J*=7,1 Hz, H-9) com $\delta_{\rm H}$ 1,28 (t, *J*=7,1 Hz, H-10) (**Fragmento II**, **Fig. 56**, **p. 101**).

Figura 56 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-3

O espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 64**, **p. 108**) permitiu correlacionar, a uma ligação, os sinais de hidrogênios em $\delta_{\rm H}$ 6,91; 6,38; 6,33; 4,19; 3,73; 3,59; 3,58 e 1,28 com os de carbonos em $\delta_{\rm C}$ 131,9; 104,8; 108,2; 62,1; 52,9; 37,2; 36,7 e 14,2, respectivamente.

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 65 e 66, p. 108 e 109**) possibilitou correlacionar os sinais de hidrogênios em: δ_{H} 6,91 (H-6) com os carbonos em δ_{C} 156,7 (C-2), 156,2 (C-4) e 37,2 (C-7); δ_{H} 6,33 (H-5) com δ_{C} 113,0 (C-1) e 104,8 (C-3); e δ_{H} 6,38 (H-3) com δ_{C} 156,2 (C-4), 113,0 (C-1) e 108,2 (C-5), confirmando a estrutura de um sistema benzênico trissubstituído (**Fragmento III, Fig 57, p. 102**). Observou-se também a correlação dos hidrogênios em δ_{H} 3,59 (2H-7) com os carbonos em δ_{C} 156,2 (C-2), 131,9 (C-6), 113,0 (C-1) e 175,1 (C-8), o que caracteriza a presença de hidrogênios benzílicos alfa a carbonila (**Fragmento IV**, **Fig 57**, **p. 102**); do hidrogênio em δ_{H} 3,73 (MeO-8) com o carbono em δ_{C} 174,8 (C-8), caracterizando a existência de um grupo carbometoxila (**Fragmento V**, **Fig 57**, **p. 102**); além dos hidrogênios em δ_{H} 4,19 (H-9) com os carbonos em δ_{C} 174,8 (C-8) e 14,2 (C-10), e δ_{H} 1,28 (H-10) com δ_{C} 62,1 (C-9), confirmando a presença de um substituinte carboetoxila (**Fragmento VI**, **Fig 57**, **p. 102**).

Figura 57 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-3

Os espectros de RMN bi-dimensionais ¹H, ¹H-COSY (**Fig. 63**, **p. 107**) e ¹H, ¹³C-HMBC (**Fig. 65 e 66**, **p. 108 e 109**) mostraram picos transversais correspondentes aos acoplamentos observados e que justificaram o assinalamento dos átomos de hidrogênio e carbono (**Tab. 7**, **p. 104**). Conforme visto nas correlações indicadas nos fragmentos estruturais (I-VI) e, em acordo com os picos de íons moleculares em *m*/*z* 167,0342 ([M – H]⁻, **A**, calc 167,0344), 195,0653 ([M – H]⁻, **B**, calc 195,0657) e 181,0499 ([M – H]⁻, **C**, calc 181,0501) revelados pelos espectros de massas de alta resolução (modo negativo) (**Fig. 67, 68 e 69**, **p. 109 e 110**), foi possível deduzir as fórmulas moleculares C₈H₈O₄, C₁₀H₁₂O₄ e C₉H₁₀O₄ para **A**, **B** e **C**, respectivamente, e IDH=5. Os espectros de massas de alta resolução da mistura BP-3 contribuíram para definir as estruturas dos componentes através das propostas de fragmentação (**Fig. 70, p. 110**).

Assim, todos os dados em conjunto revelaram BP-3 como uma mistura de substâncias de estruturas semelhantes, identificadas como ácido 2,4diidroxifenilacético (**BP-3A**), 2,4-diidroxifenilacetato de etila (**BP-3B**) e 2,4diidroxifenilacetato de metila (**BP-3C**) nas proporções de 48,31%, 32,85% e 18,84%, respectivamente. As percentagens aproximadas dos três componentes foram calculadas com base no espectro de RMN ¹H (**Fig. 59**, **p. 105**) através das integrações dos sinais dos hidrogênios 2H-9 (δ_H 4,19 de BP-3B, área=1,36/2 = 0,68/H), MeO-8 (δ_H 3,73 de BP-3C, área=1,18/3 = 0,39/H) e 2H-7 (δ_H 3,58 e 3,59 dos três componentes, área=2,07), logo 2,07 - 0,68 (1H de BP-3B) - 0,39 (1H de BP-3C) = 1,00 (1H de BP-3A). Assim, foi possível a obtenção das seguintes percentagens aproximadas:

2,07 = 100% (BP-3A, BP-3B e BP=3C)

- 1,00 = 48,31% (BP-3A)
- 0,68 = 32,85% (BP-3B)
- 0,39 = 18,84% (BP-3C)

A análise por CG-EM (**Fig. 71**, **p. 111 e 112**) confirmou a presença dos três componentes, revelando percentagens diferentes em consonância com as correspondentes características experimentais (RMN e CG-EM). A **Figura 71** contempla também propostas de fragmentação para os componentes da mistura BP-3.

Estas três substâncias naturais estão sendo relatadas pela primeira vez no gênero *Bauhinia*.

	BP-3A (48,31%)					BP-3B (32,85%)				BP-3C (18,84%)				
С		HSQC HMBC		Lit.*	Lit.* HSQC		НМВС		HSQC		НМВС		Lit.*	
	δc	δн	² J _{CH}	³ <i>Ј</i> СН	δς	δc	δ _Η	² <i>Ј</i> СН	³ Ј _{СН}	δc	δн	² <i>Ј</i> СН	³ Ј _{СН}	δς
1	113,0	-	2H-7	H-3; H-5	113,7	112,9	-	2H-7	H-3; H-5	112,9	-	2H-7	H-3; H-5	113,7
2	156,2	-		H-6; 2H-7	158,7	156,0	-		H-6; 2H-7	156,0	-		H-6; 2H-7	158,7
3	104,8	6,38 (sl)		H-5	103,3	104,7	6,38 (sl)		H-5	104,7	6,38 (sl)		H-5	103,3
4	156,7	-	H-3; H-5	H-6	157,5	156,7	-	H-3; H-5	H-6	156,7	-	H-3; H-5	H-6	157,5
5	108,2	6,33 (dd,		H-3	107,4	108,2	6,33 (dd,		H-3	108,2	6,33 (dd,		H-3	107,4
		<i>J</i> =8,1 e 1,5)					<i>J</i> =8,1 e 1,5)				<i>J</i> =8,1 e 1,5)			
6	131,9	6,91 (d,		2H-7	132,4	131,9	6,91 (d,		2H-7	131,9	6,91 (d,		2H-7	132,4
		<i>J</i> =8,1)					<i>J</i> =8,1)				<i>J</i> =8,1)			
7	36,7	3,59 (s)		H-6	35,9	37,2	3,58 (s)		H-6	37,2	3,58 (s)		H-6	35,8
8	175,1	-	2H-7		175,5	174,8	-	2H-7	2H-9	174,8	-	2H-7	MeO-8	175,2
9	-	-	-	-	-	62,1	4,19 (q,	3H-10		-	-	-	-	-
							<i>J</i> =7,1)							
10	-	-	-	-	-	14,2	1,28 (t,	2H-9		-	-	-	-	-
							<i>J</i> =7,1)							
MeO	-	-	-	-	-	-	-	-	-	52,9	3,73 (s)			52,3

Tabela 7 Dados de RMN ¹ H e ¹³ C de BP-3A, BP-3B e BP-3C, incluindo correlação heteronuclear através de uma ligação (HSQC:	¹ J _{CH}) e a longa distância
(HMBC: ⁿ J _{CH} , n=2 e 3), em CDCl ₃ como solvente	

Deslocamentos químicos ($\delta_C e \delta_H$) em ppm e constante de acoplamento (*J*) em Hz * (NAHAR *et al.*, 2005) em CD₃OD

Figura 59 Espectro de RMN ¹H [300 MHz, CDCl₃] de BP-3

ppm

Figura 63 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CDCl₃] de BP-3

Figura 65 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CDCl₃] de BP-3

1: TOF MS	SES-								7 01e+003
100 ^{-123.0}	0434 I								
%									
				16	7.0342				
-	124.0479	135.0264	149.0237	158.9243	168.0385	176.9601 189	.0305 194	4.9776 ^{203.9574} 20	7.0202
120.0	130.0) 140.0	150.0	160.0	170.0	180.0	190.0	200.0	210.0

Figura 68 Espectro de massas de alta resolução (modo negativo) de BP-3B

2: TOF MS ES	5-		3.60e+002
_100		161.	.0229
-	140.0	1244	
-	149.0	JZ4 I	
%-			
	121.0293 122.0367 148.0201 126.8793 135.0450 138.0126 138.0126	150.0268	181.0499 195.0653 167.0313 181.9792 196.0672 175.0518 181.9792 196.0672 m/z
	120.0 130.0 140.0 1	50.0 160.	.0 170.0 180.0 190.0 200.0

Figura 69 Espectro de massas de alta resolução (modo negativo) de BP-3C

4.4.4 Determinação estrutural de BP-4

Da fração EEBP(M) oriunda do extrato EEBP, após ser cromatografada em coluna, foi possível isolar 30 mg de um líquido viscoso amarelado, solúvel em metanol, com rotação específica $[\alpha]_{D}^{22,5}$ + 32,67 (*c* 2,0, MeOH), que foi denominado BP-4.

O espectro na região do infravermelho (**Fig. 74**, **p. 117**) revelou bandas de absorção em: 3392 cm⁻¹, característica de deformação axial de ligação O–H; 2933 cm⁻¹ relacionada à ligação C–H; e 1070 cm⁻¹ referente a ligação C–O.

O espectro de RMN ¹H [300 MHz, CD₃OD] (**Fig. 75 e 76**, **p. 117 e 118**) apresentou sinais de hidrogênios metínicos, com absorções em $\delta_{\rm H}$ 3,25 (dd, *J*=9,6 e 9,2 Hz, H-3), 3,74 (dd, *J*=9,7 e 2,5 Hz, H-2), 3,70 (dd, *J*=9,7 e 2,5 Hz, H-5), 3,89 (d, *J*=2,5 Hz, H-1, H-6) e 3,59 (t, *J*=9,8 Hz, H-4), além de um simpleto em $\delta_{\rm H}$ 3,61 de hidrogênios oximetílicos.

O espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] (**Fig. 77**, **p. 118**) registrou um total de sete linhas espectrais, todas na região de carbono sp^3 oxigenado. Entre os carbonos foi observado um sinal referente a carbono metoxílico em $\delta_{\rm C}$ 60,9. Depois de analisar e comparar os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 78**, **p. 119**), verificou-se a presença de seis carbonos metínicos (CH) e um metílico (CH₃), conforme dispostos na **Tabela 8**.

СН	CH ₃	Fórmula molecular		
72,19 (C–OH)	60,94			
72,73 (C–OH)				
73,61 (C–OH)				
73,92 (C–OH)				
74,47 (C–OH)				
85,07 (C–O)				
$C_6H_{11}O_6$	CH₃	C ₇ H ₁₄ O ₆		

Tabela 8 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BP-4

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 79**, **p. 119**) mostrou acoplamento axial-axial entre os sinais de hidrogênios metínicos em $\delta_{\rm H}$ 3,74 (dd, *J*=9,7 e 2,5 Hz, H-2) com $\delta_{\rm H}$ 3,25 (dd, *J*=9,6 e 9,2 Hz, H-3), $\delta_{\rm H}$ 3,25 (dd, *J*=9,6 e 9,2 Hz, H-3) com $\delta_{\rm H}$ 3,59 (t, *J*=9,8 Hz, H-4), $\delta_{\rm H}$ 3,59 (t, *J*=9,8 Hz, H-4) com $\delta_{\rm H}$ 3,70 (dd, *J*=9,7 e 2,5 Hz, H-5) (**Fig. 72**); e acoplamento axial-equatorial entre os hidrogênios em $\delta_{\rm H}$ 3,89 (d, *J*=2,5 Hz, H-1) com $\delta_{\rm H}$ 3,74 (dd, *J*=9,7 e 2,5 Hz, H-2), $\delta_{\rm H}$ 3,70 (dd, *J*=9,7 e 2,5 Hz, H-5) com $\delta_{\rm H}$ 3,89 (d, *J*=2,5 Hz, H-6) (**Fig. 72**).

Figura 72 Correlações observadas no espectro de RMN 2D¹H, ¹H-COSY para BP-4

No espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 80**, **p. 120**) foram observadas as correlações dos sinais de hidrogênios em δ_H 3,25; 3,59; 3,61; 3,70; 3,74 com os sinais de carbonos em δ_C 85,0; 74,4; 60,9; 72,7; 72,2, respectivamente, e os hidrogênios em δ_H 3,89 com os carbonos em δ_C 73,6 e 73,9 (**Tab. 9**, **p. 116**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 81**, **p. 120**) definiu a posição do grupo metoxila em C-3 através da correlação, a três ligações (³ J_{CH}), do hidrogênio em δ_H 3,25 (H-3) com o carbono em δ_C 60,9 (C-7) e dos hidrogênios metílicos em δ_H 3,61 (3H-7) com o carbono em δ_C 85,0 (C-3) (**Fig. 73**).

Com base na discussão exposta e com dados da literatura (IGNOATO *et al.*, 2012, **Tab. 9**, **p. 116**) chegou-se à conclusão que BP-4 trata-se do derivado metilado do inositol, (+)-3-*O*-metil-D-*quiro*-inositol (D-pinitol), que está sendo relatado pela primeira vez na espécie *B. pentandra*. O D-pinitol apresenta ação semelhante à insulina, em alguns ensaios (KERNTOPF; NASCIMENTO; FONTELES, 2013).

	BP-4						
С	HSQC		HMBC		Lit.* (CD ₃ OD)		
	δς	δ _Η	² Ј СН	³ <i>Ј</i> _{СН}	δς	δ _Η	
1	73,9	3,89 (d, <i>J</i> =2,5)	H-6		73,4	3,88 (d, <i>J</i> =2,4)	
2	72,2	3,74 (dd, <i>J</i> =9,7 e 2,5)	H-3		72,0	3,74 (dd, <i>J</i> =9,9 e 2,4)	
3	85,0	3,25 (dd, <i>J</i> =9,6 e 9,2)		H-1, MeO	84,8	3,25 (dd, <i>J</i> =9,6 e 9,0)	
4	74,4	3,59 (t, <i>J</i> =9,8)	H-3	H-2	74,2	3,59 (t, <i>J</i> =9,9)	
5	72,7	3,70 (dd, <i>J</i> =9,7 e 2,5)	H-4	H-1	72,5	3,69 (dd, <i>J</i> =9,9 e 2,4)	
6	73,6	3,89 (d, <i>J</i> =2,5)	H-1		73,7	3,88 (d, <i>J</i> =2,4)	
7	60,9	3,61 (s)		H-3	60,8	3,60 (s)	

Tabela 9 Dados de RMN ¹H e ¹³C de BP-4, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (J) em Hz

* (IGNOATO et al., 2012)

Figura 75 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-4

Figura 77 Espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-4

Figura 79 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de BP-4

Figura 81 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-4

4.4.5 Determinação estrutural de BP-5

A F 60-69 obtida da fração acetato de etila que, por sua vez, foi obtida a partir de coluna filtrante a vácuo do extrato EEBP, após ser cromatografada por CLAE, forneceu 15,5 mg de uma resina de cor laranja, com solubilidade em metanol e rotação específica $[\alpha]_{D}^{22}$ - 3,11 (*c* 0,14, MeOH).

O espectro na região do infravermelho (**Fig. 85**, **p. 126**) revelou bandas de absorção em: 3402 cm⁻¹ de grupo hidroxílico (OH), 2924 cm⁻¹ de ligação C– H, 1723 cm⁻¹ de carbonila de lactona e 1634 cm⁻¹ de ligação C=C olefínica.

O espectro de RMN ¹H [300 MHz, CD₃OD] (**Fig. 86**, **p. 126**) mostrou sinais em δ_{H} 6,63 (dd, *J*=10,0 e 2,5 Hz, H-4), 6,16 (d, *J*=10,0 Hz, H-5) e 5,89 (s, H-2) relacionados a hidrogênios ligados a carbonos olefínicos. Mostrou ainda simpletos largos em δ_{H} 5,11 (sl, H-8), 4,52 (sl, H-6) e 4,49 (sl, H-7).

O espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] (**Fig. 87**, **p. 127**) exibiu oito linhas espectrais, três na região de carbonos sp^3 oxigenados (δ_C 83,5; 72,8 e 70,1), e cinco na região de carbonos sp^2 , sendo um de carbonila (δ_C 176,7). Os sinais em δ_C 176,7 e 83,5 sugerem a presença de um anel lactônico. Análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 88**, **p. 127**), registrou a presença de seis carbonos metínicos (CH), três sp^3 e três sp^2 e dois carbonos não hidrogenados (C) sp^2 , conforme dispostos na **Tabela 10**.

С	СН	Fórmula molecular
176,73 (C=O)	143,05	
163,33	121,02	
	113,27	
	83,51 (C–O)	
	72,77 (C–OH)	
	70,08 (C–OH)	
C ₂ O	$C_6H_8O_3$	C ₈ H ₈ O₄

Tabela 10 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BP-5

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 89**, **p. 128**) mostrou acoplamento entre os átomos de hidrogênios vinílicos em $\delta_{\rm H}$ 6,63 (dd, *J*=10,0 e 2,5 Hz, H-4) com $\delta_{\rm H}$ 6,16 (d, *J*=10,0 Hz, H-5) (**Fragmento I**, **Fig. 82**). Foram observados também acoplamentos alílicos entre os hidrogênios em $\delta_{\rm H}$ 6,63 (dd, *J*=10,0 e 2,5 Hz, H-4) com $\delta_{\rm H}$ 4,52 (sl, H-6), e $\delta_{\rm H}$ 5,89 (s, H-2) com 5,11 (sl, H-8) (**Fig. 82**), além de acoplamentos vicinais entre os hidrogênios em $\delta_{\rm H}$ 6,16 (d, *J*=10,0 Hz, H-5) com $\delta_{\rm H}$ 4,52 (sl, H-6), e $\delta_{\rm H}$ 5,11 (sl, H-8) com $\delta_{\rm H}$ 4,49 (sl, H-7) (**Fig. 82**).

Figura 82 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-5

No espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 90**, **p. 128**) foi possível visualizar as correlações dos sinais de hidrogênios em δ_{H} 6,63; 6,16; 5,89; 5,11; 4,52; 4,49 com os sinais de carbonos em δ_{C} 121,0; 143,0; 113,3; 83,5; 70,1; 72,8, respectivamente (**Tab. 11**, **p. 125**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 91**, **p. 129**) confirmou a existência de uma lactona α,β -insaturada através da correlação do hidrogênio em $\delta_{\rm H}$ 5,89 (s, H-2) com os carbonos em $\delta_{\rm C}$ 176,7 (C-1), 163,3 (C-3) e 83,5 (C-8), e do hidrogênio em $\delta_{\rm H}$ 5,11 (sl, H-8) com os carbonos em $\delta_{\rm C}$ 163,3 (C-3) e 113,3 (C-2) (**Fragmento II**, **Fig. 83**, **p. 123**). A correlação do hidrogênio vinílico em $\delta_{\rm H}$ 6,63 (dd, *J*=10,0 e 2,5 Hz, H-4) com os carbonos em $\delta_{\rm C}$ 163,3 (C-3) e 83,5 (C-8), bem como do hidrogênio em $\delta_{\rm H}$ 6,16 (d, *J*=10,0 Hz, H-5) com o carbono em $\delta_{\rm C}$ 163,3 (C-3) sugere a presença de um cicloexeno fundido ao

anel lactônico (**Fig. 83**). Outras correlações também foram observadas, como entre o hidrogênio carbinólico em δ_H 4,49 (sl, H-7) com os carbonos em δ_C 163 3 (C-3), 143,0 (C-5) e 83,5 (C-8) (**Fig. 83**).

A estereoquímica relativa de BP-5 foi determinada com a ajuda do espectro de RMN 2D ¹H, ¹H-NOESY (**Fig. 92**, **p. 129**). O sinal NOE entre os átomos de hidrogênios H-6 (δ_{H} 4,52) e H-8 (δ_{H} 5,11) mostrou a proximidade espacial entre eles (**Fig. 84**). O espectro de RMN ¹H não mostrou sinal com constante de acoplamento (*J*) compatível com interação spin-spin pseudo *axial-axial*.

Figura 84 Correlações observadas no espectro de RMN 2D ¹H, ¹H-NOESY para BP-5

O espectro de massas de alta resolução (modo positivo) (**Fig. 93**, **p. 130**) revelou o pico do íon molecular em m/z 169,0504 ([M + H]⁺, calc 169,0501), confirmando a fórmula molecular C₈H₈O₄ para BP-5 e IDH=5. A **Figura 94**, **p. 130**, mostra uma proposta mecanística que justifica os fragmentos registrados no espectro.

De acordo com a discussão exposta e comparação com dados da literatura relatados para grifonilida (WU *et al.*, 1979, **Tab. 11**, **p. 125**), chegouse à conclusão que BP-5 trata-se da nova lactona (6*R*,7*R*,7*aS*)-7,7a-diidro-6,7-diidroxibenzofuran-2(6H)-ona (7-*epi*-grifonilida), que está sendo relatada pela primeira vez na literatura.

