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Abstract

The explosion of personal positioning devices like GPS-enabled smartphones has enabled
the collection and storage of a huge amount of positioning data in the form of trajectories.
Thereby, trajectory data have brought many research challenges in the process of recovery,
storage and knowledge discovery in mobility as well as new applications to support our
society in mobility terms.

Other research area that has been receiving great attention nowadays is the
area of complex network or science of networks. Complex network is the first approach
to model complex system that are present in the real world, such as economic markets,
the Internet, World Wide Web and disease spreading to name a few. It has been applied
in different field, like Computer Science, Biology and Physics. Therefore, complex net-
works have demonstrated a great potential to investigate the behavior of complex systems
through their entities and the relationships that exist among them.

The present dissertation, therefore, aims at exploiting approaches to analyze
mobility data using a perspective of complex networks. The first exploited approach
stands for the trajectories as the main entities of the networks connecting each other
through a similarity function. The second, in turn, focuses on points of interest that
are visited by people, which perform some activities in these points. In addition, this
dissertation also exploits the proposed methodologies in order to develop a software tool
to support users in mobility analysis using complex network techniques.

Keywords: Complex network. Trajectory. Mobility.
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CHAPTER1

Introduction

T he advent of tools for automated data collection tends to produce large amount of
data stored in electronic format. This tremendous growth of data has opened the

possibility of extracting useful information and knowledge from the data. In addition, the
explosion of personal positioning devices like GPS-enabled smartphones has enabled the
collection and storage of a huge amount of positioning data in the form of trajectories, i.
e. spatio-temporal points identifying the positions of a moving object. Trajectory data
have brought many research challenges in the process of recovery, storage and knowledge
discovery in mobility area. Therefore, many opportunities in this area as well as new ap-
plications to support our society in mobility terms have arisen. Examples are numerous:
tourist systems that offer meaningful information like recommending interesting places;
systems to support the traffic managers in order to distribute the traffic flow more effi-
ciently in the road network, thus prevent the unwanted traffic jams; techniques to study
the migration of animals to find patterns of displacements, such as groups of animals that
flock together; tools for companies that deliver goods or service to improve the care of
their clients by avoiding and preventing possible delays.

Other challenges come from the moving object interaction, i. e., how and how
much they interact to each other or how a moving object can influence a group (or vice-
versa). For example, how can friends of mine influence the place I am used to visit? And
what about our feelings? How do they characterize the way we drive our cars for instance?
In addition, what about the places visited by people? How do they relate to each other by
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considering the movements of people among them? People live in an environment where
they move from one place to another, where “places” are not only “static geographical
objects”, but they are also part of people’s lives. Thereby, a two-way relationship can be
regarded between how the movements of people are affected by the location of places of
interest, and how the places themselves are characterized and connected by the mobility
of people. These are intriguing issues that give the intuition of the complexity in mobility
data and the complexity of performing useful analysis on them, in which involve different
entities and relations, creating complex systems of interactions that may be tough to be
understood and analyzed.

Mobility, or trajectory data, however, are not the only complex systems in
our life. In the reality, we are surrounded by complex systems: economic markets, the
Internet, World Wide Web, disease spreading and human beings are complex systems.
Because of this complexity and the fact that nothing happens in isolation, a new science
called the Science of Networks has recently emerged. Most events and phenomena are
connected, caused by, and interacting with a huge number of pieces of a complex universal
puzzle. For instance, the spread of disease that could start in a city, but rapidly spread
over the world causing a worldwide problem like the 2009 flu pandemic; unforeseeable
combination of small mistakes in the power electric network that plugs a city into darkness,
like happened to New York in 1977 leaving nine million of inhabitants in a mayhem of
riots, plundering, and widespread panic. We have come to see that we live in a small
world, where everything is linked to everything else and we are witnessing a revolution in
the making as scientists from all different disciplines discover that complexity has a strict
architecture. We have come to grasp the importance of the networks [Barabási, 2002].

Science of networks is the science of the real world: people, friendship, rumors,
diseases, fad, firms, financial crisis. Two famous examples of networks are the Internet
and the social networks. Studies on Internet network have focused on its largeness, its
points of weaknesses or points susceptible to failure, and the understanding of how it
evolves over time. Social networks in turn were firstly target of sociologists to study the
relationships of small groups of people. The explosion of the Internet and social media
(Facebook, Orkut, Youtube, etc) has enabled a number of analysis in social networks
not only of small groups, but large groups in global scale. Sociologists are not the only
ones interested in social networks since enterprises are too. Companies have studied how
their employees are connected to each other forming a structure of network in which some
employees carry important roles for the company, such as those employees that receive
much confidence from the others, or those ones that can propagate new ideas or a new
philosophy for the others. Therefore, networks model entities (people, web pages, cells,
routers, etc) by some relationship among them (friendship, linkage, chemistry reactions,
package transference, etc) in order to comprehend how the entities relate to each other
and the behavior of the complex system as a whole.

In front of these two research areas, we aim at using network techniques to
analyze mobility data to take advantage of the networks as a complementary view in
order to provide an innovative perspective in analyzing mobility data. This chapter is
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organized as follows. Section 1.1 presents the motivation, while Section 1.2 shows the
contributions of this master dissertation. Next, Section 1.3 presents the publications
originated from this master dissertation, and Section 1.4 presents the organization of the
chapters remaining.

1.1 Motivation

The emerging of the network science and the progressive refinement of analysis tech-
niques together with the high availability of complex mobility data have brought new
opportunities to analyze mobility data under a perspective of complex networks. Model-
ing trajectory data as a network can offer another way to explain the interaction among
the moving objects and the influence they have with each other. Furthermore, the science
of networks also enables us to investigate the interaction among places (cities, regions,
neighborhoods, points of interests) according to the displacements of the moving objects
that visit them.

The challenging idea introduced in this master dissertation is to use complex
network techniques to analyze mobility data. Mobility research area offers different meth-
ods, for example, to process trajectory data in order to discover mobility patterns, to
measure similarity among trajectories, to name a few. On the other hand, the science of
networks enables us to analyze the interaction among the entities, how they are connected
to each other and how the system behaves as a whole. Therefore, each research area can
contribute with complementary methods and techniques. Mobility area defines the enti-
ties (trajectories, places, etc) and relationships (similarities among trajectories, common
visited places by the trajectories, etc). Science of networks in turn gives a global view of
how those entities, based on a relationship, are organized and, consequently, which affects
this structure may present. Indeed, the main motivation in network science comes from
its capability to understand the relationships among entities and how these relationships
may affect the system as whole, in our case, how the moving objects relate to each other
or how places relate to each other according to the movements among them.

Therefore, two approaches are investigated in this master dissertation: in the
first one, we consider the trajectories as the main entities in order to build a network
constituted of trajectories representing the nodes, and some relationship between the
trajectories to establish the edges between them; in the second approach, on the other
hand, we consider the places visited by the trajectories as the principal entities to represent
the nodes, and the movements of the trajectories between the places to correspond to the
edges.
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1.2 Contributions

This dissertation presents five contributions. The specific contributions are present in
Chapter 4, 5 and 6 as follows.

• Chapter 4 details two contributions. The first contribution is a method for de-
vising a complex network from a trajectory dataset, called trajectory network.
The aim of this method is to define specific steps for processing trajectory data
in order to build and analyze the trajectory network. The second contribution is
an algorithm for building a trajectory network given a trajectory dataset (set of
spatio-temporal points);

• Chapter 5 contributions are two fold. First, we propose a methodology for build-
ing a complex network combining Points of Interests (POIs) and traces of people
movements, from which we build communities of POIs. Second, we apply this
methodology in a real case study where trajectories are collected from private cars
traveling in a city and Points of Interest are downloaded from the Web. We found
different kinds of communities (e.g. compact where the movements are mainly inside
the community, or bridge where the movements tend to connect two other commu-
nities);

• Chapter 6 presents a software tool entitled MobNet to analyze mobility data
by complex network techniques according to the proposed methodologies present in
Chapter 4 and 5.

1.3 Publications

We have published the following paper:

• [Brilhante et al., 2011] Igo Ramalho Brilhante, Jose Antonio Fernandes de Macedo,
Chiara Renso, and Marco Antonio Casanova. 2011. Trajectory data analysis
using complex networks. In Proceedings of the 15th Symposium on International
Database Engineering & Applications (IDEAS ’11). ACM, New York, NY, USA,
17-25,

and the following work was submitted and is under review:

• Igo Ramalho Brilhante, Roberto Trasarti, Michele Berlingerio, Chiara Renso, Jose
Antonio Fernandes de Macedo and Marco Antonio Casanova. 2012. ComeTo-
gether: discovering communities of places in mobility data. (Submitted to
13th International Conference on Mobile Data Management).
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1.4 Organization

The remaining chapters are organized as follow.

Chapter 2 presents basic concepts in mobility analysis, such as trajectory defi-
nition, and algorithms for identifying stops and moves of trajectories; Chapter 3 introduces
the concepts in complex network area, including basic concepts from graph theory, net-
work properties, network models and community discovery. Chapter 4 and 5 present an
introduction, the related works, the proposed methodology, experiments or a case study,
and a conclusion. Chapter 4 presents the first approach where the trajectories correspond
to the nodes in the networks and the edges are created between them with the help of
a given function. Chapter 5, in turn, presents the second approach where the nodes are
points of interest visited by users’ trajectories, and the edges represent the movements
of the trajectories between the places. Chapter 6 presents software tools in mobility and
network analysis, and a developed software tool to support mobility analysis by complex
network techniques. Finally, Chapter 7 summarizes the conclusions and future works.
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CHAPTER2

Mobility Analysis

T he explosion of personal positioning devices, like GPS-enabled smartphones or vehi-
cles tracking systems, have enabled the collection and storing of a huge amount of

positioning data. People wearing these devices leave traces of their movements in the form
of sequences of spatio-temporal positions, called trajectories. Trajectories are ubiquitous
in the real world, i. e., trajectory are present almost everywhere, from people’s movement
to movement of animals or vehicles. In front of this context, the availability of trajec-
tory data set has opened new perspectives for a large number of applications, ranging
from transportation and logistics to ecology and anthropology, built on the knowledge of
movements of objects [Spaccapietra et al., 2008].

Although the management of trajectory data dates back to the 1990s, when
the first proposals for moving object databases came out, the challenging approaches to-
wards the analysis and understanding of the movement complexity represented in the
users’ tracks is being faced only recently [González et al., 2008]. Even more challenging
is the aspect of moving object interaction. How and how much do these moving ob-
jects interact? How do the encounters among moving entities globally characterize the
movement of a moving community? Is there a specific law explaining the interactions of
moving individuals? Is the movement of people in vehicles (e.g. cars in a road network)
differs from people free movement and/or multi transportation trajectories? How do the
individual movements of independent entities influence a crowd’s movement pattern?

This chapter starts with preliminary definitions about mobility analysis in
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Section 2.1. Section 2.2 presents two important features for understanding mobility data,
i. e., stops and moves, and methods for identification of stops and moves.

2.1 Preliminaries

The study of mobility data started from the movements of entities or objects, which are
called moving objects. Typical examples of moving objects under study include vehicles
(cars, planes, ships), persons equipped with personal GPS devices, animals bearing a
transmitter and hurricane tracking data from meteorological satellites. These movements
are represented in form of spatio-temporal data, trajectories, where the spatial part iden-
tifies the position on earth, while the temporal part identify the instant when the moving
object was at that position.

2.1.1 Trajectory

Trajectory is by definition a spatio-temporal concept. The strike difference among moving
objects and non-moving objects refers to the fact that moving objects move to achieve
a goal taking a finite amount of time and covering some distance in space. From users’
viewpoint, the concept of trajectory is rooted in the evolving position of some object
traveling in some space during a given time interval. But while moving may be seen as
a characteristic of some objects that differentiates them from non-moving objects (e.g.
buildings, roads), the concept of traveling object implies that its movement is intended
to fulfill a meaningful goal that requires traveling from one place to another. Traveling
for achieving a goal takes a finite amount of time (and covers some distance in space),
therefore trajectories are inherently defined by a time interval. This time interval is de-
limited by the instant when the object starts a travel (tbegin) and the instant when the
travel terminates (tend). Identifying tbegin and tend within the whole time-frame where
the object is moving is an application decision, i.e. a user-driven specification. There-
fore, [Spaccapietra et al., 2008] defined a trajectory as follows.

Definition 2.1 “A trajectory is the user defined record of the evolution of the position
(perceived as a point) of an object that is moving in space during a given time interval in
order to achieve a given goal.”
Trajectory: [tbegin, tend] → space.

The basic element of trajectories is a spatio-temporal observation consisting
of a triple (ID, Location, Time), where ID is an unique identifier of the individual used
throughout all recordings of that individual’s movements, Location is a spatial descriptor
(such as a coordinate pair, a polygon, a street address), and Time is the time stamp when
the individual was at that particular location (such as a clock time in minutes or event
time in years) [Spaccapietra et al., 2008]. A trajectory sample then can be regarded as a
set T of triples 〈trajid, xi, yi, ti〉, where trajid is the unique identifier, xi, yi are the spatial
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Figure 2.1: Example of a trajectory sample whose identifier is 223: (a) interpolation
between the points; (b) “raw” data of the trajectory, the triples 〈trajid, xi, yi, ti〉

positions (points), such as latitude and longitude, and ti represents the time instant. A
trajectory sample is then defined as follows. Figure 2.1 depicts a trajectory sample whose
identifier is 223. Hereinafter, we refer to trajectory sample as trajectory.

Definition 2.2 Trajectory Sample: A trajectory sample is a list of space-time points
{p0, p1, ..., pn}, where pi = (xi, yi, ti), xi, yi ∈ R, ti ∈ R+ for i = 0, 1, ..., n, and t0 < t1 <

t2 < . . . < tn.

2.1.2 Semantic Trajectory

Besides the trajectory as a set of time-stamped points, the trajectories can be semanti-
cally represented and they are referred to as semantic trajectories. The notion of semantic
trajectory has been proposed by [Spaccapietra et al., 2008]. Semantic trajectories are en-
riched trajectories by geographic information (buildings, tourist places, restaurants, etc)
or events (crimes, traffic accident, etc). Figure 2.2 shows trajectories (left) that appar-
ently do not have meaning and the same trajectories enriched with geographic information
(right), where we can infer the geographic location (Paris) and the intersection of trajec-
tories with touristic place (e.g. Eiffel tower) and hotels [Alvares et al., 2007b]. Therefore,
a trajectory is not represented anymore as a sequence of time stamped points, but as a
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Figure 2.2: (left) trajectories and (right) trajectories with geographic informa-
tion [Alvares et al., 2007b]

sequence of time stamped semantic location (restaurants, streets, etc). For example, a
trajectory trajid = 1, which passed through a restaurant A, a square B and an open mall
C, turns to be represented as a sequence 〈(1, restaurant A, t1), (1, square B, t2),
(1, open mall C, t3)〉 in Figure 2.3.

A trajectory passing through places, however, does not necessarily point out
these places as important or interesting locations. Depending on the application the
temporal aspect may be important, such as the temporal duration of the visit. For
example, a stop of few second at the crossroad probably means the vehicle stopped at a
traffic light, while a stop of one hour at the same place probably means there was a huge
traffic jam, or the person parked the car to go shopping (Figure 2.3). This brings us two
important concepts in mobility analysis: stops and moves ; which are presented in the
next section.

restaurant A square B open mall C

(b)

(a)

1 hour
1 hour 3 hours

Figure 2.3: (a) a trajectory moving from left to right and (b) the same trajectory, but
with semantic location associated with it. Besides of considering the passing through a
location, the time spent on the place can be considered
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2.2 Stops and Moves

People move every day throughout the city doing various activities like going to work,
lunch, recreation, etc. What actually happens is that people, or moving objects in gen-
eral, move for a while and then stop during a time span until move again. This notion
demonstrates two fundamental concepts in mobility, i. e., the concept of stops and moves
proposed by [Spaccapietra et al., 2008].

Intuitively, a stop represents a particular moment in a trajectory in which the
moving object was kept in a fixed position, or at least with very little spatial displacement,
during a time span. A move in turn represents the movement between two temporally
consecutive stops, or it can be regarded as sub-trajectories where the tbeing is the first
stop and tend is the last stop: [tbegin, tend].

We can then see a trajectory as a sequence of moves connected by stops or a
sequence of stops separating the moves. Take as example the salespersons on a business
trip that stop at several locations where they planned to meet a customer, or the birds
that depart for migration, stop somewhere for some time to feed, they fly again, then
another stop to rest, and so on until they reach the final destination.

The identification of stops and moves plays an important role in the construc-
tion of semantic trajectories and they can embedded into the semantic trajectory definition
[Rocha et al., 2010, Yan et al., 2011] with aim of performing data mining algorithms to
discover the most frequent/sequential patterns [Alvares et al., 2007a]. The raw points of a
trajectory are replaced by the stops, or location associated with the found stops, forming
a sequence of stops (locations) where there is a move between two temporally stops (loca-
tions). In addition, the identification of stops depends on the application. For instance,
the stop of salespersons to drink a coffee may be irrelevant for the tracking application of
the company, while the stops for meeting a customer are relevant.

2.3 Identifying Stops and Moves

Many algorithms for identification of stops and moves can be found in the literature
[Xiao, 2005, Alvares et al., 2007a, Palma et al., 2008, Li et al., 2008, Yan et al., 2010]. We
introduce three algorithms in this section: SMoT (Stops and Moves of Trajectories)
proposed by [Alvares et al., 2007a]; CB-SMoT (Clustering-Based SMoT) proposed by
[Palma et al., 2008]; and Stay Point Detection by [Li et al., 2008]. The two firsts are
dependent on an application to identify stops that intersect some geography. The last
one identifies stops, called stay points, by getting the set of points in which the trajectory
spent a duration of time. Those algorithms are presented as follows.
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2.3.1 SMoT (Stops and Moves of Trajectories)

SMoT and CB-SMoT are both application-based methods, i. e., they depend on an
application to find the stops through candidate stops. These notions were introduced
by [Alvares et al., 2007a] and are presented as follows.

Definition 2.3 A candidate stop C is a tuple (RC ,∆c), where RC is a (topologically
closed) polygon in R2 and ∆C is a strictly positive real number. The set RC is called the
geometry of the candidate stop and ∆C is called its minimum time duration.

Definition 2.4 An application A is a finite set {C1, . . . , Cn} of candidate stops with
mutually non-overlapping geometries RC1 , . . . , RCn

Definition 2.5 A stop of a trajectory T with respect to an application A is defined as
a tuple (RCk

, ti, ti+l) such that 〈(xi, yi, ti), (xi+1, yi+1, ti+1), . . . , (xi+l, yi+l, ti+l)〉 is a sub-
trajectory of a trajectory T , there is a (RCk

,∆Ck
) in an application A such that ∀j ∈

[i, i+ l] : (xj, yj) ∈ RCk
, |ti+l − ti| ≥ ∆Ck

and this sub-trajectory is maximal (with respect
to these two conditions).

A move, in turn, is intuitively defined as follows.

Definition 2.6 A move of a trajectory T with respect to an application A is: (i) a maxi-
mal contiguous sub- trajectory of T in between two temporally consecutive stops of T; OR
(ii) a maximal contiguous sub-trajectory of T in between the starting point of T and the
first stop of T; OR (iii) a maximal contiguous sub-trajectory of T in between the last stop
of T and the last point of T; OR (iv) the trajectory T itself, if T has no stops.

In other words, a stop is a polygon RCk
such that part of the trajectory, a sub-trajectory,

is within this polygon during a duration of time given by |ti+l − ti|, where ti means the
start of the stop, while ti+l marks the end of the stop. Figure 2.4 shows an example with
a trajectory and three candidate stops.

SMoT was proposed by [Alvares et al., 2007a] where stops are interesting spa-
tial locations, also called spatial features, specified according to the application. For
instance, traffic lights may be considered as stops in a transportation management ap-
plication, but not in a tourism application. This algorithm is based on an application in
order to verify parts of a trajectory that intersect those candidate stops of an application
satisfying a duration of time. The algorithm verifies for each point of a trajectory T if
it intersects the geometry of a candidate stop RC to check then if the duration of the
intersection is at least equal to a given threshold ∆C . In the end, the algorithm returns
a set of stops as well as a set of moves.
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Figure 2.4: Example of application with three candidate stops (RC1 , RC2 , RC3). Imagine
a trajectory sample running through from left to right and t0, . . . , t18 are the time points
of T . First, T is outside any candidate stop, so it starts a move. Then T enters RC1 at
time t1 such that the duration is long enough, t6 − t1 ≥ ∆C , then (RC1 , t1, t6) is the first
stop. When the trajectory enters RC2 , it do not spend time enough inside that candidate,
so it is not a stop. We then have a move until T enters RC3 , which fulfills the requests
to be a stop, and so (RC1 , t1, t6) is the second stop of T . The trajectory ends with a
move [Alvares et al., 2007a]

2.3.2 CB-SMoT (Clustering-Based SMoT)

CB-SMoT, proposed by [Palma et al., 2008], is based on the intuition that parts of a
trajectory in which the speed is lower than in other parts of the same trajectory correspond
to interesting places and, like SMoT, it is also dependent on an application. In a tourism
application the tourists are visiting a new city and, therefore, they spend time visiting
important monument, a museum, going to their hotel and so on. Probably their trajectory
have a lower speed around those places than they have in other parts, i. e., when they
are moving from a place to another.

The proposed algorithm is two-step. In the first step slower parts of a trajec-
tory, called potential stops, are identified by using a variation of the DBSCAN algorithm,
well known density-based clustering algorithm [Ester et al., 1996], also proposed by them.
This variation is related to the fact they are interested in finding clusters in a single tra-
jectory and in considering time. They have changed some concepts of DBSCAN, where
neighborhood should contain only points in the considered trajectory and the distance
over the trajectory is taken into account instead of the direct distance between two points.

After applying the variation of DBSCAN to detect potential stops, CB-SMoT
identifies in the second step where these potential stops found are located, considering the
geography behind the trajectories. Each potential stop is tested with the candidate stops
by both intersection and minimal stop duration. In case that a potential stop does not
intersect any of the candidate stops, it can still be an interesting place. Then, in order to
provide this information to the user, the algorithm labels such places as unknown stops.
In the end, the algorithm returns a set of stops as well as a set of moves. Figure 2.5
illustrates these concepts [Palma et al., 2008].
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(a) (b)

Figure 2.5: (a) a trajectory with four potential stops (G1, G2, G3, G4) and four candidate
stops (RC1 , RC2 , RC3 , RC4). G1 and G2 are stops intersecting RC1 and RC3 , respectively,
while G3 and G4 are unknown stops since they do not intersect any candidate. (b) two
trajectories with the same unknown stop. [Palma et al., 2008]

2.3.3 Stay Point Detection

Differently from the others presented so far, the algorithm proposed by [Li et al., 2008]
refers to stops as stay points. Formally, a stay point s is characterized by a set of consecu-
tive points P =< pm, pm+1, . . . , pn >, where ∀m < i ≤ n, Dist(pm, pi) ≤ Dr(distance
threshold), Dist(pm, pn+1) > Dr and Int(pm, pn) ≥ Tr (time threshold). Therefore,
s = (x, y, ta, tl), where

x =

∑n
i=m pi ∗ x
|P |

, (2.1)

y =

∑n
i=m pi ∗ y
|P |

(2.2)

x and y are the average coordinates of the collection P , ta is the user’s arriving time on
s and tl is the user’s leaving time.

The algorithm then detects temporally consecutive points whose distance is
not greater then a given spatial threshold Dr and the duration of time measured by
Int(pm, pn) satisfies a given minimum time threshold Tr, where pm = ta is the begin of
the stop and pn = tl is the end of the stop. When the set of points are detected, the
algorithm computes the average coordinate of that set of points and sets it up as a tuple
(pm, pn, ta, tl).

The reason in which they detect stay point in such ways lies in two aspects.
The first aspect is related to the fact that GPS devices lose satellite signal indoors, what
hampers the finding of clusters, since the density of points recorded on such places will
not fulfill the conditions to formulate a cluster. The second aspect matches with the fact
that some regions, like road crossings, that a trajectory (user) iteratively passes do not
carry semantic meanings, but they can be extracted [Li et al., 2008]. Furthermore, the
computation of clustering will be extremely heavy as the number of GPS points is quite
large compared to that of stay points.
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2.4 Summary

This chapter presented basic concepts and definitions related to mobility analysis. First,
a trajectory was defined as an evolution spatio-temporal of moving object in order to
achieve a goal. Afterwards, it introduced the notion of semantic trajectories, which are
important in the process of understanding mobility data once it enriches the raw trajec-
tories semantically with geographic information.

The concepts of stops and moves were discussed as important features to ana-
lyze mobility data and to construct semantic trajectories as well. In addition, they can be
embedded into semantic trajectories in order to perform data mining algorithms to capture
the most frequent/sequential patterns. Finally, this chapter presented some algorithms
that can be found in the literature for identifying stops and moves from trajectories.
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CHAPTER3

Complex Network

R research on complex network has been receiving considerable attention from the
research community. Indeed, complex network is not a new research domain and

preliminary works on this field came up with the birth of graph theory. Graph theory
started with the mathematical Leonard Euler and the Königsberg problem. Königsberg
is a city on the river Pregel in Prussia, now it corresponds to the city of Kaliningrad
in Russia, formed by two island. The city is connected to the island by seven bridges,
as showed in Figure 3.1(a). The people of Königsberg amused themselves with mind
puzzles, one of which was: “Can one walk across the seven bridges and never cross the
same one twice? ”. In 1736, Euler proved that with the seven bridges such a path does not
exist. He not only solved the Königsberg, but his proof originated the immense branch of
mathematics known as graph theory.

Many consider the proof of Euler’s theorem as the first one in graph theory.
Indeed, two centuries passed and graph theory became the basis of complex networks.
Complex networks, or simply networks, are ensembles of elements represented by nodes
(vertices, points) with some interaction between them, i.e., edges (links, ties). It is a
multidisciplinary area and it has been applied in many different fields, such as Com-
puter Science, Biology, Sociology and Physics. Complex network is the first approach
to capture global properties of systems composed by a large number of highly inter-
connected dynamical units, such as chemical systems, neural systems, social interacting
species, the Internet and the World Wide Web [Boccaletti et al., 2006]. On the one hand,
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(a) (b)

Figure 3.1: (a) Map of Königsberg (b) Map of Königsberg as a graph: nodes are pieces
of lands (A, B, C, D), while edges are bridges (a ,b, c, d, e, f, g) [Newman, 2006]

scientists have to cope with structural issues, such as characterizing the topology of a
complex wiring architecture, revealing the unifying principles that are at the basis of real
networks, and developing models to mimic the growth of a network and reproduce its
structural properties. On the other hand, many relevant questions arise when studying
complex networks’ dynamics, such as learning how a large ensemble of dynamical systems
that interact through a complex wiring topology can behave collectively.

Some categories of networks can be found in [Newman, 2003]: social networks
represent groups of people with some interactions between them; information networks or
“knowledge networks”. An example is the network of citations between academic papers;
technological networks which are man-made networks designed typically for distribution
of some resource, such as the electric power grid; and biological networks representing
biological systems, such as metabolic pathways networks.

This chapter presents preliminary concepts in graph theory that are used in
complex networks as well as some properties of complex network in Section 3.1. Next,
Section 3.2 presents network models which aim at generating parenthetical networks in
order to generate networks with specific properties. To conclude , Section 3.3 introduces
some concepts and methods about community discovery, which is a branch of complex
network research.
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3.1 Preliminaries

3.1.1 Concepts and Basic Definitions

A network is formally defined as an undirected (directed) graph G = {V , E} where V =

{v1, v2, v3, . . . , vn} is a set of nodes (vertices, points) and E = {e1, e2, e3, . . . , em} is a set of
edges (ties, links). In an undirected graph, each link is defined as unordered pair (vi, vj)

of nodes vi and vj. Then, two nodes joined by an edge are referred to as adjacent or
neighbouring. In a directed graph, the order of two nodes is taken into consideration:
(vi, vj) is an edge from vi to vj and (vi, vj) 6= (vj, vi). Furthermore, nodes and edges
can carry out some properties, like weights: weighted graphs. More details about graph
theory can be found in [Bollobás, 1998, Gilbert, 2011, West, 2001]. Figure 3.2 depicts 3
examples of graphs with 7 nodes and 14 links.

(a) (b) (c)

Figure 3.2: Undirected graph (a), directed graph (b) and weighted graph (c) in which
the weight of an edge (i, j) is represented by wi,j and it is graphically represented by the
link thickness [Boccaletti et al., 2006]

A central concept in graph theory is that of reachability of two different nodes
in a graph [Boccaletti et al., 2006]. A walk from node i to node j is an alternating
sequence of nodes and edges that begins with i and ends with j and its length is defined
as the number of edges in the sequence. A path, in turn, is a walk in which no node
is visited more than once. The walk of minimal length between two nodes is known as
shortest path or geodesic and the longest shortest path defines the diameter of a graph.
Yet, a graph can be connected, that is, there is a path from i to j for every pair of distinct
nodes i and j, or disconnected when there is no such a path. From this, component is the
largest subgraph such that is connected. The degree of a node i is the number of edges
connected to i. It is not necessarily equal to the number of nodes adjacent to a node,
since there may be more than one edge between any two nodes. In addition, a directed
graph has both an in-degree and an out-degree for each node, which are the numbers of
in-coming and out-going edges respectively.
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3.1.2 Properties of Complex Networks

Typical issues addressed by network studies are centrality, representing the nodes that are
best connected to others or have most influence; connectivity indicating how individuals
are connected to one another through the network. Recent years however have witnessed
a substantial new movement in network research, with the focus shifting away from the
analysis of single small graphs and the properties of individual nodes or edges within such
graphs to consideration of large-scale statistical properties of graphs [Newman, 2003].

This section presents some basic and useful network property related to the
connectivity of a single node (local property) and the connectivity of the network as a
whole (global property).

3.1.2.1 Degree and Degree Distribution

As discussed before, node degree is the number of edges that a node has and it can also
consider the directness when we talk about directed networks. Degree is a measure of
centrality in the network, where nodes more connected tend to be more central and have
more importance when compared to lowly connected ones. Nodes with high degree are
also considered “powerful” due to their connections. For instance, in a social network,
these nodes correspond to people that know many others and, consequently, they are very
important in the network.

Degree is a measure to identify individually important nodes by considering
their edges. The degree distribution, however, is related to the network as a whole. It
plays an important role when we want to characterize the connectivity of the nodes in the
network. For instance, random graphs, graphs generated in a random way (Section 3.2.1),
have a degree distribution of their nodes following a Poisson distribution, where the nodes
tend to have the same degree: the average degree of the network. In real networks, on
the other hand, the node distribution tends to follow a power law distribution, where the
more connected nodes are more likely to receive new connections than the less connected
nodes. Figure 3.3 shows two degree distribution, one following a power law distribution
(Figure 3.3(a)) and another following a Poisson distribution (Figure 3.3(b)). Power law
distribution is discussed further in Section 3.1.2.4.

To exemplify a degree distribution, let’s take the graph in Figure 3.2(c). First
of all, the node degrees are calculated, Figure 3.4(a), and then the frequency of each found
degree is also computed, Figure 3.4(b). Finally, a plot depicts the degree distribution,
Figure 3.4(c).