	BP-5						
С	HSQC		НМВС		Grifonilida (CD ₃ OD)		
	δς	δ _Η	² Ј _{СН}	³ <i>Ј</i> СН	δς	δ _Η	
1	176,7	-	H-2		175,8	-	
2	113,3	5,89 (s)		H-8	112,5	5,89 (d, ~2)	
3	163,3	-	H-2; H-4; H-8	H-5; H-7	164,7	-	
4	121,0	6,63 (dd, <i>J</i> =10,0 e 2,5)		H-2	120,6	6,62 (dd, 9,5; 2,5)	
5	143,0	6,16 (d, <i>J</i> =10,0)		H-7	144,2	6,27 (dd, 9,5; 1,9)	
6	70,1	4,52 (sl)		H-4	73,6	4,33 (dt, 7,6; 2,5; 1,9)	
7	72,8	4,49 (sl)		H-5	80,0	3,53 (dd, 10,8; 7,6)	
8	83,5	5,11 (sl)	H-7	H-2; H-4	85,1	4,90 (dd, 10,8; 1,9)	

Tabela 11 Dados de RMN ¹H e ¹³C de BP-5, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (J) em Hz

* (WU et al., 1979)

Figura 86 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-5

Figura 90 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-5

Figura 92 Espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de BP-5

Figura 91 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-5

Figura 93 Espectro de massas de alta resolução (modo positivo) de BP-5

Figura 94 Proposta mecanística que justifica fragmentos registrados no espectro de massas de alta resolução de BP-5

4.4.6 Determinação estrutural de BP-6

O composto BP-6 (10,7 mg), assim como BP-5, também foi obtido a partir da F 60-69 por CLAE, apresentando-se como uma resina de cor laranja, com solubilidade em metanol e rotação específica $[\alpha]_{D}^{22}$ + 129,31 (*c* 0,1, MeOH).

O espectro na região do infravermelho de BP-6 apresentou-se muito semelhante ao de BP-5 (**Fig. 98**, **p. 136**), revelando bandas de absorção em: 3398 cm⁻¹ de função hidroxila (OH), 2918 cm⁻¹ de ligação C–H, 1740 cm⁻¹ de carbonila de lactona e 1638 cm⁻¹ de ligação C=C olefínica.

O espectro de RMN ¹H [300 MHz, CD₃OD] (**Fig. 99**, **p. 136**) exibiu sinais relacionados a hidrogênios ligados a carbonos olefínicos com absorções em $\delta_{\rm H}$ 6,70 (d, *J*=9,6 Hz, H-4), 6,42 (dd, *J*=9,6 e 5,5 Hz, H-5) e 5,90 (d, *J*=1,8 Hz, H-2), além de duplo dupletos em $\delta_{\rm H}$ 5,23 (dd, *J*=10,4 e 1,7 Hz, H-8), 4,40 (dd, *J*=5,3 e 4,4 Hz, H-6) e 3,64 (dd, *J*=10,4 e 4,2 Hz, H-7). Estes sinais, quando comparados com os de BP-5, apresentaram deslocamentos químicos similares, com mudanças nas multiplicidades e nas constantes de acoplamentos. Isto sugere que BP-6 seja um diastereoisômero de BP 5, sendo que os valores de acoplamentos de spins de prótons podem ser usados para designar a esteroquímica.

O espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] (**Fig. 100**, **p. 137**) mostrou-se equivalente ao espectro da substância BP-5, apresentando um total de oito linhas espectrais, três na região de carbonos sp^3 oxigenados (δ_C 83,5; 74,5 e 68,7), e cinco na região de carbonos sp^2 , sendo um de carbonila (δ_C 176,7). As maiores mudanças foram observadas nos deslocamentos químicos de C-4 (δ_C 123,4), C-5 (δ_C 139,8), C-6 (δ_C 68,7) e C-7 (δ_C 74,5). A comparação entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 101**, **p. 137**) registrou a presença de seis carbonos metínicos (CH) e dois carbonos não hidrogenados (C), conforme dispostos na **Tabela 12**, **p. 132**.

Tabela 12 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BP-6

С	СН	Fórmula molecular
176,73 (C=O)	139,79	
164,52	123,40	
	113,41	
	83,49 (C–O)	
	74,51 (C–OH)	
	68,75 (C–OH)	
C ₂ O	$C_6H_8O_3$	$C_8H_8O_4$

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 102**, **p. 138**) mostrou acoplamento entre os átomos de hidrogênios vinílicos em $\delta_{\rm H}$ 6,70 (d, *J*=9,6 Hz, H-4) com $\delta_{\rm H}$ 6,42 (dd, *J*=9,6 e 5,5 Hz, H-5) (**Fragmento I**, **Fig. 95**). Foram observados também acoplamentos vicinais entre os hidrogênios em $\delta_{\rm H}$ 6,42 (dd, *J*=9,6 e 5,5 Hz, H-5) com $\delta_{\rm H}$ 4,40 (dd, *J*=5,3 e 4,4 Hz, H-6), $\delta_{\rm H}$ 4,40 (dd, *J*=5,3 e 4,4 Hz, H-6) com $\delta_{\rm H}$ 3,64 (dd, *J*=10,4 e 4,2 Hz, H-7), e $\delta_{\rm H}$ 3,64 (dd, *J*=10,4 e 4,2 Hz, H-7) com $\delta_{\rm H}$ 5,23 (dd, *J*=10,4 e 1,7 Hz, H-8) (**Fig. 95**).

Figura 95 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-6

No espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 103**, **p. 138**) foram observadas as correlações dos sinais de hidrogênios em δ_{H} 6,70; 6,42; 5,90;

5,23; 4,40; 3,64 com os sinais de carbonos em δ_{C} 123,4; 139,8; 113,4; 83,5; 68,7; 74,5, respectivamente (**Tab. 13**, **p. 135**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 104**, **p. 139**) confirmou a existência da lactona α,β -insaturada através da correlação do hidrogênio em δ_H 5,90 (s, H-2) com os carbonos em δ_C 176,7 (C-1), 164,5 (C-3) e 83,5 (C-8), e do hidrogênio em δ_H 5,23 (dd, *J*=10,4 e 1,7, H-8) com o carbono em δ_C 164,5 (C-3) (**Fragmento II, Fig. 96**). Confirmou-se também a presença do cicloexeno fundido ao anel lactônico através da correlação do hidrogênio vinílico em δ_H 6,70 (d, *J*=9,6, H-4) com os carbonos em δ_C 164,5 (C-3), 83,5 (C-8) e 113,4 (C-2), bem como do hidrogênio em δ_H 6,42 (dd, *J*=9,6 e 5,5, H-5) com o carbono em δ_C 164,5 (C-3) (**Fig. 96**). Além destas, outras correlações foram observadas, como entre os hidrogênios carbinólicos em: δ_H 3,64 (dd, *J*=10,4 e 4,2, H-7) com os carbonos em δ_C 164,5 (C-3) e 83,5 (C-8) (**Fig. 96**); e δ_H 4,40 (dd, *J*=5,3 e 4,4, H-6) com δ_C 139,8 (C-5), 123,4 (C-4), 83,5 (C-8) e 74,5 (C-7) (**Fig. 96**).

Figura 96 Correlações observadas no espectro de RMN 2D¹H, ¹³C-HMBC para BP-6

Contrariamente a BP-5, no espectro de RMN 2D ¹H, ¹H-NOESY de BP-6 (**Fig. 105**, **p. 139**) não foi observado sinal NOE entre os hidrogênios H-6 (δ_{H} 4,40) e H-8 (δ_{H} 5,23). A interação spin-spin pseudo *axial-axial* entre H-7 (δ_{H} 3,64) e H-8 (δ_{H} 5,23) foi deduzida pela constante de acoplamento *J*=10,4 Hz envolvendo estes dois átomos de hidrogênios (**Fig. 97**, **p. 134**).

Figura 97 Interação spin-spin pseudo axial-axial entre H-7 e H-8 de BP-6

O pico do íon molecular em m/z 169,0504 ([M + H]⁺, calc 169,0501), bem como o aduto de sódio em m/z 191,0320 ([M + Na]⁺, calc 191,0320) revelados pelo espectro de massas de alta resolução (modo positivo) (**Fig. 106**, **p. 140**), confirmaram a fórmula molecular C₈H₈O₄ para BP-6 e IDH=5. A **Figura 107**, **p. 140**, mostra uma proposta mecanística que justifica os fragmentos registrados no espectro.

Baseando-se nas informações espectrais obtidas e nos dados da literatura (WU *et al.*, 1979, **Tab. 13**, **p. 135**) concluiu-se que BP-6 trata-se da lactona (6*S*,7*S*,7*aS*)-7,7a-diidro-6,7-diidroxibenzofuran-2(6H)-ona (dasicarponilida), que está sendo registrada pela primeira vez no gênero *Bauhinia.*

		BP-6						
С	HSQC		НМВС	;	Lit.* (CD ₃ OD)			
	δς	δ _Η	²Ј _{СН}	³ <i>Ј</i> СН	δς	δ _Η		
1	176,7	-	H-2		175,8	-		
2	113,4	5,90 (d, <i>J</i> =1,8)		H-4	113,3	5,90 (d, <i>J</i> =1,9)		
3	164,5	-	H-2; H-4; H-8	H-5; H-7	164,3	-		
4	123,4	6,70 (d, <i>J</i> =9,6)	H-5	H-6; H-2	123,3	6,69 (d, <i>J</i> =9,5)		
5	139,8	6,42 (dd, <i>J</i> =9,6 e 5,5)	H-4; H-6		139,7	6,41 (dd, <i>J</i> =9,5 e 5,4)		
6	68,7	4,40 (dd, <i>J</i> =5,3 e 4,4)	H-5	H-4	68,7	4,39 (dd, <i>J</i> =5,4 e 4,1)		
7	74,5	3,64 (dd, <i>J</i> =10,4 e 4,2)	H-8; H-6	H-5	74,4	3,63 (dd, <i>J</i> =10,5 e 4,1)		
8	83,5	5,23 (dd, <i>J</i> =10,4 e 1,7)	H-7	H-6; H-	83,4	5,22 (dd, <i>J</i> =10,5 e 1,9)		
	2; H-4							

Tabela 13 Dados de RMN ¹H e ¹³C de BP-6, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos ($\delta_c e \delta_H$) em ppm e constante de acoplamento (*J*) em Hz * (WU *et al.*, 1979)

Figura 99 Espectro de RMN ¹H [300 MHz, CD₃OD] de BP-6

Figura 101 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BP-6

Figura 103 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-6

Figura 105 Espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de BP-6

4.4.7 Determinação estrutural de BP-7

A F 80-92 proveniente da fração acetato de etila que, por sua vez, foi obtida a partir da partição líquido-líquido do extrato EEBP, após fracionamento cromatográfico por CLAE, proporcionou o isolamento de 5,3 mg de uma resina de coloração marrom, com solubilidade em metanol.

O espectro na região do infravermelho (**Fig. 111**, **p. 146**) revelou bandas de absorção em: 3441 cm⁻¹ de grupo hidroxila, 2922 cm⁻¹ de ligação C–H, 1737 cm⁻¹ sugestivo de carbonila lactônica, 1368 cm⁻¹ de deformação angular de ligação O–H e 1230 cm⁻¹ de ligação C–O.

O espectro de RMN ¹H [500 MHz, CD₃OD] (**Fig. 112, 113 e 114, p. 146 e 147**) exibiu sinais em δ_{H} 6,86 (d, *J*=8,1 Hz, H-5'/H4), 6,82 (sl, H-2'), 6,74 (dd, *J*=8,1, H-6'), δ_{H} 6,29 (d, *J*=2,2 Hz, H-7) e 6,23 (dd, *J*=8,1 e 2,2, Hz, H-5), compatíveis com a presença de dois sistemas aromáticos 1,2,4-trissubstituídos. Observou-se ainda um multipleto em δ_{H} 3,93 (H-2) referente a hidrogênio oximetínico; dois simpletos característicos de grupos metoxílicos em δ_{H} 3,82 (s, MeO-3') e 3,80 (s, MeO-4'); um simpleto em δ_{H} 3,42 (s, 2H-3) de hidrogênios metilênicos; dois duplo dupletos em δ_{H} 2,72 (dd, *J*=13,4 e 6,6, H-1a) e 2,59 (dd, *J*=13,4 e 6,3, H-1b) de hidrogênios metilênicos diastereotópicos; e um dupleto em δ_{H} 1,14 (d, *J*=6,2, 3H-3) de átomos de hidrogênio metílico.

O espectro de RMN ¹³C-CPD [125 MHz, CD₃OD] (**Fig. 115**, **p. 148**) exibiu uma série de sinais entre $\delta_{\rm C}$ 105,0-158,4 referentes a carbonos aromáticos, alguns dos quais oxigenados. Os sinais observados em $\delta_{\rm C}$ 56,5; 56,7 e 70,0 foram atribuídos a átomos de carbono sp³ oxigenados, sendo dois correspondentes a grupos metoxílicos. Outros sinais característicos de carbonos metílicos e metilênicos não oxigenados também foram observados em $\delta_{\rm C}$ 23,0; 42,0 e 46,2. A análise comparativa dos espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 116**, **p. 148**) permitiu reconhecer sinais correspondentes à presença de sete carbonos metínicos [(CH)₇: seis *sp*² e um *sp*³ oxigenado], dois carbonos metilênicos [(CH₂)₂: todos *sp*³], três carbonos metílicos [(CH₃)₃, sendo dois de grupos metoxílicos] e seis carbonos não hidrogenados [(C)₆].

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 117 e 118**, **p. 149**) mostrou picos transversais correspondentes a acoplamentos *orto* e *meta* do H-5 (δ_{H}

6,23, dd, *J*=8,1 e 2,2 Hz) com H-4 (δ_{H} 6,85, d, *J*=8,1 Hz) e com H-7 (δ_{H} 6,29, d, *J*=2,2 Hz), permitindo postular a **Unidade estrutural I** (**Fig. 108**), e *vicinal* entre os hidrogênios representados pelos sinais em δ_{H} 1,14 (d, *J*=6,2 Hz, 3H-3) e δ_{H} 3,93 (m, H-2), compatíveis com a **Unidade estrutural II** (**Fig. 108**).

Figura 108 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-7

No espectro de RMN 2D de correlação heteronuclear através de uma ligação ¹H, ¹³C-HSQC-¹ J_{CH} (**Fig. 119, 120 e 121**, **p. 150 e 151**) não foi possível visualizar todas as correlações diretas de carbono-hidrogênio, recorrendo-se aos espectros ¹H, ¹H-COSY e ¹H, ¹³C-HMBC-ⁿ J_{CH} (n=2 e 3), auxiliares nesta determinação.

O espectro de RMN 2D ¹H, ¹³C-ⁿJ_{CH} (n=2 e 3, HMBC, **Fig. 122, 123, 124** e 125, p. 151, 152 e 153) mostrou correlações entre os sinais correspondentes aos hidrogênios metilênicos diastereotópicos em δ_H 2,72 (dd, *J*=13,5 e 6,6, H-1a) e δ_H 2,59 (dd, *J*=13,5 e 6,3 H-1b) com os carbonos aromáticos em δ_C 133,5 (C-1', ²*J*_{CH}), 114,6 (C-2', ³*J*_{CH}) e 123,0 (C-6', ³*J*_{CH}), e com o carbono carbinólico em δ_C 70,0 (CH-2, ²*J*_{CH}) (**Unidade estrutural III, Fig. 109, p. 143**); também foram observados interações heteronucleares a longa distância (²*J*_{CH} e ³*J*_{CH}) entre os hidrogênios metílicos representados pelo sinal em δ_H 1,14 (d, *J*=6,1, 3H-3) com os carbonos em δ_C 70,0 (CH-2, ²*J*_{CH}) e 46,2 (CH₂-1, ³*J*_{CH}), permitindo postular a **Unidade estrutural IV** (**Fig. 109, p. 143**). Assim, foi possível deduzir a estrutura **BP-7B** do tipo fenilpropanóide. As correlações a três ligações dos hidrogênios dos grupos metoxílicos em δ_H 3,82 (s, MeO-3') e 3,80 (s, MeO-4') com os carbonos em δ_C 150,3 (C-3') e 149,0 (C-4'), respectivamente, permitiu
definir a localização destes substituintes nos carbonos aromáticos C-3' e C-4' (**Unidade estrutural IV**, **Fig. 109**).

Foram verificadas também correlações dos sinais dos hidrogênios metilênicos em δ_{H} 3,42 (s, 2H-3) com os carbonos em δ_{C} 116,6 (C-3a, ${}^{2}J_{CH}$), 132,2 (CH-4, ${}^{3}J_{CH}$), 158,4 (C-7a, ${}^{3}J_{CH}$) e 183,0 (C-2, ${}^{2}J_{CH}$). O sinal deste último carbono não foi observado no espectro de RMN 13 C. Estas correlações sugeriram a estrutura de uma benzofuranona (**Unidade estrutural V**, **Fig. 110**) oxigenada no carbono 6 para atender os deslocamentos químicos dos átomos de hidrogênio e carbono do anel aromático.

Figura 110 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-7A

O espectro de massas de alta resolução (modo positivo, **Fig. 126**, **p. 153**) da mistura **BP-7** revelou os picos dos íons moleculares em m/z 179,1029 ([M + N₂ + H]⁺, **A**, calc 179,0457) e m/z 219,0921 ([M + Na]⁺, **B**, calc 219,0997), compatíveis com as fórmulas moleculares C₈H₆O₃ e C₁₁H₁₆O₃ para BP-7A e BP-7B, com IDH=6 e 4, respectivamente. Mesmo considerando-se todos os dados de 1D e 2D de RMN compatíveis com a presença de um grupo hidroxílico no átomo de carbono 6, o espectro de massas de alta resolução de **BP-7A** revelou resultados com diferenças preocupantes, postulando-se, inclusive, a possibilidade da presença de um aduto (complexo) com uma molécula de nitrogênio, conforme descreveu-se na proposta de fragmentação resumida na **Figura 127**, **p. 154**. Os picos principais registrados no espectro de massas de **BP-7B** estão justificados pela proposta de fragmentação resumida na **Figura 128**, **p. 154**.

Com base na discussão exposta e com dados da literatura para BP-7B (MESSIANO, 2010, **Tab. 14 e 15**, **p. 145**) chegou-se à conclusão que **BP-7** trata-se de uma mistura de 6-hidroxibenzofuran-2(3H)-ona (**BP-7A**) e do fenilpropanóide 1-(3',4'-dimetoxifenil)-2-propanol (**BP-7B**), nas proporções de 62,1% e 37,9%, respectivamente. As percentagens aproximadas dos dois componentes da mistura foram calculadas através da integração dos sinais de hidrogênios H-5 de A (δ_{H} 6,23, dd, 1H=1,00) e H-6' de B (δ_{H} 6,74, dd, 1H=0,61). Os dois compostos estão sendo relatados pela primeira vez no gênero *Bauhinia*.

^		HSQC BP-7A	HMBC BP-7A		
C	δς	δ _Η	² Ј _{СН}	³ <i>Ј</i> _{СН}	
2	183,0	-	2H-3	<u> </u>	
3	42,0	3,42 (s)		H-4	
3a	116,6	-	2H-3	H-5	
4	132,2	6,85 (d, <i>J</i> =8,1)		2H-3	
5	107,9	6,23 (dd, <i>J</i> =8,1 e 2,2)			
6	158,2	-	H-5	H-4	
7	105,0	6,29 (d, <i>J</i> =2,2)			
7a	158,4	-		2H-3; H-4	
8	158,2	-			

Tabela 14 Dados de RMN ¹H e ¹³C de BP-7A, incluindo correlação heteronuclear através de uma ligação (HSQC: ¹ J_{CH}) e a longa distância (HMBC: ⁿ J_{CH} , n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (J) em Hz

Tabela 15 Dados de RMN ¹H e ¹³C de BP-7B, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

С	HSQC BP-7B		HMBC BP-7B		Lit.* (CDCI ₃)	
	δ _c	δ _H	² J _{CH}	³ J _{CH}	δ _c	δ _H
1	46,2	2,59 (dd, <i>J</i> =13,4 e	•	3H-3	45,2	2,61 (dd, <i>J</i> =13,5
	6,3)					e 8,0)
		2,72 (dd, <i>J</i> =13,4 e				2,72 (dd, <i>J</i> =13,5
		6,6)				e 4,5)
2	70,0	3,93 (m)	2H-1; 3H-3		68,8	3,98 (m)
3	23,0	1,14 (d, 6,2)			22,6	1,23 (d, <i>J</i> =6,5)
1'	133,5	-	2H-1		131,0	-
2'	114,6	6,82 (sl)		2H-1	112,6	6,73 (sl)
3'	149,0	-		MeO-3	147,7	-
4'	150,3	-		MeO-4	148,9	-
5'	113,2	6,85 (d, <i>J</i> =8,1)			111,4	6,81 (d, <i>J</i> =8,5)
6'	122,9	6,74 (dd, <i>J</i> =8,1)		2H-1	121,3	6,74 (dd, <i>J</i> =2,0 e
						8,5)
MeO-3'	56,7	3,82 (s)			55,8	3,86 (s)
MeO-4'	56,8	3,80 (s)			55,9	3,84 (s)

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (J) em Hz

* (MESSIANO, 2010)

Figura 114 Expansão do espectro de RMN ¹H [500 MHz, CD₃OD] de BP-7

Figura 118 Expansão do espectro de RMN 2D ¹H, ¹H-COSY [500 x 500 MHz, CD₃OD] de BP-7

Figura 120 Expansão do espectro de RMN 2D ¹H, ¹³C-HSQC [500 x 125 MHz, CD₃OD] de BP-7

Figura 122 Espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, CD₃OD] de BP-7

Figura 124 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, CD₃OD] de BP-7

Figura 127 Proposta mecanística que justifica os principais fragmentos registrados no espectro de massas de alta resolução de BP-7A

4.4.8 Determinação estrutural de BP-8

O composto BP-8 (9,3 mg), assim como BP-7, também foi obtido a partir da F 80-92 por CLAE, apresentando-se na forma de resina de coloração marrom, com solubilidade em metanol.