3.1.2.2 Clustering Coefficient or Transitivity

In many real-world network it is found that if a node a is connected to node b and node b
is connected to node c, then there is a high probability that node a will also be connected
to node c. Intuitively it represents the idea that “a friend of my friend is also my friend”.
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Figure 3.3: Examples of degree distribution of two networks
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Figure 3.4: Example of degree distribution: (a) node degrees; (b) degree distribution;
(c) degree distribution plot
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This transitivity, also known as clustering coefficient means the presence of a number of
triangles in the network, i.e., sets of three nodes each of which is connected to each of the
others. There are different manners to compute clustering coefficient of a network: by
finding triangles (global) or finding that coefficient for each node (local). The clustering
coefficient is then defined by finding the triangles in the network as:

C =
3 x number of triangles in the network
number of connected triples of nodes

, (3.1)

where a “connected triple” means a single node with edges running to an unordered pair
of others. C is the mean probability for two nodes that are neighbors of the same other
node are also neighbors, hence C lies in the range 0 ≤ C ≤ 1. It can also be written in
the form

C =
6 x number of triangles in the network

number of paths of length two
, (3.2)

where a path of length two refers to a directed path starting from a specified node.
Those definition of C are widely use in the sociology literature which is referred as
the “fraction of transitive triples” [Newman, 2003]. On the other side, Watts and Stro-
gatz [Watts & Strogatz, 1998] proposed an alternative definition by defining a local value:

Ci =
number of triangles connected to node i
number of triples centered on node i

. (3.3)

Intuitively Ci of a node i represents the proportion of edges between its neighbors divided
by the number of edges that there can be between them. For nodes with degree 0 or 1,
their coefficient is defined as Ci = 0. Thus the clustering coefficient for the whole network
is given by the average

C =
1

n

∑
i

Ci. (3.4)

An interesting point about clustering coefficient refers to the fact that random graphs
present low clustering coefficient when compared to real networks. So, heightened clus-
tering coefficient and a large number of triangles are typical characteristics of real networks
such as social network, biology networks and collaboration networks.

3.1.2.3 Shortest Path Length, Betweenness Centrality and Closeness Cen-
trality

Nodes that are connected to others and these others are connected to many others and
so on. Such connectivity offers an important role to the network in such a way that the
nodes can change information or “reach” others by going through the edges. For instance,
the routers that form a huge network changing package between them by the links. So,
shortest paths are crucial for the nodes to reach other nodes besides being an important
role in the characterization of the internal structure of a network. A measure of the typical
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separation between two nodes in the network is given by the average shortest path length

L =
1

n(n− 1)

∑
i 6=j

di,j, (3.5)

where n = |V| and di,j is the shortest path length between i and j. Random graphs and
real networks are both characterized by small average shortest path lengths, i.e., the nodes
tend to reach each others, on average, in a few steps. The reachability between two nodes
i and j that are not neighbors depends on the nodes belonging to the paths connecting
i and j. A node k that belongs to many shortest paths has an important position in
the network: indeed, to transfer information from a node to another, this information
passes through the node k that contributes to decrease the distances in the network and,
consequently, to speed up the information propagation. This measure is known as node
betweenness. Then, the betweenness of a node k is given by

bk =
∑
i,j,i6=j

nij(k)

nij
, (3.6)

where nij is the number of shortest paths connecting i and j and nij(k) is the number
of shortest paths connecting i and j and passing through k. The concept of betweenness
can also be used to edges, edge betweenness, which is defined as the number of shortest
paths pairs of node that run through that edge. As degree, the betweenness is a measure
of centrality in the network, since nodes with high betweenness play an important role in
decreasing the average shortest path lengths. Other measure of centrality is the closeness
centrality, which expresses the average distance of a node i to all others as

gi =
1∑

i 6=j dij
. (3.7)

Therefore, the nodes with shortest distances to the other nodes will be more central in
the network.

3.1.2.4 Power Law Distribution

A distribution that follows a power law is a distribution in the form

p(x) = a ∗ x−ω, (3.8)

where p(x) is the probability of x to occur, a is constant of proportionality and ω is the
power law exponent [Newman, 2005]. Distributions that follow a power law are quite
important for the understanding of natural and human phenomena. For instance, the
population of cities and the intensity of earthquakes follow a power law distribution.

Other way to look at a power law distribution is to consider the popular
saying “the richer get richer”, also known in Sociology as Matthew effect [Jackson, 1968].
Simon [Simon, 1955, Bornholdt & Ebel, 2001] showed that power laws arise when “the
rich get richer”, when the amount you get goes up with the amount you already have.
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Such phenomenon has also been found in real networks, i.e., degree distribution of the
nodes follows a power law distribution. Such networks have many nodes with low degree,
while a few nodes have high degree. Other works showed other distributions in network
that also tend to follow a power law, such as the growth of the number of nodes and edges
in evolving networks [Leskovec et al., 2006], and the number of triangles compared to the
degree of nodes [Tsourakakis, 2008].

Although random networks and real networks present both a small average
shortest path length, they are distinguished between them by their node distribution. As
we have seen, degree distribution of real networks tends to follow a power law distribution.
Random networks however tend to follow a Poisson distribution, i.e., the nodes tend
to have the same degree. Networks with power-law degree distributions are sometimes
referred to as scale-free networks [Barabási & Albert, 1999].

3.1.2.5 The Small-World Effect

The very famous experiment carried out by Stanley Milgram in the 1960s showed that
letters passed from person to person were able to reach a designated target individual
in only a small number of steps, sentence known as “six degrees of separation”. So, this
result is one of the first direct demonstrations of the small-world effect, the fact that most
pairs of nodes in most networks seem to be connected by a small short path through the
network.

The small-world effect has implications for the dynamics of processes taking
place on networks [Newman, 2003]. For instance, the spread of information across the
network that occur quickly on most real networks, information like virus of computers,
spam, diseases and even gossips. Networks with this behavior are characterized mainly
by the two properties already discussed, i.e., they present a small average shortest path
length and a high clustering coefficient when compared to random networks with the same
size (number of nodes and edges) [Newman, 2003].

Recently, [Backstrom et al., 2011] discovered that this average number of ac-
quaintances separating any two people in the United States was 4.37, and that the number
separating any two people in the world was 4.74 by using data on the links among 721
million Facebook users.

3.2 Network Models

Network models aim at generating synthetic networks with peculiar characteristics. These
models are useful tools in the comprehension of the growth and formation of the networks
as well as in the studies of phenomena such as small-world and “the rich get richer ”.
In this section we present basic models starting from random graphs studied by Erdős
and Rényi, passing through the small-world model proposed by Watts and Strogatz and
ending up with the preferential attachment model by Barabási.
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3.2.1 Random Graphs

The study of random graphs was initiated by Erdős and Rényi in 1959 with the original
purpose of studying, by means of probabilistic methods, the properties of graphs as a
function of the increasing number of random connections. Erdős and Rényi proposed
a model to generate random graph with n nodes and m edges, which is known as ER
random graphs [Erdős & Rényi, 1959, Erdős & Rényi, 1960]. There are two different ways
to construct a network from this model:

• Gn,p is a random graph generated by taking some number n of nodes and connect
each pair with probability p;

• Gn,m is the ensemble of all graphs having n nodes and exactly m edges, each possible
graph appearing with equal probability.

ER random graphs are the most studied among graph models, although they
do not reproduce most of the properties of real networks, such as clustering coefficient.
A small average shortest path length characterizes the random graphs, even though they
do not present many triangles as we discussed early. In addition, random graphs present
a Poisson distribution, while real networks tend to follow a power law distribution. Fig-
ure 3.5 depicts a random graph Gn,p with n = 50 and p = 0.05.

Figure 3.5: A random graph Gn,p generated with n = 100 and p = 0.05. Its average
shortest path is 2.271 and its clustering coefficient is 0.099 (145 triangles)
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Figure 3.6: The small world model varying p. This figure illustrates well the network
structure by varying the probability p: p = 0 generates a regular network, while p = 1
generates a random network [Watts & Strogatz, 1998]

3.2.2 Small-World Model

Watts and Strogatz proposed a model, known as small-world or WS model, to study
and identify properties of small-world effect, i.e., a high transitivity and a small average
shortest path length [Watts & Strogatz, 1998]. The small-world model starts with n nodes
shaping a ring where each node is connected to its k nearest neighbors, that is, k/2 on its
left side and k/2 on its right side. This first process generates a regular lattice. Forthwith,
a process of “rewiring” is achieved, where each edge has its one end moved, with probability
p, to a new location chosen uniformly at random from the lattice, except that no double
edges or self-edges are ever created.

The rewiring process allows the small-world model to interpolate between a
regular lattice and something similar to random graph. When p = 0, the generated
network will be a regular lattice. However, the regular lattice does not show the small-
world effect, since the path lengths tend to be large from a node to another. When p = 1,
every edge is rewired to a new random location and the network looks like a random graph,
with a small average shortest path, but with very low clustering coefficient. Therefore, p
works as a balancer between regular lattice and something random as showed in Figure 3.6.
A generated network from this small-world model is illustrated in Figure 3.7

Due to the simplicity of the original model proposed by Watts and Strogatz,
where only one end of each chosen edge is rewired, no node is ever connected to itself
and an edge is never added between node pairs where there is already one, many other
small-world models were proposed [Monasson, 1999, Newman & Watts, 1999].

3.2.3 Models of Network Growth

The early models discussed so far take observed properties of the networks, such as degree
or transitivity, to create networks that incorporate those properties without offering an
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Figure 3.7: A WS network shaping a ring generated with n = 100 and p = 0.2 and
k = 10. Its average shortest path is 2.548 and its clustering coefficient is 0.419 (624
triangles)

understanding how networks come to have such properties. In other words, they do
not take into consideration the process of growth of networks and, hence, they are not
models of network growth. From this, Barabási and Albert proposed the model known as
Barabási-Albert (BA) or Preferential Attachment model [Barabási & Albert, 1999], which
is based on two aspects: growth and preferential attachment.

The main idea of BA model goes towards the phenomenon “the rich get richer ”.
Speaking in network terms, the nodes with highest degrees (“the rich”) are likely to form
new edges with other nodes (“get richer”), and those nodes are called preferential attach-
ment. More precisely, an undirected graph Gn,k is constructed from BA model as follows.
Starting with m0 isolated nodes, at each time step t = 1, 2, 3, . . . , N −m0 a new node j
with m ≤ m0 links is added to the network. Then, the probability that a link will connect
j to an existing node i is linearly proportional to the degree of i. Despite of being elegant
and simple, BA model lacks some features that are present in the real World Wide Web,
such as the directness of the edges. Figure 3.8 shows an example of Gn,k.

Besides the model proposed by Barabási and Albert, there are other models
related to the network growth, such as the Price’s model [Price, 1976, Price, 1965], which
is very similar to BA model, and Dorogovtsev and Mendes [Dorogovtsev & Mendes, 2000].
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Figure 3.8: A BA network generated with n = 100 and m0 = 4 and k = 2. The largest
and red nodes represent the preferential attachments, highly connected nodes, which are
more likely to establish new links with other nodes

3.3 Community Discovery

As we have discussed so far, many properties are computer over nodes and edges to catch
global or local behaviors of the network. However, another important part of the network
research is related to the network structure, that is, how the nodes connect to each other
forming groups together called communities. Take as example people that form groups
with other people in different contexts, such as our friends from work, university and even
gym. Each context may correspond, somehow, to communities of a network of people.

According to [Newman, 2003], community discovery should not be confused
with the technique of data clustering, which is a way of detecting groupings of data-
points in high-dimensional data spaces. Community discovery and data clustering have
some common features and algorithms for one can be adapted to the other, and vice-
versa. For example, high-dimensional data can be converted into a network by placing
edges between closely spaced data points, and then network clustering algorithms can be
applied to the result. On balance, however, one normally finds that algorithms specially
devised for data clustering work better than such borrowed methods, and the same is true
in reverse.

Many algorithms have been developed to identify and extract communities
from different types of network [Girvan & Newman, 2002, Radicchi et al., 2004]. In some
cases the communities obey a recursive structure, where large communities can further
be divided into smaller communities [Clauset et al., 2004, Guimera et al., 2007]. Some
works proposed methods for community discovery in large networks based on heuris-
tics [Blondel et al., 2008]. Despite of existing many algorithms to address this problem,
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Figure 3.9: An example of community discovery by perfoming the method proposed
in [Blondel et al., 2008]. This algorithm is available in Gephi [Bastian et al., 2009]. This
network was built from a user’s profile in a social network and, thus, each community
represented by a color shows a community of people. For instance, the blue community
represents the friends from the university and the red one represents the family ties

community detection does not have a unique concept or definition. As consequence, a
broad variety of methods have been proposed to discovery communities.

In front of these great variety of techniques, [Coscia et al., 2011] proposed a
classification for community discovery methods in complex networks. Some methods take
nodes as entities, that is, nodes are compared to each other to compute their similarity,
while others consider edges as entities in order to group the edges and further the nodes.
In addition, there are a number of interesting features of these communities that can
be considered, such as hierarchical or overlapping configuration of the groups inside the
network, the directness of the edges to give importance to this direction when considering
the relations among entities and, yet, the dynamism of the networks, i.e., networks that
evolve over time.

Since there are various different techniques, we only describe a community
detection algorithm, the method proposed by [Ahn et al., 2010], in Section 5.2, since it is
used in the case study in Section 5.4.
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3.4 Summary

This chapter introduced basic concepts and definitions in complex networks, presenting
some important definitions in graph theory, which is the basis of networks. In addition,
this chapter presented some global and local properties of networks that are important
not only for understanding of network topologies, but also for comprehension of network
behaviors.

Some network models present in the literature were discussed, including the ER
model proposed by [Erdős & Rényi, 1959, Erdős & Rényi, 1960], the WS model proposed
by [Watts & Strogatz, 1998] to capture the behavior of networks with small-world effects,
and the Preferential Attachment model proposed by [Barabási & Albert, 1999] in order
to understand the growth of networks based on preferential attachment.

To conclude, this chapter presented an important branch of complex network
research area that aims at discovering structure in the networks known as communities.
Methods for community discovery have not been presented due the numerous available
methods with different approaches. However, in Section 5.2 is presented the algorithm
proposed by [Ahn et al., 2010] since it is used in the case study of Section 5.4.
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CHAPTER4

Trajectory Analysis using Complex
Network

A lthough the management of trajectory data dates back to the 1990s, when the first
proposals for moving object databases came out, the challenging approaches towards

the analysis and understanding of the movement complexity represented in the users tracks
is being faced only recently [Wang et al., 2009]. Even more challenging is the aspect of
moving object interaction. How and how much do these moving objects interact? How
do the encounters among moving entities globally characterize the movement of a moving
community? Is there a specific law explaining the interactions of moving individuals? Is
the movement of people in vehicles (e.g. cars in a road network) differs from people free
movement and/or multi transportation trajectories? How do the individual movements
of independent entities influence a crowd’s movement pattern?

Inspired by these questions, this work poses a first step in experimenting the
complex network analysis techniques applied to a trajectory dataset. The main aim
here is to formalize interactions between moving objects as edges in a graph and study
the behavior of this graph in terms of complex networks. The approach presented in
this chapter can be placed between the discipline of mobility data analysis and complex
networks, thus exploiting complex network properties to understand mobility of users.
Also the challenging and innovative aspect of this experiment is that the network we
computed is based on moving objects interactions, which is different from classical complex
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networks experiments, which focuses on objects that are “static”, from the point of view
of the spatial position.