O espectro na região do infravermelho (**Fig. 132**, **p. 160**) mostrou banda de absorção em 3417 cm⁻¹ e 2222 cm⁻¹, que foram atribuídas a presença de grupos hidroxila e nitrila, respectivamente. Foi observada também uma banda característica de ligação olefínica em 1627 cm⁻¹, além de absorções em 2924 cm⁻¹ relacionada à deformação axial de ligação C–H, e em 1060 cm⁻¹, referente à deformação axial de ligação C–O.

O espectro de RMN ¹H [300 MHz, CD₃OD] (**Fig. 133, 134 e 135, p. 160 e 161**) apresentou vários sinais com deslocamentos químicos muito próximos, alguns, praticamente superpostos na região entre $\delta_{\rm H}$ 3,20 e 3,40 ppm, referentes a hidrogênios oximetínicos característicos de açúcares. Neste espectro [com o auxílio dos experimentos de correlações homonuclear (¹H–¹H) e heteronuclear (${}^{1}H-{}^{13}C, {}^{1}J_{CH}$)], foi possível detectar a presença de grupos de sinais devido a hidrogênios metilênicos em δ_H 3,86 (H-6a'/H-6a)/3,69 (H-6'b/H-6b) e em $\delta_{\rm H}$ 3,96 (H-1'a) /3,62 (H-1'b), além de sinais em $\delta_{\rm H}$ 4,60 (d, J=7,8 Hz, H-1') e 4,28 (d, J=7,8 Hz, H-1) atribuídos a hidrogênios anoméricos, sugerindo a presença de duas unidades de glicose. Em adição, o espectro mostrou também três sinais de hidrogênios ligados a carbonos olefínicos em $\delta_{\rm H}$ 6.28 (d. J=10,9 Hz, H-2), 6,02 (d, J=10,1 Hz, H-3), e 5,62 (s, H-7), outros três de hidrogênios cabinólicos em $\delta_{\rm H}$ 4,81 (d, *J*=4,7 Hz, H-6), 4,22 (m, H-5) e 4,63 (m, H-4), e sinal de um grupo metila em $\delta_{\rm H}$ 1,25 (t, J=7,1 Hz, 3H-2'). O sinal do grupo metila como um tripleto, indicou a existência de segmento etoxila na estrutura de BP-8, ou seja, os hidrogênios metílicos vicinais a um grupo metileno oxigenado, no caso, os hidrogênios 2H-1' (CH₂O: $\delta_{\rm H}$ 3,96/3,62).

O espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] (**Fig. 136 e 137, p. 162**) exibiu sinais em $\delta_{\rm C}$ 104,6 e 104,2, que são típicos de carbonos anoméricos de glicosídeos, além de uma série de sinais duplicados entre $\delta_{\rm C}$ 62,9-78,2, o que reforça a idéia de que o composto contém duas porções de glicose (β-glicopiranose). A presença do sinal em $\delta_{\rm C}$ 118,5 foi atribuído a um carbono de

grupo nitrila, o que revelou-se em acordo com a absorção em 2222 cm⁻¹ no espectro de IV. Outros sinais foram observados em $\delta_{\rm C}$ 66,3; 67,3; 70,6 e 78,0, correspondentes a carbonos sp^3 oxigenados, em $\delta_{\rm C}$ 100,2; 127,2; 139,2 e 155,5, característicos de carbonos sp^2 , e em $\delta_{\rm C}$ 15,6 de carbono sp^3 . Análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 138**, **p. 163**), levando em consideração a intensidade dos sinais, registrou a presença de dezesseis carbonos metínicos (CH), três carbonos metilênicos (CH₂), um carbono metílico (CH₃) e dois carbonos não hidrogenados (C).

O espectro de RMN 2D ¹H, ¹H COSY (**Fig. 139 e 140**, **p. 163 e 164**) mostrou acoplamento entre os átomos de hidrogênios vinílicos em $\delta_{\rm H}$ 6,28 (d, *J*=10,9 Hz, H-2) com $\delta_{\rm H}$ 6,02 (d, *J*=10,1 Hz, H-3), e destes com $\delta_{\rm H}$ 4,63 (m, H-4) (**Fragmento I**, **Fig. 129**). Foram observados também acoplamentos vicinais entre os hidrogênios em $\delta_{\rm H}$ 4,63 (m, H-4) com $\delta_{\rm H}$ 4,22 (m, H-5), e em $\delta_{\rm H}$ 4,22 (m, H-5) com $\delta_{\rm H}$ 4,81 (d, *J*=4,7 Hz, H-6) (**Fragmento I**, **Fig. 129**), além de acoplamento vicinal entre os hidrogênios metílicos em $\delta_{\rm H}$ 1,25 (t, *J*=7,1 Hz, 3H-2') com os hidrogênios metilênicos em $\delta_{\rm H}$ 3,96 (m, H-1'a) e $\delta_{\rm H}$ 3,62 (m, H-1'b) (**Fragmento II**, **Fig. 129**).

Figura 129 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BP-8

O espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 141 e 142**, **p. 164 e 165**) permitiu correlacionar os sinais de hidrogênio ao seu respectivo carbono (**Tab. 16 e 17**, **p. 159**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 143, 144 e 145**, **p. 165 e 166**) exibiu correlação de longo alcance entre o hidrogênio em δ_H 5,62 (s, H-7) com os carbonos em $\delta_{\rm C}$ 127,2 (C-2) e 78,0 (C-6), os hidrogênios em $\delta_{\rm H}$ 4,63 (m, H-4) e 4,81 (d, *J*=4,7 Hz, H-6) com o carbono em $\delta_{\rm C}$ 127,2 (C-2) e o hidrogênio em $\delta_{\rm H}$ 4,22 (m, H-5) com o carbono em $\delta_{\rm C}$ 139,2 (C-3) (**Fragmento III**, **Fig. 130**). Outras correlações de longa distância foram observadas entre o hidrogênio em $\delta_{\rm H}$ 4,60 (d, *J*=7,8 Hz, H-1') com o carbono em $\delta_{\rm C}$ 78,0 (C-6) (**Fig. 130**), o que permitiu definir a localização da unidade glicosídica no C-6, e entre o hidrogênio em $\delta_{\rm H}$ 4,28 (d, *J*=7,8 Hz, H-1) com o carbono em $\delta_{\rm C}$ 66,3 (C-1') (**Fig. 130**), confirmando a presença de duas unidades de glicose.

Figura 130 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BP-8

As estereoquímicas dos carbonos quirais C-4, C-5 e C-6 foram atribuídas em comparação com dados da literatura (WU *et al.*, 1979). Em adição, o sinal NOE registrado entre os hidrogênios H-7 (δ_{H} 5,62) e H-2 (δ_{H} 6,28) (**Fig. 131**) no espectro NOESY (**Fig. 146**, **p. 167**) indicaram a configuração *Z* para a ligação dupla C₁-C₇, sendo BP-8 um esteroisômero de riachina, isolado de *B. pentandra* por Silva *et al.* (2013).

Figura 131 Correlações observadas no espectro de RMN 2D ¹H, ¹H-NOESY para BP-8

Estes dados, juntamente com os picos dos íons moleculares em m/z352,1021 ([M + Na]⁺, calc 352,1008) e m/z 231,0822 ([M + Na]⁺, calc 231,0844), revelados pelo espectro de massas de alta resolução (modo positivo, **Fig. 147**, **p. 167**), permitiram confirmar a fórmula molecular C₁₄H₁₉NO₈ e C₈H₁₆O₆ para BP-8A e BP-8B, com IDH=5 e 1 respectivamente.

Baseando-se em todas as informações espectrais obtidas, foi possível caracterizar o composto BP-8 como sendo uma mistura do cianoglicosídeo (4*S*, 5S,6S)-(*Z*)-6-(β -D-glicopiranosiloxi)-4,5-diidroxi-2-ciclohexen-1-ilideno- $\Delta^{1,\alpha}$ -acetonitrila (dasicarponina, BP-8A) e do glicopiranosídeo de etila (BP-8B), nas proporções de 39,2% e 60,8%, respectivamente. As percentagens aproximadas dos dois componentes da mistura foram calculadas através da integração dos sinais de hidrogênios H-7 de A (δ_{H} 5,62, s, 1H=1,00) e 3H-2' de B (δ_{H} 1,25, t, 3H=4,64/3). Os dois compostos são inéditos no gênero *Bauhinia*.

HSQC BP-8A		HMBC BP-8A		Lit.* (D ₂ O)	
δς	δ _Η	² J _{CH}	³ J _{CH}	δς	δ _Η
155,5	-	H-2; H-8	H-7	155,4	-
127,2	6,28 (d, <i>J</i> =10,9)	H-5	H-2; H-6; H-8	128,5	6,35 (dl, <i>J</i> =10,5)
139,2	6,02 (d, <i>J</i> =10,9)	H-4; H-6	H-7	139,8	6,05 (dl, <i>J</i> =10,5)
67,3	4,63 (m)	H-7	H-8	68,1	4,28 (m)
70,6	4,22 (m)	H-8		79,4	4,6-5,0
78,0	4,81 (d, <i>J</i> =4,7)	H-7	H-2; H-6; H-1'	72,0	4,6-5,0
100,2	5,62 (s)		H-8	102,5	5,70 (s)
118,5	-	H-2		120,1	-
104,6	4,60 (d, <i>J</i> =7,8)	H-2'	H-8	105,3	3,1-4,0
75,0	3,19 (m)	H-3'		75,6	3,1-4,0
78,2	3,3-3,4	H-2'; H-4'	H-5'	78,6	3,1-4,0
71,6	3,3-3,4	H-3'; H-5'	H-6'	71,3	3,1-4,0
78,2	3,3-3,4	H-4'; H-6'		78,3	3,1-4,0
62,9	3,86 (m) 3,69 (m)			63,2	3,1-4,0
	δc 155,5 127,2 139,2 67,3 70,6 78,0 100,2 118,5 104,6 75,0 78,2 71,6 78,2 62,9	HSQC BP-8A δ_c δ_H 155,5-127,26,28 (d, $J=10,9$)139,26,02 (d, $J=10,9$)67,34,63 (m)70,64,22 (m)78,04,81 (d, $J=4,7$)100,25,62 (s)118,5-104,64,60 (d, $J=7,8$)75,03,19 (m)78,23,3-3,471,63,3-3,478,23,3-3,478,23,3-3,462,93,86 (m) 3,69 (m)	HSQC BP-8AHMB δ_{c} δ_{H} ${}^{2}J_{CH}$ 155,5-H-2; H-8127,26,28 (d, J=10,9)H-5139,26,02 (d, J=10,9)H-4; H-667,34,63 (m)H-770,64,22 (m)H-878,04,81 (d, J=4,7)H-7100,25,62 (s)118,5118,5-H-2104,64,60 (d, J=7,8)H-2'75,03,19 (m)H-3'78,23,3-3,4H-2'; H-4'71,63,3-3,4H-3'; H-5'78,23,3-3,4H-4'; H-6'62,93,86 (m) 3,69 (m)H	HSQC BP-8AHMBC BP-8A δ_{c} δ_{H} ${}^{2}J_{CH}$ ${}^{3}J_{CH}$ 155,5-H-2; H-8H-7127,26,28 (d, J=10,9)H-5H-2; H-6; H-8139,26,02 (d, J=10,9)H-4; H-6H-767,34,63 (m)H-7H-870,64,22 (m)H-878,04,81 (d, J=4,7)H-7H-2; H-6; H-1'100,25,62 (s)H-8118,5-H-2104,64,60 (d, J=7,8)H-2'H-875,03,19 (m)H-3'78,23,3-3,4H-2'; H-4'H-5'71,63,3-3,4H-3'; H-5'H-6'78,23,3-3,4H-4'; H-6'H-6'62,93,86 (m) 3,69 (m)H-4'; H-6'	HSQC BP-8AHMBC BP-8A δ_{C} δ_{c} δ_{H} $^2J_{CH}$ $^3J_{CH}$ δ_{c} 155,5-H-2; H-8H-7155,4127,26,28 (d, J=10,9)H-5H-2; H-6; H-8128,5139,26,02 (d, J=10,9)H-4; H-6H-7139,867,34,63 (m)H-7H-868,170,64,22 (m)H-879,478,04,81 (d, J=4,7)H-7H-2; H-6; H-1'72,0100,25,62 (s)H-8102,5118,5-H-2120,1104,64,60 (d, J=7,8)H-2'H-8105,375,03,19 (m)H-3'75,678,23,3-3,4H-2'; H-4'H-5'78,671,63,3-3,4H-3'; H-5'H-6'71,378,23,3-3,4H-4'; H-6'78,363,262,93,86 (m) 3,69 (m)63,263,2

Tabela 16 Dados de RMN ¹H e ¹³C de BP-8A, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos (δ_{C} e δ_{H}) em ppm e constante de acoplamento (J) em Hz * (WU et al., 1979)

Tabela 17 Dados de RMN ¹H e ¹³C de BP-8B, incluindo correlação heteronuclear através de uma ligação (HSQC: ¹ J_{CH}) e a longa distância (HMBC: ⁿ J_{CH} , n=2 e 3), em CD₃OD como solvente

С	HSQC BP-8B		HMBC BP-8B		Lit.* (D ₂ O)
	δς	δ _Η	² <i>Ј</i> _{СН}	³ J _{CH}	δ _Η
1	104,2	4,28 (d, <i>J</i> =7,8)	H-2	H-1'	4,47 (d, <i>J</i> =8,0)
2	75,2	3,19 (m)	H-3		3,25 (dd, <i>J</i> =8,0; 9,3)
3	78,2	3,3-3,4	H-2; H-4	H-5	3,50 (t, <i>J</i> =9,1)
4	71,8	3,3-3,4	H-3; H-5	H-6	3,38 (dd, <i>J</i> =9,5)
5	78,2	3,3-3,4	H-4; H-6		3,47 (ddd, <i>J</i> =2,2; 5,8; 9,8)
6	62,9	3,86 (m) 3,69 (m)		H-4	3,92 (dd, <i>J</i> =2,2; 12,3)
1'	66,3	3,96 (m) 3,62 (m)	H-2'	H-1	3,96 (dq, <i>J</i> =7,1; 9,8)
2'	15,6	1,25 (t, <i>J</i> =7,1)	H-1'		1,23 (t, <i>J</i> =7,1)

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (J) em Hz

* (KORTESNIEMI et al., 2014)

Figura 137 Expansão do espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] de BP-8

Figura 139 Espectro de RMN 2D¹H, ¹H-COSY [300 x 300 MHz, CD₃OD] de BP-8

Figura 141 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BP-8

Figura 143 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-8

Figura 145 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CD₃OD] de BP-8

Figura 147 Espectro de massas de alta resolução (modo positivo) de BP-8

Figura 146 Espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de BP-8

4.5 Estudo dos constituintes fixos de *B. monandra*

4.5.1 Determinação estrutural de BM-1

A fração acetato de etila obtida a partir de coluna filtrante a vácuo do extrato EEBM, após ser submetida a algumas cromatografias em coluna, resultou na F 29-32, que foi cromatografada por CLAE, fornecendo 15,7 mg de um óleo amarelo, com solubilidade em clorofórmio.

O espectro na região do infravermelho (**Fig. 148**, **p. 170**) apresentou bandas de absorção em: 1734 cm⁻¹, referente a deformação axial de carbonila; 2919 e 2850 cm⁻¹ de ligação C–H; 1264 e 1177 cm⁻¹ de ligação C–O; além de absorções de deformação angular de grupos metileno e metila em 1463 e 1376 cm⁻¹, respectivamente.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 149**, **p. 170**) indicou a presença de um segmento carboetoxila através dos sinais em δ_H 4,17 (q, *J*=7,1 Hz, 2H-1') e 1,30 (t, *J*=7,0 Hz, 3H-2'); de hidrogênios metílicos em δ_H 0,93 (t, 3H-16/3H-18) e de hidrogênios metilênicos em δ_H 2,33 (t, 2H-2), vicinal a um grupo carbonila. Em adição, vários sinais na região entre δ_H 0,98 e 2,10 ppm, propondo que trata-se de uma substância alifática de cadeia longa, provavelmente um éster etílico de ácido graxo.

A análise comparativa dos espectros de RMN ¹³C-CPD e DEPT 135° [75 MHz, CDCl₃] (**Fig. 150, 151 e 152**, **p. 171 e 172**) permitiu atribuir as absorções em δ_c 174,1 à carbonila do éster, δ_c 60,4 a carbono metilênico oxigenado, δ_c 14,3 e 14,5 a carbonos metílicos e vários sinais de carbonos metilênicos em δ_c 22,9-34,6 ppm (**Tab. 18, p. 169**).

A análise por CG-EM demonstrou a presença majoritária de dois ésteres de ácidos graxos identificados como palmitato de etila (**1**, 67,21%) e estearato de etila (**2**, 17,75%), com tempos de retenção (TR) de 11,463 e 12,364 min, respectivamente, como pode ser visto no cromatograma (**Fig. 153**, **p. 172**)

Os espectros de massas do palmitato de etila (**Fig. 154**, **p. 173**) e do estearato de etila (**Fig. 155**, **p. 173**) revelaram os picos dos íons moleculares em m/z 284 e 312 Daltons, confirmando as fórmulas moleculares C₁₈H₃₆O₂ e

 $C_{20}H_{40}O_2$, respectivamente, e IDH=1. Estes derivados de ácidos graxos estão sendo isolados e identificados pela primeira vez no gênero Bauhinia.

Tabela 18 Deslocamentos químicos (δ) de RMN ¹³	¹³ C (CDCl ₃) de BM-1

	Palmitato de e	etila (67,21%)	Estearato de etila (17,75%)	
С	BM-1A	Lit.* (CDCl ₃)	BM-1B	Lit.* (CDCl ₃)
	δς	δ _c	δς	δ _c
1	174,1	174,3	174,1	174,3
2	34,6	34,8	34,6	34,8
3	25,2	25,4	25,2	25,4
4-13	29,4 - 29,9	29,5 - 30,1	29,4 - 29,9	29,5 - 30,1
14	32,2	32,3	29,4 - 29,9	29,5 - 30,1
15	22,9	23,0	29,4 - 29,9	29,5 - 30,1
16	14,3	14,5	32,2	32,3
17	-	-	22,9	23,0
18	-	-	14,3	14,5
1'	60,4	60,5	60,4	60,5
2'	14,5	14,6	14,5	14,6

Deslocamentos químicos (δ_c) em ppm * (FEITOSA *et al.*, 2007)

Figura 151 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCl₃] de BM-1

Figura 153 Cromatograma obtido por CG-EM para BM-1

Figura 154 Espectro de massas do componente com TR 11,463 min: BM-1A (palmitato de etila)

4.5.2 Determinação estrutural de BM-2

O composto BM-2 (18,0 mg) também foi obtido a partir da F 29-32 através do fracionamento cromatográfico por CLAE, apresentando-se como um óleo amarelo, com solubilidade em clorofórmio.

O espectro na região do infravermelho (**Fig. 156**, **p. 176**) apresentou uma banda de absorção em 3484 cm⁻¹, referente a deformação axial de ligação O–H, absorções de deformação axial de ligação C–H em 2924 e 2856 cm⁻¹, absorções em 1086, 1158 e 1261 cm⁻¹ de deformação axial de ligação C–O, além de absorções de deformação angular de grupos metileno e metila em 1459 e 1377 cm⁻¹, respectivamente.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 157 e 158**, **p. 176 e 177**) mostrou sinais em $\delta_{\rm H}$ 0,88 (d, *J*=6,7 Hz, H-12'a/H-13'), 0,85 (d, H-4'a/H-8'a) 2,12 (s, H-5a/H-7a), 2,17 (s, H-8a), 1,24 (s, H-2a), 2,61 (t, *J*=6,7 Hz, H-4), 1,78 (m, H-3), característicos do α-tocoferol.

Os espectros de RMN ¹³C-CPD e DEPT 135° [75 MHz, CDCI₃] (**Fig. 159**, **160 e 161**, **p. 177 e 178**) exibiram vários sinais na região de carbonos sp^3 , sendo um oxigenado (δ_H 74,7), e seis na região de carbonos sp^2 , sendo dois oxigenados (δ_H 144,8 e 145,8) (**Tab. 19**, **p. 175**). Estes sinais estão de acordo com os dados espectrométricos do α -tocoferol (vitamina-E).

O espectro de massas (**Fig. 162**, **p. 179**) revelou o pico do íon molecular em m/z 430 Daltons, confirmando a fórmula molecular C₂₉H₅₀O₂ e IDH=5. A **Figura 163**, **p. 179**, mostra uma proposta mecanística que justifica os fragmentos registrados no espectro.

A vitamina-E está sendo registrada pela primeira vez no gênero Bauhinia.