The contributions present in this chapter are twofold. The first contribution
is a method for devising a complex network from a trajectory dataset, hereinafter called
trajectory network. The aim of this method is to define specific steps for processing
trajectory data in order to build and analyze the trajectory network. The second contri-
bution is an algorithm for building a trajectory network given a trajectory dataset (set of
spatio-temporal points). Indeed, this is the first work on analyzing trajectory interactions
through complex network techniques [Brilhante et al., 2011].

The proposed method has been evaluated using a real GPS dataset from ve-
hicles moving in the City of Milan. All generated trajectory networks from this dataset
presented the small world effect and the scale-free feature similar to the Internet and bio-
logical networks. However the interpretation of these features is an open issue, therefore
we will discuss possible interpretations and exploitations of them.

This chapter is structured as follows. Section 4.1 reviews some basic definitions
introduced in Chapter 2 and 3, and introduces related works. Section 4.2 presents the
methods and algorithms used to build the trajectory complex network, whereas Section 4.3
reports experimental results carried on a complex network of vehicle trajectories. Section
4.4 draws conclusions and future work.

4.1 Basic Concepts and Related Work

4.1.1 Basic Definitions

As presented in Chapter 2, a trajectory can be defined as the spatio-temporal evolution
of a moving object [Spaccapietra et al., 2008]. This evolution is typically represented as
a sequence of sample points, representing the spatio-temporal positions detected by a
tracking device, such as GPS tools or WIFI sensors. More formally, a trajectory T of
an object O is represented as: TO= {p0, p1, ..., pn}, where pi = (xi, yi, ti), xi, yi ∈ R

represent the spatial coordinates of the sample point , ti ∈ R+ represents the timestamp
for i = 0, 1, ..., n, and t0 < t1 < t2 < . . . < tn.

In Chapter 3, a complex network is introduced as a network with thousands or
millions of nodes whose structure is irregular, with non-trivial topology features [Boccaletti et al., 2006].
The following features typically characterize complex networks:

• Clustering coefficient: represents the density of triangles in the network. Sparse ran-
dom graphs have smaller clustering coefficients, while real-world networks typically
have larger coefficients;

• Average shortest path length: is the average node-to-node distance. Random graphs
exhibit a small average shortest path length as well as real-world networks;
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• Power law distribution: is a distribution that follows a power law function, p(x) =

a ∗ x−α, such that p(x) is the probability of occurrence of x, a is a constant of
proportionality and α is the power law exponent.

Complex networks can be characterized by the so called “small world” prop-
erty when the average number of edges between any two vertices is very small and the
clustering coefficient is large [Watts & Strogatz, 1998]. Intuitively, this represents a short
path between two edges. This is also known as the “six degrees of separation”. Scale
free networks are characterized by a degree distribution that follows a power law func-
tion. Intuitively, few nodes have many edges (the “hubs” or preferential attachment
[Barabási & Albert, 1999] ), many nodes have few edges.

4.1.2 Mobility Analysis

With the increasing availabilities of trajectory datasets collected from GSM or GPS
equipped devices we have the possibility of studying people behavior from their move-
ment traces. Several application areas would benefit from an extensive study on people
trajectories such as traffic management, public transportation, commercial advertising,
security and police, hazard evacuation management, location based services and so on.

The task of analyzing large trajectory datasets can be carried out in four differ-
ent directions. First, basic statistics may be applied to trajectory data mainly to discover
the distributions of people presence and origin-destination matrices [Calabrese et al., 2010];
other studies focus on trajectory data mining, that is, on the application of data min-
ing techniques to trajectory data [Giannotti & Pedreschi, 2008]; other researches focus on
representing and querying moving objects in database systems [Nguyen-Dinh et al., 2010,
Güting et al., 2000]; finally, research originally coming from Physics studies mathemati-
cal models, such as complex networks, representing the general laws that describe human
movement [González et al., 2008, Wang et al., 2009].

Trajectory mining aims at finding correlations in large datasets of trajectory
data, collected by personal positioning devices. Techniques include: (1) clustering dis-
covery - finding groups of objects moving together; (2) sequential pattern discovery -
finding the most frequent sequences of places visited; (3) flock detection - extracting the
convergence of people moving together for a certain amount of time [Dodge et al., 2008,
Giannotti & Pedreschi, 2008].

Several works have investigated how to model and query movement data ef-
ficiently, in database literature a new class of databaase systems were created, called
moving object database [Nguyen-Dinh et al., 2010, Güting et al., 2000]. However, these
works were not focused in modeling or querying trajectory data as a first class object. In
addition, they did not aim at exploring moving objects interactions.

Trying to model the basic laws governing the human motion is the aim of a
broad research area coming from Physics [González et al., 2008]. Their objective is to
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study the physical laws representing human movements. Social interactions is also in the
scope of this research area. A typical example is the study of the spreading of cell phone
viruses thru GSM phone calls [Wang et al., 2009].

4.1.3 Complex Network Analysis

As already presented in the previous section and Chapter 2, a network is a set of items,
called vertices (or nodes), with connections among them, called edges (or links). The
study of networks (in the form of mathematical graph theory) is one the fundamental
pillars of discrete mathematics. Networks have also been extensively studied in different
domains, such as Social sciences, Physics, etc. However, recent years have witnessed
a substantial new movement in network research, focusing on developing methods and
techniques to gather and analyze networks far larger than previously possible. Indeed,
this new motivation is due to the inability of humans to draw a meaningful picture of a
million vertices by direct eye analysis.

Network has been used as a mechanism of analyses of a huge amount of data
with a set of objects which have a relationship or a interaction between them. For in-
stance, the studies in psychology where a node represents a person and an edge represents
friendship or that they work together or simply that they know each other or even they
have sexual relationship; the studies in biology where the focus is on the species in an
ecosystem and a interaction between them, that is, an edge (directed) from species A to
species B indicates that A preys B [Pimm, 2002]. Therefore, networks offer a perspective
of analyses basing on the relationships or interactions.

With respect to mobility analysis, [Guo et al., 2010] presents a graph-based
approach to represent the trajectories by using representative points, a new set of points
based on the original one, to generate a graph and find clusters of trajectories. However,
they do not consider the properties of the complex network area such as clustering co-
efficient. On other hand, [Kaluza et al., 2010] analyzes global cargo ship movements by
building a complex network whose nodes represent the ports and links represent the ship
traffic between two ports. Differently from our approach, they do not represent the nodes
as trajectories and, besides, the points of the trajectories are not taken into account, but
only the ports that the cargo ships passed.

4.2 Complex Network and Trajectory

This section presents one approach about how to create a complex network from trajectory
data. This approach constructs a simple graph where each node represents a trajectory
and each edge represents a relationship among the nodes. A relationship between two
nodes is established when there is an encounter between two trajectories in space and
time with a minimum frequency of meetings.

In this approach, a set S of trajectories is represented as a network (N ,E) with
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Figure 4.1: A plotted complex network composed by 36,824 nodes and 306,572 edges
generated in our experiments

the help of a similarity function f between trajectories in S and a threshold constant
c. This network is called trajectory network . The trajectory network (N ,E) is
constructed as follows: (1) each node in N represents a trajectory in S; (2) there is an
edge between two nodes n and m iff f(m,n) ≥ c, that is, m and n represent trajectories
whose similarity is above the given threshold.

In what follows, we will not distinguish between trajectories in S and nodes in
N .

We therefore define a function f to capture the spatial and temporal proximity
between two trajectories in order to establish an edge between them in the network. Let
f be the similarity function for trajectories used to construct the trajectory network, and
let s, t and k respectively be the spatial, temporal and frequency parameters of f . Given
a trajectory T , the spatial and temporal parameters induce a buffer B[s, t](T ) around T .
Given two trajectories T and U , we then define:

Definition 4.1 meet (or collide): T and U meet iff B[s, t](T ) and B[s, t](U) overlap.

Definition 4.2 encounter: there is an encounter between T and U iff T and U meet more
than k times.
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Note that, as defined above, two trajectories meet independently of their direc-
tion. In addition, our definition of encounter does not constrain that two moving objects
must be present in the same place at the same time instant.

Our methodology for analyzing trajectory data using this network approach
encompasses 3 steps:

1. Build the trajectory network;

2. Analyze trajectory network features;

3. Identify relevant trajectories within the trajectory network.

In the rest of this section, we analyze networks constructed using the specified
similarity function.

4.2.0.1 Step 1 - Build Trajectory Network

Intuitively, we define that two trajectories are similar iff they are within a certain distance
of each other (spatial threshold) within a given time interval (temporal threshold) for a
certain number of times (frequency parameter). The values of these parameters obviously
depend on the application domain under study. For example, in the traffic management
domain, we can establish that two vehicles meet with a minimum frequency of meetings (as
few as 2-5 times, depending on the density of the dataset). This representation describes
the interactions (given a spatio-temporal threshold and a minimum frequency) between
vehicles regardless of the direction of their trajectories. But in other applications, where
the study of the flows of vehicles is important, the direction should also be taken into
account.

Algorithm 4.1 Compare two trajectories by their positions
Input: Two trajectories T1 and T2, a temporal threshold Td to compute the temporal

difference and a spatial threshold Sd to compute the spatial distance
Output: A frequency f

1. f ← 0
2. for each position p in T1 do
3. for each position q in T2 do
4. spatial← spatialDifference(p, q)
5. temporal← temporalDifference(p, q)
6. if spatial ≤ Sd and temporal ≤ Td then
7. // increment the meet between T1 and T2
8. f ← f + 1
9. end if
10. end for
11. end for
12. return f



4.2 Complex Network and Trajectory 52

The main idea of the algorithm for building trajectory network (see Algo-
rithm 4.2) is to compare each position (time, latitude, longitude) of a trajectory to all
other trajectories. The comparison between two trajectories (see Algorithm 4.1) com-
pares all points of these two trajectories (Algorithm 4.1 - line 2 to 10). Each comparison
takes into account geographic position - latitude and longitude - and timestamp and the
temporal and spatial distance thresholds (Algorithm 4.1 - line 4 and 5), respectively Td
and Sd variables. When the comparison satisfies the thresholds Td and Sd (Algorithm 4.1
- line 6), then the frequency variable is increased by one unit (Algorithm 4.1 - line 7).
After all comparisons (Algorithm 4.2 - line 9), we have computed the frequency of en-
counters of a trajectory with respect to another trajectory. If the frequency is greater
than the value of the input parameter Frequency, denoted by variable c (Algorithm 4.2 -
line 10), then an edge is created between two trajectories (Algorithm 4.2 - line 11).

Some improvements can be done by using spatial index structures or spatial
database systems to take advantage of the index structure and the data management
language as well. For instance, we could store the trajectory dataset on a spatial database
system in order to index the points of the trajectories to perform more efficiently spatial
comparisons and, besides, to use index structures on the timestamp of the points to
compute the temporal difference among the points of the trajectories.

Algorithm 4.2 Trajectory Network Generator
Input: A trajectory dataset traj, a similarity function f to compute the similarity be-

tween two trajectories and a minimum threshold c to establish an edge between the
trajectories

Output: A trajectory network TN

1. n← |traj|
2. create an undirected graph TN
3. for each trajectory T in traj do
4. // T represents a node in TN
5. create a node in TN
6. end for
7. for i = 1 to n do
8. similarity ← 0
9. for i = i+ 1 to n do
10. // compute the similarity between traj[i] and traj[j] by using a given function

f : algorithm 4.1
11. similarity ← f(traj[i], traj[j])
12. if similarity ≥ c then
13. // there is an encounter between traj[i] and traj[j]
14. // create an edge between traj[i] and traj[j]
15. add edge (traj[i], traj[j]) in TN
16. end if
17. end for
18. end for
19. return TN
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4.2.0.2 Step 2 - Analyze Trajectory Network Features

In our approach we are interested in identifying the existence of two very important
network features: the power-law distribution and the small-world effect. The analysis of
the distribution degree of network vertices allows identifying whether such distribution
is highly skewed, meaning that it has a power-law distribution profile. In this case,
we conclude that few trajectories have many encounters, while most of the trajectories
have very few encounters. The discovery of such property can be useful, for example, to
identify trajectories having a high degree of encounters, which means that this trajectory
has passed through paths with a high number of moving objects. Besides, small-world
property may help to identify a set of trajectories that represent hubs in the trajectory
network.

The small-world effect feature determines the mean shortest path length be-
tween pairs of trajectories as well as if the network has a high clustering coefficient.
Through this measure we can quantify how well connected the trajectories in the network
are. Besides a high clustering coefficient indicates the presence of a transitivity property
among high connected nodes. This information can be very useful, for example, when an-
alyzing bus trajectories and their encounters we can verify how buses lines are connected
and how easy is it to move through the city using bus lines.

There are several free tools for computing network features, which can be used
in this step without requiring devising an algorithm for that. One example of such a tool
is the Network Workbench [Team, 2006] developed by Indiana University, Northeastern
University, and University of Michigan. This tool provides several algorithms to calculate
the properties of large complex networks.

4.2.0.3 Step 3 - Identify relevant trajectories within trajectory network

The third step in our approach aims at analyzing trajectories that have greater relevance
within the network. The relevant trajectories are those that possess a high degree of
connectivity. These trajectories are plotted on a map for visual analysis, allowing the
user to give an interpretation of the relevance of these trajectories in the geographic
context, Figure 4.5. This type of analysis will help reducing the number of trajectories
to be analyzed. Furthermore, we can restore back the spatial information, which was
lost during the creation of the network. Visualizing trajectories that are very connected,
which we hereinafter call hub trajectories, is useful for understanding entities moving in
the high dense paths with respect to the amount of moving objects.

4.3 Experiments

In this section, we presented the achieved experiments on a real dataset collected from
vehicles in Milan, Italy. Firstly, some statistics of the dataset as well as the used parame-
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ters for the Algorithm 4.2 are presented. Afterwards, we presented the computed features
of the generated network described in Section 4.2.

4.3.1 Experiments on the vehicles’ movements in Milan city

In this chapter, we propose a number of experiments using a mobility network that rep-
resents the trajectories of vehicles moving in the City of Milan, Italy (collected by GPS
devices installed in the vehicles). We split the dataset into seven different files corre-
sponding to the days of the week. The number of trajectories in each day of the week and
their average length is depicted in Table 4.1. In this dataset, each trajectory corresponds
to only one car.

Table 4.1: Information about trajectory dataset

Day Number of
trajectories

Average number of
points per trajectory

Sunday 23535 8.290461
Monday 34812 8.927956
Tuesday 36824 9.206279

Wednesday 36023 9.467285
Thursday 35340 9.871647
Friday 33822 8.697179

Saturday 25576 7.746950

We can notice a high number of trajectories (i.e. vehicles) tracked each day;
we also notice a decrease of moving vehicles during the weekend, as expected. The average
number of sample points for each trajectory stays within 7 and 10. The low number of
points per trajectory is due to a data cleaning process performed on the original data,
which eliminated outliers and redundant points.

We start our experiments running Algorithm 4.2, Trajectory Network Gener-
ator, described in Section 4.2 with the following parameters:

• trajectory dataset: specifies the name of a trajectory dataset to be processed;

• minimum frequency of encounters: this parameter specifies a minimum number of
meetings between two trajectories;

• a similarity function: Algorithm 4.1 with a spatio-temporal window for encounter.
This window defines a temporal and spatial distance that is used to select trajectories
that have a meeting in time and space.

We have generated 28 trajectory networks referring to the 7 days of the week
with 4 different parameter configurations as presented in Table 4.2. We chose a spatial
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distance threshold of 300 meters, and two different temporal intervals of 15 and 30 minutes.
These values have been chosen starting from dataset statistics. For example, since the
trajectory sample points are quite far from each other, we choose a quite broad notion
of “meeting” setting this parameter to some hundreds meters. Obviously, denser sample
points will correspond to smaller distance. Analogous is the consideration for the temporal
threshold. The values 3 and AVG for minimum amount of encounters was defined taking
into account the average number of encounters computed from our data set. The AVG
value is related to the average number of points per trajectory in Table 4.1 for each day.
For instance, on Sunday we get 8 as value to this parameter. Table 4.2 below summarizes
the 4 parameters combinations that were used to setup our 4 experiments on the 7 daily
trajectories datasets.