	B	$\frac{\text{IN He} C (CDCI_3) \text{ de}}{\text{Lit.*} (CDCI_3)}$		
C	δς	δ _Η	δς	
2	74,7	-	74,3	
2a	24,0	1,24 (s)	23,8	
3	31,8	1,78 (m)	31,6	
4	21,0	2,61 (t, <i>J</i> =6,7)	20,8	
5	118,7	-	118,5	
5a	11,5	2,12 (s)	11,2	
6	144,8	-	144,4	
7	121,2	-	121,0	
7a	12,4	2,12 (s)	12,1	
8	122,8	-	122,3	
8a	12,0	2,17 (s)	11,8	
9	145,8	-	145,4	
10	117,6	-	117,0	
1'	40,0	1,00-1,70 (m)	39,8	
2'	21,3	1,00-1,70 (m)	21,0	
3'	37,5	1,00-1,70 (m)	37,5	
4'	32,9	1,00-1,70 (m)	32,7	
4'a	19,9	0,85 (d)	19,7	
5'	37,5	1,00-1,70 (m)	37,5	
6'	24,7	1,00-1,70 (m)	24,5	
7'	37,7	1,00-1,70 (m)	37,5	
8'	33,0	1,00-1,70 (m)	32,7	
8'a	20,0	0,85 (d)	19,7	
9'	37,7	1,00-1,70 (m)	37,5	
10'	25,0	1,00-1,70 (m)	24,8	
11'	39,6	1,00-1,70 (m)	39,4	
12'	28,2	1,00-1,70 (m)	28,0	
12'a	22,8	0,88 (d, <i>J</i> =6,7)	22,6	
13'	22,9	0,88 (d, <i>J</i> =6,7)	22,6	

(S) do PMNI ¹H = ¹³C (CDCI₂) de ahala 10 Dool úmic ... BM-2

Deslocamentos químicos (δ_c) em ppm * (MATSUO; URANO, 1976)

Figura 159 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-2

Figura 161 Expansão do espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCI₃] de BM-2

Figura 163 Proposta mecanística que justifica fragmentos registrados no espectro de massas de baixa resolução de BM-2

4.5.3 Determinação estrutural de BM-3

A fração acetato de etila proveniente de coluna filtrante a vácuo do extrato EEBM, após várias cromatografias em coluna, forneceu 7,3 mg de um óleo incolor, solúvel em clorofórmio.

O espectro de RMN ¹H [300 MHz, CDCl₃] (**Fig. 166**, **p. 183**) apresentou sinais característicos do fitol, como um dupleto em δ_{H} 4,16 (d, *J*=6,9 Hz, 2H-1) referente a hidrogênios oximetilênicos; um tripleto em δ_{H} 5,42 (t, *J*=6,9 Hz, H-2) referente a hidrogênio ligado a carbono olefínico; além de um tripleto em δ_{H} 2,00 (t, *J*=7,5 Hz, 2H-4) atribuído a hidrogênios alílicos e um simpleto em δ_{H} 1,67 (s, 3H-3a), devido o grupo metil vinílico.

O espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] (**Fig. 167 e 168**, **p. 183 e 184**) exibiu vinte linhas espectrais, sendo dezoito na região de carbono sp^3 , incluindo um oxigenado (δ_C 59,6) e dois na região de carbono sp^2 . Análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 169**, **p. 184**) registrou a presença de quatro carbonos metínicos (CH), três sp^3 e um sp^2 , dez carbonos metilênicos (CH₂) sp^3 , cinco carbonos metílicos (CH₃) e um carbono não hidrogenados (C) sp^2 , conforme dispostos na **Tabela 20**.

C	<u>сп</u>			Fórmula
C	СП		СП ₃	molecular
140,53 (C=C)	28,20 (C–H)	24,69	16,39	
	32,92 (C–H)	25,01	19,93	
	33,02 (C–H)	25,37	19,97	
	123,33 (C=C)	29,91	22,84	
		36,89	22,93	
		37,52		
		37,59		
		37,66		
		40,09		
		59,65 (C–OH)		
С	C ₄ H ₄	$C_{10}H_{21}O$	C_5H_{15}	$C_{20}H_{40}O$

Tabela 20 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BM-3

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 170 e 171**, **p. 185**) de BM-1 mostrou acoplamento vicinal entre os átomos de hidrogênios em $\delta_{\rm H}$ 4,16 (d, *J*=6,9 Hz, 2H-1) com $\delta_{\rm H}$ 5,42 (t, *J*=6,9 Hz, H-2) (**Fragmento I**, **Fig. 164**).

Figura 164 Correlações observadas no espectro de RMN 2D ¹H, ¹H-COSY para BM-3

O espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 172 e 173**, **p. 186**) permitiu correlacionar os sinais de hidrogênio ao seu respectivo carbono (**Tab. 21**, **p. 182**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 174 e 175**, **p. 187**) possibilitou correlacionar os sinais de hidrogênios metílicos em δ_H 1,67 (3H-3a) com os carbonos em δ_C 140,5 (C-3), 123,3 (C-2) e 40,0 (C-4) (**Fragmento II**, **Fig. 165**), e os hidrogênios metilênicos em δ_H 4,16 (2H-1) com os carbonos em δ_C 123,3 (C-2) e 140,5 (C-3) (**Fragmento III**, **Fig. 165**).

O espectro de massas (**Fig. 176**, **p. 188**) obtido apresentou o pico do íon molecular em m/z 296 Daltons, confirmando a fórmula molecular C₂₀H₄₀O e IDH=1. A **Figura 177**, **p. 188**, mostra uma proposta mecanística que justifica os fragmentos registrados no espectro.

Através das informações discutidas e comparação com dados da literatura (ROSA, 2009) (**Tab. 21**), concluiu-se que BM-3 trata-se do diterpeno fitol, já presente no óleo essencial de *Bauhinia purpurea*, *B. scandens*, *B. malabarica*, *B. acuminata* (VASUDEVAN; MATHEW; BABY, 2014; VASUDEVAN; MATHEW; BABY, 2013) e *B. pentandra*.

Tabela 21 Dados de RMN ¹H e ¹³C de BM-3, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CDCl₃ como solvente

<u> </u>	HSQC BM-3			Lit.* (CDCI ₃)	
C	δς	δ _H	² <i>J</i> _{СН}	³ <i>Ј</i> _{СН}	δ _c
1	59,6	4,16 (d, <i>J</i> =6,9)	l		59,7
2	123,3	5,42 (t, <i>J</i> =6,9)	2H-1	3H-3a, H-4	123,3
3	140,5	-	3H-3a, H-4	2H-1	140,5
3a	16,4	1,67 (s)		H-2, H-4	16,4
4	40,1	2,00 (t, <i>J</i> =7,5)		3H-3a, H-2	39,6
5	25,4	1,0-1,6 (m)	H-4		25,4
6	36,9	1,0-1,6 (m)		H-4	36,9
7	32,9	1,0-1,6 (m)			33,0
7a	19,9	0,87 (d, <i>J</i> =6,6)			20,0
8	37,7	1,0-1,6 (m)			37,5
9	24,7	1,0-1,6 (m)			24,7
10	37,6	1,0-1,6 (m)			37,6
11	33,0	1,0-1,6 (m)			32,9
11a	20,0	0,87 (d, <i>J</i> =6,6)			20,0
12	37,5	1,0-1,6 (m)			37,7
13	25,0	1,0-1,6 (m)			25,0
14	39,6	1,0-1,6 (m)			39,6
15	28,2	1,0-1,6 (m)			28,2
15a	22,8	0,87 (d, <i>J</i> =6,6)			22,9
16	22,9	0,87 (d, <i>J</i> =6,6)			23,0

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (*J*) em Hz

* (ROSA, 2009)

Figura 167 Espectro de RMN ¹³C-CPD [75 MHz, CDCl₃] de BM-3

Figura 169 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CDCI₃] de BM-3

Figura 170 Espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CDCl₃] de BM-3

Figura 171 Expansão do espectro de RMN 2D ¹H, ¹H-COSY [300 x 300 MHz, CDCl₃] de BM-3

Figura 172 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CDCl₃] de BM-3

Figura 175 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CDCl₃] de BM-3

Figura 174 Espectro de RMN 2D ¹H, ¹³C-HMBC [300 x 75 MHz, CDCl₃] de BM-3

Figura 177 Proposta mecanística que justifica fragmentos registrados no espectro de massas de baixa resolução de BM-3

4.5.4 Determinação estrutural de BM-4

A F 3-17 obtida da fração metanólica que, por sua vez, foi obtida a partir de coluna filtrante a vácuo do extrato EEBM, após ser cromatografada por CLAE, forneceu 18,6 mg de uma resina de coloração marrom, com solubilidade em metanol.

O espectro na região do infravermelho (**Fig. 182**, **p. 195**) mostrou banda de absorção em 3377 e 2266 cm⁻¹, que foram atribuídas a presença de grupos hidroxila e nitrila, respectivamente. Foi observada também uma banda característica de deformação axial de ligação C=C em 1636 cm⁻¹, além de absorção em 2920 cm⁻¹ relacionada à deformação axial de ligação C–H, e em 1073 cm⁻¹ referente à deformação axial de ligação C–O.

O espectro de RMN ¹H [500 MHz, CD₃OD] (**Fig. 183 e 184**, **p. 195 e 196**) apresentou vários sinais com deslocamentos químicos próximos e também superpostos na região entre $\delta_{\rm H}$ 3,28 e 3,40, referentes a hidrogênios oximetínicos característicos de açúcares; sinais em $\delta_{\rm H}$ 3,87 (d, *J*=10,1 Hz, H-6'a) e 3,70 (m, H-6'b) atribuídos a um grupo metileno, além de sinal em $\delta_{\rm H}$ 4,49 (d, *J*=7,4 Hz, H-1') atribuído a hidrogênio anomérico. O espectro mostrou também um simpleto em $\delta_{\rm H}$ 5,75 (s, H-7) de hidrogênio ligado a carbono olefínico, e cinco sinais de hidrogênios cabinólicos em $\delta_{\rm H}$ 4,72 (d, *J*=4,2 Hz, H-6), 4,08 (m, H-5), 3,97 (m, H-4), 3,67 (m, H-3) e 4,52 (d, *J*=7,4 Hz, H-2).

O espectro de RMN ¹³C-CPD [125 MHz, CD₃OD] (**Fig. 185**, **p. 196**) exibiu um sinail típico de carbono anomérico de glicosídeo em $\delta_{\rm C}$ 105,4, além de uma série de sinais entre $\delta_{\rm C}$ 62,8-81,8, característicos de carbonos carbinólicos. A presença do sinal em $\delta_{\rm C}$ 117,9 foi atribuído a um carbono de nitrila α,β-insaturada. Outros sinais foram observados em $\delta_{\rm C}$ 97,8 e 164,6, correspondentes aos carbonos olefínicos alfa e beta ao grupo ciano, respectivamente. Análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 186**, **p. 197**) registrou a presença de onze carbonos metínicos (CH), um carbono metilênico (CH₂) e dois carbonos não hidrogenados (C), conforme dispostos na **Tabela 22**, **p. 190**.

	c	C U	CH	Fórmula
	C	Сп	CH2	molecular
117,8	88 (CN)	105,39 (C–O)	62,77 (C–OH)	
16	4,63	97,83		
		81,78 (C–O)		
		78,38		
		77,95 (C–OH)		
		74,84 (C–OH)		
		74,84 (C–OH)		
		74,34 (C–OH)		
		73,04 (C–OH)		
		72,65 (C–OH)		
		71,48 (C–OH)		
C	C₂N	$C_{11}H_{18}O_9$	CH ₃ O	C ₁₄ H ₂₁ NO ₁₀

Tabela 22 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BM-4

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 187**, **p. 197**) mostrou acoplamento alílico entre os átomos de hidrogênios em δ_H 5,75 (s, H-7) com δ_H 4,52 (d, H-2) (**Fragmento I**, **Fig. 178**, **p. 191**). Foram observados também acoplamentos vicinais entre os hidrogênios em δ_H 4,72 (d, H-6) com δ_H 4,08 (m, H-5), δ_H 4,52 (d, H-2) com δ_H 3,67 (m, H-3), δ_H 3,67 (m, H-3) com δ_H 3,97 (m, H-4), e δ_H 3,97 (m, H-4) com δ_H 4,08 (m, H-5) (**Fragmento II**, **Fig. 178**, **p. 191**). Acoplamentos vicinais também foram observados entre os hidrogênios oximetínicos em δ_H 4,49 (d, H-1') com δ_H 3,33 (m, H-2'), δ_H 3,28 (m, H-5') com δ_H 3,87 (d, H-6'a) e δ_H 3,70 (m, H-6'b), além de acoplamento geminal entre os hidrogênios metilênicos δ_H 3,87 (d, H-6'a) com δ_H 3,70 (m, H-6'b) (**Fragmento III**, **Fig. 178**, **p. 191**).

O espectro de RMN 2D ¹H, ¹³C-HSQC (**Fig. 188 e 189**, **p. 198**) permitiu correlacionar os sinais de hidrogênios aos seus respectivos carbonos (**Tab. 24**, **p. 194**).

O espectro de RMN 2D ¹H, ¹³C-HMBC (**Fig. 190 e 191**, **p. 199**) exibiu correlação de longo alcance entre o hidrogênio em δ_{H} 5,75 (s, H-7) com os carbonos em δ_{C} 164,6 (C-1), 72,6 (C-2) e 81,8 (C-6) (**Fragmento IV**, **Fig. 179**). Outras correlações foram observadas entre o hidrogênio em δ_{H} 4,52 (d, H-2) com os carbonos em δ_{C} 164,6 (C-1), 97,8 (C-7) e 74,8 (C-3), e entre δ_{H} 4,72 (d, H-6) com δ_{C} 73,0 (C-5) (**Fragmento V**, **Fig. 179**). A correlação do hidrogênio em δ_{H} 4,49 (d, H-1') com o carbono em δ_{C} 81,8 (C-6) permitiu definir a localização da unidade glicosídica no C-6 (**Fig. 179**).

Figura 179 Correlações observadas no espectro de RMN 2D¹H, ¹³C-HMBC para BM-4

No espectro NOESY (**Fig. 192 e 193**, **p. 200**) foram observadas correlações que justificam as configurações atribuídas aos centros assimétricos C-2, C-4 e C-6. Assim, as interações dipolares do átomo de hidrogênio H-2 (δ_{H}

4,52) com H-6 (δ_{H} 4,72) e do H-4 (δ_{H} 3,97) com H-6 (δ_{H} 4,72), indicam que eles estão espacialmente próximos, conforme observado na **Figura 180**. O valor de *J*=7,4 Hz no sinal de H-2 (δ_{H} 4,52) correspondente a interação spin-spin com H-3 (δ_{H} 3,67) é compatível com acoplamento *axial-axial* entre estes átomos de hidrogênios. O valor de *J*=4,2 Hz observado no sinal H-6 (em orientação *axial* deduzida através da interação dipolar com H-2 e H-4) correspondente a interação spin-spin com H-5 (δ_{H} 4,08) é compatível com acoplamento *axialequatorial* entres estes átomos de hidrogênios.

Figura 180 Correlações observadas no espectro de RMN 2D¹H, ¹H-NOESY para BM-4

O espectro de NOE Seletivo de BM-4 com irradiação no hidrogênio em δ 3,97 (H-4) (**Fig. 194, p. 201**) exibiu acoplamento deste com o hidrogênio em δ 4,72 (H-6). A irradiação no hidrogênio em δ 4,08 (H-5) (**Fig. 195, p. 201**) exibiu acoplamentos com os hidrogênios em δ 4,72 (H-6) e 4,49 (H-1'). Irradiando-se o hidrogênio em δ 4,72 (H-6) (**Fig. 196, p. 202**) foram observadas interações espaciais deste com os hidrogênios em δ 4,49 (H-1'), 4,08 (H-5) e 3,97 (H-4). E a irradiação no hidrogênio em δ 5,75 (H-7) (**Fig. 197, p. 202**) mostrou interações com os hidrogênios em δ 4,52 (H-2) e 4,72 (H-6). A partir desses acoplamentos dipolares (**Tab. 23, p. 193**) determinou-se que o composto apresentava os hidrogênios H-2, H-4, H-5 e H-6 em configuração α e o hidrogênio H-3 em configurações β (**Fig. 181, p. 193**).

Irradiado	δ _Η	NOE	δ_{H}	
H-4	3,97	H-6	4,72	
H-5	4,08	H-6	4,72	
		H-1'	4,49	
H-6	4,72	H-1'	4,49	
		H-5	4,08	
		H-4	3,97	
H-7	5,75	H-2	4,52	
		H-6	4,72	

Tabela 23 Acoplamentos dipolares observados no experimento NOE Seletivo através da irradiação dos hidrogênios H-4, H-5, H-6 e H-7

Figura 181 Principais acoplamentos dipolares detectados no experimento NOE Seletivo

O espectro de massas de alta resolução (modo positivo) (**Fig. 198**, **p. 203**) revelou o pico do íon molecular em m/z 386,1100 ([M + Na]⁺, calc 386,1063), que confirma a fórmula molecular C₁₄H₂₁NO₁₀ para BM-4, com IDH=4.

Baseando-se em todas as informações espectrais obtidas, foi possível caracterizar o composto BM-4 como sendo o cianoglicosídeo $(2R,3S,4R,5R,6S)-(Z)-6-(\beta-D-glicopiranosiloxi)-2,3,4,5-$

tetraidroxiciclohexilideno- $\Delta^{1,\alpha}$ -acetonitrila, que está sendo descrito pela primeira vez na literatura.

Tabela 24 Dados de RMN ¹H e ¹³C de BM-4, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

С	Н	ISQC BM-4	HMBC BM-4	
	δς	δ _Η	² J _{CH}	³ Ј _{СН}
1	164,6	-	H-2; H-7	
2	72,6	4,52 (d, <i>J</i> =7,4)		H-7
3	74,8	3,67 (m)	H-2	
4	74,3	3,97 (m)		
5	73,0	4,08 (m)	H-6	
6	81,8	4,72 (d, <i>J</i> =4,2)		H-7; H-1'
7	97,8	5,75 (s)		H-2
8	117,9	-		
1'	105,4	4,49 (d, <i>J</i> =7,4)	H-2'	
2'	74,8	3,33 (m)	H-3'	
3'	77,9	3,38 (m)	H-4'	
4'	71,5	3,31 (m)	H-3'	
5'	78,4	3,28 (m)	H-4'	
6'	62,8	3,87 (d, <i>J</i> =10,1)		
		3,70 (m)		

Deslocamentos químicos ($\delta_C e \delta_H$) em ppm e constante de acoplamento (J) em Hz

Figura 183 Espectro de RMN ¹H [500 MHz, CD₃OD] de BM-4

Figura 185 Espectro de RMN ¹³C-CPD [125 MHz, CD₃OD] de BM-4

Figura 187 Espectro de RMN 2D ¹H, ¹H-COSY [500 x 500 MHz, CD₃OD] de BM-4

Figura 189 Expansão do espectro de RMN 2D ¹H, ¹³C-HSQC [500 x 125 MHz, CD₃OD] de BM-4

Figura 191 Expansão do espectro de RMN 2D ¹H, ¹³C-HMBC [500 x 125 MHz, CD₃OD] de BM-4

Figura 193 Expansão do espectro de RMN 2D ¹H, ¹H-NOESY [300 x 300 MHz, CD₃OD] de BM-4

Figura 195 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_H 4,08 (H-5) (CD₃OD, 300 MHz) de BM-4

Figura 197 Espectro de NOE Seletivo obtido por irradiação no hidrogênio em δ_H 5,75 (H-7) (CD₃OD, 300 MHz) de BM-4

Figura 198 Espectro de massas de alta resolução (modo positivo) de BM-4

4.5.5 Determinação estrutural de BM-5

O composto BM-5 (4,8 mg), assim como BM-4, também foi obtido a partir do fracionamento cromatográfico da F 3-17 por CLAE, apresentando-se como uma resina de coloração marrom, com solubilidade em metanol.

O espectro na região do infravermelho (**Fig. 202**, **p. 209**) mostrou banda de absorção em 3396 e 2224 cm⁻¹, que foram atribuídas a presença de grupos hidroxila e nitrila, respectivamente. Foi observada também uma banda característica de deformação axial de ligação C=C em 1638 cm⁻¹, além de absorção em 2922 cm⁻¹ relacionada à deformação axial de ligação C–H, e em 1077 cm⁻¹ referente à deformação axial de ligação C–O.

O espectro de RMN ¹H [300 MHz, CD₃OD] (**Fig. 203**, **p. 209**) de BM-5 mostrou-se muito semelhante ao de BM-4, apresentando sinais em: δ_{H} 3,18-3,42, referente aos hidrogênios oximetínicos de açúcares; δ_{H} 3,84 (dd, *J*=12,0 e 2,2 Hz, H-6'a) e 3,70 (dd, *J*=12,0 e 4,8 Hz, H-6'b) de hidrogênios metilênicos; e δ_{H} 4,41 (d, *J*=7,7 Hz, H-1') do hidrogênio anomérico. O espectro apresentou também um dupleto em δ_{H} 5,70 (d, *J*=2,0 Hz, H-7) de hidrogênio ligado a carbono olefínico, quatro sinais de hidrogênios cabinólicos em δ_{H} 4,9 (H-6), 4,70 (dd, *J*=9,6 e 1,8 Hz, H-2), 4,09 (d, *J*=3,2 Hz, H-4), 3,31 (m, H-3). Além destes, foram observados dois duplo tripletos em δ_{H} 2,44 (dt, *J*=15,5 e 3,1 Hz, H-5a) e 1,80 (dt, *J*=15,5 e 3,7 Hz, H-5b) atribuídos a hidrogênios metilênicos

O espectro de RMN ¹³C-CPD [75 MHz, CD₃OD] (**Fig. 204**, **p. 210**) foi bastante similar ao de BM-4, exibindo sinais em: $\delta_{\rm C}$ 104,6 típico de carbono anomérico de glicosídeo; $\delta_{\rm C}$ 62,6-78,3 característicos de carbonos carbinólicos; $\delta_{\rm C}$ 117,6 atribuído ao carbono de nitrila α , β -insaturada; e em $\delta_{\rm C}$ 94,8 e 164,6 dos carbonos olefínicos alfa e beta ao grupo ciano, respectivamente. A diferença observada em relação ao espectro de BM-4 foi o surgimento do sinal de carbono sp³ em $\delta_{\rm C}$ 35,4. A análise comparativa entre os espectros de RMN ¹³C-CPD e DEPT 135° (**Fig. 205**, **p. 210**) registrou a presença de dez carbonos metínicos (CH), dois carbonos metilênicos (CH₂) e dois carbonos não hidrogenados (C), conforme dispostos na **Tabela 25**, **p. 205**.

С	СН	CH ₂	Fórmula molecular
 117,60 (CN)	104,62 (C–O)	62,58 (C–OH)	
166,99	94,76	35,37	
	78,28 (C–O)		
	78,22 (C–OH)		
	78,16		
	77,99 (C–OH)		
	74,98 (C–OH)		
	71,45 (C–OH)		
	71,36 (C–OH)		
	70,66 (C–OH)		
C ₂ N	C ₁₀ H ₁₆ O ₈	C₂H₅O	$C_{14}H_{21}NO_9$

Tabela 25 Padrão de hidrogenação determinado através da comparação dos espectros de RMN ¹³C-CPD e DEPT 135° de BM-5

O espectro de RMN 2D ¹H, ¹H-COSY (**Fig. 206**, **p. 211**) mostrou acoplamentos vicinais entre os hidrogênios em δ_H 4,41 (d, *J*=7,7 Hz, H-1') com δ_H 3,21 (m, H-2'), e δ_H 3,70 (dd, *J*=12,0 e 4,8 Hz, H-6'b) com δ_H 3,26 (m, H-5') (**Fragmento I, Fig. 199**). Acoplamentos vicinais também foram observados entre os hidrogênios em δ_H 4,70 (dd, *J*=9,6 e 1,8 Hz, H-2) com δ_H 3,31 (m, H-3), δ_H 3,31 (m, H-3) com δ_H 4,09 (d, *J*=3,2 Hz, H-4), δ_H 4,09 (d, *J*=3,2 Hz, H-4) com δ_H 1,80 (dt, *J*=15,5 e 3,7 Hz, H-5b), δ_H 1,80 (dt, *J*=15,5 e 3,7 Hz, H-5b) com δ_H 4,9 (H-6) (**Fragmento II**, **Fig. 199**), além de acoplamento geminal entre os hidrogênios metilênicos δ_H 1,80 (dt, *J*=15,5 e 3,7 Hz, H-5b) com δ_H 2,44 (dt, *J*=15,5 e 3,1 Hz, H-5a) (**Fragmento III**, **Fig. 199**).

No espectro de RMN 2D ¹H, ¹³C-HSQC (Fig. 207, p. 211) não foi possível visualizar duas correlações carbono-hidrogênio, contudo o espectro HMBC, bem como dados da literatura auxiliaram nesta determinação.

O espectro de RMN 2D ¹H, ¹³C-HMBC (Fig. 208 e 209, p. 212) apresentou correlação entre o hidrogênio em $\delta_{\rm H}$ 5,70 (d, H-7) com os carbonos em δ_{C} 167,0 (C-1), 71,3 (C-2) e 78,1 (C-6) (Fragmento IV, Fig. 200). Outras correlações foram observadas entre o hidrogênio em $\delta_{\rm H}$ 4,70 (dd, H-2) com os carbonos em δ_{C} 167,0 (C-1), 94,8 (C-7) e 78,2 (C-3), e entre δ_{H} 4,9 (H-6) com δ_C 94,8 (C-7), 70,7 (C-4) e 104,6 (C-1') (Fig. 200). Esta última correlação definiu a posição da unidade glicosídica no C-6. A correlação do hidrogênio em $\delta_{\rm H}$ 2,44 (dt, H-5a) com os carbonos em $\delta_{\rm C}$ 167,0 (C-1), 70,7 (C-4) e 78,1 (C-6) (Fig. 200) confirma a presença de hidrogênios metilênicos diastereotópicos, os quais estão posicionados no C-5, e o que diferencia BM-5 de BM-4.

Figura 200 Correlações observadas no espectro de RMN 2D ¹H, ¹³C-HMBC para BM-5

A estereoquímica relativa da unidade ciclohexânica de BM-5 (Fig. 201, **p.** 207) foi determinada com base nas constantes de acoplamentos (J) observadas nos sinais de átomos de hidrogênios. Assim, o hidrogênio H-2 exibiu sinal como um dupleto de dupleto (J=9,6 e 1,8 Hz) em $\delta_{\rm H}$ 4,70 devido aos acoplamentos *trans* axial-axial (9,6 Hz) com H-3 (δ_H 3,31), e alílico (1,8 Hz) com H-7 ($\delta_{\rm H}$ 5,70). Os sinais correspondentes aos átomos de hidrogênios do grupo metilênico 2H-5 (obrigatoriamente um pseudoaxial e outro pseudoequatorial) revelaram-se como dois tripletos de dupletos (δ_{H} 2,44, dt, J=15,5 e 3,1 Hz; δ_{H} 1,80, dt, J=15,5 e 3,7 Hz) e não revelaram valor representando interação axial-axial (o valor J=15,5 Hz corresponde ao

acoplamento geminado envolvendo os dois 2H-5), permitindo deduzir que os átomos de hidrogênios H-4 e H-6 devem ser necessariamente localizados em posições equatoriais. O sinal do H-4 (*equatorial*) foi observado como um dupleto (J=3,2 Hz) e, consequentemente, o acoplamento representado pelo valor de J=3,7 Hz observado em um dos sinais do 2H-5 deve ser atribuído a interação spin-spin envolvendo o H-6 (*equatorial*).

Figura 201 Estereoquímica relativa de BM-5

O espectro de massas de alta resolução (modo positivo) (**Fig. 210**, **p. 213**) revelou o pico do íon molecular em m/z 348,1296 ([M + H]⁺, calc 348,1295), que confirma a fórmula molecular C₁₄H₂₁NO₉ para BM-5, com IDH=4.

A comparação dos dados espectrais de RMN ¹H e ¹³C de BM-5 com dados da literatura (BOVEN *et al.*, 1994) (**Tab. 26**, **p. 208**) permitiu identificá-la como sendo o raro cianoglicosídeo (2*S*,3*S*,4*S*,6*R*)-(*Z*)-6-(β -D-glicopiranosiloxi)-2,3,4-triidroxiciclohexilideno]- $\Delta^{1,\alpha}$ -acetonitrila (didemetilsimmondsina), que está sendo registrado pela primeira vez no gênero *Bauhinia*.

	BM-5						
С	HSQC			НМВС		Lit.* (CD ₃ OD)	
	δ _C	δ _H	² J _{CH}	³ J _{CH}	δ _C	δ _H	
1	167,0	-	H-2; H-7	H-5	166,8	-	
2	71,3	4,70 (dd, <i>J</i> =9,6 e 1,8)		H-4; H-7	71,15	4,69 (dd)	
3	78,2	3,31 (m)	H-2	H-5	78,05	3,31 (dd)	
4	70,7	4,09 (d, <i>J</i> =3,2)	H-5	H-6	70,5	4,08 (q)	
5	35,4	2,44 (dt, <i>J</i> =15,5 e 3,1)			35,2	2,42 (dt)	
		1,80 (dt, <i>J</i> =15,5 e 3,7)				1,77 (dt)	
6	78,1	4,90	H-5	H-2; H-4; H-7; H-1'	78,0	4,92 (t)	
7	94,8	5,70 (d, <i>J</i> =2,0)		H-2; H-6	94,6	5,68 (d)	
8	117,6	-			117,4	-	
1'	104,6	4,41 (d, <i>J</i> =7,7)	H-2'	H-6	104,5	4,40 (d)	
2'	75,0	3,21 (m)			74,8	3,20 (dd)	
3'	78,0	3,39 (m)			77,8	3,39 (t)	
4'	71,4	3,35 (m)	H-3'	H-6'	71,2	3,36 (t)	
5'	78,3	3,26 (m)	H-4'		78,1	3,24 (m)	
6'	62,6	3,84 (dd, <i>J</i> =12,0 e 2,2)			62,4	3,82 (dd)	
		3,70 (dd, <i>J</i> =12,0 e 4,8)				3,69 (dd)	

Tabela 26 Dados de RMN ¹H e ¹³C de BM-5, incluindo correlação heteronuclear através de uma ligação (HSQC: ${}^{1}J_{CH}$) e a longa distância (HMBC: ${}^{n}J_{CH}$, n=2 e 3), em CD₃OD como solvente

Deslocamentos químicos ($\delta_{C} e \delta_{H}$) em ppm e constante de acoplamento (*J*) em Hz * (BOVEN *et al.*, 1994)

Figura 205 Espectro de RMN ¹³C-DEPT 135° [75 MHz, CD₃OD] de BM-5

Figura 207 Espectro de RMN 2D ¹H, ¹³C-HSQC [300 x 75 MHz, CD₃OD] de BM-5

Figura 210 Espectro de massas de alta resolução (modo positivo) de BM-5

2: TOF MS ES+				5.86e+002
100-			186.0753	
-				
-				
%-	123.04	454		
-	07.0000			
- 69.0354	97.0296	151.0416	187.0847	348.1296
0_հեւրիկես իկ	«୲ <i>┞</i> ╭ _ݬ ┉╢╢ <mark>┯</mark> ╭┉┉╢ _╋ ╕ _{┙┙} ┉╢╟┉	ฝะระปะเหษาะการประการจากการประกา		228.0870/200.0000 2/5.9917 298.9993 330.1240 370.1135 000.001 m/z
60 80	100 120	140 160	180 200	220 240 260 280 300 320 340 360 380

4.6 Atividade antioxidante

O extrato etanólico das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foram submetidos ao teste de atividade antioxidante utilizando o método do sequestro do radical DPPH (HEGAZI; EL HADY, 2002). Através dessa metodologia foi observada atividade significativa para os dois extratos na concentração de 1 mg/mL com inibição de 99,8% de radicais. A **Tabela 27** mostra os resultados obtidos no ensaio antioxidante, juntamente com os valores de IC₅₀. Os dados mostram que o extrato que se revelou mais ativo foi o EEBP com IC₅₀ de 3,55 x 10⁻² mg/mL, resultado superior ao padrão Vitamina-C.

Amostras	Concentraç	ção (mg/mL)	ICre (mg/ml.)	
Anostras	1,0	0,1		
EEBP	99,8%	94,7%	3,55 x 10 ⁻² ±7,6 x 10 ⁻⁴	
EEBM	99,8%	92,7%	4,46 x 10 ⁻² ±1,1 x 10 ⁻⁴	
Trolox	99,9%	99,8%	2,6 X 10 ⁻³ ± 2,3 x 10 ⁻⁴	
Vitamina-C	99,8%	92,8%	4,3 X 10 ⁻² ± 1,9 x 10 ⁻²	

 Tabela 27 Resultado do teste de atividade antioxidante

NA – não apresentou atividade

4.7 Atividade nematicida

O extrato etanólico das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foram submetidos ao ensaio de atividade nematicida *in vitro* utilizando nematóides *Meloidogyne incognita* no segundo estágio (J2) obtidos a partir das massas extraídas das raízes de *Vernonia* sp cultivadas em casa de vegetação. As amostras não apresentaram percentual de mortalidade satisfatório na concentração de 1000 ppm. Portanto, pode-se concluir que o índice de mortalidade das amostras analisadas é maior que 1000 ppm. Os resultados de atividade nematicida dos extratos encontram-se na **Tabela 28**, **p. 215**, com seus respectivos percentuais de mortalidade.
	Percentual de mortalidade dos juvenis J2 de Meloidogyne incógnita				
Amostras					
	%R1	%R2	%R3	%M	DP
EEBP	16,00	15,00	16,41	15,80	0,72
EEBM	0	0	0	0	0
* Branco	0	0	0	0	0

Tabela 28 Resultado do ensaio de atividade nematicida

%R= Porcentagem da Repetição

%M = Média da Porcentagem

DP= Desvio Padrão

* Branco = DMSO 2

4.8 Atividade inibidora da enzima acetilcolinesterase (AChE)

Os extratos etanólicos das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foram testados quanto a inibição da enzima AChE. Os dois extratos mostraram-se potentes, sendo observado através da placa de CCD a presença de halos brancos, indicando ação inibitória sobre a enzima AChE. Os halos de inibição (HI) dos dois extratos foram de 0,9 cm, resultado igual ao do controle positivo sal de Eserina (**Tab. 29**).

Tabela 29 Resultado do ensaio de inibição da enzima AChEAmostrasHI (cm)ResultadoSal de Eserina0,9PositivoEEBP0,9Positivo

0,9

4.9 Determinação de fenóis totais

EEBM

O teor de fenóis foi determinado através da equação da reta e expresso em mg de equivalente de ácido gálico (EAG) por g de amostra. O conteúdo total de polifenóis presente nos extratos etanólicos das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foi de $64,6 \pm 1,8 = 49,1 \pm 0,2$ mg de EAG/g de amostra, respectivamente.

Positivo

5 PARTE EXPERIMENTAL

5.1 Material vegetal

O trabalho de pesquisa realizado teve como objetivo o estudo fitoquímico de constituintes fixos e voláteis das espécies *Bauhinia pentandra* (Bong.) D.Dietr. e *Bauhinia monandra* Kurz. As folhas foram coletadas no Horto de Plantas Medicinais da Universidade Federal do Ceará (UFC). As exsicatas devidamente determinadas encontram-se depositadas no Herbário Prisco Bezerra do Departamento de Biologia (UFC), onde foram identificadas e registradas sob os números 53444 e 53095, respectivamente.

5.2 Métodos cromatográficos

5.2.1 Cromatografia em coluna (CC)

As cromatografias de adsorção em coluna foram executadas utilizando gel de sílica 60, com granulometria de 70-230 mesh, da marca Vetec (cromatografia gravitacional). O comprimento e o diâmetro das colunas variaram de acordo com as quantidades das amostras a serem cromatografadas e com a quantidade de gel de sílica empregada.

Os solventes utilizados nos procedimentos cromatográficos foram: hexano, diclorometano, acetato de etila e metanol, puros ou em misturas binárias em proporção crescente de polaridade. Os solventes utilizados nos procedimentos eram de qualidade P.A. A remoção dos solventes dos extratos e das frações resultantes das cromatografias foi realizada em evaporador rotativo BUCHI.

5.2.2 Cromatografia em coluna de fase reversa (C18)

As cromatografias em coluna de fase reversa C18 foram realizadas em cartuchos de octadecil-silica utilizando colunas Phenomenex.

5.2.3 Cromatografia em camada delgada (CCD)

Nas cromatografias em camada delgada (CCD) foram usadas cromatoplacas de gel de sílica 60, 2-25 μ m, com indicador de fluorescência na faixa de 254 nm (Merck).

As revelações das substâncias nas cromatoplacas foram realizadas pela imersão em solução de vanilina ($C_8H_8O_3$) e ácido perclórico (HClO₄) em etanol (C_2H_6O), seguido de aquecimento com soprador térmico.

5.2.4 Cromatografia líquida de alta eficiência (CLAE)

A cromatografia líquida de alta eficiência (CLAE) foi realizada em equipamento da marca SHIMADZU, constituído por duas bombas de alta pressão, modelo LC-20AT, e detector UV-Vis, modelo SPD-M20A. Foram utilizadas colunas semi-preparativas de fase normal (gel de sílica, 250 x 10 mm, 5 μ m) e de fase reversa (C18, 250 x 10 mm, 10 μ m). Como fase móvel foram utilizados solventes com grau de pureza CLAE: hexano e acetato de etila para a coluna de fase normal, e metanol e água deionizada para a de fase reversa. Os solventes foram filtrados em membrana de nylon com poros de 0,45 μ m. As amostras foram dissolvidas com os solventes usados na fase móvel e filtradas num sistema manual de membrana de teflon com poros de 0,45 μ m.

5.3 Métodos espectroscópicos e espectrométricos

5.3.1 Espectroscopia na região do infravermelho (IV)

Os espectros de absorção na região do infravermelho foram registrados em espectrômetro Perkin-Elmer, modelo Spectrum 100 FT-IR usando o aparato UATR (Universal Attenuated Total Reflectance), pertencente ao Laboratório de Espectrometria de Massas do Nordeste, da Universidade Federal do Ceará (LEMANOR-UFC). Os experimentos foram realizados com as amostras sólidas ou dissolvidas em clorofórmio.

5.3.2 Espectrometria de massas (EM)

Os espectros de massas dos óleos essenciais e dos ésteres metílicos foram obtidos em cromatógrafo gasoso acoplado a espectrômetro de massa (CG-EM SHIMADZU, modelo QP2010), com injetor automático AOC-20i, coluna capilar RTX-5MS (5% fenil e 95% dimetilpolisiloxano, 30 m x 0,25 mm, 0,25 µm) e tendo o hélio (He) como gás de arraste, com vazão de 1,0 mL/min para os óleos essenciais e 1,46 mL/min para os ésteres metílicos.

Para a análise dos óleos essenciais a temperatura do forno foi programada de 40-180°C a uma taxa de 4°C/min, depois de 180-280°C a uma taxa de 20°C/min e mantida a 280°C durante 10 min. A temperatura do injetor e do detector (ou interface) foi de 250 e 300°C, respectivamente.

Para a análise dos ésteres metílicos a temperatura do forno foi programada de 80-280°C a uma taxa de 5°C/min, depois de 280-300°C a uma taxa de 20°C/min e mantida a 300°C durante 5 min. A temperatura do injetor e do detector (ou interface) foi de 250 e 300 °C, respectivamente.

A identificação dos compostos foi feita através de comparação de seus espectros de massas com os da biblioteca NIST08, índices de retenção e dados publicados (ADAMS, 2007). As concentrações dos compostos foram calculadas a partir das áreas dos picos do cromatograma e dispostas por ordem de eluição.

O índice de Kovats (IK) é um índice de retenção que descreve o comportamento de retenção do composto comparativamente ao de uma mistura de alcanos de diferentes números de átomos de carbono. Este índice de retenção fornece informação sobre a sequência de eluição do composto e varia em função da fase estacionária e da temperatura, sendo independente das condições experimentais (JANZANTTI; FRANCO; WOSIACKI, 2003).

Para o cálculo do índice de retenção de Kovats foi necessária à injeção de uma solução padrão de n-alcanos (C7-C30 para os óleos essenciais, C13-C30 para os ésteres metílicos), servindo os tempos de retenção destes para a base de cálculo do índice de Kovats dos componentes do óleo essencial e dos ésteres metílicos.

$$IK = 100[n + (N - n)\frac{t'r(x) - t'r(n)}{t'r(N) - t'r(n)}]$$

Onde:

n: é o número de átomos de carbonos do alcano anterior ao composto desconhecido;

N: é o número de átomos de carbonos do alcano após o composto desconhecido;

ťr(x): é o tempo de retenção ajustado do composto desconhecido;

t'r(n): é o tempo de retenção ajustado do alcano anterior ao composto desconhecido;

t'r(N): é o tempo de retenção ajustado do alcano após o composto desconhecido.

Os espectros de massas de baixa resolução de BP-1, BP-3, BM-1, BM-2 e BM-3 foram obtidos em espectrômetro de massa modelo QP2010 da SHIMADZU, operando em impacto eletrônico (IE) de 70 eV.

Os espectros de massas de alta resolução de BP-3 e BM-5 foram obtidos usando um espectrômetro de massas Waters, modelo Xevo QTOF, equipado com fonte de ionização por *electrospray* (IES), pertencente à Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA).

Os espectros de massas de alta resolução de BP-7 e BP-8 foram obtidos usando um espectrômetro de massas Shimaduz, modelo LCMS-IT-TOF, equipado com fonte de ionização por *electrospray* (IES), pertencente ao Laboratório de Espectrometria de Massas do Nordeste, da Universidade Federal do Ceará (LAMANOR-UFC).

Os espectros de massas de alta resolução de BP-5, BP-6 e BM-4 foram obtidos usando um espectrômetro de massas micrOTOF Bruker, pertencente a Faculdade de Farmácia (USP-Ribeirão Preto), em colaboração com o Prof. Dr. Norberto Peporine e o técnico José Carlos Tomaz.

5.3.3 Espectroscopia de ressonância magnética nuclear de hidrogênio (RMN¹H) e de carbono-13 (RMN¹³C)

Os espectros de RMN ¹H e de RMN ¹³C, uni e bidimensionais, foram obtidos em espectrômetros Bruker, modelo Advance DPX-300 ou DRX-500, pertencentes ao Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear, da Universidade Federal do Ceará (CENAUREMN-UFC), operando na frequência do hidrogênio a 300 e 500 MHz, e na frequência do carbono a 75 e 125 MHz, respectivamente.

Os solventes deuterados utilizados na dissolução das amostras e obtenção dos espectros foram: clorofórmio (CDCl₃) e metanol (CD₃OD). Os deslocamentos químicos (δ) foram expressos em partes por milhão (ppm) e referenciados nos espectros de hidrogênio pelos picos dos hidrogênios pertencentes às moléculas residuais não deuteradas dos solventes deuterados utilizados: clorofórmio (δ_{H} , 7,26) e metanol (δ_{H} , 3,30). Nos espectros de carbono-13 os deslocamentos químicos foram referenciados pelos picos centrais dos carbonos-13 dos solventes: clorofórmio (δ_{C} , 77,0) e metanol (δ_{C} , 49,0).

As multiplicidades dos sinais de hidrogênio foram indicadas segundo a convenção: s (simpleto), sl (simpleto largo) d (dupleto), dd (duplo dupleto), t (tripleto), dt (duplo tripleto), q (quarteto) e m (multipleto).

O padrão de hidrogenação dos carbonos foi determinado através da técnica DEPT (Distortionless Enhancement by Polarization Transfer), com ângulo de nutação de 135° (CH e CH₃ com amplitude positiva em oposição aos CH₂), descrevendo os carbonos segundo a convenção: C (carbono não hidrogenado), CH (carbono metínico), CH₂ (carbono metilênico) e CH₃ (carbono metílico). Os carbonos não hidrogenados foram caracterizados pela subtração dos sinais do espectro DEPT 135° do espectro ¹³C-CPD.