Table 4.2: Four different parameter combinations

Experiment Minimum
Frequency

Spatial
Distance (km)

Temporal
Distance (min)

1 3 0.3 30

2 3 0.3 15

3 AVG 0.3 30

4 AVG 0.3 15

4.3.2 Computed Trajectory Network Features

Tables 4.3, 4.4, 4.5, and 4.6 show the trajectory network features computed from our ex-
periments. The computation of the trajectory network features was accomplished through
the use of the Network Workbench Tool [Team, 2006]. Each table reports the number of
nodes n (each node represents a trajectory), the edges m (an edge represents an encounter
between two trajectories), the clustering coefficient C (represents the density of triangles
in the network), the average shortest path length l and the diameter d.

We can notice that all 28 trajectory networks generated in our experiments are
highly clustered networks. To arrive at this conclusion, we generated a Erdős and Rényi
(ER) model [Erdős & Rényi, 1959, Erdős & Rényi, 1960] network, described in Section
3.2.1, with the same size, in nodes, as the networks generated in experiment 1 (Ta-
ble 4.3), and with the number of edges proportional in order to have a similar network
in size and structure. Table 4.7 shows the size and the computed features of the ER
networks. They are generated randomly and characterized by their low average shortest
path length as well as low clustering coefficient. Comparing Tables 4.3 and 4.7, one may
verify that the level of clustering of the trajectory networks is much higher than that of
the corresponding ER network. This means that we have a set of trajectories that have a
high number of encounters. In combination, they present low values for average shortest
path length (less than 6), and this has a clear interpretation as small world property
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[Watts & Strogatz, 1998].

Also notice the presence of many trajectories that have few encounters and few
trajectories that have a large number of encounters. This characterizes a phenomenon
known as “the rich get richer”. This analysis is done by plotting a curve that shows the

Table 4.3: Experiment 1: frequency of 3, spatial threshold of 0.3 km and temporal
threshold of 30 minutes

Day n m C l d

Sunday 23535 229938 0.441 5.028 17
Monday 34812 515866 0.445 4.615 19
Tuesday 36824 590821 0.456 4.537 16

Wednesday 36023 587151 0.455 4.498 16
Thursday 35340 587399 0.457 4.393 16
Friday 33822 447244 0.437 4.776 19

Saturday 25576 210073 0.424 5.512 19

Table 4.4: Experiment 2: frequency of 3, spatial threshold of 0.3 km and temporal
threshold of 15 minutes

Day n m C l d

Sunday 23535 116671 0.418 5.691 22
Monday 34812 264897 0.417 5.196 22
Tuesday 36824 306572 0.432 5.099 19

Wednesday 36023 305338 0.432 5.058 20
Thursday 35340 307179 0.431 4.936 20
Friday 33822 229983 0.413 5.371 21

Saturday 25576 106424 0.398 6.363 22

Table 4.5: Experiment 3: frequency of AVG, spatial threshold of 0.3 km and temporal
threshold of 15 minutes

Day n m C l d

Sunday 23535 27789 0.431 6.574 22
Monday 34812 78204 0.449 6.014 22
Tuesday 36824 82795 0.487 6.052 17

Wednesday 36023 86811 0.488 5.995 20
Thursday 35340 92753 0.490 5.629 24
Friday 33822 63898 0.443 6.168 18

Saturday 25576 28633 0.399 8.065 25
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Table 4.6: Experiment 4: frequency of AVG, spatial threshold of 0.3 km and temporal
threshold of 30 minutes

Day n m C l d

Sunday 23535 58901 0.464 5.906 21
Monday 34812 161632 0.480 5.328 18
Tuesday 36824 168823 0.511 5.319 20

Wednesday 36023 175310 0.510 5.267 17
Thursday 35340 185919 0.513 5.021 18
Friday 33822 132142 0.471 5.486 21

Saturday 25576 60438 0.431 6.614 23

correlation between the amount of nodes versus their respective degrees. Two graphs were
created (Figures 4.2(a) and 4.2(b) showing the distribution of trajectories of Tuesday
and Sunday, corresponding to the largest and the smallest networks generated by our
experiments. In both graphs we have a power law curve.

By contrast, Figure 4.2(c) illustrates the degree distribution of the correspond-
ing ER networks. Note that the node degrees of the ER networks do not follow a power
law distribution, whereas the node degrees of the trajectory networks do. In fact, the tra-
jectory networks have nodes that are hubs [Barabási & Albert, 1999]. This is a important
result since all trajectory networks in our experiment presents a small world and power
law feature similar to the internet and biological networks.

Table 4.7: Random Graph - Erdős and Rényi

Day n m C l d

Sunday 23535 278105 0.0010 3.539 5
Monday 34812 606707 0.0010 3.262 4
Tuesday 36824 679044 0.0009 3.221 4

Wednesday 36023 649475 0.0010 3.237 4
Thursday 35340 625219 0.0009 3.251 4
Friday 33822 572781 0.0009 3.283 4

Saturday 25576 328251 0.0009 3.483 5

Hereinafter, we analyze each trajectory network feature separately, namely
clustering coefficient, average path length, and diameter. Figure 4.4(a) shows the clus-
tering coefficient feature computed for all 28 trajectory networks. In this Figure, we can
observe that the clustering coefficient increases on Tuesday, Wednesday and Thursday.
This is consistent with the dataset statistics (see Figure 4.3) where we notice an increase
of trajectories moving on Tuesday, Wednesday and Thursday compared to Friday (for that
particular week the friday was just before Easter holidays) and the weekend. Intuitively,
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this reflects the fact that we have more vehicle’s encounters during these central days, that
reduce when approaching to Friday and the weekend. From these trajectory networks, we
deduce that Tuesday, Wednesday and Thursday are the days with more encounters than
the other days of the week and this is consistent with dataset statistics.
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Figure 4.4: Network properties of tables 4.3, 4.4, 4.5 and 4.6

Figure 4.4(b) shows the average shortest path length feature for all 28 tra-
jectory networks. We observe that in all trajectory networks the average path length
increases during the weekend and reduces during the working days. Particularly, Thurs-
day is the day with the lowest average shortest path length in all trajectory networks.
Since the shortest path length characterizes the distance between two nodes, then when
we have more encounters among vehicles we decrease the average path length. Thursday
is the day with the largest number of encounters, which increases the probability of hav-
ing traffic congestion. This result is coherent with the clustering coefficient feature graph
(Figure 4.4(a)), where the highest clustering coefficient is also associated with Thursday.

The diameter feature (the largest distance between two nodes) is illustrated
in Figure 4.4(c). In this graph we observe that there is no explicit correlation among
diameter features from all the trajectory networks. This behavior is justified by the fact
that the diameter feature is very sensitive to trajectory network topology. Besides, given
the size of the trajectory networks, which are around 5 orders of magnitude, the variation
in diameter along each day of the week (showed in Figure 4.4c) is insignificant.

Figures 4.5(a), 4.5(b), 4.5(c), 4.5(d), 4.5(e), 4.5(f) and 4.5(g) show the hub
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trajectories for each day of the week. These trajectories are projected on GoogleMaps.
Particularly, we note that a part of the road segment, the A51 highway, is presented in
five of seven high connected trajectories (indicated in the figure by an arrow). This fact
suggests that this road segment has a high concentration of cars, possibly because this is
a ring highway that goes towards the Milano Linate Airport. In Figure 4.5b (Monday)
we observe that the most connected trajectory represents a moving object that goes back
and forth between the airport and Milan’s downtown, probably a shuttle service, which
corroborates to increase the amount of encounters to this trajectory.

We can also remark that on Monday, Tuesday, Thursday, Friday and Saturday
(respectively Figures 4.5(b), 4.5(c), 4.5(e), 4.5(f) and 4.5(g)) the corresponding hub tra-
jectory has some movement within the airport. This observation reveals that the airport
is a hot spot (with respect to encounters of moving entities ) in Milan’s city. Beyond
this, we can observe that ring highways appear on six of the seven hub trajectories, which
reinforces that this is a road that is very much used by vehicles. Indeed, several analyses
can be done by using hub trajectories, such as comparing several hub trajectories of the
same trajectory network, or analyze relevant parts of hub trajectories. Due to time and
space limitations we left this investigation for future work.

4.4 Conclusion

In this chapter we have presented a theoretical analysis and experimental results for
moving object trajectories on complex networks. Our motivation comes from the desire to
understand the influence of moving objects trajectories interaction on the traffic dynamics.
We have defined a method for devising trajectory network from a dataset of moving
object trajectories. In addition, we have built 28 trajectory networks from a real dataset
of trajectories of vehicles. We have computed three network features (i.e. clustering
coefficient, average shortest path length and diameter), for each trajectory networks and
compare them.

Our analysis reveals that all trajectory networks are scale free network, pre-
senting small world and power law features. Our results have practical implications for
investigating moving objects interactions from complex network perspective. Although
we have provided basic methods for building trajectory networks and analyzing their
features, future investigation is needed in order to define how to interpret such features
taking into account the application domain knowledge.

Comparing to existing data mining and statistical methods, our proposed ap-
proach provides another method for analyzing trajectories from the potential interaction
perspective. Besides, complex network technique is adequate to analyze relationships
among a large set of entities by computing topological features of the graph. Although
building a trajectory network is time consuming, computing its properties is not. Thus,
we believe that this technique can open new opportunities in mining the network structure
of interactions between a large number of moving object trajectories.
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Our analysis can be performed on other applications as well. Study of football
players, for instance, to identify the players that move near their opponents to block their
game. Other applications go towards hospital environment, where doctors and patients
could wear GPS-enabled devices or chips to collect their mobility and, then, to analysis
the risk of contagious of the network built by their encounters, that is, if a doctor, that
could be in touch with patients with contagious disease, encounters many others, doctors
and patients, and, consequently, might spread these diseases.

The future research focus is on further analyzing the interactions between
trajectories and space (i.e. landmarks, point of interest,etc), or between trajectories and
time (i.e. hush hours, weekend, etc), or between trajectories and events (i.e. soccer match,
festival, etc), to name a few.
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(a) Sunday (b) Monday

(c) Tuesday (d) Wednesday

(e) Thursday (f) Friday

(g) Saturday

Figure 4.5: Trajectory plot of the days of the week
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CHAPTER5

COMETOGETHER: discovering
communities of places in mobility data

P eople live in an environment where they move from one place to another. Therefore
“places” are not only “static geographical objects” but they are also part of people

lives. There is a two-way relationship between how the movements of people are affected
by the location of places of interest, and how the places themselves are characterized and
connected by the mobility of people. The way people move towards these places and the
way they visit these places affects the overall movements, or mobility, of the environment.
But the other way around is also true: city places like the Points of Interests (or POIs
such as shops, restaurants, banks, hospitals and any locations that can be of interest for
individuals) can be featured based on how people globally access them.

In this chapter is presented a new perspective on observing how places are
connected based on the mobility among them in a urban context. We believe that just
counting, for example, the number of visits of a given place, although certainly giving a
measure of the attractiveness of that place, is not enough to get a deep understanding on
how that particular place is “lived by” people and how this place “relates” to other places.
Are there “communities” of places characterized by common mobility? In other words,
which is the relationship between two or more places in terms of the mobility that connects
them? Do people tend to visit places in the same communities? Are these communities
related to mobility issues like traffic congestion or public transportation optimization?
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These are only a few examples of questions that inspired our research. To
answer these questions we need to analyze the city places from a “mobility” point of view.
In other words, we need to build connections between places based on the trajectories
of people accessing them. We believe that this perspective could be complementary to
state-of-the-art mobility analysis techniques and furthermore it could improve the under-
standing of how places in a city are connected. Indeed, not necessarily spatially close
POIs belong to the same community, as we will see in Section 5.4. Several applications
can take advantage of this analysis ranging from traffic management to advertising, but
also to municipality administration issues or human behavior studies.

In this chapter we face this intricate problem of relating places with the mo-
bility at a global scale proposing a complex network framework to analyze the POIs in
relation to the mobility of people accessing them. This paradigm gives a vision of the
interrelation of places with the trajectories visiting them that is not explicitly faced by
"standard" spatio-temporal analysis methods, as discussed in Section 5.1. Here, we con-
centrated on the community aspect, a well known analysis method in complex networks:
POIs are grouped together based on the common trajectories that visited them.

The contributions present in this chapter are twofolds: on one hand, we propose
a methodology for building a complex network combining Points of Interests and traces
of people movements, from which we build communities of POIs. On other hand, we also
experimented this methodology in a real case study where trajectories are collected from
private cars traveling in a city and Points of Interest are downloaded from the Web. We
found different kinds of communities (e.g. compact where the movements are mainly inside
the community, or bridge where the movements tend to connect two other communities).
We discuss the possible exploitation of these results in the mobility and advertisement
application fields.

This chapter is organized as follows. Section 5.1 shows the novelty of the
approach comparing the present approach to some related works in the field of mobility
and complex network and in mobility data mining. Section 5.2 introduces some concepts
used in the methodology introduced in Section 5.3. Section 5.4 reports on the experimental
results using a real dataset. Section 5.5 contains the conclusions and describes future
works.

5.1 Related Work

In this chapter we offer a new perspective in understanding human mobility in terms
of finding the communities of places based on the user movements they share. To this
end, we build a complex network from POIs connected by trajectory data. In Chapter
2, we have introduced a trajectory as the spatio-temporal evolution of a moving ob-
ject by [Spaccapietra et al., 2008]. This evolution is typically represented as a sequence
of positional observations represented by x and y coordinates of time-stamped sample
points as collected by a tracking device, such as GPS tools or WIFI sensors. Trajectories
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representing the movement evolution of individuals has witnessed an increasing inter-
est in the last decade, especially due to the increasing availability of personal tracking
device, ranging from GSM phone to the more sophisticated GPS-enables smartphones.
Mobility analysis has become a hot research topic since several methods on data mining
and statistical techniques, tailored to trajectory data, have been proposed in the litera-
ture, [Giannotti & Pedreschi, 2008, Giannotti et al., 2011, Zheng & Xie, 2010] to mention
a few.

The task of analyzing large trajectory datasets can be carried out towards three
different directions. First, basic statistics may be applied to trajectory data mainly to dis-
cover the distributions of people presence and origin-destination matrices [Calabrese et al., 2010];
other studies focus on trajectory data mining aiming at finding correlations in large
datasets of positioning data [Giannotti & Pedreschi, 2008]. Techniques to extract move-
ment patterns include: (1) clustering discovery - finding groups of objects moving together;
(2) sequential pattern discovery - finding the most frequent sequences of places visited; (3)
flock detection - extracting the convergence of people moving together for a certain amount
of time [Dodge et al., 2008, Giannotti & Pedreschi, 2008, Wachowicz et al., 2011]. These
techniques are based on the geometric properties of trajectories thus trying to extract
similarities or common behavior from the spatio-temporal dimension of the data. The
connection to the places that people access during their movements is not explicitly taken
into account during the mining task. The concept of semantic trajectory, Section 2.1.2,
[Spaccapietra et al., 2008] as a sequence of stops (locations associated to the absence of
movement) and moves (where the object is actually moving) is a first step in includ-
ing places of interest visited by the user into the trajectory definition. The POIs are
associated to stops and thus they are embedded into the semantic trajectory definition
[Rocha et al., 2010, Yan et al., 2011]. Later, data mining algorithms are applied to dis-
cover the most frequent/sequential patterns [Alvares et al., 2007a]. In these approaches
the POIs are linked to the stops of a single trajectory, but there are no explicit connec-
tions between the POIs and the trajectories at a global scale. Therefore, what is missing
in these lines of approaches is a global perspective of the connection between the POIs
based on the mobility of people accessing them.

As we have seen, the specific aspect of understanding how the objects interact
at a global scale is usually associated to the paradigm of complex networks. The study
of networks, or Network Science, is broadly interdisciplinary and important developments
have occurred in many fields, including mathematics, physics, computer and informa-
tion sciences, biology, and the social sciences [Newman, 2010] and have been receiving
increasing attention by the scientific community, Inspired by real-world scenarios such
as social networks [Aiello et al., 2000, Castro & Grossman, 1999], technology networks
[Adamic et al., 2001], the World Wide Web [Leskovec et al., 2010, Donato, 2010], biologi-
cal networks [Jeong et al., 2001, Jeong et al., 2000], and human movement [González et al., 2008,
Wang et al., 2009] the last few years have seen a wide, multidisciplinary, and extensive
research devoted to the extraction of non trivial knowledge from such networks. Finding
social interactions at a global scale is also in the scope of this research area. A typi-
cal example is the study of the spreading of cell phone viruses thru GSM phone calls
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[Wang et al., 2009, Barabási & Albert, 1999]. However, to the best of our knowledge, the
approach introduced in this chapter in community discovery from complex network of
POIs based on the trajectories visiting them, has not been faced in previous work.

5.2 Background

As presented in 2, a network G = (V,E) is an object in which entities (the nodes in V ) are
linked by ties (the edges in E), representing any sort of connection, similarity or interac-
tion. Since networks are usually modeled by graphs, network analytics has focused to the
characterization and measurement of local and global properties of such graphs, such as
diameter, degree distribution, centrality, connectedness - up to more sophisticated discov-
eries based on graph mining, aimed at finding frequent subgraph patterns and analyzing
the temporal evolution of a network.

As introduced in Section 3.3, a branch of complex network research has been
focusing on the discovery of structures called communities. Communities are groups of
nodes highly interactive, densely connected, or, more in general, highly similar, for a given
definition of similarity between any two individuals.

Several approaches have been proposed so far to perform community discov-
ery [Coscia et al., 2011]: from divisive graph partition algorithms, to random walk based
approaches, from label propagation based methods, to clique percolation techniques. How-
ever, the literature is still missing a unique definition of the concept of community, and
the diverse techniques lead all to different results, sometimes hard to compare to each
other. Although a few measures of the quality of the results have been proposed so far
(among which, the modularity), their definitions are still questionable (the modularity,
for example, has a well known problem of resolution, and approaches that try to maximize
it tend to create very large communities).

Some of the existing approaches for community detection focus on finding
groups of nodes, while others put the links among entities at the center of the investigation.
Since we are interested in analyzing movements between places visited by trajectories and
in grouping places according to trajectories visiting them, we consider the edges as the
main entities to be grouped. In addition, we also want to consider the possible overlap
between different communities. Different places can, in fact, take part into more than a
community, due to their role of spatial “bridges” between them.

The authors of [Ahn et al., 2010] proposed an algorithm detecting communities
from the links and that considers the node overlapping. In this approach, the authors start
from the assumption that whereas nodes belong to multiple groups (e.g. individuals have
families, co-workers and friends), links often exist for one dominant reason (two people
are in the same family, work together or have common interests). They define a similarity
between two edges based on the Jaccard coefficient. Firstly, the inclusive neighbors of a
node i is defined as:

n+(i) = x|d(i, x) ≤ 1, (5.1)
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where d(i, x) is the length of the shortest path between nodes i and x. The set simply
contains the node itself and its neighbors. This measure computes the ratio of nodes
shared by two edges, or, in formula:

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

, (5.2)

where eik and ejk are two links sharing the node k. With this similarity function, a
hierarchical clustering algorithm is performed to build a dendrogram where each leaf is a
link from the original network and branches represent link communities. In addition, in
this dendrogram, links occupy unique positions whereas nodes occupy multiple positions,
owing to their links. After obtaining this dendrogram, it is necessary to find the best way
to cut is. The best height is found thanks to the usage of a natural objective function,
the partition density, D, based on link density inside communities.

For a network with M links, P = {P1, . . . , Pc} is a partition of the links into
C subsets. Pc has mc = |Pc| links and nc = |⋃eij∈Pc

{i, j}| nodes. Therefore, the density
of a partition Pc is

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
, (5.3)

and the partition density, D, is the average of Dc, weighted by the fraction of present
links:

D =
2

M

∑
c

mc
mc − (nc − 1)

(nc− 2)(nc − 1)
(5.4)

.

The equation 5.2, however, does not consider the weights of the links as metric
of similarity. Thus, we use the generalization of Jaccard coefficient, i. e. the Tanimoto
coefficient. Let ai = (Ãi1, . . . , ÃiN) with

ÃiN =
1

ki

∑
i′∈n(i)

wii′δij + wij, (5.5)

where wij is the weight on edge eij, n(i) = {j|wij > 0} is the set of all neighbors of node
i, ki = |n(i)|, and δij = 1 if i = j and zero otherwise. The similarity between edges eik
and ejk is:

S(eik, ejk) =
ai · aj

|ai|2 + |aj|2 − ai · aj
(5.6)

Therefore, we are able to compute the link similarity by considering their
weights, i. e., the number of trajectories or users carried by the links between two places.

5.3 Problem Definition and Methodology

In this section we introduce the problem definition and the methodology to build the
complex network of POIs. However, before going into the details of the complex network
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construction algorithm, let us introduce the concept of Point of Interest.

Definition 5.1 A Point of Interest (POI) is a geographical object that is interesting for
a specific application, usually associated to a human activity. Formally, we define a POI
as a triple POI = (c, r, l) where c is the representative spatial point, r is the spatial area
representing the extent of the object and l is the label of the form cat:n where cat is the
category of the POI and n is the POI name.

An example of POI is the Eiffel Tour: the representative spatial point c is the
center of the tower, the extent is the area covered by the base of the tower and the label
is the category (which can be, for example, “tourist attraction” or “monument” or “tower”,
depending on the application) and the name “Eiffel Tour”

The starting point of our process is the set of user position observations. There-
fore, we define the mobility history of a single user as:

Definition 5.2 (User Mobility History) Given a set of user’s observations Du, the
user’s history is defined as an ordered sequence of spatio-temporal points Hu = 〈p1 . . . pn〉
where pi ∈ Du, pi = (xi, yi, ti), xi, yi are spatial coordinates, ti is an absolute timepoint
and ∀(i, j)ti ≤ tj holds.

Problem Definition Given m traced moving users, a set of Points of Interest
(POIs) V and the dataset collecting the users’ histories: D = {D1, . . . , Dm}, we want to
group the POIs in V into groups (or communities) connected by the common mobility of
the users.

To solve this problem, we must overcome the limitations of standard methods
of grouping locations like spatial clustering, which is based only on the geographical aspect,
to move towards a communities perspective where POIs are grouped by the mobility of
the users.

The proposed methodology combines different aspects of mobility and graph
analysis and it is composed of two main steps: the first step builds a network where
each link represents the relations between two POIs in terms of mobility; the second step
extracts the communities that identify groups of POIs which share a common mobility
context. Furthermore, we define some measures to evaluate and compare the discovered
communities. These steps are illustrated below.

5.3.1 Building the Network

The network is composed of a set of nodes which correspond to the set of POIs where
the moving users stopped to perform some activity. In order to find these POIs we need
to first distinguish the single trajectory as the part of the user history representing the
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movement associated to a specific activity, such as going to work, shopping etc. In order
to distinguish between the different trajectories in a user history, we need to detect when
a user stops for a long time so that this stop can be considered the end of that particular
trajectory and the beginning of the next one. Section 2.3 introduces some methods present
in the literature.

However, for computational efficiency reasons here we propose a different
method as a trade off between precision and efficiency. We search the points that change
only in time. i.e. points that stays in the same spatial position for a certain amount of time
quantified by the temporal threshold MinStopT ime. A spatial threshold MaxStopArea

is used to remove both the noise introduced by the imprecision of the device and the small
movements that are of no interest for a particular analysis. These thresholds are used
for detecting the candidate stops as defined below, where area() is a function computing
the size of the minimal convex region including a set of points and � is the operator of
sequential inclusion without gaps.

Definition 5.3 (User’s candidates stops) Given the user history Hu, we define the
sequence of candidate stops Su = 〈s1 . . . sm〉 : sk = (a, t, d), a = 〈pi, . . . pj〉 � Hu,

area(a) ≤MaxStopArea, t = pi.t, d = pj.t− pi.t ≥MinStopT ime.

From this set of candidates we want to build the set of user trajectories by
removing the cases of slow movements or long stops in a place. Examples of this long
stops may be the home and the work places since usually users spend the night at home
and the day at work. For this reason we use a threshold called MaxMoveT ime to break
the user history into distinct trajectories. This trajectory partitioning step is presented
in [Zheng & Xie, 2010]. Therefore, we define the user trajectories set as follows, where
contains is a spatial inclusion predicate between two spatial regions:

Definition 5.4 (User’s trajectories set) Given a set of Points of Interest V and given
the sequence of candidates stops Su for the user u , we define the user’s trajectories set
as Tu = {t1, . . . , th} where each trajectory is the maximal sequence t = 〈v1.l, . . . , vk.l〉 :

∀(i,j), 1 ≤ i < j ≤ k, ∃(w,q)(sw, sq) � Su,

contains(vi.r, area(sw.a)), contains(vj.r, area(sq.a)) and
sw.t− sq.t ≤MaxMoveT ime.

Having all the trajectories of all the users T =
⋃u

1...m Tu, we compute the POIs
network as:

Definition 5.5 (Points of Interest (POI) network) Given a set of POIs V and a set
of users trajectories T , we build the points of interest network PN

oi = (V,E,W ) where
E = {ei,j : ∃t ∈ T, 〈vi, vj〉 � t} and W = {wi,j : wi,j = |{t1, . . . , tm}|, 〈vi, vj〉 � t}.
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Figure 5.1: The building process of places network from one user history: From po-
sitional observations in (a) to the user history in (b), the candidates stops in (c). The
trajectories set in shown in (d) where a move of duration of 8h30’ (thus exceeding 4 hrs)
splits the user history into two trajectories. The POI network is depicted in (e)

In other words, the POI network is a directed and weighted graph which summarizes all
the trajectories of the users and each edge is weighted by the number of trajectories which
share the movement between the same pair of POIs.

An example of the stop computation process is presented in Figure 5.1. In
Figure 5.1(a) the set of positional observation of a user are shown. The process starts
building the user history as a continuous sequence of points ordered by time Fig.5.1(b). In
Fig.5.1(c) the stops are identified considering MaxStopArea = 50m2 and MinStopT ime

= 30 minutes. Then the stops are spatially intersected with the set of POIs V as shown in
in Fig.5.1(d): the red edges between the two stops has a duration which is grater than the
MaxMoveT ime (e.g. 4 hours) therefore it is removed cutting the user history into two
trajectories. Finally, the two trajectories will contribute to the edges shown in Fig.5.1(e)
where w and w′ are the number of trajectories which share the same path respectively
Shop : 1→ Restaurant : 4 and Park : 2→ Cinema : 1.

The network building process is summarized by the pseudo-code of the algo-
rithm Points of Interest Network Builder: Algorithm 5.1.

5.3.2 Communities of Points of Interests

Having the POIs network PN
oi we can identify communities of POIs that are grouped

based on the movements between them. This can be done using the state-of-the-art algo-
rithm [Ahn et al., 2010] presented in the section 5.2, thus obtaining a set of communities
C = {C1, . . . , Cn} where each community is a subgraph of PN

oi . Moreover, in order to
evaluate the quality of discovered communities, we introduce three measures: the Nodes
similarity measuring how similar communities are based on the nodes shared by them;
the Trajectories similarity giving a measure of how the communities are similar from the
point of view of the trajectories which pass through their edges; and the Compactness
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Algorithm 5.1 Points of Interest Network Builder
Input: A set of positional observations D, a set of POIs V , a temporal threshold

MinStopT ime as SminTime, spatial threshold MaxStopArea as SmaxArea for stop de-
tection and a temporal threshold MaxMoveT ime as MmaxTime for creating users’
trajectories

Output: A points of interest network PN
oi = (V,E,W )

1. PN
oi .V ← V

2. PN
oi .E ← ∅

3. PN
oi .W ← ∅

4. for each Du ∈ D do
5. // create users’ history
6. Hu ← userHistory(Du)

7. // identify candidate stops
8. Su ← candidateStop(Hu, SminTime, SmaxArea)

9. // create users’ trajectories
10. Tu ← userTrajectorySet(Su,MmaxTime)

11. for each t ∈ Tu do
12. for each 〈vi, vj〉 � t do
13. // create edge eij
14. eij = 〈vi, vj〉
15. PN

oi .E ← PN
oi .E ∪ eij

16. // update the weight wij of the edge eij
17. update wij in PN

oi .W
18. end for
19. end for
20. end for
21. return PN

oi
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measuring how much the trajectories creating a community move inside the community
itself. Formally:

SimilarityNode(Ci, Cj) =
|Vi ∩ Vj|
|Vi|

. (5.7)

SimilarityTraj(Ci, Cj) =
|T (Ci) ∩ T (Cj)|
|T (Ci)|

. (5.8)

Compactness(Ci) =
|Ei|

|distinct(T (Ci))|
. (5.9)

where T (Ck) is the set of trajectories traversing a community Ck and distinct(T )

set of edges traversed by the set of trajectories T .

5.4 Case Study

In this section we present the experiments carried out using a real trajectory dataset and
a set of POI existing in the geographical area of the movements. Furthermore, we analyze
and evaluate the generated network according to the analysis and measurements presented
in Section 5.3. In our experiments we use a set of positional observations collected by an
Italian insurance company which offers a discount to the users who have an embedded
GPS device in their car. The set of collected observations in one week in Milan (Italy)
is composed by 1,806,293 points for 17,087 users in the Milan area. The POIs dataset of
Milano has been downloaded from the web (OpenStreetMap [OpenStreetMap, 2011]) ob-
taining a set of 2501 locations corresponding to commonly used POIs semantic categories
such as banks, restaurants, cinemas, theaters, museums, etc.

According to the methodology defined in Section 5.3, from the set of positional
observations we computed the set of candidate stops for each users. The parameters used
are 20 minutes as MinStopT ime and 150m2 as MaxStopArea (i.e. a car with speed less
than 0.5 km/h) thus obtaining 216,523 candidate stops. Due to the fact that (1) It is
possible to retrieve the representative point of the POIs, but not the precise extent and
(2) the observations refer to the position of the car and not the user himself, we use an
approximated area around the POIs of 150m. However a single stop matches since the
POIs are very close (e.g. an open mall or the city center). To solve this problem we
propose to perform a preprocessing step to group together the POIs that match a stop
thus defining a composite POI represented by the union of all the extent of the close POIs.
This has been done with spatial clustering (i.e. T-Optics [Andrienko et al., 2009]) and
each cluster will be handled as a single POI for the purpose of the network construction.
The number of POIs after this clustering process is 347 for the single POI and 77 composite
POI.

Having the candidates stops computed as described in Section 5.3 with the
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specified thresholds and the set of POIs, we can build the trajectory sets and then the
POIs network. For this steps we used a MaxMoveT ime of 4 hours obtaining a network
with 77 nodes and 677 links corresponding to the movements of the trajectories between
the POIs. Figure 5.2 illustrates the generated POI network in City of Milan.

5.4.1 POI Network Characteristics

Figure 5.2: The plot of the POIs network generated from our experiments with 77 nodes
and 677 edges: nodes represent the composite POIs; and edges represent the movement
of users’ trajectories between the nodes

Figure 5.3 shows the distribution of the edge weights, which represents the number of
trajectories. In Figure 5.3 we observe that the distribution follows a power law, i.e. there
are few edges with a large number of trajectories while there is a large number of edges
with a small number of trajectories. Intuitively we can conclude that few composite POIs
are very popular, having many movements through them..