5.4 Métodos físicos

5.4.1 Rotação ótica

As medidas de rotação óptica foram obtidas em polarímetro Jasco, modelo P-2000, pertencente ao Laboratório de Espectrometria de Massa do Nordeste, da Universidade Federal do Ceará (LAMANOR-UFC), operando em comprimento de onda de 589 nm e temperatura de 22 °C.

5.5 Estudo dos constituintes voláteis de B. pentandra

5.5.1 Obtenção dos óleos essenciais de B. pentandra por hidrodestilação

Os óleos essenciais foram obtidos por hidrodestilação em aparelho do tipo Clevenger. O material utilizado (folhas frescas e secas) foi acondicionado em um balão de 5 L, juntamente com 3,0 L de água destilada e mantido sob refluxo durante 5,0 h. A mistura água/óleo coletada no doseador foi separada, o hidrolato foi desprezado e o óleo essencial foi seco com sulfato de sódio anidro, filtrado e, em seguida, analisado por CG-EM . Para obtenção dos óleos foram utilizados 140 g de folhas secas e 162 g de folhas frescas e obteve-se 0,043 e 0,018 g de óleo, com rendimentos de 0,03 e 0,01%, respectivamente.

5.5.2 Obtenção dos óleos essenciais de B. pentandra por microextração em fase sólida (MEFS)

As análises dos constituintes voláteis extraídos por microextração em fase sólida foram feitas no modo *headspace (MEFS-HS)* da seguinte maneira: folhas secas e frescas de *Bauhinia pentandra* (100 mg) foram acondicionadas em um frasco de vidro de 40 mL lacrado com septo de silicone e mantidos em banho-maria. Estudos de otimização do método foram realizados para investigação das condições ótimas de extração. Os parâmetros investigados foram temperatura (60 e 70°C) e tempo de extração (10 e 20 min). A extração ideal ocorreu a 70°C e 10 min, que foi o período que a fibra ficou exposta no headspace do frasco contendo a amostra. Os analitos voláteis extraídos foram

imediatamente analisados por CG-EM. As análises foram realizadas em duplicatas.

A fibra de extração utilizada foi de polidimetilsiloxano/divinilbenzeno (PDMS/DVB), a qual foi condicionada de acordo com as prescrições do fornecedor antes da utilização. Este experimento foi realizado em colaboração com o laboratório LABFITO (Laboratório de Fitoquímica Aplicada)-UFC.

5.6 Estudo dos constituintes fixos de *B. pentandra* e *B. monandra*

5.6.1 Preparação dos extratos

• Extrato hexânico

Folhas de *B. pentandra* e de *B. monandra* (55 e 210 g, respectivamente) foram secas a temperatura ambiente, trituradas e submetidas à extração com hexano. Em seguida, foram concentrados sob pressão reduzida, fornecendo os respectivos extratos (**Tab. 30**).

• Extrato etanólico

Folhas de *B. pentandra* e de *B. monandra* (507 e 225 g, respectivamente) foram secas a temperatura ambiente, trituradas e submetidas à extração com etanol. Em seguida, foram concentrados sob pressão reduzida, fornecendo os respectivos extratos (**Tab. 30**).

Extrato	Sigla	Massa (g)	Rendimento (%)
Hexânico <i>B. pentandra</i>	EHBP	0,924	1,68
Hexânico <i>B. monandra</i>	EHBM	2,39	1,14
Etanólico <i>B. pentandra</i>	EEBP	80,7	15,9
Etanólico <i>B. monandra</i>	EEBM	62,3	27,7

5.6.2 Perfil de ácidos graxos de B. pentandra e B. monandra

5.6.2.1 Reação de saponificação e obtenção dos ácidos graxos livres

Os extratos hexânicos de *B. pentandra* (EHBP, 924 mg) e de *B. monandra* (EHBM, 1,7 g) foram dissolvidos em 15 mL de MeOH e acondicionados em balões de 125 mL contendo hidróxido de potássio (924 mg para EHBP e 1,7 g para EHBM) e pedras de ebulição. As misturas reacionais foram mantidas sob refluxo durante 1 h para obtenção dos sais de ácidos graxos. Após este período, as misturas foram resfriadas a temperatura ambiente e transferidas para funis de separação, onde foram adicionados 40 mL de água destilada em cada e as fases orgânicas (soluções insaponificáveis) foram separadas através de extração com hexano (2x50 mL). As fases aquosas foram acidificadas com HCI concentrado até pH 3 e, em seguida, extraídas com AcOEt (2x50 mL). As frações orgânicas foram secas com sulfato de sódio anidro, filtradas e concentradas sob pressão reduzida, fornecendo 344,3 e 288,9 mg de ácidos graxos livres de *B. pentandra* e de *B. monandra*, respectivamente (**Flux. 1, p. 224**).

Fluxograma 1 Saponificação dos extratos hexânicos de *B. pentandra* e *B. monandra*

5.6.2.2 Reação de metilação e obtenção dos ésteres metílicos

Os ácidos graxos livres de *B. pentandra* (344,3 mg) e de *B. monandra* (288,9 mg) foram acondicionados em balões de 100 mL com 10 mL de MeOH e 1,0 mL de HCl concentrado, sendo submetidos a refluxo por 1 h. Após resfriamento em temperatura ambiente, as misturas reacionais foram transferidas para funis de separação, onde foram adicionados 30 mL de água destilada em cada e os ésteres metílicos dos ácidos graxos foram extraídos com CH₂Cl₂ (3x30 mL). As frações orgânicas foram secas com sulfato de sódio anidro, filtradas e concentradas sob pressão reduzida, fornecendo 221,7 e 332,1 mg de ésteres metílicos de *B. pentandra* e de *B. monandra*, respectivamente. Em seguida, foram purificados em coluna cromatográfica contendo gel de sílica como adsorvente e hexano e CH₂Cl₂ como eluentes. As frações obtidas da coluna foram analisadas por CCD e, em seguida, por CG-EM (**Flux. 2, p. 225**).

5.6.3 Fracionamento cromatográfico do extrato EEBP

12,7 e 20,0 g de EEBP foram, separadamente, adsorvidos em gel de sílica, pulverizados em gral de porcelana e submetidos à coluna gravitacional e a vácuo, respectivamente. Os eluentes utilizados foram: hexano, CH₂Cl₂, AcOEt e MeOH, puros em ordem crescente de polaridade. As frações coletadas foram concentradas sob pressão reduzida e as massas obtidas estão descritas nas **Tabelas 31 e 32, p. 226**.

Fluente	Freeão	Magaa (g)
Eluente	Fração	Massa (g)
Hexano	EEBP-G(H)	0,009
Diclorometano	EEBP-G(D)	3,00
Acetato de etila	EEBP-G(AE)	0,448
Metanol	EEBP-G(M)	6,94
Total		10,4 g

.... . ..

Tabela 32 Dados referentes ao fracionamento cromatográfico a vácuo de EEBP

Eluente	Fração	Massa (g)
Hexano	EEBP-V(H)	1,01
Diclorometano	EEBP-V(D)	1,25
Acetato de etila	EEBP-V(AE)	1,97
Metanol	EEBP-V(M)	12,8
Total		17,0

Uma alíquota de EEBP (5,0 g) foi dissolvida em um sistema MeOH/H₂O 50% (100 mL) e então particionado em um funil de separação com solventes de polaridade crescente: hexano, CH₂Cl₂ e AcOEt (3x100 mL). As frações obtidas foram secas com sulfato de sódio anidro e concentradas em evaporador rotativo, fornecendo as massas descritas na Tabela 33. O resíduo da partição foi denominado de fração hidroalcoólica.

Tabela 33 Dados referentes à partição líquido-líquido de EEBP

Solvente	Fração	Massa (g)
Hexano	EEBP-P(H)	0,875
Diclorometano	EEBP-P(D)	0,494
Acetato de etila	EEBP-P(AE)	0,331
Hidroalcoólico	EEBP-P(HA)	2,80
Total		4,50 g

5.6.3.1 Fracionamento cromatográfico da fração EEBP-G(D)

A fração EEBP-G(D) (3,0 g) foi adsorvida em gel de sílica, pulverizada em gral de porcelana e acondicionada sobre gel de sílica para fracionamento

cromatográfico. Os solventes empregados na eluição das frações foram: hexano, CH₂Cl₂, AcOEt e MeOH, puros ou em misturas binárias aumentando gradativamente a polaridade. Foram obtidas 111 frações que foram reunidas após análise em CCD (**Tab. 34**).

Eluente	Frações	Frações reunidas	Massa (g)
Hexano/CH ₂ Cl ₂ (80:20)	1-7	F 1-14	0,0306
Hexano/CH ₂ Cl ₂ (70:30)	8-19	F 15-21	0,0540
Hexano/CH ₂ Cl ₂ (60:40)	20-30	F 22-32	0,0400
Hexano/CH ₂ Cl ₂ (40:60)	31-41	F 33-39	0,0520
Hexano/CH ₂ Cl ₂ (20:80)	42-52	F 40-47	0,0745
CH ₂ Cl ₂	53-63	F 48-68	0,2210
CH ₂ Cl ₂ /AcOEt (50:50)	64-75	F 69-71	0,0263
AcOEt	76-86	F 72-73	0,6700
AcOEt/MeOH (50:50)	87-97	F 74-77	0,1266
MeOH	98-111	F 78-83	0,0838
		F 84-90	0,0831
		F 91-97	0,5778
		F 98-111	0,1527
Total			2,1924

Tabela 34 Dados referentes ao fracionamento cromatográfico de EEBP-G(D)

5.6.3.2 Fracionamento cromatográfico da F 15-21 e isolamento de BP-1

A fração F 15-21 (54 mg) foi submetida a fracionamento cromatográfico em gel de sílica utilizando como eluentes hexano, CH₂Cl₂, AcOEt e MeOH em escala crescente de polaridade. Foram coletadas 85 frações que, após análise por CCD resultou no isolamento de 14 mg de um sólido amorfo branco, solúvel em CHCl₃, codificado de BP-1 (**Flux. 3, p. 235**).

5.6.3.3 Fracionamento cromatográfico da F 72-73

A fração F 72-73 (670 mg) foi submetida a tratamento cromatográfico em gel de sílica utilizando como solventes CH₂Cl₂, AcOEt e MeOH em ordem

crescente de polaridade. Foram coletadas 146 frações que, após análise em CCD foram reunidas de acordo com suas semelhanças (**Tab. 35**).

Eluente	Frações	Frações reunidas	Massa (g)
CH ₂ Cl ₂	1-14	F 1-20	0,0065
CH ₂ Cl ₂ /AcOEt (90:10)	15-27	F 21-24	0,3462
CH ₂ Cl ₂ /AcOEt (80:20)	28-40	F 25-34	0,1542
CH ₂ Cl ₂ /AcOEt (70:30)	41-54	F 35-59	0,0893
CH ₂ Cl ₂ /AcOEt (60:40)	55-65	F 60-146	0,0630
CH ₂ Cl ₂ /AcOEt (50:50)	66-75		
CH ₂ Cl ₂ /AcOEt (40:60)	76-85		
CH ₂ Cl ₂ /AcOEt (30:70)	86-95		
CH ₂ Cl ₂ /AcOEt (20:80)	96-105		
CH ₂ Cl ₂ /AcOEt (10:90)	106-115		
AcOEt	116-125		
AcOEt/MeOH (50:50)	126-135		
MeOH	136-146		
Total			0,6592

 Tabela 35 Dados referentes ao fracionamento cromatográfico de F 72-73

5.6.3.4 Fracionamento cromatográfico da F 25-34

A fração F 25-34 (154,2 mg) foi submetida a coluna cromatográfica em gel de sílica, a qual foi eluída com CH_2CI_2 , AcOEt e MeOH, aumentando gradativamente a polaridade e obtendo-se 112 frações. Após análise por CCD foi possível reunir as frações com mesmo perfil cromatográfico (**Tab. 36**).

Tabela 36 Dados referentes ao fracionamento cromatografico de F 25-34			
Eluente	Frações	Frações reunidas	Massa (g)
CH ₂ Cl ₂	1-9	F 1-15	0,0021
CH ₂ Cl ₂ /AcOEt (95:05)	10-23	F 16-25	0,0575
CH ₂ Cl ₂ /AcOEt (90:10)	24-36	F 26-33	0,0257
CH ₂ Cl ₂ /AcOEt (85:15)	37-50	F 33-44	0,0202
CH ₂ Cl ₂ /AcOEt (80:20)	51-63	F 45-59	0,0106
CH ₂ Cl ₂ /AcOEt (75:25)	64-76	F 60-91	0,0125

Tabela 36 Dados referentes ao fracionamento cromatográfico de F 25-34

			Parte Experimetal
CH2Cl2/AcOEt (70:30)	77-89	F 92-101	0,0070
CH ₂ Cl ₂ /AcOEt (60:40)	90-94	F 102-109	0,0075
CH ₂ Cl ₂ /AcOEt (50:50)	95-98	F 110-112	0,0080
CH ₂ Cl ₂ /AcOEt (20:80)	99-103		
AcOEt	104-107		
MeOH	108-112		
Total			0,1511

229

5.6.3.5 Fracionamento cromatográfico da F 16-25 e isolamento de BP-2

A fração F 16-25 (57,5 mg) foi recromatografada em gel de sílica utilizando como eluentes hexano, CH_2CI_2 , AcOEt e MeOH em escala crescente de polaridade. Neste fracionamento foram coletadas 105 frações que, após análise por CCD, resultou no isolamento de 22,6 mg de um sólido cristalino branco, solúvel em CHCI₃, codificado de BP-2 (**Flux. 3, p. 235**).

5.6.3.6 Fracionamento cromatográfico da fração EEBP-G(AE) e isolamento de BP-3

Parte da fração EEBP-G(AE) (72,4 mg), obtida do fracionamento cromatográfico do extrato EEBP, foi adsorvida em gel de sílica, pulverizada em gral de porcelana e devidamente acondicionada sobre gel de sílica em coluna cromatográfica. A eluição foi realizada empregando os solventes: CH₂Cl₂, AcOEt e MeOH, puros ou em misturas binárias em ordem crescente de polaridade. Foram coletadas um total de 52 frações que, depois de analisadas por CCD, resultou no isolamento de 13,4 mg de um líquido viscoso de cor marrom, solúvel em CHCl₃, codificado de BP-3 (**Flux. 3, p. 235**).

5.6.3.7 Fracionamento cromatográfico da fração EEBP-G(M)

Parte da fração EEBP-G(M) (601 mg), obtida do fracionamento cromatográfico do extrato EEBP, foi adsorvida em gel de sílica, pulverizada em gral de porcelana e acondicionada em coluna cromatográfica contendo gel de sílica. A eluição foi realizada empregando os solventes: CH₂Cl₂ e MeOH, puros

ou em misturas binárias em gradiente crescente de polaridade. Foram obtidas 84 frações que foram reunidas após análise em CCD (**Tab. 37**).

Eluente	Frações	Frações reunidas	Massa (g)
CH ₂ Cl ₂ /MeOH (80:20)	1-16	F 1-10	0,0138
CH ₂ Cl ₂ /MeOH (60:40)	17-36	F 11-18	0,0593
CH ₂ Cl ₂ /MeOH (40:60)	37-56	F 19-23	0,0474
CH ₂ Cl ₂ /MeOH (20:80)	57-73	F 24-26	0,0606
MeOH	74-84	F 27-30	0,1414
		F 31-41	0,1179
		F 42-47	0,0346
		F 48-52	0,0143
		F 53-84	0,0380
Total			0,5273

 Tabela 37 Dados referentes ao fracionamento cromatográfico de EEBP-G(M)

5.6.3.8 Fracionamento cromatográfico da F 27-30 e isolamento de BP-4

A fração F 27-30 (141,4 mg) foi recromatografada em CLAE, onde foi solubilizada em 7 mL de metanol/água 1:1 e filtrada num sistema manual de filtros. Em seguida, 200 μL da amostra foi injetada em coluna semi-preparativa de C18 (250 x 10 mm, 10 μm), num sistema isocrático utilizando como fase móvel metanol/água 1:1, fluxo de 1,0 mL/min e temperatura de 30°C. O cromatograma (**Fig. 211, p. 231**) apresentou três picos referentes a três substâncias, que foram coletadas e concentradas em evaporador rotativo. A substância 2 forneceu 30 mg de um líquido viscoso de cor amarela, solúvel em MeOH, codificado de BP-4 (**Flux. 3, p. 235**). As substâncias 1 e 3 apresentaram baixa massa e/ou impureza, o que impossibilitou a obtenção dos espectros.

5.6.3.9 Fracionamento cromatográfico da fração EEBP-V(AE)

A fração EEBP-V(AE) (1,97 g) foi adsorvida em gel de sílica, pulverizada em gral de porcelana e acondicionada sobre coluna cromatográfica. Os solventes empregados na eluição das frações foram: hexano, AcOEt e MeOH, puros ou em misturas binárias aumentando gradativamente a polaridade. Foram obtidas 125 frações que foram reunidas após análise em CCD (**Tab. 38**).

Eluente Frações reunidas Massa (g) Frações Hexano 1-5 F 1-15 0,0105 Hexano/AcOEt (80:20) 6-17 F 16-22 0,0125 Hexano/AcOEt (60:40) 18-29 F 23-27 0,0018 Hexano/AcOEt (40:60) 30-41 F 28-34 0,0144 Hexano/AcOEt (20:80) 42-53 F 35-36 0,0065 AcOEt F 37-48 54-65 0,0649 AcOEt/MeOH (80:20) 66-77 F 49 0,0090 F 50-59 AcOEt/MeOH (60:40) 78-89 0,0775 AcOEt/MeOH (40:60) 90-101 F 60-69 0,0936 AcOEt/MeOH (20:80) F 70-78 1,0428 102-113 MeOH 114-125 F 79-87 0,5147 F 88-95 0,0461

Tabela 38 Dados referentes ao fracionamento cromatográfico de EEBP-V(AE)

		232 Parte Experimetal
	F 96-104	0,0316
	F 105-125	0,0186
Total		1,9445

5.6.3.10 Fracionamento cromatográfico da F 60-69 e isolamento de BP-5 e BP-6

A fração F 60-69 foi recromatografada em CLAE, onde 93,6 mg da amostra foi solubilizada em 4,7 mL de uma mistura de solventes metanol/água na proporção 1:9 e, em seguida, filtrada num sistema manual de filtros. Logo após, 200 μL da amostra foi injetada em coluna semi-preparativa de C18 (250 x 10 mm, 10 μm), num sistema isocrático utilizando como fase móvel metanol/água 1:9 e fluxo de 4,0 mL/min. Foram observados três picos no cromatograma (**Fig. 212**) referentes a três substâncias, as quais foram coletadas e concentradas sob pressão reduzida. As substâncias 2 e 3 forneceram 15,5 e 10,7 mg, respectivamente, e apresentaram-se como uma resina de coloração laranja, solúveis em MeOH, codificadas de BP-5 e BP-6 (**Flux. 4, p. 236**). A substância 1 apresentou-se impura.

Figura 212 Cromatograma das substâncias BP-5 e BP-6

5.6.3.11 Fracionamento cromatográfico da fração EEBP-P(AE)

A fração EEBP-P(AE) (331 mg) foi cromatografada em coluna contendo gel de sílica, a qual foi eluída com hexano, AcOEt e MeOH, aumentando

gradativamente a polaridade. Foram obtidas 92 frações que, após análise por CCD, foram reunidas (**Tab. 39**).

Eluente	Frações	Frações reunidas	Massa (g)
Hexano/AcOEt (80:20)	1-12	F 1-10	0,0033
Hexano/AcOEt (60:40)	13-24	F 11-14	0,0018
Hexano/AcOEt (50:50)	25-35	F 15-19	0,0029
Hexano/AcOEt (40:60)	36-46	F 20-24	0,0024
Hexano/AcOEt (30:70)	47-57	F 25-27	0,0021
Hexano/AcOEt (20:80)	58-63	F 28	0,0010
AcOEt	64-69	F 29-34	0,0042
AcOEt/MeOH (80:20)	70-81	F 35	0,0012
MeOH	82-92	F 36-40	0,0016
		F 41-44	0,0013
		F 45-75	0,0160
		F 76-77	0,0391
		F 78-79	0,0303
		F 80-92	0,1800
Total			0,2872

 Tabela 39 Dados referentes ao fracionamento cromatográfico de EEBP-P(AE)

5.6.3.12 Fracionamento cromatográfico da F 80-92 e isolamento de BP-7 e BP-8

A fração F 80-92 (180 mg) foi recromatografada em CLAE, onde foi solubilizada em 9,0 mL de uma mistura de metanol/água na proporção 1:9 e filtrada num sistema manual de filtros. Em seguida, 200 μL da amostra foi injetada em coluna semi-preparativa de C18 (250 x 10 mm, 10 μm), num sistema isocrático utilizando como fase móvel metanol/água 1:9 e fluxo de 3,0 mL/min. No cromatograma (**Fig. 213, p. 234**) foram observados quatro picos referentes a quatro substâncias, as quais foram coletadas e concentradas sob pressão reduzida. As substâncias 2 e 3 forneceram 5,3 e 9,3 mg, respectivamente, e apresentaram-se como uma resina de coloração marrom, solúveis em MeOH, codificadas de BP-7 e BP-8 (**Flux. 5, p. 237**). As

substâncias 1 e 4 apresentaram baixa massa, impossibilitando a obtenção dos espectros.

Figura 213 Cromatograma das substâncias BP-7 e BP-8

Fluxograma 3 Rota esquemática do isolamento das substâncias BP-1, BP-2, BP-3 e BP-4

Fluxograma 4 Rota esquemática do isolamento das substâncias BP-5 e BP-6

Fluxograma 5 Rota esquemática do isolamento das substâncias BP-7 e BP-8

5.6.4 Fracionamento cromatográfico do extrato EEBM

Parte do extrato EEBM (15 g) foi adsorvido em gel de sílica, pulverizado em gral de porcelana e submetido a fracionamento cromatográfico a vácuo utilizando como eluentes hexano, AcOEt e MeOH, puros em ordem crescente de polaridade. As frações coletadas foram concentradas sob pressão reduzida e as massas obtidas estão descritas na Tabela 40.

Eluente	Fração	Massa (g)
Hexano	EEBM(H)	1,13 g
Acetato de etila	EEBM(AE)	2,24 g
Metanol	EEBM(M)	8,61 g
Total		12,0 g

Tabela 40 Dados referentes ao fracionamento cromatográfico de EEBM

5.6.4.1 Fracionamento cromatográfico da fração EEBM(AE)

A fração EEBM(AE) (2,24 g), obtida do fracionamento cromatográfico do extrato EEBM, foi adsorvida em gel de sílica, pulverizada em gral de porcelana e submetida a coluna cromatográfica sobre gel de sílica. Os solventes usados na eluição foram: hexano, AcOEt e MeOH, puros ou em misturas binárias, aumentando gradativamente a polaridade, obtendo-se 156 frações. Após análise em CCD, as frações semelhantes foram reunidas (Tab. 41).

Tabela 41 Dados referentes ao fracionamento cromatográfico de EEBM(AE)			
Eluente	Frações	Frações reunidas	Massa (g)
Hexano	1-50	F 1-61	0,0400
Hexano/AcOEt (80:20)	51-62	F 62-70	0,8500
Hexano/AcOEt (60:40)	63-73	F 71-80	0,4719
Hexano/AcOEt (40:60)	74-85	F 81-89	0,1230
Hexano/AcOEt (20:80)	86-97	F 90-97	0,1110
AcOEt	98-109	F 98-118	0,1093
AcOEt/MeOH (80:20)	110-121	F 119-148	0,5024
AcOEt/MeOH (50:50)	122-133	F 149-156	0,0182

AcOEt/MeOH (20:80)	134-144	
MeOH	145-156	
Total		2,2258

5.6.4.2 Fracionamento cromatográfico da F 62-70

A fração F 62-70 (850 mg) foi submetida a fracionamento cromatográfico em gel de sílica, utilizando como solventes hexano, AcOEt e MeOH, em escala crescente de polaridade. Foram obtidas 110 frações que foram reunidas após análise em CCD (Tab. 42).

Eluente	Frações	Frações reunidas	Massa (g)
Hexano	1-21	F 1-28	0,0321
Hexano/AcOEt (95:05)	22-33	F 29-32	0,2580
Hexano/AcOEt (90:10)	34-46	F 33-35	0,0563
Hexano/AcOEt (85:15)	47-59	F 36-41	0,1000
Hexano/AcOEt (80:20)	60-72	F 42-50	0,0673
Hexano/AcOEt (70:30)	73-85	F 51-58	0,1119
Hexano/AcOEt (60:40)	86-97	F 59-68	0,0772
AcOEt	98-103	F 69-75	0,0272
MeOH	104-110	F 76-79	0,0143
		F 80-110	0,0211
Total			0,7654

Fabela 42 Dados referentes ao fracionamento cromatográfico de E 62-70

5.6.4.3 Fracionamento cromatográfico da F 29-32 e isolamento de BM-1 e BM-2

A fração F 29-32 foi recromatografada em CLAE, sendo que 258 mg da amostra foi solubilizada em 12,9 mL de hexano/acetato de etila na proporção 95:5 e, em seguida, filtrada num sistema manual de filtros. Em seguida, 200 μL da amostra foi injetada em coluna semi-preparativa de gel de sílica (250 x 10 mm, 5 µm), num sistema isocrático utilizando como fase móvel hexano/acetato de etila 95:5 e fluxo de 3,0 mL/min. Foram observados no

cromatograma (**Fig. 214**) nove picos referentes a nove substâncias, as quais foram coletadas e concentradas sob pressão reduzida. As substâncias 3 e 8 forneceram 15,7 e 18,0 mg, respectivamente, e apresentaram-se como um líquido viscoso de cor amarelo, solúveis em CHCl₃ e codificadas de BM-1 e BM-2 (**Flux. 6, p. 243**). As demais substâncias coletadas apresentaram baixa massa e/ou características impuras.

5.6.4.4 Fracionamento cromatográfico da F 36-41 e isolamento de BM-3

A fração F 36-41 (100 mg) foi recromatografada em gel de sílica utilizando como eluentes hexano, CH_2Cl_2 , AcOEt e MeOH em ordem crescente de polaridade. Foram coletadas 90 frações que após análise por CCD forneceu 7,3 mg de um sólido branco, solúvel em CHCl₃, codificado de BM-3 (**Flux. 6, p. 243**).

5.6.4.5 Fracionamento cromatográfico da fração EEBM(M)

Uma alíquota de 1,0 g de EEBM(M) foi dissolvida em 2,5 mL de água destilada e submetida a fracionamento cromatográfico em cartucho de SPE-C18. Os eluentes usados foram água e MeOH, seguindo um gradiente decrescente de polaridade. Deste procedimento foram obtidas 60 frações que após análise em CCD foram reunidas (**Tab. 43, p. 241**).

Tabela 43 Dados referentes ao fracionamento cromatográfico de EEBM(M)			
Eluente	Frações	Frações reunidas	Massa (g)
Água	1-5	F 1-2	0,4594
Água/MeOH (80:20)	6-14	F 3-17	0,1486
Água/MeOH (60:40)	15-23	F 18-29	0,1321
Água/MeOH (40:60)	24-33	F 30-31	0,0132
Água/MeOH (20:80)	34-42	F 32-38	0,0221
MeOH	43-60	F 39-40	0,0066
		F 41-45	0,0080
		F 46-48	0,0153
		F 49-53	0,0103
		F 54-60	0,0295
Total			0,8451

5.6.4.6 Fracionamento cromatográfico da F 3-17 e isolamento de BM-4 e BM-5

A fração F 3-17 foi recromatografada em CLAE, sendo que 148,6 mg da amostra foi solubilizada em 7,4 mL metanol/água na proporção 5:95 e, em seguida, filtrada num sistema manual de filtros. Em seguida, 200 μ L da amostra foi injetada em coluna semi-preparativa de C18 (250 x 10 mm, 10 μ m), num sistema isocrático utilizando como fase móvel metanol/água 5:95 e fluxo de 2,0 mL/min. Cinco picos referentes a cinco substâncias foram observados no cromatograma (**Fig. 215, p. 242**), que foram coletadas e concentradas sob pressão reduzida. As substâncias 4 e 5 forneceram 18,6 e 4,8 mg, respectivamente, as quais apresentaram características de uma resina de coloração marrom, solúveis em MeOH e codificadas de BM-4 e BM-5 (**Flux. 6, p. 243**). As demais apresentaram-se impuras e/ou com baixa massa.

Fluxograma 6 Rota esquemática do isolamento das substâncias BM-1, BM-2, BM-3, BM-4 e BM-5

5.7 Atividade antioxidante: método de seqüestro do radical DPPH

O extrato etanólico das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foram submetidos ao teste de atividade antioxidante. A metodologia utilizada no teste foi a do seqüestro de radicais livres, semelhante a descrita por Hegazi e El Hady (2002), onde o radical utilizado foi o DPPH (2,2-difenil-1-picrilidrazila, **Fig. 208**). Amostras nas concentrações de 0,001; 0,005; 0,01; 0,05; 0,1 e 1,0 mg/mL foram dissolvidas em metanol e 1,0 mL de cada foi adicionada a uma solução metanólica de DPPH (1,0 mL) na concentração de 60 μmol.L⁻¹. Foram realizadas medidas de absorbância na faixa de 520 nm em espectrofotômetro de UV-VIS VARIAN Cary, após 30 min. A porcentagem de inibição (%I) foi obtida por comparação da absorção da solução contendo amostra em relação a uma solução controle de DPPH sem amostra.

%I = (1 – Abs. da amostra/Abs. do DPPH) x 100

Após o cálculo, foi construído um gráfico de porcentagem de inibição versus a concentração. Para o cálculo do IC_{50} (concentração da amostra com capacidade de reduzir 50% do DPPH) foi utilizada a equação da reta, substituindo o valor de y por 50.

O teste foi realizado em triplicatas. Como padrões positivos de referência utilizaram-se Trolox (ácido 6-hidróxi-2,5,7,8-tetrametilcroman-2-carboxílico, **Fig. 208**) e Vitamica-C (ácido ascórbico, **Fig. 208**), adquiridos da Sigma Aldrich.

Figura 216 Estruturas do DPPH, Trolox e Vitamina-C

5.8 Atividade nematicida in vitro

O extrato etanólico das folhas de *B. pentandra* (EEBP) e *B. monandra* (EEBM) foram submetidos ao ensaio de atividade nematicida *in vitro*. Os bioensaios foram realizados em triplicatas com cerca de 100 juvenis de nematóides *Meloidogyne incognita* no segundo estágio (J2) acondicionados em placas de Elisa, juntamente com as amostras dissolvidas em uma solução de DMSO 2% a uma concentração inicial de 1000 ppm durante 24 h. Em seguida foram feitas leituras do índice de mortalidade ou inatividade através da contagem de nematóides com o auxílio de uma lupa. Os ensaios foram realizados no LABFITO (Laboratório de Fitoquímica Aplicada) pela estudante Roberta Rodrigues Rocha.

5.9 Ensaio para inibição da enzima acetilcolinesterase (AChE)

Este ensaio é baseado em procedimento descrito por Ellman *et al.*(1961), adaptado para CCD por Rhee *et al.* (2001). É considerado um método colorimétrico e que pode ser utilizado de forma qualitativa e quantitativa, mas nesse trabalho foi utilizada somente a forma qualitativa. É um método rápido e sensível para a seleção de amostras com ação anticolinesterásica.

A metodologia consiste em retirar uma alíquota de 5µl dos extratos (EEBP e EEBM) na concentração 10 mg/mL e aplicar em uma cromatoplaca. Após a evaporação do solvente, foi borrifado uma mistura (1:1) de iodeto de acetilcolina (ATCI) 1mmol.L⁻¹ com o reagente de Ellman (ácido 5,5' – Ditiobis-(2 –nitrobenzóico, DTNB, 1 mmol.L⁻¹), deixando em repouso por 3 min para a secagem da placa. Em seguida foi borrifado a enzima acetilcolinesterase (3U/ml). Após 10 minutos, ocorre o surgimento de uma coloração amarela, porém, onde há inibição da enzima, observa-se um halo branco em torno dos "spots" onde foram aplicadas as amostras. Em 20-30 min a coloração desaparece.

Como controle positivo, foi utilizado solução do padrão sal de Eserina (2 mg/mL) e como controle negativo, foram utilizados solventes. Os ensaios foram

realizados no LPNQUIMED (Laboratório de Produtos Naturais e Química Medicinal) pela pesquisadora Irvila Ricarte de Oliveira.

5.10 Determinação de fenóis totais

A quantificação do teor de compostos fenólicos presentes nos extratos (EEBP e EEBM) foi determinado pelo método de Folin-Ciocalteau com modificações (BONOLI *et al.*, 2004).

Uma curva analítica foi construída usando o ácido gálico, dissolvido em metanol, no intervalo de concentrações de 0,1 a 2,5 mg/L. Alíquotas de 100 μ L da solução metanólica das amostras (1000 mg/L) foram transferidas para balões volumétricos de 10 mL. Em seguida, foram adicionados 500 μ L do reagente Folin-Ciocalteau, 6 mL de água destilada e agitou-se por 1 min. Logo após, adicionaram-se 2 mL de Na₂CO₃ (15%) e agitou-se por 30 seg. O volume dos balões volumétricos foram completados com água destilada. O "branco" foi preparado concomitante. As absorbâncias das amostras foram medidas após 2 h de reação em espectrofotômetro de UV-VIS VARIAN Cary, no comprimento de onda de 750 nm.

O teor de fenóis totais foi determinado usando a curva analítica de ácido gálico e os valores foram expressos em miligrama de equivalente de ácido gálico por grama de amostra (mg EAG/g de amostra). A equação da reta foi A=0,14737C – 0,00187, onde A é a absorbância e C a concentração, com coeficiente de correlação linear R=0,9985. O teste foi realizado em triplicatas.

6 CONSIDERAÇÕES FINAIS

A análise do óleo essencial de *B. pentandra* obtido por hidrodestilação permitiu identificar como constituinte majoritário o β -cariofileno nas folhas secas e o fitol nas frescas, enquanto que o óleo obtido por MEFS apresentou como componente majoritário nas folhas secas o β -cariofileno e nas frescas os salicilatos de 2-etilhexila e de homomentila. Neste trabalho, de todos os constituintes identificados, quinze estão sendo relatados pela primeira vez no óleo essencial da espécie.

O estudo do perfil de ácidos graxos presentes nos extratos hexânicos apresentou como componentes majoritários os ácidos palmítico, linolênico e esteárico para *B. pentandra*, e os ácidos linolênico e linoléico para *B. monandra*. Este representa o primeiro registro dos componentes do óleo fixo destas espécies.

O estudo fitoquímico do extrato etanólico de B. pentandra resultou no isolamento e caracterização de quatorze metabólitos secundários, entre estes, misturas de ácidos graxos (palmítico e esteárico), de esteroides (sitosterol e estigmasterol), de derivados do ácido fenilacético (ácido 2,4-diidroxifenilacético, 2,4-diidroxifenilacetato de etila e 2,4-diidroxifenilacetato de metila), além de uma mistura de 6-hidroxibenzofuran-2(3H)-ona e 1-(3',4'-dimetoxifenil)-2propanol, e uma mistura de dasicarponina e glicopiranosídeo de etila. Também foram isolados e identificados o (+)-3-O-metil-D-quiro-inositol, 7-epi-grifonilida (inédita) e dasicarponilida. O estudo do extrato etanólico de B. monandra possibilitou o isolamento e identificação de seis metabólitos secundários: vitamina-E, fitol. didemetilsimmondsina, (2R,3S,4R,5R,6S)-(Z)-6-(β-Dglicopiranosiloxi)-2,3,4,5-tetraidroxiciclohexilideno- $\Delta^{1,\alpha}$ -acetonitrila (inédito) e a mistura de palmitato de etila e estearato de etila. Uma vez que estas espécies são utilizadas na medicina popular, recomenda-se cautela no consumo, devido à presença de cianoglicosídeos, que foram encontrados nas duas espécies.

Os extratos etanólicos (EEBP, EEBM) apresentaram significativa atividade antioxidante, com valores de IC₅₀ semelhantes ao padrão Vitamina-C, além de resultados positivos para a inibição da enzima AChE.

Os resultados apresentados neste trabalho motivam a continuação do estudo fitoquímico de *B. pentandra* e *B. monandra*, na busca de novos compostos com atividade farmacológica, visto que pouco se conhece a respeito destas espécies.

REFERÊNCIAS

ADAMS, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4.ed. Carol Stream: Allured Pub. Corp., 2007. 803 p.

ADEROGBA, M. A.; MCGAW, L. J.; OGUNDAINI, A. O.; ELOFF, J. N. Antioxidant activity and cytotoxicity study of the flavonol glycosides from *Bauhinia galpinii*. **Natural Product Research**, v. 21, n. 7, p. 591-599, 2007.

ADEROGBA, M. A.; OGUNDAINI, A. O.; ELOFF, J. N. Isolation of two flavonoids from *Bauhinia monandra* (Kurz) leaves and their antioxidative effects. **African Journal of Traditional, Complementary and Alternative Medicines**, v. 3, n. 4, p. 59-65, 2006.

ARGOLO, A. C. C.; SANT'ANA, A. E. G.; PLETSCH, M.; COELHO, L. C. B. B. Antioxidant activity of leaf extracts from *Bauhinia monandra*. **Bioresource Technology**, v. 95, p. 229-233, 2004.

ATHIKOMKULCHAI, S.; SRIUBOLMAS, N.; RUANGRUNGSI, N. Antibacterial activity of flavonoids from *Bauhinia sirindhorniae*. **Thai Journal of Health Research**, v. 19, n. 1, p. 13-18, 2005.

BAI, H.; ZHAN, Q.; XIA, Z.; LAO, A. Study on chemical constituents in vine stem of *Bauhinia championii* Benth. **Zhongguo Zhongyao Zazhi**, v. 30, n. 1, p. 42-43, 2005.

BAIMING, A.; REN, F.; YANG, Y.; ZHANG, Y.; QU, A.; ZHAO, Y. Chemical constituents of *Bauhinia glauca* (Wall. ex Benth.) Benth. subsp. hupehana (Craib) T. Chen. **Zhongguo Yaoxue Zazhi**, v. 47, n. 22, p. 1796-1798, 2012a.

BAIMING, A.; REN, F.; YANG, Y.; ZHANG, Y.; QU, A.; ZHAO, Y. Studies on chemical constituents of *Bauhinia glauca*. **Guoji Yaoxue Yanjiu Zazhi**, v. 39, n. 1, p. 42-44, 2012b.

BODAKHE, S. H.; RAM, A.; BODAKHE, K. S.; PANDEY, D. P. New polyphenolic aromatic glycoside from *Bauhinia variegata* L. stem bark. **Asian Journal of Chemistry**, v. 22, n. 5, p. 3549-3553, 2010.

BONOLI, M.; VERARDO, V.; MARCONI, E.; CABONI, M. F. Antioxidant phenols in Barley (*Hordeum vulgare* L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. **Journal of Agricultural and Food Chemistry**, v. 52, n. 16, p. 5195-5200, 2004.

BOONPHONG, S.; PUANGSOMBAT, P.; BARAMEE, A.; MAHIDOL, C.; RUCHIRAWAT, S.; KITTAKOOP, P. Bioactive compounds from *Bauhinia purpurea* possessing antimalarial, antimycobacterial, antifungal, antiinflammatory, and cytotoxic activities. **Journal of Natural Products**, v. 70, p. 795-801, 2007.

BOVEN, M. V.; DAENENS, P.; COKELAERE, M. M.; JANSSENS, G. Isolation and structure elucidation of the major simmondsin analogues in Jojoba meal by two-dimensional NMR spectroscopy. **Journal of Agricultural and Food Chemistry**, v. 42, p. 2684-2687, 1994.

CECHINEL FILHO, V. Chemical composition and biological potential of plants from the genus *Bauhinia*. **Phytotherapy Research**, v. 23, p. 1347-1354, 2009.

CHEW, Y. L.; LIM, Y. Y.; STANSLAS, J.; EE, G. C. L.; GOH, J. K. Bioactivityguided isolation of anticancer agents from *Bauhinia kockiana* korth. **African Journal of Traditional, Complementary and Alternative Medicines**, v. 11, n. 3, p. 291-299, 2014.

CONNOR, K. F. *Bauhinia monandra* Kurz. In: VOZZO, J. A. **Tropical Tree Seed Manual**. Agric. Handbook 721. Washington, DC: U.S. Department of Agriculture, Forest Service, 2002. p. 324-326.

COSTA, J. P.; LOURENÇO, N. V.; SANTOS, C. C. M. P.; TOMÉ, A. R.; SOUSA, G. F.; SOUSA, D. P.; ALMEIDA, R. N.; FREITAS, R. M. Avaliação da toxicidade aguda e das alterações histopatológicas em camundongos tratados com fitol. **Revista de Ciências Farmacêuticas Básica e Aplicada**, v. 33, n. 3, p. 421-428, 2012.

CRISÓSTOMO, C. V. Polissacarídeo endospérmico de *Bauhinia pentandra* [manuscrito]: caracterização e estudo de interação com lectinas. 2008. 100 f. Tese (Doutorado em Bioquímica) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2008.

DUARTE-ALMEIDA, J. M.; NEGRI, G.; SALATINO, A. Volatile oils in leaves of *Bauhinia* (Fabaceae Caesalpinioideae). **Biochemical Systematics and Ecology**, v. 32, p. 747-753, 2004.

EL-DONDAITY, S. E.; MAHDY, M.; EL-HAMOULY, M.; AMMAR, H. Chemical and/or biological studies of *Bauhinia variegata* L. and *Cleome droserifolia* (Forssk.) Del. growing in Egypt. **Egyptian Journal of Biomedical Sciences**, v. 19, p. 181-203, 2005.

EL SAYED, Z. I. A.; HASSAN, W. H. B.; ATEYA, A. Novel propenyl flavonoids glycoside and antioxidant activity of egyptian *Bauhinia retusa*. **International Journal of Pharmaceutical Sciences and Research**, v. 6, n. 1, p. 478-484, 2015.

ELLMAN, G. L.; COURTNEY, K. D.; ANDRES JUNIOR, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. **Biochemical Pharmacology**, v. 7, p. 88-95, 1961.
ESTRADA, O.; HASEGAWA, M.; GONZALEZ-MUJÍCA, F.; MOTTA, N.; PERDOMO, E.; SOLORZANO, A.; MÉNDEZ, J.; MÉNDEZ, B.; ZEA, E. G. Evaluation of flavonoids from *Bauhinia megalandra* leaves as inhibitors of glucose-6-phosphatase system. **Phytotherapy Research**, v. 19, p. 859-863, 2005.

FEITOSA, C. M.; BEZERRA, M. Z. B.; CITÓ, A. M. G. L.; COSTA JÚNIOR, J. S.; LOPES, J. A. D.; MOITA NETO, J. M. Constituintes químicos de *Philodendron imbe* Schott. **Quimica Nova**, v. 30, n. 1, p. 41-44, 2007.