In order to understand the characteristics of the generated POI network, we
computed the following network measures, widely used in standard complex network anal-
ysis: clustering coefficient, average shortest path and diameter. The clustering coefficient
of PN

oi is 0.329, the average shortest path length is 2.584, the diameter is 7. These results
are similar to the ones found in many real world networks, such as biological networks,
social networks, and citation networks [Newman, 2003]. They highlights a small world
phenomenon where there is a high clustering coefficient and a small average shortest path.

Another interesting analysis is to understand how composite POIs are related,
which may help in answering interesting questions such as: do the highly connected
composite POIs preferentially connect other high-degree composite POIs? Or do they
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Figure 5.3: Edge weight distribution of the network PN
oi

prefer to connect to low-degree ones? In other words, are we facing degree correlation?
Degree correlation is a special case of assortative mixing of node degree [Newman, 2002,
Newman, 2003]. The correlation r is calculated by means of Pearson correlation between
of the nodes at either end of the edges. Table 5.1 shows the correlation r. As we see, in
Table 5.1(a) nodes with high in-degree tend to connect to nodes with high in-degree; in
Table 5.1(b) high in-degree nodes tend to connect high out-degree nodes; in Table 5.1(c)
we see high out-degree nodes connecting to high in-degree nodes; Table 5.1(d) shows nodes
with high out-degree connecting to nodes with high out-degree too. Summing up, Table
5.1 shows that the network is generally assortative.

When we compare this result to the literature, we can see that social net-
works tend also to be assortative, whereas other networks seem to be disassortative
[Newman, 2002]. Together with the above, this means that the obtained network has
typical characteristics of a social network. Indeed, a point of interest network is gener-
ated from the users’ trajectories which may represent social aspects of the users, such as
the places where the users perform some activities. To exemplify the concept of assorta-
tivity, we can take as an example the node 135 from the obtained network. This node
represents a composite points of interest, including a coffee bar, a fast-food restaurant
and a parking space. Its in-degree is 11 and its out-degree is 10. It connects to nodes
whose average in-degree is 15.4 and out-degree is 17.2, and receives connection from nodes
whose average in-degree is 14.8 and out-degree is 17.2. This example reflects the behavior
of people in the real world where people tend to move from a popular place to another
popular one.

5.4.2 Communities Analysis

Discovering communities structures within a complex network is the key for finding tightly
connected groups of nodes. In our scenario, communities represent places that are at-
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Table 5.1: Degree correlation of PN
oi

source target r

(a) in-degree in-degree 0.3715
(b) in-degree out-degree 0.3533
(c) out-degree in-degree 0.3375
(d) out-degree out-degree 0.3126

tended together, in a social network communities represent individuals belonging to so-
cial communities, while communities in genetic networks may be associated to functional
modules. Thus, community discovery is a powerful tool for understanding the functioning
of the network [Boccaletti et al., 2006].

Figure 5.4: The 109 communities discovered from the POIs network. The edge color
identify the different communities

After executing the community detection algorithm described in Section 5.2,
we obtained 109 communities from the generated POI network. Figure 5.4 illustrates PN

oi

in which the colors of the edges identify each discovered community. Furthermore, Figure
5.5 shows the community size distribution considering the number of edges. It is worth
noting that a number of communities have only one edge while few communities have a
large number of edges. Indeed, small communities can be formed by a single movement
between two composite POIs while large communities require a large number of distinct
composite POIs and movement among them. Moreover, a set of composite POIs that
participate in large communities may form small community among them.

Since communities are defined from trajectories, it is important to understand
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Figure 5.5: Community size distribution considering number of edges. Many commu-
nities are formed by a few edges, whereas a few communities are composed by a higher
number of edges

the relationship between them. Do trajectories that define a community tend to have
their moves on the edges of that community or they also have some moves in another
community? From this question we analyse the community by means of Compactness
measure defined in Section 5.3.

Figure 5.6: Cumulative Distribution of Compactness. P (Compactness ≤ k) indicates
the probability that Compactness takes on a value less than or equal to k

Figure 5.6 shows the Compactness cumulative distribution. This plot illus-
trates these measures in the discovered communities. As we can notice, there is an evident
gap at 0.5. It suggests two different behaviors of Compactness: one for the interval (0, 0.5)

corresponding to less compact communities and other for the interval (0.5, 1.0) related to
the communities more compact. Looking into these two groups, we analyze what may
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influence the Compactness such as number of edges and number of types of places of
interest involved into the community. Then, we analyze the correlation between some
community properties and the Compactness value. The analysis are presented in the
following and depicted in Figure 5.7.

For the interval (0, 0.5) we can notice that small communities seem to be less
compact, since the trajectories tend to go towards outside the community. In fact, the
average community size in this interval is 2.4782 edges. Nonetheless, what may influence
the Compactness? We have found that the highest correlation of Compacted was with
the number of POI types of 0.7874 (Figure 5.7(a)). This means that, for this interval,
communities tend not to be so large and that communities with more POI types tend to
be more compact. In other words, we could interpret this as the trajectories that tend to
keep themselves inside the community since this community present different POI type.

(a) Correlation between Compactness and the num-
ber of type of points of interest. For the interval
(0,0.5) the correlation is 0.7874, and for (0.5,1) the
correlation is 0.6371

(b) Correlation between Compactness and the
number of edges ( logarithmic scale). For the inter-
val (0,0.5) the correlation is 0.5741, and for (0.5,1)
the correlation is 0.7257

Figure 5.7: Correlation

The situation is changed for the interval (0.5, 1.0) since, in this case, the com-
munities tend to be larger with an average of 29.4705 edges. There is still a correlation
between compactness and the POIs categories since the values is 0.6371. However, the
highest correlation found for this interval was between Compactness and the number of
edges, corresponding to 0.7257 (Figure 5.7(b)). Therefore, in this case the edges con-
tributes for larger values in the compactness of the community. This means that the
communities tend to be larger in number of POIs and, consequently, the trajectories tend
to remain inside the community.

As consequence of the previous analysis we discovered two interesting types of
communities: (i) the big communities with a large number of edges which cover multiple
types of POIs, thus becoming compact, and (ii) the communities which are not large but
since they cover several POIs categories they tend to form a compact structure. In the
following we focus our attention on these two types of communities.
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5.4.3 Large Communities

In this section, we focus on the top three larger communities with respect to the number
of edges (72, 20 and 25). In Figure 5.8 we can see how they are distributed in space
and how the communities 20 and 25 are interconnected since they share some nodes of
the network while community 72 is very well separated. In fact, these three communities
highlight how the center of the city is essentially divided into two major communities of
POIs. This is confirmed by the Table 5.2a and 5.2b where the SimilarityNode is 50% and
28% but the SimilarityTraj is only 4% and 1% highlighting that only few users use both
the communities. The community 72 is in a peripheral area of the city and describes a
new gravitational point for the activities of the people. From Tables 5.2(a) and 5.2(b)
we can see that it is completely separated from the others considering both nodes and
trajectories.

72

63

76

2520

Figure 5.8: The selected communities: the three largest communities by the number of
edges are 72, 20, 25; and the two communities 76 and 63 act like a "bridge" between them
characterizing the movement between two regions of the city

Looking at the other communities discovered in Figure 5.4 we note that there
exists bridge communities, which connect this three large communities. Intuitively, a
bridge community Cb is a community that shares nodes with two other communities Ci
and Cj such that Ci and Cj do not share nodes with each other. Including them in the
analysis (communities 63 and 76 in Figure 5.8) we can understand how they connect the
center of the city with the peripheral area. We computed the similarity measure and we
discovered that they share a large percentage of nodes and trajectories among them.

The results of such analysis could very valuable for a broad range of urban
actors such as a mobility agency or an advertising company, which can understand the
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Table 5.2: Similarities between the communities in Figure 5.8

(a) SimilarityNode

20 25 72 63 76

20 – 0.28 0.00 0.08 0.00
25 0.50 – 0.00 0.07 0.14
72 0.00 0.00 – 0.15 0.35
63 0.40 0.20 0.60 – 0.00
76 0.00 0.22 0.77 0.00 –

(b) SimilarityTraj

20 25 72 63 76

20 – 0.01 0.00 0.00 0.00
25 0.04 – 0.00 0.02 0.00
72 0.00 0.00 – 0.007 0.007
63 0.00 0.25 0.50 – 0.00
76 0.00 0.00 0.66 0.00 –

dynamics and the interconnection of the city and be more accurate in their actions. For
example, an advertising company could use this information to understand where to locate
their advertising posters to optimize the spreading of the information to all the three major
communities exploiting, for example, of the bridges communities. Hence, considering the
SimilarityTraj and SimilarityNode between the large communities and the bridges, the
better places to put the advertise posters are the shared nodes between community 20
and 25 and the shared nodes between these two communities and the bridges. Indeed,
although communities 76 and 63 do not influence the central area, they share a large
number of trajectories with community 72.
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(a) Stops on Wednesday (b) Trajectories on Wednesday

(c) Stops in the week (d) Trajectories in all the week

Figure 5.9: Temporal analysis of the network PN
oi and communities 72, 20 and 25 showed

in Figure 5.8

In the case of a mobility (or traffic) agency further information can be obtained
by analyzing the temporal aspect of the communities. In fact, the communities change
over time as shown in Figure 5.9. The communities are analyzed and compared to the
entire network usage in terms of number of users who stop in a POI and the number
of users who move between POIs is reported comparing them. The temporal analysis is
performed using two different granularities, days and hours. We can observe how each
community has its own distribution which follows the general behavior of the network.
However, there are some specific periods where they clearly diverge. This result can be
used by the mobility agency to better organize public security. For example, considering
Figure 5.9(d), traffic agents could be allocated in community 72 at 16:00h (high move-
ment) in order to guard movement among community POIs. It’s important to notice
how a simple spatial clustering is not sufficient to obtain this result since these kinds of
algorithms tend to partition the space (and therefore the groups of POIs) not considering
the mobility information.
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5.4.4 Compact Communities

In this section we focus on compact communities, which are characterized by containing
trajectories that tend to remain inside the community. As we have shown and discussed
in Figure 5.7(a), there is an high correlation between the number of POI types and
compactness. Here we focus on six compact communities selected from the intervals of
compactness that have been discussed in Figures 5.7 and 5.6. We discover again the
communities number 20 and 72 are among the most compact ones, but not the 25 (see
Table 5.3).

Focusing on the other communities in Figure 5.10 (i.e. 13, 6, 43 and 86), we
can notice that some of them seem to be similar to the larger communities: community 86
is high related to the community 25, sharing a large percentage of nodes and trajectories
(respectively 77% and 40%). Moreover, if we consider the topology of the community,
this suggests the presence of a central core connecting almost all the POIs of the large
community. A different relation exists between the communities 6 and 20 where the
percentage of shared nodes is 90% but the shared trajectories is 0%: this means that it
represents a different community which uses the same POIs. This observation highlights
the complexity of the mobility in a city and the method discussed in this paper is a further
step in trying to get an understanding of the phenomena.

43

6

86

Figure 5.10: Communities to illustrate the measure Compactness considering different
degrees of compactness: communities 104, 86 and 43 are less compact communities; 6
and 13 are more compact communities
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Table 5.3: Compactness of the some communities of Figures 5.8 and 5.10

Community Ci Compactness(Cj)

86 0.42
43 0.46
25 0.58
6 0.68
20 0.87
72 0.94

5.5 Conclusion

Unveiling the complexity of people movement is a challenging task, as witnessed by the
recent increasing interest in the literature. Relating people movement with the places of
interests visited by the travelling individual at a global scale is even more complicated
since it combines the spatio-temporal dimension of the movements with the geographical
and semantic aspect of the urban locations. In this paper, we proposed an explorative
study on the relation between people mobility and Points of Interest at the global scale,
based on the complex network paradigm. We presented an algorithm to build a complex
network that combines locations that people visit with the mobility of users represented
as trajectories.

From this network we computed the communities as the subgroups of Points of
Interest related by the common users trajectories visiting them. An explorative analysis
has been conducted in a real case study where a complex network has been built combining
Point Of Interests with traces of moving cars in Milan, Italy, and communities of places
grouped by common mobility are extracted. We defined some interesting features of
these communities such as the compactness or the presence of "bridge" communities. We
observed these measures discussing the possible interpretations in terms of applications
such as traffic management or advertising.

Future works follow several directions. First of all, alternative ways of com-
puting the stops and associating the POIs may be applied in order to better represent
the actual activity of the user. Furthermore, we plan to extend this methodology to other
real datasets to further validate the results. Naturally, we intend to investigate more in
deep the possible applications that can be benefit from this analysis, for example going
to the direction of POIs recommendation systems.
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CHAPTER6

MOBNET: a software tool to analyze
mobility through complex network

T he development of new methodologies to analyze data has provided the creation of
new software tools to support specialist and non-specialist users in several different

areas. Therefore, from the proposed methodologies in Chapter 4 and 5, we have devel-
oped a software tool to analyze mobility data using complex network techniques. This
application is named MobNet.

MobNet aims at analyzing mobility data by means of complex network tech-
niques, such as the graph representation, local and global properties and the methodologies
proposed in Chapter 4 and 5. Furthermore, it also intends to present the results to the
users to make decisions and interpretation, by visualizations the networks or communities
on the map, for instance.

This chapter is organized as follows. Firstly, we present some software tools
in mobility analysis and network analysis in Section 6.1 and 6.2, respectively, that can
be useful for users that intend to understand these type of data. Afterwards, Section 6.3
introduces the software MobNet, presenting an overview of this tool and concluding with
the main capabilities present in MobNet. Finally, Section 6.4 draws the conclusions.
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6.1 Tools in Mobility Analysis

Due to growth of techniques and the availability of mobility data, tools become more
and more necessary. These tools are important to help user at analyzing mobility data
by applying several developed techniques, such as stops and moves detection, creation of
trajectories and semantic trajectories. In this section we present two tools for mobility
analysis: Weka-STPM and M-Atlas.

6.1.1 Weka-STPM

Weka, [Holmes et al., 1994], is a free and open source non-spatial data mining toolkit
developed in Java. It has a non-spatial data preprocessing module named weka.Explorer,
where data can be obtained from a database, a web site, or an arff file (specific format
for Weka).

A great advantage in Weka is the possibility to create modules and aggregate
them to the existing system. Hence, [Bogorny, 2011, Alvares et al., 2010] proposed a
module for Weka called STPM. The module STPM is fully integrated into Weka in order
to automatically access the database and add semantics to trajectory data. In addition,
Weka-STPM is an extension of Weka for spatio-temporal data and it is interoperable with
all databases constructed under Open GIS Consortium (OGC) specifications [OGC, 2008].
As a module of Weka, it allows the user to directly apply the several mining algorithms
available in Weka to mine semantic trajectories.

The module STPM extends the Weka database connection interface. So, the
database schema is provided by the user and STMP loads all geographic database tables
to the boxes Trajectory and Relevant Features. This allows the user to choose the target
trajectory table and the spatial feature types of interest. This spatial feature types of
interest is related to the candidate stops used by the methods SMoT and CB-SMoT
discussed in Section 2.3. Consequently, STMP offers both methods as tools to generate
semantic trajectories, which receives as inputs a minimum time threshold, to consider a
stop, and a spatial threshold that represents the size of a buffer that in turn is the zone
around relevant features, represented by points or lines, to overcome spatial uncertainly.
Figure 6.1 shows the interface of STMP.