FENNELL, C. W.; LINDSEY, K. L.; MCGRAW, L.; SPARG, S. G.; STAFFORD, G. I.; ELGORASHI, E. E.; GRACE, O. M.; STADEN, J. Assessing African medicinal plants for efficacy and safety: pharmacological screening an toxicology. **Journal of Ethnopharmacology**, v. 94, p. 205-217, 2004.

GADOTTI, V. M.; SCHMELING, L. O.; MACHADO, C.; LIZ, F. H.; CECHINEL FILHO, V.; MEYRE-SILVA, C.; SANTOS, A. R. S. Antinociceptive action of the extract and the flavonoid quercitrin isolated from *Bauhinia microstachya* leaves. **Journal of Pharmacy and Pharmacology**, v. 57, p. 1345–1351, 2005.

GOIS, R. W. S. **Estudo fitoquímico e biológico de Bauhinia acuruana Moric**. 2010. 150 f. Dissertação (Mestrado em Química) – Universidade Federal do Ceará, Fortaleza.

GÓIS, R. W. S.; SOUSA, L. M.; SANTIAGO, G. M. P.; ROMERO, N. R.; LEMOS, T. L. G.; ARRIAGA, A. M. C.; BRAZ-FILHO, R. Larvicidal activity against *Aedes aegypti* of pacharin from *Bauhinia acuruana*. **Parasitology Research**, v. 112, p. 2753-2757, 2013.

HAVER, N. J. **Desenvolvimento, purificação e caraterização de IgG anti lectina de folha de Bauhinia monandra.** 2002. 95 f. Tese (Doutorado em Ciências Biológicas) – Centro de Ciências Biológicas, Universidade Federal do Pernambuco, Recife, 2002.

HAZRA, A. G.; CHATTERJEE, P. A nontoxic antitumour compound from the leaves of *Bauhinia scandens* characterized as 1-*O*-alkyl glycerol by gas–liquid chromatography and evaluation of its antitumour property by Brine Shrimp bioassay. **Industrial Crops and Products**, v. 27, p. 39-43, 2008.

HEGAZI, A. G.; EL HADY, F. K. A. Egyptian Propolis: 3. Antioxidant, Antimicrobial Activities and Chemical Composition of Propolis from Reclaimed Lands. **Zeitschrift für Naturforschung**, v. 57c, p. 395-402, 2002.

IGNOATO, M. C.; FABRÃO, R. M.; SCHUQUEL, I. T. A.; BOTELHO, M. F. P.; SANTIN, S. M. O.; ARRUDA, L. L. M.; BERSANI-AMADO, C. A.; SOUZA, M. C. Estudo fitoquímico e avaliação da atividade anti-inflamatória de *Aeschynomene fluminensis* Vell. (Fabaceae). **Quimica Nova**, v. 35, n. 11, p. 2241-2244, 2012. ILKIU-BORGES, F.; MENDONÇA, M. S. Morfo-anatomia da semente de *Bauhinia monandra* kurz. (Leguminosae-Caesalpinioideae). **Revista Brasileira de Sementes**, v. 31, n. 4, p. 168-174, 2009.

JAIN, R.; SAXENA, U.; RATHORE, K.; JAIN, S. C. Bioactivities of polyphenolics from the roots of *Bauhinia racemosa*. **Archives of Pharmacal Research**, v. 31, n. 12, p. 1525-1529, 2008.

JAIN, R.; YADAV, N.; BHAGCHANDANI, T.; JAIN, S. C. A new pentacyclic phenol and other constituents from the root bark of *Bauhinia racemosa* Lamk. **Natural Product Research**, v. 27, n. 20, p. 1870-1876, 2013.

JAIN, S. A.; PATEL, A. D.; PRAJAPATI, N. K.; PRAJAPTI, S. P. Extraction of flavonoids of seed coat of *Bauhinia tomantosa*. **International Journal of Chemical Sciences**, v. 9, n. 2, p. 657-663, 2011.

JANZANTTI, N. S.; FRANCO, M. R. B.; WOSIACKI, G. Efeito do processamento na composição de voláteis de suco clarificado de maçã fuji. **Ciência e Tecnologia de Alimentos**, v. 23, n. 3, p. 523-528, 2003.

JASH, S. K.; ROY, R.; GORAI, D. Bioactive constituents from *Bauhinia variegata* Linn. **International Journal of Pharmaceutical and Biomedical Research**, v. 5, n. 2, p. 51-54, 2014.

JOSHI, A. B.; DESAI, R. R.; BHOBE, M. P. Phytochemical investigation of the hexane extract of stem bark of *Bauhinia purpurea* Linn. **Pharma Chemica**, v. 5, n. 3, p. 116-121, 2013.

JUDD, W. S.; CAMPBELL, C. S.; KELLOGG, E. A.; STEVENS, P. F.; DONOGHUE, M. J. **Sistemática vegetal: um enfoque filogenético**. 3. ed. Porto Alegre: Artmed, 2009. 632 p.

KAEWAMATAWONG, R.; KITAJIMA, M.; KOGURE, N.; TAKAYAMA, H. Flavonols from *Bauhinia malabarica*. **Journal of Natural Medicines**, v. 62, p. 364–365, 2008.

KERNTOPF, M. R.; NASCIMENTO, N. R. F.; FONTELES, M. C. *Bauhinia ungulata* Linn. (pata-de-vaca). In: VIANA, G. S. B.; LEAL, L. K. A. M.; VASCONCELOS, S. M. M., (Org.). **Plantas Medicinais da Caatinga: Atividades Biológicas e Potencial Terapêutico**. Fortaleza: Expressão Gráfica e Editora, 2013. p. 93-123.

KOJIMA, H.; SATO, N.; HATANO, A.; OGURA, H. Sterol glucosides from *Prunella vulgaris*. **Phytochemistry**, v. 29, n. 7, p. 2351-2355, 1990.

KORTESNIEMI, M.; SINKKONEN, J.; YANG, B.; KALLIO, H. ¹H NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (*Hippophaë rhamnoides* L.) berries. **Food Chemistry**, v. 147, p. 138-146, 2014.

KUMAR, M. M. J. V.; ESWARAPPA, B.; BODKE, Y. D.; JAYADEVAIAH, K. V.; BASAVARAJA, H. S. Isolation of phytoconstituents from the stem bark of *Bauhinia variegata* Linn. **PharmaTutor Magazine**, v. 2, n. 9, p. 150-156, 2014.

LIAO, Y.; LI, R. Chemical constituents from flowers of *Bauhinia variegata* L. **Tianran Chanwu Yanjiu Yu Kaifa**, v. 25, n. 5, p. 634-636, 2013.

LINS, A. C. S. Estudo químico e atividade antioxidante de Bauhinia pentandra (Bong.) Vog. ex Steud e avaliação da atividade inibitória da enzima DNA-topoisomerase II-α humana de substâncias naturais e semisintéticas. 2008. 130 f. Dissertação (Mestrado em Produtos Naturais e Sintéticos Bioativos) – Universidade Federal da Paraíba, João Pessoa.

MAHESWARA, M.; RAO, Y. K.; SIDDAIAH, V.; RAO, C. V. Isolation of new chalcone from the leaves of *Bauhinia variegata*. **Asian Journal of Chemistry**, v. 18, n. 1, p. 419-422, 2005.

MAIA NETO, M.; ANDRADE NETO, M.; BRAZ FILHO, R.; LIMA, M. A. S.; SILVEIRA, E. R. Flavonoids and alkaloids from leaves of *Bauhinia ungulata* L. **Biochemical Systematics and Ecology**, v. 36, p. 227-229, 2008.

MANSUR, M. C. P. P. R.; LEITAO, S. G.; LIMA, L. M. T. R.; RICCI-JUNIOR, E.; SOUZA, G. R.; BARBI, N. S.; MARTINS, T. S.; DELLAMORA-ORTIZ, G. M.; LEO, R. R. Evaluation of the antioxidant and phototoxic potentials of *Bauhinia microstachya* var. massambabensis vaz leaf extracts. Latin American Journal of Pharmacy, v. 31, n. 2, p. 200-206, 2012.

MATOS, F. J. A. Farmácias Vivas: sistema de utilização de plantas medicinais projetado para pequenas comunidades. 4.ed. Fortaleza: UFC, 2002. 267 p.

MATSUO, M; URANO, S. ¹³C NMR spectra of tocopherols and 2,2dimethylchromanols. **Tetrahedron**, v. 32, p. 229-231, 1976.

MENEZES, F. S.; MINTO, A. B. M.; RUELA, H. S.; KUSTER, R. M.; SHERIDAN, H.; FRANKISH, N. Hypoglycemic activity of two Brazilian *Bauhinia* species: *Bauhinia forficata* L. and *Bauhinia monandra* Kurz. **Revista Brasileira de Farmacognosia**, v. 17, n. 1, p. 8-13, 2007.

MESSIANO, G. B. **Terpenos e lignanas de Aristolochiaceae**. 2010. 128 f. Tese (Doutorado em Química) – Universidade Estadual Paulista, Araraquara.

MOHAMED, M. A.; MAMMOUD, M. R.; HAYEN, H. Evaluation of antinociceptive and anti-inflammatory activities of a new triterpene saponin from *Bauhinia variegata* leaves. **Zeitschrift für Naturforschung**, v. 64 c, p. 798-808, 2009.

MONTRUCCHIO, D. P.; MIGUEL, O. G.; MIGUEL, M. D.; MONACHE, F. D.; CARVALHO, J. L. S. Componentes químicos e atividade antimicrobiana de

Ptychopetalum olacoides Bentham. **Visão Acadêmica**, v. 6, n. 2, p. 48-52, 2005.

NAHAR, L.; RUSSELL, W. R.; MIDDLETON, M.; SHOEB, M.; SARKER, S. D. Antioxidant phenylacetic acid derivatives from the seeds of *llex aquifolium*. Acta **Pharmaceutica**, v. 55, p. 187-193, 2005.

NOGUEIRA, A. C. O.; SABINO, C. V. S. Revisão do gênero *Bauhinia* abordando aspectos científicos das espécies *Bauhinia forficata* Link e *Bauhinia variegata* L. de interesse para a indústria farmacêutica. **Revista Fitos**, v. 7, n. 2, p. 77-84, 2012.

PAHWA, S.; MAZUMDER, R.; BHATTACHARYA, S. Isolation of coumarin compound from the bark of *Bauhinia purpurea*. **International Journal of Pharmaceutical Sciences and Research**, v. 6, n. 1, p. 267-272, 2015.

PARK, H. Y.; TOUME, K.; ARAI, M. A.; KOYANO, T.; KOWITHAYAKORN, T.; ISHIBASHI, M. β-Sitosterol and flavonoids isolated from *Bauhinia malabarica* found during screening for Wnt signaling inhibitory activity. **Journal of Natural Medicines**, v. 68, p. 242-245, 2014.

PETTIT, G. R.; NUMATA, A.; IWAMOTO, C.; USAMI, Y.; YAMADA, T.; OHISHI, H.; CRAGG, G. M. Antineoplastic agents. 551. Isolation and structures of bauhiniastatins 1-4 from *Bauhinia purpurea*. **Journal of Natural Products**, v. 69, p. 323-327, 2006.

RAJKAPOOR, B.; MURUGESH, N.; KRISHNA, D. R. Cytotoxic activity of a flavanone from the stem of *Bauhinia variegata* Linn. **Natural Product Research**, v. 23, n. 15, p. 1384-1389, 2009.

RAO, Y. K.; FANG, S.; TZENG, Y. Antiinflammatory activities of flavonoids and a triterpene caffeate isolated from *Bauhinia variegata*. **Phytotherapy Research**, v. 22, p. 957-962, 2008.

RASHED, K.; BUTNARIU, M. Antimicrobial and antioxidant activities of *Bauhinia racemosa* Lam. and chemical content. **Iranian Journal of Pharmaceutical Research**, v. 13, n. 3, p. 1073-1080, 2014.

RHEE, I. K.; MEENT, M. V.; INGKANINAN, K.; VERPOORTE, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. **Journal Chromatography A**, v. 915, p. 217-223, 2001.

ROJAS, R.; BUSTAMANTE, B.; BAUER, J.; FERNÁNDEZ, I.; ALBÁN, J.; LOOCK, O. Antimicrobial activity of selected Peruvian medicinal plants. **Journal** of Ethnopharmacology, v. 88, p. 199-204, 2003.

ROSA, E. A. Contribuição ao estudo químico das espécies vegetais *Palicourea rígida* e *Palicourea coriacea* e avaliação das atividades antioxidante, antiinflamatória e moluscicida de *Palicourea rígida*. 2009. 216 f. Tese (Doutorado em Ciências) – Centro de Ciências Exatas, Universidade Estadual de Maringá, Maringá, 2009.

SAHA, S.; SUBRAHMANYAM, E. V. S.; KODANGALA, C.; SHASTRY, S. C. Isolation and characterization of triterpenoids and fatty acid ester of triterpenoid from leaves of *Bauhinia variegata*. **Der Pharma Chemica**, v. 3, n. 4, p. 28-37, 2011.

SASHIDHARA, K. V.; SINGH, S. P.; MISRA, S.; GUPTA, J.; MISRA-BHATTACHARYA, S. Galactolipids from *Bauhinia racemosa* as a new class of antifilarial agents against human lymphatic filarial parasite, *Brugia malayi*. **European Journal of Medicinal Chemistry**, v. 50, p. 230-235, 2012.

SEMWAL, S.; SHARMA, R. K. Antibacterial sesquiterpene lactone glucoside from seed pods of *Bauhinia retusa*. **Journal of Asian Natural Products Research**, v. 13, n. 1, p. 75–79, 2011a.

SEMWAL, S.; SHARMA, R. K. A new lignan rhamnoside from *Bauhinia retusa* seed pods (Caesalpiniaceae). **Chinese Chemical Letters**, v. 22, p. 1081-1083, 2011b.

SHANG, X.; LI, S.; WANG, S.; YANG, Y.; SHI, J. Chemical constituents of *Bauhinia aurea*. Journal of Asian Natural Products Research, v. 14, n. 10, p. 966-972, 2012.

SHANG, X.; LI, S.; WANG, S.; YANG, Y.; SHI, J. Study on flavonoids from *Bauhinia aurea*. **Zhongcaoyao**, v. 40, n. 2, p. 196-199, 2009.

SHANG, X.; LI, S.; WANG, Y.; WANG, S.; YANG, Y.; SHI, J. Dihydroflavonol glycosides and flavan-3-ols from *Bauhinia aurea*. **Zhongguo Zhongyao Zazhi**, v. 32, n. 9, p. 815-818, 2007.

SHANG, X.; LI, S.; WANG, Y.; WANG, S.; YANG, Y.; SHI, J. Chemical constituents of *Bauhinia aurea*. **Zhongguo Zhongyao Zazhi**, v. 31, n. 23, p. 1953-1955, 2006.

SILVA, K. L.; CECHINEL FILHO, V. Plantas do gênero *Bauhinia*: composição química e potencial farmacológico. **Química Nova**, v. 25, n. 3, p. 449-454, 2002.

SILVA, T. M. S.; LINS, A. C. S.; SARMENTO-FILHA, M. J.; RAMOS, C. S.; AGRA, M. F.; CAMARA, C. A. Riachin, a new cyanoglucoside from *Bauhinia pentandra* and its antioxidant activity. **Chemistry of Natural Compounds**, v. 49, n. 4, p. 685-690, 2013.

SINGH, R. S.; SINHA, R.; PANDEY, H. S.; RAO, C. V. Four new aliphatic compounds from *Bauhinia variegata* pods. **Journal of Medicinal and Aromatic Plant Sciences**, v. 33, n. 2, p. 144-149, 2011.

SINGH, R. S.; PANDEY, H. S.; GHANSHYAM. Two new long chain compounds from *Bauhinia variegata* Linn. Indian Journal of Chemistry, Section B:

Organic Chemistry Including Medicinal Chemistry, v. 45B, n. 9, p. 2151-2153, 2006.

SOUZA, V. C.; LORENZI, H. Botânica sistemática: guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG III. Nova Odessa, SP: Instituto Plantarum, 2012. 768 p.

STEPP, J. R. The role of weeds as sources of pharmaceuticals. **Journal of Ethnopharmacology**, v. 92, p. 163-166, 2004.

TANG, Y.; XING, Y.; MEN, R.; PAN, Y.; MENG, D.; LI, N. Bioactive constituents of *Bauhinia glauca* Benth. subsp. pernervosa. **Shenyang Yaoke Daxue Xuebao**, v. 31, n. 3, p. 188-190, 2014.

TANJUNG, M.; SAPUTRI, R. D.; TJAHJANDARIE, T. S. Antioxidant activity of two isomeric benzoxepin derivatives from the stem bark of *Bauhinia aculeata* L. **Journal of Chemical and Pharmaceutical Research**, v. 6, n. 1, p. 705-708, 2014.

USMAN, H.; ABDULRAHMAN, F. I.; AHMED, I. A.; KAITA, A. H.; KHAN, I. Z. Antibacterial effects of cyanogenic glucoside isolated from the stem bark of *Bauhinia rufescens* Lam. **International Journal of Biological and Chemical Sciences**, v. 7, n. 5, p. 2139-2150, 2013.

VASUDEVAN, V.; MATHEW, J.; BABY, S. Chemical profiles of essential oils of *Bauhinia* species from south India. **Asian Journal of Chemistry**, v. 26, n. 8, p. 2204-2206, 2014.

VASUDEVAN, V.; MATHEW, J.; BABY, S. Chemical composition of essential oil of *Bauhinia acuminata* leaves. **Asian Journal of Chemistry**, v. 25, n. 4, p. 2329-2330, 2013.

VAZ, A. M. S. F.; TOZZI, A. M. G. A. Sinopse de *Bauhinia* sect. *Pauletia* (Cav.) DC.(Leguminosae: Caesalpinioideae: Cercideae) no Brasil. **Revista Brasileira de Botânica**, v. 28, n. 3, p. 477-491, 2005.

VERMA, T.; CHANDRASHEKAR, K. S.; JOSHI, A. B. α-Amyrin caprylate - a new triterpene isolated from the leaf of *Bauhinia purpurea* linn. **Asian Journal of Research in Chemistry**, v. 2, n. 4, p. 569-570, 2009.

WRIGHT, C. R.; SETZER, W. N. Volatile compositions of two cactus species growing in the Sonoran Desert of southern Arizona. **American Journal of Essential Oils and Natural Products**, v. 1, n. 1, p. 41-47, 2013.

WU, J.; FAIRCHILD, E. H.; BEAL, J. L.; TOMIMATSU, T.; DOSKOTCH, R. W. Lithospermoside and dasycarponin, cyanoglucosides from *Thalictrum*. **Journal of Natural Products**, v. 42, n. 5, p. 500-511, 1979.

WU, Z.; ZHAO, Y.; YANG, X.; LIANG, H. Flavonoids from *Bauhinia glauca* subsp. Pernervosa. **Chemical and Pharmaceutical Bulletin**, v. 57, n. 6, p. 628-631, 2009a.

WU, Z.; WANG, B.; ZHAO, Y.; YANG, X.; LIANG, H. Chalcones from *Bauhinia glauca* subsp. pernervosa. **Zhongguo Zhongyao Zazhi**, v. 34, n. 13, p. 1676-1678, 2009b.

XU, J.; ZHAO, Q.; WEI, L; YANG, Y.; XU, R.; YU, N.; ZHAO, Y. Phytochemical composition and antinociceptive activity of *Bauhinia glauca* subsp. hupehana in rats. **PIoS one**, v. 10, n. 2, p. 1-13, 2015.

XU, W.; LI, H.; CHU, K.; ZHANG, Y.; CHEN, L.; SHA, M. Studies on chemical constituents of *Bauhinia championii*(benth.)benth. **Tianran Chanwu Yanjiu Yu Kaifa**, v. 25, n. 9, p. 1209-1211, 2013.

YADAV, S.; VERMA, D. L. Antioxidative flavonoids from the leaves of *Bauhinia retusa* Roxb. **Journal of Medicinal and Aromatic Plant Sciences**, v. 32, n. 1, p. 16-19, 2010.

YADAVA, R. N.; CHAKRAVARTY, A. New potential allelochemical from *Bauhinia racemosa* Lam. **World Journal of Pharmaceutical Research**, v. 3, n. 9, p. 668-676, 2014.

YUENYONGSAWAD, S.; BUNLUEPUECH, K.; WATTANAPIROMSAKUL, C.; TEWTRAKUL, S. Anti-cancer activity of compounds from *Bauhinia strychnifolia* stem. **Journal of Ethnopharmacology**, v. 150, p. 765-769, 2013.

ZHANG, L.; ZHAO, Q.; LIANG, R.; CEN, Y. Chemical constituents of *Bauhinia brachycarpa*. **Tianran Chanwu Yanjiu Yu Kaifa**, v. 24, n. 6, p. 754-756, 2012.

ZHAO, Q.; WU, Z.; ZHENG, Z.; LU, X.; LIANG, H.; CHENG, W.; ZHANG, Q.; ZHAO, Y. Phenolic acid derivatives from *Bauhinia glauca* subsp. pernervosa. **Yaoxue Xuebao**, v. 46, n. 8, p. 946-950, 2011.

ZHAO, Y.; CUI, C.; CAI, B.; HAN, B.; SUN, Q. A new phenanthraquinone from the stems of *Bauhinia variegata* L. **Journal of Asian Natural Products Research**, v. 7, n. 6, p. 835-838, 2005a.

ZHAO, Y.; CUI, C.; CAI, B.; SUN, Q. Chemical constituents from *Bauhinia variegata* L. **Zhongguo Yaowu Huaxue Zazhi**, v. 15, n. 5, p. 302-304, 2005b.