Therefore, Weka-STPM is a developed module for Weka that works with Open
GIS Consortium specification in order to generate semantic trajectories by identifying
stops and moves provided by the methods SMoT and CB-SMoT and some relevant fea-
tures. With the set of semantic trajectories, the user is able to achieve several data
mining techniques available in Weka over the semantic trajectories, such as techniques of
association rules and sequential patterns.
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(a) (b)

(c)

Figure 6.1: (a) STPM module, (b) Trajectory Table Config to perform ether transfor-
mation or generation over the attributes trajectory id and trajectory time,(c) database
schema provided by the user [Alvares et al., 2010]
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6.1.2 M-Atlas

[Trasarti et al., 2010] argues the idea that a system able to master the complexity of the
knowledge discovery process over mobility data needs to support at least four aspects:

i. trajectory data need to be created, stored and queried through spatio-temporal prim-
itives;

ii. trajectory models and patterns representing collective behavior have to be extracted
using trajectory mining algorithms;

iii. such patterns and models representing have to be represented and stored in order to
be re-used or combined;

iv. and new mining algorithms may be added.

[Trasarti et al., 2010] proposed a system called M-Atlas that combines those four aspects
through a Data Mining Query Language (DMQL) [Giannotti et al., 2011]. This language
in turn can be used to express the knowledge discovery process as a sequence of queries
to be submitted to the system.

For mobility understanding, M-Atlas supports several statistical analysis on a
dataset: movement distribution analysis to estimate the active movements in each hour
of the week; cumulative lengths distribution to represent the cumulative number of tra-
jectories having the same length; density of length over speed to analyze the variance
of each speed value where lower densities are represented by cold colors, while higher
densities are represented by warm colors. Figure 6.2 illustrates these tasks. M-Atlas
also integrates a set of data mining tools in order to discovery mobility behaviors. It
supports the construction of Origins-Destinations Matrix, the construction of georefer-
enced density maps according to different measures, extraction of mobility patterns, such
as T-Patterns [Giannotti et al., 2007], T-Clustering [Andrienko et al., 2009], T-Itineraries
[Benkert et al., 2008] and T-Prediction [Monreale et al., 2009].

M-Atlas therefore allows the user to combine tools (statistical methods, data
mining algorithms) in order to build his own discovery knowledge process in an iterative
and interactive way. Furthermore, this system also support the construction, storage and
retrieval of trajectories.

6.2 Tools in Complex Networks

Complex network area has received many attention and, consequently, many methods
has been developed to support analysis in networks in several areas, such as Sociology,
Biology, Computer Science and so on. From this, software tools are important to aid
analysis on network data in different areas, offering manners to compute properties and
investigate the network structure.
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Figure 6.2: Statistical analysis performed by M-Atlas: movement distribu-
tion (top), cumulative lengths distribution (left) and density of length over speed
(right) [Trasarti et al., 2010]

This section presents three tools to support users in network analysis: Cys-
toscape, Network Workbench and Gephi.

6.2.1 Cytoscape

Motivated by the explosion in experimental technologies for characterizing molecular in-
teractions and states, researchers have turned to a variety of software tools to process
and analyze the resulting large-scale data. However, those software tools are not able
to integrate both molecular interactions and state measurements together in a common
framework, and to then bridge these data with a wide assortment of model parameters
and other biological attributes. [Shannon et al., 2003] proposed a general-purpose and
open-source software environment for the large scale integration of molecular interaction
network data called Cytoscape.

Cytoscape Core software component provides basic functionality for integrat-
ing arbitrary data on the graph, a visual representation of the graph and integrated data,
selection and filtering tools, and an interface to external methods implemented as plug-
ins. Cytoscape integrates data with the graph model using attributes, where an attribute
is a single predicate of a node or edge. In addition, it provides a representation of a hier-
archical classification, ontology, by using annotations in order to structure more specific
descriptions of groups of nodes or edges. These annotations typically correspond to an
existing repository of knowledge that is large, complex, and relatively static, such as a
ontology database.
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Visualization is another important functionality provided by Cytoscape, which
supports a variety of automated network layout algorithms as well as it provides an
attribute-to-visual mapping to control the appearance of nodes and edges, such as node
color, shape, size and so on. In addition, it also provides a filtering mechanism to select
nodes and edges according to a wide variety of criteria, including selection by name, by a
list of names, or on the basis of attribute (e.g. node degree). The possibility of extending
the Core with plug-in modules is a powerful means of implementing new algorithms and
additional network analyses. Figure 6.3 illustrates some feature of Cytoscape.

Cytoscape is therefore a powerful software of analyzing large network data
whose initial proposal was to face manners of analyzing molecular interactions and state
measurements through networks and their properties. Nonetheless, many new algorithms
have been developed for supporting different types of analysis in several areas, such as
social network, bioinformatics and semantic web [Shannon et al., 2003].

Figure 6.3: Some functionality of Cytoscape. (a) Network layout algorithms. (b) Data
attribute-to-visual mapping to control the appearance of their associated nodes and edges
and data types as well. (c) Attribute of the selected nodes and edges. (d) Annotations are
transferred to node and edge attributes by choosing the desired ontology and hierarchical
level from a list of those available [Shannon et al., 2003]

6.2.2 Network Workbench

Network Workbench (NWB), proposed by [Team, 2006], aims at analyzing large-scale
networks as well as providing a toolkit for modeling and visualization for biomedical,
social science and physics research. NWB performs network analysis with the most known
algorithms. In addition, it is able to generate, run and validate models to advance their
understanding of the structure and dynamics of particular networks.
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Figure 6.4: NWB interface with the menu to compute network analysis on different
types of networks, such as node degree, degree distribution, clustering coefficient and
community detection

NWB performs several analysis on different types of networks, i.e, weighted,
unweighted, directed, undirected networks. Methods of preprocessing can be executed to
remove isolated nodes, highly connected nodes or node in a random manner. In addition,
network models can be generate as focus of study to understand the characteristics present
in each model, and the results are store in plain text files that can be plotted using an
external tool. Moreover, additional algorithms and data formats can be integrated into
the NWB using wizard driven templates.

6.2.3 Gephi

In order to developed a network exploration tool with high quality layout algorithms, data
filtering, clustering, statistics and annotation, [Bastian et al., 2009] proposed the Gephi
project, focusing on analysis clarity and on modern user interface, to both experts and
uninitiated audience (Figure 6.5).

Gephi is an open source network exploration and manipulation software in-
spired by WYSIWYG editors like Adobe Photoshop - “Like PhotopshopTM for graphs”
- [Bastian et al., 2009]. Gephi can import, visualize, spatialize, filter, manipulate and
export all types of networks and it can deal with large network (i. e. over 20,000 nodes)
and, because it is built on a multi-task model, it takes advantage of multi-core processors.
Node design can be personalized with a shape, a panel or a photo. The highly configurable
algorithms can be run in real-time. Labels can be shown on the visualization window from
any data attribute associate to nodes and, besides, a special algorithm named Label Adjust
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avoids label overlapping.

Figure 6.5: Interface of Gephi showing the Data Laboratory with Data Table, nodes and
edges with their properties, and a graph visualization window [Bastian et al., 2009]

As well as Cytoscape, Gephi supports node attributes and edge attributes and
they can be used to control the appearance of nodes and edges and as a mechanism
of filtering as well. Besides importing different network formats (e.g. adjacent list),
it can load networks from database systems by querying tables. The architecture is
interoperable and data source can be created to communicate with existing software,
third parties databases or web-services. Gephi also supports network model generation,
hierarchical networks and dynamic networks. Furthermore, all the generated visualization
of the networks can be exported as SVG file.

6.3 MobNet

In this section we introduce the developed software tool MobNet that is fruit of the
achieved work in this dissertation. Firstly, we present an overview of the tool, including
the its layers and interface. Afterwards, we show the main capabilities that are based on
the contributions in Chapter 4 and 5.

6.3.1 Overview

MobNet is a multi-platform software that supports users to analyze mobility data
through complex network techniques. This software tool receives some mobility data
as input to create a network structure of the data according to a proposed methodology
presented in this dissertation. MobNet is composed by three main layers:
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Figure 6.6: MobNet architecture consisting of three main layers: view engine, manager
engine and storage

• View Engine aims at interacting with the user. It provides ways to collect the
inputs and present the results to the user, including the nodes properties, edges
properties and communities properties. The built networks can be plotted on the
map to ease the understanding of the results. With the built trajectory networks or
poi networks , the View Engine can perform a visualization to node as trajectories
as well as nodes as points of interests and edges as movements of trajectories among
the points;

• Manager Engine is responsible for managing the process of retrieving, storing
and analyzing of the networks. It is the core of the application, where is defined the
model to store and retrieve the networks and their properties in the storage layer.
Besides, Manager Engine also provides the methods to compute the properties of
the networks, such as clustering coefficient, average shortest path length, community
detection, etc.

• Storage Engine corresponds to a database system to storage and retrieve the
networks and their properties, such as clustering coefficient, communities, etc. In
addition, it offers the indexing structure and query language to Manager Engine in
order to take advantage of the database system to perform some activities, such as
the computation of some properties.

This architecture is illustrated in Figure 6.6. Figure 6.7 shows MobNet and some of its
components.
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Figure 6.7: MobNet interface: in the menu we can choose between trajectory network
and poi network to build and visualize networks; Network Manager performs activities
on the built networks

In the next two sections, we present the main functionalities of MobNet
according to the proposed methodologies, starting with trajectory network and concluding
with poi network.

6.3.2 Trajectory Network

In Chapter 4 we have presented a methodology to build a network from a trajectory
dataset, where the nodes represent the trajectories and the edges are formed according to
a given similarity function. Thereby, MobNet provides a interface to build a trajectory
network from a trajectory dataset (Figure 6.8) and a mechanism of visualizing the nodes
(trajectories) of such network (Figure 6.9).

The network is built by the trajectory network builder and, after that, the
properties are computed and stored for further analysis (Figure 6.8). With a built trajec-
tory network, the user can investigate the network, node and edges properties and, then,
visualize all the nodes, the trajectories, or a set of nodes selected by the user (Figure 6.9).
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Figure 6.8: Building a trajectory network where the nodes are the trajectories from the
dataset

Figure 6.9: Visualizing the nodes (trajectories) of a built trajectory network : this is a
trajectory network with four nodes representing the four trajectories depicted on the map
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6.3.3 Points of Interest Network

In Chapter 5 we have presented a methodology to build a poi network from a trajectory
dataset and a poi dataset. Thereby, MobNet also provides mechanisms to build a poi
network, to detect communities and their properties, and to visualize the networks and
the communities.

In this case, MobNet builds a poi network according to the proposed method-
ology in which the user is able to analyze the network properties and draw the results
on the map. In addition, the user can perform a community discovery process on the
network, investigate the community properties and see the discovered communities on
the map as well. Figure 6.10 shows the poi network builder. Figure 6.11 illustrates the
process of visualization of communities: select all the communities or some of them.

Figure 6.10: Building a poi network where the nodes represent the points of interest,
and the edges correspond to the movement of the trajectories between the points
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Figure 6.11: Visualizing the discovered communities of a built poi network

6.4 Conclusion

In this chapter we presented some software tools in mobility and network analysis, and a
proposed software tool fruit of the main idea of this dissertation: mobility analysis under
a perspective of complex networks. Firstly, we presented some software tools whose goal
is to analyze mobility data, including the building of trajectories, semantic trajectories,
the identification of stops and moves, etc. Next, we introduced some software tools to
support users in network analysis, including network properties, network models, etc.

In the end, we introduced the proposed software tool called MobNet whose
the main goal is to analyze mobility data using complex network techniques. The two
main capabilities are based on the methodologies proposed in Chapter 4 and 5, i. e., it is
based on the building of trajectory and poi networks and the analysis on them.
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CHAPTER7

Conclusions

I n this master dissertation we have presented a multidisciplinary study combining mo-
bility and complex network areas. Firstly, we introduced the basic concepts used

throughout this dissertation in Chapter 2 and 3. Afterwards, we presented the contri-
butions of this dissertation in Chapter 4 and 5, showing different approaches to analyze
trajectory data using complex network techniques, and Chapter 6 introduction the devel-
oped software tool to analyze mobility data using the proposed methodologies.

7.1 Conclusion

In Chapter 2 we introduced basic definitions in mobility research field, including the
concepts of trajectory and semantic trajectory. Moreover, we presented the notions of
stops and moves as well as some methods to identify them from a trajectory dataset.
In Chapter 3, on the other hand, we presented the basic concepts in complex network
areas,covering some global and local properties of the networks, network models and
community detection. Finally, we have presented some tools to support users in analyzing
network data.

In Chapter 4, we presented the first approach, in which the trajectories corre-
spond to the nodes in a trajectory network, and the relationship between the nodes, tra-
jectories, is achieved with a given similarity function between two trajectories. Thereby,
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we introduced a similarity function called encounter in order to capture the spatial and
temporal proximity between two trajectories to establish an edge between them if their
similarity satisfies a given minimum threshold, and we proposed an algorithm to generate
a trajectory network based on the encounters of the trajectories. Besides the theoretical
analysis, we presented experimental results for moving object trajectories on complex net-
works. Our analysis reveals that all trajectory networks are scale free network, presenting
small-world and power law features. In addition, the results have practical implications
for investigating moving objects interactions from complex network perspective. This ap-
proach provides another method for analyzing trajectories from the potential interaction
perspective, when it is compared to existing data mining and statistical methods. This
approach can be performed on other applications: in hospital environment, where doctors
and patients could wear GPS-enabled devices or chips to collect their mobility and, then,
to analysis the risk of contagious of the network built by their encounters, that is, if a
doctor, that could be in touch with patients with contagious disease, encounters many
others, doctors and patients, and, consequently, might spread these diseases; Study of
football players, for instance, to identify the players that move near their opponents to
block their game.

In Chapter 5, we proposed an explorative study on the relation between people
mobility and points of interest, POIs, at the global scale, based on the complex network
paradigm. In this contribution, we presented an algorithm to build a complex network,
named poi network, that combines locations that people visit with the mobility of users
represented as trajectories. From this network we computed the communities as the
subgroups of points of interest related by the common users trajectories visiting them. An
explorative analysis was conducted in a real case study where a complex network was built
combining points of interest with traces of moving cars and communities of places grouped
by common mobility were extracted. We defined some interesting features to characterize
these communities such as the compactness or the presence of “bridge” communities. We
observed these measures discussing the possible interpretations in terms of applications
such as traffic management or advertising.

We introduced in Chapter 6 the developed software tool, named MobNet, to
encapsulate the proposed methodologies to analyze mobility data using complex networks
techniques. Yet, we presented some software tools to support users in mobility analysis
and network analysis as well.

7.2 Future Works

Future works follow several directions. First of all, alternative ways of computing the stops
and associating the POIs may be applied in order to better represent the actual activity
of the user. Furthermore, we plan to extend this methodology to other real datasets to
further validate the results. Naturally, we intend to investigate more in deep the possible
applications that can be benefit from this analysis, for example going to the direction of
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POIs recommendation systems.

Other direction will focus on creating a framework to analyze mobility data
under a complex network viewpoint, whose goal is not only at exploiting complex network
methods, but also integrating mobility techniques found in the literature (statistics or data
mining) with network techniques. This is an open and challenging issue. Which is the
potential synergic mobility knowledge we can get from the cooperation of data mining
and complex networks techniques?

This new topic offers several research opportunities. For example, since com-
plex networks are strongly related to social media (social networks, etc.), future works
also intend to take advantage of the huge amount of information available about Inter-
net users. For instance, map services offer comments and rates of the places written by
people that visited them; associate the traffic flow with what people say on social media
(Facebook, Twitter, etc.).

These future works aim at targeting people that are not only specialists, but
non-specialist as well. Certainly the methods to support traffic specialists or urban de-
signers are quite important. However, enable citizens to understand the traffic is quite
relevant, since they can make choices in order to use the urban space for the benefits of
all.
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